-
Notifications
You must be signed in to change notification settings - Fork 165
/
manual.c
261 lines (242 loc) · 9.95 KB
/
manual.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#include "stm32f4xx_conf.h"
#include "stm32f4_discovery.h"
#include "arm_math.h"
#include "cnc.h"
static const struct {
GPIO_TypeDef *gpio;
uint16_t manualButton, xControl, yControl, zControl, toolLength;
int8_t xOrientation, yOrientation, zOrientation;
} uiPinout = {
.gpio = GPIOA,
.manualButton = GPIO_Pin_0,
.xControl = GPIO_Pin_1,
.yControl = GPIO_Pin_2,
.zControl = GPIO_Pin_3,
.toolLength = GPIO_Pin_8,
.xOrientation = 1,
.yOrientation = 1,
.zOrientation = 1};
static volatile struct {
float32_t x, y, z;
float32_t deadzoneRadius;
float32_t snapOnAxisRadius;
int32_t minFeed;
int32_t maxFeed;
int32_t maxZFeed;
float32_t zeroX, zeroY, zeroZ;
uint64_t lastTick;
vec3f_t lastSpeed;
volatile __attribute__((aligned (4))) uint8_t adcValue[3];
vec3f_t filteredAdc;
} manualControlStatus = {
.deadzoneRadius = 0.01F,
.snapOnAxisRadius = 0.70F,
.minFeed = 5,
.maxFeed = 4000,
.maxZFeed = 1000,
.zeroX = 128,
.zeroY = 128,
.zeroZ = 128,
.lastTick = 0,
.lastSpeed = {0, 0, 0},
.adcValue = {0, 0, 0},
.filteredAdc= {0, 0, 0}};
static float32_t norm(vec3f_t vector) {
//fuck [golberg91]
return sqrtf(vector.x * vector.x + vector.y * vector.y + vector.z * vector.z);
}
static char findMajorAxis(vec3f_t vector) {
float32_t absX = fabsf(vector.x), absY = fabsf(vector.y), absZ = fabsf(vector.z);
return (char) ((absX >= absY && absX >= absZ) ? 'x' : (absY >= absX && absY >= absZ) ? 'y' : 'z');
}
static vec3f_t snapAxes(vec3f_t speedVector) {
char majorAxis = findMajorAxis(speedVector);
//is always alone
if (majorAxis == 'z')
return (vec3f_t) {.z = speedVector.z};
else
speedVector.z = 0;
if (norm(speedVector) > manualControlStatus.snapOnAxisRadius)
return speedVector;
return majorAxis == 'x' ? (vec3f_t) {.x = speedVector.x} : (vec3f_t) {.y = speedVector.y};
}
static vec3f_t joystick2speed(vec3f_t joystickPosition) {
float32_t magnitude = norm(joystickPosition);
if (magnitude == 0)
return joystickPosition;
float32_t minSpeed = manualControlStatus.minFeed / 60.0F;
float32_t maxSpeed = manualControlStatus.maxFeed / 60.0F;
float32_t ratio = powf(maxSpeed, magnitude) * powf(minSpeed, (1 - magnitude));
return (vec3f_t) {joystickPosition.x * ratio, joystickPosition.y * ratio,
joystickPosition.z * (powf(manualControlStatus.maxZFeed / 60.0F, magnitude) * powf(minSpeed, (1 - magnitude)))};
}
static uint16_t deadlineForDate(float32_t speed, uint64_t date) {
uint64_t period = (uint64_t) (cncMemory.parameters.clockFrequency / fabsf(speed) / cncMemory.parameters.stepsPerMillimeter);
return (uint16_t) (period - date % period);
}
uint32_t isToolProbeTripped() {
return (uint32_t) !GPIO_ReadInputDataBit(uiPinout.gpio, uiPinout.toolLength);
}
static step_t nextStep(vec3f_t speed, uint64_t date) {
step_t result = {
.duration = 0,
.axes = {
.xDirection = (uint8_t) (speed.x > 0),
.yDirection = (uint8_t) (speed.y > 0),
.zDirection = (uint8_t) (speed.z > 0)}};
if (speed.x != 0) {
result.duration = deadlineForDate(speed.x, date);
result.axes.xStep = 1;
}
if (speed.y != 0) {
uint16_t deadlineY = deadlineForDate(speed.y, date);
if (deadlineY <= result.duration || result.duration == 0) {
result.axes.yStep = 1;
if (deadlineY < result.duration)
result.axes.xStep = 0;
result.duration = deadlineY;
}
}
if (speed.z != 0) {
uint16_t deadlineZ = deadlineForDate(speed.z, date);
if (deadlineZ <= result.duration || result.duration == 0) {
result.axes.zStep = 1;
if (deadlineZ < result.duration) {
result.axes.xStep = 0;
result.axes.yStep = 0;
}
result.duration = deadlineZ;
}
}
if (isToolProbeTripped()) {
// if tool length is tripped, only going z up is allowed
result.axes.xStep = 0;
result.axes.yStep = 0;
if (!result.axes.zDirection)
result.axes.zStep = 0;
}
return result;
}
static vec3f_t clampPositionTo1(vec3f_t joystickPosition) {
float32_t magnitude = norm(joystickPosition);
if (magnitude > 1)
return (vec3f_t) {joystickPosition.x / magnitude, joystickPosition.y / magnitude, joystickPosition.z / magnitude};
return joystickPosition;
}
static vec3f_t deadZoneJoystick(vec3f_t joystickPosition) {
float32_t magnitude = norm(joystickPosition);
float32_t factor = (magnitude - manualControlStatus.deadzoneRadius) / (1 - manualControlStatus.deadzoneRadius) / magnitude;
if (factor <= 0 || !isfinite(factor))
factor = 0;
return (vec3f_t) {joystickPosition.x * factor, joystickPosition.y * factor, joystickPosition.z * factor};
}
step_t nextManualStep() {
uint64_t currentTick = cncMemory.tick;
vec3f_t joystickPosition = {
.x = (manualControlStatus.filteredAdc.x - manualControlStatus.zeroX) / 128.0F * uiPinout.xOrientation,
.y = (manualControlStatus.filteredAdc.y - manualControlStatus.zeroY) / 128.0F * uiPinout.yOrientation,
.z = (manualControlStatus.filteredAdc.z - manualControlStatus.zeroZ) / 128.0F * uiPinout.zOrientation};
joystickPosition = clampPositionTo1(joystickPosition);
joystickPosition = deadZoneJoystick(joystickPosition);
joystickPosition = snapAxes(joystickPosition);
vec3f_t speed = joystick2speed(joystickPosition);
step_t result = nextStep(speed, currentTick);
manualControlStatus.lastSpeed = speed;
manualControlStatus.lastTick = currentTick;
return result;
}
void zeroJoystick() {
manualControlStatus.zeroX = manualControlStatus.filteredAdc.x;
manualControlStatus.zeroY = manualControlStatus.filteredAdc.y;
manualControlStatus.zeroZ = manualControlStatus.filteredAdc.z;
}
uint32_t toggleManualMode() {
switch (cncMemory.state) {
case READY:
STM_EVAL_LEDOn(LED3);
zeroJoystick();
cncMemory.state = MANUAL_CONTROL;
return 1;
case MANUAL_CONTROL:
STM_EVAL_LEDOff(LED3);
cncMemory.state = READY;
return 1;
default:
return 0;
}
}
void initManualControls() {
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
GPIO_Init(uiPinout.gpio, &(GPIO_InitTypeDef) {
.GPIO_Pin = uiPinout.manualButton,
.GPIO_Mode = GPIO_Mode_IN,
.GPIO_PuPd = GPIO_PuPd_DOWN});
GPIO_Init(uiPinout.gpio, &(GPIO_InitTypeDef) {
.GPIO_Pin = uiPinout.xControl | uiPinout.yControl | uiPinout.zControl,
.GPIO_Mode = GPIO_Mode_AN,
.GPIO_PuPd = GPIO_PuPd_NOPULL});
GPIO_Init(uiPinout.gpio, &(GPIO_InitTypeDef) {
.GPIO_Pin = uiPinout.toolLength,
.GPIO_Mode = GPIO_Mode_IN,
.GPIO_PuPd = GPIO_PuPd_UP});
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE);
ADC_CommonInit(&(ADC_CommonInitTypeDef) {
.ADC_Mode = ADC_Mode_Independent,
.ADC_Prescaler = ADC_Prescaler_Div8,
.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled,
.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_20Cycles});
ADC_Init(ADC1, &(ADC_InitTypeDef) {
.ADC_Resolution = ADC_Resolution_8b,
.ADC_ScanConvMode = ENABLE,
.ADC_ContinuousConvMode = ENABLE,
.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None,
.ADC_DataAlign = ADC_DataAlign_Right,
.ADC_NbrOfConversion = 3});
DMA_Init(DMA2_Stream0, &(DMA_InitTypeDef) {
.DMA_Channel = DMA_Channel_0,
.DMA_PeripheralBaseAddr = (uint32_t) &(ADC1->DR),
.DMA_Memory0BaseAddr = (uint32_t) manualControlStatus.adcValue,
.DMA_DIR = DMA_DIR_PeripheralToMemory,
.DMA_BufferSize = sizeof(manualControlStatus.adcValue),
.DMA_PeripheralInc = DMA_PeripheralInc_Disable,
.DMA_MemoryInc = DMA_MemoryInc_Enable,
.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte,
.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte,
.DMA_Mode = DMA_Mode_Circular,
.DMA_Priority = DMA_Priority_High,
.DMA_FIFOMode = DMA_FIFOMode_Disable,
.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull,
.DMA_MemoryBurst = DMA_MemoryBurst_Single,
.DMA_PeripheralBurst = DMA_PeripheralBurst_Single});
DMA_Cmd(DMA2_Stream0, ENABLE);
ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 1, ADC_SampleTime_28Cycles);
ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 2, ADC_SampleTime_28Cycles);
ADC_RegularChannelConfig(ADC1, ADC_Channel_3, 3, ADC_SampleTime_28Cycles);
ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE);
ADC_DMACmd(ADC1, ENABLE);
ADC_Cmd(ADC1, ENABLE);
ADC_SoftwareStartConv(ADC1);
}
#define UI_DEBOUNCE_MAX_CHECKS 1000
void handleButton() {
static int pressCounts = 0;
static uint8_t rawValue = 0;
crBegin;
pressCounts = 0;
crYieldVoidUntil(!(rawValue = GPIO_ReadInputDataBit(uiPinout.gpio, uiPinout.manualButton))
|| rawValue && ++pressCounts >= UI_DEBOUNCE_MAX_CHECKS);
if (rawValue)
toggleManualMode();
crFinish;
}
void periodicUICallback(void) {
float32_t factor = 0.99f;
manualControlStatus.filteredAdc.x = manualControlStatus.filteredAdc.x * factor
+ manualControlStatus.adcValue[0] * (1.0f - factor);
manualControlStatus.filteredAdc.y = manualControlStatus.filteredAdc.y * factor
+ manualControlStatus.adcValue[1] * (1.0f - factor);
manualControlStatus.filteredAdc.z = manualControlStatus.filteredAdc.z * factor
+ manualControlStatus.adcValue[2] * (1.0f - factor);
handleButton();
}