forked from yangzhangalmo/pytorch-iris
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
71 lines (52 loc) · 2.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class Net(nn.Module):
# define nn
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(4, 100)
self.fc2 = nn.Linear(100, 100)
self.fc3 = nn.Linear(100, 3)
self.softmax = nn.Softmax(dim=1)
def forward(self, X):
X = F.relu(self.fc1(X))
X = self.fc2(X)
X = self.fc3(X)
X = self.softmax(X)
return X
# load IRIS dataset
dataset = pd.read_csv('dataset/iris.csv')
# transform species to numerics
dataset.loc[dataset.species=='Iris-setosa', 'species'] = 0
dataset.loc[dataset.species=='Iris-versicolor', 'species'] = 1
dataset.loc[dataset.species=='Iris-virginica', 'species'] = 2
train_X, test_X, train_y, test_y = train_test_split(dataset[dataset.columns[0:4]].values,
dataset.species.values, test_size=0.8)
# wrap up with Variable in pytorch
train_X = Variable(torch.Tensor(train_X).float())
test_X = Variable(torch.Tensor(test_X).float())
train_y = Variable(torch.Tensor(train_y).long())
test_y = Variable(torch.Tensor(test_y).long())
net = Net()
criterion = nn.CrossEntropyLoss()# cross entropy loss
optimizer = torch.optim.SGD(net.parameters(), lr=0.01)
for epoch in range(1000):
optimizer.zero_grad()
out = net(train_X)
loss = criterion(out, train_y)
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print 'number of epoch', epoch, 'loss', loss.data[0]
predict_out = net(test_X)
_, predict_y = torch.max(predict_out, 1)
print 'prediction accuracy', accuracy_score(test_y.data, predict_y.data)
print 'macro precision', precision_score(test_y.data, predict_y.data, average='macro')
print 'micro precision', precision_score(test_y.data, predict_y.data, average='micro')
print 'macro recall', recall_score(test_y.data, predict_y.data, average='macro')
print 'micro recall', recall_score(test_y.data, predict_y.data, average='micro')