-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy patharray.rs
262 lines (216 loc) · 6.15 KB
/
array.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
use core::ops::{Deref, DerefMut};
use luajit as lua;
use crate::kvec::{self, KVec};
use crate::NonOwning;
use crate::Object;
/// A vector of Neovim [`Object`]s.
#[derive(Clone, Default, PartialEq)]
#[repr(transparent)]
pub struct Array(pub(super) KVec<Object>);
impl core::fmt::Debug for Array {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_list().entries(self.iter()).finish()
}
}
impl Array {
/// Returns the number of elements in the array.
#[inline]
pub fn len(&self) -> usize {
self.0.len()
}
/// Returns `true` if the array contains no elements.
#[inline]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Returns an iterator over the `Object`s of the array.
#[inline]
pub fn iter(&self) -> core::slice::Iter<'_, Object> {
self.0.as_slice().iter()
}
/// Creates a new, empty `Array`.
#[inline]
pub fn new() -> Self {
Self(KVec::new())
}
/// Returns a non-owning version of this `Array`.
#[inline]
pub fn non_owning(&self) -> NonOwning<'_, Self> {
#[allow(clippy::unnecessary_struct_initialization)]
NonOwning::new(Self(KVec { ..self.0 }))
}
/// Appends an element to the back of the array.
#[inline]
pub fn push<V>(&mut self, value: V)
where
V: Into<Object>,
{
self.0.push(value.into());
}
/// Removes an `Object` from the `Array` and returns it.
///
/// The removed object is replaced by the last element of the array.
///
/// # Panics
///
/// Panics if `index` is out of bounds.
#[track_caller]
#[inline]
pub fn swap_remove(&mut self, index: usize) -> Object {
self.0.swap_remove(index)
}
}
impl Deref for Array {
type Target = [Object];
#[inline]
fn deref(&self) -> &Self::Target {
self.0.as_slice()
}
}
impl DerefMut for Array {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
self.0.as_mut_slice()
}
}
impl<T: Into<Object>> FromIterator<T> for Array {
#[inline]
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
Self(
iter.into_iter()
.map(Into::into)
.filter(|obj| obj.is_some())
.collect(),
)
}
}
impl IntoIterator for Array {
type Item = Object;
type IntoIter = ArrayIterator;
#[inline]
fn into_iter(self) -> Self::IntoIter {
ArrayIterator(self.0.into_iter())
}
}
/// An owning iterator over the `Object`s of a [`Array`].
#[derive(Clone)]
pub struct ArrayIterator(kvec::IntoIter<Object>);
impl Iterator for ArrayIterator {
type Item = Object;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.0.size_hint()
}
}
impl ExactSizeIterator for ArrayIterator {
#[inline]
fn len(&self) -> usize {
self.0.len()
}
}
impl DoubleEndedIterator for ArrayIterator {
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
self.0.next_back()
}
}
impl core::iter::FusedIterator for ArrayIterator {}
impl lua::Poppable for Array {
#[inline]
unsafe fn pop(lstate: *mut lua::ffi::State) -> Result<Self, lua::Error> {
use lua::ffi::*;
if lua_gettop(lstate) == 0 {
return Err(lua::Error::PopEmptyStack);
} else if lua_type(lstate, -1) != LUA_TTABLE {
let ty = lua_type(lstate, -1);
return Err(lua::Error::pop_wrong_type::<Self>(LUA_TTABLE, ty));
}
// TODO: check that the table is an array-like table and not a
// dictionary-like one?
let mut kvec = KVec::with_capacity(lua_objlen(lstate, -1));
lua_pushnil(lstate);
while lua_next(lstate, -2) != 0 {
kvec.push(Object::pop(lstate)?);
}
// Pop the table.
lua_pop(lstate, 1);
Ok(Self(kvec))
}
}
impl lua::Pushable for Array {
#[inline]
unsafe fn push(
self,
lstate: *mut lua::ffi::State,
) -> Result<core::ffi::c_int, lua::Error> {
use lua::ffi::*;
lua_createtable(lstate, self.len() as _, 0);
for (idx, obj) in self.into_iter().enumerate() {
obj.push(lstate)?;
lua_rawseti(lstate, -2, (idx + 1) as _);
}
Ok(1)
}
}
/// Implements `From<(A, B, C, ..)>` for tuples `(A, B, C, ..)` where all the
/// elements in the tuple are `Into<Object>`.
macro_rules! from_tuple {
($($ty:ident)*) => {
impl <$($ty: Into<Object>),*> From<($($ty,)*)> for Array {
#[allow(non_snake_case)]
fn from(($($ty,)*): ($($ty,)*)) -> Self {
Self::from_iter([$($ty.into(),)*])
}
}
};
}
from_tuple!(A);
from_tuple!(A B);
from_tuple!(A B C);
from_tuple!(A B C D);
from_tuple!(A B C D E);
from_tuple!(A B C D E F);
from_tuple!(A B C D E F G);
from_tuple!(A B C D E F G H);
from_tuple!(A B C D E F G H I);
from_tuple!(A B C D E F G H I J);
from_tuple!(A B C D E F G H I J K);
from_tuple!(A B C D E F G H I J K L);
from_tuple!(A B C D E F G H I J K L M);
from_tuple!(A B C D E F G H I J K L M N);
from_tuple!(A B C D E F G H I J K L M N O);
from_tuple!(A B C D E F G H I J K L M N O P);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn array_layout() {
use core::alloc::Layout;
assert_eq!(Layout::new::<Array>(), Layout::new::<KVec<Object>>());
}
#[test]
fn iter_basic() {
let array = Array::from_iter(["Foo", "Bar", "Baz"]);
let mut iter = array.into_iter();
assert_eq!(Some(Object::from("Foo")), iter.next());
assert_eq!(Some(Object::from("Bar")), iter.next());
assert_eq!(Some(Object::from("Baz")), iter.next());
assert_eq!(None, iter.next());
}
#[test]
fn drop_iter_halfway() {
let array = Array::from_iter(["Foo", "Bar", "Baz"]);
let mut iter = array.into_iter();
assert_eq!(Some(Object::from("Foo")), iter.next());
}
#[test]
fn empty_array() {
let empty = Array::default();
assert_eq!(0, empty.into_iter().count());
}
}