-
Notifications
You must be signed in to change notification settings - Fork 3
/
dashboard.py
164 lines (136 loc) · 4.99 KB
/
dashboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from influxdb_wrapper import InfluxDBWrapper
from utils import *
from dateutil import parser as timeparser
# Replace 'your_influxdb_config.json' with the path to your configuration file
config = read_json('config.json')
wrapper = InfluxDBWrapper(config['database']['url'], config['database']['token'], config['database']['org'], 30_000)
st.set_page_config(layout="wide")
st.title('Volatility Dashboard')
col1, col2, col3 = st.columns(3)
# Define function to fetch volatility data for a given query
def fetch_volatility_data(query_func, **kwargs):
try:
data = query_func( **kwargs)
return data
except Exception as e:
st.error(f"Error fetching data: {e}")
return None
obs_time = '2023-07-26T06:05:00Z'
field = 'mid_iv'
vol_surface = fetch_volatility_data(wrapper.get_vol_surface_for_obs_time, bucket='eth_vol_surfaces',
measurement='volatility', obs_time=obs_time, field=field)
# display from expiry T+1
surface_display = vol_surface.iloc[1:]
# reverse rows and columns
surface_display = surface_display.iloc[::-1]
surface_display = surface_display[vol_surface.columns[::-1]]
fig = go.Figure(data=[go.Surface(x=surface_display.columns,
y=surface_display.index,
z=surface_display.values,
contours = {
"x": {"show": True, "start": 0, "end": 20, "size": 1, "color":"gray"},
"y": {"show": True, "start": 0, "end": 10, "size": 1, "color":"gray"}},
colorscale='rdylbu',
reversescale=True)])
fig.update_layout(
title=f'Volatility Surface on {timeparser.parse(obs_time).strftime("%Y-%m-%d %H:%M")}',
# width=800,
# height=600,
scene=dict(
xaxis=dict(
tickmode='array',
tickvals=list(range(len(surface_display.columns))),
ticktext=surface_display.columns,
title='Delta'
),
yaxis=dict(
tickmode='array',
tickvals=list(range(len(surface_display.index))),
ticktext=surface_display.index,
title='Expiry',
type = 'category'
),
zaxis=dict(title=field)
)
)
with col1:
st.plotly_chart(fig, theme="streamlit", use_container_width=True)
vol_smiles = wrapper.get_vol_surface_for_obs_time('eth_vol_surfaces', 'volatility', obs_time, field)
maturities = vol_smiles.index.to_list()
traces = []
for idx, maturity in enumerate(maturities):
vol_data = vol_smiles.loc[[maturity]]
if (idx in [1,3,7]):
visible = True
else:
visible='legendonly'
trace = go.Scatter(
x=vol_data.columns,
y=vol_data.values[0],
mode='lines+markers',
name=maturity,
visible=visible
)
traces.append(trace)
min_vol = vol_surface.min().min() - 2
max_vol = vol_surface.max().max() + 2
layout = go.Layout(
title=f'Smiles on {timeparser.parse(obs_time).strftime("%Y-%m-%d %H:%M")}',
xaxis=dict(title='Delta'),
yaxis=dict(title='Implied Volatility', range=[min_vol, max_vol]),
# height = 800,
# width = 1000
)
fig_smile = go.Figure(data=traces, layout=layout)
with col2:
st.plotly_chart(fig_smile, theme="streamlit", use_container_width=True)
vol_surface = wrapper.get_vol_surface_for_obs_time('eth_vol_surfaces', 'volatility', obs_time, field)
deltas = vol_surface.columns.to_list()
traces = []
initial_display = [2,4,9,14,16]
for idx, delta in enumerate(deltas):
vol_data = vol_surface[delta]
if idx in initial_display:
visible = True
else:
visible='legendonly'
trace = go.Scatter(
x=vol_data.index, # Deltas as x-axis
y=vol_data.values, # Implied vols as y-axis
mode='lines+markers',
name=delta,
visible=visible
)
traces.append(trace)
min_vol = vol_surface.iloc[:,initial_display].min().min() - 5
max_vol = vol_surface.iloc[:,initial_display].max().max() + 5
layout = go.Layout(
title=f'Vol term structure on {timeparser.parse(obs_time).strftime("%Y-%m-%d %H:%M")}',
xaxis=dict(title='Expiry'),
yaxis=dict(title='Implied Volatility', range=[min_vol, max_vol]),
height = 800,
width = 1200,
updatemenus=[
dict(
type="buttons",
# direction="right",
active=0,
buttons=[
dict(label="Expiries as Categories",
method="relayout",
args=[{"xaxis.type": "category"}]),
dict(label="Expiries as Dates",
method="relayout",
args=[{"xaxis.type": "date"}])
]
)
]
)
fig = go.Figure(data=traces, layout=layout)
fig.update_xaxes(type='category')
with col3:
st.plotly_chart(fig, theme="streamlit", use_container_width=True)