-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstreamlit_face_mask_detection_app.py
76 lines (60 loc) · 2.38 KB
/
streamlit_face_mask_detection_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import cv2
import streamlit as st
from mtcnn import MTCNN
import tensorflow as tf
import numpy as np
import warnings
warnings.filterwarnings('ignore')
st.title("Webcam Live Feed")
cl1,cl2 = st.columns(2)
run = cl1.button('Run')
FRAME_WINDOW = st.image([])# Buffer for empty image
# label
labels = ('No Mask', 'Mask')
camera = cv2.VideoCapture(0)# Capturing the video
messages = ['Click on Run to Access your Webcam','Click on stop to quit Face Detection']
# Loading model
mask_model = tf.keras.models.load_model('./model/face_mask_vgg16.h5')
flag = True
stop = cl2.button('Stop')
if stop:
flag = False
if run:
st.error(messages[1])
while run and flag:
face_ = []
prediction_ = []
location_ = []
_, frame = camera.read()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# FRAME_WINDOW.image(frame)
detector = MTCNN()
output = detector.detect_faces(frame)
# Considering multiple faces will be present in video
for face in output:
x,y,width,height = face['box']
face_img = frame[y:y+height,x:x+width]
face_img = cv2.resize(face_img,(128,128))
face_.append(face_img)
location_.append((x,y,x+width,y+height))
conf = 0
if len(face_)>0:
face_ = np.array(face_,dtype='float32') # Ensuring that images are in array form
prediction_ = mask_model.predict(face_)
for (bbox,pred) in zip(location_,prediction_):
(x1,y1,x2,y2) = bbox
label = "Mask" if pred[0] > 0.5 else "No Mask"
if label == "Mask":
conf = pred[0] * 100 # confidence percentage for mask
else:
conf = (100-pred[0]*100)# Confidence percentage for non-mask
color = (0,255,0) if label=="Mask" else (0,0,255)# green if mask else red
label = "{}: {:.2f}%".format(label,conf)#label:confidence percentage
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 3) # Putting rectangle of bbox in frames
cv2.rectangle(frame, (x1,y1-40), (x2,y1), color, -1)
cv2.putText(frame, label, (x1, y1 - 10),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2) # Putting text in live frames
FRAME_WINDOW.image(frame)
else:
st.info(messages[0])
else:
st.info(messages[0])