-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiadb.py
218 lines (182 loc) · 8.58 KB
/
iadb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
from tqdm import tqdm
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torchvision.datasets import CIFAR10, MNIST, ImageFolder
from torch.utils.data import DataLoader
from torchvision.transforms import Compose, ToTensor, Lambda, RandomHorizontalFlip, Resize, Grayscale
from torchvision.transforms.functional import to_pil_image
from diffusers import UNet2DModel
from einops import rearrange
from copy import deepcopy
from torch.utils.tensorboard import SummaryWriter
def get_model(img_channels=3):
block_out_channels=(128, 128, 256, 256, 512, 512)
down_block_types=(
"DownBlock2D", # a regular ResNet downsampling block
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D", # a ResNet downsampling block with spatial self-attention
"DownBlock2D",
)
up_block_types=(
"UpBlock2D", # a regular ResNet upsampling block
"AttnUpBlock2D", # a ResNet upsampling block with spatial self-attention
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D"
)
return UNet2DModel(block_out_channels=block_out_channels, out_channels=img_channels, in_channels=img_channels, up_block_types=up_block_types, down_block_types=down_block_types, add_attention=True)
class TrainerIADB:
def __init__(self, outdir, total_images, dataloader, img_channels=3) -> None:
self.model = get_model(img_channels).cuda()
self.model_ema = deepcopy(self.model).requires_grad_(False).cuda()
self.opt = AdamW(self.model.parameters(), lr=1e-4, weight_decay=0.01, betas=(0.9, 0.999))
self.outdir = outdir
self.logger = SummaryWriter(self.outdir)
os.makedirs(outdir, exist_ok=True)
self.total_images = total_images
self.dataloader = dataloader
self.save_grid_every_kimg = 1000
self.img_channels = img_channels
self.grid_x0 = torch.randn(16, self.img_channels, 32, 32, device=self.model.device)
def fit(self, batch_size=256, img_resolution=32):
cur_nimg = 0
pbar = tqdm(initial=cur_nimg, total=self.total_images, position=0, miniters=10)
x_source = torch.zeros((batch_size, self.img_channels, img_resolution, img_resolution), device=self.model.device)
x_target = torch.zeros((batch_size, self.img_channels, img_resolution, img_resolution), device=self.model.device)
blend = torch.zeros((batch_size, 1, 1, 1), device=self.model.device)
cur_warmup = 0
total_warmup = 10
s = torch.cuda.Stream()
s.wait_stream(torch.cuda.current_stream())
while cur_nimg < self.total_images:
x_target_ = next(self.dataloader)
x_source_ = torch.randn_like(x_target)
blend_ = torch.rand((batch_size, 1, 1, 1))
x_target.copy_(x_target_)
x_source.copy_(x_source_)
blend.copy_(blend_)
# Warmup
if cur_warmup < total_warmup:
with torch.cuda.stream(s):
x_blend = x_source + blend * (x_target - x_source)
pred = self.model(x_blend, blend[:, 0, 0, 0])["sample"]
loss = F.mse_loss(pred, x_target - x_source)
self.opt.zero_grad(set_to_none=True)
loss.backward()
self.opt.step()
self.update_ema()
cur_warmup += 1
# Capture
elif cur_warmup == total_warmup:
torch.cuda.current_stream().wait_stream(s)
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
x_blend = x_source + blend * (x_target - x_source)
pred = self.model(x_blend, blend[:, 0, 0, 0])["sample"]
loss = F.mse_loss(pred, x_target - x_source)
self.opt.zero_grad(set_to_none=True)
loss.backward()
self.opt.step()
self.update_ema()
cur_warmup += 1
# Replay
else:
g.replay()
losses = {"loss": loss.item()}
self.report(losses, cur_nimg)
if (cur_nimg % (self.save_grid_every_kimg * 1e3)) < batch_size:
self.save_snapshot(cur_nimg)
cur_nimg += batch_size
pbar.update(batch_size)
def update_ema(self, beta = 0.999):
src_params = dict(self.model.named_parameters())
for name_ema, param_ema in self.model_ema.named_parameters():
param_ema.data.copy_(beta * param_ema.data + (1.0 - beta) * src_params[name_ema].data)
def report(self, losses, cur_nimg):
for name, value in losses.items():
self.logger.add_scalar(f"Loss/{name}", value, cur_nimg)
@torch.no_grad()
def save_snapshot(self, cur_nimg):
# Grid of images
grid_img = sample_iadb(self.model_ema, self.grid_x0)
filename = os.path.join(self.outdir, f"fakes_{str(cur_nimg // 1000).zfill(8)}kimg.png")
grid_img = rearrange(grid_img, "(b1 b2) c h w -> c (b1 h) (b2 w)", b1=4, b2=4)
to_pil_image(grid_img.clip(-1, 1) * 0.5 + 0.5).save(filename)
# Weights and Optimizer
checkpoint = {
"model": self.model.state_dict(),
"model_ema": self.model_ema.state_dict(),
"opt": self.opt.state_dict(),
"cur_nimg": cur_nimg,
}
torch.save(checkpoint, os.path.join(self.outdir, f"network-{str(cur_nimg // 1000).zfill(8)}kimg.pt"))
@torch.no_grad()
def sample_iadb(model, x_source, num_steps=128):
x_t = x_source
for t in range(num_steps):
blend_t = torch.FloatTensor([t / num_steps]).to(model.device)
blend_tp1 = torch.FloatTensor([(t + 1.0) / num_steps]).to(model.device)
x_t = x_t + (blend_tp1 - blend_t) * model(x_t, blend_t)["sample"]
x_target = x_t
return x_target
import math
@torch.no_grad()
def sample_iadb_2nd_order(model, x_source, num_steps=128):
x_t = x_source
def cos_schedule(t, num_steps):
t = torch.FloatTensor([t / num_steps])
return 1.0 - torch.cos(0.5 * torch.pi * t)
for t in range(num_steps):
blend_t = cos_schedule(t, num_steps).cuda()
blend_mid = cos_schedule(t + 0.5, num_steps).cuda()
blend_tp1 = cos_schedule(t + 1.0, num_steps).cuda()
x_mid = x_t + (blend_mid - blend_t) * model(x_t, blend_t)["sample"]
x_t = x_t + (blend_tp1 - blend_t) * model(x_mid, blend_mid)["sample"]
x_target = x_t
return x_target
def cycle(dataloader):
while True:
for data in dataloader:
if type(data) == list:
yield data[0]
else:
yield data
if __name__ == "__main__":
dataset = "cifar10"
if dataset == "celeb":
transform = Compose([ToTensor(), Resize(32), RandomHorizontalFlip(), Lambda(lambda x: 2.0 * x - 1.0)])
dataset = ImageFolder("./data/celeba_50k", transform=transform)
outdir = "./training-runs-iadb/celeba-32x32-ema"
img_channels=3
elif dataset == "cifar10":
transform = Compose([ToTensor(), RandomHorizontalFlip(), Lambda(lambda x: 2.0 * x - 1.0)])
dataset = CIFAR10("./data/cifar10", transform=transform)
outdir = "./training-runs-iadb/cifar10-32x32-ema"
img_channels=3
elif dataset == "mnist":
transform = Compose([Grayscale(), Resize(32), ToTensor(), Lambda(lambda x: 2.0 * x - 1.0)])
dataset = MNIST("./data/mnist", transform=transform)
outdir = "./training-runs-iadb/mnist-32x32-ema"
img_channels=1
batch_size=200
dataloader = cycle(DataLoader(dataset, batch_size=batch_size, num_workers=8, persistent_workers=True, prefetch_factor=4, drop_last=True, shuffle=True))
total_images = int(20e6)
trainer = TrainerIADB(outdir, total_images, dataloader, img_channels)
trainer.fit(batch_size=batch_size)
# # Generate grid
# checkpoint = "./training-runs-iadb/celeba-32x32-ema/network-00002000kimg.pt"
# checkpoint = "./training-runs-iadb/cifar10-32x32-ema/network-00019000kimg.pt"
# checkpoint = "./training-runs-iadb/mnist-32x32-ema/network-00004000kimg.pt"
# img_channels = 1
# model_ema = get_model(img_channels).cuda()
# model_ema.load_state_dict(torch.load(checkpoint)["model_ema"])
# grid_x0 = torch.randn(64, img_channels, 32, 32, device=model_ema.device)
# x1 = sample_iadb(model_ema, grid_x0)
# filename = "./iadb_grid_mnist.png"
# grid_img = rearrange(x1, "(b1 b2) c h w -> c (b1 h) (b2 w)", b1=8, b2=8)
# to_pil_image(grid_img.clip(-1, 1) * 0.5 + 0.5).save(filename)