|
| 1 | +'''#!/Users/wbd1/anaconda3/bin/python3''' |
| 2 | + |
| 3 | +from tkinter import * |
| 4 | +from tkinter import ttk |
| 5 | + |
| 6 | +import xarray as xa |
| 7 | + |
| 8 | +import matplotlib |
| 9 | +matplotlib.use("TkAgg") |
| 10 | +from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg |
| 11 | +from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg |
| 12 | +from matplotlib.figure import Figure |
| 13 | +import matplotlib.pyplot as plt |
| 14 | +from mpl_toolkits.mplot3d import Axes3D |
| 15 | +from mpl_toolkits.axes_grid1 import make_axes_locatable |
| 16 | + |
| 17 | +import cartopy.crs as ccrs |
| 18 | + |
| 19 | +import numpy as np |
| 20 | + |
| 21 | +from plot_2D_obs import plot_2D_obs |
| 22 | +np.set_printoptions(threshold=np.nan) #without this setting, self.levels will be incomplete |
| 23 | + |
| 24 | + |
| 25 | +class GUI2DObs: |
| 26 | + ''' |
| 27 | + |
| 28 | + Incorporates plot_2D_obs_initial.py into a GUI for plotting observation QC values in 2D. |
| 29 | + |
| 30 | + ''' |
| 31 | + |
| 32 | + def __init__(self, window, grid_col, grid_row, obs_sequence): |
| 33 | + |
| 34 | + '''Initialize GUI for plotting observation QC values in 2D |
| 35 | + |
| 36 | + Keyword arguments: |
| 37 | + window -- the root window holding all GUI elements |
| 38 | + grid_col -- the column in the root window that will contain the main tkinter frame |
| 39 | + grid_row -- the row in the root window that will contain the main tkinter frame |
| 40 | + obs_sequence -- path to a DART obs sequence file |
| 41 | +
|
| 42 | + ''' |
| 43 | + |
| 44 | + self.plotter = plot_2D_obs(obs_sequence) |
| 45 | + self.original_data = self.plotter.data |
| 46 | + |
| 47 | + self.window = window |
| 48 | + self.window.grid_columnconfigure(0, weight = 1) |
| 49 | + self.window.grid_rowconfigure(0, weight = 1) |
| 50 | + |
| 51 | + #a mainframe |
| 52 | + self.main_frame = ttk.Frame(self.window, padding = "8") |
| 53 | + self.main_frame.grid(column = grid_col, row = grid_row, sticky = "N, S, E, W") |
| 54 | + |
| 55 | + #resizing |
| 56 | + self.main_frame.grid_columnconfigure(1, weight = 20) |
| 57 | + self.main_frame.grid_columnconfigure(2, weight = 1) |
| 58 | + self.main_frame.grid_rowconfigure(0, weight = 1) |
| 59 | + self.main_frame.grid_rowconfigure(1, weight = 1) |
| 60 | + self.main_frame.grid_rowconfigure(2, weight = 1) |
| 61 | + self.main_frame.grid_rowconfigure(3, weight = 1) |
| 62 | + self.main_frame.grid_rowconfigure(4, weight = 1) |
| 63 | + |
| 64 | + self.style = ttk.Style() |
| 65 | + |
| 66 | + #obs parameter variables |
| 67 | + |
| 68 | + #get counts for each obs_type |
| 69 | + unique, counts = np.unique(self.plotter.data.obs_types.values, return_counts = True) |
| 70 | + count_dict = dict(zip(unique, counts)) |
| 71 | + |
| 72 | + #strip useless characters from string interpretation of obs types, and add counts |
| 73 | + obs_type_dict_sparse = [x.replace('[', '').replace(']', ''). |
| 74 | + replace(',', '').replace('\'', ''). |
| 75 | + replace('dict_keys(', '') |
| 76 | + for x in self.plotter.obs_type_dict.keys()] |
| 77 | + |
| 78 | + self.obs_type_names = StringVar(value = [str(count_dict[self.plotter.obs_type_dict[x]]) + |
| 79 | + " : " + x for x in obs_type_dict_sparse]) |
| 80 | + |
| 81 | + #GUI config |
| 82 | + |
| 83 | + #observation selection |
| 84 | + self.obs_frame = ttk.Frame(self.main_frame, padding = "2") |
| 85 | + self.obs_frame.grid(column = 2, row = 1, sticky = "N, S, E, W") |
| 86 | + ttk.Label(self.obs_frame, text = "Observation Type Selection").grid(column = 1, row = 1, sticky = "E, W") |
| 87 | + self.obs_menu = Listbox(self.obs_frame, listvariable = self.obs_type_names, #height = 18, width = 40, |
| 88 | + selectmode = "extended", exportselection = False) |
| 89 | + self.obs_menu.grid(column = 1, row = 2, rowspan = 2, sticky = "N, S, E, W") |
| 90 | + |
| 91 | + self.obs_menu.bind('<Return>', lambda event : self.populate('levels', self.level_menu, event)) |
| 92 | + |
| 93 | + for i in range(len(self.obs_type_names.get())): |
| 94 | + self.obs_menu.selection_set(i) |
| 95 | + self.obs_menu.event_generate('<<ListboxSelect>>') |
| 96 | + |
| 97 | + #obs scrollbar |
| 98 | + self.obs_bar = ttk.Scrollbar(self.obs_frame, orient = VERTICAL, command = self.obs_menu.yview) |
| 99 | + self.obs_menu.configure(yscrollcommand = self.obs_bar.set) |
| 100 | + self.obs_bar.grid(column = 2, row = 2, rowspan = 2, sticky = "N, S, W") |
| 101 | + |
| 102 | + #resizing |
| 103 | + self.obs_frame.grid_columnconfigure(1, weight = 1) |
| 104 | + self.obs_frame.grid_columnconfigure(2, weight = 1) |
| 105 | + self.obs_frame.grid_rowconfigure(1, weight = 1) |
| 106 | + self.obs_frame.grid_rowconfigure(2, weight = 1) |
| 107 | + |
| 108 | + |
| 109 | + self.levels = StringVar() |
| 110 | + |
| 111 | + #level selection |
| 112 | + |
| 113 | + self.level_frame = ttk.Frame(self.main_frame, padding = "2") |
| 114 | + self.level_frame.grid(column = 2, row = 2, sticky = "N, S, E, W") |
| 115 | + ttk.Label(self.level_frame, text = "Observation Level Selection").grid(column = 1, |
| 116 | + row = 1, sticky = "E, W") |
| 117 | + self.level_menu = Listbox(self.level_frame, listvariable = self.levels, #height = 18, width = 40, |
| 118 | + selectmode = "extended", exportselection = False) |
| 119 | + self.level_menu.grid(column = 1, row = 2, sticky = "N, S, E, W") |
| 120 | + |
| 121 | + self.level_menu.bind('<Return>', lambda event : self.populate('qc', self.qc_menu, event)) |
| 122 | + |
| 123 | + #level scrollbar |
| 124 | + self.level_bar = ttk.Scrollbar(self.level_frame, orient = VERTICAL, command = self.level_menu.yview) |
| 125 | + self.level_menu.configure(yscrollcommand = self.level_bar.set) |
| 126 | + self.level_bar.grid(column = 2, row = 2, rowspan = 2, sticky = "N, S, W") |
| 127 | + |
| 128 | + #resizing |
| 129 | + self.level_frame.grid_rowconfigure(1, weight = 1) |
| 130 | + self.level_frame.grid_rowconfigure(2, weight = 1) |
| 131 | + self.level_frame.grid_columnconfigure(1, weight = 1) |
| 132 | + self.level_frame.grid_columnconfigure(2, weight = 1) |
| 133 | + |
| 134 | + self.qc = StringVar() |
| 135 | + |
| 136 | + #qc selection |
| 137 | + |
| 138 | + self.qc_frame = ttk.Frame(self.main_frame, padding = "2") |
| 139 | + self.qc_frame.grid(column=2, row = 3, sticky = "N, S, E, W") |
| 140 | + ttk.Label(self.qc_frame, text = "DART QC Value Selection").grid (column = 1, row = 1, sticky = "E, W") |
| 141 | + self.qc_menu = Listbox(self.qc_frame, listvariable = self.qc, #height = 8, width = 40, |
| 142 | + selectmode = "extended", exportselection = False) |
| 143 | + self.qc_menu.grid(column = 1, row = 2, sticky ="N, S, E, W") |
| 144 | + |
| 145 | + |
| 146 | + #for use in populating and clearing menus (in populate function) |
| 147 | + self.data_obs_types = 1 |
| 148 | + self.data_levels = 2 |
| 149 | + self.data_qc = 3 |
| 150 | + '''self.data_dict = { |
| 151 | + 'obs_types' : self.data_obs_types, |
| 152 | + 'levels' : self.data_levels, |
| 153 | + 'qc' : self.data_qc |
| 154 | + }''' |
| 155 | + self.data_request_dict = { |
| 156 | + 'data_levels' : 'obs_types', |
| 157 | + 'data_qc' : 'z' |
| 158 | + } |
| 159 | + self.menu_hierarchy = [self.obs_menu, self.level_menu, self.qc_menu] |
| 160 | + self.data_hierarchy = ['original_data', 'data_levels', 'data_qc'] |
| 161 | + |
| 162 | + #populate levels |
| 163 | + |
| 164 | + self.populate('levels', self.level_menu) |
| 165 | + self.level_menu.selection_set(1) |
| 166 | + self.level_menu.event_generate('<<ListboxSelect>>') |
| 167 | + |
| 168 | + #populate qc |
| 169 | + self.qc_key = {0 : '0 - Assimilated O.K.', |
| 170 | + 1 : '1 - Evaulated O.K., not assimilated because namelist specified evaluate only', |
| 171 | + 2 : '2 - Assimilated, but posterior forward operator failed', |
| 172 | + 3 : '3 - Evaluated, but posterior forward operator failed', |
| 173 | + 4 : '4 - Prior forward operator failed', |
| 174 | + 5 : '5 - Not used because of namelist control', |
| 175 | + 6 : '6 - Rejected because incoming data QC higher than namelist control', |
| 176 | + 7 : '7 - Rejected because of outlier threshold test', |
| 177 | + 8 : '8 - Failed vertical conversion'} |
| 178 | + |
| 179 | + self.populate('qc', self.qc_menu) |
| 180 | + |
| 181 | + #current plotting occurs only with press of enter from qc menu |
| 182 | + self.qc_menu.bind('<Return>', self.plot_2D) |
| 183 | + for i in range(len(self.qc.get())): |
| 184 | + self.qc_menu.selection_set(i) |
| 185 | + self.qc_menu.event_generate('<<ListboxSelect>>') |
| 186 | + |
| 187 | + |
| 188 | + #qc scrollbar |
| 189 | + self.qc_bar = ttk.Scrollbar(self.qc_frame, orient = HORIZONTAL, command = self.qc_menu.xview) |
| 190 | + self.qc_menu.configure(xscrollcommand = self.qc_bar.set) |
| 191 | + self.qc_bar.grid(column = 1, row = 3, rowspan = 1, sticky = "N, S, E, W") |
| 192 | + |
| 193 | + #resizing |
| 194 | + self.qc_frame.grid_rowconfigure(1, weight = 1) |
| 195 | + self.qc_frame.grid_rowconfigure(2, weight = 1) |
| 196 | + self.qc_frame.grid_columnconfigure(1, weight = 1) |
| 197 | + self.qc_frame.grid_columnconfigure(2, weight = 1) |
| 198 | + |
| 199 | + #for plotting later |
| 200 | + self.markers = ['o', 'v', 'H', 'D', '^', '<', '8', |
| 201 | + 's', 'p', '>', '*', 'h', 'd'] |
| 202 | + |
| 203 | + #these markers do not seem to have border color capabilities |
| 204 | + #'x', '_', '|' |
| 205 | + |
| 206 | + s = ttk.Style() |
| 207 | + s.theme_use('clam') |
| 208 | + |
| 209 | + def populate(self, variable_name, menu, event = None): |
| 210 | + |
| 211 | + '''Populate levels, time, and QC menus based on which selections in a menu have |
| 212 | + been modified. |
| 213 | +
|
| 214 | + Keyword arguments: |
| 215 | + variable_name -- data variable to be populated |
| 216 | + menu -- corresponding menu to change |
| 217 | + event -- argument passed automatically by any tkinter menu event |
| 218 | +
|
| 219 | + ''' |
| 220 | + |
| 221 | + #clear lower level menus |
| 222 | + for i in range(self.menu_hierarchy.index(menu), len(self.menu_hierarchy)): |
| 223 | + self.menu_hierarchy[i].delete('0', 'end') |
| 224 | + |
| 225 | + #get currently selected values |
| 226 | + |
| 227 | + indices = None |
| 228 | + |
| 229 | + #used to dynamically access object variables |
| 230 | + var = 'data_' + variable_name |
| 231 | + |
| 232 | + if var == 'data_levels': |
| 233 | + indices = [self.plotter.obs_type_dict[self.obs_menu.get(val).split(" : ", 1)[1]] |
| 234 | + for val in self.obs_menu.curselection()] |
| 235 | + |
| 236 | + elif var == 'data_qc': |
| 237 | + |
| 238 | + indices = [np.float64(self.level_menu.get(val)) for val in self.level_menu.curselection()] |
| 239 | + |
| 240 | + #retrieve relevant data for this level of the hierarchy |
| 241 | + setattr(self, var, |
| 242 | + self.plotter.filter(getattr(self, self.data_hierarchy[self.data_hierarchy[1:].index(var)]), |
| 243 | + (self.data_request_dict[var], indices))) |
| 244 | + |
| 245 | + #set corresponding menu variables |
| 246 | + if var == 'data_levels': |
| 247 | + self.levels.set(value = np.unique(getattr(self, var).z.values)) |
| 248 | + |
| 249 | + elif var == 'data_qc': |
| 250 | + unique, counts = np.unique(getattr(self, var).qc_DART.values, return_counts = True) |
| 251 | + count_dict = dict(zip(unique, counts)) |
| 252 | + self.qc.set(value = [str(count_dict[val]) + " : " + str(self.qc_key[val]) for val in unique]) |
| 253 | + |
| 254 | + #should work in class scope since menu is a self variable |
| 255 | + if (menu.get(0) == '['): |
| 256 | + menu.delete('0') |
| 257 | + |
| 258 | + if (menu.get(0)[0] == '['): |
| 259 | + first = menu.get(0)[1:] |
| 260 | + menu.delete('0') |
| 261 | + menu.insert(0, first) |
| 262 | + |
| 263 | + if (menu.get('end')[-1] == ']'): |
| 264 | + last = menu.get('end')[:-1] |
| 265 | + menu.delete('end') |
| 266 | + menu.insert(END, last) |
| 267 | + |
| 268 | + def plot_2D(self, event = None): |
| 269 | + |
| 270 | + '''Plot observation QC values on a global 2D map |
| 271 | +
|
| 272 | + Keyword arguments: |
| 273 | + event -- an argument passed by any tkiner menu event. Has no influence on output but |
| 274 | + tkinter requires it to be passed to any method called by a menu event |
| 275 | +
|
| 276 | + ''' |
| 277 | + |
| 278 | + qc = [np.int64(self.qc_menu.get(val).split(": ", 1)[1][0]) for val in self.qc_menu.curselection()] |
| 279 | + |
| 280 | + #make figure and canvas to draw on |
| 281 | + fig = Figure(figsize = (12,8)) |
| 282 | + ax = fig.add_axes([0.01, 0.01, 0.98, 0.98], projection = ccrs.PlateCarree()) |
| 283 | + canvas = FigureCanvasTkAgg(fig, master = self.main_frame) |
| 284 | + canvas.get_tk_widget().grid(column = 1, row = 1, rowspan = 2, sticky = "N, S, E, W") |
| 285 | + |
| 286 | + #have to set up a separate toolbar frame because toolbar doesn't like gridding with others |
| 287 | + self.toolbar_frame = ttk.Frame(self.main_frame) |
| 288 | + self.toolbar = NavigationToolbar2TkAgg(canvas, self.toolbar_frame) |
| 289 | + self.toolbar.grid(column = 1, row = 1, sticky = "S, E, W") |
| 290 | + self.toolbar_frame.grid(column = 1, row = 3, sticky = "S, E, W") |
| 291 | + |
| 292 | + #resizing |
| 293 | + self.toolbar_frame.grid_columnconfigure(1, weight = 1) |
| 294 | + self.toolbar_frame.grid_rowconfigure(1, weight = 1) |
| 295 | + |
| 296 | + #disable part of the coordinate display functionality, else everything flickers |
| 297 | + #ax.format_coord = lambda x, y: '' |
| 298 | + |
| 299 | + data = self.plotter.filter(self.data_qc, ('qc_DART', qc)) |
| 300 | + |
| 301 | + |
| 302 | + #get indices where obs_types change (array is sorted in filter_disjoint) |
| 303 | + indices = np.where(data.obs_types.values[:-1] != data.obs_types.values[1:])[0] |
| 304 | + indices[0:indices.size] += 1 |
| 305 | + indices = np.insert(indices, 0, 0) |
| 306 | + indices = np.append(indices, data.obs_types.values.size) |
| 307 | + |
| 308 | + ax.stock_img() |
| 309 | + ax.gridlines() |
| 310 | + ax.coastlines() |
| 311 | + |
| 312 | + #colormap for QC values |
| 313 | + cmap = plt.get_cmap('gist_ncar', 9) |
| 314 | + ecmap = plt.get_cmap('jet', 90) |
| 315 | + |
| 316 | + |
| 317 | + #plot each observation type separately to get differing edge colors and markers |
| 318 | + |
| 319 | + for i in range(indices.size - 1): |
| 320 | + start = indices[i] |
| 321 | + end = indices[i+1] |
| 322 | + ax.scatter(data.lons[start:end], data.lats[start:end], c = ecmap(1-float(i/indices.size)), |
| 323 | + cmap = ecmap, vmin = 0, vmax = 9, s = 50, edgecolors = cmap(data.qc_DART.values), |
| 324 | + label = self.plotter.obs_type_inverse.get(data.obs_types.values[start]), |
| 325 | + marker = self.markers[i % len(self.markers)], transform = ccrs.PlateCarree()) |
| 326 | + |
| 327 | + #legend positioning |
| 328 | + box = ax.get_position() |
| 329 | + ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) |
| 330 | + ax.legend( bbox_to_anchor = (1, 1), |
| 331 | + fontsize = 7, framealpha = 0.25) |
| 332 | + |
| 333 | + #make color bar |
| 334 | + |
| 335 | + sm = plt.cm.ScalarMappable(cmap = cmap, norm = plt.Normalize(0,9)) |
| 336 | + sm._A = [] |
| 337 | + cbar = plt.colorbar(sm, ax=ax, orientation = 'horizontal', pad = 0.05) |
| 338 | + cbar.ax.set_xlabel('DART QC Value') |
| 339 | + |
| 340 | + #center colorbar ticks and labels |
| 341 | + labels = np.arange(0, 9, 1) |
| 342 | + loc = labels + 0.5 |
| 343 | + cbar.set_ticks(loc) |
| 344 | + cbar.set_ticklabels(labels) |
| 345 | + |
| 346 | + ax.set_aspect('auto') |
| 347 | + |
| 348 | + s= ttk.Style() |
| 349 | + s.theme_use('clam') |
| 350 | + |
| 351 | + |
| 352 | +def main(obs_sequence): |
| 353 | + |
| 354 | + '''create a tkinter GUI for plotting observation QC values in 2D |
| 355 | +
|
| 356 | + Keyword arguments: |
| 357 | + obs_sequence -- path to a DART obs sequence file |
| 358 | +
|
| 359 | + ''' |
| 360 | + |
| 361 | + root = Tk() |
| 362 | + root.title("2D Observation Plotter") |
| 363 | + widg = GUI2DObs(root, 0, 0, obs_sequence) |
| 364 | + #widg.plot_2D() |
| 365 | + root.style = ttk.Style() |
| 366 | + root.style.theme_use('clam') |
| 367 | + root.mainloop() |
| 368 | + |
| 369 | +if __name__ == '__main__': |
| 370 | + #only cmd line argument is obs sequence file name |
| 371 | + main(sys.argv[1]) |
| 372 | + |
| 373 | + |
0 commit comments