-
Notifications
You must be signed in to change notification settings - Fork 1
/
stl_ereal.v
402 lines (384 loc) · 16.1 KB
/
stl_ereal.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
From HB Require Import structures.
Require Import Coq.Program.Equality.
From mathcomp Require Import all_ssreflect all_algebra.
From mathcomp Require Import lra.
From mathcomp Require Import all_classical.
From mathcomp Require Import reals ereal signed.
From mathcomp Require Import topology derive normedtype sequences
exp measure lebesgue_measure lebesgue_integral hoelder.
Require Import mathcomp_extra analysis_extra ldl.
(**md**************************************************************************)
(* # Properties of STL on extended reals *)
(* *)
(* ## Structural properties *)
(* - andI_stl == idempotence of conjunction *)
(* - andC_stl == commutativity of conjunction *)
(* - orI_stl == idempotence of disjunction *)
(* - orC_stl == commutativity of disjunction *)
(* *)
(* ## Soundness *)
(* - stl_nary_inversion_andE1 == inversion lemma for conjunction/true *)
(* - stl_nary_inversion_andE0 == inversion lemma for conjuntion/false *)
(* - stl_nary_inversion_orE1 == inversion lemma for disjunction/true *)
(* - stl_nary_inversion_orE0 == inversion lemma for disjunction/false *)
(* - stl_ereal_translations_Vector_coincide == shows that the Boolean translation *)
(* and the STL translation coincide on expressions of type Vector_T *)
(* - stl_ereal_translations_Index_coincide == shows that the Boolean translation *)
(* and the STL translation coincide on expressions of type Index_T *)
(* - stl_ereal_translations_Real_coincide == shows that the Boolean translation and *)
(* the STL translation coincide on expressions of type Real_T *)
(* - stl_soundness == final soundness result for STL *)
(******************************************************************************)
Import Num.Def Num.Theory GRing.Theory.
Import Order.TTheory.
Import numFieldTopology.Exports.
Section stl_lemmas.
Local Open Scope ring_scope.
Context {R : realType}.
Variables (nu : R).
Hypothesis nu0 : 0 < nu.
Local Open Scope ring_scope.
Local Open Scope ldl_scope.
Lemma andI_stl (e : expr Bool_T_def) :
nu.-[[e `/\ e]]_stle = nu.-[[e]]_stle.
Proof.
rewrite /=/sumE !big_cons !big_nil/=.
have [->//|epoo] := eqVneq (nu.-[[e]]_stle) (+oo)%E.
have [->//=|enoo] := eqVneq (nu.-[[e]]_stle) (-oo)%E.
rewrite /mine_dev.
set a_min := mine (nu.-[[e]]_stle) (mine (nu.-[[e]]_stle) +oo)%E.
set a := ((nu.-[[e]]_stle - a_min) * ((fine a_min)^-1)%:E)%E.
have a_min_e : a_min = nu.-[[e]]_stle.
by rewrite /a_min /mine; repeat case: ifPn => //; rewrite -leNgt leye_eq => /eqP ->.
have -> : a = 0%E.
by rewrite /a a_min_e subee ?mul0e// fin_numE epoo enoo.
rewrite !adde0 !mule0 expeR0 !mule1/= a_min_e.
have : ((nu.-[[e]]_stle + nu.-[[e]]_stle) * ((1 + 1)^-1)%:E)%E = nu.-[[e]]_stle.
have -> : 1 + 1 = (2 : R) by lra.
rewrite -(@fineK _ (nu.-[[e]]_stle)); last by rewrite fin_numE epoo enoo.
by rewrite -EFinD -EFinM mulrDl -splitr.
case: ifPn => [/eqP h|_ ->]; first by rewrite !h.
case: ifPn => [/eqP ->//|?].
case: ifPn => //; rewrite -leNgt => ege0.
case: ifPn => //; rewrite -leNgt => ele0.
by apply le_anti_ereal; apply/andP; split.
Qed.
Lemma andC_stl (e1 e2 : expr Bool_T_def) :
nu.-[[e1 `/\ e2]]_stle = nu.-[[e2 `/\ e1]]_stle.
Proof.
rewrite /=/sumE !big_cons !big_nil /=.
set a_min := mine (nu.-[[e1]]_stle) (mine (nu.-[[e2]]_stle) +oo)%E.
have -> : (mine (nu.-[[e2]]_stle) (mine (nu.-[[e1]]_stle) +oo))%E = a_min.
by rewrite mineA [X in mine X _]mineC -mineA.
set a1 := ((nu.-[[e1]]_stle - a_min) * ((fine a_min)^-1)%:E)%E.
set a2 := ((nu.-[[e2]]_stle - a_min) * ((fine a_min)^-1)%:E)%E.
set d1 := ((fine (expeR (nu%:E * a1) + (expeR (nu%:E * a2) + 0)))^-1)%:E.
have -> : ((fine (expeR (nu%:E * a2) + (expeR (nu%:E * a1) + 0)))^-1)%:E = d1.
by rewrite addeCA.
case: ifPn => //.
case: ifPn => //.
case: ifPn => _; first by rewrite addeCA.
by case: ifPn => _; first rewrite addeCA.
Qed.
Lemma orI_stl (e : expr Bool_T_def) :
nu.-[[e `\/ e]]_stle = nu.-[[e]]_stle.
Proof.
rewrite /=/sumE !big_cons !big_nil/=.
rewrite /maxe_dev.
have [->//|enoo] := eqVneq (nu.-[[e]]_stle) (-oo)%E.
have [->//=|epoo] := eqVneq (nu.-[[e]]_stle) (+oo)%E.
set a_max := maxe (nu.-[[e]]_stle) (maxe (nu.-[[e]]_stle) -oo)%E.
set a := (((a_max - nu.-[[e]]_stle) * ((fine a_max)^-1)%:E))%E.
have a_max_e : a_max = nu.-[[e]]_stle.
by rewrite /a_max /maxe; repeat case: ifPn; rewrite ltNge leNye.
have -> : a = 0%E.
by rewrite /a a_max_e subee ?mul0e// fin_numE epoo enoo.
rewrite !adde0 !mule0 expeR0 !mule1/= a_max_e.
have -> : ((nu.-[[e]]_stle + nu.-[[e]]_stle) * ((1 + 1)^-1)%:E)%E = nu.-[[e]]_stle.
have -> : 1 + 1 = (2 : R) by lra.
rewrite -(@fineK _ (nu.-[[e]]_stle)); last by rewrite fin_numE epoo enoo.
by rewrite -EFinD -EFinM mulrDl -splitr.
case: ifPn => [/eqP->//|?].
case: ifPn => [/eqP->//|?].
case: ifPn => [//|]; rewrite -leNgt => ege0.
case: ifPn => [//|]; rewrite -leNgt => ele0.
by apply/eqP; rewrite eq_le ege0 ele0.
Qed.
Lemma orC_stl (e1 e2 : expr Bool_T_def) :
nu.-[[e1 `\/ e2]]_stle = nu.-[[e2 `\/ e1]]_stle.
Proof.
rewrite /=/sumE !big_cons !big_nil /=.
set a_max := maxe (nu.-[[e1]]_stle) (maxe (nu.-[[e2]]_stle) -oo)%E.
have -> : (maxe (nu.-[[e2]]_stle) (maxe (nu.-[[e1]]_stle) -oo))%E = a_max.
by rewrite maxA [X in maxe X _]maxC -maxA.
set a1 := ((a_max - nu.-[[e1]]_stle) * ((fine a_max)^-1)%:E)%E.
set a2 := (((a_max - nu.-[[e2]]_stle) * ((fine a_max)^-1)%:E))%E.
set d1 := ((fine (expeR (nu%:E * a1) + (expeR (nu%:E * a2) + 0)))^-1)%:E.
have -> : ((fine (expeR (nu%:E * a2) + (expeR (nu%:E * a1) + 0)))^-1)%:E = d1.
by rewrite addeCA.
case: ifPn => // ?.
case: ifPn => // ?.
case: ifPn => [|?].
by rewrite addeCA.
case: ifPn => // ?.
by rewrite addeCA.
Qed.
Lemma stl_ereal_translations_Vector_coincide: forall n (e : @expr R (Vector_T n)),
nu.-[[ e ]]_stle = [[ e ]]_B.
Proof.
dependent induction e => //=.
dependent destruction e1.
by rewrite (IHe2 _ _ _ e2 erefl JMeq_refl).
Qed.
Lemma stl_ereal_translations_Index_coincide: forall n (e : expr (Index_T n)),
nu.-[[ e ]]_stle = [[ e ]]_B.
Proof.
dependent induction e => //=.
Qed.
Lemma stl_ereal_translations_Real_coincide (e : expr Real_T):
nu.-[[ e ]]_stle = [[ e ]]_B.
Proof.
dependent induction e => //=;
rewrite ?(IHe1 e1 erefl JMeq_refl) ?(IHe2 e2 erefl JMeq_refl) ?(IHe e erefl JMeq_refl) //=.
by rewrite stl_ereal_translations_Vector_coincide stl_ereal_translations_Index_coincide.
Qed.
Definition is_stl b (x : \bar R) := (if b then x >= 0 else x < 0)%E.
Lemma stl_nary_inversion_andE1 (Es : seq (expr Bool_T_undef) ) :
is_stl true (nu.-[[ ldl_and Es ]]_stle) -> (forall i, (i < size Es)%N -> is_stl true (nu.-[[ nth (ldl_bool undef false) Es i ]]_stle)).
Proof.
rewrite/is_stl/= big_map.
case: ifPn => [//|hnoo].
case: ifPn => [/eqP min_apoo _|hpoo].
move=> i isize.
move: ((mine_eqyP _ _ _).1 min_apoo (nth (ldl_bool undef false) Es i)).
by rewrite mem_nth// => ->.
case: ifPn=>[hminlt0|].
rewrite/sumE.
rewrite leNgt !big_map.
rewrite mule_lt0_gt0//; last first.
rewrite lte_fin invr_gt0 fine_gt0//.
apply/andP;split.
rewrite big_seq_cond sume_gt0//.
move=> i /andP[iEs _]; apply: expeR_ge0.
have := hminlt0; rewrite big_seq_cond.
move/mine_lt => [i [iEs _ hilt0]].
exists i; split; [exact: iEs|by rewrite andbT|].
rewrite expeR_gt0 ?iEs//.
rewrite ltNye !mule_eq_ninfty.
rewrite !lte_fin !nu0/=.
rewrite !negb_or !negb_and -!leNgt/= andbT !orbT/= (ltW nu0)/= -!big_seq_cond.
rewrite andbT invr_le0 invr_ge0 fine_le0 ?orbT ?(ltW hminlt0)//=.
rewrite -ltey lte_add_pinfty//.
by apply: lt_trans; first exact: hilt0.
by rewrite lte_oppl/= ltNye.
rewrite big_seq_cond.
apply: lte_sum_pinfty => i /andP[iEs _].
apply: expeR_lty.
rewrite ltey !mule_eq_pinfty/= !negb_or !negb_and !negb_or !negb_and.
rewrite -!leNgt !lee_fin !(ltW nu0)/= !orbT !andbT/=.
rewrite invr_le0 fine_le0 ?(ltW hminlt0)// orbT/=.
rewrite adde_eq_ninfty negb_or; apply/orP; right.
apply/orP; left; apply/andP; split.
rewrite gt_eqF//.
have := hnoo; rewrite -ltNye.
move/mine_gt; apply => //.
by rewrite eqe_oppLR.
apply sume_lt0.
move=> i _.
rewrite !mule_le0_ge0//; last 2 first.
by apply expeR_ge0.
by apply expeR_ge0.
exact: ltW.
have := hminlt0.
rewrite {1}big_seq_cond.
move/mine_lt => [i [iEs _ hilt0]].
exists i; split => //.
rewrite mule_lt0_gt0//; last first.
rewrite expeR_gt0// ltNye !mule_eq_ninfty/= !negb_or !negb_and !negb_or !negb_and.
rewrite -!leNgt !lee_fin/= (ltW nu0)/= !andbT !orbT/=.
rewrite invr_le0 fine_le0 ?(ltW hminlt0)// orbT/=.
rewrite adde_Neq_pinfty; last by rewrite eqe_oppLR/=.
rewrite eqe_oppLR/= hnoo andbT.
by rewrite -ltey (lt_trans hilt0)//= orbT.
rewrite -ltNye.
move: hnoo; rewrite -ltNye.
by move/mine_gt; apply.
rewrite mule_lt0 hminlt0/= {1}lt_eqF//= {1}gt_eqF//=.
by rewrite -leNgt expeR_ge0.
rewrite expeR_gt0// ltNye mule_eq_ninfty !negb_or !negb_and -!leNgt.
rewrite -!ltNye -!ltey !ltNyr !orbT/=.
rewrite lee_fin invr_le0 fine_le0 ?(ltW hminlt0)// orbT/=.
rewrite ltey adde_Neq_pinfty ?eqe_oppLR/= ?hpoo ?hnoo//.
by rewrite -ltey (lt_trans hilt0).
rewrite -ltNye.
move: hnoo; rewrite -ltNye.
by move/mine_gt; apply.
rewrite -leNgt => hminge0.
case: ifPn => [hmingt0 _ i isize|].
have := hminge0.
by move/mine_geP; apply => //; rewrite mem_nth.
rewrite -leNgt => hminle0 _ i isize.
have := hminge0.
rewrite big_seq_cond.
by move/mine_geP; apply; rewrite mem_nth.
Qed.
Lemma stl_nary_inversion_andE0 (Es : seq (expr Bool_T_undef) ) :
is_stl false (nu.-[[ ldl_and Es ]]_stle) -> (exists (i : nat), is_stl false (nu.-[[ nth (ldl_bool undef false) Es i ]]_stle)%E && (i < size Es)%nat).
Proof.
rewrite/is_stl/= !big_map.
have h0 : (-oo != +oo)%E by [].
case: ifPn => [/eqP|hnoo].
rewrite big_seq_cond.
move/(mine_eq (h0 _)) => [x [xEs _ hxnoo]].
move: xEs.
exists (index x Es).
by rewrite nth_index// hxnoo ltNy0/= index_mem.
case: ifPn => [/eqP|hpoo].
by rewrite lt_neqAle leye_eq => _ /andP[_ /eqP].
case: ifPn => [|].
rewrite {1}big_seq_cond.
move/mine_lt => [x [xEs _ xlt0]].
exists (index x Es).
by rewrite nth_index// xlt0 index_mem.
rewrite -leNgt => hge0.
case: ifPn => [hgt0|].
apply: contraPP.
move/forallNP => h.
have {}h : forall i : nat,
(i < size Es)%N ->
(0 <= nu.-[[nth (ldl_bool undef false) Es i]]_stle)%E.
move=> i iEs.
move: (h i) => /negP.
by rewrite negb_and -leNgt iEs/= orbF.
apply/negP; rewrite -leNgt mule_ge0//.
rewrite /sumE !big_map big_seq_cond sume_ge0// => x /andP[xEs _].
rewrite mule_ge0//.
move: (h (index x Es)).
by rewrite index_mem xEs nth_index//; apply.
exact: expeR_ge0.
rewrite lee_fin invr_ge0 fine_ge0// /sumE !big_map sume_ge0// => x _.
exact: expeR_ge0.
by rewrite ltxx.
Qed.
Lemma stl_nary_inversion_orE1 (Es : seq (expr Bool_T_undef) ) :
is_stl true (nu.-[[ ldl_or Es ]]_stle) ->
exists i, is_stl true (nu.-[[ nth (ldl_bool _ false) Es i ]]_stle) && (i < size Es)%N.
Proof.
rewrite/is_stl/= !big_map.
case: ifPn => [_|hnoo]; first by rewrite leNgt ltNyr.
case: ifPn => [/eqP|hpoo].
have h : -oo%E != +oo%E :> \bar R by [].
move/maxe_eq => /(_ h) => -[x [xEs _ xlt0]] _.
exists (index x Es).
by rewrite nth_index// xlt0 index_mem ltW.
have := hnoo; rewrite eq_sym -ltNye => /maxe_gt[j [jEs _ jgtNye]].
case: ifPn => [hlt0 _|].
move: hlt0 => /maxe_gt [x [xEs _ hxgt0]].
by exists (index x Es); rewrite nth_index// ltW// index_mem.
rewrite -leNgt => hle0.
case: ifPn => [hlt0|].
have h1 (i : expr Bool_T_undef) (iEs : i \in Es) :
(maxe_dev (\big[maxe/-oo%E]_(i0 <- Es | i0 \in Es) nu.-[[i0]]_stle) (nu.-[[i]]_stle) != +oo)%E.
rewrite /maxe_dev mule_eq_pinfty !negb_or !negb_and -!leNgt.
rewrite lt_eqF ?ltry//=!orbT/=.
rewrite !lee_fin invr_le0 fine_le0 -big_seq ?hle0// orbT//=.
rewrite adde_eq_ninfty negb_or hnoo/= -oppeey oppeK.
rewrite lt_eqF//=.
by apply: lt_trans; first by move: hlt0 => /maxe_lt; apply.
have h2 (i : expr Bool_T_undef) (iEs : i \in Es) (gtNyi : (-oo < nu.-[[i]]_stle)%E) :
(maxe_dev (\big[maxe/-oo%E]_(i0 <- Es | i0 \in Es) nu.-[[i0]]_stle) (nu.-[[i]]_stle) != -oo)%E.
rewrite /maxe_dev mule_eq_ninfty !negb_or !negb_and -!leNgt.
rewrite gt_eqF ?ltNyr//=!orbT/=.
rewrite !lee_fin invr_le0 fine_le0 -big_seq ?hle0// orbT//=.
rewrite adde_Neq_pinfty ?hnoo ?hpoo//= ?oppeey.
rewrite gt_eqF//=.
rewrite -oppeey oppeK lt_eqF//.
by apply: lt_trans; first by move: hlt0 => /maxe_lt; apply.
rewrite /sumE !big_map !big_seq.
rewrite leNgt nmule_rlt0.
rewrite lte_fin invr_gt0 fine_gt0// sume_gt0/=.
- rewrite lte_sum_pinfty// => i iEs.
rewrite expeR_lty//.
rewrite lteey mule_eq_pinfty !negb_or !negb_and !lte_fin nu0 -!leNgt (ltW nu0)//= andbT.
exact: h1.
- by move=> i iEs; rewrite expeR_ge0.
- exists j. rewrite jEs expeR_gt0// ltNye mule_eq_ninfty.
rewrite !lte_fin nu0/= !negb_or !negb_and -leNgt (ltW nu0)/= andbT.
exact: h2.
- rewrite sume_lt0//.
move=> i iEs; rewrite nmule_rle0 ?expeR_ge0//.
by move: hlt0 => /maxe_lt ->.
exists j; rewrite jEs ?nmule_rlt0 ?expeR_gt0//.
rewrite ltNye mule_eq_ninfty !lte_fin ltrNl ltrNr oppr0 nu0 !negb_or !negb_and -leNgt (ltW nu0) andbT/=.
exact: h1.
by move: hlt0 => /maxe_lt ->.
rewrite -leNgt => hge0 _.
move: hge0 => /maxe_ge'.
rewrite gt_eqF//=.
move=> /(_ isT)[i [iEs _ hige0 ] ].
exists (index i Es).
by rewrite nth_index// hige0 index_mem.
Qed.
Lemma stl_nary_inversion_orE0 (Es : seq (expr Bool_T_undef)) :
is_stl false (nu.-[[ ldl_or Es ]]_stle) ->
forall i, (i < size Es)%N ->
is_stl false (nu.-[[ nth (ldl_bool undef false) Es i ]]_stle).
Proof.
rewrite/is_stl/= !big_map.
case: ifPn => [/eqP hnoo _|hnoo].
move=> i isize.
move: hnoo => /maxe_eqyP ->//.
exact: mem_nth.
case: ifPn => [/eqP hpoo//|hpoo].
case: ifPn => [hgt0|].
rewrite /sumE !big_map !big_seq ltNge.
rewrite mule_ge0//; last rewrite lee_fin invr_ge0 fine_ge0//; rewrite sume_ge0//.
by move=> i iEs; rewrite !mule_ge0// ?expeR_ge0// -big_seq ltW.
by move=> i iEs; rewrite expeR_ge0.
rewrite -leNgt => hle0.
case: ifPn => [hlt0 _|].
move=> i isize.
move: hlt0 => /maxe_lt ->//.
exact: mem_nth.
by rewrite ltxx.
Qed.
Lemma stl_soundness (e : expr Bool_T_undef) b :
is_stl b (nu.-[[ e ]]_stle) -> [[ e ]]_B = b.
Proof.
dependent induction e using expr_ind'.
- move: b b0 => [] [] //=.
- rewrite List.Forall_forall in H.
move: b => []. rewrite /is_stl.
+ move/stl_nary_inversion_andE1.
rewrite [bool_translation (ldl_and l)]/= big_map big_seq big_all_cond => h.
apply: allT => x/=.
apply/implyP => /nthP xnth.
have [i il0 <-] := xnth (ldl_bool _ false).
by apply: H => //; rewrite ?h// -In_in mem_nth.
+ move/stl_nary_inversion_andE0.
rewrite [bool_translation (ldl_and l)]/= big_map big_all.
elim=>// i /andP[i0 isize].
apply/allPn; exists (nth (ldl_bool _ false) l i); first by rewrite mem_nth.
apply/negPf; apply: H => //.
by rewrite -In_in mem_nth.
- rewrite List.Forall_forall in H.
move: b => [].
+ move/stl_nary_inversion_orE1.
rewrite [bool_translation (ldl_or l)]/= big_map big_has.
elim=>// i /andP[i0 isize].
apply/hasP; exists (nth (ldl_bool _ false) l i); first by rewrite mem_nth.
apply: H => //.
by rewrite -In_in mem_nth.
+ move/stl_nary_inversion_orE0.
rewrite [bool_translation (ldl_or l)]/= big_map big_has => h.
apply/hasPn => x.
move/nthP => xnth.
have [i il0 <-] := xnth (ldl_bool _ false).
by apply/negPf; apply: H => //; rewrite ?h// -In_in mem_nth.
- case: c.
+ by case: b; rewrite /is_stl/= ?lee_fin ?lte_fin ?ltNge subr_ge0 !stl_ereal_translations_Real_coincide// => /negbTE.
+ case: b; rewrite /is_stl/= ?lee_fin ?lte_fin !stl_ereal_translations_Real_coincide.
by rewrite oppr_ge0 normr_le0 subr_eq0.
by rewrite oppr_lt0 normr_gt0 subr_eq0 => /negbTE.
Qed.
End stl_lemmas.