-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathtensor-utils.js
613 lines (543 loc) · 22.3 KB
/
tensor-utils.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
import * as tf from '@tensorflow/tfjs'
import { BWLabeler } from './bwlabels.js'
export async function addZeroPaddingTo3dTensor(tensor3d, rowPadArr = [1, 1], colPadArr = [1, 1], depthPadArr = [1, 1]) {
if (tensor3d.rank !== 3) {
throw new Error('Tensor must be 3D')
}
return tensor3d.pad([rowPadArr, colPadArr, depthPadArr])
}
export async function applyMriThreshold(tensor, percentage) {
// Perform asynchronous operations outside of tf.tidy
const maxTensor = tensor.max()
const thresholdTensor = maxTensor.mul(percentage)
const threshold = await thresholdTensor.data() // Extracts the threshold value
// Dispose tensors not needed anymore
maxTensor.dispose()
thresholdTensor.dispose()
// Use tf.tidy for synchronous operations
return tf.tidy(() => {
const dataForProcessing = tensor.clone()
// Thresholding (assuming background has very low values compared to the head)
const mask = dataForProcessing.greater(threshold[0])
// -- const denoisedMriData = dataForProcessing.mul(mask)
// No need to manually dispose dataForProcessing and mask, as tf.tidy() will dispose them auto.
return mask
})
// -- return denoisedMriData
}
export async function binarizeVolumeDataTensor(volumeDataTensor) {
const alpha = 0
// element-wise: (x > 0 ? 1 : alpha * x ); e.g. Tenosr [0, 0.9, 0.8, -3] => Tensor [0, 1, 1, 0]
return volumeDataTensor.step(alpha)
}
async function calculateQuantiles(tensor, lowerQuantile = 0.01, upperQuantile = 0.99) {
// Flatten the tensor
const flatTensor = tensor.flatten()
// Convert the flattened tensor to an array to sort it
const flatArray = await flatTensor.array()
flatArray.sort((a, b) => a - b) // Sort the array in ascending order
// Convert the sorted array back to a tensor
const sortedTensor = tf.tensor1d(flatArray)
// Calculate the indices for the quantiles
const numElements = sortedTensor.shape[0]
const lowIndex = Math.floor(numElements * lowerQuantile)
const highIndex = Math.ceil(numElements * upperQuantile) - 1 // Subtract 1 because indices are 0-based
// Slice the sorted tensor to get qmin and qmax
const qmin = sortedTensor.slice(lowIndex, 1) // Get the value at the low index
const qmax = sortedTensor.slice(highIndex, 1) // Get the value at the high index
// Get the actual values from the tensors
const qminValue = (await qmin.array())[0]
const qmaxValue = (await qmax.array())[0]
// Clean up tensors to free memory
flatTensor.dispose()
sortedTensor.dispose()
qmin.dispose()
qmax.dispose()
return { qmin: qminValue, qmax: qmaxValue }
}
export async function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, dilationRate, sliceSize) {
const inChannels = input.shape[4]
const outChannels = filter.shape[4]
// Create an empty array to hold the output channels
let outputChannels = null
// Slice the input tensor and process one output channel at a time
for (let channel = 0; channel < outChannels; channel++) {
const numSlices = Math.ceil(inChannels / sliceSize)
const biasesSlice = biases.slice([channel], [1])
let outputChannel = null
for (let i = 0; i < numSlices; i++) {
const startChannel = i * sliceSize
const endChannel = Math.min((i + 1) * sliceSize, inChannels)
// Only proceed if there are channels to process
if (startChannel < inChannels) {
const resultSlice = tf.tidy(() => {
const inputSlice = input.slice([0, 0, 0, 0, startChannel], [-1, -1, -1, -1, endChannel - startChannel])
const filterSlice = filter.slice([0, 0, 0, startChannel, channel], [-1, -1, -1, endChannel - startChannel, 1])
// Perform the convolution for the current slice and output channel
return tf.conv3d(inputSlice, filterSlice, stride, pad, 'NDHWC', dilationRate)
})
if (outputChannel === null) {
outputChannel = resultSlice
} else {
const updatedOutputChannel = outputChannel.add(resultSlice)
outputChannel.dispose()
resultSlice.dispose()
outputChannel = updatedOutputChannel
}
}
}
// Add the biases to the accumulated convolutions for this channel
const biasedOutputChannel = outputChannel.add(biasesSlice)
outputChannel.dispose()
biasesSlice.dispose()
// Accumulate the channel to the output array
if (outputChannels == null) {
outputChannels = biasedOutputChannel
} else {
const updatedOutputChannels = await tf.concat([outputChannels, biasedOutputChannel], 4)
biasedOutputChannel.dispose()
outputChannels.dispose()
outputChannels = updatedOutputChannels
}
}
return outputChannels
}
export async function draw3dObjBoundingVolume(unstackOutVolumeTensor, opts, modelEntry, callbackImg) {
const allOutputSlices3DCC = []
// dataSync() using to flatten array. Takes around 1.5 s
for (let sliceTensorIdx = 0; sliceTensorIdx < unstackOutVolumeTensor.length; sliceTensorIdx++) {
allOutputSlices3DCC[sliceTensorIdx] = Array.from(unstackOutVolumeTensor[sliceTensorIdx].dataSync())
}
// Use this conversion to download output slices as nii file. Takes around 30 ms
// does not use `push` to avoid stack overflows. In future: consider .set() with typed arrays
const allOutputSlices3DCC1DimArray = new Array(allOutputSlices3DCC[0].length * allOutputSlices3DCC.length)
let index = 0
for (let sliceIdx = 0; sliceIdx < allOutputSlices3DCC.length; sliceIdx++) {
for (let i = 0; i < allOutputSlices3DCC[sliceIdx].length; i++) {
allOutputSlices3DCC1DimArray[index++] = allOutputSlices3DCC[sliceIdx][i]
}
}
console.log('Done with allOutputSlices3DCC1DimArray ')
const brainMaskTensor1d = await binarizeVolumeDataTensor(tf.tensor1d(allOutputSlices3DCC1DimArray))
const brainOut = Array.from(brainMaskTensor1d.dataSync())
callbackImg(brainOut, opts, modelEntry)
}
// return first and last non-zero voxel in row (dim = 0), column (1) or slice (2) dimension
async function firstLastNonZero(tensor3D, dim = 0) {
let mxs = []
if (dim === 0) {
mxs = await tensor3D.max(2).max(1).arraySync()
} else if (dim === 1) {
mxs = await tensor3D.max(2).max(0).arraySync()
} else {
mxs = await tensor3D.max(1).max(0).arraySync()
}
let mn = mxs.length
let mx = 0
for (let i = 0; i < mxs.length; i++) {
if (mxs[i] > 0) {
mn = i
break
}
}
for (let i = mxs.length - 1; i >= 0; i--) {
if (mxs[i] > 0) {
mx = i
break
}
}
return [mn, mx]
}
export async function firstLastNonZero3D(tensor3D) {
const [row_min, row_max] = await firstLastNonZero(tensor3D, 0)
const [col_min, col_max] = await firstLastNonZero(tensor3D, 1)
const [depth_min, depth_max] = await firstLastNonZero(tensor3D, 2)
console.log('row min and max :', row_min, row_max)
console.log('col min and max :', col_min, col_max)
console.log('depth min and max :', depth_min, depth_max)
return [row_min, row_max, col_min, col_max, depth_min, depth_max]
}
/*
//simpler function, but x4 slower
export async function firstLastNonZero3D(tensor3D) {
const coords = await tf.whereAsync(tensor3D)
const row_min = coords.min(0).arraySync()[0]
const row_max = coords.max(0).arraySync()[0]
const col_min = coords.min(0).arraySync()[1]
const col_max = coords.max(0).arraySync()[1]
const depth_min = coords.min(0).arraySync()[2]
const depth_max = coords.max(0).arraySync()[2]
coords.dispose()
return [row_min, row_max, col_min, col_max, depth_min, depth_max]
}
*/
export async function generateBrainMask(
unstackOutVolumeTensor,
num_of_slices,
slice_height,
slice_width,
modelEntry,
opts,
callbackUI,
callbackImg,
isFinalImage = true
) {
if (unstackOutVolumeTensor[0].dtype !== 'int32') {
callbackUI('', -1, 'generateBrainMask assumes int32')
}
if (modelEntry.preModelPostProcess) {
callbackUI('', -1, 'generateBrainMask assumes BWLabeler instead of preModelPostProcess')
}
const numSlices = unstackOutVolumeTensor.length
const numPixels2D = unstackOutVolumeTensor[0].size
const numVox3D = numSlices * numPixels2D
// preallocate to reduce heap usage
const brainOut = new Int32Array(numVox3D)
let offset = 0
for (let i = 0; i < numSlices; i++) {
brainOut.set(unstackOutVolumeTensor[i].dataSync(), offset)
offset += numPixels2D
}
for (let i = 0; i < numVox3D; i++) {
brainOut[i] = brainOut[i] !== 0 ? 1 : 0
}
if (isFinalImage || opts.showPhase1Output) {
// all done
callbackImg(brainOut, opts, modelEntry)
callbackUI('Segmentation finished', 0)
}
return tf.tensor(brainOut, [num_of_slices, slice_height, slice_width])
}
export async function generateOutputSlicesV2(
img,
OutVolumeTensorShape,
OutVolumeTensorType,
num_of_slices,
numSegClasses,
slice_height,
slice_width,
modelEntry,
opts,
niftiImage
) {
// Convert all slices into 1 Dim array
if (opts.isPostProcessEnable) {
const BWInstance = new BWLabeler()
const dim = new Uint32Array(OutVolumeTensorShape)
const conn = 26 // Example connectivity
const binarize = true
const onlyLargestClusterPerClass = true
const [_labelCount, labeledImage] = BWInstance.bwlabel(img, dim, conn, binarize, onlyLargestClusterPerClass)
for (let i = 0; i < img.length; i++) {
img[i] *= labeledImage[i]
}
} // if isPostProcessEnable
const typedArrayConstructor = {
float32: Float32Array,
int32: Int32Array
// Add other cases as needed for different dtypes
}[OutVolumeTensorType]
// Create a new TypedArray from img with the same type as outLabelVolume
const allOutputSlices3DCC1DimArray = new Uint8Array(img)
switch (modelEntry.type) {
case 'Brain_Masking': {
const brainMask = new Uint8Array(allOutputSlices3DCC1DimArray.length)
for (let i = 0; i < allOutputSlices3DCC1DimArray.length; i++) {
brainMask[i] = allOutputSlices3DCC1DimArray[i] !== 0 ? 1 : 0
}
return brainMask
}
case 'Brain_Extraction': {
const maskedData = new Uint8Array(allOutputSlices3DCC1DimArray.length)
for (let i = 0; i < allOutputSlices3DCC1DimArray.length; i++) {
// Create the mask - 1 where the value is non-zero, 0 where it is zero.
const maskValue = allOutputSlices3DCC1DimArray[i] !== 0 ? 1 : 0
// Apply the mask to the data - multiply by the mask value.
maskedData[i] = niftiImage[i] * maskValue
}
return maskedData
}
}
return img
}
export async function getAllSlicesDataAsTF3D(num_of_slices, niftiHeader, niftiImage) {
// Get nifti dimensions
const cols = niftiHeader.dims[1] // Slice width
const rows = niftiHeader.dims[2] // Slice height
let typedData
if (niftiHeader.datatypeCode === 2) {
// enum from nvimage/utils DT_UINT8 = 2
typedData = new Uint8Array(niftiImage)
} else if (niftiHeader.datatypeCode === 4) {
// DT_INT16 = 4
typedData = new Int16Array(niftiImage)
} else if (niftiHeader.datatypeCode === 8) {
// DT_INT32 = 8
typedData = new Int32Array(niftiImage)
} else if (niftiHeader.datatypeCode === 16) {
// DT_FLOAT32 = 16
typedData = new Float32Array(niftiImage)
} else if (niftiHeader.datatypeCode === 64) {
// DT_FLOAT64 = 64
typedData = new Float64Array(niftiImage)
} else if (niftiHeader.datatypeCode === 256) {
// DT_INT8 = 256
typedData = new Int8Array(niftiImage)
} else if (niftiHeader.datatypeCode === 512) {
// DT_UINT16 = 512
typedData = new Uint16Array(niftiImage)
} else if (niftiHeader.datatypeCode === 768) {
// DT_UINT32 = 768
typedData = new Uint32Array(niftiImage)
} else {
return
}
const allSlices_2D = []
let offset3D = 0
// Draw pixels
for (let slice = 0; slice < num_of_slices; slice++) {
const slice = new Array(rows * cols)
let offset2D = 0
for (let row = 0; row < rows; row++) {
for (let col = 0; col < cols; col++) {
const value = typedData[offset3D++]
// Create 1Dim Array of pixel value, this 1 dim represents one channel
slice[offset2D++] = value & 0xff
}
}
allSlices_2D.push(tf.tensor(slice, [rows, cols])) // slice_height, slice_width
}
const allSlices_3D = tf.stack(allSlices_2D)
tf.dispose(allSlices_2D)
return allSlices_3D
}
export async function getModelNumLayers(modelObj) {
return modelObj.layers.length
}
export async function getModelNumParameters(modelObj) {
let numParameters = 0
for (let layerIdx = 0; layerIdx < modelObj.layers.length; layerIdx++) {
numParameters += modelObj.layers[layerIdx].countParams()
}
return numParameters
}
export async function isModelChnlLast(modelObj) {
for (let layerIdx = 0; layerIdx < modelObj.layers.length; layerIdx++) {
if (modelObj.layersByDepth[layerIdx][0].dataFormat) {
return modelObj.layersByDepth[layerIdx][0].dataFormat === 'channelsLast'
}
}
}
export async function load_model(modelUrl) {
return await tf.loadLayersModel(modelUrl)
}
export async function minMaxNormalizeVolumeData(volumeData) {
// Normalize the data to the range 0 - 1 using min-max scaling
const volumeData_Max = volumeData.max()
const volumeData_Min = volumeData.min()
const normalizedSlices_3d = await volumeData.sub(volumeData_Min).div(volumeData_Max.sub(volumeData_Min))
return normalizedSlices_3d
}
function processTensorInChunks(inputTensor, filterWeights, chunkSize) {
// Assuming inputTensor's shape: [batch, depth, height, width, inChannels]
// and filterWeights's shape: [filterDepth, filterHeight, filterWidth, inChannels, outChannels]
const stride = 1
const pad = 0
const dilationRate = 1
const inChannels = inputTensor.shape[4]
const numSlices = Math.ceil(inChannels / chunkSize)
let accumulatedResult = null
for (let i = 0; i < numSlices; i++) {
const startChannel = i * chunkSize
const endChannel = Math.min((i + 1) * chunkSize, inChannels)
const channels = endChannel - startChannel
const inputSlice = tf.tidy(() => {
// Slice the input tensor to get the current chunk
return inputTensor.slice([0, 0, 0, 0, startChannel], [-1, -1, -1, -1, channels])
})
const filterSlice = tf.tidy(() => {
// Slice the filter weights to match the input tensor's current chunk
return filterWeights.slice([0, 0, 0, startChannel, 0], [-1, -1, -1, channels, -1])
})
const resultSlice = tf.conv3d(inputSlice, filterSlice, stride, pad, 'NDHWC', dilationRate)
// Clean up the slices to free memory
inputSlice.dispose()
filterSlice.dispose()
// Squeeze the result slice to remove dimensions of size 1
const squeezedResultSlice = tf.squeeze(resultSlice)
resultSlice.dispose() // Dispose of the original resultSlice after squeezing
if (accumulatedResult === null) {
accumulatedResult = squeezedResultSlice
} else {
// Accumulate the result by adding the new result slice to it
const newAccumulatedResult = accumulatedResult.add(squeezedResultSlice)
// Dispose of the previous accumulatedResult and squeezedResultSlice
accumulatedResult.dispose()
// Dispose of squeezedResultSlice only if it wasn't assigned to accumulatedResult
if (accumulatedResult !== squeezedResultSlice) {
squeezedResultSlice.dispose()
}
// Update accumulatedResult with the new result
accumulatedResult = newAccumulatedResult
}
tf.tidy(() => {
tf.matMul(tf.zeros([1, 1]), tf.zeros([1, 1]))
})
}
return accumulatedResult
}
export async function quantileNormalizeVolumeData(tensor, lowerQuantile = 0.05, upperQuantile = 0.95) {
// Call calculateQuantiles and wait for the result
const { qmin, qmax } = await calculateQuantiles(tensor, lowerQuantile, upperQuantile)
// Convert qmin and qmax back to scalars
const qminScalar = tf.scalar(qmin)
const qmaxScalar = tf.scalar(qmax)
// Perform the operation: (tensor - qmin) / (qmax - qmin)
const resultTensor = tensor.sub(qminScalar).div(qmaxScalar.sub(qminScalar))
// Dispose of the created scalars to free memory
qminScalar.dispose()
qmaxScalar.dispose()
// Return the resulting tensor
return resultTensor
}
export async function removeZeroPaddingFrom3dTensor(tensor3d, rowPad = 1, colPad = 1, depthPad = 1) {
if (tensor3d.rank !== 3) {
throw new Error('Tensor must be 3D')
}
const [h, w, d] = tensor3d.shape
return tensor3d.slice([rowPad, colPad, depthPad], [h - 2 * rowPad, w - 2 * colPad, d - 2 * depthPad])
}
export async function resizeWithZeroPadding(croppedTensor3d, newDepth, newHeight, newWidth, refVoxel, boundVolSizeArr) {
const row_pad_befor = refVoxel[0]
const col_pad_befor = refVoxel[1]
const depth_pad_befor = refVoxel[2]
// last and lower volume voxel
const row_max = row_pad_befor + boundVolSizeArr[0] - 1 // size [2, 2, 2] means 2 voxels total in each dim
const col_max = col_pad_befor + boundVolSizeArr[1] - 1
const depth_max = depth_pad_befor + boundVolSizeArr[2] - 1
const row_pad_after = newHeight - row_max - 1 > 0 ? newHeight - row_max - 1 : 0
const col_pad_after = newWidth - col_max - 1 > 0 ? newWidth - col_max - 1 : 0
const depth_pad_after = newDepth - depth_max - 1 > 0 ? newDepth - depth_max - 1 : 0
return croppedTensor3d.pad([
[row_pad_befor, row_pad_after],
[col_pad_befor, col_pad_after],
[depth_pad_befor, depth_pad_after]
])
}
export class SequentialConvLayer {
constructor(model, chunkSize, isChannelLast, callbackUI, isWebWorker = true) {
this.model = model
this.outChannels = model.outputLayers[0].kernel.shape[4]
this.chunkSize = chunkSize
this.isChannelLast = isChannelLast
this.callbackUI = callbackUI
this.isWebWorker = isWebWorker
}
/**
* Apply sequential convolution layer
* @since 3.0.0
* @member SequentialConvLayer
* @param {tf.Tensor} inputTensor e.g. [ 1, 256, 256, 256, 5 ]
* @return {outC}
*/
async apply(inputTensor) {
const oldDeleteTextureThreshold = tf.ENV.get('WEBGL_DELETE_TEXTURE_THRESHOLD')
tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', 0)
// eslint-disable-next-line @typescript-eslint/no-this-alias
const self = this
// Important to avoid "undefined" class var members inside the timer.
// "this" has another meaning inside the timer.
// document.getElementById("progressBarChild").parentElement.style.visibility = "visible"
const startTime = performance.now()
const convLayer = self.model.layers[self.model.layers.length - 1]
const weights = convLayer.getWeights()[0] //
const biases = convLayer.getWeights()[1]
const outputShape = self.isChannelLast ? inputTensor.shape.slice(1, -1) : inputTensor.shape.slice(2)
// -- e.g. outputShape : [256,256,256] or cropped Dim
// -- if inputTensor [ 1, D, H, W, 50 ], channelLast true -> outputShape : outputShape [D, H, W]
// -- if inputTensor [ 1, 50, D, H, W ], channelLast false -> outputShape : outputShape [D, H, W]
let outB = tf.mul(tf.ones(outputShape), -10000)
// -- e.g. outB.shape [256,256,256]
let outC = tf.zeros(outputShape)
// -- e.g. outC.shape [256,256,256]
let chIdx = 0
// console.log("---------------------------------------------------------")
console.log(' channel loop')
while (true) {
tf.engine().startScope() // Start TensorFlow.js scope
/* console.log('=======================')
const memoryInfo0 = await tf.memory()
console.log(`| Number of Tensors: ${memoryInfo0.numTensors}`)
console.log(`| Number of Data Buffers: ${memoryInfo0.numDataBuffers}`) */
const result = await tf.tidy(() => {
const filterWeights = weights.slice([0, 0, 0, 0, chIdx], [-1, -1, -1, -1, 1])
// -- e.g. filterWeights.shape [ 1, 1, 1, 5, 1 ]
const filterBiases = biases.slice([chIdx], [1])
// -- e.g. filterBiases.shape [1] -> Tensor [-0.7850812]
const outA = processTensorInChunks(inputTensor, filterWeights, Math.min(self.chunkSize, self.outChannels)).add(
filterBiases
)
const greater = tf.greater(outA, outB)
const newoutB = tf.where(greater, outA, outB)
const newoutC = tf.where(greater, tf.fill(outC.shape, chIdx), outC)
// Dispose the old tensors before reassigning
tf.dispose([outB, outC, filterWeights, filterBiases, outA, greater])
// Dummy operation to trigger cleanup
tf.tidy(() => tf.matMul(tf.ones([1, 1]), tf.ones([1, 1])))
return [newoutC, newoutB]
})
console.log('=======================')
self.callbackUI(`Iteration ${chIdx}`, chIdx / self.outChannels)
if (!self.isWebWorker) {
// allow user interface to refresh
await new Promise((resolve) => setTimeout(resolve, 17))
}
const memoryInfo = await tf.memory()
console.log(`Number of Tensors: ${memoryInfo.numTensors}`)
console.log(`Number of Data Buffers: ${memoryInfo.numDataBuffers}`)
console.log(`Megabytes In Use: ${(memoryInfo.numBytes / 1048576).toFixed(3)} MB`)
if (memoryInfo.unreliable) {
console.log(`Unreliable: ${memoryInfo.unreliable}`)
}
// Dispose of previous values before assigning new tensors to outC and outB
if (typeof outC !== 'undefined') {
outC.dispose()
}
if (typeof outB !== 'undefined') {
outB.dispose()
}
// Assign the new values to outC and outB
outC = tf.keep(result[0])
outB = tf.keep(result[1])
// // Assign the new values to outC and outB
// outC = result[0]
// outB = result[1]
tf.engine().endScope()
if (chIdx === self.outChannels - 1) {
// document.getElementById("progressBarChild").style.width = 0 + "%"
tf.dispose(outB)
const endTime = performance.now()
const executionTime = endTime - startTime
console.log(`Execution time for output layer: ${executionTime} milliseconds`)
tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', oldDeleteTextureThreshold)
return outC
} else {
chIdx++
// the seemingly strange sequence of operations
// below prevents tfjs from uncontrolably
// grabbing buffers, even when all tensors have
// already been disposed
const outCShape = outC.shape
const outCdata = outC.dataSync()
const outBShape = outC.shape
const outBdata = outB.dataSync()
outC.dispose()
outB.dispose()
// tf.disposeVariables()
outC = tf.tensor(outCdata, outCShape)
outB = tf.tensor(outBdata, outBShape)
// document.getElementById("progressBarChild").style.width = (chIdx + 1) * 100 / self.outChannels + "%"
}
}
}
} // <<<< End of class