|
| 1 | +import itertools |
| 2 | +from collections.abc import Iterable |
| 3 | +from typing import TYPE_CHECKING, Any, Optional |
| 4 | + |
| 5 | +if TYPE_CHECKING: |
| 6 | + from nomad.datamodel.datamodel import EntryArchive |
| 7 | + from structlog.stdlib import BoundLogger |
| 8 | + |
| 9 | +import numpy as np |
| 10 | +from nomad.datamodel.data import ArchiveSection |
| 11 | +from nomad.datamodel.metainfo.basesections.v2 import Entity |
| 12 | +from nomad.metainfo import URL, MEnum, Quantity, Reference, SectionProxy |
| 13 | + |
| 14 | +from nomad_simulations.schema_packages.physical_property import PhysicalProperty |
| 15 | + |
| 16 | + |
| 17 | +class MolecularOrbitals(PhysicalProperty): |
| 18 | + """ |
| 19 | + Molecular-orbital eigenstates expressed in an atom-centred AO basis. |
| 20 | +
|
| 21 | + Every quantity is either directly mappable to the TREXIO *mo* group or |
| 22 | + provides auxiliary metadata needed by NOMAD tooling. Shapes are expressed |
| 23 | + in Fortran/column-major convention to match TREXIO and most quantum-code |
| 24 | + outputs. |
| 25 | +
|
| 26 | + The TREXIO format: |
| 27 | + Posenitsky et al., J. Chem. Phys. 158, 174801 (2023) |
| 28 | +
|
| 29 | + ---------- |
| 30 | + Quantities |
| 31 | + ----------------- |
| 32 | + ``basis_set_ref`` Reference to the AO basis section. |
| 33 | + ``mo_spin`` Per-orbital spin index (TREXIO-style unified list). |
| 34 | + ``n_mo`` Number of molecular orbitals stored. |
| 35 | + ``n_ao`` Size of the AO basis. |
| 36 | + ``mo_energies`` εᵢ orbital energies (eV). |
| 37 | + ``mo_occupations`` nᵢ occupation numbers. |
| 38 | + ``mo_coefficients`` Real part of AO→MO coefficient matrix C. |
| 39 | + ``mo_coefficients_im`` Imaginary part of C (optional). |
| 40 | + ``mo_class`` Role of each MO: Core/Inactive/Active/Virtual/Deleted. |
| 41 | + ``mo_symmetry`` Irreducible-representation labels (e.g. *a₁*, *b₂*). |
| 42 | + ``mo_type`` Classification of entire set: canonical/natural/… |
| 43 | +
|
| 44 | + """ |
| 45 | + |
| 46 | + # ------------------------------------------------------------------ # |
| 47 | + # References # |
| 48 | + # ------------------------------------------------------------------ # |
| 49 | + basis_set_ref = Quantity( |
| 50 | + type=Reference(SectionProxy('AtomCenteredBasisSet')), |
| 51 | + description=""" |
| 52 | + Reference to the atom-centered basis set in which these molecular |
| 53 | + orbitals are expanded. |
| 54 | + """, |
| 55 | + ) |
| 56 | + |
| 57 | + # ------------------------------------------------------------------ # |
| 58 | + # Dimension-defining scalars # |
| 59 | + # ------------------------------------------------------------------ # |
| 60 | + n_mo = Quantity( |
| 61 | + type=np.int32, |
| 62 | + description='Number of molecular orbitals stored.', |
| 63 | + ) |
| 64 | + |
| 65 | + n_ao = Quantity( |
| 66 | + type=np.int32, |
| 67 | + description='Number of atomic orbitals (size of AO basis).', |
| 68 | + ) |
| 69 | + |
| 70 | + # ------------------------------------------------------------------ # |
| 71 | + # Per-orbital mandatory metadata # |
| 72 | + # ------------------------------------------------------------------ # |
| 73 | + mo_spin = Quantity( |
| 74 | + type=np.int32, |
| 75 | + shape=['n_mo'], |
| 76 | + description=""" |
| 77 | + Spin index of each molecular orbital: 0 for α-spin, 1 for β-spin. |
| 78 | + """, |
| 79 | + ) |
| 80 | + |
| 81 | + mo_energies = Quantity( |
| 82 | + type=np.float64, |
| 83 | + unit='electron_volt', |
| 84 | + shape=['n_mo'], |
| 85 | + description=""" |
| 86 | + Orbital energies for each MO. In a canonical SCF these are the eigenvalues |
| 87 | + of the (Fock) Hamiltonian; in correlated frameworks they may be natural-orbital |
| 88 | + energies or any other chosen set. |
| 89 | + """, |
| 90 | + ) |
| 91 | + |
| 92 | + mo_occupations = Quantity( |
| 93 | + type=np.float64, |
| 94 | + shape=['n_mo'], |
| 95 | + description=""" |
| 96 | + Occupation numbers for each MO. Closed-shell codes will typically give 2.0 |
| 97 | + for occupied and 0.0 for virtual orbitals; unrestricted codes use two channels. |
| 98 | + """, |
| 99 | + ) |
| 100 | + |
| 101 | + mo_class = Quantity( |
| 102 | + type=MEnum('core', 'inactive', 'active', 'virtual', 'deleted'), |
| 103 | + shape=['n_mo'], |
| 104 | + description=""" |
| 105 | + Role of each MO within a correlated calculation or active-space |
| 106 | + protocol: |
| 107 | +
|
| 108 | + * core : energy-frozen doubly-occupied |
| 109 | + * inactive : doubly-occupied but variationally optimised |
| 110 | + * active : part of the active space |
| 111 | + * virtual : unoccupied (correlated) orbital |
| 112 | + * deleted : pruned for technical reasons |
| 113 | + """, |
| 114 | + ) |
| 115 | + |
| 116 | + mo_symmetry = Quantity( |
| 117 | + type=str, |
| 118 | + shape=['n_mo'], |
| 119 | + description=""" |
| 120 | + Symmetry label of each MO in the molecule's point group |
| 121 | + (e.g. *a₁*, *b₂u*, *pi_g*). Leave empty for systems with |
| 122 | + no detected symmetry. |
| 123 | + """, |
| 124 | + ) |
| 125 | + |
| 126 | + # ------------------------------------------------------------------ # |
| 127 | + # AO → MO coefficient matrices # |
| 128 | + # ------------------------------------------------------------------ # |
| 129 | + mo_coefficients = Quantity( |
| 130 | + type=np.float64, |
| 131 | + shape=['n_mo', 'n_ao'], |
| 132 | + description=""" |
| 133 | + The AO→MO coefficient matrix **C**, such that |
| 134 | + ψ_i(r) = ∑_μ C[i,μ] φ_μ(r). |
| 135 | + Row index i runs over MOs, column index μ runs over AOs in `basis_set_ref`. |
| 136 | + """, |
| 137 | + ) |
| 138 | + |
| 139 | + mo_coefficients_im = Quantity( |
| 140 | + type=np.float64, |
| 141 | + shape=['n_mo', 'n_ao'], |
| 142 | + description=""" |
| 143 | + Imaginary component of the AO→MO coefficient matrix **C**. |
| 144 | + Combine it with `mo_coefficients` to obtain the full complex matrix: |
| 145 | + C_complex = mo_coefficients + 1j * mo_coefficients_im |
| 146 | + Leave this quantity unset (or an empty array) when the wave-function |
| 147 | + is strictly real, as in non-relativistic γ-point calculations. |
| 148 | + """, |
| 149 | + ) |
| 150 | + |
| 151 | + # ------------------------------------------------------------------ # |
| 152 | + # Whole-set classification # |
| 153 | + # ------------------------------------------------------------------ # |
| 154 | + mo_type = Quantity( |
| 155 | + type=MEnum('canonical', 'natural', 'localized', 'hybrid'), |
| 156 | + default='canonical', |
| 157 | + description=""" |
| 158 | + Classification of these orbitals: |
| 159 | + - canonical : standard SCF eigenfunctions |
| 160 | + - natural : eigenfunctions of the 1-RDM |
| 161 | + - localized : after a localization transform (Boys, Pipek-Mezey, …) |
| 162 | + - hybrid : e.g. post-HF (CASSCF) orbitals, etc. |
| 163 | + """, |
| 164 | + ) |
| 165 | + |
| 166 | + def normalize(self, archive: 'EntryArchive', logger: 'BoundLogger') -> None: |
| 167 | + """ |
| 168 | + Infer `n_mo` / `n_ao` from supplied arrays when absent. |
| 169 | + """ |
| 170 | + super().normalize(archive, logger) |
| 171 | + |
| 172 | + # ---------- infer n_mo ---------- |
| 173 | + if self.n_mo is None: |
| 174 | + if self.mo_coefficients is not None: |
| 175 | + self.n_mo = int(self.mo_coefficients.shape[0]) |
| 176 | + elif self.mo_spin is not None: |
| 177 | + self.n_mo = len(self.mo_spin) |
| 178 | + elif self.mo_energies is not None: |
| 179 | + self.n_mo = len(self.mo_energies) |
| 180 | + |
| 181 | + # ---------- infer n_ao ---------- |
| 182 | + if self.n_ao is None and self.mo_coefficients is not None: |
| 183 | + self.n_ao = int(self.mo_coefficients.shape[1]) |
0 commit comments