|
| 1 | +# Tổng hợp ý tưởng (tạm thời), mọi người cùng đóng góp và cho ý kiên |
| 2 | +Please respect Kaggle rules |
| 3 | +- Only submit to test new ideas, test LB |
| 4 | +- Or when there are un-used submissions (do not create 2 accounts) |
| 5 | +- Any external dataset, pre-trained weights must be posted in the forum |
| 6 | + |
| 7 | +# Dataset: 340 classes |
| 8 | +- Train: unbalanced distribution |
| 9 | +- Test: (almost) balanced distribution |
| 10 | +Test draws were collected from a different period, different locations |
| 11 | +=> countries are useless, time (in the train set) is difficult to exploited |
| 12 | + |
| 13 | +## Proposed split |
| 14 | +- Train set was already shuffled, no need to re-shuffled again |
| 15 | +- Keep last 10K for blending – blending set, please consider this sub-set as test set, do not even use it for the validation in level 0 |
| 16 | +- Number of draws per class |
| 17 | +snowman 340029 |
| 18 | +potato 329204 |
| 19 | +calendar 321981 |
| 20 | +... |
| 21 | +ceiling fan 115413 |
| 22 | +bed 113862 |
| 23 | +panda 113613 |
| 24 | + |
| 25 | + |
| 26 | +# Approach |
| 27 | +Due to the size of the data, it is fine to use blending instead of stacking |
| 28 | +## Level 0 |
| 29 | +Please keep the model weights (and the seeds) and produce probabilities for the Test set and the blending set! |
| 30 | + |
| 31 | +### GrayImage-based models |
| 32 | +If needed, external dataset could be used here |
| 33 | +(Bac, please comment here!) |
| 34 | + |
| 35 | +### ColorImage-based models |
| 36 | +If needed, external dataset could be used here |
| 37 | + |
| 38 | +### Stroke-based models |
| 39 | +- LSTM |
| 40 | +Around LB 0.87 with 75K draws/class |
| 41 | +- RANET (another type of LSTM) |
| 42 | +Around LB 0.87 with 75K draws/class |
| 43 | +- Wavenet |
| 44 | +Around LB 0.87 with 75K draws/class |
| 45 | +- ConvLSTM, mỗi timestep là một bức ảnh đang được vẽ, timestep sau hoàn thiện hơn timestep trước |
| 46 | +(idea from Hau) |
| 47 | + |
| 48 | +## Level 1 |
| 49 | +- Feed the features from Level 0 in to XGBOOST, RF, NN (CNN) |
| 50 | +- Extra features: https://www.kaggle.com/c/quickdraw-doodle-recognition/discussion/70680 |
| 51 | +- Statistics features from raw data: # strokes, # points ... |
| 52 | + |
| 53 | +## Level 2 |
| 54 | +Weighted average of predictions from Level 1 => One final submission |
| 55 | +## Post-processing |
| 56 | +Balance the distribution from Level 2 => One final submission |
| 57 | +LB improvement: 0.005 |
| 58 | + |
| 59 | +# Label Encoder proposal |
| 60 | +word_encoder = LabelEncoder() |
| 61 | +word_encoder.classes_ = np.array(['The Eiffel Tower', 'The Great Wall of China', 'The Mona Lisa', |
| 62 | + 'airplane', 'alarm clock', 'ambulance', 'angel', |
| 63 | + 'animal migration', 'ant', 'anvil', 'apple', 'arm', 'asparagus', |
| 64 | + 'axe', 'backpack', 'banana', 'bandage', 'barn', 'baseball', |
| 65 | + 'baseball bat', 'basket', 'basketball', 'bat', 'bathtub', 'beach', |
| 66 | + 'bear', 'beard', 'bed', 'bee', 'belt', 'bench', 'bicycle', |
| 67 | + 'binoculars', 'bird', 'birthday cake', 'blackberry', 'blueberry', |
| 68 | + 'book', 'boomerang', 'bottlecap', 'bowtie', 'bracelet', 'brain', |
| 69 | + 'bread', 'bridge', 'broccoli', 'broom', 'bucket', 'bulldozer', |
| 70 | + 'bus', 'bush', 'butterfly', 'cactus', 'cake', 'calculator', |
| 71 | + 'calendar', 'camel', 'camera', 'camouflage', 'campfire', 'candle', |
| 72 | + 'cannon', 'canoe', 'car', 'carrot', 'castle', 'cat', 'ceiling fan', |
| 73 | + 'cell phone', 'cello', 'chair', 'chandelier', 'church', 'circle', |
| 74 | + 'clarinet', 'clock', 'cloud', 'coffee cup', 'compass', 'computer', |
| 75 | + 'cookie', 'cooler', 'couch', 'cow', 'crab', 'crayon', 'crocodile', |
| 76 | + 'crown', 'cruise ship', 'cup', 'diamond', 'dishwasher', |
| 77 | + 'diving board', 'dog', 'dolphin', 'donut', 'door', 'dragon', |
| 78 | + 'dresser', 'drill', 'drums', 'duck', 'dumbbell', 'ear', 'elbow', |
| 79 | + 'elephant', 'envelope', 'eraser', 'eye', 'eyeglasses', 'face', |
| 80 | + 'fan', 'feather', 'fence', 'finger', 'fire hydrant', 'fireplace', |
| 81 | + 'firetruck', 'fish', 'flamingo', 'flashlight', 'flip flops', |
| 82 | + 'floor lamp', 'flower', 'flying saucer', 'foot', 'fork', 'frog', |
| 83 | + 'frying pan', 'garden', 'garden hose', 'giraffe', 'goatee', |
| 84 | + 'golf club', 'grapes', 'grass', 'guitar', 'hamburger', 'hammer', |
| 85 | + 'hand', 'harp', 'hat', 'headphones', 'hedgehog', 'helicopter', |
| 86 | + 'helmet', 'hexagon', 'hockey puck', 'hockey stick', 'horse', |
| 87 | + 'hospital', 'hot air balloon', 'hot dog', 'hot tub', 'hourglass', |
| 88 | + 'house', 'house plant', 'hurricane', 'ice cream', 'jacket', 'jail', |
| 89 | + 'kangaroo', 'key', 'keyboard', 'knee', 'ladder', 'lantern', |
| 90 | + 'laptop', 'leaf', 'leg', 'light bulb', 'lighthouse', 'lightning', |
| 91 | + 'line', 'lion', 'lipstick', 'lobster', 'lollipop', 'mailbox', |
| 92 | + 'map', 'marker', 'matches', 'megaphone', 'mermaid', 'microphone', |
| 93 | + 'microwave', 'monkey', 'moon', 'mosquito', 'motorbike', 'mountain', |
| 94 | + 'mouse', 'moustache', 'mouth', 'mug', 'mushroom', 'nail', |
| 95 | + 'necklace', 'nose', 'ocean', 'octagon', 'octopus', 'onion', 'oven', |
| 96 | + 'owl', 'paint can', 'paintbrush', 'palm tree', 'panda', 'pants', |
| 97 | + 'paper clip', 'parachute', 'parrot', 'passport', 'peanut', 'pear', |
| 98 | + 'peas', 'pencil', 'penguin', 'piano', 'pickup truck', |
| 99 | + 'picture frame', 'pig', 'pillow', 'pineapple', 'pizza', 'pliers', |
| 100 | + 'police car', 'pond', 'pool', 'popsicle', 'postcard', 'potato', |
| 101 | + 'power outlet', 'purse', 'rabbit', 'raccoon', 'radio', 'rain', |
| 102 | + 'rainbow', 'rake', 'remote control', 'rhinoceros', 'river', |
| 103 | + 'roller coaster', 'rollerskates', 'sailboat', 'sandwich', 'saw', |
| 104 | + 'saxophone', 'school bus', 'scissors', 'scorpion', 'screwdriver', |
| 105 | + 'sea turtle', 'see saw', 'shark', 'sheep', 'shoe', 'shorts', |
| 106 | + 'shovel', 'sink', 'skateboard', 'skull', 'skyscraper', |
| 107 | + 'sleeping bag', 'smiley face', 'snail', 'snake', 'snorkel', |
| 108 | + 'snowflake', 'snowman', 'soccer ball', 'sock', 'speedboat', |
| 109 | + 'spider', 'spoon', 'spreadsheet', 'square', 'squiggle', 'squirrel', |
| 110 | + 'stairs', 'star', 'steak', 'stereo', 'stethoscope', 'stitches', |
| 111 | + 'stop sign', 'stove', 'strawberry', 'streetlight', 'string bean', |
| 112 | + 'submarine', 'suitcase', 'sun', 'swan', 'sweater', 'swing set', |
| 113 | + 'sword', 't-shirt', 'table', 'teapot', 'teddy-bear', 'telephone', |
| 114 | + 'television', 'tennis racquet', 'tent', 'tiger', 'toaster', 'toe', |
| 115 | + 'toilet', 'tooth', 'toothbrush', 'toothpaste', 'tornado', |
| 116 | + 'tractor', 'traffic light', 'train', 'tree', 'triangle', |
| 117 | + 'trombone', 'truck', 'trumpet', 'umbrella', 'underwear', 'van', |
| 118 | + 'vase', 'violin', 'washing machine', 'watermelon', 'waterslide', |
| 119 | + 'whale', 'wheel', 'windmill', 'wine bottle', 'wine glass', |
| 120 | + 'wristwatch', 'yoga', 'zebra', 'zigzag'], dtype=object) |
| 121 | + |
| 122 | + |
| 123 | + |
| 124 | + |
0 commit comments