forked from noetits/ICE-Talk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobjective_measures.py
306 lines (251 loc) · 10.9 KB
/
objective_measures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
'''
TODO: logSpecDbDist appropriate? (both mels & mags?)
TODO: compute output length error?
TODO: work out best way of handling the fact that predicted *coarse* features
can correspond to text but be arbitrarily 'out of phase' with reference.
Mutliple references? Or compare against full-time resolution reference?
'''
import logging
from mcd import dtw
import mcd.metrics_fast as mt
import numpy as np
import os
from configuration import load_config
# conf_file='/home/noetits/doctorat_code/ophelia/config/blizzard_letters.cfg'
# conf_file='/home/noetits/doctorat_code/ophelia/config/blizzard_unsupervised_letters.cfg'
# conf_file='/home/noetits/doctorat_code/ophelia/config/will_unsupervised_letters_unsup_graph_old_preprocess.cfg'
# hp=load_config(conf_file)
# model_type='t2m'
# logdir = hp.logdir + "-" + model_type
import pyworld as pw
import soundfile as sf
import pandas as pd
import pysptk
from tqdm import tqdm
import pickle
def compute_simple_LSD(reference_list, prediction_list):
costTot = 0.0
framesTot = 0
for (synth, nat) in zip(prediction_list, reference_list):
#synth = prediction_tensor[i,:,:].astype('float64')
# len_nat = len(nat)
assert len(synth) == len(nat)
#synth = synth[:len_nat, :]
nat = nat.astype('float64')
synth = synth.astype('float64')
cost = sum([
mt.logSpecDbDist(natFrame, synthFrame)
for natFrame, synthFrame in zip(nat, synth)
])
framesTot += len(nat)
costTot += cost
return costTot / framesTot
def compute_dtw_error(references, predictions, distance=mt.logSpecDbDist):
minCostTot = 0.0
framesTot = 0
for (nat, synth) in tqdm(zip(references, predictions)):
nat, synth = nat.astype('float64'), synth.astype('float64')
minCost, path = dtw.dtw(nat, synth, distance)
frames = len(nat)
minCostTot += minCost
framesTot += frames
mean_score = minCostTot / framesTot
print ('overall score = %f (%s frames nat/synth)' % (mean_score, framesTot))
return mean_score
def get_dtw_aligned_predictions(references, predictions, distance=mt.logSpecDbDist):
minCostTot = 0.0
framesTot = 0
for (nat, synth) in tqdm(zip(references, predictions)):
nat, synth = nat.astype('float64'), synth.astype('float64')
minCost, path = dtw.dtw(nat, synth, distance)
frames = len(nat)
minCostTot += minCost
framesTot += frames
mean_score = minCostTot / framesTot
print ('overall score = %f (%s frames nat/synth)' % (mean_score, framesTot))
return mean_score
def min_shifted_error(nat, synth, distance=mt.logSpecDbDist):
mincost=float('Inf')
for i in range(len(synth)):
shifted_synth=np.concatenate([synth[i:,:], synth[:i,:]])
cost = sum([
distance(natFrame, synthFrame)
for natFrame, synthFrame in zip(nat, shifted_synth)
])
if cost<mincost: mincost=cost
return mincost
def error_list(reference_list, prediction_list, distance=mt.logSpecDbDist):
costs=[]
frames=[]
for (synth, nat) in tqdm(zip(prediction_list, reference_list)):
#synth = prediction_tensor[i,:,:].astype('float64')
# len_nat = len(nat)
assert len(synth) == len(nat)
#synth = synth[:len_nat, :]
nat = nat.astype('float64')
synth = synth.astype('float64')
# cost = sum([
# distance(natFrame, synthFrame)
# for natFrame, synthFrame in zip(nat, synth)
# ])
cost=min_shifted_error(nat, synth, distance=distance)
frames.append(len(nat))
costs.append(cost)
return costs, frames
# without DTW but with a translation
def compute_error(reference_list, prediction_list, distance=mt.logSpecDbDist):
costs, frames = error_list(reference_list, prediction_list, distance=distance)
return sum(costs)/sum(frames)
# def compute_error(reference_list, prediction_list, distance=mt.logSpecDbDist):
# costTot = 0.0
# framesTot = 0
# for (synth, nat) in tqdm(zip(prediction_list, reference_list)):
# #synth = prediction_tensor[i,:,:].astype('float64')
# # len_nat = len(nat)
# assert len(synth) == len(nat)
# #synth = synth[:len_nat, :]
# nat = nat.astype('float64')
# synth = synth.astype('float64')
# cost = sum([
# distance(natFrame, synthFrame)
# for natFrame, synthFrame in zip(nat, synth)
# ])
# framesTot += len(nat)
# costTot += cost
# return costTot / framesTot
def mgc_lf0_vuv(f0, sp, ap, fs=22050, order=13, alpha=None):
if alpha is None:
alpha=pysptk.util.mcepalpha(fs)
# https://github.com/r9y9/gantts/blob/master/prepare_features_tts.py
mgc = pysptk.sp2mc(sp, order=order, alpha=alpha)
# f0 = f0[:, None]
lf0 = f0.copy()
nonzero_indices = np.nonzero(f0)
lf0[nonzero_indices] = np.log(f0[nonzero_indices])
vuv = (ap[:, 0] < 0.5).astype(np.float32)[:, None]
return mgc, lf0[:, None], vuv
def compute_features_from_path(path):
transcript=pd.read_csv(hp.transcript, sep='|', header=None)
transcript.index=transcript.iloc[:,0]
transcript=transcript.iloc[:,1]
from tqdm import tqdm
d={}
d['sp_list']=[]
d['f0_list']=[]
d['ap_list']=[]
for id in tqdm(transcript[transcript.index.str.contains(hp.validpatt)].index):
file = [s for s in os.listdir(path) if id in s][0]
wav,fs=sf.read(path+file)
f0, sp, ap = pw.wav2world(wav, fs)
# mgc, lf0, vuv = mgc_lf0_vuv(f0, sp, ap, fs=fs)
d['sp_list'].append(sp)
d['f0_list'].append(f0)
d['ap_list'].append(ap)
return d
def pad_feature(ref, pred, padding=1e-16):
if len(ref)>len(pred):
pad_size=len(ref)-len(pred)
if len(ref.shape)>1:
pred=np.concatenate((pred, padding*np.ones((pad_size, ref.shape[1]))))
else:
pred=np.concatenate((pred, padding*np.ones(pad_size)))
elif len(pred)>len(ref):
pad_size=len(pred)-len(ref)
if len(ref.shape)>1:
ref=np.concatenate((ref, padding*np.ones((pad_size, ref.shape[1]))))
else:
ref=np.concatenate((ref, padding*np.ones(pad_size)))
return ref, pred
def pad_features(ref_list, pred_list, padding=1e-16):
pad_ref_list=[]
pad_pred_list=[]
for i,ref in enumerate(ref_list):
pred=pred_list[i]
ref, pred=pad_feature(ref, pred, padding=1e-16)
pad_ref_list.append(ref)
pad_pred_list.append(pred)
return pad_ref_list, pad_pred_list
def compute_and_save_features():
ref_path='databases/ICE_TTS/blizzard2013/wavs/'
pred1_path='work/blizzard_letters/synth/t2m4000_ssrn14/reconstruction/'
pred2_path='work/blizzard_unsupervised_letters/synth/t2mmodel_gs_504k_ssrn14/reconstruction/'
# pred2_path='work/blizzard_unsupervised_letters/synth/t2m3942_ssrn14/reconstruction/'
l=pred2_path.split('/')
m=list(filter(None, l)) # drop empty elements ''
t2m=m[-2]
ref_d = compute_features_from_path(ref_path)
pickle.dump(ref_d, open('feats_for_eval/ref_d.p','wb'))
pred1_d = compute_features_from_path(pred1_path)
pickle.dump(pred1_d, open('feats_for_eval/pred1_d.p','wb'))
pred2_d = compute_features_from_path(pred2_path)
pickle.dump(pred2_d, open('feats_for_eval/pred2_d_'+t2m+'.p','wb'))
return ref_d,pred1_d,pred2_d
def load_features():
ref_path='databases/ICE_TTS/blizzard2013/wavs/'
pred1_path='work/blizzard_letters/synth/t2m4000_ssrn14/reconstruction/'
pred2_path='work/blizzard_unsupervised_letters/synth/t2mmodel_gs_504k_ssrn14/reconstruction/'
# pred2_path='work/blizzard_unsupervised_letters/synth/t2m3942_ssrn14/reconstruction/'
l=pred2_path.split('/')
m=list(filter(None, l)) # drop empty elements ''
t2m=m[-2]
ref_d = pickle.load(open('feats_for_eval/ref_d.p','rb'))
pred1_d = pickle.load(open('feats_for_eval/pred1_d.p','rb'))
pred2_d = pickle.load(open('feats_for_eval/pred2_d_'+t2m+'.p','rb'))
return ref_d, pred1_d, pred2_d
def compute_errors_from_lists(ref_d, pred_d, fs=22050):
ref_mgc_list, pred_mgc_list, ref_vuv_list, pred_vuv_list, ref_lf0_list, pred_lf0_list = [],[],[],[],[],[]
ref_mgc_list_pad, pred_mgc_list_pad, ref_vuv_list_pad, pred_vuv_list_pad, ref_lf0_list_pad, pred_lf0_list_pad = [],[],[],[],[],[]
ref_f0_list, pred_f0_list = [],[]
f0_continuous_list=[]
for i in tqdm(range(len(ref_d['f0_list']))):
# padding should correspond to silence: f0, sp, ap=pw.wav2world(np.zeros(50000),22050)
# import pdb;pdb.set_trace()
ref_f0, pred_f0 = pad_feature(ref_d['f0_list'][i], pred_d['f0_list'][i], padding=0)
ref_sp, pred_sp = pad_feature(ref_d['sp_list'][i], pred_d['sp_list'][i], padding=1e-16)
ref_ap, pred_ap = pad_feature(ref_d['ap_list'][i], pred_d['ap_list'][i], padding=1)
ref_mgc, ref_lf0, ref_vuv = mgc_lf0_vuv(ref_f0, ref_sp, ref_ap, fs=fs)
pred_mgc, pred_lf0, pred_vuv = mgc_lf0_vuv(pred_f0, pred_sp, pred_ap, fs=fs)
ref_mgc_list.append(ref_mgc[:,1:])
ref_lf0_list.append(ref_lf0)
ref_f0_list.append(ref_f0[:, None])
ref_vuv_list.append(ref_vuv)
pred_mgc_list.append(pred_mgc[:,1:])
pred_lf0_list.append(pred_lf0)
pred_f0_list.append(pred_f0[:, None])
pred_vuv_list.append(pred_vuv)
print('With DTW')
MCD_dtw = compute_dtw_error(ref_mgc_list, pred_mgc_list)
print('MCD', MCD_dtw)
VDE_dtw = compute_dtw_error(ref_vuv_list, pred_vuv_list, mt.eucCepDist)
print('VDE', VDE_dtw)
lf0_MSE_dtw = compute_dtw_error(ref_lf0_list, pred_lf0_list, mt.sqCepDist)
print('lf0_MSE', lf0_MSE_dtw)
f0_MSE_dtw = compute_dtw_error(ref_f0_list, pred_f0_list, mt.sqCepDist)
print('f0_MSE', f0_MSE_dtw)
print('With shift')
MCD_shift = compute_error(ref_mgc_list, pred_mgc_list)
print('MCD', MCD_shift)
VDE_shift = compute_error(ref_vuv_list, pred_vuv_list, mt.eucCepDist)
print('VDE', VDE_shift)
lf0_MSE_shift = compute_error(ref_lf0_list, pred_lf0_list, mt.sqCepDist)
print('lf0_MSE', lf0_MSE_shift)
f0_MSE_shift = compute_error(ref_f0_list, pred_f0_list, mt.sqCepDist)
print('f0_MSE', f0_MSE_shift)
dtw_errors=np.array([MCD_dtw, VDE_dtw, lf0_MSE_dtw, f0_MSE_dtw])
print('dtw_errors', dtw_errors)
shift_errors=np.array([MCD_shift, VDE_shift, lf0_MSE_shift, f0_MSE_shift])
print('shift_errors', shift_errors)
errors_df=pd.DataFrame([dtw_errors,shift_errors])
errors_df.columns=['MCD','VDE','lf0 MSE','f0 MSE']
errors_df.index=['DTW','shift']
print(errors_df)
print(errors_df.to_latex())
# return MCD, VDE, F0_MSE
def main_work():
ref_d, pred1_d, pred2_d = load_features()
print('------- Errors between ref and classic TTS -------------')
compute_errors_from_lists(ref_d, pred1_d)
print('------- Errors between ref and Unsup TTS -------------')
compute_errors_from_lists(ref_d, pred2_d)
if __name__=="__main__":
main_work()