-
Notifications
You must be signed in to change notification settings - Fork 96
/
neptune.yaml
107 lines (92 loc) · 1.97 KB
/
neptune.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
project: shared/showroom
name: mapping_challenge_baseline
tags: [solution_5]
parameters:
# Data Paths
data_dir: data/raw
meta_dir: data/meta
masks_overlayed_prefix: masks_overlayed
experiment_dir: data/experiments/mapping_challenge_baseline
# Execution
overwrite: 0
num_workers: 4
num_threads: 1000
load_in_memory: 0
pin_memory: 1
evaluation_data_sample: 1000
border_width: 0
small_annotations_size: 14
loader_mode: resize
stream_mode: 0
# General parameters
image_h: 256
image_w: 256
image_channels: 3
# U-Net parameters (multi-output)
nr_unet_outputs: 1
channels_per_output: 2
n_filters: 16
conv_kernel: 3
pool_kernel: 3
pool_stride: 2
repeat_blocks: 4
encoder: ResNet101
# U-Net loss weights (multi-output)
bce_mask: 1.0
dice_mask: 0.2
# Training schedule
epochs_nr: 100
batch_size_train: 20
batch_size_inference: 20
lr: 0.0005
momentum: 0.9
gamma: 1.0
patience: 30
lr_factor: 0.3
lr_patience: 30
w0: 50
sigma: 10
dice_smooth: 1
dice_activation: 'softmax'
validate_with_map: 1
# Regularization
use_batch_norm: 1
l2_reg_conv: 0.0001
l2_reg_dense: 0.0
dropout_conv: 0.1
dropout_dense: 0.0
# Postprocessing
erode_selem_size: 0
dilate_selem_size: 0
tta_aggregation_method: gmean
nms__iou_threshold: 0.5
# Inference padding
crop_image_h: 300
crop_image_w: 300
h_pad: 10
w_pad: 10
pad_method: 'replicate'
#Neptune monitor
unet_outputs_to_plot: '["multichannel_map",]'
#Scoring model
scoring_model: 'lgbm'
scoring_model__num_training_examples: 10000
#LightGBM
lgbm__learning_rate: 0.01
lgbm__num_leaves: 500
lgbm__min_data: 100
lgbm__max_depth: 20
lgbm__number_of_trees: 50000
lgbm__early_stopping: 10
lgbm__train_size: 0.7
lgbm__target: 'iou'
#Random Forest
rf__n_estimators: 500
rf__criterion: "mse"
rf__max_depth: 20
rf__min_samples_split: 100
rf__min_samples_leaf: 100
rf__max_features: 'auto'
rf__max_leaf_nodes: 500
rf__n_jobs: 10
rf__verbose: 0