forked from pConst/basic_verilog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuart_tx_shifter.sv
122 lines (93 loc) · 3.17 KB
/
uart_tx_shifter.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
//------------------------------------------------------------------------------
// uart_tx_shifter.sv
// Konstantin Pavlov, [email protected]
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// UART-like shifter for simple synchronous messaging inside the FPGA or between FPGAs
// See also `uart_rx_shifter.sv` for RX part
//
// TX and RX parts should share one clock source
// Capable of continious stream transfer when tx_start is held constant 1'b1
// Any reasonable start bit count,data bit count, stop bit count
//
/* --- INSTANTIATION TEMPLATE BEGIN ---
uart_tx_shifter #(
.START_BITS( 1 ),
.DATA_BITS( 8 ),
.STOP_BITS( 2 )
) tx1 (
.clk( clk ),
.nrst( 1'b1 ),
.tx_data( ),
.tx_start( ),
.tx_busy( ),
.txd( )
);
--- INSTANTIATION TEMPLATE END ---*/
module uart_tx_shifter #(
bit [7:0] START_BITS = 1, // must be >=1
bit [7:0] DATA_BITS = 4, // must be >=1
bit [7:0] STOP_BITS = 2 // must be >=1
)(
input clk, // transmitter and receiver should use
input nrst, // the same clock
input [DATA_BITS-1:0] tx_data, // input data get captured on write strobe
input tx_start, // write strobe itself
output tx_busy, // tx_busy fall on the last stop bit
output logic txd = 1'b1
);
logic [DATA_BITS-1:0] tx_data_buf = '0;
logic [7:0] state_cntr = '0;
enum int unsigned { STOP, START, DATA } tx_state = STOP;
always_ff @(posedge clk) begin
if( ~nrst ) begin
tx_state <= STOP;
tx_data_buf[DATA_BITS-1:0] <= '0;
state_cntr[7:0] <= '0;
txd <= 1'b1;
end else begin
case( tx_state )
STOP: begin
txd <= 1'b1;
if( state_cntr[7:0] != '0 ) begin
// holding stop bits
state_cntr[7:0]--;
end else begin
// idle state after stop bits
// no need for edge detector here because tx_state changes instantly
// after the first active tx_start cycle
if( tx_start ) begin
// buffering input data
tx_data_buf[DATA_BITS-1:0] <= tx_data[DATA_BITS-1:0];
state_cntr[7:0] <= START_BITS - 1'b1;
tx_state <= tx_state.next();
end // tx_start
end // state_cntr
end
START: begin
txd <= 1'b0;
if( state_cntr[7:0] != '0 ) begin
// holding start bits
state_cntr[7:0]--;
end else begin
// transition
state_cntr[7:0] <= DATA_BITS - 1'b1;
tx_state <= tx_state.next();
end // state_cntr
end
DATA: begin
// setting data, MSB first
txd <= tx_data_buf[state_cntr[7:0]];
if( state_cntr[7:0] != '0 ) begin
state_cntr[7:0]--;
end else begin
// transition
state_cntr[7:0] <= STOP_BITS - 1'b1;
tx_state <= tx_state.next();
end // state_cntr
end
endcase // tx_state
end
end
assign tx_busy = ~( (tx_state == STOP) && (state_cntr[7:0] == '0) );
endmodule