From 5600a89b997b2fb1cb89acd448156d3f805883e1 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Tue, 11 Jun 2024 13:44:02 +0200 Subject: [PATCH 01/41] changed aspect ratio of Fig. 6 & disabled multi-threading for box simulations --- .../Arabas_et_al_2023/figs_5_and_6.ipynb | 26848 +++++++++++++++- .../Arabas_et_al_2023/make_particulator.py | 2 +- 2 files changed, 26817 insertions(+), 33 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_5_and_6.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_5_and_6.ipynb index f41351fe5..597deaf85 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_5_and_6.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_5_and_6.ipynb @@ -2,19 +2,22 @@ "cells": [ { "cell_type": "markdown", + "id": "66ce53c182d3bdec", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, "source": [ "[![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_5_and_6.ipynb)\n", "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/fig_5_and_6.ipynb)\n", "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_5_and_6.ipynb)" - ], - "metadata": { - "collapsed": false - }, - "id": "66ce53c182d3bdec" + ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 1, "id": "0f657f55", "metadata": { "ExecuteTime": { @@ -180,7 +183,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 30, "id": "32fa0d42", "metadata": { "ExecuteTime": { @@ -192,7 +195,7 @@ "source": [ "def plot_ff(axes, data, singular, label):\n", " axes.grid()\n", - " axes.set_ylabel(\"frozen fraction [1]\", loc='bottom')\n", + " axes.set_ylabel(\" frozen fraction [1]\", loc='bottom')\n", " axes.set_ylim(-.05,1.5)\n", " axes.set_yticks((0, .25, .5, .75, 1))\n", " axes.plot(\n", @@ -207,7 +210,7 @@ "\n", "def plot_T(axes, data, label=\"\"):\n", " twin = axes.twinx()\n", - " twin.set_ylabel(\"T [K]\", color='red', loc='top')\n", + " twin.set_ylabel(\"T [K] \", color='red', loc='top')\n", " ticks = (240, 260, 280)\n", " twin.set_yticks(ticks=ticks, labels=[str(t) for t in ticks], color='red')\n", " twin.set_ylim((70, 290))\n", @@ -223,7 +226,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 31, "id": "ba45cb59", "metadata": { "ExecuteTime": { @@ -234,20 +237,13098 @@ "outputs": [ { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-02-01T08:28:13.626309\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-06-11T13:43:30.743510\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./fig_thought_experiments.pdf
\")", "application/vnd.jupyter.widget-view+json": { + "model_id": "9ca5cbda89e64d9e894285781860b21a", "version_major": 2, - "version_minor": 0, - "model_id": "9b40bfa13cdd4324b5c46a4fcd447727" - } + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig_thought_experiments.pdf
\")" + ] }, "metadata": {}, "output_type": "display_data" @@ -277,7 +13358,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 32, "id": "3cbb3fd1", "metadata": { "ExecuteTime": { @@ -288,20 +13369,13707 @@ "outputs": [ { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-02-01T08:28:15.245651\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-06-11T13:43:33.843334\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./fig_realisations.pdf
\")", "application/vnd.jupyter.widget-view+json": { + "model_id": "0672864cfcc044f0aae712b21814c3ce", "version_major": 2, - "version_minor": 0, - "model_id": "3ec9fc01ecce430297aa175447788ff5" - } + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig_realisations.pdf
\")" + ] }, "metadata": {}, "output_type": "display_data" @@ -311,7 +27079,7 @@ "focus_realisation = 0\n", "_, axs = pyplot.subplots(\n", " 3, 1,\n", - " figsize=(12, 7.5),\n", + " figsize=(12, 10),\n", " sharex=True,\n", " tight_layout=True,\n", ")\n", @@ -348,7 +27116,7 @@ " axis.set_xlim(-21, 3.5)\n", "mlt[0].set_xticks([])\n", "mlt[1].set_xticks((1, 2, 3))\n", - "mlt[1].set_xlabel(\" \" * 212 + \"realisation\")\n", + "mlt[1].set_xlabel(\" \" * 198 + \"realisation\")\n", "\n", "for axis in axs:\n", " axis.axvline(x=T_end_min, color='black', linewidth=.75)\n", @@ -433,7 +27201,7 @@ " axs[_CNT].annotate(\n", " lbl,\n", " xy=xy, xycoords='data',\n", - " xytext=(-180, +60), textcoords='offset points',\n", + " xytext=(-170, +90), textcoords='offset points',\n", " color='gray',\n", " arrowprops={\n", " \"arrowstyle\": \"->\",\n", @@ -446,39 +27214,55 @@ " 'random sampling of freezing: each particle freezes (or not) at different temperature in each cycle',\n", " xy=(0.43, -0.1), xytext=(0.43, -0.35),\n", " fontsize=10, ha='center', va='bottom', xycoords='axes fraction', color='gray',\n", - " arrowprops={'arrowstyle': '-[, widthB=32.25, lengthB=.5', 'lw': 2.0, 'color': 'gray'}\n", + " arrowprops={'arrowstyle': '-[, widthB=30, lengthB=.5', 'lw': 2.0, 'color': 'gray'}\n", ")\n", "\n", "axs[_SIN].annotate(\n", " 'deterministic freezing: each particle freezes at its T$_{f}$ in each cycle',\n", " xy=(0.43, 1.1), xytext=(0.43, 1.25),\n", " fontsize=10, ha='center', va='bottom', xycoords='axes fraction', color='gray',\n", - " arrowprops={'arrowstyle': '-[, widthB=32.25, lengthB=.5', 'lw': 2.0, 'color': 'gray'}\n", + " arrowprops={'arrowstyle': '-[, widthB=30, lengthB=.5', 'lw': 2.0, 'color': 'gray'}\n", ")\n", "\n", "axs[_CNT].annotate(\n", " 'attr. random sampling',\n", " xy=(0.93, -0.1), xytext=(0.93, -0.35),\n", " fontsize=10, ha='center', va='bottom', xycoords='axes fraction', color='gray',\n", - " arrowprops={'arrowstyle': '-[, widthB=5.25, lengthB=.5', 'lw': 2.0, 'color': 'gray'}\n", + " arrowprops={'arrowstyle': '-[, widthB=5, lengthB=.5', 'lw': 2.0, 'color': 'gray'}\n", ")\n", "\n", "axs[_SIN].annotate(\n", " 'attr. random sampling', xy=(0.93, 1.1), xytext=(0.93, 1.25),\n", " fontsize=10, ha='center', va='bottom', xycoords='axes fraction', color='gray',\n", - " arrowprops={'arrowstyle': '-[, widthB=5.25, lengthB=.5', 'lw': 2.0, 'color': 'gray'}\n", + " arrowprops={'arrowstyle': '-[, widthB=5, lengthB=.5', 'lw': 2.0, 'color': 'gray'}\n", ")\n", "\n", "axs[_TFF].annotate(\n", " 'singular: identical frozen-fraction pattern in each cycle; time-dependent: different frozen-fraction patterns in each cycle',\n", " xy=(0.43, -0.1), xytext=(0.43, -0.35),\n", " fontsize=10, ha='center', va='bottom', xycoords='axes fraction', color='gray',\n", - " arrowprops={'arrowstyle': '-[, widthB=32.25, lengthB=.5', 'lw': 2.0, 'color': 'gray'}\n", + " arrowprops={'arrowstyle': '-[, widthB=30, lengthB=.5', 'lw': 2.0, 'color': 'gray'}\n", ")\n", "\n", "pyplot.subplots_adjust(top=.66, bottom=0, left=0, right=1)\n", "show_plot('fig_realisations.pdf')" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ee6b9988-5f3a-4706-808a-c27204dac786", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "58576a73-a1f5-4a93-b92d-38a3f524f6ad", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -497,7 +27281,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" + "version": "3.9.2" } }, "nbformat": 4, diff --git a/examples/PySDM_examples/Arabas_et_al_2023/make_particulator.py b/examples/PySDM_examples/Arabas_et_al_2023/make_particulator.py index ed66c18b8..79c1c08fa 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/make_particulator.py +++ b/examples/PySDM_examples/Arabas_et_al_2023/make_particulator.py @@ -37,7 +37,7 @@ def make_particulator( "particle_shape_and_density": "MixedPhaseSpheres", } formulae = Formulae(**formulae_ctor_args) - backend = CPU(formulae) + backend = CPU(formulae, override_jit_flags={"parallel": False}) sampling = SpectroGlacialSampling( freezing_temperature_spectrum=formulae.freezing_temperature_spectrum, From 00521ac6770711c3c6e016221d91ee1e6d38c885 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Tue, 11 Jun 2024 14:17:29 +0200 Subject: [PATCH 02/41] changed A -> S in figures 7 & 8 --- .../figs_3_and_7_and_8.ipynb | 38955 +++++++++++++++- .../PySDM_examples/Arabas_et_al_2023/plots.py | 2 +- 2 files changed, 38870 insertions(+), 87 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb index b780f247e..98e574afd 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb @@ -2,19 +2,22 @@ "cells": [ { "cell_type": "markdown", + "id": "c75b5c0c2d10ac25", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, "source": [ "[![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_3_and_7_and_8.ipynb)\n", "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/fig_3_and_7_and_8.ipynb)\n", "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_3_and_7_and_8.ipynb)" - ], - "metadata": { - "collapsed": false - }, - "id": "c75b5c0c2d10ac25" + ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 1, "id": "12a0626c", "metadata": { "ExecuteTime": { @@ -85,60 +88,17278 @@ "outputs": [ { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-02-01T08:27:55.789722\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-06-11T14:13:38.259601\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./fig_0d_pdf_0.05.pdf
\")", "application/vnd.jupyter.widget-view+json": { + "model_id": "d19d87bbb61a4a7791a9feafdc342e5d", "version_major": 2, - "version_minor": 0, - "model_id": "724160274b2c4c6693703d456b702ec7" - } + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig_0d_pdf_0.05.pdf
\")" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-02-01T08:27:56.244046\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-06-11T14:13:39.415675\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./fig_0d_pdf_0.25.pdf
\")", "application/vnd.jupyter.widget-view+json": { + "model_id": "a5371bf925ad433397b1f9ff737659f6", "version_major": 2, - "version_minor": 0, - "model_id": "71b01ecf16114d17b78a74c3e1f22afb" - } + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig_0d_pdf_0.25.pdf
\")" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-02-01T08:27:56.679383\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-06-11T14:13:40.612876\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./fig_0d_pdf_1.25.pdf
\")", "application/vnd.jupyter.widget-view+json": { + "model_id": "460be77769ad40e8bedb8856f9c0863a", "version_major": 2, - "version_minor": 0, - "model_id": "897c3d689d324168a28d8d0df0de33b7" - } + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig_0d_pdf_1.25.pdf
\")" + ] }, "metadata": {}, "output_type": "display_data" @@ -160,7 +17381,6 @@ "execution_count": 4, "id": "7f46a04c", "metadata": { - "scrolled": false, "ExecuteTime": { "end_time": "2024-02-01T07:27:56.781598Z", "start_time": "2024-02-01T07:27:56.774678Z" @@ -245,96 +17465,10877 @@ "outputs": [ { "data": { - "text/plain": "FloatProgress(value=0.0, description='%')", "application/vnd.jupyter.widget-view+json": { + "model_id": "0fc4915b1aa3467799754e39556c1d6d", "version_major": 2, - "version_minor": 0, - "model_id": "e1c0f66d607649d588cdcc82b3f03420" - } + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='%')" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-02-01T08:28:05.937971\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-06-11T14:14:08.549317\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./fig2-c=-0.75_K_per_min-ln_…", "application/vnd.jupyter.widget-view+json": { + "model_id": "8557fa75ca9b4d86a19b65a3cffa2c71", "version_major": 2, - "version_minor": 0, - "model_id": "0b63242418854353be196a97704ca85b" - } + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig2-c=-0.75_K_per_min-ln_…" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "FloatProgress(value=0.0, description='%')", "application/vnd.jupyter.widget-view+json": { + "model_id": "b593127690a2441d8ed5510b4b498163", "version_major": 2, - "version_minor": 0, - "model_id": "81380758f3e84d459bfffca83fec89da" - } + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='%')" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-02-01T08:28:11.342647\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-06-11T14:14:26.195956\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./fig2-c=-0.75_K_per_min-ln_…", "application/vnd.jupyter.widget-view+json": { + "model_id": "2fa93ebea35f4ad48530f305ddbde8fb", "version_major": 2, - "version_minor": 0, - "model_id": "72a7dc43647141d7924ae79c260f4ca9" - } + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig2-c=-0.75_K_per_min-ln_…" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "FloatProgress(value=0.0, description='%')", "application/vnd.jupyter.widget-view+json": { + "model_id": "dfc3dbabc47c42d0b0619bac6721912a", "version_major": 2, - "version_minor": 0, - "model_id": "bded503036014a88aa6e12c9f8f34428" - } + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='%')" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-02-01T08:28:17.223557\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-06-11T14:14:46.741415\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./fig2-c=-0.75_K_per_min-ln_s…", "application/vnd.jupyter.widget-view+json": { + "model_id": "f5fbd4609a754f0aad989fa4e7b24ae1", "version_major": 2, - "version_minor": 0, - "model_id": "a0b860c2de1b453993465ffddb9649c8" - } + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig2-c=-0.75_K_per_min-ln_s…" + ] }, "metadata": {}, "output_type": "display_data" @@ -367,96 +28368,10878 @@ "outputs": [ { "data": { - "text/plain": "FloatProgress(value=0.0, description='%')", "application/vnd.jupyter.widget-view+json": { + "model_id": "ef905763225241aab597f591e8f6de26", "version_major": 2, - "version_minor": 0, - "model_id": "fec8f7fb60b44d4eaf226164e74ac51c" - } + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='%')" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-02-01T08:28:22.464829\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-06-11T14:15:05.564259\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./fig2-c=-3.75_K_per_min-ln_s…", "application/vnd.jupyter.widget-view+json": { + "model_id": "06a9a3c6c0784b51b7a6a33ae9f47395", "version_major": 2, - "version_minor": 0, - "model_id": "890925b34d2949f9a70ab8690af62d40" - } + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig2-c=-3.75_K_per_min-ln_s…" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "FloatProgress(value=0.0, description='%')", "application/vnd.jupyter.widget-view+json": { + "model_id": "344d7ce3d4f34dc9b67a9b201bd65f1a", "version_major": 2, - "version_minor": 0, - "model_id": "ce859b353b1a41ca87c356e45399dfc4" - } + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='%')" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-02-01T08:28:28.006409\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-06-11T14:15:25.344942\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./fig2-c=-0.75_K_per_min-ln_s…", "application/vnd.jupyter.widget-view+json": { + "model_id": "cf80e64411644858bb539bd599de9c3f", "version_major": 2, - "version_minor": 0, - "model_id": "06bb3fbe5f524a8ab84467532065db88" - } + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig2-c=-0.75_K_per_min-ln_s…" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "FloatProgress(value=0.0, description='%')", "application/vnd.jupyter.widget-view+json": { + "model_id": "930b270633e24ebc92235338d6491042", "version_major": 2, - "version_minor": 0, - "model_id": "2dd7eac139c2448d8d022ef1ad9ef65f" - } + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='%')" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-02-01T08:28:33.407144\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-06-11T14:15:56.404962\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./fig2-c=-0.15_K_per_min-ln_s…", "application/vnd.jupyter.widget-view+json": { + "model_id": "b6e1dc3568294455b54205dc1e2349c4", "version_major": 2, - "version_minor": 0, - "model_id": "39bbfe44151141a8b9204a1ac7b31b0c" - } + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig2-c=-0.15_K_per_min-ln_s…" + ] }, "metadata": {}, "output_type": "display_data" @@ -489,7 +39272,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" + "version": "3.9.2" } }, "nbformat": 4, diff --git a/examples/PySDM_examples/Arabas_et_al_2023/plots.py b/examples/PySDM_examples/Arabas_et_al_2023/plots.py index fdd326a9c..12975175c 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/plots.py +++ b/examples/PySDM_examples/Arabas_et_al_2023/plots.py @@ -103,7 +103,7 @@ def make_freezing_spec_plot( _ = CurvedText( x=T.squeeze(), y=qi.squeeze(), - text=f" {multiplier}x median A", + text=f" {multiplier}x median S", va="bottom", color="black", axes=prim, From a7bacc4a48aaf02686ef53d5d96eb4c2107e0b06 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Tue, 11 Jun 2024 14:25:42 +0200 Subject: [PATCH 03/41] fix file naming bug introduced in earlier pylint hint fix --- .../figs_3_and_7_and_8.ipynb | 14118 ++++------------ 1 file changed, 3444 insertions(+), 10674 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb index 98e574afd..2422af604 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb @@ -97,7 +97,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:13:38.259601\n", + " 2024-06-11T14:23:13.445582\n", " image/svg+xml\n", " \n", " \n", @@ -1074,7 +1074,7 @@ "L 125.875001 93.087529 \n", "L 125.956658 92.1744 \n", "z\n", - "\" clip-path=\"url(#pcc2122c150)\" style=\"fill: #e7f0fa\"/>\n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: #8dc1dd\"/>\n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: #4f9bcb\"/>\n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: #2070b4\"/>\n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: #08468b\"/>\n", " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4047,11 +4047,11 @@ " \n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4081,11 +4081,11 @@ " \n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4125,11 +4125,11 @@ " \n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4177,11 +4177,11 @@ " \n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4216,11 +4216,11 @@ " \n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4630,16 +4630,16 @@ " \n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4655,11 +4655,11 @@ " \n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4675,11 +4675,11 @@ " \n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4695,11 +4695,11 @@ " \n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4715,11 +4715,11 @@ " \n", " \n", + "\" clip-path=\"url(#p84f386feac)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5086,7 +5086,7 @@ "L 166.115037 77.886 \n", "L 298.065625 77.886 \n", "L 298.065625 77.886 \n", - "\" clip-path=\"url(#p22e7449726)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#p09d6a2d636)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p35001a66ab)\" style=\"fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p6f64ec84bb)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#p6f64ec84bb)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#p6f64ec84bb)\" style=\"fill: #8dc1dd\"/>\n", " \n", + "\" clip-path=\"url(#p6f64ec84bb)\" style=\"fill: #4f9bcb\"/>\n", " \n", + "\" clip-path=\"url(#p6f64ec84bb)\" style=\"fill: #2070b4\"/>\n", " \n", + "\" clip-path=\"url(#p6f64ec84bb)\" style=\"fill: #08468b\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5285,7 +5285,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5301,7 +5301,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5317,7 +5317,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5393,16 +5393,16 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5418,7 +5418,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d19d87bbb61a4a7791a9feafdc342e5d", + "model_id": "5db4091f88204f80b147b5605bcea5fd", "version_major": 2, "version_minor": 0 }, @@ -5440,7 +5440,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:13:39.415675\n", + " 2024-06-11T14:23:15.889309\n", " image/svg+xml\n", " \n", " \n", @@ -6802,7 +6802,7 @@ "L 132.635037 118.554258 \n", "L 131.650331 118.613138 \n", "z\n", - "\" clip-path=\"url(#p85948bbd13)\" style=\"fill: #e7f0fa\"/>\n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: #8dc1dd\"/>\n", " \n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: #4f9bcb\"/>\n", " \n", - " \n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: #2070b4\"/>\n", + " \n", " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9621,11 +9621,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9655,11 +9655,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9699,11 +9699,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9751,11 +9751,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9790,11 +9790,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10204,16 +10204,16 @@ " \n", " \n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10229,11 +10229,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10249,11 +10249,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10269,11 +10269,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10289,11 +10289,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10684,7 +10684,7 @@ "L 259.662096 77.854561 \n", "L 298.065625 77.884049 \n", "L 298.065625 77.884049 \n", - "\" clip-path=\"url(#p157e032615)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#p6d85a88550)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p76bd545361)\" style=\"fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p204c670427)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#p204c670427)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#p204c670427)\" style=\"fill: #8dc1dd\"/>\n", " \n", + "\" clip-path=\"url(#p204c670427)\" style=\"fill: #4f9bcb\"/>\n", " \n", + "\" clip-path=\"url(#p204c670427)\" style=\"fill: #2070b4\"/>\n", " \n", + "\" clip-path=\"url(#p204c670427)\" style=\"fill: #08468b\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10884,7 +10884,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10900,7 +10900,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10916,7 +10916,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10992,16 +10992,16 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -11017,7 +11017,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a5371bf925ad433397b1f9ff737659f6", + "model_id": "b1fafb422feb465b9df294506acd9ba2", "version_major": 2, "version_minor": 0 }, @@ -11039,7 +11039,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:13:40.612876\n", + " 2024-06-11T14:23:17.450806\n", " image/svg+xml\n", " \n", " \n", @@ -12693,7 +12693,7 @@ "L 293.142096 233.857709 \n", "L 294.047028 233.709459 \n", "z\n", - "\" clip-path=\"url(#pe3b5281f10)\" style=\"fill: #e7f0fa\"/>\n", + "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: #8dc1dd\"/>\n", " \n", - " \n", - " \n", + "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: #4f9bcb\"/>\n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -15968,11 +15968,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16002,11 +16002,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16046,11 +16046,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16098,11 +16098,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16137,11 +16137,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16551,16 +16551,16 @@ " \n", " \n", + "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16576,11 +16576,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16596,11 +16596,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16616,11 +16616,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16636,11 +16636,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17020,7 +17020,7 @@ "L 297.080919 72.087006 \n", "L 298.065625 72.125328 \n", "L 298.065625 72.125328 \n", - "\" clip-path=\"url(#p233b2d0f4d)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pfdef908995)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p5cf65fe602)\" style=\"fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p6c3fd39130)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#p6c3fd39130)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#p6c3fd39130)\" style=\"fill: #8dc1dd\"/>\n", " \n", + "\" clip-path=\"url(#p6c3fd39130)\" style=\"fill: #4f9bcb\"/>\n", " \n", + "\" clip-path=\"url(#p6c3fd39130)\" style=\"fill: #2070b4\"/>\n", " \n", + "\" clip-path=\"url(#p6c3fd39130)\" style=\"fill: #08468b\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17220,7 +17220,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17236,7 +17236,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17252,7 +17252,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17328,16 +17328,16 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17353,7 +17353,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "460be77769ad40e8bedb8856f9c0863a", + "model_id": "7bc2cdecaedd476aa26cbc8ba00dd73f", "version_major": 2, "version_minor": 0 }, @@ -17449,7 +17449,7 @@ " **common_params,\n", " cooling_rate_K_min=cooling_rate_K_min\n", " )\n", - " show_plot(f'fig2-c={cooling_rate_K_min}_K_per_min-ln_s_geom={ln_s_geom}.pdf')" + " show_plot(f'fig2-c={cooling_rate_K_min}_K_per_min-ln_s_geom={ln_s_geom_arg}.pdf')" ] }, { @@ -17466,7 +17466,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0fc4915b1aa3467799754e39556c1d6d", + "model_id": "8db4e09ddbe643539e094026d2837b4b", "version_major": 2, "version_minor": 0 }, @@ -17488,7 +17488,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:14:08.549317\n", + " 2024-06-11T14:23:54.214583\n", " image/svg+xml\n", " \n", " \n", @@ -17533,12 +17533,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17583,7 +17583,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17624,7 +17624,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17660,7 +17660,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17707,7 +17707,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17763,7 +17763,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18030,16 +18030,16 @@ " \n", " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18091,11 +18091,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18140,11 +18140,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18162,11 +18162,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18196,11 +18196,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18218,11 +18218,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18240,11 +18240,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18262,11 +18262,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18284,11 +18284,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18455,36 +18455,36 @@ "L 86.986062 276.336 \n", "L 92.938062 276.336 \n", "L 98.890062 276.336 \n", - "L 104.842062 276.336 \n", - "L 110.794062 276.336 \n", - "L 116.746062 276.336 \n", - "L 122.698062 276.336 \n", - "L 128.650062 272.556 \n", - "L 134.602062 272.556 \n", - "L 140.554062 268.776 \n", - "L 146.506062 264.996 \n", - "L 152.458062 264.996 \n", - "L 158.410062 261.216 \n", - "L 164.362062 261.216 \n", - "L 170.314062 253.656 \n", - "L 176.266062 249.876 \n", - "L 182.218062 249.876 \n", - "L 188.170062 234.756 \n", - "L 194.122062 234.756 \n", + "L 104.842062 272.556 \n", + "L 110.794062 272.556 \n", + "L 116.746062 272.556 \n", + "L 122.698062 264.996 \n", + "L 128.650062 261.216 \n", + "L 134.602062 261.216 \n", + "L 140.554062 261.216 \n", + "L 146.506062 261.216 \n", + "L 152.458062 257.436 \n", + "L 158.410062 253.656 \n", + "L 164.362062 246.096 \n", + "L 170.314062 242.316 \n", + "L 176.266062 238.536 \n", + "L 182.218062 234.756 \n", + "L 188.170062 230.976 \n", + "L 194.122062 227.196 \n", "L 200.074062 223.416 \n", "L 206.026062 208.296 \n", - "L 211.978062 208.296 \n", - "L 217.930062 185.616 \n", - "L 223.882062 166.716 \n", - "L 229.834062 155.376 \n", - "L 235.786062 136.476 \n", - "L 241.738062 106.236 \n", - "L 247.690062 98.676 \n", + "L 211.978062 196.956 \n", + "L 217.930062 196.956 \n", + "L 223.882062 174.276 \n", + "L 229.834062 159.156 \n", + "L 235.786062 144.036 \n", + "L 241.738062 132.696 \n", + "L 247.690062 106.236 \n", "L 253.642062 83.556 \n", - "L 259.594062 60.876 \n", - "L 265.546062 53.316 \n", + "L 259.594062 68.436 \n", + "L 265.546062 57.096 \n", "L 271.498062 41.976 \n", - "L 277.450062 34.416 \n", + "L 277.450062 41.976 \n", "L 283.402062 34.416 \n", "L 289.354062 34.416 \n", "L 295.306062 34.416 \n", @@ -18502,9 +18502,9 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p6b04d9825a)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -18642,69 +18642,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p6b04d9825a)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -18769,69 +18769,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p6b04d9825a)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -18896,69 +18896,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p6b04d9825a)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19023,69 +19023,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p6b04d9825a)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19093,66 +19093,66 @@ "L 27.466062 276.336 \n", "L 33.418062 276.336 \n", "L 39.370062 276.336 \n", - "L 45.322062 276.336 \n", - "L 51.274062 276.336 \n", - "L 57.226062 276.336 \n", - "L 63.178062 276.336 \n", - "L 69.130062 276.336 \n", - "L 75.082062 276.336 \n", - "L 81.034062 276.336 \n", - "L 86.986062 276.336 \n", - "L 92.938062 276.336 \n", - "L 98.890062 276.336 \n", - "L 104.842062 276.336 \n", - "L 110.794062 272.556 \n", - "L 116.746062 272.556 \n", - "L 122.698062 272.556 \n", - "L 128.650062 272.556 \n", - "L 134.602062 272.556 \n", + "L 45.322062 272.556 \n", + "L 51.274062 272.556 \n", + "L 57.226062 272.556 \n", + "L 63.178062 272.556 \n", + "L 69.130062 272.556 \n", + "L 75.082062 272.556 \n", + "L 81.034062 272.556 \n", + "L 86.986062 272.556 \n", + "L 92.938062 272.556 \n", + "L 98.890062 272.556 \n", + "L 104.842062 264.996 \n", + "L 110.794062 264.996 \n", + "L 116.746062 264.996 \n", + "L 122.698062 264.996 \n", + "L 128.650062 264.996 \n", + "L 134.602062 264.996 \n", "L 140.554062 264.996 \n", - "L 146.506062 264.996 \n", - "L 152.458062 264.996 \n", - "L 158.410062 257.436 \n", - "L 164.362062 257.436 \n", - "L 170.314062 253.656 \n", + "L 146.506062 257.436 \n", + "L 152.458062 257.436 \n", + "L 158.410062 253.656 \n", + "L 164.362062 249.876 \n", + "L 170.314062 249.876 \n", "L 176.266062 246.096 \n", "L 182.218062 238.536 \n", - "L 188.170062 238.536 \n", - "L 194.122062 234.756 \n", - "L 200.074062 230.976 \n", - "L 206.026062 223.416 \n", - "L 211.978062 219.636 \n", - "L 217.930062 215.856 \n", - "L 223.882062 204.516 \n", - "L 229.834062 196.956 \n", - "L 235.786062 196.956 \n", - "L 241.738062 181.836 \n", - "L 247.690062 166.716 \n", - "L 253.642062 147.816 \n", - "L 259.594062 140.256 \n", - "L 265.546062 132.696 \n", - "L 271.498062 125.136 \n", - "L 277.450062 121.356 \n", - "L 283.402062 106.236 \n", - "L 289.354062 94.896 \n", - "L 295.306062 75.996 \n", - "L 301.258062 72.216 \n", - "L 307.210062 68.436 \n", - "L 313.162062 64.656 \n", + "L 188.170062 230.976 \n", + "L 194.122062 230.976 \n", + "L 200.074062 223.416 \n", + "L 206.026062 208.296 \n", + "L 211.978062 200.736 \n", + "L 217.930062 200.736 \n", + "L 223.882062 178.056 \n", + "L 229.834062 170.496 \n", + "L 235.786062 155.376 \n", + "L 241.738062 136.476 \n", + "L 247.690062 117.576 \n", + "L 253.642062 113.796 \n", + "L 259.594062 102.456 \n", + "L 265.546062 94.896 \n", + "L 271.498062 75.996 \n", + "L 277.450062 68.436 \n", + "L 283.402062 64.656 \n", + "L 289.354062 57.096 \n", + "L 295.306062 53.316 \n", + "L 301.258062 53.316 \n", + "L 307.210062 53.316 \n", + "L 313.162062 49.536 \n", "L 319.114062 49.536 \n", - "L 325.066062 41.976 \n", + "L 325.066062 49.536 \n", "L 331.018062 41.976 \n", "L 336.970062 38.196 \n", - "L 342.922062 34.416 \n", + "L 342.922062 38.196 \n", "L 348.874062 34.416 \n", "L 354.826062 34.416 \n", "L 360.778062 34.416 \n", "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p6b04d9825a)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19290,69 +19290,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p6b04d9825a)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19417,69 +19417,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p6b04d9825a)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19544,69 +19544,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p6b04d9825a)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19671,69 +19671,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p6b04d9825a)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19787,7 +19787,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#p6b04d9825a)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20162,7 +20162,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20170,7 +20170,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20178,7 +20178,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20186,7 +20186,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20194,7 +20194,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20202,7 +20202,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20210,7 +20210,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20218,7 +20218,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20226,7 +20226,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20234,7 +20234,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20242,7 +20242,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20250,7 +20250,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20258,7 +20258,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20266,7 +20266,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20274,7 +20274,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20282,7 +20282,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20290,7 +20290,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20298,7 +20298,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20306,7 +20306,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20314,7 +20314,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20322,7 +20322,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20330,7 +20330,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20338,7 +20338,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20346,7 +20346,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20354,7 +20354,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20362,7 +20362,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20370,7 +20370,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20378,7 +20378,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20386,7 +20386,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20422,7 +20422,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20430,7 +20430,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20438,7 +20438,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20446,7 +20446,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20454,7 +20454,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20495,7 +20495,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20503,7 +20503,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20511,7 +20511,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20519,7 +20519,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20527,7 +20527,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20535,7 +20535,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20543,7 +20543,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20551,7 +20551,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20559,7 +20559,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20567,7 +20567,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20575,7 +20575,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20583,7 +20583,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20591,7 +20591,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20599,7 +20599,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20607,7 +20607,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20615,7 +20615,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20623,7 +20623,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20631,7 +20631,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20639,7 +20639,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20647,7 +20647,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20655,7 +20655,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20663,7 +20663,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20671,7 +20671,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20679,7 +20679,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20687,7 +20687,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20695,7 +20695,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20703,7 +20703,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20711,7 +20711,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20719,7 +20719,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20727,7 +20727,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20735,7 +20735,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20743,7 +20743,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20751,7 +20751,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20759,7 +20759,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20786,7 +20786,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20882,7 +20882,7 @@ "L 202.198337 369.430962 \n", "\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21062,7 +21062,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21078,7 +21078,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8557fa75ca9b4d86a19b65a3cffa2c71", + "model_id": "d9c222f97d54414aa937bc62642ac2e5", "version_major": 2, "version_minor": 0 }, @@ -21092,7 +21092,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b593127690a2441d8ed5510b4b498163", + "model_id": "84ee88bf11744e759feb7b40723d8cd9", "version_major": 2, "version_minor": 0 }, @@ -21114,7 +21114,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:14:26.195956\n", + " 2024-06-11T14:24:11.505829\n", " image/svg+xml\n", " \n", " \n", @@ -21159,12 +21159,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21209,7 +21209,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21250,7 +21250,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21286,7 +21286,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21333,7 +21333,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21389,7 +21389,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21656,16 +21656,16 @@ " \n", " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21717,11 +21717,11 @@ " \n", " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21766,11 +21766,11 @@ " \n", " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21788,11 +21788,11 @@ " \n", " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21822,11 +21822,11 @@ " \n", " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21844,11 +21844,11 @@ " \n", " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21866,11 +21866,11 @@ " \n", " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21888,11 +21888,11 @@ " \n", " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21910,11 +21910,11 @@ " \n", " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -22071,56 +22071,56 @@ "L 27.466062 276.336 \n", "L 33.418062 276.336 \n", "L 39.370062 276.336 \n", - "L 45.322062 272.556 \n", - "L 51.274062 272.556 \n", - "L 57.226062 272.556 \n", + "L 45.322062 276.336 \n", + "L 51.274062 276.336 \n", + "L 57.226062 276.336 \n", "L 63.178062 272.556 \n", - "L 69.130062 268.776 \n", - "L 75.082062 268.776 \n", - "L 81.034062 268.776 \n", - "L 86.986062 268.776 \n", - "L 92.938062 268.776 \n", - "L 98.890062 268.776 \n", - "L 104.842062 268.776 \n", - "L 110.794062 268.776 \n", - "L 116.746062 268.776 \n", - "L 122.698062 264.996 \n", + "L 69.130062 272.556 \n", + "L 75.082062 272.556 \n", + "L 81.034062 272.556 \n", + "L 86.986062 264.996 \n", + "L 92.938062 264.996 \n", + "L 98.890062 264.996 \n", + "L 104.842062 264.996 \n", + "L 110.794062 261.216 \n", + "L 116.746062 261.216 \n", + "L 122.698062 261.216 \n", "L 128.650062 261.216 \n", - "L 134.602062 257.436 \n", - "L 140.554062 249.876 \n", - "L 146.506062 246.096 \n", - "L 152.458062 246.096 \n", - "L 158.410062 246.096 \n", - "L 164.362062 242.316 \n", - "L 170.314062 230.976 \n", - "L 176.266062 223.416 \n", - "L 182.218062 212.076 \n", - "L 188.170062 208.296 \n", - "L 194.122062 200.736 \n", - "L 200.074062 189.396 \n", - "L 206.026062 178.056 \n", - "L 211.978062 174.276 \n", - "L 217.930062 174.276 \n", - "L 223.882062 151.596 \n", - "L 229.834062 128.916 \n", - "L 235.786062 121.356 \n", - "L 241.738062 110.016 \n", - "L 247.690062 106.236 \n", - "L 253.642062 98.676 \n", - "L 259.594062 91.116 \n", - "L 265.546062 83.556 \n", - "L 271.498062 79.776 \n", - "L 277.450062 68.436 \n", + "L 134.602062 261.216 \n", + "L 140.554062 261.216 \n", + "L 146.506062 261.216 \n", + "L 152.458062 257.436 \n", + "L 158.410062 253.656 \n", + "L 164.362062 249.876 \n", + "L 170.314062 238.536 \n", + "L 176.266062 238.536 \n", + "L 182.218062 234.756 \n", + "L 188.170062 230.976 \n", + "L 194.122062 212.076 \n", + "L 200.074062 200.736 \n", + "L 206.026062 193.176 \n", + "L 211.978062 189.396 \n", + "L 217.930062 181.836 \n", + "L 223.882062 170.496 \n", + "L 229.834062 166.716 \n", + "L 235.786062 162.936 \n", + "L 241.738062 155.376 \n", + "L 247.690062 125.136 \n", + "L 253.642062 110.016 \n", + "L 259.594062 106.236 \n", + "L 265.546062 94.896 \n", + "L 271.498062 68.436 \n", + "L 277.450062 64.656 \n", "L 283.402062 64.656 \n", "L 289.354062 57.096 \n", - "L 295.306062 57.096 \n", - "L 301.258062 53.316 \n", + "L 295.306062 49.536 \n", + "L 301.258062 45.756 \n", "L 307.210062 45.756 \n", - "L 313.162062 41.976 \n", + "L 313.162062 38.196 \n", "L 319.114062 38.196 \n", - "L 325.066062 38.196 \n", - "L 331.018062 38.196 \n", - "L 336.970062 38.196 \n", + "L 325.066062 34.416 \n", + "L 331.018062 34.416 \n", + "L 336.970062 34.416 \n", "L 342.922062 34.416 \n", "L 348.874062 34.416 \n", "L 354.826062 34.416 \n", @@ -22128,9 +22128,9 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pe559856846)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22268,69 +22268,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pe559856846)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22395,69 +22395,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pe559856846)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22522,69 +22522,69 @@ "L 366.730062 38.196 \n", "L 372.682062 38.196 \n", "L 378.634062 38.196 \n", - "\" clip-path=\"url(#pe559856846)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22649,69 +22649,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pe559856846)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22719,66 +22719,66 @@ "L 27.466062 276.336 \n", "L 33.418062 276.336 \n", "L 39.370062 276.336 \n", - "L 45.322062 276.336 \n", - "L 51.274062 276.336 \n", - "L 57.226062 276.336 \n", + "L 45.322062 272.556 \n", + "L 51.274062 272.556 \n", + "L 57.226062 272.556 \n", "L 63.178062 272.556 \n", "L 69.130062 272.556 \n", - "L 75.082062 268.776 \n", - "L 81.034062 268.776 \n", - "L 86.986062 268.776 \n", + "L 75.082062 272.556 \n", + "L 81.034062 272.556 \n", + "L 86.986062 272.556 \n", "L 92.938062 268.776 \n", "L 98.890062 268.776 \n", - "L 104.842062 268.776 \n", - "L 110.794062 264.996 \n", - "L 116.746062 264.996 \n", - "L 122.698062 264.996 \n", - "L 128.650062 264.996 \n", - "L 134.602062 261.216 \n", - "L 140.554062 257.436 \n", - "L 146.506062 253.656 \n", - "L 152.458062 249.876 \n", - "L 158.410062 246.096 \n", - "L 164.362062 246.096 \n", - "L 170.314062 238.536 \n", - "L 176.266062 230.976 \n", - "L 182.218062 227.196 \n", + "L 104.842062 257.436 \n", + "L 110.794062 253.656 \n", + "L 116.746062 253.656 \n", + "L 122.698062 249.876 \n", + "L 128.650062 249.876 \n", + "L 134.602062 246.096 \n", + "L 140.554062 242.316 \n", + "L 146.506062 238.536 \n", + "L 152.458062 238.536 \n", + "L 158.410062 230.976 \n", + "L 164.362062 227.196 \n", + "L 170.314062 227.196 \n", + "L 176.266062 223.416 \n", + "L 182.218062 223.416 \n", "L 188.170062 219.636 \n", - "L 194.122062 212.076 \n", - "L 200.074062 200.736 \n", - "L 206.026062 189.396 \n", - "L 211.978062 178.056 \n", - "L 217.930062 170.496 \n", - "L 223.882062 166.716 \n", - "L 229.834062 159.156 \n", - "L 235.786062 155.376 \n", - "L 241.738062 140.256 \n", - "L 247.690062 132.696 \n", - "L 253.642062 125.136 \n", - "L 259.594062 121.356 \n", - "L 265.546062 117.576 \n", - "L 271.498062 113.796 \n", - "L 277.450062 113.796 \n", - "L 283.402062 102.456 \n", - "L 289.354062 94.896 \n", - "L 295.306062 83.556 \n", - "L 301.258062 83.556 \n", - "L 307.210062 83.556 \n", - "L 313.162062 79.776 \n", - "L 319.114062 72.216 \n", - "L 325.066062 68.436 \n", - "L 331.018062 68.436 \n", - "L 336.970062 60.876 \n", - "L 342.922062 60.876 \n", - "L 348.874062 60.876 \n", - "L 354.826062 57.096 \n", - "L 360.778062 57.096 \n", - "L 366.730062 53.316 \n", - "L 372.682062 49.536 \n", - "L 378.634062 45.756 \n", - "\" clip-path=\"url(#pe559856846)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "L 194.122062 219.636 \n", + "L 200.074062 215.856 \n", + "L 206.026062 196.956 \n", + "L 211.978062 189.396 \n", + "L 217.930062 189.396 \n", + "L 223.882062 181.836 \n", + "L 229.834062 170.496 \n", + "L 235.786062 159.156 \n", + "L 241.738062 151.596 \n", + "L 247.690062 140.256 \n", + "L 253.642062 136.476 \n", + "L 259.594062 125.136 \n", + "L 265.546062 125.136 \n", + "L 271.498062 121.356 \n", + "L 277.450062 117.576 \n", + "L 283.402062 113.796 \n", + "L 289.354062 106.236 \n", + "L 295.306062 102.456 \n", + "L 301.258062 102.456 \n", + "L 307.210062 98.676 \n", + "L 313.162062 94.896 \n", + "L 319.114062 87.336 \n", + "L 325.066062 72.216 \n", + "L 331.018062 60.876 \n", + "L 336.970062 57.096 \n", + "L 342.922062 57.096 \n", + "L 348.874062 49.536 \n", + "L 354.826062 41.976 \n", + "L 360.778062 41.976 \n", + "L 366.730062 38.196 \n", + "L 372.682062 38.196 \n", + "L 378.634062 38.196 \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22916,69 +22916,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pe559856846)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -23043,69 +23043,69 @@ "L 366.730062 45.756 \n", "L 372.682062 41.976 \n", "L 378.634062 38.196 \n", - "\" clip-path=\"url(#pe559856846)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -23170,69 +23170,69 @@ "L 366.730062 41.976 \n", "L 372.682062 41.976 \n", "L 378.634062 41.976 \n", - "\" clip-path=\"url(#pe559856846)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -23297,69 +23297,69 @@ "L 366.730062 41.976 \n", "L 372.682062 41.976 \n", "L 378.634062 38.196 \n", - "\" clip-path=\"url(#pe559856846)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -23413,7 +23413,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#pe559856846)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23788,7 +23788,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23796,7 +23796,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23804,7 +23804,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23812,7 +23812,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23820,7 +23820,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23828,7 +23828,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23836,7 +23836,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23844,7 +23844,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23852,7 +23852,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23860,7 +23860,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23868,7 +23868,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23876,7 +23876,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23884,7 +23884,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23892,7 +23892,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23900,7 +23900,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23908,7 +23908,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23916,7 +23916,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23924,7 +23924,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23932,7 +23932,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23940,7 +23940,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23948,7 +23948,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23956,7 +23956,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23964,7 +23964,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23972,7 +23972,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23980,7 +23980,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23988,7 +23988,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23996,7 +23996,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24004,7 +24004,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24012,7 +24012,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24048,7 +24048,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24056,7 +24056,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24064,7 +24064,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24072,7 +24072,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24080,7 +24080,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24121,7 +24121,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24129,7 +24129,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24137,7 +24137,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24145,7 +24145,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24153,7 +24153,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24161,7 +24161,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24169,7 +24169,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24177,7 +24177,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24185,7 +24185,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24193,7 +24193,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24201,7 +24201,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24209,7 +24209,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24217,7 +24217,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24225,7 +24225,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24233,7 +24233,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24241,7 +24241,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24249,7 +24249,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24257,7 +24257,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24265,7 +24265,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24273,7 +24273,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24281,7 +24281,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24289,7 +24289,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24297,7 +24297,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24305,7 +24305,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24313,7 +24313,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24321,7 +24321,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24329,7 +24329,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24337,7 +24337,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24345,7 +24345,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24353,7 +24353,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24361,7 +24361,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24369,7 +24369,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24377,7 +24377,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24385,7 +24385,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24412,7 +24412,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24508,7 +24508,7 @@ "L 202.198337 369.430962 \n", "\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24688,7 +24688,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24704,7 +24704,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2fa93ebea35f4ad48530f305ddbde8fb", + "model_id": "bf87669db4e749079ab36a09187ae178", "version_major": 2, "version_minor": 0 }, @@ -24718,7 +24718,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dfc3dbabc47c42d0b0619bac6721912a", + "model_id": "2c507730564f4c80b26a748dbd17d88d", "version_major": 2, "version_minor": 0 }, @@ -24740,7 +24740,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:14:46.741415\n", + " 2024-06-11T14:24:29.723560\n", " image/svg+xml\n", " \n", " \n", @@ -24785,12 +24785,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24835,7 +24835,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24876,7 +24876,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24912,7 +24912,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24959,7 +24959,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25015,7 +25015,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25282,16 +25282,16 @@ " \n", " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25343,11 +25343,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25392,11 +25392,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25414,11 +25414,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25448,11 +25448,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25470,11 +25470,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25492,11 +25492,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25514,11 +25514,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25536,11 +25536,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25698,65 +25698,65 @@ "L 33.418062 268.776 \n", "L 39.370062 268.776 \n", "L 45.322062 268.776 \n", - "L 51.274062 264.996 \n", - "L 57.226062 261.216 \n", - "L 63.178062 261.216 \n", - "L 69.130062 261.216 \n", - "L 75.082062 261.216 \n", - "L 81.034062 257.436 \n", - "L 86.986062 257.436 \n", - "L 92.938062 257.436 \n", - "L 98.890062 257.436 \n", - "L 104.842062 246.096 \n", - "L 110.794062 238.536 \n", - "L 116.746062 230.976 \n", - "L 122.698062 227.196 \n", - "L 128.650062 223.416 \n", - "L 134.602062 223.416 \n", - "L 140.554062 223.416 \n", - "L 146.506062 212.076 \n", - "L 152.458062 196.956 \n", - "L 158.410062 185.616 \n", - "L 164.362062 185.616 \n", - "L 170.314062 181.836 \n", - "L 176.266062 181.836 \n", - "L 182.218062 181.836 \n", - "L 188.170062 178.056 \n", - "L 194.122062 170.496 \n", - "L 200.074062 162.936 \n", - "L 206.026062 162.936 \n", - "L 211.978062 159.156 \n", - "L 217.930062 140.256 \n", - "L 223.882062 136.476 \n", - "L 229.834062 128.916 \n", - "L 235.786062 121.356 \n", - "L 241.738062 117.576 \n", - "L 247.690062 117.576 \n", - "L 253.642062 110.016 \n", - "L 259.594062 110.016 \n", - "L 265.546062 106.236 \n", - "L 271.498062 106.236 \n", - "L 277.450062 94.896 \n", - "L 283.402062 94.896 \n", - "L 289.354062 87.336 \n", - "L 295.306062 83.556 \n", - "L 301.258062 79.776 \n", - "L 307.210062 79.776 \n", + "L 51.274062 268.776 \n", + "L 57.226062 268.776 \n", + "L 63.178062 268.776 \n", + "L 69.130062 268.776 \n", + "L 75.082062 264.996 \n", + "L 81.034062 264.996 \n", + "L 86.986062 264.996 \n", + "L 92.938062 264.996 \n", + "L 98.890062 253.656 \n", + "L 104.842062 253.656 \n", + "L 110.794062 253.656 \n", + "L 116.746062 253.656 \n", + "L 122.698062 253.656 \n", + "L 128.650062 246.096 \n", + "L 134.602062 242.316 \n", + "L 140.554062 234.756 \n", + "L 146.506062 234.756 \n", + "L 152.458062 234.756 \n", + "L 158.410062 234.756 \n", + "L 164.362062 227.196 \n", + "L 170.314062 219.636 \n", + "L 176.266062 204.516 \n", + "L 182.218062 200.736 \n", + "L 188.170062 196.956 \n", + "L 194.122062 196.956 \n", + "L 200.074062 196.956 \n", + "L 206.026062 193.176 \n", + "L 211.978062 181.836 \n", + "L 217.930062 174.276 \n", + "L 223.882062 162.936 \n", + "L 229.834062 159.156 \n", + "L 235.786062 155.376 \n", + "L 241.738062 140.256 \n", + "L 247.690062 136.476 \n", + "L 253.642062 132.696 \n", + "L 259.594062 128.916 \n", + "L 265.546062 128.916 \n", + "L 271.498062 113.796 \n", + "L 277.450062 113.796 \n", + "L 283.402062 102.456 \n", + "L 289.354062 94.896 \n", + "L 295.306062 91.116 \n", + "L 301.258062 83.556 \n", + "L 307.210062 72.216 \n", "L 313.162062 72.216 \n", - "L 319.114062 64.656 \n", - "L 325.066062 60.876 \n", - "L 331.018062 57.096 \n", - "L 336.970062 49.536 \n", - "L 342.922062 49.536 \n", - "L 348.874062 49.536 \n", - "L 354.826062 49.536 \n", - "L 360.778062 49.536 \n", - "L 366.730062 49.536 \n", - "L 372.682062 49.536 \n", - "L 378.634062 49.536 \n", - "\" clip-path=\"url(#p33113dd5e1)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "L 319.114062 72.216 \n", + "L 325.066062 72.216 \n", + "L 331.018062 68.436 \n", + "L 336.970062 64.656 \n", + "L 342.922062 53.316 \n", + "L 348.874062 53.316 \n", + "L 354.826062 53.316 \n", + "L 360.778062 45.756 \n", + "L 366.730062 45.756 \n", + "L 372.682062 45.756 \n", + "L 378.634062 45.756 \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -25894,69 +25894,69 @@ "L 366.730062 45.756 \n", "L 372.682062 38.196 \n", "L 378.634062 38.196 \n", - "\" clip-path=\"url(#p33113dd5e1)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26021,69 +26021,69 @@ "L 366.730062 45.756 \n", "L 372.682062 45.756 \n", "L 378.634062 45.756 \n", - "\" clip-path=\"url(#p33113dd5e1)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26148,69 +26148,69 @@ "L 366.730062 45.756 \n", "L 372.682062 45.756 \n", "L 378.634062 45.756 \n", - "\" clip-path=\"url(#p33113dd5e1)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26275,136 +26275,136 @@ "L 366.730062 41.976 \n", "L 372.682062 38.196 \n", "L 378.634062 38.196 \n", - "\" clip-path=\"url(#p33113dd5e1)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + "L 152.458062 215.856 \n", + "L 158.410062 212.076 \n", + "L 164.362062 208.296 \n", + "L 170.314062 208.296 \n", + "L 176.266062 204.516 \n", + "L 182.218062 204.516 \n", + "L 188.170062 200.736 \n", + "L 194.122062 200.736 \n", + "L 200.074062 189.396 \n", + "L 206.026062 189.396 \n", + "L 211.978062 178.056 \n", + "L 217.930062 178.056 \n", + "L 223.882062 170.496 \n", + "L 229.834062 162.936 \n", + "L 235.786062 159.156 \n", + "L 241.738062 151.596 \n", + "L 247.690062 140.256 \n", + "L 253.642062 140.256 \n", + "L 259.594062 136.476 \n", + "L 265.546062 136.476 \n", + "L 271.498062 132.696 \n", + "L 277.450062 128.916 \n", + "L 283.402062 128.916 \n", + "L 289.354062 125.136 \n", + "L 295.306062 121.356 \n", + "L 301.258062 117.576 \n", + "L 307.210062 113.796 \n", + "L 313.162062 110.016 \n", + "L 319.114062 106.236 \n", + "L 325.066062 106.236 \n", + "L 331.018062 98.676 \n", + "L 336.970062 98.676 \n", + "L 342.922062 94.896 \n", + "L 348.874062 87.336 \n", + "L 354.826062 87.336 \n", + "L 360.778062 87.336 \n", + "L 366.730062 87.336 \n", + "L 372.682062 79.776 \n", + "L 378.634062 79.776 \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26542,69 +26542,69 @@ "L 366.730062 68.436 \n", "L 372.682062 68.436 \n", "L 378.634062 68.436 \n", - "\" clip-path=\"url(#p33113dd5e1)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26669,69 +26669,69 @@ "L 366.730062 79.776 \n", "L 372.682062 75.996 \n", "L 378.634062 72.216 \n", - "\" clip-path=\"url(#p33113dd5e1)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26796,69 +26796,69 @@ "L 366.730062 60.876 \n", "L 372.682062 60.876 \n", "L 378.634062 60.876 \n", - "\" clip-path=\"url(#p33113dd5e1)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26923,69 +26923,69 @@ "L 366.730062 68.436 \n", "L 372.682062 57.096 \n", "L 378.634062 57.096 \n", - "\" clip-path=\"url(#p33113dd5e1)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -27039,7 +27039,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#p33113dd5e1)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27413,7 +27413,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27421,7 +27421,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27429,7 +27429,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27437,7 +27437,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27445,7 +27445,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27453,7 +27453,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27461,7 +27461,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27469,7 +27469,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27477,7 +27477,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27485,7 +27485,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27493,7 +27493,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27501,7 +27501,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27509,7 +27509,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27517,7 +27517,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27525,7 +27525,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27533,7 +27533,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27541,7 +27541,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27549,7 +27549,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27557,7 +27557,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27565,7 +27565,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27573,7 +27573,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27581,7 +27581,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27589,7 +27589,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27597,7 +27597,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27605,7 +27605,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27613,7 +27613,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27621,7 +27621,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27629,7 +27629,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27637,7 +27637,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27673,7 +27673,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27681,7 +27681,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27689,7 +27689,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27697,7 +27697,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27705,7 +27705,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27746,7 +27746,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27754,7 +27754,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27762,7 +27762,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27770,7 +27770,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27778,7 +27778,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27786,7 +27786,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27794,7 +27794,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27802,7 +27802,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27810,7 +27810,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27818,7 +27818,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27826,7 +27826,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27834,7 +27834,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27842,7 +27842,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27850,7 +27850,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27858,7 +27858,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27866,7 +27866,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27874,7 +27874,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27882,7 +27882,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27890,7 +27890,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27898,7 +27898,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27906,7 +27906,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27914,7 +27914,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27922,7 +27922,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27930,7 +27930,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27938,7 +27938,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27946,7 +27946,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27954,7 +27954,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27962,7 +27962,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27970,7 +27970,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27978,7 +27978,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27986,7 +27986,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27994,7 +27994,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28002,7 +28002,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28010,7 +28010,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28037,7 +28037,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28133,7 +28133,7 @@ "L 202.198337 369.430962 \n", "\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28313,7 +28313,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28329,7 +28329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f5fbd4609a754f0aad989fa4e7b24ae1", + "model_id": "44ae33129e514c56b3d439656884a332", "version_major": 2, "version_minor": 0 }, @@ -28357,7 +28357,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "64cf293e", "metadata": { "ExecuteTime": { @@ -28369,7 +28369,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ef905763225241aab597f591e8f6de26", + "model_id": "c9257ae8271e4bee987c420488699079", "version_major": 2, "version_minor": 0 }, @@ -28391,7 +28391,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:15:05.564259\n", + " 2024-06-11T14:24:47.351953\n", " image/svg+xml\n", " \n", " \n", @@ -28436,12 +28436,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28486,7 +28486,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28527,7 +28527,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28563,7 +28563,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28610,7 +28610,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28666,7 +28666,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28933,16 +28933,16 @@ " \n", " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28994,11 +28994,11 @@ " \n", " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29043,11 +29043,11 @@ " \n", " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29065,11 +29065,11 @@ " \n", " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29099,11 +29099,11 @@ " \n", " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29121,11 +29121,11 @@ " \n", " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29143,11 +29143,11 @@ " \n", " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29165,11 +29165,11 @@ " \n", " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29187,11 +29187,11 @@ " \n", " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29358,36 +29358,36 @@ "L 86.986062 276.336 \n", "L 92.938062 276.336 \n", "L 98.890062 276.336 \n", - "L 104.842062 276.336 \n", - "L 110.794062 276.336 \n", - "L 116.746062 276.336 \n", - "L 122.698062 276.336 \n", - "L 128.650062 272.556 \n", - "L 134.602062 272.556 \n", - "L 140.554062 268.776 \n", - "L 146.506062 264.996 \n", - "L 152.458062 264.996 \n", - "L 158.410062 261.216 \n", - "L 164.362062 261.216 \n", - "L 170.314062 253.656 \n", - "L 176.266062 249.876 \n", - "L 182.218062 249.876 \n", - "L 188.170062 234.756 \n", - "L 194.122062 234.756 \n", + "L 104.842062 272.556 \n", + "L 110.794062 272.556 \n", + "L 116.746062 272.556 \n", + "L 122.698062 264.996 \n", + "L 128.650062 261.216 \n", + "L 134.602062 261.216 \n", + "L 140.554062 261.216 \n", + "L 146.506062 261.216 \n", + "L 152.458062 257.436 \n", + "L 158.410062 253.656 \n", + "L 164.362062 246.096 \n", + "L 170.314062 242.316 \n", + "L 176.266062 238.536 \n", + "L 182.218062 234.756 \n", + "L 188.170062 230.976 \n", + "L 194.122062 227.196 \n", "L 200.074062 223.416 \n", "L 206.026062 208.296 \n", - "L 211.978062 208.296 \n", - "L 217.930062 185.616 \n", - "L 223.882062 166.716 \n", - "L 229.834062 155.376 \n", - "L 235.786062 136.476 \n", - "L 241.738062 106.236 \n", - "L 247.690062 98.676 \n", + "L 211.978062 196.956 \n", + "L 217.930062 196.956 \n", + "L 223.882062 174.276 \n", + "L 229.834062 159.156 \n", + "L 235.786062 144.036 \n", + "L 241.738062 132.696 \n", + "L 247.690062 106.236 \n", "L 253.642062 83.556 \n", - "L 259.594062 60.876 \n", - "L 265.546062 53.316 \n", + "L 259.594062 68.436 \n", + "L 265.546062 57.096 \n", "L 271.498062 41.976 \n", - "L 277.450062 34.416 \n", + "L 277.450062 41.976 \n", "L 283.402062 34.416 \n", "L 289.354062 34.416 \n", "L 295.306062 34.416 \n", @@ -29405,9 +29405,9 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p5dd20c4755)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -29545,69 +29545,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p5dd20c4755)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -29672,69 +29672,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p5dd20c4755)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -29799,69 +29799,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p5dd20c4755)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -29926,69 +29926,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p5dd20c4755)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30006,56 +30006,56 @@ "L 86.986062 276.336 \n", "L 92.938062 276.336 \n", "L 98.890062 276.336 \n", - "L 104.842062 276.336 \n", - "L 110.794062 276.336 \n", - "L 116.746062 276.336 \n", - "L 122.698062 276.336 \n", - "L 128.650062 276.336 \n", - "L 134.602062 276.336 \n", - "L 140.554062 276.336 \n", - "L 146.506062 276.336 \n", - "L 152.458062 276.336 \n", - "L 158.410062 276.336 \n", - "L 164.362062 276.336 \n", - "L 170.314062 276.336 \n", - "L 176.266062 272.556 \n", + "L 104.842062 272.556 \n", + "L 110.794062 272.556 \n", + "L 116.746062 272.556 \n", + "L 122.698062 272.556 \n", + "L 128.650062 272.556 \n", + "L 134.602062 272.556 \n", + "L 140.554062 272.556 \n", + "L 146.506062 272.556 \n", + "L 152.458062 272.556 \n", + "L 158.410062 272.556 \n", + "L 164.362062 268.776 \n", + "L 170.314062 268.776 \n", + "L 176.266062 268.776 \n", "L 182.218062 268.776 \n", "L 188.170062 268.776 \n", "L 194.122062 268.776 \n", - "L 200.074062 268.776 \n", - "L 206.026062 268.776 \n", - "L 211.978062 268.776 \n", - "L 217.930062 268.776 \n", - "L 223.882062 264.996 \n", - "L 229.834062 264.996 \n", - "L 235.786062 264.996 \n", - "L 241.738062 261.216 \n", - "L 247.690062 257.436 \n", - "L 253.642062 253.656 \n", - "L 259.594062 253.656 \n", - "L 265.546062 249.876 \n", - "L 271.498062 234.756 \n", - "L 277.450062 230.976 \n", - "L 283.402062 223.416 \n", - "L 289.354062 212.076 \n", - "L 295.306062 200.736 \n", + "L 200.074062 264.996 \n", + "L 206.026062 264.996 \n", + "L 211.978062 264.996 \n", + "L 217.930062 264.996 \n", + "L 223.882062 257.436 \n", + "L 229.834062 253.656 \n", + "L 235.786062 246.096 \n", + "L 241.738062 234.756 \n", + "L 247.690062 230.976 \n", + "L 253.642062 227.196 \n", + "L 259.594062 219.636 \n", + "L 265.546062 215.856 \n", + "L 271.498062 212.076 \n", + "L 277.450062 204.516 \n", + "L 283.402062 204.516 \n", + "L 289.354062 200.736 \n", + "L 295.306062 193.176 \n", "L 301.258062 193.176 \n", "L 307.210062 185.616 \n", - "L 313.162062 178.056 \n", - "L 319.114062 147.816 \n", - "L 325.066062 128.916 \n", - "L 331.018062 121.356 \n", - "L 336.970062 113.796 \n", - "L 342.922062 110.016 \n", - "L 348.874062 102.456 \n", - "L 354.826062 87.336 \n", - "L 360.778062 87.336 \n", - "L 366.730062 72.216 \n", - "L 372.682062 57.096 \n", - "L 378.634062 49.536 \n", - "\" clip-path=\"url(#p5dd20c4755)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "L 313.162062 174.276 \n", + "L 319.114062 174.276 \n", + "L 325.066062 155.376 \n", + "L 331.018062 144.036 \n", + "L 336.970062 132.696 \n", + "L 342.922062 128.916 \n", + "L 348.874062 117.576 \n", + "L 354.826062 113.796 \n", + "L 360.778062 102.456 \n", + "L 366.730062 87.336 \n", + "L 372.682062 79.776 \n", + "L 378.634062 72.216 \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30193,69 +30193,69 @@ "L 366.730062 72.216 \n", "L 372.682062 64.656 \n", "L 378.634062 57.096 \n", - "\" clip-path=\"url(#p5dd20c4755)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30320,69 +30320,69 @@ "L 366.730062 64.656 \n", "L 372.682062 57.096 \n", "L 378.634062 49.536 \n", - "\" clip-path=\"url(#p5dd20c4755)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30447,69 +30447,69 @@ "L 366.730062 60.876 \n", "L 372.682062 53.316 \n", "L 378.634062 49.536 \n", - "\" clip-path=\"url(#p5dd20c4755)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30574,69 +30574,69 @@ "L 366.730062 60.876 \n", "L 372.682062 53.316 \n", "L 378.634062 45.756 \n", - "\" clip-path=\"url(#p5dd20c4755)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30690,7 +30690,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#p5dd20c4755)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31065,7 +31065,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31073,7 +31073,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31081,7 +31081,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31089,7 +31089,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31097,7 +31097,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31105,7 +31105,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31113,7 +31113,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31121,7 +31121,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31129,7 +31129,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31137,7 +31137,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31145,7 +31145,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31153,7 +31153,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31161,7 +31161,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31169,7 +31169,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31177,7 +31177,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31185,7 +31185,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31193,7 +31193,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31201,7 +31201,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31209,7 +31209,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31217,7 +31217,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31225,7 +31225,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31233,7 +31233,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31241,7 +31241,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31249,7 +31249,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31257,7 +31257,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31265,7 +31265,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31273,7 +31273,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31281,7 +31281,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31289,7 +31289,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31325,7 +31325,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31333,7 +31333,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31341,7 +31341,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31349,7 +31349,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31357,7 +31357,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31398,7 +31398,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31406,7 +31406,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31414,7 +31414,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31422,7 +31422,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31430,7 +31430,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31438,7 +31438,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31446,7 +31446,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31454,7 +31454,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31462,7 +31462,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31470,7 +31470,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31478,7 +31478,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31486,7 +31486,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31494,7 +31494,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31502,7 +31502,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31510,7 +31510,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31518,7 +31518,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31526,7 +31526,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31534,7 +31534,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31542,7 +31542,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31550,7 +31550,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31558,7 +31558,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31566,7 +31566,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31574,7 +31574,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31582,7 +31582,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31590,7 +31590,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31598,7 +31598,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31606,7 +31606,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31614,7 +31614,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31622,7 +31622,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31630,7 +31630,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31638,7 +31638,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31646,7 +31646,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31654,7 +31654,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31662,7 +31662,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31689,7 +31689,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31785,7 +31785,7 @@ "L 202.198337 369.430962 \n", "\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31965,7 +31965,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31981,12 +31981,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "06a9a3c6c0784b51b7a6a33ae9f47395", + "model_id": "ced3eddcaa6a402e8a97d81c82c392fc", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HTML(value=\"./fig2-c=-3.75_K_per_min-ln_s…" + "HTML(value=\"./fig2-c=-3.75_K_per_min-ln_…" ] }, "metadata": {}, @@ -31995,7 +31995,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "344d7ce3d4f34dc9b67a9b201bd65f1a", + "model_id": "462c359be9f44e1a9c1112ee6c1183b0", "version_major": 2, "version_minor": 0 }, @@ -32005,7244 +32005,6 @@ }, "metadata": {}, "output_type": "display_data" - }, - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " 2024-06-11T14:15:25.344942\n", - " image/svg+xml\n", - " \n", - " \n", - " Matplotlib v3.8.1, https://matplotlib.org/\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n" - ], - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "cf80e64411644858bb539bd599de9c3f", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HTML(value=\"./fig2-c=-0.75_K_per_min-ln_s…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "930b270633e24ebc92235338d6491042", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='%')" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " 2024-06-11T14:15:56.404962\n", - " image/svg+xml\n", - " \n", - " \n", - " Matplotlib v3.8.1, https://matplotlib.org/\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n" - ], - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b6e1dc3568294455b54205dc1e2349c4", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HTML(value=\"./fig2-c=-0.15_K_per_min-ln_s…" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ @@ -39254,6 +32016,14 @@ " temps=np.asarray(list(TEMP_RANGE))\n", " )" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4a548d94-908e-4f3d-b484-80ccc8420c4f", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From d099393bc7a38f184c9d26dbff2f367301d3dbaa Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Tue, 11 Jun 2024 18:31:31 +0200 Subject: [PATCH 04/41] more figure updates --- .../Arabas_et_al_2023/fig_A2.ipynb | 3261 ++++---- .../figs_3_and_7_and_8.ipynb | 7240 ++++++++++++++++- 2 files changed, 8858 insertions(+), 1643 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb index 94fc05354..3ea8e8135 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb @@ -133,7 +133,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "id": "ba4cfcf2", "metadata": {}, "outputs": [], @@ -144,7 +144,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 28, "id": "131ffda3", "metadata": {}, "outputs": [], @@ -172,7 +172,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 29, "id": "48b99e24", "metadata": {}, "outputs": [], @@ -186,7 +186,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 30, "id": "be87d366", "metadata": {}, "outputs": [ @@ -201,7 +201,7 @@ " \n", " \n", " \n", - " 2024-02-09T11:03:44.695009\n", + " 2024-06-11T18:30:47.836802\n", " image/svg+xml\n", " \n", " \n", @@ -237,16 +237,16 @@ " \n", " \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -283,11 +283,11 @@ " \n", " \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -328,11 +328,11 @@ " \n", " \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -363,11 +363,11 @@ " \n", " \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -382,11 +382,11 @@ " \n", " \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -427,11 +427,11 @@ " \n", " \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -594,16 +594,16 @@ " \n", " \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -628,11 +628,11 @@ " \n", " \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -648,11 +648,11 @@ " \n", " \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -689,11 +689,11 @@ " \n", " \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -741,11 +741,11 @@ " \n", " \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1019,562 +1019,563 @@ " \n", " \n", " \n", + "L 52.03965 256.68 \n", + "L 52.03965 250.558675 \n", + "L 52.12335 250.558675 \n", + "L 53.57415 250.558675 \n", + "L 53.57415 244.43735 \n", + "L 53.65785 244.43735 \n", + "L 76.73115 244.43735 \n", + "L 76.73115 238.316024 \n", + "L 76.81485 238.316024 \n", + "L 77.28915 238.316024 \n", + "L 77.28915 232.194699 \n", + "L 77.37285 232.194699 \n", + "L 77.79135 232.194699 \n", + "L 77.79135 226.073374 \n", + "L 77.87505 226.073374 \n", + "L 82.84125 226.073374 \n", + "L 82.84125 219.952049 \n", + "L 82.92495 219.952049 \n", + "L 98.01885 219.952049 \n", + "L 98.01885 213.830724 \n", + "L 98.10255 213.830724 \n", + "L 98.32575 213.830724 \n", + "L 98.32575 207.709399 \n", + "L 98.40945 207.709399 \n", + "L 147.90405 207.709399 \n", + "L 147.90405 201.588073 \n", + "L 147.98775 201.588073 \n", + "L 168.43845 201.588073 \n", + "L 168.43845 195.466748 \n", + "L 168.52215 195.466748 \n", + "L 172.00965 195.466748 \n", + "L 172.00965 189.345423 \n", + "L 172.09335 189.345423 \n", + "L 175.99935 189.345423 \n", + "L 175.99935 183.224098 \n", + "L 176.08305 183.224098 \n", + "L 181.49565 183.224098 \n", + "L 181.49565 177.102773 \n", + "L 181.57935 177.102773 \n", + "L 201.05355 177.102773 \n", + "L 201.05355 170.981448 \n", + "L 201.13725 170.981448 \n", + "L 220.72305 170.981448 \n", + "L 220.72305 164.860122 \n", + "L 220.80675 164.860122 \n", + "L 244.74495 164.860122 \n", + "L 244.74495 158.738797 \n", + "L 244.82865 158.738797 \n", + "L 267.42765 158.738797 \n", + "L 267.42765 152.617472 \n", + "L 267.51135 152.617472 \n", + "L 268.82265 152.617472 \n", + "L 268.82265 146.496147 \n", + "L 268.90635 146.496147 \n", + "L 273.64935 146.496147 \n", + "L 273.64935 140.374822 \n", + "L 273.73305 140.374822 \n", + "L 291.75645 140.374822 \n", + "L 291.75645 134.253497 \n", + "L 291.84015 134.253497 \n", + "L 294.74175 134.253497 \n", + "L 294.74175 128.132171 \n", + "L 294.82545 128.132171 \n", + "L 295.49505 128.132171 \n", + "L 295.49505 122.010846 \n", + "L 295.57875 122.010846 \n", + "L 320.52135 122.010846 \n", + "L 320.52135 115.889521 \n", + "L 320.60505 115.889521 \n", + "L 336.28485 115.889521 \n", + "L 336.28485 109.768196 \n", + "L 336.36855 109.768196 \n", + "L 362.95725 109.768196 \n", + "L 362.95725 103.646871 \n", + "L 363.04095 103.646871 \n", + "L 373.41975 103.646871 \n", + "L 373.41975 97.525546 \n", + "L 373.50345 97.525546 \n", + "L 403.85865 97.525546 \n", + "L 403.85865 91.40422 \n", + "L 403.94235 91.40422 \n", + "L 410.47095 91.40422 \n", + "L 410.47095 85.282895 \n", + "L 410.55465 85.282895 \n", + "L 438.98475 85.282895 \n", + "L 438.98475 79.16157 \n", + "L 439.06845 79.16157 \n", + "L 439.84965 79.16157 \n", + "L 439.84965 73.040245 \n", + "L 439.93335 73.040245 \n", + "L 441.18885 73.040245 \n", + "L 441.18885 66.91892 \n", + "L 441.27255 66.91892 \n", + "L 454.41345 66.91892 \n", + "L 454.41345 60.797595 \n", + "L 454.49715 60.797595 \n", + "L 462.11385 60.797595 \n", + "L 462.11385 54.676269 \n", + "L 462.19755 54.676269 \n", + "L 462.86715 54.676269 \n", + "L 462.86715 48.554944 \n", + "L 462.95085 48.554944 \n", + "L 487.86555 48.554944 \n", + "L 487.86555 42.433619 \n", + "L 487.94925 42.433619 \n", + "L 497.57475 42.433619 \n", + "L 497.57475 36.312294 \n", + "L 497.65845 36.312294 \n", + "L 517.49535 36.312294 \n", + "L 517.49535 30.190969 \n", + "L 517.57905 30.190969 \n", + "L 540.56865 30.190969 \n", + "L 540.56865 24.069644 \n", + "L 540.65235 24.069644 \n", + "L 559.76385 24.069644 \n", + "L 559.76385 17.948318 \n", + "L 559.84755 17.948318 \n", + "L 563.83725 17.948318 \n", + "L 563.83725 11.826993 \n", + "L 563.92095 11.826993 \n", + "L 567.35265 11.826993 \n", + "L 567.35265 5.705668 \n", + "L 567.43635 5.705668 \n", + "L 568.18965 5.705668 \n", + "L 568.18965 -0.415657 \n", + "L 568.27335 -0.415657 \n", + "L 569.58465 -0.415657 \n", + "L 569.58465 -1 \n", + "L 569.58465 -1 \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #808000; stroke-width: 2; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "L 62.08365 256.68 \n", + "L 62.08365 250.558675 \n", + "L 62.16735 250.558675 \n", + "L 68.58435 250.558675 \n", + "L 68.58435 244.43735 \n", + "L 68.66805 244.43735 \n", + "L 69.42135 244.43735 \n", + "L 69.42135 238.316024 \n", + "L 69.50505 238.316024 \n", + "L 86.63565 238.316024 \n", + "L 86.63565 232.194699 \n", + "L 86.71935 232.194699 \n", + "L 103.04085 232.194699 \n", + "L 103.04085 226.073374 \n", + "L 103.12455 226.073374 \n", + "L 106.94685 226.073374 \n", + "L 106.94685 219.952049 \n", + "L 107.03055 219.952049 \n", + "L 111.04815 219.952049 \n", + "L 111.04815 213.830724 \n", + "L 111.13185 213.830724 \n", + "L 113.61495 213.830724 \n", + "L 113.61495 207.709399 \n", + "L 113.69865 207.709399 \n", + "L 167.99205 207.709399 \n", + "L 167.99205 201.588073 \n", + "L 168.07575 201.588073 \n", + "L 177.28275 201.588073 \n", + "L 177.28275 195.466748 \n", + "L 177.36645 195.466748 \n", + "L 188.38695 195.466748 \n", + "L 188.38695 189.345423 \n", + "L 188.47065 189.345423 \n", + "L 193.32525 189.345423 \n", + "L 193.32525 183.224098 \n", + "L 193.40895 183.224098 \n", + "L 213.46905 183.224098 \n", + "L 213.46905 177.102773 \n", + "L 213.55275 177.102773 \n", + "L 224.54535 177.102773 \n", + "L 224.54535 170.981448 \n", + "L 224.62905 170.981448 \n", + "L 232.02255 170.981448 \n", + "L 232.02255 164.860122 \n", + "L 232.10625 164.860122 \n", + "L 247.78605 164.860122 \n", + "L 247.78605 158.738797 \n", + "L 247.86975 158.738797 \n", + "L 256.99305 158.738797 \n", + "L 256.99305 152.617472 \n", + "L 257.07675 152.617472 \n", + "L 258.89025 152.617472 \n", + "L 258.89025 146.496147 \n", + "L 258.97395 146.496147 \n", + "L 266.50695 146.496147 \n", + "L 266.50695 140.374822 \n", + "L 266.59065 140.374822 \n", + "L 285.61845 140.374822 \n", + "L 285.61845 134.253497 \n", + "L 285.70215 134.253497 \n", + "L 286.23225 134.253497 \n", + "L 286.23225 128.132171 \n", + "L 286.31595 128.132171 \n", + "L 291.31005 128.132171 \n", + "L 291.31005 122.010846 \n", + "L 291.39375 122.010846 \n", + "L 342.06015 122.010846 \n", + "L 342.06015 115.889521 \n", + "L 342.14385 115.889521 \n", + "L 352.32735 115.889521 \n", + "L 352.32735 109.768196 \n", + "L 352.41105 109.768196 \n", + "L 364.01745 109.768196 \n", + "L 364.01745 103.646871 \n", + "L 364.10115 103.646871 \n", + "L 375.40065 103.646871 \n", + "L 375.40065 97.525546 \n", + "L 375.48435 97.525546 \n", + "L 396.32565 97.525546 \n", + "L 396.32565 91.40422 \n", + "L 396.40935 91.40422 \n", + "L 430.81005 91.40422 \n", + "L 430.81005 85.282895 \n", + "L 430.89375 85.282895 \n", + "L 433.57215 85.282895 \n", + "L 433.57215 79.16157 \n", + "L 433.65585 79.16157 \n", + "L 443.00235 79.16157 \n", + "L 443.00235 73.040245 \n", + "L 443.08605 73.040245 \n", + "L 466.68945 73.040245 \n", + "L 466.68945 66.91892 \n", + "L 466.77315 66.91892 \n", + "L 472.79955 66.91892 \n", + "L 472.79955 60.797595 \n", + "L 472.88325 60.797595 \n", + "L 477.82155 60.797595 \n", + "L 477.82155 54.676269 \n", + "L 477.90525 54.676269 \n", + "L 495.95655 54.676269 \n", + "L 495.95655 48.554944 \n", + "L 496.04025 48.554944 \n", + "L 502.70835 48.554944 \n", + "L 502.70835 42.433619 \n", + "L 502.79205 42.433619 \n", + "L 503.26635 42.433619 \n", + "L 503.26635 36.312294 \n", + "L 503.35005 36.312294 \n", + "L 528.68325 36.312294 \n", + "L 528.68325 30.190969 \n", + "L 528.76695 30.190969 \n", + "L 535.10025 30.190969 \n", + "L 535.10025 24.069644 \n", + "L 535.18395 24.069644 \n", + "L 549.41295 24.069644 \n", + "L 549.41295 17.948318 \n", + "L 549.49665 17.948318 \n", + "L 551.42175 17.948318 \n", + "L 551.42175 11.826993 \n", + "L 551.50545 11.826993 \n", + "L 557.61555 11.826993 \n", + "L 557.61555 5.705668 \n", + "L 557.69925 5.705668 \n", + "L 566.87835 5.705668 \n", + "L 566.87835 -0.415657 \n", + "L 566.96205 -0.415657 \n", + "L 598.12635 -0.415657 \n", + "L 598.12635 -1 \n", + "L 598.12635 -1 \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #808000; stroke-width: 2; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "L 53.57415 256.68 \n", + "L 53.57415 232.194699 \n", + "L 53.65785 232.194699 \n", + "L 77.79135 232.194699 \n", + "L 77.79135 207.709399 \n", + "L 77.87505 207.709399 \n", + "L 82.84125 207.709399 \n", + "L 82.84125 183.224098 \n", + "L 82.92495 183.224098 \n", + "L 268.82265 183.224098 \n", + "L 268.82265 158.738797 \n", + "L 268.90635 158.738797 \n", + "L 294.74175 158.738797 \n", + "L 294.74175 134.253497 \n", + "L 294.82545 134.253497 \n", + "L 295.49505 134.253497 \n", + "L 295.49505 109.768196 \n", + "L 295.57875 109.768196 \n", + "L 336.28485 109.768196 \n", + "L 336.28485 85.282895 \n", + "L 336.36855 85.282895 \n", + "L 373.41975 85.282895 \n", + "L 373.41975 60.797595 \n", + "L 373.50345 60.797595 \n", + "L 439.84965 60.797595 \n", + "L 439.84965 36.312294 \n", + "L 439.93335 36.312294 \n", + "L 517.49535 36.312294 \n", + "L 517.49535 11.826993 \n", + "L 517.57905 11.826993 \n", + "L 540.56865 11.826993 \n", + "L 540.56865 -1 \n", + "L 540.56865 -1 \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #808000; stroke-width: 4; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "L 69.42135 256.68 \n", + "L 69.42135 232.194699 \n", + "L 69.50505 232.194699 \n", + "L 106.94685 232.194699 \n", + "L 106.94685 207.709399 \n", + "L 107.03055 207.709399 \n", + "L 167.99205 207.709399 \n", + "L 167.99205 183.224098 \n", + "L 168.07575 183.224098 \n", + "L 177.28275 183.224098 \n", + "L 177.28275 158.738797 \n", + "L 177.36645 158.738797 \n", + "L 213.46905 158.738797 \n", + "L 213.46905 134.253497 \n", + "L 213.55275 134.253497 \n", + "L 256.99305 134.253497 \n", + "L 256.99305 109.768196 \n", + "L 257.07675 109.768196 \n", + "L 285.61845 109.768196 \n", + "L 285.61845 85.282895 \n", + "L 285.70215 85.282895 \n", + "L 291.31005 85.282895 \n", + "L 291.31005 60.797595 \n", + "L 291.39375 60.797595 \n", + "L 396.32565 60.797595 \n", + "L 396.32565 36.312294 \n", + "L 396.40935 36.312294 \n", + "L 466.68945 36.312294 \n", + "L 466.68945 11.826993 \n", + "L 466.77315 11.826993 \n", + "L 535.10025 11.826993 \n", + "L 535.10025 -1 \n", + "L 535.10025 -1 \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #808000; stroke-width: 4; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "L 434.38125 79.16157 \n", + "L 443.86725 79.16157 \n", + "L 443.86725 73.040245 \n", + "L 444.98325 73.040245 \n", + "L 444.98325 66.91892 \n", + "L 447.77325 66.91892 \n", + "L 447.77325 60.797595 \n", + "L 454.74825 60.797595 \n", + "L 454.74825 54.676269 \n", + "L 478.46325 54.676269 \n", + "L 478.46325 48.554944 \n", + "L 483.20625 48.554944 \n", + "L 483.20625 42.433619 \n", + "L 489.90225 42.433619 \n", + "L 489.90225 36.312294 \n", + "L 491.57625 36.312294 \n", + "L 491.57625 30.190969 \n", + "L 499.10925 30.190969 \n", + "L 499.10925 24.069644 \n", + "L 499.66725 24.069644 \n", + "L 499.66725 17.948318 \n", + "L 506.64225 17.948318 \n", + "L 506.64225 11.826993 \n", + "L 523.38225 11.826993 \n", + "L 523.38225 5.705668 \n", + "L 524.77725 5.705668 \n", + "L 524.77725 -0.415657 \n", + "L 530.91525 -0.415657 \n", + "L 530.91525 -1 \n", + "L 530.91525 -1 \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #000080; stroke-width: 2; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "L 117.15825 256.68 \n", + "L 117.15825 250.558675 \n", + "L 173.23725 250.558675 \n", + "L 173.23725 244.43735 \n", + "L 178.25925 244.43735 \n", + "L 178.25925 238.316024 \n", + "L 183.56025 238.316024 \n", + "L 183.56025 232.194699 \n", + "L 226.80525 232.194699 \n", + "L 226.80525 226.073374 \n", + "L 227.36325 226.073374 \n", + "L 227.36325 219.952049 \n", + "L 246.05625 219.952049 \n", + "L 246.05625 213.830724 \n", + "L 291.81225 213.830724 \n", + "L 291.81225 207.709399 \n", + "L 299.06625 207.709399 \n", + "L 299.06625 201.588073 \n", + "L 300.18225 201.588073 \n", + "L 300.18225 195.466748 \n", + "L 323.06025 195.466748 \n", + "L 323.06025 189.345423 \n", + "L 340.63725 189.345423 \n", + "L 340.63725 183.224098 \n", + "L 347.61225 183.224098 \n", + "L 347.61225 177.102773 \n", + "L 350.12325 177.102773 \n", + "L 350.12325 170.981448 \n", + "L 354.86625 170.981448 \n", + "L 354.86625 164.860122 \n", + "L 361.84125 164.860122 \n", + "L 361.84125 158.738797 \n", + "L 367.70025 158.738797 \n", + "L 367.70025 152.617472 \n", + "L 390.02025 152.617472 \n", + "L 390.02025 146.496147 \n", + "L 393.64725 146.496147 \n", + "L 393.64725 140.374822 \n", + "L 404.52825 140.374822 \n", + "L 404.52825 134.253497 \n", + "L 408.99225 134.253497 \n", + "L 408.99225 128.132171 \n", + "L 420.71025 128.132171 \n", + "L 420.71025 122.010846 \n", + "L 430.19625 122.010846 \n", + "L 430.19625 115.889521 \n", + "L 445.54125 115.889521 \n", + "L 445.54125 109.768196 \n", + "L 469.25625 109.768196 \n", + "L 469.25625 103.646871 \n", + "L 472.32525 103.646871 \n", + "L 472.32525 97.525546 \n", + "L 477.62625 97.525546 \n", + "L 477.62625 91.40422 \n", + "L 481.25325 91.40422 \n", + "L 481.25325 85.282895 \n", + "L 497.99325 85.282895 \n", + "L 497.99325 79.16157 \n", + "L 516.68625 79.16157 \n", + "L 516.68625 73.040245 \n", + "L 524.49825 73.040245 \n", + "L 524.49825 66.91892 \n", + "L 527.84625 66.91892 \n", + "L 527.84625 60.797595 \n", + "L 530.35725 60.797595 \n", + "L 530.35725 54.676269 \n", + "L 538.44825 54.676269 \n", + "L 538.44825 48.554944 \n", + "L 542.07525 48.554944 \n", + "L 542.07525 42.433619 \n", + "L 553.51425 42.433619 \n", + "L 553.51425 36.312294 \n", + "L 601.78125 36.312294 \n", + "L 601.78125 36.312294 \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #000080; stroke-width: 2; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #000080; stroke-width: 4; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "L 227.36325 256.68 \n", + "L 227.36325 232.194699 \n", + "L 299.06625 232.194699 \n", + "L 299.06625 207.709399 \n", + "L 300.18225 207.709399 \n", + "L 300.18225 183.224098 \n", + "L 323.06025 183.224098 \n", + "L 323.06025 158.738797 \n", + "L 350.12325 158.738797 \n", + "L 350.12325 134.253497 \n", + "L 354.86625 134.253497 \n", + "L 354.86625 109.768196 \n", + "L 390.02025 109.768196 \n", + "L 390.02025 85.282895 \n", + "L 408.99225 85.282895 \n", + "L 408.99225 60.797595 \n", + "L 477.62625 60.797595 \n", + "L 477.62625 36.312294 \n", + "L 524.49825 36.312294 \n", + "L 524.49825 11.826993 \n", + "L 538.44825 11.826993 \n", + "L 538.44825 -1 \n", + "L 538.44825 -1 \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke: #000080; stroke-width: 4; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke-dasharray: 12.95,5.6; stroke-dashoffset: 0; stroke: #ff0000; stroke-width: 3.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke-dasharray: 1.5,2.475; stroke-dashoffset: 0; stroke: #ff0000; stroke-width: 1.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p9d931c78db)\" style=\"fill: none; stroke-dasharray: 9.6,2.4,1.5,2.4; stroke-dashoffset: 0; stroke: #ff0000; stroke-width: 1.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", " \n", @@ -2056,12 +2024,17 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2073,7 +2046,7 @@ "\" style=\"fill: none; stroke: #808000; stroke-width: 4; stroke-linecap: square\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2083,12 +2056,17 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2100,7 +2078,7 @@ "\" style=\"fill: none; stroke: #000080; stroke-width: 2; stroke-linecap: square\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2111,12 +2089,17 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2128,7 +2111,7 @@ "\" style=\"fill: none; stroke: #000080; stroke-width: 4; stroke-linecap: square\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2139,12 +2122,17 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2451,7 +2439,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2467,7 +2455,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4bb9a5e6b1a34cd3a679d10ef68f7584", + "model_id": "1449e34d1f194e6c8c2399f5a12569dc", "version_major": 2, "version_minor": 0 }, @@ -2489,7 +2477,7 @@ " \n", " \n", " \n", - " 2024-02-09T11:03:45.374580\n", + " 2024-06-11T18:30:48.419615\n", " image/svg+xml\n", " \n", " \n", @@ -2525,16 +2513,16 @@ " \n", " \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2571,11 +2559,11 @@ " \n", " \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2616,11 +2604,11 @@ " \n", " \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2651,11 +2639,11 @@ " \n", " \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2670,11 +2658,11 @@ " \n", " \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2715,11 +2703,11 @@ " \n", " \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2882,16 +2870,16 @@ " \n", " \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2916,11 +2904,11 @@ " \n", " \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2936,11 +2924,11 @@ " \n", " \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2977,11 +2965,11 @@ " \n", " \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3029,11 +3017,11 @@ " \n", " \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3307,562 +3295,563 @@ " \n", " \n", " \n", + "L 52.03965 256.68 \n", + "L 52.03965 250.558675 \n", + "L 52.12335 250.558675 \n", + "L 53.57415 250.558675 \n", + "L 53.57415 244.43735 \n", + "L 53.65785 244.43735 \n", + "L 76.73115 244.43735 \n", + "L 76.73115 238.316023 \n", + "L 76.81485 238.316023 \n", + "L 77.28915 238.316023 \n", + "L 77.28915 232.194699 \n", + "L 77.37285 232.194699 \n", + "L 77.79135 232.194699 \n", + "L 77.79135 226.073374 \n", + "L 77.87505 226.073374 \n", + "L 82.84125 226.073374 \n", + "L 82.84125 219.952052 \n", + "L 82.92495 219.952052 \n", + "L 98.01885 219.952052 \n", + "L 98.01885 213.830727 \n", + "L 98.10255 213.830727 \n", + "L 98.32575 213.830727 \n", + "L 98.32575 207.709403 \n", + "L 98.40945 207.709403 \n", + "L 98.54895 207.709403 \n", + "L 98.54895 201.588078 \n", + "L 98.63265 201.588078 \n", + "L 147.90405 201.588078 \n", + "L 147.90405 195.466753 \n", + "L 147.98775 195.466753 \n", + "L 168.43845 195.466753 \n", + "L 168.43845 189.345429 \n", + "L 168.52215 189.345429 \n", + "L 172.00965 189.345429 \n", + "L 172.00965 183.224104 \n", + "L 172.09335 183.224104 \n", + "L 175.99935 183.224104 \n", + "L 175.99935 177.102773 \n", + "L 176.08305 177.102773 \n", + "L 181.49565 177.102773 \n", + "L 181.49565 170.981448 \n", + "L 181.57935 170.981448 \n", + "L 201.05355 170.981448 \n", + "L 201.05355 164.860115 \n", + "L 201.13725 164.860115 \n", + "L 207.66585 164.860115 \n", + "L 207.66585 158.73879 \n", + "L 207.74955 158.73879 \n", + "L 220.72305 158.73879 \n", + "L 220.72305 152.617464 \n", + "L 220.80675 152.617464 \n", + "L 244.74495 152.617464 \n", + "L 244.74495 146.49613 \n", + "L 244.82865 146.49613 \n", + "L 267.42765 146.49613 \n", + "L 267.42765 140.374803 \n", + "L 267.51135 140.374803 \n", + "L 268.82265 140.374803 \n", + "L 268.82265 134.253477 \n", + "L 268.90635 134.253477 \n", + "L 273.64935 134.253477 \n", + "L 273.64935 128.132151 \n", + "L 273.73305 128.132151 \n", + "L 291.75645 128.132151 \n", + "L 291.75645 122.010825 \n", + "L 291.84015 122.010825 \n", + "L 294.74175 122.010825 \n", + "L 294.74175 115.889499 \n", + "L 294.82545 115.889499 \n", + "L 295.49505 115.889499 \n", + "L 295.49505 109.768173 \n", + "L 295.57875 109.768173 \n", + "L 320.52135 109.768173 \n", + "L 320.52135 103.646847 \n", + "L 320.60505 103.646847 \n", + "L 336.28485 103.646847 \n", + "L 336.28485 97.525521 \n", + "L 336.36855 97.525521 \n", + "L 359.60925 97.525521 \n", + "L 359.60925 91.404194 \n", + "L 359.69295 91.404194 \n", + "L 362.95725 91.404194 \n", + "L 362.95725 85.282855 \n", + "L 363.04095 85.282855 \n", + "L 373.41975 85.282855 \n", + "L 373.41975 79.161528 \n", + "L 373.50345 79.161528 \n", + "L 403.85865 79.161528 \n", + "L 403.85865 73.040201 \n", + "L 403.94235 73.040201 \n", + "L 410.47095 73.040201 \n", + "L 410.47095 66.918875 \n", + "L 410.55465 66.918875 \n", + "L 438.98475 66.918875 \n", + "L 438.98475 60.797548 \n", + "L 439.06845 60.797548 \n", + "L 439.84965 60.797548 \n", + "L 439.84965 54.676222 \n", + "L 439.93335 54.676222 \n", + "L 441.18885 54.676222 \n", + "L 441.18885 48.554895 \n", + "L 441.27255 48.554895 \n", + "L 453.29745 48.554895 \n", + "L 453.29745 42.433568 \n", + "L 453.38115 42.433568 \n", + "L 454.41345 42.433568 \n", + "L 454.41345 36.312242 \n", + "L 454.49715 36.312242 \n", + "L 462.11385 36.312242 \n", + "L 462.11385 30.190915 \n", + "L 462.19755 30.190915 \n", + "L 462.86715 30.190915 \n", + "L 462.86715 24.069588 \n", + "L 462.95085 24.069588 \n", + "L 487.86555 24.069588 \n", + "L 487.86555 17.948243 \n", + "L 487.94925 17.948243 \n", + "L 497.57475 17.948243 \n", + "L 497.57475 11.826916 \n", + "L 497.65845 11.826916 \n", + "L 517.49535 11.826916 \n", + "L 517.49535 5.705589 \n", + "L 517.57905 5.705589 \n", + "L 540.56865 5.705589 \n", + "L 540.56865 -0.415738 \n", + "L 540.65235 -0.415738 \n", + "L 559.76385 -0.415738 \n", + "L 559.76385 -1 \n", + "L 559.76385 -1 \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #808000; stroke-width: 2; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "L 62.08365 256.68 \n", + "L 62.08365 250.558675 \n", + "L 62.16735 250.558675 \n", + "L 68.58435 250.558675 \n", + "L 68.58435 244.43735 \n", + "L 68.66805 244.43735 \n", + "L 69.42135 244.43735 \n", + "L 69.42135 238.316023 \n", + "L 69.50505 238.316023 \n", + "L 86.63565 238.316023 \n", + "L 86.63565 232.194699 \n", + "L 86.71935 232.194699 \n", + "L 103.04085 232.194699 \n", + "L 103.04085 226.073374 \n", + "L 103.12455 226.073374 \n", + "L 106.94685 226.073374 \n", + "L 106.94685 219.952052 \n", + "L 107.03055 219.952052 \n", + "L 111.04815 219.952052 \n", + "L 111.04815 213.830727 \n", + "L 111.13185 213.830727 \n", + "L 113.61495 213.830727 \n", + "L 113.61495 207.709403 \n", + "L 113.69865 207.709403 \n", + "L 114.56355 207.709403 \n", + "L 114.56355 201.588078 \n", + "L 114.64725 201.588078 \n", + "L 167.99205 201.588078 \n", + "L 167.99205 195.466753 \n", + "L 168.07575 195.466753 \n", + "L 177.28275 195.466753 \n", + "L 177.28275 189.345429 \n", + "L 177.36645 189.345429 \n", + "L 188.38695 189.345429 \n", + "L 188.38695 183.224104 \n", + "L 188.47065 183.224104 \n", + "L 193.32525 183.224104 \n", + "L 193.32525 177.102773 \n", + "L 193.40895 177.102773 \n", + "L 213.46905 177.102773 \n", + "L 213.46905 170.981448 \n", + "L 213.55275 170.981448 \n", + "L 224.54535 170.981448 \n", + "L 224.54535 164.860115 \n", + "L 224.62905 164.860115 \n", + "L 232.02255 164.860115 \n", + "L 232.02255 158.73879 \n", + "L 232.10625 158.73879 \n", + "L 247.78605 158.73879 \n", + "L 247.78605 152.617464 \n", + "L 247.86975 152.617464 \n", + "L 256.99305 152.617464 \n", + "L 256.99305 146.49613 \n", + "L 257.07675 146.49613 \n", + "L 258.89025 146.49613 \n", + "L 258.89025 140.374803 \n", + "L 258.97395 140.374803 \n", + "L 266.50695 140.374803 \n", + "L 266.50695 134.253477 \n", + "L 266.59065 134.253477 \n", + "L 285.61845 134.253477 \n", + "L 285.61845 128.132151 \n", + "L 285.70215 128.132151 \n", + "L 286.23225 128.132151 \n", + "L 286.23225 122.010825 \n", + "L 286.31595 122.010825 \n", + "L 291.31005 122.010825 \n", + "L 291.31005 115.889499 \n", + "L 291.39375 115.889499 \n", + "L 321.19095 115.889499 \n", + "L 321.19095 109.768173 \n", + "L 321.27465 109.768173 \n", + "L 342.06015 109.768173 \n", + "L 342.06015 103.646847 \n", + "L 342.14385 103.646847 \n", + "L 352.32735 103.646847 \n", + "L 352.32735 97.525521 \n", + "L 352.41105 97.525521 \n", + "L 355.95435 97.525521 \n", + "L 355.95435 91.404194 \n", + "L 356.03805 91.404194 \n", + "L 364.01745 91.404194 \n", + "L 364.01745 85.282855 \n", + "L 364.10115 85.282855 \n", + "L 375.40065 85.282855 \n", + "L 375.40065 79.161528 \n", + "L 375.48435 79.161528 \n", + "L 396.32565 79.161528 \n", + "L 396.32565 73.040201 \n", + "L 396.40935 73.040201 \n", + "L 430.81005 73.040201 \n", + "L 430.81005 66.918875 \n", + "L 430.89375 66.918875 \n", + "L 433.57215 66.918875 \n", + "L 433.57215 60.797548 \n", + "L 433.65585 60.797548 \n", + "L 443.00235 60.797548 \n", + "L 443.00235 54.676222 \n", + "L 443.08605 54.676222 \n", + "L 466.68945 54.676222 \n", + "L 466.68945 48.554895 \n", + "L 466.77315 48.554895 \n", + "L 472.79955 48.554895 \n", + "L 472.79955 42.433568 \n", + "L 472.88325 42.433568 \n", + "L 477.82155 42.433568 \n", + "L 477.82155 36.312242 \n", + "L 477.90525 36.312242 \n", + "L 495.95655 36.312242 \n", + "L 495.95655 30.190915 \n", + "L 496.04025 30.190915 \n", + "L 502.70835 30.190915 \n", + "L 502.70835 24.069588 \n", + "L 502.79205 24.069588 \n", + "L 503.26635 24.069588 \n", + "L 503.26635 17.948243 \n", + "L 503.35005 17.948243 \n", + "L 528.68325 17.948243 \n", + "L 528.68325 11.826916 \n", + "L 528.76695 11.826916 \n", + "L 535.10025 11.826916 \n", + "L 535.10025 5.705589 \n", + "L 535.18395 5.705589 \n", + "L 549.41295 5.705589 \n", + "L 549.41295 -0.415738 \n", + "L 549.49665 -0.415738 \n", + "L 551.42175 -0.415738 \n", + "L 551.42175 -1 \n", + "L 551.42175 -1 \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #808000; stroke-width: 2; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "L 53.57415 256.68 \n", + "L 53.57415 232.194699 \n", + "L 53.65785 232.194699 \n", + "L 77.79135 232.194699 \n", + "L 77.79135 207.709399 \n", + "L 77.87505 207.709399 \n", + "L 82.84125 207.709399 \n", + "L 82.84125 183.224092 \n", + "L 82.92495 183.224092 \n", + "L 268.82265 183.224092 \n", + "L 268.82265 158.738797 \n", + "L 268.90635 158.738797 \n", + "L 294.74175 158.738797 \n", + "L 294.74175 134.253497 \n", + "L 294.82545 134.253497 \n", + "L 295.49505 134.253497 \n", + "L 295.49505 109.768208 \n", + "L 295.57875 109.768208 \n", + "L 336.28485 109.768208 \n", + "L 336.28485 85.282909 \n", + "L 336.36855 85.282909 \n", + "L 373.41975 85.282909 \n", + "L 373.41975 60.79761 \n", + "L 373.50345 60.79761 \n", + "L 439.84965 60.79761 \n", + "L 439.84965 36.312312 \n", + "L 439.93335 36.312312 \n", + "L 517.49535 36.312312 \n", + "L 517.49535 11.827013 \n", + "L 517.57905 11.827013 \n", + "L 540.56865 11.827013 \n", + "L 540.56865 -1 \n", + "L 540.56865 -1 \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #808000; stroke-width: 4; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "L 69.42135 256.68 \n", + "L 69.42135 232.194699 \n", + "L 69.50505 232.194699 \n", + "L 106.94685 232.194699 \n", + "L 106.94685 207.709399 \n", + "L 107.03055 207.709399 \n", + "L 167.99205 207.709399 \n", + "L 167.99205 183.224092 \n", + "L 168.07575 183.224092 \n", + "L 177.28275 183.224092 \n", + "L 177.28275 158.738797 \n", + "L 177.36645 158.738797 \n", + "L 213.46905 158.738797 \n", + "L 213.46905 134.253497 \n", + "L 213.55275 134.253497 \n", + "L 256.99305 134.253497 \n", + "L 256.99305 109.768208 \n", + "L 257.07675 109.768208 \n", + "L 285.61845 109.768208 \n", + "L 285.61845 85.282909 \n", + "L 285.70215 85.282909 \n", + "L 291.31005 85.282909 \n", + "L 291.31005 60.79761 \n", + "L 291.39375 60.79761 \n", + "L 396.32565 60.79761 \n", + "L 396.32565 36.312312 \n", + "L 396.40935 36.312312 \n", + "L 466.68945 36.312312 \n", + "L 466.68945 11.827013 \n", + "L 466.77315 11.827013 \n", + "L 535.10025 11.827013 \n", + "L 535.10025 -1 \n", + "L 535.10025 -1 \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #808000; stroke-width: 4; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "L 434.38125 79.161528 \n", + "L 443.86725 79.161528 \n", + "L 443.86725 73.040201 \n", + "L 444.98325 73.040201 \n", + "L 444.98325 66.918875 \n", + "L 447.77325 66.918875 \n", + "L 447.77325 60.797548 \n", + "L 454.74825 60.797548 \n", + "L 454.74825 54.676222 \n", + "L 478.46325 54.676222 \n", + "L 478.46325 48.554895 \n", + "L 483.20625 48.554895 \n", + "L 483.20625 42.433568 \n", + "L 489.90225 42.433568 \n", + "L 489.90225 36.312242 \n", + "L 491.57625 36.312242 \n", + "L 491.57625 30.190915 \n", + "L 499.10925 30.190915 \n", + "L 499.10925 24.069588 \n", + "L 499.66725 24.069588 \n", + "L 499.66725 17.948243 \n", + "L 506.64225 17.948243 \n", + "L 506.64225 11.826916 \n", + "L 523.38225 11.826916 \n", + "L 523.38225 5.705589 \n", + "L 524.77725 5.705589 \n", + "L 524.77725 -0.415738 \n", + "L 530.91525 -0.415738 \n", + "L 530.91525 -1 \n", + "L 530.91525 -1 \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #000080; stroke-width: 2; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "L 117.15825 256.68 \n", + "L 117.15825 250.558675 \n", + "L 173.23725 250.558675 \n", + "L 173.23725 244.43735 \n", + "L 178.25925 244.43735 \n", + "L 178.25925 238.316023 \n", + "L 183.56025 238.316023 \n", + "L 183.56025 232.194699 \n", + "L 226.80525 232.194699 \n", + "L 226.80525 226.073374 \n", + "L 227.36325 226.073374 \n", + "L 227.36325 219.952052 \n", + "L 246.05625 219.952052 \n", + "L 246.05625 213.830727 \n", + "L 291.81225 213.830727 \n", + "L 291.81225 207.709403 \n", + "L 299.06625 207.709403 \n", + "L 299.06625 201.588078 \n", + "L 300.18225 201.588078 \n", + "L 300.18225 195.466753 \n", + "L 323.06025 195.466753 \n", + "L 323.06025 189.345429 \n", + "L 340.63725 189.345429 \n", + "L 340.63725 183.224104 \n", + "L 347.61225 183.224104 \n", + "L 347.61225 177.102773 \n", + "L 350.12325 177.102773 \n", + "L 350.12325 170.981448 \n", + "L 354.86625 170.981448 \n", + "L 354.86625 164.860115 \n", + "L 361.84125 164.860115 \n", + "L 361.84125 158.73879 \n", + "L 367.70025 158.73879 \n", + "L 367.70025 152.617464 \n", + "L 390.02025 152.617464 \n", + "L 390.02025 146.49613 \n", + "L 393.64725 146.49613 \n", + "L 393.64725 140.374803 \n", + "L 404.52825 140.374803 \n", + "L 404.52825 134.253477 \n", + "L 408.99225 134.253477 \n", + "L 408.99225 128.132151 \n", + "L 420.71025 128.132151 \n", + "L 420.71025 122.010825 \n", + "L 430.19625 122.010825 \n", + "L 430.19625 115.889499 \n", + "L 445.54125 115.889499 \n", + "L 445.54125 109.768173 \n", + "L 469.25625 109.768173 \n", + "L 469.25625 103.646847 \n", + "L 472.32525 103.646847 \n", + "L 472.32525 97.525521 \n", + "L 477.62625 97.525521 \n", + "L 477.62625 91.404194 \n", + "L 481.25325 91.404194 \n", + "L 481.25325 85.282855 \n", + "L 497.99325 85.282855 \n", + "L 497.99325 79.161528 \n", + "L 516.68625 79.161528 \n", + "L 516.68625 73.040201 \n", + "L 524.49825 73.040201 \n", + "L 524.49825 66.918875 \n", + "L 527.84625 66.918875 \n", + "L 527.84625 60.797548 \n", + "L 530.35725 60.797548 \n", + "L 530.35725 54.676222 \n", + "L 538.44825 54.676222 \n", + "L 538.44825 48.554895 \n", + "L 542.07525 48.554895 \n", + "L 542.07525 42.433568 \n", + "L 553.51425 42.433568 \n", + "L 553.51425 36.312242 \n", + "L 601.78125 36.312242 \n", + "L 601.78125 36.312242 \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #000080; stroke-width: 2; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #000080; stroke-width: 4; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "L 227.36325 256.68 \n", + "L 227.36325 232.194699 \n", + "L 299.06625 232.194699 \n", + "L 299.06625 207.709399 \n", + "L 300.18225 207.709399 \n", + "L 300.18225 183.224092 \n", + "L 323.06025 183.224092 \n", + "L 323.06025 158.738797 \n", + "L 350.12325 158.738797 \n", + "L 350.12325 134.253497 \n", + "L 354.86625 134.253497 \n", + "L 354.86625 109.768208 \n", + "L 390.02025 109.768208 \n", + "L 390.02025 85.282909 \n", + "L 408.99225 85.282909 \n", + "L 408.99225 60.79761 \n", + "L 477.62625 60.79761 \n", + "L 477.62625 36.312312 \n", + "L 524.49825 36.312312 \n", + "L 524.49825 11.827013 \n", + "L 538.44825 11.827013 \n", + "L 538.44825 -1 \n", + "L 538.44825 -1 \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke: #000080; stroke-width: 4; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke-dasharray: 12.95,5.6; stroke-dashoffset: 0; stroke: #ff0000; stroke-width: 3.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke-dasharray: 1.5,2.475; stroke-dashoffset: 0; stroke: #ff0000; stroke-width: 1.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p39591dcf68)\" style=\"fill: none; stroke-dasharray: 9.6,2.4,1.5,2.4; stroke-dashoffset: 0; stroke: #ff0000; stroke-width: 1.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", " \n", @@ -4344,12 +4300,17 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4361,7 +4322,7 @@ "\" style=\"fill: none; stroke: #808000; stroke-width: 4; stroke-linecap: square\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4371,12 +4332,17 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4388,7 +4354,7 @@ "\" style=\"fill: none; stroke: #000080; stroke-width: 2; stroke-linecap: square\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4399,12 +4365,17 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4416,7 +4387,7 @@ "\" style=\"fill: none; stroke: #000080; stroke-width: 4; stroke-linecap: square\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4427,12 +4398,17 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4739,7 +4715,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4755,7 +4731,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "95b4c6a1120244369ef91e8b39364942", + "model_id": "7cd0bf13416e40489a478a6c650ecdbf", "version_major": 2, "version_minor": 0 }, @@ -4777,11 +4753,12 @@ "\n", " sim_x = out[\"dt\"] * np.arange(len(out[\"unfrozen_fraction\"]))\n", " sim_y = np.asarray(out[\"unfrozen_fraction\"])\n", - " if int(dt) in DTS[0:2] and number_of_real_droplets//int(n_sd) in MLT[3:5] and int(seed) in SEEDS[-2:]:\n", + " arbitrarily_pick = -12\n", + " if int(dt) in DTS[0:2] and number_of_real_droplets//int(n_sd) in MLT[3:5] and int(seed) in SEEDS[arbitrarily_pick:arbitrarily_pick+2]:\n", " ax.step(\n", " sim_x / 60 / 60,\n", " (1-sim_y) * 100,\n", - " label=f\"dt={out['dt']:g}s $n_{{sd}}=2^{{{int(np.log2(int(n_sd)))}}}$\" if int(seed) != SEEDS[-1] else \"\",\n", + " label=f\"dt={out['dt']:g}s $n_\\\\text{{sd}}=2^{{{int(np.log2(int(n_sd)))}}}$={int(2**np.log2(int(n_sd)))}\" if int(seed) != SEEDS[arbitrarily_pick+1] else \"\",\n", " color={DTS[0]: 'olive', DTS[1]: 'navy'}[int(dt)],\n", " linewidth=2 + out[\"N\"] // 128,\n", " )\n", @@ -4805,7 +4782,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 31, "id": "a19ec2af", "metadata": {}, "outputs": [], @@ -4815,7 +4792,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 32, "id": "53881f93", "metadata": {}, "outputs": [], @@ -4847,7 +4824,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 33, "id": "005673b0", "metadata": {}, "outputs": [ @@ -4872,7 +4849,7 @@ " \n", " \n", " \n", - " 2024-02-09T11:06:16.278515\n", + " 2024-06-11T18:30:50.351912\n", " image/svg+xml\n", " \n", " \n", @@ -4908,16 +4885,16 @@ " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4988,11 +4965,11 @@ " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5024,11 +5001,11 @@ " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5078,11 +5055,11 @@ " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5125,11 +5102,11 @@ " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5255,16 +5232,16 @@ " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5290,11 +5267,11 @@ " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5332,11 +5309,11 @@ " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5353,11 +5330,11 @@ " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5374,11 +5351,11 @@ " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5395,11 +5372,11 @@ " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5439,11 +5416,11 @@ " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5459,11 +5436,11 @@ " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5930,7 +5907,7 @@ "L 157.90767 141.991549 \n", "L 109.716761 106.879549 \n", "L 61.525852 71.767549 \n", - "\" clip-path=\"url(#p9d54eb0f4d)\" style=\"fill: none; stroke: #808080; stroke-width: 1.5; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #808080; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #808080; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #1f77b4; stroke-width: 4.138091; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5978,9 +5955,9 @@ "L 157.90767 104.727973 \n", "L 109.716761 74.348479 \n", "L 61.525852 44.131994 \n", - "\" clip-path=\"url(#p9d54eb0f4d)\" style=\"fill: none; stroke: #ff7f0e; stroke-width: 1.702444; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #ff7f0e; stroke-width: 1.702444; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6008,9 +5985,9 @@ "L 157.90767 101.727536 \n", "L 109.716761 71.715081 \n", "L 61.525852 43.036175 \n", - "\" clip-path=\"url(#p9d54eb0f4d)\" style=\"fill: none; stroke: #2ca02c; stroke-width: 1.071669; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #2ca02c; stroke-width: 1.071669; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6218,9 +6195,9 @@ "L 157.90767 107.476496 \n", "L 109.716761 71.11882 \n", "L 61.525852 38.169464 \n", - "\" clip-path=\"url(#p9d54eb0f4d)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6248,14 +6225,14 @@ "L 157.90767 107.476496 \n", "L 109.716761 71.11882 \n", "L 61.525852 38.169464 \n", - "\" clip-path=\"url(#p9d54eb0f4d)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6265,14 +6242,14 @@ "L 157.90767 107.476496 \n", "L 109.716761 71.11882 \n", "L 61.525852 38.169464 \n", - "\" clip-path=\"url(#p9d54eb0f4d)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6282,14 +6259,14 @@ "L 157.90767 107.476496 \n", "L 109.716761 71.11882 \n", "L 61.525852 38.169464 \n", - "\" clip-path=\"url(#p9d54eb0f4d)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pf696d83441)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6486,7 +6463,7 @@ "L 78.478125 183.009687 \n", "\" style=\"fill: none; stroke: #1f77b4; stroke-width: 4.138091; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6531,7 +6508,7 @@ "L 78.478125 197.687812 \n", "\" style=\"fill: none; stroke: #ff7f0e; stroke-width: 1.702444; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6562,7 +6539,7 @@ "L 78.478125 212.365937 \n", "\" style=\"fill: none; stroke: #2ca02c; stroke-width: 1.071669; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6595,12 +6572,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6610,7 +6587,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6644,12 +6621,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6659,7 +6636,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6725,12 +6702,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6740,7 +6717,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6773,12 +6750,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6788,7 +6765,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6818,7 +6795,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6834,7 +6811,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "afa6b751c9b1450ba9121133adcefff0", + "model_id": "dbd3bb6c9a5444d68432ff5af132787c", "version_major": 2, "version_minor": 0 }, @@ -6866,7 +6843,7 @@ " \n", " \n", " \n", - " 2024-02-09T11:06:17.753503\n", + " 2024-06-11T18:30:51.101817\n", " image/svg+xml\n", " \n", " \n", @@ -6902,16 +6879,16 @@ " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6982,11 +6959,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7018,11 +6995,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7072,11 +7049,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7119,11 +7096,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7249,16 +7226,16 @@ " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7284,11 +7261,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7326,11 +7303,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7347,11 +7324,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7368,11 +7345,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7389,11 +7366,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7433,11 +7410,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7453,11 +7430,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7924,7 +7901,7 @@ "L 157.90767 141.991549 \n", "L 109.716761 106.879549 \n", "L 61.525852 71.767549 \n", - "\" clip-path=\"url(#p7672db2368)\" style=\"fill: none; stroke: #808080; stroke-width: 1.5; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #808080; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #808080; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #1f77b4; stroke-width: 4.138091; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7972,9 +7949,9 @@ "L 157.90767 104.727964 \n", "L 109.716761 74.34848 \n", "L 61.525852 44.131993 \n", - "\" clip-path=\"url(#p7672db2368)\" style=\"fill: none; stroke: #ff7f0e; stroke-width: 1.702444; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #ff7f0e; stroke-width: 1.702444; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8002,9 +7979,9 @@ "L 157.90767 101.616578 \n", "L 109.716761 71.492835 \n", "L 61.525852 43.036174 \n", - "\" clip-path=\"url(#p7672db2368)\" style=\"fill: none; stroke: #2ca02c; stroke-width: 1.071669; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #2ca02c; stroke-width: 1.071669; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948\"/>\n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8212,9 +8189,9 @@ "L 157.90767 107.768925 \n", "L 109.716761 71.118821 \n", "L 61.525852 38.169464 \n", - "\" clip-path=\"url(#p7672db2368)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8242,14 +8219,14 @@ "L 157.90767 107.768925 \n", "L 109.716761 71.118821 \n", "L 61.525852 38.169464 \n", - "\" clip-path=\"url(#p7672db2368)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8259,14 +8236,14 @@ "L 157.90767 107.768925 \n", "L 109.716761 71.118821 \n", "L 61.525852 38.169464 \n", - "\" clip-path=\"url(#p7672db2368)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8276,14 +8253,14 @@ "L 157.90767 107.768925 \n", "L 109.716761 71.118821 \n", "L 61.525852 38.169464 \n", - "\" clip-path=\"url(#p7672db2368)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pfe62cde320)\" style=\"fill: none; stroke: #000000; stroke-width: 0.781948; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -8426,7 +8403,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -8442,7 +8419,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "68c150a8dff240f4bbc2a6095571163b", + "model_id": "a788f2f1b13844b3b0e8967ad1eca94e", "version_major": 2, "version_minor": 0 }, diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb index 2422af604..1663dccb2 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb @@ -28357,7 +28357,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "64cf293e", "metadata": { "ExecuteTime": { @@ -32005,6 +32005,7244 @@ }, "metadata": {}, "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-06-11T14:25:04.979048\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3e325c963b134974940c35d441ccc602", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig2-c=-0.75_K_per_min-ln_…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f92b7c2b53064e3794a05b89172f59be", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='%')" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-06-11T14:25:23.100891\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "44bbf9887ed94d809e51d777ee2e76b3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig2-c=-0.15_K_per_min-ln_…" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ From 5c1b07efbfbd40423ab4843e9980a61124a0c5c4 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Sun, 7 Jul 2024 09:23:39 +0200 Subject: [PATCH 05/41] cleanup volume-to-mass refactor leftover --- examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb index 3ea8e8135..48b6abaad 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb @@ -76,7 +76,7 @@ "cases = tuple({\"dt\": dt, \"N\": mlt, \"seed\": seed} for dt, mlt, seed in itertools.product(DTS, MLT, SEEDS))\n", "\n", "# dummy (but must-be-set) values\n", - "vol = 44 # for sign flip (ice water has negative volumes), value does not matter\n", + "mass = 44 # for sign flip (ice water has negative mass), value does not matter\n", "d_v = 666 # products use conc., dividing there, multiplying here, value does not matter\n", "\n", "output = {}\n", @@ -110,7 +110,7 @@ " attributes = {\n", " \"multiplicity\": np.full(n_sd, int(case[\"N\"])),\n", " \"immersed surface area\": np.full(n_sd, immersed_surface_area),\n", - " \"volume\": np.full(n_sd, vol),\n", + " \"water_mass\": np.full(n_sd, mass),\n", " }\n", " particulator = builder.build(attributes=attributes, products=products)\n", " env[\"RH\"] = 1.0001\n", @@ -123,7 +123,7 @@ "\n", " ice_mass_per_volume = particulator.products[\"qi\"].get()[cell_id]\n", " ice_mass = ice_mass_per_volume * d_v\n", - " ice_number = ice_mass / (const.rho_w * vol)\n", + " ice_number = ice_mass / mass\n", " unfrozen_fraction = 1 - ice_number / number_of_real_droplets\n", " output[backend_key][key][\"unfrozen_fraction\"].append(unfrozen_fraction)\n", " \n", From acd7c6074921315136c43be76958353872d20aaf Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Sun, 7 Jul 2024 09:27:37 +0200 Subject: [PATCH 06/41] remove unused import --- examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb | 1 - 1 file changed, 1 deletion(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb index 48b6abaad..3b6dc9ced 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb @@ -26,7 +26,6 @@ "from PySDM import Builder, Formulae\n", "from PySDM.dynamics import Freezing\n", "from PySDM.environments import Box\n", - "from PySDM.physics import constants_defaults as const\n", "from PySDM.physics import si\n", "from PySDM.products import IceWaterContent\n", "from PySDM.backends import GPU\n", From e98de9aaf5264998722a3411c91b45c3874437d8 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Sun, 7 Jul 2024 16:14:27 +0200 Subject: [PATCH 07/41] fix attr name --- examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb index 3b6dc9ced..1ca5fc077 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/fig_A2.ipynb @@ -109,7 +109,7 @@ " attributes = {\n", " \"multiplicity\": np.full(n_sd, int(case[\"N\"])),\n", " \"immersed surface area\": np.full(n_sd, immersed_surface_area),\n", - " \"water_mass\": np.full(n_sd, mass),\n", + " \"water mass\": np.full(n_sd, mass),\n", " }\n", " particulator = builder.build(attributes=attributes, products=products)\n", " env[\"RH\"] = 1.0001\n", From 19e2b6fed8f67b9c60ad418f60505ba77d43b462 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Fri, 2 Aug 2024 22:07:35 +0200 Subject: [PATCH 08/41] fix sign in definition of cooling rates (+fix axis label and line annotations, plot content itself unchanged) --- .../Arabas_et_al_2023/commons.py | 2 +- .../Arabas_et_al_2023/fig_2.ipynb | 2460 +++- .../figs_3_and_7_and_8.ipynb | 10242 ++++++++-------- 3 files changed, 7559 insertions(+), 5145 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/commons.py b/examples/PySDM_examples/Arabas_et_al_2023/commons.py index 40482e140..a7158caf4 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/commons.py +++ b/examples/PySDM_examples/Arabas_et_al_2023/commons.py @@ -13,7 +13,7 @@ "illite": {"ABIFM_M": 54.48, "ABIFM_C": -10.67}, } -COOLING_RATES = (3.75 * si.K / si.min, 0.75 * si.K / si.min, 0.15 * si.K / si.min) +COOLING_RATES = (-3.75 * si.K / si.min, -0.75 * si.K / si.min, -0.15 * si.K / si.min) BEST_FIT_LN_S_GEOM = 0.25 diff --git a/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb index d2ebf7a97..3cc7a964e 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb @@ -2,19 +2,22 @@ "cells": [ { "cell_type": "markdown", + "id": "556981ca9ffb9215", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, "source": [ "[![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb)\n", "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb)\n", "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb)" - ], - "metadata": { - "collapsed": false - }, - "id": "556981ca9ffb9215" + ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 1, "id": "a6ca777a", "metadata": { "ExecuteTime": { @@ -38,7 +41,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "id": "abc1b652", "metadata": { "ExecuteTime": { @@ -64,7 +67,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "id": "671fde73", "metadata": { "ExecuteTime": { @@ -85,7 +88,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 10, "id": "b499c875", "metadata": { "ExecuteTime": { @@ -96,20 +99,2415 @@ "outputs": [ { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-02-01T08:25:48.581901\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-08-02T21:40:28.527759\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./fig_theory.pdf
\")", "application/vnd.jupyter.widget-view+json": { + "model_id": "66e8d553dec94eddb065b55c40fb152b", "version_major": 2, - "version_minor": 0, - "model_id": "8ecfeccd1d0847fb9a89752e4dde4b7e" - } + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig_theory.pdf
\")" + ] }, "metadata": {}, "output_type": "display_data" @@ -131,13 +2529,13 @@ " )\n", " for i, c in enumerate(cooling_rates):\n", " c_K_min = (c / si.K * si.min).to_base_units().magnitude\n", - " J_over_c = abifm_j_het(a_w_ice) / c\n", - " pyplot.plot(T, J_over_c,\n", + " minus_J_over_c = -abifm_j_het(a_w_ice) / c\n", + " pyplot.plot(T, minus_J_over_c,\n", " color=mc['color'],\n", - " label='' if i!=0 else f'ABIFM $J_{{het}}/c$ ({label})',\n", - " linewidth=3*c.magnitude**.15\n", + " label='' if i!=0 else f'ABIFM $-J_{{het}}/c$ ({label})',\n", + " linewidth=3*abs(c.magnitude)**.15\n", " )\n", - " _ = CurvedText(T.magnitude+.666, 1.111*J_over_c.magnitude,\n", + " _ = CurvedText(T.magnitude+.666, 1.111*minus_J_over_c.magnitude,\n", " text=f'c={c_K_min} K/min', axes=pyplot.gca(),\n", " va='bottom'\n", " )\n", @@ -156,10 +2554,26 @@ "pyplot.yscale('log')\n", "pyplot.grid()\n", "pyplot.xlabel('temperature [K]')\n", - "pyplot.ylabel('$J_{het}(T) / c = -dn_s(T)/dT$ [$K^{-1} m^{-2}$]')\n", - "pyplot.legend()#bbox_to_anchor=(1, -.2))\n", + "pyplot.ylabel('$-J_{het}(T) / c = -dn_s(T)/dT$ [$K^{-1} m^{-2}$]')\n", + "pyplot.legend()\n", "show_plot('fig_theory.pdf')" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "eab6441c-43aa-4772-8288-474c8a7bf509", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fa880da5-47fe-48d1-a74f-fd7ec4d7bbbe", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -178,7 +2592,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" + "version": "3.9.2" } }, "nbformat": 4, diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb index 1663dccb2..4b08c93fc 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb @@ -97,7 +97,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:23:13.445582\n", + " 2024-08-02T22:04:00.427842\n", " image/svg+xml\n", " \n", " \n", @@ -1074,7 +1074,7 @@ "L 125.875001 93.087529 \n", "L 125.956658 92.1744 \n", "z\n", - "\" clip-path=\"url(#p84f386feac)\" style=\"fill: #e7f0fa\"/>\n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: #8dc1dd\"/>\n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: #4f9bcb\"/>\n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: #2070b4\"/>\n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: #08468b\"/>\n", " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4047,11 +4047,11 @@ " \n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4081,11 +4081,11 @@ " \n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4125,11 +4125,11 @@ " \n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4177,11 +4177,11 @@ " \n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4216,11 +4216,11 @@ " \n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4630,16 +4630,16 @@ " \n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4655,11 +4655,11 @@ " \n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4675,11 +4675,11 @@ " \n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4695,11 +4695,11 @@ " \n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4715,11 +4715,11 @@ " \n", " \n", + "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5086,7 +5086,7 @@ "L 166.115037 77.886 \n", "L 298.065625 77.886 \n", "L 298.065625 77.886 \n", - "\" clip-path=\"url(#p09d6a2d636)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pf4f0fd45a2)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pe6d4be756c)\" style=\"fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p1d74299f0d)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#p1d74299f0d)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#p1d74299f0d)\" style=\"fill: #8dc1dd\"/>\n", " \n", + "\" clip-path=\"url(#p1d74299f0d)\" style=\"fill: #4f9bcb\"/>\n", " \n", + "\" clip-path=\"url(#p1d74299f0d)\" style=\"fill: #2070b4\"/>\n", " \n", + "\" clip-path=\"url(#p1d74299f0d)\" style=\"fill: #08468b\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5285,7 +5285,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5301,7 +5301,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5317,7 +5317,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5393,16 +5393,16 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5418,7 +5418,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5db4091f88204f80b147b5605bcea5fd", + "model_id": "30070f74f972425da277abf20126506d", "version_major": 2, "version_minor": 0 }, @@ -5440,7 +5440,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:23:15.889309\n", + " 2024-08-02T22:04:01.197386\n", " image/svg+xml\n", " \n", " \n", @@ -6802,7 +6802,7 @@ "L 132.635037 118.554258 \n", "L 131.650331 118.613138 \n", "z\n", - "\" clip-path=\"url(#pcdf12a7ec3)\" style=\"fill: #e7f0fa\"/>\n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: #8dc1dd\"/>\n", " \n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: #4f9bcb\"/>\n", " \n", - " \n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: #2070b4\"/>\n", + " \n", " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9621,11 +9621,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9655,11 +9655,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9699,11 +9699,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9751,11 +9751,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9790,11 +9790,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10204,16 +10204,16 @@ " \n", " \n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10229,11 +10229,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10249,11 +10249,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10269,11 +10269,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10289,11 +10289,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10684,7 +10684,7 @@ "L 259.662096 77.854561 \n", "L 298.065625 77.884049 \n", "L 298.065625 77.884049 \n", - "\" clip-path=\"url(#p6d85a88550)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#p9decbb99b5)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p5519b761b4)\" style=\"fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pcfd957dfc9)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#pcfd957dfc9)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#pcfd957dfc9)\" style=\"fill: #8dc1dd\"/>\n", " \n", + "\" clip-path=\"url(#pcfd957dfc9)\" style=\"fill: #4f9bcb\"/>\n", " \n", + "\" clip-path=\"url(#pcfd957dfc9)\" style=\"fill: #2070b4\"/>\n", " \n", + "\" clip-path=\"url(#pcfd957dfc9)\" style=\"fill: #08468b\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10884,7 +10884,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10900,7 +10900,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10916,7 +10916,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10992,16 +10992,16 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -11017,7 +11017,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b1fafb422feb465b9df294506acd9ba2", + "model_id": "969f197282ac460f8d79ca62e6f30644", "version_major": 2, "version_minor": 0 }, @@ -11039,7 +11039,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:23:17.450806\n", + " 2024-08-02T22:04:01.947404\n", " image/svg+xml\n", " \n", " \n", @@ -12693,7 +12693,7 @@ "L 293.142096 233.857709 \n", "L 294.047028 233.709459 \n", "z\n", - "\" clip-path=\"url(#pdaf1c33d67)\" style=\"fill: #e7f0fa\"/>\n", + "\" clip-path=\"url(#p44aef39485)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#p44aef39485)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#p44aef39485)\" style=\"fill: #8dc1dd\"/>\n", " \n", - " \n", - " \n", + "\" clip-path=\"url(#p44aef39485)\" style=\"fill: #4f9bcb\"/>\n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p44aef39485)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -15968,11 +15968,11 @@ " \n", " \n", + "\" clip-path=\"url(#p44aef39485)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16002,11 +16002,11 @@ " \n", " \n", + "\" clip-path=\"url(#p44aef39485)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16046,11 +16046,11 @@ " \n", " \n", + "\" clip-path=\"url(#p44aef39485)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16098,11 +16098,11 @@ " \n", " \n", + "\" clip-path=\"url(#p44aef39485)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16137,11 +16137,11 @@ " \n", " \n", + "\" clip-path=\"url(#p44aef39485)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16551,16 +16551,16 @@ " \n", " \n", + "\" clip-path=\"url(#p44aef39485)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16576,11 +16576,11 @@ " \n", " \n", + "\" clip-path=\"url(#p44aef39485)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16596,11 +16596,11 @@ " \n", " \n", + "\" clip-path=\"url(#p44aef39485)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16616,11 +16616,11 @@ " \n", " \n", + "\" clip-path=\"url(#p44aef39485)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16636,11 +16636,11 @@ " \n", " \n", + "\" clip-path=\"url(#p44aef39485)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17020,7 +17020,7 @@ "L 297.080919 72.087006 \n", "L 298.065625 72.125328 \n", "L 298.065625 72.125328 \n", - "\" clip-path=\"url(#pfdef908995)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#p88743d9467)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p4a1f701f1c)\" style=\"fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pda8b9fa40e)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#pda8b9fa40e)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#pda8b9fa40e)\" style=\"fill: #8dc1dd\"/>\n", " \n", + "\" clip-path=\"url(#pda8b9fa40e)\" style=\"fill: #4f9bcb\"/>\n", " \n", + "\" clip-path=\"url(#pda8b9fa40e)\" style=\"fill: #2070b4\"/>\n", " \n", + "\" clip-path=\"url(#pda8b9fa40e)\" style=\"fill: #08468b\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17220,7 +17220,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17236,7 +17236,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17252,7 +17252,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17328,16 +17328,16 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17353,7 +17353,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7bc2cdecaedd476aa26cbc8ba00dd73f", + "model_id": "153446be7b544152819fd00b36d4b923", "version_major": 2, "version_minor": 0 }, @@ -17466,7 +17466,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8db4e09ddbe643539e094026d2837b4b", + "model_id": "6f3749d371ba4179bfd6a83443c5e9ca", "version_major": 2, "version_minor": 0 }, @@ -17488,7 +17488,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:23:54.214583\n", + " 2024-08-02T22:04:29.624768\n", " image/svg+xml\n", " \n", " \n", @@ -17533,12 +17533,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17583,7 +17583,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17624,7 +17624,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17660,7 +17660,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17707,7 +17707,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17763,7 +17763,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18030,16 +18030,16 @@ " \n", " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18091,11 +18091,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18140,11 +18140,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18162,11 +18162,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18196,11 +18196,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18218,11 +18218,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18240,11 +18240,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18262,11 +18262,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18284,11 +18284,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18442,51 +18442,51 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -18642,69 +18642,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -18769,69 +18769,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -18896,69 +18896,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19023,69 +19023,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19093,7 +19093,7 @@ "L 27.466062 276.336 \n", "L 33.418062 276.336 \n", "L 39.370062 276.336 \n", - "L 45.322062 272.556 \n", + "L 45.322062 276.336 \n", "L 51.274062 272.556 \n", "L 57.226062 272.556 \n", "L 63.178062 272.556 \n", @@ -19104,55 +19104,55 @@ "L 92.938062 272.556 \n", "L 98.890062 272.556 \n", "L 104.842062 264.996 \n", - "L 110.794062 264.996 \n", - "L 116.746062 264.996 \n", - "L 122.698062 264.996 \n", - "L 128.650062 264.996 \n", - "L 134.602062 264.996 \n", - "L 140.554062 264.996 \n", - "L 146.506062 257.436 \n", - "L 152.458062 257.436 \n", - "L 158.410062 253.656 \n", - "L 164.362062 249.876 \n", - "L 170.314062 249.876 \n", - "L 176.266062 246.096 \n", - "L 182.218062 238.536 \n", - "L 188.170062 230.976 \n", - "L 194.122062 230.976 \n", - "L 200.074062 223.416 \n", - "L 206.026062 208.296 \n", - "L 211.978062 200.736 \n", - "L 217.930062 200.736 \n", - "L 223.882062 178.056 \n", - "L 229.834062 170.496 \n", - "L 235.786062 155.376 \n", - "L 241.738062 136.476 \n", - "L 247.690062 117.576 \n", - "L 253.642062 113.796 \n", - "L 259.594062 102.456 \n", - "L 265.546062 94.896 \n", - "L 271.498062 75.996 \n", - "L 277.450062 68.436 \n", + "L 110.794062 261.216 \n", + "L 116.746062 261.216 \n", + "L 122.698062 261.216 \n", + "L 128.650062 257.436 \n", + "L 134.602062 253.656 \n", + "L 140.554062 242.316 \n", + "L 146.506062 238.536 \n", + "L 152.458062 234.756 \n", + "L 158.410062 230.976 \n", + "L 164.362062 223.416 \n", + "L 170.314062 215.856 \n", + "L 176.266062 212.076 \n", + "L 182.218062 200.736 \n", + "L 188.170062 196.956 \n", + "L 194.122062 185.616 \n", + "L 200.074062 178.056 \n", + "L 206.026062 174.276 \n", + "L 211.978062 166.716 \n", + "L 217.930062 144.036 \n", + "L 223.882062 132.696 \n", + "L 229.834062 121.356 \n", + "L 235.786062 117.576 \n", + "L 241.738062 113.796 \n", + "L 247.690062 102.456 \n", + "L 253.642062 87.336 \n", + "L 259.594062 75.996 \n", + "L 265.546062 72.216 \n", + "L 271.498062 72.216 \n", + "L 277.450062 64.656 \n", "L 283.402062 64.656 \n", - "L 289.354062 57.096 \n", - "L 295.306062 53.316 \n", - "L 301.258062 53.316 \n", - "L 307.210062 53.316 \n", - "L 313.162062 49.536 \n", - "L 319.114062 49.536 \n", - "L 325.066062 49.536 \n", - "L 331.018062 41.976 \n", - "L 336.970062 38.196 \n", - "L 342.922062 38.196 \n", + "L 289.354062 60.876 \n", + "L 295.306062 49.536 \n", + "L 301.258062 45.756 \n", + "L 307.210062 45.756 \n", + "L 313.162062 38.196 \n", + "L 319.114062 34.416 \n", + "L 325.066062 34.416 \n", + "L 331.018062 34.416 \n", + "L 336.970062 34.416 \n", + "L 342.922062 34.416 \n", "L 348.874062 34.416 \n", "L 354.826062 34.416 \n", "L 360.778062 34.416 \n", "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19290,69 +19290,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19417,69 +19417,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19544,69 +19544,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19671,69 +19671,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19787,7 +19787,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#p1e49a3f591)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20162,7 +20162,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20170,7 +20170,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20178,7 +20178,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20186,7 +20186,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20194,7 +20194,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20202,7 +20202,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20210,7 +20210,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20218,7 +20218,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20226,7 +20226,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20234,7 +20234,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20242,7 +20242,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20250,7 +20250,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20258,7 +20258,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20266,7 +20266,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20274,7 +20274,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20282,7 +20282,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20290,7 +20290,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20298,7 +20298,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20306,7 +20306,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20314,7 +20314,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20322,7 +20322,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20330,7 +20330,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20338,7 +20338,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20346,7 +20346,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20354,7 +20354,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20362,7 +20362,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20370,7 +20370,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20378,7 +20378,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20386,7 +20386,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20422,7 +20422,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20430,7 +20430,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20438,7 +20438,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20446,7 +20446,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20454,7 +20454,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20495,7 +20495,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20503,7 +20503,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20511,7 +20511,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20519,7 +20519,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20527,7 +20527,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20535,7 +20535,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20543,7 +20543,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20551,7 +20551,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20559,7 +20559,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20567,7 +20567,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20575,7 +20575,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20583,7 +20583,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20591,7 +20591,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20599,7 +20599,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20607,7 +20607,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20615,7 +20615,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20623,7 +20623,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20631,7 +20631,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20639,7 +20639,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20647,7 +20647,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20655,7 +20655,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20663,7 +20663,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20671,7 +20671,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20679,7 +20679,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20687,7 +20687,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20695,7 +20695,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20703,7 +20703,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20711,7 +20711,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20719,7 +20719,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20727,7 +20727,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20735,7 +20735,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20743,7 +20743,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20751,7 +20751,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20759,7 +20759,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20786,7 +20786,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20882,7 +20882,7 @@ "L 202.198337 369.430962 \n", "\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21062,7 +21062,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21078,7 +21078,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d9c222f97d54414aa937bc62642ac2e5", + "model_id": "667f91f32b364a9d8c95efe5c067f821", "version_major": 2, "version_minor": 0 }, @@ -21092,7 +21092,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "84ee88bf11744e759feb7b40723d8cd9", + "model_id": "ae661c453e004b04b795a5d81ad78a36", "version_major": 2, "version_minor": 0 }, @@ -21114,7 +21114,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:24:11.505829\n", + " 2024-08-02T22:04:50.006970\n", " image/svg+xml\n", " \n", " \n", @@ -21159,12 +21159,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21209,7 +21209,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21250,7 +21250,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21286,7 +21286,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21333,7 +21333,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21389,7 +21389,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21656,16 +21656,16 @@ " \n", " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21717,11 +21717,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21766,11 +21766,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21788,11 +21788,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21822,11 +21822,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21844,11 +21844,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21866,11 +21866,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21888,11 +21888,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21910,11 +21910,11 @@ " \n", " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -22068,69 +22068,69 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22268,69 +22268,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22395,69 +22395,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22522,69 +22522,69 @@ "L 366.730062 38.196 \n", "L 372.682062 38.196 \n", "L 378.634062 38.196 \n", - "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22649,69 +22649,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22719,66 +22719,66 @@ "L 27.466062 276.336 \n", "L 33.418062 276.336 \n", "L 39.370062 276.336 \n", - "L 45.322062 272.556 \n", + "L 45.322062 276.336 \n", "L 51.274062 272.556 \n", "L 57.226062 272.556 \n", - "L 63.178062 272.556 \n", - "L 69.130062 272.556 \n", - "L 75.082062 272.556 \n", - "L 81.034062 272.556 \n", - "L 86.986062 272.556 \n", - "L 92.938062 268.776 \n", - "L 98.890062 268.776 \n", - "L 104.842062 257.436 \n", - "L 110.794062 253.656 \n", - "L 116.746062 253.656 \n", - "L 122.698062 249.876 \n", - "L 128.650062 249.876 \n", - "L 134.602062 246.096 \n", - "L 140.554062 242.316 \n", - "L 146.506062 238.536 \n", - "L 152.458062 238.536 \n", - "L 158.410062 230.976 \n", - "L 164.362062 227.196 \n", - "L 170.314062 227.196 \n", - "L 176.266062 223.416 \n", - "L 182.218062 223.416 \n", - "L 188.170062 219.636 \n", - "L 194.122062 219.636 \n", - "L 200.074062 215.856 \n", - "L 206.026062 196.956 \n", - "L 211.978062 189.396 \n", - "L 217.930062 189.396 \n", - "L 223.882062 181.836 \n", - "L 229.834062 170.496 \n", - "L 235.786062 159.156 \n", - "L 241.738062 151.596 \n", - "L 247.690062 140.256 \n", - "L 253.642062 136.476 \n", - "L 259.594062 125.136 \n", - "L 265.546062 125.136 \n", - "L 271.498062 121.356 \n", - "L 277.450062 117.576 \n", - "L 283.402062 113.796 \n", - "L 289.354062 106.236 \n", - "L 295.306062 102.456 \n", - "L 301.258062 102.456 \n", - "L 307.210062 98.676 \n", - "L 313.162062 94.896 \n", - "L 319.114062 87.336 \n", - "L 325.066062 72.216 \n", + "L 63.178062 268.776 \n", + "L 69.130062 268.776 \n", + "L 75.082062 268.776 \n", + "L 81.034062 268.776 \n", + "L 86.986062 264.996 \n", + "L 92.938062 264.996 \n", + "L 98.890062 261.216 \n", + "L 104.842062 253.656 \n", + "L 110.794062 246.096 \n", + "L 116.746062 242.316 \n", + "L 122.698062 242.316 \n", + "L 128.650062 234.756 \n", + "L 134.602062 230.976 \n", + "L 140.554062 223.416 \n", + "L 146.506062 219.636 \n", + "L 152.458062 212.076 \n", + "L 158.410062 204.516 \n", + "L 164.362062 200.736 \n", + "L 170.314062 200.736 \n", + "L 176.266062 200.736 \n", + "L 182.218062 185.616 \n", + "L 188.170062 181.836 \n", + "L 194.122062 170.496 \n", + "L 200.074062 162.936 \n", + "L 206.026062 159.156 \n", + "L 211.978062 155.376 \n", + "L 217.930062 136.476 \n", + "L 223.882062 128.916 \n", + "L 229.834062 113.796 \n", + "L 235.786062 110.016 \n", + "L 241.738062 106.236 \n", + "L 247.690062 102.456 \n", + "L 253.642062 91.116 \n", + "L 259.594062 83.556 \n", + "L 265.546062 83.556 \n", + "L 271.498062 83.556 \n", + "L 277.450062 83.556 \n", + "L 283.402062 83.556 \n", + "L 289.354062 79.776 \n", + "L 295.306062 72.216 \n", + "L 301.258062 72.216 \n", + "L 307.210062 72.216 \n", + "L 313.162062 68.436 \n", + "L 319.114062 64.656 \n", + "L 325.066062 64.656 \n", "L 331.018062 60.876 \n", - "L 336.970062 57.096 \n", - "L 342.922062 57.096 \n", + "L 336.970062 60.876 \n", + "L 342.922062 53.316 \n", "L 348.874062 49.536 \n", - "L 354.826062 41.976 \n", + "L 354.826062 45.756 \n", "L 360.778062 41.976 \n", - "L 366.730062 38.196 \n", - "L 372.682062 38.196 \n", - "L 378.634062 38.196 \n", - "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "L 366.730062 41.976 \n", + "L 372.682062 41.976 \n", + "L 378.634062 41.976 \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22916,69 +22916,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -23043,69 +23043,69 @@ "L 366.730062 45.756 \n", "L 372.682062 41.976 \n", "L 378.634062 38.196 \n", - "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -23170,69 +23170,69 @@ "L 366.730062 41.976 \n", "L 372.682062 41.976 \n", "L 378.634062 41.976 \n", - "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -23297,69 +23297,69 @@ "L 366.730062 41.976 \n", "L 372.682062 41.976 \n", "L 378.634062 38.196 \n", - "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -23413,7 +23413,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#pda92b9b19b)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23788,7 +23788,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23796,7 +23796,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23804,7 +23804,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23812,7 +23812,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23820,7 +23820,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23828,7 +23828,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23836,7 +23836,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23844,7 +23844,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23852,7 +23852,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23860,7 +23860,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23868,7 +23868,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23876,7 +23876,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23884,7 +23884,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23892,7 +23892,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23900,7 +23900,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23908,7 +23908,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23916,7 +23916,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23924,7 +23924,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23932,7 +23932,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23940,7 +23940,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23948,7 +23948,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23956,7 +23956,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23964,7 +23964,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23972,7 +23972,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23980,7 +23980,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23988,7 +23988,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23996,7 +23996,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24004,7 +24004,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24012,7 +24012,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24048,7 +24048,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24056,7 +24056,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24064,7 +24064,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24072,7 +24072,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24080,7 +24080,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24121,7 +24121,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24129,7 +24129,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24137,7 +24137,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24145,7 +24145,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24153,7 +24153,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24161,7 +24161,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24169,7 +24169,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24177,7 +24177,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24185,7 +24185,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24193,7 +24193,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24201,7 +24201,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24209,7 +24209,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24217,7 +24217,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24225,7 +24225,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24233,7 +24233,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24241,7 +24241,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24249,7 +24249,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24257,7 +24257,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24265,7 +24265,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24273,7 +24273,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24281,7 +24281,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24289,7 +24289,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24297,7 +24297,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24305,7 +24305,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24313,7 +24313,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24321,7 +24321,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24329,7 +24329,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24337,7 +24337,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24345,7 +24345,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24353,7 +24353,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24361,7 +24361,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24369,7 +24369,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24377,7 +24377,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24385,7 +24385,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24412,7 +24412,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24508,7 +24508,7 @@ "L 202.198337 369.430962 \n", "\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24688,7 +24688,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24704,7 +24704,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf87669db4e749079ab36a09187ae178", + "model_id": "236e8f1817a0441d9a2c8848ff20f2cc", "version_major": 2, "version_minor": 0 }, @@ -24718,7 +24718,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2c507730564f4c80b26a748dbd17d88d", + "model_id": "d244c7e85cd54e39a6b0369b8e838ef7", "version_major": 2, "version_minor": 0 }, @@ -24740,7 +24740,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:24:29.723560\n", + " 2024-08-02T22:05:14.957944\n", " image/svg+xml\n", " \n", " \n", @@ -24785,12 +24785,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24835,7 +24835,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24876,7 +24876,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24912,7 +24912,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24959,7 +24959,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25015,7 +25015,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25282,16 +25282,16 @@ " \n", " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25343,11 +25343,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25392,11 +25392,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25414,11 +25414,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25448,11 +25448,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25470,11 +25470,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25492,11 +25492,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25514,11 +25514,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25536,11 +25536,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25695,68 +25695,68 @@ " \n", " \n", + "L 378.634062 41.976 \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -25894,69 +25894,69 @@ "L 366.730062 45.756 \n", "L 372.682062 38.196 \n", "L 378.634062 38.196 \n", - "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26021,69 +26021,69 @@ "L 366.730062 45.756 \n", "L 372.682062 45.756 \n", "L 378.634062 45.756 \n", - "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26148,69 +26148,69 @@ "L 366.730062 45.756 \n", "L 372.682062 45.756 \n", "L 378.634062 45.756 \n", - "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26275,136 +26275,136 @@ "L 366.730062 41.976 \n", "L 372.682062 38.196 \n", "L 378.634062 38.196 \n", - "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + "L 128.650062 219.636 \n", + "L 134.602062 215.856 \n", + "L 140.554062 208.296 \n", + "L 146.506062 200.736 \n", + "L 152.458062 189.396 \n", + "L 158.410062 181.836 \n", + "L 164.362062 181.836 \n", + "L 170.314062 181.836 \n", + "L 176.266062 178.056 \n", + "L 182.218062 166.716 \n", + "L 188.170062 162.936 \n", + "L 194.122062 155.376 \n", + "L 200.074062 151.596 \n", + "L 206.026062 151.596 \n", + "L 211.978062 151.596 \n", + "L 217.930062 136.476 \n", + "L 223.882062 132.696 \n", + "L 229.834062 125.136 \n", + "L 235.786062 121.356 \n", + "L 241.738062 117.576 \n", + "L 247.690062 113.796 \n", + "L 253.642062 106.236 \n", + "L 259.594062 94.896 \n", + "L 265.546062 94.896 \n", + "L 271.498062 94.896 \n", + "L 277.450062 94.896 \n", + "L 283.402062 91.116 \n", + "L 289.354062 87.336 \n", + "L 295.306062 83.556 \n", + "L 301.258062 83.556 \n", + "L 307.210062 83.556 \n", + "L 313.162062 83.556 \n", + "L 319.114062 83.556 \n", + "L 325.066062 83.556 \n", + "L 331.018062 79.776 \n", + "L 336.970062 79.776 \n", + "L 342.922062 75.996 \n", + "L 348.874062 75.996 \n", + "L 354.826062 72.216 \n", + "L 360.778062 72.216 \n", + "L 366.730062 68.436 \n", + "L 372.682062 68.436 \n", + "L 378.634062 60.876 \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26542,69 +26542,69 @@ "L 366.730062 68.436 \n", "L 372.682062 68.436 \n", "L 378.634062 68.436 \n", - "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26669,69 +26669,69 @@ "L 366.730062 79.776 \n", "L 372.682062 75.996 \n", "L 378.634062 72.216 \n", - "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26796,69 +26796,69 @@ "L 366.730062 60.876 \n", "L 372.682062 60.876 \n", "L 378.634062 60.876 \n", - "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26923,69 +26923,69 @@ "L 366.730062 68.436 \n", "L 372.682062 57.096 \n", "L 378.634062 57.096 \n", - "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -27039,7 +27039,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#pcb187379bf)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27413,7 +27413,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27421,7 +27421,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27429,7 +27429,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27437,7 +27437,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27445,7 +27445,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27453,7 +27453,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27461,7 +27461,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27469,7 +27469,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27477,7 +27477,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27485,7 +27485,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27493,7 +27493,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27501,7 +27501,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27509,7 +27509,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27517,7 +27517,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27525,7 +27525,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27533,7 +27533,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27541,7 +27541,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27549,7 +27549,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27557,7 +27557,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27565,7 +27565,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27573,7 +27573,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27581,7 +27581,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27589,7 +27589,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27597,7 +27597,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27605,7 +27605,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27613,7 +27613,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27621,7 +27621,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27629,7 +27629,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27637,7 +27637,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27673,7 +27673,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27681,7 +27681,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27689,7 +27689,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27697,7 +27697,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27705,7 +27705,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27746,7 +27746,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27754,7 +27754,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27762,7 +27762,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27770,7 +27770,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27778,7 +27778,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27786,7 +27786,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27794,7 +27794,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27802,7 +27802,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27810,7 +27810,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27818,7 +27818,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27826,7 +27826,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27834,7 +27834,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27842,7 +27842,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27850,7 +27850,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27858,7 +27858,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27866,7 +27866,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27874,7 +27874,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27882,7 +27882,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27890,7 +27890,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27898,7 +27898,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27906,7 +27906,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27914,7 +27914,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27922,7 +27922,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27930,7 +27930,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27938,7 +27938,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27946,7 +27946,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27954,7 +27954,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27962,7 +27962,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27970,7 +27970,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27978,7 +27978,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27986,7 +27986,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27994,7 +27994,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28002,7 +28002,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28010,7 +28010,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28037,7 +28037,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28133,7 +28133,7 @@ "L 202.198337 369.430962 \n", "\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28313,7 +28313,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28329,7 +28329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "44ae33129e514c56b3d439656884a332", + "model_id": "f7a88b73e8144f34b9f2ac919eec17d6", "version_major": 2, "version_minor": 0 }, @@ -28343,14 +28343,14 @@ ], "source": [ "assert len(COOLING_RATES) == 3\n", - "base_cooling_rate = COOLING_RATES[1]\n", + "abs_base_cooling_rate = abs(COOLING_RATES[1])\n", "dT = TEMP_RANGE[0] - TEMP_RANGE[1]\n", "\n", "for ln_s_geom in (BEST_FIT_LN_S_GEOM, 5*BEST_FIT_LN_S_GEOM, 10*BEST_FIT_LN_S_GEOM): \n", " run_and_plot(\n", " **params,\n", " ln_s_geom_arg=ln_s_geom,\n", - " times=np.asarray([0, dT / base_cooling_rate]),\n", + " times=np.asarray([0, dT / abs_base_cooling_rate]),\n", " temps=np.asarray(list(TEMP_RANGE))\n", " )" ] @@ -28369,7 +28369,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c9257ae8271e4bee987c420488699079", + "model_id": "dc669745cf024868a52e8c484de0f3ae", "version_major": 2, "version_minor": 0 }, @@ -28391,7 +28391,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:24:47.351953\n", + " 2024-08-02T22:05:32.439672\n", " image/svg+xml\n", " \n", " \n", @@ -28436,12 +28436,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28486,7 +28486,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28527,7 +28527,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28563,7 +28563,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28610,7 +28610,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28666,7 +28666,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28933,16 +28933,16 @@ " \n", " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28994,11 +28994,11 @@ " \n", " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29043,11 +29043,11 @@ " \n", " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29065,11 +29065,11 @@ " \n", " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29099,11 +29099,11 @@ " \n", " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29121,11 +29121,11 @@ " \n", " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29143,11 +29143,11 @@ " \n", " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29165,11 +29165,11 @@ " \n", " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29187,11 +29187,11 @@ " \n", " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29345,51 +29345,51 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -29545,69 +29545,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -29672,69 +29672,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -29799,69 +29799,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -29926,69 +29926,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -29997,65 +29997,65 @@ "L 33.418062 276.336 \n", "L 39.370062 276.336 \n", "L 45.322062 276.336 \n", - "L 51.274062 276.336 \n", - "L 57.226062 276.336 \n", - "L 63.178062 276.336 \n", - "L 69.130062 276.336 \n", - "L 75.082062 276.336 \n", - "L 81.034062 276.336 \n", - "L 86.986062 276.336 \n", - "L 92.938062 276.336 \n", - "L 98.890062 276.336 \n", - "L 104.842062 272.556 \n", - "L 110.794062 272.556 \n", - "L 116.746062 272.556 \n", - "L 122.698062 272.556 \n", - "L 128.650062 272.556 \n", - "L 134.602062 272.556 \n", - "L 140.554062 272.556 \n", - "L 146.506062 272.556 \n", - "L 152.458062 272.556 \n", - "L 158.410062 272.556 \n", - "L 164.362062 268.776 \n", - "L 170.314062 268.776 \n", - "L 176.266062 268.776 \n", - "L 182.218062 268.776 \n", - "L 188.170062 268.776 \n", - "L 194.122062 268.776 \n", - "L 200.074062 264.996 \n", - "L 206.026062 264.996 \n", - "L 211.978062 264.996 \n", - "L 217.930062 264.996 \n", - "L 223.882062 257.436 \n", - "L 229.834062 253.656 \n", + "L 51.274062 272.556 \n", + "L 57.226062 272.556 \n", + "L 63.178062 272.556 \n", + "L 69.130062 272.556 \n", + "L 75.082062 272.556 \n", + "L 81.034062 272.556 \n", + "L 86.986062 272.556 \n", + "L 92.938062 272.556 \n", + "L 98.890062 272.556 \n", + "L 104.842062 268.776 \n", + "L 110.794062 264.996 \n", + "L 116.746062 264.996 \n", + "L 122.698062 264.996 \n", + "L 128.650062 264.996 \n", + "L 134.602062 264.996 \n", + "L 140.554062 264.996 \n", + "L 146.506062 264.996 \n", + "L 152.458062 264.996 \n", + "L 158.410062 264.996 \n", + "L 164.362062 264.996 \n", + "L 170.314062 264.996 \n", + "L 176.266062 264.996 \n", + "L 182.218062 264.996 \n", + "L 188.170062 264.996 \n", + "L 194.122062 257.436 \n", + "L 200.074062 257.436 \n", + "L 206.026062 257.436 \n", + "L 211.978062 257.436 \n", + "L 217.930062 253.656 \n", + "L 223.882062 253.656 \n", + "L 229.834062 249.876 \n", "L 235.786062 246.096 \n", - "L 241.738062 234.756 \n", - "L 247.690062 230.976 \n", - "L 253.642062 227.196 \n", - "L 259.594062 219.636 \n", - "L 265.546062 215.856 \n", - "L 271.498062 212.076 \n", - "L 277.450062 204.516 \n", + "L 241.738062 242.316 \n", + "L 247.690062 242.316 \n", + "L 253.642062 238.536 \n", + "L 259.594062 234.756 \n", + "L 265.546062 219.636 \n", + "L 271.498062 219.636 \n", + "L 277.450062 212.076 \n", "L 283.402062 204.516 \n", - "L 289.354062 200.736 \n", - "L 295.306062 193.176 \n", - "L 301.258062 193.176 \n", - "L 307.210062 185.616 \n", - "L 313.162062 174.276 \n", - "L 319.114062 174.276 \n", - "L 325.066062 155.376 \n", - "L 331.018062 144.036 \n", - "L 336.970062 132.696 \n", - "L 342.922062 128.916 \n", - "L 348.874062 117.576 \n", - "L 354.826062 113.796 \n", - "L 360.778062 102.456 \n", - "L 366.730062 87.336 \n", - "L 372.682062 79.776 \n", - "L 378.634062 72.216 \n", - "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "L 289.354062 189.396 \n", + "L 295.306062 189.396 \n", + "L 301.258062 181.836 \n", + "L 307.210062 178.056 \n", + "L 313.162062 166.716 \n", + "L 319.114062 159.156 \n", + "L 325.066062 159.156 \n", + "L 331.018062 128.916 \n", + "L 336.970062 121.356 \n", + "L 342.922062 110.016 \n", + "L 348.874062 83.556 \n", + "L 354.826062 75.996 \n", + "L 360.778062 64.656 \n", + "L 366.730062 57.096 \n", + "L 372.682062 57.096 \n", + "L 378.634062 49.536 \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30193,69 +30193,69 @@ "L 366.730062 72.216 \n", "L 372.682062 64.656 \n", "L 378.634062 57.096 \n", - "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30320,69 +30320,69 @@ "L 366.730062 64.656 \n", "L 372.682062 57.096 \n", "L 378.634062 49.536 \n", - "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30447,69 +30447,69 @@ "L 366.730062 60.876 \n", "L 372.682062 53.316 \n", "L 378.634062 49.536 \n", - "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30574,69 +30574,69 @@ "L 366.730062 60.876 \n", "L 372.682062 53.316 \n", "L 378.634062 45.756 \n", - "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30690,7 +30690,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#p139e779e28)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31065,7 +31065,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31073,7 +31073,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31081,7 +31081,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31089,7 +31089,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31097,7 +31097,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31105,7 +31105,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31113,7 +31113,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31121,7 +31121,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31129,7 +31129,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31137,7 +31137,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31145,7 +31145,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31153,7 +31153,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31161,7 +31161,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31169,7 +31169,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31177,7 +31177,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31185,7 +31185,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31193,7 +31193,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31201,7 +31201,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31209,7 +31209,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31217,7 +31217,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31225,7 +31225,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31233,7 +31233,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31241,7 +31241,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31249,7 +31249,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31257,7 +31257,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31265,7 +31265,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31273,7 +31273,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31281,7 +31281,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31289,7 +31289,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31325,7 +31325,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31333,7 +31333,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31341,7 +31341,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31349,7 +31349,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31357,7 +31357,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31398,7 +31398,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31406,7 +31406,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31414,7 +31414,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31422,7 +31422,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31430,7 +31430,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31438,7 +31438,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31446,7 +31446,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31454,7 +31454,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31462,7 +31462,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31470,7 +31470,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31478,7 +31478,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31486,7 +31486,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31494,7 +31494,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31502,7 +31502,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31510,7 +31510,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31518,7 +31518,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31526,7 +31526,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31534,7 +31534,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31542,7 +31542,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31550,7 +31550,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31558,7 +31558,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31566,7 +31566,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31574,7 +31574,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31582,7 +31582,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31590,7 +31590,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31598,7 +31598,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31606,7 +31606,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31614,7 +31614,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31622,7 +31622,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31630,7 +31630,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31638,7 +31638,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31646,7 +31646,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31654,7 +31654,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31662,7 +31662,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31689,7 +31689,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31785,7 +31785,7 @@ "L 202.198337 369.430962 \n", "\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31965,7 +31965,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31981,7 +31981,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ced3eddcaa6a402e8a97d81c82c392fc", + "model_id": "32a355dcde484cc9b236c321372fd6e9", "version_major": 2, "version_minor": 0 }, @@ -31995,7 +31995,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "462c359be9f44e1a9c1112ee6c1183b0", + "model_id": "3d1b5a6a3e894684b71ed1b5319d3ce9", "version_major": 2, "version_minor": 0 }, @@ -32017,7 +32017,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:25:04.979048\n", + " 2024-08-02T22:05:49.540638\n", " image/svg+xml\n", " \n", " \n", @@ -32062,12 +32062,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32112,7 +32112,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32153,7 +32153,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32189,7 +32189,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32236,7 +32236,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32292,7 +32292,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32559,16 +32559,16 @@ " \n", " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32620,11 +32620,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32669,11 +32669,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32691,11 +32691,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32725,11 +32725,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32747,11 +32747,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32769,11 +32769,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32791,11 +32791,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32813,11 +32813,11 @@ " \n", " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32971,51 +32971,51 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -33171,69 +33171,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p579461f69c)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -33298,69 +33298,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p579461f69c)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -33425,69 +33425,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p579461f69c)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -33552,69 +33552,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p579461f69c)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -33622,7 +33622,7 @@ "L 27.466062 276.336 \n", "L 33.418062 276.336 \n", "L 39.370062 276.336 \n", - "L 45.322062 272.556 \n", + "L 45.322062 276.336 \n", "L 51.274062 272.556 \n", "L 57.226062 272.556 \n", "L 63.178062 272.556 \n", @@ -33633,55 +33633,55 @@ "L 92.938062 272.556 \n", "L 98.890062 272.556 \n", "L 104.842062 264.996 \n", - "L 110.794062 264.996 \n", - "L 116.746062 264.996 \n", - "L 122.698062 264.996 \n", - "L 128.650062 264.996 \n", - "L 134.602062 264.996 \n", - "L 140.554062 264.996 \n", - "L 146.506062 257.436 \n", - "L 152.458062 257.436 \n", - "L 158.410062 253.656 \n", - "L 164.362062 249.876 \n", - "L 170.314062 249.876 \n", - "L 176.266062 246.096 \n", - "L 182.218062 238.536 \n", - "L 188.170062 230.976 \n", - "L 194.122062 230.976 \n", - "L 200.074062 223.416 \n", - "L 206.026062 208.296 \n", - "L 211.978062 200.736 \n", - "L 217.930062 200.736 \n", - "L 223.882062 178.056 \n", - "L 229.834062 170.496 \n", - "L 235.786062 155.376 \n", - "L 241.738062 136.476 \n", - "L 247.690062 117.576 \n", - "L 253.642062 113.796 \n", - "L 259.594062 102.456 \n", - "L 265.546062 94.896 \n", - "L 271.498062 75.996 \n", - "L 277.450062 68.436 \n", + "L 110.794062 261.216 \n", + "L 116.746062 261.216 \n", + "L 122.698062 261.216 \n", + "L 128.650062 257.436 \n", + "L 134.602062 253.656 \n", + "L 140.554062 242.316 \n", + "L 146.506062 238.536 \n", + "L 152.458062 234.756 \n", + "L 158.410062 230.976 \n", + "L 164.362062 223.416 \n", + "L 170.314062 215.856 \n", + "L 176.266062 212.076 \n", + "L 182.218062 200.736 \n", + "L 188.170062 196.956 \n", + "L 194.122062 185.616 \n", + "L 200.074062 178.056 \n", + "L 206.026062 174.276 \n", + "L 211.978062 166.716 \n", + "L 217.930062 144.036 \n", + "L 223.882062 132.696 \n", + "L 229.834062 121.356 \n", + "L 235.786062 117.576 \n", + "L 241.738062 113.796 \n", + "L 247.690062 102.456 \n", + "L 253.642062 87.336 \n", + "L 259.594062 75.996 \n", + "L 265.546062 72.216 \n", + "L 271.498062 72.216 \n", + "L 277.450062 64.656 \n", "L 283.402062 64.656 \n", - "L 289.354062 57.096 \n", - "L 295.306062 53.316 \n", - "L 301.258062 53.316 \n", - "L 307.210062 53.316 \n", - "L 313.162062 49.536 \n", - "L 319.114062 49.536 \n", - "L 325.066062 49.536 \n", - "L 331.018062 41.976 \n", - "L 336.970062 38.196 \n", - "L 342.922062 38.196 \n", + "L 289.354062 60.876 \n", + "L 295.306062 49.536 \n", + "L 301.258062 45.756 \n", + "L 307.210062 45.756 \n", + "L 313.162062 38.196 \n", + "L 319.114062 34.416 \n", + "L 325.066062 34.416 \n", + "L 331.018062 34.416 \n", + "L 336.970062 34.416 \n", + "L 342.922062 34.416 \n", "L 348.874062 34.416 \n", "L 354.826062 34.416 \n", "L 360.778062 34.416 \n", "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p579461f69c)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -33819,69 +33819,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p579461f69c)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -33946,69 +33946,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p579461f69c)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -34073,69 +34073,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p579461f69c)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -34200,69 +34200,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p579461f69c)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -34316,7 +34316,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#p579461f69c)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34691,7 +34691,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34699,7 +34699,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34707,7 +34707,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34715,7 +34715,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34723,7 +34723,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34731,7 +34731,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34739,7 +34739,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34747,7 +34747,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34755,7 +34755,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34763,7 +34763,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34771,7 +34771,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34779,7 +34779,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34787,7 +34787,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34795,7 +34795,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34803,7 +34803,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34811,7 +34811,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34819,7 +34819,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34827,7 +34827,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34835,7 +34835,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34843,7 +34843,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34851,7 +34851,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34859,7 +34859,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34867,7 +34867,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34875,7 +34875,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34883,7 +34883,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34891,7 +34891,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34899,7 +34899,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34907,7 +34907,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34915,7 +34915,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34951,7 +34951,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34959,7 +34959,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34967,7 +34967,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34975,7 +34975,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34983,7 +34983,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35024,7 +35024,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35032,7 +35032,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35040,7 +35040,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35048,7 +35048,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35056,7 +35056,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35064,7 +35064,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35072,7 +35072,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35080,7 +35080,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35088,7 +35088,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35096,7 +35096,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35104,7 +35104,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35112,7 +35112,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35120,7 +35120,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35128,7 +35128,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35136,7 +35136,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35144,7 +35144,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35152,7 +35152,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35160,7 +35160,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35168,7 +35168,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35176,7 +35176,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35184,7 +35184,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35192,7 +35192,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35200,7 +35200,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35208,7 +35208,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35216,7 +35216,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35224,7 +35224,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35232,7 +35232,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35240,7 +35240,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35248,7 +35248,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35256,7 +35256,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35264,7 +35264,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35272,7 +35272,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35280,7 +35280,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35288,7 +35288,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35315,7 +35315,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35411,7 +35411,7 @@ "L 202.198337 369.430962 \n", "\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35591,7 +35591,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35607,7 +35607,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3e325c963b134974940c35d441ccc602", + "model_id": "46289243883948978320f0a983f2cb36", "version_major": 2, "version_minor": 0 }, @@ -35621,7 +35621,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f92b7c2b53064e3794a05b89172f59be", + "model_id": "18c01b31099541a4b9f48c657d915fed", "version_major": 2, "version_minor": 0 }, @@ -35643,7 +35643,7 @@ " \n", " \n", " \n", - " 2024-06-11T14:25:23.100891\n", + " 2024-08-02T22:06:06.136391\n", " image/svg+xml\n", " \n", " \n", @@ -35688,12 +35688,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35738,7 +35738,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35779,7 +35779,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35815,7 +35815,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35862,7 +35862,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35918,7 +35918,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36185,16 +36185,16 @@ " \n", " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36246,11 +36246,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36295,11 +36295,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36317,11 +36317,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36351,11 +36351,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36373,11 +36373,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36395,11 +36395,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36417,11 +36417,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36439,11 +36439,11 @@ " \n", " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36597,51 +36597,51 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -36797,69 +36797,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pa7b8d71377)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -36924,69 +36924,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pa7b8d71377)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -37051,69 +37051,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pa7b8d71377)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -37178,111 +37178,111 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pa7b8d71377)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -37445,69 +37445,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pa7b8d71377)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -37572,69 +37572,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pa7b8d71377)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -37699,69 +37699,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pa7b8d71377)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -37826,69 +37826,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pa7b8d71377)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -37942,7 +37942,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#pa7b8d71377)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38317,7 +38317,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38325,7 +38325,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38333,7 +38333,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38341,7 +38341,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38349,7 +38349,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38357,7 +38357,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38365,7 +38365,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38373,7 +38373,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38381,7 +38381,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38389,7 +38389,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38397,7 +38397,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38405,7 +38405,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38413,7 +38413,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38421,7 +38421,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38429,7 +38429,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38437,7 +38437,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38445,7 +38445,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38453,7 +38453,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38461,7 +38461,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38469,7 +38469,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38477,7 +38477,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38485,7 +38485,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38493,7 +38493,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38501,7 +38501,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38509,7 +38509,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38517,7 +38517,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38525,7 +38525,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38533,7 +38533,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38541,7 +38541,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38577,7 +38577,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38585,7 +38585,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38593,7 +38593,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38601,7 +38601,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38609,7 +38609,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38650,7 +38650,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38658,7 +38658,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38666,7 +38666,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38674,7 +38674,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38682,7 +38682,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38690,7 +38690,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38698,7 +38698,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38706,7 +38706,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38714,7 +38714,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38722,7 +38722,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38730,7 +38730,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38738,7 +38738,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38746,7 +38746,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38754,7 +38754,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38762,7 +38762,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38770,7 +38770,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38778,7 +38778,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38786,7 +38786,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38794,7 +38794,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38802,7 +38802,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38810,7 +38810,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38818,7 +38818,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38826,7 +38826,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38834,7 +38834,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38842,7 +38842,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38850,7 +38850,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38858,7 +38858,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38866,7 +38866,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38874,7 +38874,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38882,7 +38882,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38890,7 +38890,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38898,7 +38898,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38906,7 +38906,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38914,7 +38914,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38941,7 +38941,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -39037,7 +39037,7 @@ "L 202.198337 369.430962 \n", "\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -39217,7 +39217,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -39233,7 +39233,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "44bbf9887ed94d809e51d777ee2e76b3", + "model_id": "c9e593c0ccb84c9dae9ccc8692999356", "version_major": 2, "version_minor": 0 }, @@ -39246,11 +39246,11 @@ } ], "source": [ - "for cooling_rate in COOLING_RATES:\n", + "for abs_cooling_rate in [abs(c) for c in COOLING_RATES]:\n", " run_and_plot(\n", " **params,\n", " ln_s_geom_arg=BEST_FIT_LN_S_GEOM,\n", - " times=np.asarray([0, dT / cooling_rate]),\n", + " times=np.asarray([0, dT / abs_cooling_rate]),\n", " temps=np.asarray(list(TEMP_RANGE))\n", " )" ] From 0bcec81ffb207da3636e917bafdf8b17b94f76b6 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Tue, 6 Aug 2024 10:46:53 +0200 Subject: [PATCH 09/41] display one frame in notebook + cleanups --- .../paraview_hello_world.ipynb | 214 ++++++++++++++++-- 1 file changed, 192 insertions(+), 22 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb index 1485c06de..b7f848fa2 100644 --- a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb @@ -2,25 +2,28 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "ee889545", "metadata": {}, "outputs": [], "source": [ + "import subprocess\n", + "import glob\n", + "import os\n", + "import platform\n", + "\n", "from PySDM_examples.Arabas_et_al_2015 import Settings, SpinUp\n", "from PySDM_examples.Szumowski_et_al_1998 import Simulation, Storage\n", "from PySDM.exporters import VTKExporter\n", "from PySDM_examples.utils import ProgBarController\n", "from PySDM import products as PySDM_products\n", - "import subprocess\n", - "import glob\n", - "import os\n", - "import platform" + "\n", + "from IPython.display import IFrame, display" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "f0d2581f", "metadata": {}, "outputs": [], @@ -40,10 +43,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "74c00944", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a670072d708f480092e35ea5acf98b3a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='progress:', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "settings = Settings()\n", "storage = Storage()\n", @@ -66,10 +84,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "id": "2030d8e7", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Overwriting pvscript.py\n" + ] + } + ], "source": [ "%%writefile pvscript.py\n", "\n", @@ -113,7 +139,7 @@ "palette_invert = False\n", "color_range = [0, 10]\n", "logscale = False\n", - "title = var + ' [um]'\n", + "title = var + ' [μm]'\n", "\n", "calculator = pvs.Calculator(reader_attr)\n", "calculator.Function = f'{var}*{multiplier}'\n", @@ -155,7 +181,7 @@ "palette_invert = True\n", "color_range = [0, 10]\n", "logscale = False\n", - "title = var + ' [um]'\n", + "title = var + ' [μm]'\n", "\n", "display_prod = pvs.Show(reader_prod)\n", "display_prod.SetRepresentationType('Surface')\n", @@ -193,7 +219,9 @@ "cam.Dolly(1.45)\n", "\n", "# save animation to an Ogg Vorbis file\n", - "pvs.SaveAnimation('output/anim.ogv', view, FrameRate=10)\n", + "anim_file = 'output/anim.ogv'\n", + "print(anim_file)\n", + "pvs.SaveAnimation(anim_file, view, FrameRate=10)\n", "\n", "# save animation frame as pdfs\n", "exporters = pvs.servermanager.createModule('exporters')\n", @@ -202,10 +230,11 @@ "exporter.GL2PSdepthsortmethod = 'BSP sorting (slow, best)'\n", "for t in reader_prod.TimestepValues:\n", " view.ViewTime = t\n", + " exporter.FileName = f'output/anim_frame_{t}.pdf'\n", + " print(exporter.FileName)\n", " for reader in (reader_prod, reader_attr):\n", " reader.UpdatePipeline(t)\n", " exporter.SetView(view)\n", - " exporter.FileName = f'output/anim_frame_{t}.pdf'\n", " exporter.Write()" ] }, @@ -219,13 +248,114 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "id": "79477d3d", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "output/anim_frame_0.0.pdf\n", + "output/anim_frame_60.0.pdf\n", + "output/anim_frame_120.0.pdf\n", + "output/anim_frame_180.0.pdf\n", + "output/anim_frame_240.0.pdf\n", + "output/anim_frame_300.0.pdf\n", + "output/anim_frame_360.0.pdf\n", + "output/anim_frame_420.0.pdf\n", + "output/anim_frame_480.0.pdf\n", + "output/anim_frame_540.0.pdf\n", + "output/anim_frame_600.0.pdf\n", + "output/anim_frame_660.0.pdf\n", + "output/anim_frame_720.0.pdf\n", + "output/anim_frame_780.0.pdf\n", + "output/anim_frame_840.0.pdf\n", + "output/anim_frame_900.0.pdf\n", + "output/anim_frame_960.0.pdf\n", + "output/anim_frame_1020.0.pdf\n", + "output/anim_frame_1080.0.pdf\n", + "output/anim_frame_1140.0.pdf\n", + "output/anim_frame_1200.0.pdf\n", + "output/anim_frame_1260.0.pdf\n", + "output/anim_frame_1320.0.pdf\n", + "output/anim_frame_1380.0.pdf\n", + "output/anim_frame_1440.0.pdf\n", + "output/anim_frame_1500.0.pdf\n", + "output/anim_frame_1560.0.pdf\n", + "output/anim_frame_1620.0.pdf\n", + "output/anim_frame_1680.0.pdf\n", + "output/anim_frame_1740.0.pdf\n", + "output/anim_frame_1800.0.pdf\n", + "output/anim_frame_1860.0.pdf\n", + "output/anim_frame_1920.0.pdf\n", + "output/anim_frame_1980.0.pdf\n", + "output/anim_frame_2040.0.pdf\n", + "output/anim_frame_2100.0.pdf\n", + "output/anim_frame_2160.0.pdf\n", + "output/anim_frame_2220.0.pdf\n", + "output/anim_frame_2280.0.pdf\n", + "output/anim_frame_2340.0.pdf\n", + "output/anim_frame_2400.0.pdf\n", + "output/anim_frame_2460.0.pdf\n", + "output/anim_frame_2520.0.pdf\n", + "output/anim_frame_2580.0.pdf\n", + "output/anim_frame_2640.0.pdf\n", + "output/anim_frame_2700.0.pdf\n", + "output/anim_frame_2760.0.pdf\n", + "output/anim_frame_2820.0.pdf\n", + "output/anim_frame_2880.0.pdf\n", + "output/anim_frame_2940.0.pdf\n", + "output/anim_frame_3000.0.pdf\n", + "output/anim_frame_3060.0.pdf\n", + "output/anim_frame_3120.0.pdf\n", + "output/anim_frame_3180.0.pdf\n", + "output/anim_frame_3240.0.pdf\n", + "output/anim_frame_3300.0.pdf\n", + "output/anim_frame_3360.0.pdf\n", + "output/anim_frame_3420.0.pdf\n", + "output/anim_frame_3480.0.pdf\n", + "output/anim_frame_3540.0.pdf\n", + "output/anim_frame_3600.0.pdf\n", + "output/anim_frame_3660.0.pdf\n", + "output/anim_frame_3720.0.pdf\n", + "output/anim_frame_3780.0.pdf\n", + "output/anim_frame_3840.0.pdf\n", + "output/anim_frame_3900.0.pdf\n", + "output/anim_frame_3960.0.pdf\n", + "output/anim_frame_4020.0.pdf\n", + "output/anim_frame_4080.0.pdf\n", + "output/anim_frame_4140.0.pdf\n", + "output/anim_frame_4200.0.pdf\n", + "output/anim_frame_4260.0.pdf\n", + "output/anim_frame_4320.0.pdf\n", + "output/anim_frame_4380.0.pdf\n", + "output/anim_frame_4440.0.pdf\n", + "output/anim_frame_4500.0.pdf\n", + "output/anim_frame_4560.0.pdf\n", + "output/anim_frame_4620.0.pdf\n", + "output/anim_frame_4680.0.pdf\n", + "output/anim_frame_4740.0.pdf\n", + "output/anim_frame_4800.0.pdf\n", + "output/anim_frame_4860.0.pdf\n", + "output/anim_frame_4920.0.pdf\n", + "output/anim_frame_4980.0.pdf\n", + "output/anim_frame_5040.0.pdf\n", + "output/anim_frame_5100.0.pdf\n", + "output/anim_frame_5160.0.pdf\n", + "output/anim_frame_5220.0.pdf\n", + "output/anim_frame_5280.0.pdf\n", + "output/anim_frame_5340.0.pdf\n", + "output/anim_frame_5400.0.pdf\n" + ] + } + ], "source": [ "if not ('CI' in os.environ and platform.system() == 'Windows'):\n", - " subprocess.check_output(['pvpython', 'pvscript.py'], shell=True)" + " subprocess.run(\n", + " ('pvpython', '--force-offscreen-rendering', 'pvscript.py'),\n", + " check=True,\n", + " )" ] }, { @@ -238,20 +368,60 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "id": "23e0cf61", "metadata": {}, "outputs": [], "source": [ "for file in glob.glob('output/anim_frame_*.pdf'):\n", - " subprocess.run(['ps2pdf', file, file+'_'], capture_output=True, check=True)\n", - " subprocess.call(['mv', file+'_', file])" + " subprocess.run(('ps2pdf', file, file + '_'), check=True, capture_output=True)\n", + " subprocess.run(('mv', file + '_', file), check=True)" + ] + }, + { + "cell_type": "markdown", + "id": "07365c36-7d4a-437f-b280-31259a35c1e3", + "metadata": {}, + "source": [ + "#### 5. display one frame in the notebook" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "f1a1db54-3516-4fce-8bb8-62f2c83a0b19", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display(IFrame(\"./output/anim_frame_600.0.pdf\", width=1100, height=500))" ] }, { "cell_type": "code", "execution_count": null, - "id": "9d3e4a35", + "id": "d6dbad77-51d6-4dc3-b78e-15c75d8131d2", "metadata": {}, "outputs": [], "source": [] @@ -273,7 +443,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.4" + "version": "3.9.2" }, "vscode": { "interpreter": { From 4de849b27d5ac280b21068636a9328123beb4fa1 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Tue, 6 Aug 2024 11:11:29 +0200 Subject: [PATCH 10/41] one more try at having the image displayed in the notebook on GH --- .../paraview_hello_world.ipynb | 22 ++++++------------- 1 file changed, 7 insertions(+), 15 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb index b7f848fa2..ff0136a7a 100644 --- a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 40, "id": "ee889545", "metadata": {}, "outputs": [], @@ -18,7 +18,7 @@ "from PySDM_examples.utils import ProgBarController\n", "from PySDM import products as PySDM_products\n", "\n", - "from IPython.display import IFrame, display" + "from IPython.display import HTML, display" ] }, { @@ -388,26 +388,17 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 46, "id": "f1a1db54-3516-4fce-8bb8-62f2c83a0b19", "metadata": {}, "outputs": [ { "data": { "text/html": [ - "\n", - " \n", - " " + "" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -415,7 +406,8 @@ } ], "source": [ - "display(IFrame(\"./output/anim_frame_600.0.pdf\", width=1100, height=500))" + "selected_frame = './output/anim_frame_600.0.pdf'\n", + "display(HTML(f''))" ] }, { From cd2f696b3c244d3837dedc4eafea1b706bdff63a Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Tue, 6 Aug 2024 11:23:02 +0200 Subject: [PATCH 11/41] yet one more try at having the image displayed in the notebook on GH --- .../paraview_hello_world.ipynb | 48 ++++++++++++++++++- 1 file changed, 47 insertions(+), 1 deletion(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb index ff0136a7a..f8f628cc8 100644 --- a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb @@ -412,9 +412,55 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 56, "id": "d6dbad77-51d6-4dc3-b78e-15c75d8131d2", "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def pdf2png(pdf_file, png_file):\n", + " page = 1\n", + " resolution = 100\n", + " subprocess.run(\n", + " (\"gs\",\n", + " \"-q\",\n", + " \"-dNOPAUSE\",\n", + " \"-dBATCH\",\n", + " \"-sDEVICE=pngalpha\",\n", + " \"-r\" + str(resolution),\n", + " \"-dPDFFitPage\",\n", + " \"-sOutputFile=\" + png_file,\n", + " \"-dFirstPage=\" + str(page),\n", + " \"-dLastPage=\" + str(page),\n", + " pdf_file\n", + " ),\n", + " stdout=open(os.devnull, 'w'),\n", + " stderr=subprocess.STDOUT,\n", + " check=True\n", + " )\n", + "\n", + "pdf2png(selected_frame, selected_frame + '.png')\n", + "\n", + "display(HTML(f''))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3155e063-2853-4915-8920-adf20a66fdf2", + "metadata": {}, "outputs": [], "source": [] } From ff11fdc7b9252c9dbac63e341f13172da92ebbc2 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Tue, 6 Aug 2024 11:24:44 +0200 Subject: [PATCH 12/41] and yet one more try at having the image displayed in the notebook on GH --- .../Arabas_et_al_2015/paraview_hello_world.ipynb | 14 ++++++-------- 1 file changed, 6 insertions(+), 8 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb index f8f628cc8..58a31950e 100644 --- a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 40, + "execution_count": 57, "id": "ee889545", "metadata": {}, "outputs": [], @@ -18,7 +18,7 @@ "from PySDM_examples.utils import ProgBarController\n", "from PySDM import products as PySDM_products\n", "\n", - "from IPython.display import HTML, display" + "from IPython.display import HTML, display, Image" ] }, { @@ -412,17 +412,15 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 59, "id": "d6dbad77-51d6-4dc3-b78e-15c75d8131d2", "metadata": {}, "outputs": [ { "data": { - "text/html": [ - "" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJEAAAM6CAYAAAAxMtIRAAAJMmlDQ1BkZWZhdWx0X3JnYi5pY2MAAEiJlZVnUJNZF8fv8zzphUASQodQQ5EqJYCUEFoo0quoQOidUEVsiLgCK4qINEWQRQEXXJUia0UUC4uCAhZ0gywCyrpxFVFBWXDfGZ33HT+8/5l7z2/+c+bec8/5cAEgiINlwct7YlK6wNvJjhkYFMwE3yiMn5bC8fR0A9/VuxEArcR7ut/P+a4IEZFp/OW4uLxy+SmCdACg7GXWzEpPWeGjy0wPj//CZ1dYsFzgMt9Y4eh/eexLzr8s+pLj681dfhUKABwp+hsO/4b/c++KVDiC9NioyGymT3JUelaYIJKZttIJHpfL9BQkR8UmRH5T8P+V/B2lR2anr0RucsomQWx0TDrzfw41MjA0BF9n8cbrS48hRv9/z2dFX73kegDYcwAg+7564ZUAdO4CQPrRV09tua+UfAA67vAzBJn/eqiVDQ0IgALoQAYoAlWgCXSBETADlsAWOAAX4AF8QRDYAPggBiQCAcgCuWAHKABFYB84CKpALWgATaAVnAad4Dy4Aq6D2+AuGAaPgRBMgpdABN6BBQiCsBAZokEykBKkDulARhAbsoYcIDfIGwqCQqFoKAnKgHKhnVARVApVQXVQE/QLdA66At2EBqGH0Dg0A/0NfYQRmATTYQVYA9aH2TAHdoV94fVwNJwK58D58F64Aq6HT8Id8BX4NjwMC+GX8BwCECLCQJQRXYSNcBEPJBiJQgTIVqQQKUfqkVakG+lD7iFCZBb5gMKgaCgmShdliXJG+aH4qFTUVlQxqgp1AtWB6kXdQ42jRKjPaDJaHq2DtkDz0IHoaHQWugBdjm5Et6OvoYfRk+h3GAyGgWFhzDDOmCBMHGYzphhzGNOGuYwZxExg5rBYrAxWB2uF9cCGYdOxBdhK7EnsJewQdhL7HkfEKeGMcI64YFwSLg9XjmvGXcQN4aZwC3hxvDreAu+Bj8BvwpfgG/Dd+Dv4SfwCQYLAIlgRfAlxhB2ECkIr4RphjPCGSCSqEM2JXsRY4nZiBfEU8QZxnPiBRCVpk7ikEFIGaS/pOOky6SHpDZlM1iDbkoPJ6eS95CbyVfJT8nsxmpieGE8sQmybWLVYh9iQ2CsKnqJO4VA2UHIo5ZQzlDuUWXG8uIY4VzxMfKt4tfg58VHxOQmahKGEh0SiRLFEs8RNiWkqlqpBdaBGUPOpx6hXqRM0hKZK49L4tJ20Bto12iQdQ2fRefQ4ehH9Z/oAXSRJlTSW9JfMlqyWvCApZCAMDQaPkcAoYZxmjDA+SilIcaQipfZItUoNSc1Ly0nbSkdKF0q3SQ9Lf5RhyjjIxMvsl+mUeSKLktWW9ZLNkj0ie012Vo4uZynHlyuUOy33SB6W15b3lt8sf0y+X35OQVHBSSFFoVLhqsKsIkPRVjFOsUzxouKMEk3JWilWqUzpktILpiSTw0xgVjB7mSJleWVn5QzlOuUB5QUVloqfSp5Km8oTVYIqWzVKtUy1R1WkpqTmrpar1qL2SB2vzlaPUT+k3qc+r8HSCNDYrdGpMc2SZvFYOawW1pgmWdNGM1WzXvO+FkaLrRWvdVjrrjasbaIdo12tfUcH1jHVidU5rDO4Cr3KfFXSqvpVo7okXY5upm6L7rgeQ89NL0+vU++Vvpp+sP5+/T79zwYmBgkGDQaPDamGLoZ5ht2GfxtpG/GNqo3uryavdly9bXXX6tfGOsaRxkeMH5jQTNxNdpv0mHwyNTMVmLaazpipmYWa1ZiNsulsT3Yx+4Y52tzOfJv5efMPFqYW6RanLf6y1LWMt2y2nF7DWhO5pmHNhJWKVZhVnZXQmmkdan3UWmijbBNmU2/zzFbVNsK20XaKo8WJ45zkvLIzsBPYtdvNcy24W7iX7RF7J/tC+wEHqoOfQ5XDU0cVx2jHFkeRk4nTZqfLzmhnV+f9zqM8BR6f18QTuZi5bHHpdSW5+rhWuT5z03YTuHW7w+4u7gfcx9aqr01a2+kBPHgeBzyeeLI8Uz1/9cJ4eXpVez33NvTO9e7zofls9Gn2eedr51vi+9hP0y/Dr8ef4h/i3+Q/H2AfUBogDNQP3BJ4O0g2KDaoKxgb7B/cGDy3zmHdwXWTISYhBSEj61nrs9ff3CC7IWHDhY2UjWEbz4SiQwNCm0MXwzzC6sPmwnnhNeEiPpd/iP8ywjaiLGIm0iqyNHIqyiqqNGo62ir6QPRMjE1MecxsLDe2KvZ1nHNcbdx8vEf88filhICEtkRcYmjiuSRqUnxSb7JicnbyYIpOSkGKMNUi9WCqSOAqaEyD0tandaXTlz/F/gzNjF0Z45nWmdWZ77P8s85kS2QnZfdv0t60Z9NUjmPOT5tRm/mbe3KVc3fkjm/hbKnbCm0N39qzTXVb/rbJ7U7bT+wg7Ijf8VueQV5p3tudATu78xXyt+dP7HLa1VIgViAoGN1tubv2B9QPsT8M7Fm9p3LP58KIwltFBkXlRYvF/OJbPxr+WPHj0t6ovQMlpiVH9mH2Je0b2W+z/0SpRGlO6cQB9wMdZcyywrK3BzcevFluXF57iHAo45Cwwq2iq1Ktcl/lYlVM1XC1XXVbjXzNnpr5wxGHh47YHmmtVagtqv14NPbogzqnuo56jfryY5hjmceeN/g39P3E/qmpUbaxqPHT8aTjwhPeJ3qbzJqamuWbS1rgloyWmZMhJ+/+bP9zV6tua10bo63oFDiVcerFL6G/jJx2Pd1zhn2m9az62Zp2WnthB9SxqUPUGdMp7ArqGjzncq6n27K7/Ve9X4+fVz5ffUHyQslFwsX8i0uXci7NXU65PHsl+spEz8aex1cDr97v9eoduOZ67cZ1x+tX+zh9l25Y3Th/0+LmuVvsW523TW939Jv0t/9m8lv7gOlAxx2zO113ze92D64ZvDhkM3Tlnv296/d5928Prx0eHPEbeTAaMip8EPFg+mHCw9ePMh8tPN4+hh4rfCL+pPyp/NP637V+bxOaCi+M24/3P/N59niCP/Hyj7Q/Fifzn5Ofl08pTTVNG02fn3Gcufti3YvJlykvF2YL/pT4s+aV5quzf9n+1S8KFE2+Frxe+rv4jcyb42+N3/bMec49fZf4bmG+8L3M+xMf2B/6PgZ8nFrIWsQuVnzS+tT92fXz2FLi0tI/QiyQvpTNDAsAAAAGYktHRAD/AP8A/6C9p5MAAAAJcEhZcwAAD2EAAA9hAag/p2kAAAAfdEVYdFNvZnR3YXJlAEdQTCBHaG9zdHNjcmlwdCA5LjUzLjNvnKwnAAAgAElEQVR4nOzdd5gkdaHw+291nJ6ePJtzIC9hyUFARFEQJRzPMQEmzPmIWVHUgygqBvQoR0UknGNWjAQJgoCIxF3SApvz7MxO6Nxd9bt/9Czqee97+5/7Hu/z3O9nn3om9Ex3VXVV9fZ3f1UbhRCQJEmSJEmS/p+k/tEzIEmSJEmSpP/vMyJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqaMUEJycnJyc/menEMLffQRCq5WEEP77zxFqtcb010ko1yZCvdH+uXqzFqr1UggQmg1CQiMERgIxASZCvbEmwK5Ak5BUCVAPMBpoEko7CZQb4ZH7rwuXXnJuWPXADYEkCVAKIdkZoBRICLUKgUAI8VhoTK0PMB5oxYGYMDVeDdV6LbTi0dCo7QokzRBXCa0SgSYhNAgkEyFO1oZ646nw6c+8MWzYfnWA9aG0g0BMSOLtoVnfGWgSaBEChIQQdo3uDlPVSqg2GyEmCTHNEKiHe/58W/js598dVq++IUA1xFVCUiHQaP8+IQmhNRXGJzaFQPv+mi1CK25/fvU1Pwjf/e51IY7b6zOwI8B4qE7W27/fIoRGEqAZCK3QrLRCzOT0RIjD9HPSqIdANZSr7e83GoRAMwRazz5uEnj280AzxJQDCYFWM8COAGsDPBOa1VJ7+ZsEKIUWldCAEFqEVp32OmdjICE0a4QWhGooTd/vjhB4qv15a3qiHhLat7fqhFKpFQLNUA+bQqAUQiCEZM98bZu+j7+d13ooNzeEFltDYLz9vemf37MdEpqB0AgkkwEmA4wFGAnQCtVq/dnt96qrrgxnnvnSsGt0e2jF1eltsNV+vhJCebwS2ltYK9TLk6E6NR4IrfZ6ahAmR6cCVAOUw2R5Z4ghtEhCi3ooJVumH3dtgPHQmGhvc5PVqVBjV3h6UznUA2GsXm7P+54/tAI0Q71cCtQJSSm095mkPVUnmmF0++7w3OMPD/fd96sAoyHE44GEENcJcZMQaAQot+8rtH8vmd6mkmQylHZuDzTroTJeCuXx6rP33Wi0Qr1RDq1QC7Al0JgITBGYItQn9sxbOQTKoZkQvnH5v4dLL7loenvZ1l7XLQLV9vaSNOphYnLj9H5TCvU64a47nwrX/firIWFde5tstZ+/qZHtgaQZSFph+8atf13eavt5CZTayxRagZA8ezsJoVkthVp5fHqZy4G40p6fFiFMESqjhFLlgUBIQjJBoEbYvHZnez+iHJLWeGhWa+313Go/TyGeCElrNBCmAnGrvVxJ+zh10SfeF6749y+3f75KoE7Y9szWUN3daH8vJoSYkIRGCNRCwlQI1Kf3v+S/Ta3p26rT0/Q+Gv66b4bpdf7sdkI5JGEi1GuV0GqEQNJ+vDghVOqE8SohZlMIbA5xQjjzzHNCrVkKgVaYmiSUSoSJqbH28/Y329aebb1VL4V6ZTRAKTRqI9PHor/ZB8PfH7cChC3b7w+f+OTrwprHHwjju0ZDaXyifZxmJBB2Tu+HrVCrx6HRDM8ef5IwPRGHhEZIqIWxyU2hVK629+vpx6gn20NgNNRb5fayNpleb4SRkalQrbbnq1Qph2pjKkxVt4dqc7S9HgMhMBqqjalQmiKEJuGuB78bLrn8ZWHztrWhUimFOKmFOKmFVlwLkIRmMw5xHEISE1rN6dc/ytPHnFII1EO1Fk8vfyvEbAzV8FhoxuPPHl/iOP4//lrt5OTk5PS/TtH0GxhJ0j9AtVqlq6uLer1OV1cXAHEcE0Igk8nQbDZJp9OkUikgAapAnYQMqaQPEqg1IGacYncfhBT1CuSLI8AkO3ZtZveOXrpyg5Aqs2nr42zbMk6aPLf8+nd09SV0dacZ2TXJ6ae/ir6+eWQyWRYuXkyxt4dcvsjAQEQI26lO7aK7byYjWyYYmrmIVmiRy6eJ6CFpxKSyaUJcpdmsMzExwcTEBLt2jbNl81aq1Sp3//lXkNtIo9LPa//5W/QOBIbnlMlmsyT1OWTzRbp6q/T0pKnUanR15dm+cyvbtm1lZNcOGrUq9z9wH+vXrmOwb5jjj3shy5esZPasRdTrTYaGe2i2JpkqjTOyezsbNm7krrvuplSq8OpXvYbly/bj9tvvoFKus/de+zNjVoEZsxsM9A6QNIbpH5xF3GiR7moyumsTPcUBWs00xZ5h9rxSTkzV2LzlCWbNTxgb38TqR9YxY8YC7vnDk+zY2mTBggXsu+/eDA33c9DB+xCl69Sbo2zb8TSTU7spjyxk3fr72DpyH5OTJQZ7DuSEY8+g0awze243Kw7cj7Xb1rNwyb5sfarC/fffQJJsZu2GR6iX5jJvwYHsv3J/egeaLJixnEp9K9l8i9kDR1CehP4+iFPQjKdIp3Jks3kI0GpBKgVECalUPL31RUAGaAJjEGZDTPuvBykgnQBNxidHSKfTkI4JzQK59DCTu+skoQWhzIN/eYSp3TVmDuzFT37/JXLFOocdejjnvfq1/OHOu7nwwk/ynndfwLy5C5k7dz5JaLBs6Xx2bttBqVRiy5ZtjIyM0GjUWLNmDdVamZWHHMaihXszc3gGMU2GhucztrvEksVLaCbtuS8UId0EMi2ImjTrebL5BNhNTBrCECFAnCqRYxuVyiyK3f00mjtIEZOOeolCL5OjEzRYy7oNW9i+fZyIDEPDA7z17eey975zOffc1zLQN5uewiIWLjiCVDpLV7FGJteEkCEkObKZPLl8PL1vjpMiADkgD3EO0l0QUgQCUdQuxVGoQsjQLCVkuwsQwTPrHqdcG2d3aSOrHn+AO377NGM7xzn/rS8mZjdLFu/N7KGVFLKLmDNnkEwX1BqTrN/8BKXqZrZubPLko2Nkis9w4MF709d1IH35wwjRJPsuHaJUHmfr1s30Dvby1DNPUmtNsW7D06TSMU88tZpli/dh5X4n0dvbz8EHr6TZbLJ27dNs3rKBkZEdrFr9IJMTJV7wghcyMAx9XQezeP7B5LqrhO4/MlBcSVKZSUxMNpsmbkI6C6QhNCBKA63pzS6CVqvM+MQooyMVRndNMrJrB9t2PMMdd95INpdmr+X7c/JzX0R3V45FC5fQSiIefexpDjzwQGbOmUmUTmC6TEVkpzfc/z7IPpme9vx1N4KQ+evNUYv2hk/7+drzY0kLUpn21xFUqgmt0KJcLVOrV9jwzBNk0zka9TSfuPAzfOqii2m1WixYMI9CMUWxJ0egTm9+iHQ6IpWGdDqQysDU5DjdxTzpbIZquUSh2EdCoF5v0mq1aLVajI+PU61W2bZtCyMjO/nDnb8gTSAdDXLRJz5PCIHPXPxhjjjyELKZHlIUGBpezPK99yKTydDd3U1XVxeFQv6/rQeeXf44aZJOw+6J7fT19ZGOckDh2dUVtyCVhmYMuTwEakSkgSwkUCrF7Bz/Cz2F9jJv3PQU1UrCE6tH+PEvLmfv/WZRzC9k2eKVzJ49l97eXmbMmEF/fy9DQ0OkUinSmag9S0mWahnSmUA6FREBu3bCnDnQaEGuUAfKQC+QZXJykiiKaLVaDA4O/m9fYyVJ/+9LX3TRRRf9o2dCkv7/KITAd77zHUZGRti0aRNJklCpVEiShDiOyWazZDIZoiia/o0KT6y/idHJdczsX8DYSJGQwI5dm5mqrmXj2jobn+ri1lt/xCvPO56n1t3LPgdmef2bXsXBBx3A3NnLaDQrrN32a/7wp29x5tkr2LhxFw+v/hNDc6vkesZYtOAg5s5ZzKJlM0my61m7/gnu/cuNfPDD57Jjx2OsXn0nb3/X2/nFr69ibHI9M+alueeORylPlclmWhT7IkhPksm1iFsR5UkY3ZFQrbbYNbaOM884m+OPfw6LFi1m/tzlRJlJ0rkSw7Oy9BZnk891Uy8nNCoxO7aMMXNwLls2bKOYG2Djuh089shTnHXGv7DfvgeyaNF8Fi0ZIpOrUOwLTJVG2bx5CxPjJeIQs3bzPcxfOIPnnXwcRxx5KFu3bmbr1k0MDQ1z3HHPYcfIBn7/+x9w+x03cscdf2Dr1meYLG+hb6DFw6vuYdfoFhYtnsfGNSkq4zl+/vOf8LPrL+Uzl7yDvuEN/Pkvv+Teu+/mkn+7gqH+PM990TL23n+QxUtmsHjJYgb6BwlxgR1bm2zdGDMx2sWOzZM88fQfWbpsPvvtfQRHHfJqli9dwX4r5kNmB3HcYPvYRlat/gtrHn+ayclnuPq6rzAxvonFiw/h8MOPYv6ieeyz9yIeX7WOcmWcx575LVdcdx6PbriKG267londNcZGa4zs3EW58QylUomhoVmUJiGVikhnakADKLQ/hDSkIgi5Z98wk4KEBkRNCvkC+dwA9UovfX1FdpeeoG+gQb01wjNr1tJojjNZXseOiVsYmD/Gxq0P8tiT9/CNb32RQw9byfr1aznl+aezdMkKCAWmyiOc8ILFDM+MiVI1TnreKUxOTrJ69UMUe7Nc8IE389Dqn/ODn7+L3aNbmD94AqE2zMTYBAMzKqQzU1Sm6jz6l4QNGzbz+JO38rNffo3b7/soH/nEuzngwG6+/73/4HOfO59HVv2Yr3/rPVxw4eUcvt9ZbNsQEVJjrHn6bqDJY6uf4ivfOZWdza/z/Wuu5g3nv5ax8Y3ccdevOPUlxzA4I+KRVfdx082/5qCDVpDPLqTRiEilm4SoTqNZY8uWDazb8DgbNq/iP678Mnfc/ROuvurT3HnXL7n1tl9z9z13MmfOPKamJqjXW6xZs5ZVqx7nbe/dj11TP+Ad77+ATM/t3PDb2+grHEWzPJcVex/LfvscznD/Ak5+3slc819f5u77fsrPf/kz9tpnmBBSpKMhuvPd5LrylOvbmCxtpVpJ2LxxJ9+79rOsefpBJicqROSo1Lew7qmnWLv2aWbPmcHcBQNs37meGbOG2WuvvWnWM0xNpBnqX0g2naFYLJLOBAqFDN3FHLlchoHBXnp7e4lbsHjRXsxfMJv99zuA9Ruf5OFHb+KKqz7E68//KPuvmMFT629n17YC+dwgu0ZHGRjuYfOmLfQP9j27fRE1SOVSpKKIkKTp6+ujK9/D/AWzmbugh+EZeRYuT/HFr1xAnIxSre9i/sLZ7H/AvuzatY2e3j4CGUJIE6WyRKQgRO37/zt7HjA9PQF7jqkR07dl9sxUex+IgZCCCOKkRkiVaTHK2OQWiGpk0gnlsSGmJgLVeA0PPnQvSxcdytw5c5m1oEpI76C/v5/J0W4KhRbV6hTlyiTj4yPcc88dTE7t4gtfvISPffSDLFw8l93j44yOjRInTUJokculGR4epru7i1QqRSaTYeXB+1AsdjM0NIPbbr8JUhX++RUv4oknV3Hld65j6ZL9aLWyzJk3TAiBJIlptZoUi8W/Xw8hRbPSXlWZzNNs3HUXmVyNnvwCoBuA3VMbSKIqO3eNsGnb4/z5wV/y2FO38JdHfsK1P/wyF3/uAkZHJzn6mCP42KfO488PX8OjT97BfnudRIgLFHqqPO+UQ4mSXh68/zHmz92Hvr5hisVehmcM09/fSzqTEKVj0lFMRJMoapEkKerNcUqVcUrlEtu3b+OBB1exbv0arv3h5dx2x29ZsmRfdmwf5aqrruLEE08kn8+3I7ck6X+MI5Ek6R/opptu4uSTTyaTyfDsvxL/N41Gg1wux5q1d3H1j99NdWIWX7r4RlqtCplslYRtpJhJ0phNrQKp7DijE6upx9v4wfUfZeeuDXz+wruIGvuS64oguoHHNt/OAfNPhugYrvjadxma2c2/vOocSOa2w0IWSJco10vk8hO84Y2ncM13rmDj1qd45zs+zIUXfZ5yrcoXvvx5Vh5wLGe++BwOWnEEhcICSAp/jRFRAlGdENeJ4yaZXCCwg4gijall5HrHgG2MTq1luPul7QUOtIctpCOqk6MU+nvb30+i6aEMWarlSQq9Md+58vNs2PQk559/PrOGl9NdWAKh0H6jxCayqS7++gYywzPPPEN3dw/ZbJ4ZM/r4wpcu4PWvfz0zhpa3HyKU+LdLPsSJJ55IV26Ag1Y8h2Ixz46t65g5u4/3vf+NvPJVL2GqsomHH3qCow/9F448/IV0FZdRaWwhIks+10cq6oaQBSButYiTJgCZzCQp+oGu6fUDYztHgTRDs+FzXz4XUvN4znFncMKRL+FDH3gdzzt5X0497bnAgZD0EVJQbY0RKr0Uu7OQSXjgse/S3ZNi2YITySV7U69BpqtGlNnG+s1Pcu211/IvL3sN82YfQH/Pgr8blNGeWn8dnRE1qdS20N3VHtVRraUodM1kqlylt7uPXbsmKPRMcM1/fo2DD09zw03XMX/OQmYOLuH0l57HD35yPfvssz+7dzXZd+8juOgTn+ea7/2ckBTYtHGUx9bcRlT8HV/70g/58he/R09+H+bNWwFRAOps2foIt915DaefvjcPPXgLucxsBvsO54AVLyCpziBVyAMlyrUniVvz6evei3q1RL64tr3hxsv4wfe+yexlq1m1+nZe8cq38vSWPo455DVEqRKf/9bxPLLqSY5YuYIL3nRHO6JFD7NtbB2XXfYt9ll+OKe+6HRmzOqnkMlP7wwFQtJHxOzp9VUGKtO3ZWlHiDKV5m66s1Wa8Xp2juwml5vFrbfcz8tedj4hyRJCnlw2TyBFbbJBoa/FxORj9Pf1A3l2jo6TzcE1P/oUub5neP3Z3yc0h5msrOfOu39FNptmxf5HsXzxCRCG26Ejmd7EU1VCq8CddzzI1vGfs2hZL4889DRvfd0nqIWt3HjjlxgdX8fIrm2sfnwTJ510LDfecD/POe7FvOf8SwkME8iSiouQbo+qghbju0cYGJwJpGg1WjTrKQpd/dSb4+RyXUSZhCSZoBY/xQ03/J7TT305+WyaanmIQjHD1m1P89KzTuDmm29mqG/u9PoKNBmlNFVhsHc50E2I05Qmobd/AFKTwCQ7J+5hw6aHeOyRpzhgvyO5845VnHfue5g5YynQ9+w2u+dw86zob46lIfXX4wpAqj166dkdIGT+5njVbH/Smt4XMuM0GmM0owkK2Z72qEvypBiAOEWlUqPYu4l/etXp/Oy/bgNidpUf4aqrrqTV6OZD772CKNozihQgpl6bJN+VJ4Qav/r19Zzx0rMhzP/7fTL89WOjBvU69PSWKVfG6OkbBOrEyQS//O1VPLlmNc874WyOPvJkRrY3mDln4bOPNb3Af13O6fXQKEOUr5HNPcEDT9zGrbfeyjvefAmFzFygmyTUSEW7ed8nT2HW4GF8+L1fplwvUcw3aLKFR558gAcffJiX/9M7aFZ7qaRu4pv//h0+/d6nSVpw053f5N4H/4vPfOQ/KZUjugp9ZFI5/vfa6ygJFaKoRkQCZGi20iRJQj4XsW3sIW666SZqpVm8+fz38/GPf5yLL76YJEmmR+pKkv6neNSVpH+gQqFAJpN5dvTR33b9er0OQJK034DcdPNvOeWFz+WC932IZh227niS717zWb70jY+yc2wjqVyL7oGErmKW+fP2Zu7sJUxNljn+hCPJpKN2qIq6WL/rGW655WYu+8rF1Errecu738nxz3k+JDlINSETQwpacUR3vpc4CSxatAioc/XVV/OCF7yAkZFR9tl7P5530vP555efxkGHLKNQyNKo1tvvl1q0/7W71QDKEDXI5Aps3ryRL19+KQ+uuoNcATau38SvfvcLfvKz6yCpQmqCn/74q7z5zS/m+1d+isu++n5WPfRriLYDmyE1AlFMLtc+9e/Rxx7k/Dedw5IFc+ku5Hj2XKwA2dQQUKBSiYEsjWadwaEB/nL/vcyY0UelNs4F7/swM4YWUSlXgYhUlOXGG29k8aKl7L//gUxNVmjFz/DpS17LT356BXPnzOKYo07h5OeeRb2S4eGHVvHne/8EoU53fohCvp9U1H6zFMc1kqRGOlsnl6+Ty1dJpXdDOrTfyFWAaJLBGWmGZvWwedNacoUKzWadtWvWMz5a4vNfuIxTTzuDdqSAyd1TRAkUMgWKxSy1CoQ4xQ03/oZ3vuuNbNz0DATI5yGdyVBrTfDYE3+iUt/KzrHH6O/L/v1Z7VEDoilgF0QVIIYQyGRyQIs16x7hU//2r1z06X8ln89CBL193UQRrF27luNWnsTBBx7N8593OicefxpZZnDmS89jr6UrefHJL2Owfw7ju6eAFJVqmUWLhznxucdw00038NrXvp5f/PxXzJu/HOIM1ckmJFnmz1vOua94E6m4yLvf81s+dcn3uOaHF/OLn19OiNv7wsiup/nop1/Gb37/DcrlGtlcD9AP9EGSZ//9lnPFN79LvT7CjMF5HHfo2UxMjpKizvLlSzhgRRdPPf0YP/nJf0yPShli7tA+HHfsScyeuYS7/vgAhcwcoEigizjOEaX6INUkRCVipkioAjH1Zg1IU6rEdGeHgR6y6XnMn3MIfT1zOeqIE8ikCu1T3rIZAi2gSaHQBfUe+nuPYGq8jyTJMDgYGOytk+0eYcWKObzlnWfx6JO3MWt4mJe99LXsvexwHn90E5Aibk20n7M90SGkqddgn71XcOCBKzl25XG86XVvYufYVrqiLGeeeibLls9jcmqU/gE4++yzgBSbNm2hHXbypChAlKJeKQEtHl39IFd+7wqSpEJIamRyeQo9PZCOyBcGidJpIJBKdRHFM3npaecRhSIwSKGYoxVPcNPvf8IrzzmNSy/7EDBCixFgnFtv/yXfu/pr/ObGa4EJonSV3sECoQXNWsTkRI1Z/Ys48sAjyWYjfvyT66jWpsNBgnwAACAASURBVJg5YyabNj3DnuoSkvbU/jKmfXpm42+m+L9dyWFPIKu1D1R7vp8w/bvl6eNgifHRp7nl1l/w+c99gi071hKRoVFPIKSIUtBoTkyvu5jx2hpGy08wozjAsceewKxZM4miEu2rmMXTj9si35Vn27aNjOzawfOffzIQP7sM4W/PupsOSbku6O2DKF2kkB9mzyl36VSel7zkVJYtn8+RR+4HlJg5p48kbrWnpEmS1EmSKklSa38eB5IEct2QzUVAlly2lwcfup+1Gx4CxmjGE8StDJDjrH86jXKpBQzTKA9SqXeRZYhFC5czNDREX66fvt5hZvcuplHNkcm2T3s76eSjWbhwKbVmjZ5iBKkSCZO0wgS15kR7lOOzcT9PEmeJ4xwpikQUaJ8KmiWbKZDPFWklCXOHlrBs6T5MjE8RRRHVahWAVqv1f/PKKkn6P8mRSJL0DxLHMY899hgHHXQQcdwknf778zCarSbZTPbZr+vNHTR5hJ7sUuq1Pr74lQ/R3dvgX9/xOmrARRdeRtyK+MIl1xM3EtK5Et+48g0s3aeLFx9/IbAXhG5e/YYlvOjFB7Jx7R845JDncsapn6FeGibfM8SWXb/jim9/iXR6kLe+4WvMmrGMiHFgE/fc+0uuvPJKPv6xS1m86HDaV8yJydNislwiidMM9C0DetqjO8hAiEniOqlMhkZ9ks998b08sPpX7LVsBV/8zN2QLnPpF9/Du9/3arpSBzExdS+Xf+OTvP2dr2fHyFYee/xhfv7z3/Ked7+DQw86gh/+6Cesum8OJz33bE59yVHAZr7yzU/T3z/I3suO4PhjzoXQR6sCma7pFRdgYmIX/cMFIOYDH3gHx59wFC964Wl0dQ3RagAhxejYTmbPLbJz9BlmDS8CCozthC9/6zQOPWIpJxx1HjNnHA0UqE7s4I9/+gWnvOg5tN+MdvOXB9eyedNW1q3dxmvPewsD/TOp1Rp09xSJWzXSmRyV5iqieCaF3FIIAdJTwBST5V3s2PUUj665iTNO+Qwp5lEdz1DoHYfURojqjGwqMjxjP1K5VPtiQPH0tpFez9evPovDj9qLJfNOZG7f6yDpg1SZL/37Wewc2UIm1cPFF36bdmhJAVkq5QapqItybQuXXn4ur3nFZ1g85yR6+oYhavDzX36NP97zW97zvnNYNOtQarXDyOUbEG1l+8gm5s1cCgxT3l2jONAN0ThJUqRcaZLP58lk0qSiFOecew7XXXsde0ZjNJKd5FLPADNpNArk0svaN0UQNyHKlFj9+E3sGnmAjRvu56VnnM3ddz/BUUeezOy5B1Kt76SQD6zbcTtLZ+/P5q2LGe5dSqG3DuwAMlzwvhfx3g+eSjp0cctvE1752svJZqAdCSYp19ZT7Mpy+RWf5LDDlrFlyzY2rGvwgX/9Kq16kUyuh/bImxKZXHd7FEcD6Bpl58QaLvvyZ4EUn7voP6a39yIEqNYSkmSSYj6BbA5ClmqpSqG3p70h0gCaBBIitgFDEOZOt886v7nh6zyz7iFqlSofvODzvPCsvXjFq15IeWwW737bN2hWM2Tz3ZAqsWPkEWbPHKbaKFHIzQEqtBrDlMd7yPQ8TbE7olTK0tO9F6RK0xEjeXbEVwgJUVSkHSUKhGR6NE8ElfJOkmiMu+6+neEZ/dx+2928/4KPt5c1zkPUHr0Tx1Okc832fcRFJnfX6BvqYtum3cxdOAipUWCCOuv4/S2/46ADDyNpFfjWN7/Nu9/zDvr7i/z4p99n5crDWLn/cdRqg3Rll01fjycwOvVnvnHFhykWsnzwgo+xY6TGT39yG+ed82aKxfmkUvk9uzhR1KRRGyOdiUhCnWw2R7VaoVYJDA7Mg6iLZq1BtjsGJmnFJVIUqUwWSUV5Ct05Qno71cZ6ioUeXv2ql3DZVy5mfHI3Xd19rH5kKy857Z3UqzlajRyZTIlMNiKdKnL6Gcdw9isPYHjGAC963pvoLiwiJFWiVAUY5sH77+PRR1exdt0a3vmut5HPZykWC+3XgaRBOtUPIWb7znX8/pYbuOnm3/C6172G2bPnsmK/w1m/YQNLFh8HSXufT1pVSFUImY2kmeKqH3ybjRu28pbzP8rsGccDCW9583m85a1vYJ999qGnpz3SDbLs3DbCjDnxdOzOAHUu/cp72bz9IRr1hAs/eBXzZ50EKdg+9hv+ePMkJx33KmbMgh/97DpGJu7jnHNfTnfXTHLZubSD3DbKlTTFwv6QlCD9NM+s286cWUspFksEIh5+4kkeuP8RIrp5/TnvAnpIkgwpoFqBQhfPHgdarSaQolaNSafTpDMJueL09QCTInGc5e1vfzvf/va3/59eYiVJ/4cYkSTpH2jbtm3MnTuXEGKi6H89na1SrdDV1UUqStFsNMjmauyefIir/+vzlHYX+diHLwVqnHrmwVx11fcZ6ltGNjmGuBXIFFpsH7mL39x0Jeef8x7K9YRifi8gS7W6iROfezA/+sF3WLr49dBMQQo++pkzOOb4vTnjRefRaO5DOt1Nwihf/8YF7Lf3LI495jgGBvai2Rgkm+slkCbEaVLpGlDmO9//LOMTOzjt1JewYp8XQFjQft8OxNEYr3j9Uo44ei/e/bYv0Z0+EaKYTRsfZeGimbQvmDrJzrEnmDU0CDTYMvokDz+8ipOe+0K60wP85eFHOOKQVwF5RkfXUOid4t77bmPlysMYLC6hURsgbuYpFAdIWhNUq2WK/X0kzRpxXCfblWNqYpTe/l6gi3YAyFMtjVPozfKRj76JhYuHWL7sAF50yitolPsgv4Yo1SAb9qY83kOhALXWBLsrf+K6n17Ef3znT1x77VvZui7il9ffwAX/eiH773sUmfQQkKFeqZHv7qE8OcnGLWu4/Y8/g6SLObP24uyz38yW7Xfwze9+hLHxdczsP5ZPffxaSlOBnkI/ZEaATXz2397J7p2zOfqY03jJmS+nq1hnz7/kT4ztpn9wmMpUle6euYzt3M7Wkb+wbefjjDV/xitO/RiwFForqDc28bMbPsGTTz3I7MFDedVZX+I///NqXvyyeSxZeAiQ4u3vfAMjo+s47jlH0V3o4y3nfwwYINBDRJat27by5a9+hLvv/S0f/+RraNRL1EoJr3jZuxkdWczw0NCz5xYF4POXXsr7P/BuMuk9wz2aNJo7yGVnAwVo5QlNiLL8zfVyxoCtkMygtG0OPTPhfe97Jy/+l8WUaiOc+JwzGOo5nqnJUeqlPNVKg4XLB/jMxa9hYCginavz9jd+mupEkUL3QkJ2hKnKOH3dfUCGJG6SSkdMTY7Q2zcwvbcljO9uMtC/nMpki+7eDESwe9c4xe4BcjlIsqOkoikmGzvoyw1QbRYoZGcSNwvUalAsQrVaodA1PSouyrafl752MCCqsyciwVoiZrT3kelT0mqNJ+nKw8TYJF2ZhUR9d7C7spHZ3afRrOxLNpehWo7ZuftBtuy8j29884uc+5qz+fdvfYn+Afjkh/6TZfNP4657f8aJJ55AszKHbKq3PeAjnl6/remH23OmZ9QEqtMXp84R14qkuyrACEyPtoIC7QgxSKOSItdVIGlAqmsMGKHZypANy5mcqNA3IyGudZGOMpCBuFUhnd/J5q1rmT9vCaHVT9LqIpPN02yNM1VfxXU/+BYzZ84gywJOf8EFZKMc6QzQVQY2k8Q1UukCjVqWXNfM9uCiqItAhlQKJqfK/O43V3Lb7dfzbxd/ijip8pvf/Ip6vUnSyvP2t36IKN1PXK8zPrGNj37iTaw8dAUHrTialSvOIJ8doNGscvkV7yGOnmLlwfvywhc9n7e8+W3ku3r55td/RKCfarmXfHaIdKrI7tEdDA7Ppj4BF33mYi75ypu5/757OPzQMyiNQc8QEO2k2cyS7WqPTrzl5t9x7HFHEIi57bab2bR5A+Pj43zkw+/k1jt/xvevuZyPXfh+ir0Jr33dR3jzm0+j2N3Hj390PV/9wo30F5cBg5AUiZsN0vkpYjZTb+0mm0nzoQ9czMff/22GZg9x3723cPefbuaoow/l6KOPptWMyOUGiZsxp521F8ccdRKfuvBbRKk8MM6GbX/isssu4767dnD3HTspT01QHNwELIHQRYhH+eZV7+CWP/yUHdvh9796lK7cAWzZejfbRx/g5t/fyNte93X6h+YD2/jx9V/gjtvv4+AVx/PaN76BbNRFRJobb72VE57zAtKpbpI4RaGrjz2jR4lbkJlk1SN3ce+f7+GN578NogwhVPjaNz7Nm9/yNgrZ/Wm1ipxzzjn88Ic/JITwN9cNlCT9T/DC2pL0D5bP56ev87rnv8b665TNZogiKJWnKBSKVHZPcdGn38nLXn4s/3zm+cTNFKn0PB68735OfeGLyaZ6SZqzSKUhlYrp6ekhlU6YOSvP+z/ydlYecgS93fuTzWR47KlLWXnQC5k5tJLSeEIqV+KEUxaw/17ziKiTpFOkoyKNZpkHHrqF0097Pv19g0TRMI1alnoDcrk+Uqk0UGfnzs387qafcvLzT2DpsqUUcsPEjRypqH0KVSrX5Ovf/hSTpW286ux3EUWzIKQpFnqJyBOlCoSkl3xmLkkokE4N09e9kPnzDyKXWUCj2c+82YdRnqzRrJfp7cuTz6ZZsGgOUZQlky5C0k2+0Mu2rRu5+ppPEZhi8ZLZ7B7bQk9PAVKQ7yoS12JSmW7ap01ETE7soruY4/Kv/xvve/9bOezgY5mYmKRYnE06nSEd9UI0SCbdfgOe78lw820/ZWCoi0JhkhUHHM9xB7+SpNHDfnuvZGBwNtXyTrK5mEx2Nx+98FweWnUDZ5/1eur1Bi87+9Xsv/9hbNu8g+t/fSUz53Qxb958Xnn2B+ntnUsun6cy0SBbmGTVQ7/hllt+SqkMxx57LHvttw8XfPiN3Py7H7Fuwz0ccvhMctkU4+ObKPam+MJl7+Br//5J7rzrZvbat8iSRUfR3bUXrckBMpkWv73p2xxwwFJmDCzhoINO58B9D2bG8BBROs2ap/7Ihs0PQGoXLz39JXTnh1i++BS2rs1CupskNBgarPH0pts4+ZTD2LDhSV7x8jOIwwTf/f4nGN/dz4EHHsVUqUE+nyZKQaVSZvleS4miNHsuwpROT0eJJA1Run2pqz2XjkklJK2ESiki1zVIvTVOvifD2o1P8Ip/Pp+58w5loLgMyJHPt/ivH3+RNWvvpLunyu7qOvY9cC4Dw4MsmH8EXYWZkI6ACnF9NiT97NxRoq+3D6IsIalSqq7mlNOOIoQaxx17KtVSTHd3YfqE/yaFnhwhaZHKZIhSEes3b2T24Fym6lWKuWHKlRb5fIFMpn3Jrmuu/Sa//On3WfPkoxx+9BHt+JufHhYX7fnfw9IkRER0t0/fmb5+WCYD9coEO3Zs4i/338n9q2/m2EOeS60xQD43l2opptAXuPSLH+D+h/7I+vXrectb3sLk+DMsXz6fnVsaHHrYKWxY/2cu/eKFHHnYcTSrPURRe0TV5C7IF6dnY0/TC+1TiogKRORIRRGkmsRhjEcevY8z/+k0yuUK/f2DzJyxhHSmm7hZI53OQHqUsfJq6vUq3fml5HvqxDxDOhNI6n1EaUhlIzZueZhLLvksDz24muee9BJSqSJT43UKxX5CEjj+mONYsnwha57cwCEHn9y+bBFApk69MUo2Owz0kY56aDVSpLLd7e0pav9vd+XqJHfdeT2Vyg6uv/5HnHXWCxkc7ObYY47ghz/4IaefdgaksjQqJfqGulm+bJD99lvMqkce54ijTiWdzpHryhInm8l2j7N+3RqOP/Z4nnpqPfV6zNNPb+SoI08im+shlQ60kibFvjxEMZlslnplkn0O2IeZ/bOZHK3RP7MbUi1KpREK3YPTp0xGzJ0zm+5iD5l0mrnz5rBzx05Gd41x1NErWTh/No88ci/PP/kEPvax9zE5GTjs0AV8+bLfMGsm/OGPt/HVr3+Ok054Ab2F2YzsHKenf4AUabKpLtL0UCrFHH7E84CE+QtmcP99t/PY4w9wyCEr+Nf3votid57rf/FTzjz7eL7ylWtY88RDrH36cY46+jkM9M5i5YHHMNS3iEMOPY6rvvcF/rL6Wg476EjGRnbQ3Zewe+rPxKxn7doa1ckRjjnmFOr1tUTZbezc9RADxb2Z+X+x957RUlVp2+61Uq3KYefEJicRiQIioARFUUFQUQyobQIDirRiRBQwAeZMK23EiC0GDKgYQZQsSXLceVeOK30/VoH2957zs98+44y6xmDswWZQtdasOWfVvOt57rukCwgqXbrnaGxoZvXKOs4dfwU5w0QW3Xi9AUJ+ey9VZAu7kjNNNFGH02UBrRyp28D27b/x+ecfcOKJ3fniy/eIJ/fSvUdnXI5aTNPJW2+9xaRJkwqeSAUKFCjwX6BQiVSgQIEC/5/AxG4L+J9ohoZpmkiCjJVOICgtzH54Il6fg+ryXlx24T/t/+qEaGQdgcBxtnmskLXzmYlx9c29mHbrhfjVPtS4ryGZztCQmkH7onuQjEoMAZRQHdDE/rodbPljNWNOGYdFVwQgktrIm/98jh07dtOx3Ulce+0DuDwlmJZMTt+DUwEQyWYNVDXInza39of7+sPNeP0K6/fPoO/xA/FwLlBpVywoMmYGTEVDEBVEEdK5JIJiYlgJTNPE4yhBRCWdMjGNCF6fA0jz+JP3U1IS4rJLJhOOpAgF2qJlLS65bAzPvDyGMn8XFj61EJdSzfVT7wPdAXIFmB7C9a1Iqoi/OIhdcZFm9dql/Lx6BbfecD/JNHhc3bFIYmCQygh4nEFEDLJGK6okopkK2ZyIKgko8gZ27dzD66+/xejTz2bVqlXU1R3h3PFn07lLOyoqqoBSMokynM4AiJDMbmDvwd84vkt/cpoXWSgmrcXwuHxgqcyedR5ff/sF519Uy803vgIEaWxt5ePli6ks9fDQo//giskj6VB+OYP6nYPs0Hhr2RT6nxxiw4aNXDL+Lo4cUqgs7YEgtberTqRGIEM6HsXlawemAWISDIOV337JqaNGYRlhBMkHuoKZrkZ0urAUEyHfDmb/sf1mUuk077z1PmNGn4vl8FNRVs2fUevSX37KZLNZJElBFsX8FDFBMLDLWv4SDYdtfjz3wZu55fbLyRlpFMWDW+xIRg+gyl4yWQNZqOPbn+YxfPgQnPQmrZXjUCwMQkRiEgG/BWzCQXdycRXVDfOePIcxZ/fk8IE0Y4Y8wvPPPsENM4axfdc2Nm7Yx4XnT0PLGiiqkzVrvkFxQPdux+NQAlhGKZIMLZEGiotcZHIaznzrW0ZrwakIRNP7CLgU/vhjO01NGieffDbgt8cgb/JsAaZp/0okmR9Xkeb6Jkwjwaw5l6AJW7jrrhdY99tBLhg/ndamNEWlIaCe1sQ2iry1fP/TaoadfA7x6B/oZiuhUB9+/nY9P294ktPO7MOKr77n26/XMWx4F/Yf/oOS4lJ6dD+JC8beg6m3RZLKju0zx4LNDEBKYHKArN5KJNrEow8/w+PzX6alyaK4uBZEHUyVNRuf54dfX0K0Aky/bglPPH8jO/Yvxeduw6OztmIZOQQpSkLbiqzAh0s/Y9KEGUARoGJmHbQ0QGltBGgFIJMoQyaA7ISG5t8pr3DbLX+GHT1vGJBIpPEXuRAkHTCw0Mhp2xGsGAsfe5gOHavY/Psmbrl5Og65GL+/I1pSRFFUcIjce+8l/LbuB2bdvYCTTroWDG9+bWzm+1WL+OjDT5AsJ4/OXwwIfPrx1wwZOoJ3P3iX9h06MGr4KN597xXCrXVYYpQp18wFvRZkGdjHnXf/DZfTw7VXPUBF2WCQj85pDTDJpOOoqoymZ9F1HbezDWhpEBtA0QhHtrLskyUUFQcZc+bZnHXWBO5+6Hw+/3I5kbpanl34KxgeMCGVNHEHRDCyIOWN1oUciGH03EFkh0kulyQWS3Db3+/hpRdfIZmp4/W3niEajbLuty0sfX8LGO1It6ZJpBoJlmZR3FE+/moO55z2AmRrsLIgeHfy4uIbOFK/l5JgVyZdeAWfrpzNH9vqGTvuTDauPURrg8odM98HYQ+R1gbWfB/n9LMmHPP3RjQJx/YjqylcqsgnXy5h3Oln0JrQKHaeAmY9SBFampt4/vkXuGf2HMCivm4jTz/zIvPmvYNh+DjttNP45ptvjgVPFChQoECB/z0KIlKBAgUK/Mc5Kg4p/DXPQNMMRNE+RIuiREY3cIpOLMPWfrK5Q6jOBE89/TgjTzmbHj1PIplL4FGLWPT6HVx92RkkMPExAiy//aAG6DnIZkwcDhHFDZb4B+Mv6cqBQ7Duu9WgD7RPsUorVjaAIEs0NRwgUCxiWRaJRBrLFCgp7Qw5eOPjO/FXrWHr5k0s/aCZJx/9O/0634WWDpFjBzffeTwLHnobr6sKt6cD0YZyAkGI6a14PAbX3N6X3r160d43nnPGnpu/+yiz592MW2nPjVPvQRKCqN68t0peRLCwAJ1ILELQX0I6nUZ1uBCsZkTZQf3BCPvrfqBXn96YRjFuZwXH1DRDJqcfIhEz2bljLwMHnwJoaOlmDA7yxNO3Eyry0tyS467bnkaQywH456sPMfrsE6gsbgsEgXboKS+yE6LxwwQCtsF1c2uE4qJSmloO8PY7rzLt+quBJE++dB8XnHM1e3c0UVRxAMVt0qn2PNLxzrh8LnRdItKaxefzoDohlU7gdqt5/6sM0EIy5cLjDpFM7+Sp52YweszJ9O0+GGiLbRztAxHqjmwnFslSXCZRUlIKuEH30hD/nBtmXETP46u549Z/IdMd8GBkwJFPMo/Fw6gODdXl5va7x9O1/1YcqUlcduECTM3EEJpQnB7yBiX51ywAUhpL2MCseZPwBxW++HwX106+lmzSz2WXPYSVldFMMKUYTtdBnll8NyNOHUKX9r2QaYOeK0Z2eDE1DVEBQ08iySkgmX/tXVhaFWDy8lvTGTKymL176hk28BY8alsScR2vLweYYNmvGUIE0EhlDdxqMWAnWjlUJd8+1sqWbX/w3r+eRhJMLp54PR07DAIkMDPYFyJhWHEkOQCGSioZxu0P8+2qV2hoaAIjyEXnzSabdSE7QDRsa6FkJoMghHF7I6SSEdyeMnv+YQFhptwwmkONdbRvF+CkAaO5+IL5kKy1p7iVv2UB4pEmfEUK0AKk+PDj56iq9jCw71QgBHjAEMhpMUQllm8N9AIu2//KgnDzbsKpn7np9sl4XPDUwtepCExC11qRPQ3Mf/5CrrliFtFWN20rziIaThAoscXreCyJz9eBeDSNy+FCUnIISg5dSyIrMn+KeyqgohkiiYRJMKCRzTXZQprpB7GBlpafeeONV3j9n1+w/KsVlJaUACY6FjoWAirNRyLMvPV2Fi58nPLqTuhaGFnJ0dC0mfKiQZiJGiwRHn/5PEznb0y97A18nv5gKYRbmgiVFGFoKRBcSKITdHt7tYQUAjrpXBMuh+0fpOWa+eXXT9mx80d+WbOeoUMuIVRqsGXLJsLNFvfd8RaqXI4oyyC3oFs7kIUMK35YzpDBZ+CQfFimE0n00xoOs2/ffvr2OQnbf0tjzaatdG0/koCnCl0DUW1E5CBh7RDDTj6Xj95ezjufTKdt8dlcfP58UFuBLJ99+i9+WPMa7drUcN3Vc8FqB4ItZkPCXs8Y6HoCWeoCQgJbhPLbvlRANmWg+kyOirpPPDGPHVvX8uRTC7AsAVN34vL5sMwWNm37jLfeeYFcLsfjD/8CmHy/eglz5s6hV88TeXTeG4hiMdGWNIHiEAB1zRHKSsoQ0clkk7hUETCob6yjoqwKyHD/fWP5YfV6Zt/9MCcNHMOll17OK/9citOtIAg+Mi1+FC+I+Q5PXQdBspCkViBNlgi6oeORKjEpJ53bg9cRBILoSRHZGSWVOojbh33vlAIuJkyYwNKlSwvtbAUKFCjwX6AgIhUoUKDAf5x0/mc+Cjy/62r6X0Uk2yWlsT5FwOfH7YFYfAN+n8nmLWvp2WM02YSM6i0D04Vmpsno+5ElNy6p1q4kIQGUgwVWzm6tyWSSiO5tvPTqbQwZehK9O50PVl8wQc8ZyC6TpsbdlJYVEw7XEwpVABLJmEZTc4p27drz0TczOX1UbxobVPbsPsTwwafS0iQTC0cZd+lgpt10Gn+7+CFEqZxDe9PIipOKmiKggRQR1qxZRZdOXagqOg606nxxym62711B26qTkSjG4Sglq0VQHQH+jJsCMMnkUjgcMmL+5J1oTuEtCrBn12o6dOmD/dV7gpZYhGJ/Z0DEIIJlGsiiN/94Bgf3/crPv3zO9t2fsvyrbXTuBD06juaOO14GPGzd8DvVlR3w+4oRVNWuyBAB6SC/bfyKNev/Ra9ePenScQBF7mFIUojxEztzXG8vkjvGnTd9hyzXoyUF3IrC04snEEke4vC+UhY+tAnVKVFfn6C8vBhLSOGQJUxMRAwgzWMv3kJNB4vBPe6mpqon23Z8xtVTz6W0zMuiF9+mNNCHZBw8niowwNTzhWaOfbyx9DYOH2pk4ri7eeKph5j74D2koh7KyrqQM91IghPJzHfViFmSqSZUh4mIwhdff8CZo3uTy7Yj3VqDQ4Zwqp6qtn8w65GptG1Xg6Idz+SLFpKMHeLhJyYzYFiIkaMGs2njNgb1ugIox0hWICk+26tXTPDRZwsoKtN46unHmD5tNru2Zph82V1gKNTts6isFUCEBx+ZhiHtpscJ1TQ0NOFUKph80V1IQhswIZ3K4nI5SCRjeAMeEAyMXI50KofHF0KQDCCHZWTJpA2cqg9ByrePWaZtQk4C2IetNtSAWYGe05GdWdLJBC5XFVhgGmlER0t+zerYQk0AsL19LDmHgEhG01ClIkQjgCjAvt3refKFa+k3sIYj9Rsx9TYEgyGuueoWMD2IuNi4cTNdOnfH7fODpaFpUWbPm8L639czaFBbSoLduf6aLUUSJQAAIABJREFUhwCRZxdNZ3/DNzx6zyEw7Ph3SwfBAYgRbNHNCSjEWgT8Ph8IsOfAh5ier3nm6WfR0kWMGnwXw0/rwTOLpuMvljEzXbhl6nz0dDtkpwhCA7bwGgAtcCzcEAvS6QyKIiE7lT+XYx5LBN3IoeWS6Dk7KczjcuereRoIN+9GVzZwy7QHeO3VlYhmT0zNXoqxRJwHHh3B4KEKe3Y2M/PmjRz4o47ZD8xg6owBvLHkBZ6c/w22iNLEJyue5dcfo9w/+2XScQ2X14tlZNH0FKKgIste0EUaW6G03H6OY/5ypghaGsNsRHKl8jfnBcI0tO4jFrFoX3MykuBFkBzs3rOKOY9M4YyzBnHRuTeRiFbg9ZbY4oemIbvyj2sp+Z5AEzDRjSyylP8nTIRjvYIuMNPsaZ7Fu2/8zBWTHuLlVx9k5KhT6Nh2IM1NcV584RWeePxze56a+bGW0sx+cBx+fxGnDr6U3n16IAqlYDn/7T3E1CxEh5UXnwxSmW28/9Fs/rVkD++8voZPv32A5uhmTh50JjUlp/HLxsV8+MVjdCq9mem3zicc2UJT8yG+/noll18yA5caQhCPJhKALoFAAmhEI8vNN91KWXENN06dQnl5CEgTad5AfXgtD8/5mH++9hYvv7qAvQd2Mffe5wAPmMfbaXfoWJYDQ5cwDAPVqZNIRfC4ixBMhXQGdAu8nn0IiEApmC5aw+v5be0XrPjyQxS5HfMefgXwFESkAgUKFPgvUmgiLlCgQIH/FY629+Q5+plXsA8hQr6dzeHUcbgyQBy/T7V/ly/VV70+Gpvr8vH1LvRMEapYa591cXEsnlrIHvOYcXodrF37GwcPHmb9uk2AiKXnAJCdEslYK6VlpTQ3H2bSxefT1HwATYvj8bto16EMxATjRp2Lix60LT+L4YOncuhwnOJSF48svIULL1Xo0vZ0RKkcTIua9pX8tGYxZ4/rTDTRhBuRUwecQ1VRd/v67ERwwKS4uBiX6iWVzAAiqsPJX5yV8wNk4nQ4EG3XVTQzjbfESUvDVi68ZASNR+oBlVQuTrE/RCymUVfXDCSRRYVUJgxWCi3XzJrfvsUkiWll6dYN7rn7Jjq070E2FSPWup+u3WoJFFfZRrM57HG1YOotI3jsuasIlQic3Hc0pYGOSIoTxCxlFQH69e/Nif1OwaXUoAiVZDMmqBKhkI/u3bty4OAh5j54J7KsU1xcjKKoOGTb1VhEBiT2Hz6C31fKWadNoKaqHVgC27b9QUlxCR3ad+OL5SsBFafTdWw6NTel7cOtFeOnVSsYPnIQNTXVDBtyJj61K+Wl/UmnBSRsIydBgJyWBFrxuDPIso4om1RXtAXa41CDeLzg8kJVmwoggsMTplfftow/fxwI4HSpnHrKaNau2cm7S76kX6/TsA/lKpLTkxcI7Yj1kqJKhvYfy+iRkxjc72wmnv83Yi0Z2x9LAiNnj2/QX8lll17N99//SDwepjVyEEkyiLVmQIdIswhKEm8wA0IYTBUt47P9hMQYWFG0TAzBEnF5/RimDoIdfocoYhp2KpWJi7SW92ARo8hOjUwyh8sTIptO2SKSaS/OaDyOnZxWjZb0Y+X8SHIIEQ+g4FYsZDGOqGgkYhmqK45j9KgLGHPGRDJaiqpaJ6l0GEmoRBKPZ/8fDnr3Ph+3r4StOz5j8Zt38ve7L6C2o8pxPSX6ndiN6poKbAVO4corpnDG6NP5q3pjG4/rQJqJk0az8PG7qG/YgsNli9SZKHToOIzq0oGcNOAsrrpyGps2/4bP56UoVM7po85h06bNZHIJZKeJlg0DKXJ63FaogAN7E2TzWovT6cSyhH+3aTsWQR8jk67H7bLwB5x4fM68r5MCqIRK2lMaaMMF501GwmeLgUmIRSAU8jHzjluIJQ/h8Zus+elrFj5xN1t2rCSj1dOnbw/ikRi20X4tw0++kltvngXIuLxBLE1EkFw4nLbfG6TAoVNaDuFoHASdjNZIJtsCYhZkFdHyY6TdpCICtigYpLzoODp36IsoOOyYeEEnVOxi4MB+HD58GHDjlEswUvZeIKKQTWVIxeOkEzG76jMrks0IGGYWyKJZ8fyr5UfXgqCrgIePPvySiZPGMO3WSXzz3Upe+edTlJaW0L7NAC46f1reDk85qkkBMsf16ExpWYCPlr2PKKTze3vKFozyIpmoCLaiZ7nAcuN2ltPzhO506tQJxe1j2LAhRKNhnnrqGXyhWvr1OYXbZtzMiq+/o7m+mVCwDV06nZivIi1H1xRy6fzaFEBCB+JAjkSsiVHDB4MZpbFpJ3Pn3cBLi+YSLOlOt86j6dtrGJDlqssvpW//7mStDBpa/m3Prh40LQ1ZAVHSAROv24+Qv2+HCB4nCGjUh//AslpBTFJU7ODUU/vSu29Xfvt1FQUKFChQ4L9PoRKpQIECBf7jHE3Sykey561fNE1DlAwQckgCJLINeFUvb3/4CuHwYfr378TPP/5E9269OX3E1eg5nYi2k4CrF4pYjGVCJgmuvC8uUivgx9BiCDgwTZBVeGDe1Vx341jKA1VktCBOufexNCiEJBClX/9efLTsfWqq2mMrAU50U7e9a8iCVYOehKwOnuAeBg3ryOFDsG7LLZRKj4NsglhHOLyVbXtf5NNPP6dhZy0VlR6mXPkINV17gNCMpXdAkBTC8V/4cfVHDB14CcFAJ9vfQ0rz13Y2+2SV4+CRPcxf8CBt2lQzdNhJ6LnNPP/Co7z44qs45V5kUwE8fhfJdAZVCSLLAhZJzGwQKT/kiDFWfPEGo0YP57HHb8cfMBk29FQefWQRfU88gSFDB3HCcUMw0h2R9NKjFj6EY2tZsWkSo0cMxc9V5OKDcaiQysRx+48ACTQ0tHRb3FIl8UQCX1Gc+Q9dSdL6nteXpNm1+W2i8R4EfeVAiJyWw6EoZLJZnIqX1mbw+UBxgkEUsh4kh0xLeAvLv3ydSZMupLXZoLT4OJKxDB5fkV1qJmlguVi99h/89OtbuNRiLhm/kEAoaI+dWXzMdyiXTuJwG0Ad9866knbta6gobcuRfXEUZ5DKNt0ZPfoCkhHw+L0gNhDXf+TV158jFoabpzyNx9WRpoZ9fPjRq0ycdCaiCH5vBXbbnwtML4YeRXIcNYg3yWZTqKoPcGFmHYiyZPvpCDtIpx24XKWAjGlGSGeb0PQsQV8F2ZyG6nDR2gRFpS4efmos4dg+LjpvBn263oqetOf2nbMGUVZUQYcOAxg3YbrdZ5ZPGjMoARQycfB6TRrq9hIsFmmI/Mxnn37BiFMm0KW93V5pmmFE2Wn77vzF3z6bs42oj9nZ2D7smGKWrN6ES/EDLqy0gmB3OnK4bj3u0s2EXF2JtlQS8NbS0gCinCZhrOa+R86mZ59KRp82jONqzwS6A37QHLS0HqG4vIR0shmX2w+CfQ/pRAaXV8WuQGrAoplnF72Iz1vE5ZNuxUwXISrFtkexWwMxDsgc+iNKTYc2NNcdIVSVJBoxKCpui5mTEZUIq9d+yPYdm9GzLoYPnUTbNt2QVRdYGpaZQ5Dz/Y9HK2SO7Ru/ks2lUZ3FGJoPSSkC0wtAxkggKxoyOUDF1EQExW9rI+hINPDR508gi3W8++77yFIpU24cR9sOAS6++EFWfLQVUt3tYjAX4NLsHihZxcqJdgEQkM4kcPn0/JhEgAD76rew6fdVbN+5msfmf4FThpnTb2Xq1DtIhCNkcyJ+T0dEWSeZCmNh4vWEkBQFxBSafpi0dhi/SwUqwOxA0+EMpeVONF1HcUeBNE0t+yktOvnYXo6goxsasqSg5SQU6S/imxll7R+PcqBuFW6pD5VlndDNJB+8v4x5931v34ycODZ+tgjbSjweIZ1t5bvvP+eCCdM56qdkv4+47A3KVOxkw/zcQ9JY8OR57N3/O9ddO40Tup1PLi3icBos/eQJtm/fytljLuSEHucQDjfi86u0tLRQXtaZSEuGYFEJzU17KSmzN86GpjhLl77Crt0b6N27N5ddfCXLly/hhBM6UVltceVVU3n1xTSNBw5Q1qYDN04fxOHGddw7ay59ul+NaagkYwL+Ynf+Pc9AUSwaW3ZRVuwlno3jU2vB9IABqYiO6PuZJe8+SSIKvY4/keNPKKKo2EM8nsDnGwZUA/5CJVKBAgUK/BcpiEgFChQo8B8n38dB/pP+MREpmxeRNCTBAtLkrAiff7mUU4YOxDRNQt62gAcoZcp1F3PJlC4M7XMJaTONS3SR0VWcQmeQ7JYuTD9aNgWYKE63HWcfBIgTT0bweToQb3HhC6ggQDYTQ/VAKtmK2+PANEREyclR7xPDsEgnJZwOkJ0aOXMfC5+ZxBmjR3Dz1Pl8tvQXFGEAqtciET+CN5jiosldGDmilt/XH2DG9XcjpHrzwsuv0q5/JZecNxe3t4j7517O3649lzblw4AgmCqpTCtuV5E9RsJREcn+hv/Vt17kgonn45IVzjynA6GAnyVv/JEfWy+YQfYf3s6n387G45WZPOEBUpEOePxgaCkO123k6msmMGBgL+bOvQ/DiDDpkrGUVimsWpPm3HO6c9aZE+ncfjAuRxlNrXt4cdFCKmthyhX3ACXEo+V4lFrE/LkaOXvstc2mnKgOCS1noLh3cPjwckKlOsl0jtLAcBqbyikr6czfru9HSQWcfdYEIuE0o0dMRjRqsAwnDqcIQhYtJaM4JVKpOqLxQ1RWVgM+sHz5Q6kGcgQ4DJSyZ/9GOrStteeJ0R6kJrKs58YbbuOJB5fj8VWAmGXf7h84f9JoOnSCAf2P4+vPt7L8y7UYWQ1JrcTM1iKqWVrC65k+czw+V0cuv+wGBvQfQUt4P15nO1SXOz+nBfbv3UPb9t1AF4lFE/hDATvVK5dDklQsQ7Yr4o4iaZh6AlFuZcbswfTqdh5eZ1smnDsNPWMiK5Yt3iGh59LIDvvQnEjVs2z5IsacNZJPPv6S88ZNweUoBkzeXXIHEyedx/Zt67l+2kNcNOkGOnbsz6mnXEJKN5FkERkTPWrh9jrZs3c9z79+MW6Pgp4u5qYrP6C8rAjB2QTkMHSRA/uaeemlV5g+/SbKKgPEEgeQFYvde7bx8fJ/4AsUM2HMLCqLTrCLLGSIxQ/hD5aCpYKZX1duN0319ZRWlgIJ0plm/rF4PlVtvKz+ZSVdeoi4xFouHv8orU06CxY8wcOPzWTZssWIEry7ZDlnjr6GPn1Oplv3nkeHHcSEvS4MlVxWwOEWgV+AaqL1fgIl5fb8MOMgGmhpHcUVAr0YLIiHwVeELVxwGJ0Ydr1aCTkty/wFc7nwovOobVtFNBqlNFTL0WozLD8IKb79+n4SqRTl5e0ZMOB8MmkZWa7FEu02WpM0zYfX43N78YUqsfAST2fJ5tKkk0eorXJjGEeQJIHdBzbQsfYU+zl0H0gBsBz5eZ6x9wHLb/v/uNx2q10cXD4IR3fx3tIX0KVdXDf5WSRJxPYHauL1915h+CljWPX9Hi44f4ottogOEP5s1/o3RA1IkcvGcahuWqNbeXD+TbSprULLKvz9pgXEElH8XoV3li3E1KsZ2H8kHWr7AEFirSZ+v2xXwQGCZGLqMUQ5SyS6jmAghpY5AUXujpaOoPiOgJYPQZDWYpuNu7GFIjn/93z7XE7Nt4mm+WtVazaZRnW70bNZZFXNz5FD/LrtaZZ99k/umboLVQqRTKdwBj/hzbdXMnnicyDuZfGbD2JZFuefNwm/qx2GKSCJMpt3fMWixQ8w8/bZVBeNxTTD7N+3lQ3r1jP+/Il88cnrrF3/Pat++4nzLjiRKy5dSuuRNE8/9xgjx6osee8ZkjEH/3zxCLmkiMNjV2zJqhvL1BHEBHUt63n/w3+wa9cu5j+8CAe1YAZBE2lsWcKDC6bQpVMvfvxuNd6gRrfu7RGtIJZ+PNNvew7wFkSkAgUKFPgvIs2ePXv2f/siChQoUOD/3xw1GhH+7E4RQJJEND2FIv2Zty0JJuvWr6ZXr7541DJyhgvwIOLj1zWrufziCUQTOggx7rjvElZ8/QHt23bmxpsmUlQiU13ZHgEVRXWDKaC6PBiajiipYDqQpSJUh8Nug8qBw6mAaKE4VEDO+2EoGFkJUZQRRRGHkvfeERuRhDDrt3zGurUbaVPRjZaDVfQ9sS+JeBhvSOeWmYNJxhP07DaEpx7bSf3BzURTv1NSY1BS2Z12NQNQnV5WfvcR484aw7EqFktCcYgcE9qEo75IBhY6PXv2QBUdrFm/irLqPdS2V+nfayT1TXtxqSWI+HA7S0gkY5w+8nwsqwy3WwAhRkY7woOPzKCpdTt79++ktp1KS3gvdQ07GTq8Fz2Oq6Cs6HjOGHkBOS2HqDYz79Hr+W39Nmb8/TKCnlOBdqiOMvuyJEBO8u67z9O+XQcUhw9ZVOwWs+aDeH1h/P4Mc+c+yJbfD1Ne2os2bU4ikxCZMXMKd905jU4dOtH/+EHIogtTlxEFi2SiBdVpYGoKEhKyAr5AAJDRsyKiqKJnNXJ6HEFKIoo64CMU9GO3iygc3JcgEEqw8JlpnNDrONb9Uk+//ieRiDaz4LH76N23FEGKkstm2bYlxTWXX4molpKMeVEdHpAM3C6NrHmE7l17YZoiHdq3w+2SkJUSe+JitywFg7Z/FoKI6rIP5pmEjsPhAkG0i6As0DIgqYAQRzdbkMQEOTPMxHNuprqqO6qjElF2HPNNgQzNLYdYsPBBPvxoMePOPouex52NU+5Ej66n0NLSgtvtRhSK6dGzI40NP/P5129z1vh+dO9+Mn1OGIkklqJZFoqYJMM+vEIVgggvvvQEo8/pRjaXRHUUMfLUyXZli6jl538Lz7x8E/6SCLv3baB/30GoDgNN3Me0OyfSd6Cb/v2P44vl39Cv9xAkpwliBNUZx243yoDoQcZuV/T4PSBEyVmNOBURT9BFdXVHqqq6oLqbSKb3sXv/avYc+g6Uegad2JVdB3/m5OHVhDPfsf/gIVKZVnr37k4y3YBDTZPOHkGRLVLpDE63h2w6SzIRw+mqJhvz4HQpdtubmOXuWZNQXElyuSaKS3pgaRKqC/bsPkSoxAeYiNieTbqmkk6n+H3HClZ+/yldulXh9Us89uQ8Vn73NQMH9gHLwjBidOzkQ9M0Xln8Gp079KS8oj2xuIHTrRJNtGCYaVZ89TrPP/84v63/hUEnD8Wl+nA6XXg9LiRBIBVP4nB6KApUctRUHbEYI51DdGRBTAEZtGwOSfIhKwqGlkFEQcnrQCtXfo4lJPEFM/TocBmC6cM0PAiSSq8eQ/F7OlJeegLZtAeXy0smJSI7c/+2H1uGbW+UTqRRHG5irSaqWIRuxZC9Ozm+Twlvv/Mm48ddgctRQSaXIVgksuiFxYw580y8HnscVZdsJwwKFoKVAdHANDREQyKnZVCdBpLcHjQfsXAGl18DM5RfuikeffJWunbuh9tdiS3aNdkLKOv7S4evgpkTbHFWANlhgZBDlDUMI44oaUCa6tJSXn3rXVb/eJDTTx+Hwy0gkqPX8afZe67QgiUmWLNmHaNHnAO4EQVbwAoWyTQ07WL3zkP0PW4sgiShZdLs3rWH40/oR6f2bSkpKebQ4V859dQRVFcNwdJVTjtrGKJSz4EDe3GIFYw85QbIuhCtDKIzBkRpad2N223hc1skM03EIhG6d+mLx11lt+SZ0Nj0E1mtHi1nMOq0Mezcs5mS0hIa6hPs2JZg/PjJCKKTN998k0mTJhUEpAIFChT4L1CoRCpQoECB/y3+utsKoBsZLDLEE81sWP8bK5YvZdx5Z9CrVy9MSyaT9qPKlXi8TgzTQpR0BNP2j7h15mhGjnVTU1vKnbctoqQcDhyA1gbYtCaDmVERFY5ZCxk5Hckh//t15NswEDJ5114ZIysiiS4771sCpCawSvM6WAOQJJE9yE8/f87o4RNAPxHkDUAli19ezEUXn4TL1QlI8MC84Uya8HdWrfmCgScNoGuXi8klO+BwqhyuX0t1tRuotqsbLGz/Ekv989oAuxLJ9tgBi937d1JRmsTjVkmmUnjcg0hGRDxBBbv/xcAghkicRCKIz+shkWjh9tuvZ/78+2huOcyTT83hnHNG0K59FS+89DyPzP0Q6AiWwtV/O4u68HcsePxOystqKfL0BLoAQdCVfBFAKzfN7Mftd11OWWAwKp3A6gBCC2Dy5jvTcTgOUOwdRPt2gygv7Y/bX4uZsc2wZTcgZdGzcWSnAxCJhRvxh0RM6kDrgSj5bWHDzIHoIBM3cbrt6rFYfC933nULZcVdqKnuzFXXDeWRp6/is09X8dbib6mu9PHNqnfo0nEQst6DiqoOZFMxPv9yCePOHczrb81n+PDhVJZ0Q8iVIXpKAYWG5rWUlgQRybfVoMMxg9si+/U52pb5//LJIZsALQuKAqrLfh1NHaLJw6Rye/lx9TL2HdzE79u/Ytp1T3Ni77Fo6RIsw4HDLZJOpHB53cy+/waO659m9cbFDOx7JmNPfR6X2tZ+XrmFeLwZt9yV95ZNYuv2r5FkP/fd/SJQDChYuMigo+BAwINklIKUBZppSf5AsacCCIHVKx+Jbt9ua6QBh28vgpRBkYI4pFogxf0PXcf1Mwbz+dL9XDpxCo8+ORO3TyeTkbntxrn2PCbEUU8jSxfz6wsQMwhkyBopFMlAsE3MEHCD5SUT0RAlcPjBFg6OJnQBlBCOJAgFO5JLWTicTrtyxVJAF0lGwO2GF1+Zja5nuWHK3aQiXlQnyD5A3seSt14iGTe5+rqJTL99Gs1NcW6aej8DBpwFhr2f5FIgihCOt1BatY2G2G7mL5iLYWpc9bcptDaZ/PTDOu78+6O2B48QQcvF2PHHHl57bRn33vsITrUaxeGgObYLS0hR6osTjjXz+lsfctOUuWj40HUBt+zA0ONIVppYNEUyleGLH+cSLBKIhWUaDviZPu1+ZNVPoiWHN1SSX3cR4onD+LyV2FV3qj0WQhjYCsZQMCCTSeD0Hx0/9c/kSkA308hSK1AEpitfMmSRSkRw+71oKQtLc9gphi5Y9s1VbNr6DcmYwtTJr1FbPciuIjX2o2fB5fWy+NU5rF77LwYN7gHI+N0dOW/s3WD5iTUo+AOAM8tTz15MY0OEO6e/iScUAOEQpDvZgrlkcah+E4ue/4D75zyQv6995IwEDqnc3gPNGswsiKq9L5pmClHOsHb9Dyz/fBkdO7Zn0sRLsZARUGloaWXFN8u55ILJ2H2YfuxN3aCxfh+lZSE++ugjzj33AnuMzLxZvzNLMrUTj7sUSy8HIWoLobk0iWic4vJKIMu6Xz+j74knAceDoaIZhzFpQhQUFKkNyUY3Hr9MOhHn1ofLqO1YzLAhZ3LFpf+ge1cPCx99keqqTridxxOr9+APghZvRSndxNp1/+L7leuYfssc7px1Iw/NfZQNG/fQu9ckLNODIKqMHTuWZcuW/T9vRAUKFChQ4D9KQUQqUKBAgf8N/q+d1rR0cloa00rz69of+eijJTwy9yZm3nkb02+9F7daSXFRP7Agp4HibEUggR6rQHY6iES3kTR/orq8mj92H+TxZ25h3sO3kYr5CDkvxuOpQstmUJx271UymrK9bswsyEcrPmxx5tYZN2IYBnMeeBi/v9ZOADJk+7wh7APa5Q9bMUAiHbd47e3b8PhiVJWcwIhRo7C/ObfI5lKoju5kEzkUdxwLDUmsx25Nawdajf1YSgqEZqAczLxwJKbtb6OPckxI0kml41iWhcftAnbxj5fnkjXiXDnpOUQqydGMZak4pRJUJ2hiKwpFpJMWLqdALgkOD0COT5b9g7MnnMInH73JkKGjCIbakUmIzJkzh917fueJpx6kuLgMU1dR3W1BU/MFOHXAgfy9eLHbDG2j4zkL7mZAvwmMHj6WlT8u5L1353Pp+OcZ0P9cJIcPVBE0lZaWwxRXwCOP3MK69avo1r0TtbW1dO3Wib0H1tOmnYeKwN+oKOlFsMRvi3mWbCfaG9DUcpiyKoAMmUQJmTSogT/44ddXaN+2G0KmF2XlIdweBVmswcqLGiAQibTiDxjoeguq4gZ8diWEmGXW3PFIrv106dSfSeNmAh0BE1M3IBdEFLDDwP7tdTH/xzQ3cwZi3ojK0m2fZS2ToyWyj/WbvqVj50pW/rCUfoP9fPnJbq6+/C5KiwfYYoZuP3a4EUJlgKMOjc0oKEAZu/ftY/7CB3jgwamU+cq4eebttO2kces1i4Ba0NuBHAeO8PTiW2jXpj+H9ueY+rdHABPd2s4TT89hxIgRhJstevUcQElJJ/SMgiypWNm8L7QIjY1NlFUG8xVxNtl0klwyjMeroFmtqO4QmDX2ded1HbsdrxX70C7ba8mEWCyHy60gyhlkKZ2fQ1H0eAXkvMgewNnA3+/tgcen07ndCC6d+Aqx2B78fhcvLXqNtWs3EAr5efihB3j+pWfwuqoYOuR02rarojX9Fi3RrSz7eClB5SwuPOdhfMWlIBwEMpi6yNrtr/LhsvfQcypmpoZH5rxLMurBH3SweeM2Nmz+kcuuuBCTBkR07EQ7jTffW8L4sZfjVsuAYlvoFRIYVhZJMAEHyVQajysAQob3P3yc1sgBqtrWc8aIy7CoRmIYubSDdBpCIVjx3UJiiZ/46vO1PP/EfpD3AFkMPY0ktzLj3nMpLirjxiuX4HcNBBnunDWRjl29XD35VmxRtya/b4Bu7UQWIiAmaWg5yL6D+3jjtU958rFXEClGxwKySAgIuGxhPD99W8N78QVE5i98AKejmJtumEkulyWnhwmFnIDJDz/9wNDB56BlnSiqh1w6i57TcAcUDHMTb35wFzv3/kwmk0OhPQ/e9439HFkXuRg4QlFMcRctsS18+sFurrh6GocOf8t9981iyuQXOXHoIKy0QiwOgVJAtPfahsbNvLtsHqNHTKZLhzOxK7ay7N27keKSAC63gCI5iCdjPPnkk9x+x30IVimSqCI3uotlAAAgAElEQVQKUN+8i4qSEnsuEsj/1MGQMTXIajFcXj/ZOKhqflrKkE4buHwSpgWClKS+dQO7d+3gh29/5s6Zj4AloKXSGEIGp1tiw5YtPP7sJBY98zEOsQYwicZ+5azTL2HYqApuvXcCr7+2jInnXcveHQIOsZxXF7/LQw8uwF/UEXQvDQcbKW/r5pH547jquitwKTW43V2IJOsIeL3opo9Mshi/z96IjopIhmEgSX/tmy1QoECBAv9pCiJSgQIFCvxv8H/vtIKJbqRJpFoI+lyktDqcyk5unXEbV115B926DkWRugOgWTqNiR9YsfIlhvQcTnXZQERBxeFxk4kaCLn2PPDI1cxbMB07UaqIQwd3U1NbA2joORPZcbS6JMFd915HUbGXsePORJJh69atnHrqqWRTEiWhTuiagiyW2j0eYhJ0T77L7BCgEmv2sPzbOYwZ14FU3GDWzMW8+I9FgIvW+hBFFV5AZvfuLG07qpjIZFJJ3EoU2aiyK1X82PHiVjGYcr5iIwmW538MnaZZKI4/D/OGvoG1v/1EbU1/KmpqAA+xiG0G7g9KxONJvD4f4dh6ivwdAZctUmDaQpVwhMcfv57RZ5zO/j1ZzjxrNM+/fAenjx5Fx5qhGJlaJKvWvmeTfOIYeS8aHfCgxRQUO/QLxBbiuT/wOTrR0pjhoQXnc9vfL8AvjMMV6GyLdqLtX3To8HJeevl++p94AoMHD6Ek0AsoB9z52HANCIKlYOoZRNltV36YkIxn8fgA+RCz5l3DeeMn063TyagO+96ScQcepca+bjlCJiGgeAUMFExTQRFlLANkyY6dMzQFCdA1WLnqZUaMGMmWbb/y2fIP8XvLmXr1PExDQXTkgAyWVZyfu2BXyhz1rTo6QAoCUVKpKIqsojh8pBIptJxBoCgIlh0RF4s24Q+EwAySjhu43JLd1unM2UbcTn++SkSyh1uBxshXrNv4Df37nUTQ1R9ZCWC7SCvY1Wr2PWmaD0XykYlpyK4wspoBElh6GwR5M/vqt/DKCyu54ZqHKK+uJJM5iNNZiRZ3oengDu3jvvmjqW5TRP0hg5uuepVQoDvxaDO+UIqXX3iOwYOG0b3HEJBcdhWfYLeiWngx8/HrgnA0Th5AwjRt36hQMGBvBya2MHcsjSvDiu+epW0Xk82bN3LumFsQc73AGc/fn4Pff/+V37f+ytgJJ2NYETZt2sqeXYe57MJbAI1wegWjx01n6esvUFN2BXpCozG6ig8+foqtW7YTTbbyj5dfY9OGHQzqOw67aksEEtwwYxSauI39u+GL9yx0LYlBFNWpoGsaybhAIFh5zNA8AygOEMkSizYTCAQxcgkkR4KZd4yjNbKfJxYsxeNtRzjayqy5c7jr3nvQ9AxOxeSO267nlRdeIpGMsvifr6ML+2hT04nzxz4I+EmmfsPjVph97yJm3/eWbSIvbOeTb56hsrw9/XqMAfMEsjF7a3UGNT77YjrBkMH+g4c4fdSFFAVORKAUXStCksEQNARMJETQlGNdxpZ0GM1swCHFWfLBvxg+qhfLvr6TWHMRf7/2J6xcEEExQdjItJmTyGVkHp3zPn5/gM3rf0KQo3TtUcJ5F5xLRXkRzz/zJmNOv5zRp5/L9dfdhdPrB6EeRBeQwEx2QFTdJLRP+Pi768mF+3D5pAWAi2TMhcdbTCYVx+nNkEi0EI2kSaczdOpcDehoZpyHHp5DXV0dzz79fL5y0IO98J20tBoUBfz5PbUJO13NBVTm52MSAQeQxbSaEQX7/2GVHBPWLMM2684AstiKwAFyJFnz60ZOOfEC4nHdrgizIGcliMeb2Ne0iJ5tL8WhdCSb2sHSry5jYL9+HKj7hY5tLkEV+lJWcTyYpWRjEb7+7l26dKvkoUfvpFfvbvztiml4fb2pb/qCz7/4gSsunQVWNZZgYqLRGsmhiD4CPlvbPSoi5XK5YwmmBQoUKFDgf4eCJ1KBAgUK/Kc5luDDsSoOXTPBEtG0LE6ngiKZxFO78bhD9O01AlkuQhCCtneSmKYpup4j9Zvo3qkLgWCQ+x+4i5C/lpraPsiyxMjTxqJndURFZePvX/DNN19RU12N1xtClI8KMAJg8OnyJbg9TsaOOY8Dh7bideskE83cfP3NnHPmhTg9RRg5BVESAcefQgppwIHq8HF8z86oksjb77zBqNPGkNEOc8/dMzll6EQ83iAgE/I7CMfDuFQ3luFAz6ZwKF4kEVA0IJYXqkT7CQQjP0amfTAX7GuWRAEtZ8dOGzooqkF1TWccSoiMVsdFk8bR2Bhh+Ij/w957BllRrl/fv8698548Q5ohDQw5iKCAKIhiQEABE2DOesz5eMScFcEsxyyoKOacUTAcFUEQkJwmp513707Ph97A+ddTb71fXp+n6q29qqaomj10977vvrv7Wr2utY4AkmiaRFNjK/c8dAGHjTsW13SRZNlrZzJTWFaaf1x+NTfffA19aw8lk4nR2LyTESNGIgs6ohwincygSLLXl7V/7kxwwmBJSPuGVAJcCU0Ok7MdQqEyokUi/fr2QVF6ghjANlOIsoVpSxRFXBw6cF2HoQMOxiv+othZEOUSkh02qurPewrlVUiAkXHxhSGT28s/75xN3aAS0qk4g/oPo7G5iXRSpqioD5iQyYCiS8iKn4zViCrZSIKFiIwoiAhIOLbkzQPg2KD7BSKR7rz+2kts3rKOP/9cx6wTz0cUVSCNSSeiW5QfhwyQRiCHgIuAlB8il/sf+gfffv8+za07GTRwCILkwx+I4DoiguhgGp34A0XYmQiiAKIr5tdHDlHJIMsmmdweFFkAIeTFqFsQCkt0qa4iondDlGo89Zqgg6OTyWZRFIF0rg1dLSLdaeEL6fz++zssfeN+lr//OP1rJxGJ2tx17110qxzC5k0NDBk0GM0nkcsIqLKGEgCDnWzd/R11g2qoqelL/54TgTCaT+L2+8+ms72RbM5k6PAJmBkbSXWAlJcGiOqtFxdEwc2PjYlAmiuuOocPPnyD2tpaiiJV5AwBJW+F5tgxBN2ivCxEcbQbgwdMwc2VILgRTNMil7NRVIXy8iIGDeyPIipIkkppSReGDhmJJERoazRY+eNnHD+1K0te/I4jjziDeEcLX333Mr+u+YT29kZ69allyuFz6VY1gJbmBAE9gpnLIEoJ0tYaVv2wke5ddaZO/ied7XFCUZmNf37HnLnHkUqZjD54LJKi4Ap45vICCBhcd9OZ/LV5FYccMohXlzzO1h2riSfa2PGXyKgRE3n77eWMOqQXry67m0PHdefhBTfRv89Alr7yAZMmHsNfO37mkPFD+f33tfTsNppQqBpV8QM6h0+cDgRBjOPSxEefvcbOnXsZPGQ4qlyJLCnIKiBI9O1bQSQaYMP6bWRyIj17DAZ0cqaCLEnkchKSKCMKFuTJPkQQxATxTCvIGsMHHkpQzzCyrpy0qVEVPhpF9GNZKXLSejbv+JpUupVhQ0bx9eef8d2qz9i2+1dqamqorKqkrLQXdX2PQPNLpLMdjDv8UBAFXDfGkleW8P1333HwIdPBBlVP4w8libcF6V87nqzThipLiJKLrNpAE6qqEQ73pLiknHi6EU1RsYFhB/WnvbOZkcOOQCBKOpvBdWWsnJ+A37/fQkkQ0wgY+TUazq/THI8uuoSPP3qOiUccgUdS5te1mANBQnAEEEVMvLUpICIToKZrNQIZHCWFIgbAUcmkHaKRKP6QiS72JpdSEcQ0jR0/0rN3T/bW7+DWm5ewfXOWXt3rKCrqiaz56VvXk+LSCEaunjXrvmPkiIMJhwcRDLi89tpnHDnpRGIxEVVPYhPHr5ciuqDkRUevLV3KqaedjGWZyLL0XzfaAgoooIAC/m4UlEgFFFBAAX8zvEdbi/0P625gf4x4e2OM4q46G9d9zc13zeLFZ78mqAzBNFQUP2TS9bhSO3PPPZjRY4Zz0vFXcOfDp3PVNdfQq8spBHzd6OxME1C7ofigPvY5K1ffyuTR84n6x4AVBrkT180gCKXgKLy85E5mzJiBT6nhrnunMmaMynOLP+WOf15H3yFnghEEpSstzTHKyorypq4GoIAjggVGxkELGzz7zOWcNHc8jz1zMxMmTKC2+gSqIrMglxdZSG3Iaph0LIc/GMi/HTexnd00tq7l/Q/eQRR8TDvmYirK+3tFDFn2S1DcKFgidi5vziyRT5sS6YyvYdFTN3HhReegaxFso5houDegcMUVZ3HfgvPR3MPJpWTUYAbX7UQQAmCFyWVB9Xd4cpCMR0agO9x0y7GMn1zKJx9/ztyTr+KgIRfQ1uIQLdUw3A34tV5gFXuHp1n5Fr+Qp2xQkoCD4bTjuBni8SQVRV3w2kiCGFnQ9F18/+1r7G7cxrDhg6mrHcq+JLzmuImmlRFRe5DoSBKKBA9Eqotx7n34PNZv+ooBIy2OO3Yyy1/5mYMPPpxjJ11EfYNLl6oB4IZpbckgiiJFJRqCsJEnn7yV6upqQsFyxo+dAWJFvvfKAdGgs7mVaGl3ENt4bdlTzJw5m2xKJhjsCa5CLm2i+jRcoLGpgaoqg9UbPmftH79xxuxL8h4lfkBj6RuXcPQJ4/HpZej0oyNdRthfgeSCIKSA3ZhZF8GpQ5RsRFUA1yWTyuALeYTMW+8/SGNLM6fPuoNIqAYjZyDLIpLokaDkPYXARbAUsmkDPeT3PhNaMNJbuefBORSXWQQCAc6Zdx8wBnDImQaqEvDOLXRSMQuRAL6QAqKBu9+Ty8JrXSz2zkEBMqzEh0m7YVCsHeIRikAmC15ondciKmAAMtgmOaOVdG43a//8isrKMn77dT2nzLoGbJWGPQmqqnviGhkETaN1bxOlXXqAK9G6t5nSqi7YWUgbBoGiJi67aib9+vWjsnQIM6aei6Lr4Bqcfd40Jk8awRETJ1BR0ptYi0S0KgJ0cPnlo+noTOM4MGbCGC4+8w0EpxTBcXEsG1EL0dn+K+dedhBPPf4Qu3ZnGdTvdFS9EnI/8fyS6xk4MsKLL/zJwgXvkzZqcQSHiKKR6MgSKs6xYdcT+EJJPvroE06efhN/rN3Axs0/48ZruejS2wCT11+/n+5943zyxav07VfJ159upyI8CVUrYf5td+EQJGs4qKqGLNj5eRaBYH48t5Gy9xCQSvh59Vq2b63n5JkXYGQUNL3II1sFQOgEkrzx9qN8+92nBAMR7rvjBaCbl3Amecoj8GHbxcQ6DYpLOgEwMhVoGiTtbwgpMtAFO1aN5JNAbef3dQv5+MsnCIfDrPltJ88s2gg47O54D79aTUmgFMMOoLmjQN6MQwMixXklZyMOMZa/uYKZM6/21rwjkum0yaQEiroHaWzdyB23zaOp8U8cO8XlV15EfX2cvv2PZsTQaYiIgE5np0E0uokOazdiZjTZlJ+KSgOQECwv3XLXjno0f4bnX3qU884/k6KiIkQhjGNqWKaLpT/K2t9+Z8UnSSrKaxk/fjy96sr59MM3+GnVJs6eM59udYPIAamkRlj34TjQkviNnPIJzU27+HlFkkvPeiW/VrzEuEwySc5MESkWsdjNT79+xK+/fc9nH32KXy2lo9Vk+Rs/EIr29F4aiFk6Wtey8qf3GDd2KmF9IqLWBk4JSElwZS69vi+pTDvPL9oN2WJiHZ1EysOccPwU3vv4w/+603qKyAKVVEABBRTw96NAIhVQQAEF/M34fyKRrAxs3bqe7tV+Zp92BAueOZc+3aeDVYedkpDytiq22c6lVx/NoifuQhbK+WPDlwyum4yDikiKOx8/hXGjLmLUgH+A6JLlE0r8h4JdQjYOejTrPeibQcwsKCEDzwDG5IefFyBIq3n0kQ8pLYauXXvRp/dQZs68BIcQIr3xHs5T3sHsS1EiSTq5E3+wExiKYdajKS4QIN3ZE39ABCXO7oYVbN2yiwnjj0WwK0FyScZbCYZN5px9FLNmz2DalFOBClobdEqLS7wKIJ8+5Bl/m0A7/7rtMrL2du688WtUNQqSSTa7F0URSCRSRKOVpJMZcrkcwYiLIHUi2cO8djC5hcaWPygv647o9PUmRUqSM2KoWjmYMigWL716M1v3fMG4sRN4d/lKHnv4W0x7J/PvvIzicpPDDp1Fj8pDqSgfCkIDHuHlB7cKhD2sXv8fHnjwbqq6lDDl6BPo1asvvbuNwLL9yJKPPQ0v8MCDtzLukBnMmnke8bhAOFyBi83Cp++nV58Kjpt0JqKbbzUS/gBCxBLtfLvqVSZMmEhIHcq7Hz1MRWWWZ559gUzax/BhR9JYH6Nr1zquveoWTMdGEEVkGvD8m8LghLn7zkuornX4ftWnHDJmHGF/H6YcdQa63BvbcbFp9RL79pn8OALs8zjCUzHFEs08tfh6jp8+losvvYBJE0bStXQY58x5zIvxk1Mk4m0ofhVXCKNKEVwD6nc00966E3/QR+2QQZjZNIquk+xMEYyEQDSIx+r5fd3nHDZ2AkauCE0tBURcFxKJJOFw8MCiAo+3kcDINjB9di+KyrOIIryy+DUwh4BQA5YP08mh+D33bNdJYVkGiqoSj3cQDkU91ZOT9+P67wrU8fblACYt5Jy9+NUImD3BBUk1vT9yNI8k9AFCA1988Tzr1m1k5456HlnwpHfItoHgBsCJsOHPLbz36QP06DqIU0+9FSOeoT25htffnU+/umrGjZlKKHAImMUguyDsAhoBga9W/MD4Q49HFMkTa3tZ+t69bF0T4p/XvM6GtX9yxgUDueaGORw5+WA64tvZuvVXjjryfnBGYxqQs7IEQhLtjTHeWv4YFT238sVnK1n4yHtgD/K+emYTN958Ht1qdOaecS22WURJ6UF4T40ZBNeHmQElbODYHXR0dFJSUps3mG8C/KTadQLhLuBCJtWIL2oBe3nl1ReYc/o1QBTsEhwbHCfvMZ33pTpw8Uzxx8ZlrPjua4476hxqehzqkUb7Qy8NPP8mHY98MoEUGaOTZcveYt6cf4BbBLZI1nC4fv5JVPcVmHbs+VSXTyFnJb0kRzSwZZ576SG6V+f4/edtXHvNs3kz9xSLn78Yk12sXr2ac868kl5dzybo64IgpQHQgznAor0tTnFxxOsHIwR08tQLJ5BMN3PNxUuAbrS17GDa7HG8vmQpXasmkDEi+DSHRGotn36yjBUr3mPho8+TNUy27bDp128idk5GcLw2wk++u58PPn6FtT8brPjqN6CFeDZNSOuHIDTkT1yDrBnjmadfwLElrrj8DnDCJDtzBCM2ODFQXOxskkcfXcBV118FZPj9j3dY/v7jdCYTPHr3J8ChCLYIkoHNj0hkSFsWrz2/irlzrkLxRQ54t+2DkAMhAcRoj9Vzw42XcPbcC+lZM4CKqpFg6uCksOwUi576JyXlAvPmXEZDg0tVVdjzNxPjJGIuatG3/L5uJaMHXcv2TZ0UlaTZsHEtZ5x5KX9tasB1ZARZ379rVyiQSAUUUEABfzcK7WwFFFBAAf8HIOyrRvdHpHv1z4YNq+nTrwt/bV7DoCF9KSmqADGLqKdoadlOLLabPfVbqKrsQW3tMJa+9iivv7GcqcdfiYCPPU3rEQJ/MmrUKILqEFRZxa8GwC0HW0CWyRMyLl5qFIiyTCqRQdVVulRqvPXWYvrVRdA1l+uuvZO2eDMfffku/1m9hoOHT8Erztz8hmQsw0SULe64/UY64zup6zkLWS3OfyMfihIk3mGSc3byzPN3smv3dsycSa9ew8AxyZkZVA02b1tLv361FJUUo0gRfGoFAiKxDtB9YFkGomJjWwl++PkjOuK7EZUYR4w/C1wVO+eiamEER8PnL8XMWmiaiqbLuK6VH+NyEGHHrp+59Io5bN26hcF145AEHy5pREVCcFUEUSaXyzJgSA2Lnrifa6+6hSOOOAFN6kZzy0aee2EhD91/F6Vl1URD3b1WKtL5cVFB0Mg4e3n73TeoqCymd58aZhxzIsXhUkDFRUEUBB5+/Dx0H8yYei6hUA2a1h3X8SEIMr37dKW00odrSvh0hfqGdYRCITrizUTCIQK+rpQW1ZJNq3Sr6sM3K94gFCohGCzi62++p7a2D7pfY8DgWgKqTsaKY1jb0aQSIAi2j1eXPkP/oX7+/GsV11xzPbW9x6L7ikESEeUkkix438n14RhBzzvFkgGZjN2MIoXRhSC9qyfSq3oYH3z4NDffdBPlJT0oKxoAhu6NjVmMbUcQbN1rPxHgpSW38PWqBWzZvpIRw45GU1VESQVHRMr3qGi6n6rKcpAUFCmE47rEE3F03Y+mqQfIo33/yu0gxPnqm2X88sf7nH6+H8Mxuf/eN5kx5SRUfzHJ1iy+cDB//ioIosOuXZspKgojShamlQRBRmSfUi6/bRusnMeLCSLIUgBNUhHx41g6sgKm24koWLiODyVfQze2rWPhkxdSUq4xbtxhhAPlBILVGEkVWe2BnfHR1uzQa0AG04rTt3Ywss/irnvPR/Jvp25ICY88eid1/fohOEXogSDxRD2iCpYDrhWhvGywp3IRQkAxg/vNZsyI2Th2lj2xlxk7WaUztY0xB82kuGgEoh2lqGQMuWwY24JEuoNgUMLnj9CvXw+6dNdx7SCVlX3w+StAbOLFVx5k7fqfcUgwddqR+IMyCDqxjjSoW1DUAIKrI8g2ggh+fxiQQWji7Y+e4pdf36a8IkqkKMS2Tbso71ZFLp1EUkMMGXIMVrwcMxtE1kGQwHItZNVFEDN4pFAahBRgUlFaQ88eg+napS8IDo6dwXFsOjta0VQNQQyAYJNKdmCZORTVj4iPgXUjcB0FUdJBEBBEgVhqJ2lrPX5/kF7dxqEoKo5gYjkpJPz07z+I6p5RYrEs/XqPIZ20UVSXIcP7UFQcZefOFo6efAplZf1QVB1Z1JB9FpCgM7GNJxZfTyyWoKmhFV2JEgwWsWPvh/y1eT3jRs8GM8KK775k2ME+vvvuR4YOGE8g0IV0Nk7Qr5BMxkilE4wZfSSy5KestI5sRkFXZCQRHBfCpWmqayooK+3OQcPHAFk0Wce0QRJbuPO+G1jy+nNMP/5EGhpbAIVhw8aBo2LlRBRJAScIcg5RlqgbMATdVw5olFQobNn9Le98WE9rYg2HHXwW8ViO1Ws+5KMvHqeysjsl4X4MHzkJ0bVwXRAEAQQFJwe5rI2sKHgfKPj0CLgugwaNoqKyD7hBEFSQJURVZMDAGj765D0GDa7jnfeW0aV7mFCoNwg2mhxBkHYgKBZhX3/WrvmDpcseYMNfP7Hpr+1ceun1ZFIWiqofYI4Ex2sFLqCAAgoo4G9DQYlUQAEFFPA344ASycz/xmtlAHhv+WImTKwjUhwBcix6+loWPP4Vs06Gdeth6pSDmXPqpQSUgwCHz1fcxcihMyn2n+jV+kKWP+rvZP4dd3H6jLuYcuTZBNRKb1f7osuVDIaRRNNL9u8XFxJtECpP8dyz13H4xDGYVpx+/Ycwe/bJPPnUs/j8PfDrgw9sJ3+3yCTTqFqW5/79GOddfApka8nmQA+ncOwEolBJojOFGqxn5U/LmTh+Jh4RFQEkcBxyZgdfr3iboycfiecjEwUhjGPFEeUssUQDgUAIWSzGykk8/vhjVNdUMn3GEZi2jSIFgFKwvZjuXMZLX8uk29B0yfNsAch5rUgPP3kG5118LLal4uMgNLU7Lgau6BLrtIhGghgWmG4jfjXNntZ6epTWEY8FCYcdmpu2UlFZhpVTkIQwgiiDuE8l5Y1pxtnE559/zglHH39gnlHw1AhBcEW++H4+R46fAPQEorQ3ihSXhXEcyNntaLqBQAuffbuMjRs2c+EZz6D6RNqaO4j4uiPrgNIOboCV3z/DgIEDKSquYF87CcjksJHQuOq665g4JUA27ufk6ZcT7wih6jl0XztgkDF0fMrQ/Lx6pFs265mH64F9UjAFTD+OIODKKSR85KwEgryBJcsfpDP9HWfPuZQQg4GxmDEbJVQEroKZE0kmIVoEgtzIJVf3Z8QhBhUlAwlyHYcffgI4qsfQALg5crksqk/zUgTFfSlmCqYl0NmRoKys+wEVCpBONeMPFpNojyFIzQSjbSx9fSG9evTh4/d+onu33syZezmafyAHjGKSQIZt2zawZu1vmKbB+LHHUFU55L+MiCOQKwEXLCmJ7SSRKEFEwbRcVH8Mgcx/jbuEi0xHe5wvvljOiNE2b735Addd+QACNTjpCKIm5fefwrWSCFocx44jSi4ffPg2g4fWsvT1xcTizVxz3QVccNHVlJSppDM5rrzqUm64/jFmnngUA/pOYuMfCc495yZwFRr3NiGrWUynlarKKOk4+MNluLkO7n/kbM6/aAqfff4hs096F9vylH6ClETEoLlBwR8UCIVasK0gjl2KLIls2bmavr27eelyQpynnjybXbs3c/fdy8HpA2IT0AVMH5blICseyZxLgRqC+safaUm9wH33P8nwoQO49tLbuPn2G4nFOhg6cBLTjrqN8kB/UMEQXDQdEPOTus8nCw4QA/s6pqROsrld6KrCvsQx19YQhEj+mDy/o3TSwR8sxUhlUFQZx80gq/vO6RyfrbqHutqxdC85CVeIk8rUE/SFMDJlGFYT4VAW8FG/UyAaqcorK71WuXiik3Co2/5zEzQeWDiLivIuzDvlFEw2svTVHbQ2wlVX30SuI0xj4k1aO3bRr2YKPrkG0S+BsJNXXljGnLk3er5wQoZEYhdbtqzju++/4B+XXQ9oZLM+XCuCz+dJbOKp3YRDe4AMjy9+jUvOvRVQ6ehMEI2Wksj8SthXwtP/fpp5c87Hp5UDKo7pQ5T85NIQS9qUVQpAEzYmEmVYhi//0sGgMfYtncnNrP19BbOPe8LzIBMbgHXMnXcWhx0yhaMnzaWiSxVasNy7rhMAWwcxT/buU4rh5NeciJm1kYQgoiyB6ORVZK388PMnHHLwSOo7fmPRoie555avQXCItSjc8/jh1A3qyhkzFzqq9JsAACAASURBVGJbFgaruPOuW/j30ztoqo+BGz5wjxLAFZz8abOPDS6ggAIKKOD/axRIpAIKKKCAvxkeieQ1xHhQMFJpNL/G3NMP4/qb5tLQuIdJk45j9ZpVrPj+Y6JFAaprqhg6dCh33HEXZaVdufKKq/ArxUAvrERfZNmrt55//TZGHtKV2j7DsMwgQroWWXTQQ6Ln2eN6ZqkARtZA00swUiaaGgQBzFwcxa+wn3lyAFvHsWVEzSvYcybYVhZfQMZTCXiFODi42X4IehNetLkIbl+PrJJS4KZwzXIEGWwrgSSHcHJ5Y145ld+n7L0VFywQNnPngxczeNBw/L4SJk84E9yuJNpNgkEFQbZY+Nx0tmxbw+ihczj95DvAkcmmLPSQiGmkUHQdM5vFtk10rZhMOosv/CePPPMPNv65k6cX/EI2EUYPaXR0pkHwEwyIiBLkLAdVOTBPOUNEylu0qDq0NmcorfSBCHt3b6ZrjzLA4Mgph7Fo0dPU9a3DxkXKF5deceXb3xaFZAAGtmNhmjaq6EMUdS+hTvSGH2UDq375lFFDp6EoETpbJKLRCJ6xUD6DW2gBx+9Fq6la3jvJK5ps10QSBFxcHLbkba91DEtFk8vJpF18viDppIXf73nJpNON+APl3gEIWW68+UxGjalj8pFHE/J1JZsNoWmlnqBNhFSqifUbfmP48GoUyQIsHn74di6+8HReee15TNsmnra5/vIFpAxobzJQxRwVXQL54wwCZeD6sLJuXsmRBQR2bWuhR68enDRrFFddcz7tbQmmHjsLEEinbfx+r8UNJHZs/43LrzmJ4cOH888rX4F0GbIGm/Y8ws6mt9n81w4uueB1YAjJRCvBUIhsJonuC+BVnWp+ngAMXH7DpB2RYsTcaOLxTl556wZWfP8JTyxcSlQ5HNkHj71wPCtXfcXkcddx0ozTiWVXYzkxenUZDc6QAylXho2g5p2ARXjy6Ysp7bGTCZPqiNgXg1WBFnXZR3548+gArUA9rfFGVv3wE6MOGkdVSS+ypomuVABh7GwAxxYRBbClJKpmYVs5JCmCaa7nngcvRfZt4/rLnwKjN67eG0fw5w9lPQIqotPXm1PJAFtjzw6Xbt0EDAxEBBRRZcP6VVxw5VjGjQ8y47hT+M/KHFKwigvOvwVcjWTmD4J+lYaGNFWlowCwbANZ/4m22G62bt3O5i1r2bH3R1as3M2sWX2prT6ew0b9A6Qwra27KC0NAi7bd9RT0/UQkp0eEREq9pZQIr4XQXAIhovYx2gvWHAndQN7sGTJyzz774U8/cwietUMpLMjw+mnXkGs3UBVVXxBhdtuv5zjpk7goOGH4aUhtuER2zLX/+s4giGNW659GY/w3UjWkVHFLohupeefpoFtO0jKvomVDxAlUic27/PDT52MGz3NW0O5Gu8zLQl2GiQJI9WCFrCAKBAlUR8kVAqZRBpfkU5nRyPRkhAuJr/+9jP9+vUnFCgC/OAouLQiiGnuW3AJ111xKVnX4NijT+Prz7aDU8buHXvp3rMKy2pEVrzv5l1/8sll7n8lXAptZOwUPimKjYTgRsimvM/8PkgkIRKB9vbvEQlQVNwt/z93A9vZ27CeV57/EF2rZfOevygqKuOOfz3K1q319O49EMeUEeUguYyB6vOB4AVJeMeR39S+sALi+XtJgt82LeGpJ//NMws8vykjESLOMn5Z/RVHjr0K23TQ9bWcePqp7N0BK79uRlbKDlhoAa5YIJEKKKCAAv5uFEikAgoooIC/Gf87iSThPfUajD64lHc/WkhxpBpVmuyRBIIJVhbbTiJpIi+98BTzzjzD8xXpCOOLVIHUjs1eJPzkckVYbg6/5sclTC4JseQmIiU2muKSyej4fEEgw79uv4LJE0+ktm9v7rvvZqYefwaHjD0Wy3YRpBy6JoANklSEkzNBTeNiI+EjkWlg2471NLeuYeeudWzeuIltW3Zw1tyHGHtEX778+j2+/vI3Hrz9SxQpiKhY+eI0gGVAMrsLVSrHr+sHBBz5hKr9b5KlJC+/+iCnnXYykuAjkxZQxFJkTcsXHJ0sfOFY+tR25dhDbwEGgqXhuAai4pnLWgZkMy7BqIqVCiCIYCo/8Z/f36Fb1950Lz0WWepCLN5OJFL8P+YJAZKpOMGAj3QmRsDnI5FqJhSI0NboUFIZoL1jEx9+8gozTzqVZLqFx5+8j7PPn0epfzq67kcUpANfbl+hue9O64BlA3IOhySpdAOqpBLwl0A2DJKMaYLig872FgRtN5FQad4QWgF8YFfQsGcn0YjXSucLdcHKQiLuUFQmkjVtdJ+Fi0k2GcTnB8txkGWDlpY0ZcUl+dPQYc2Gj/l9zdf855cPeezBd3CcEJ2d7bTHthAMaxRHK1ClPmCFcYF01iAQ3EyWv1j+/jK2bWqkuls/li97k8GDe1Pbs4qVP6ziyadexSVArDNKNNTLMy7PAroDUjyvaugKbhAzm0ZQWrnsijMQBZXHFy0DW8YR9iCKFh2xVh5//Em6dunOWWdeAEjYtsG8eWdSPaCebl17oUoVnDv3XlrqW4hGdG6742Ju+dfFaP6IN2b0Zm/DLjZt2sTBo8YSDFTiJQ8eMC+/+57zOWhcgK3b13HI6CPpWz2ZgD/ENz8+xeFjDuKQI0/ju/c7kX0qC58fQY/qLgzvczXlpX34auWzWNQT7xCYO/uR/GTnABs7oyBRBqoM0l7efO9q3v/kdbqW98VM1nDmaf9i4NCRtLduobgiQyrbwLvvfshff7Yw/7Zn8JSL5MmlFLCXK286A9PKoGt+rrvubmSxluJALbm0jOrvBNbhkqG+oYXd2+IMGjgCUw0Q9nflr52rWfjU2XSrGMjN//gA2wRJS+IaGoKkgNSMK6RxXI3OjhSBaJyWjjd5ZOE9+BWoLO2PYQ7i6stupy2+mxdeu4auPaK0N8PF817CI2IywDagCCgi06HjKxLZteMXdjf+xHPPLWbx029gWllef3cB0RKHPXt34te68udvNvfd86ZHroQ8P7bOziTRaCW4FslUJ+AQDCqAhU0WCQmHDCJBDNNGU7rQ1pygpLwc10mwcfPPfPTJGzQ2dPDAPctxTQMj66CHW9iwazFbt25j94YacDWaU59z7pn3Ulo8AE0uAmRSSQtNkz2lTv464c2Jyd0PzCZQvo4zZz9GxDcC7DLvUi8A2jYWPH4OOsO58JILWLv5cZ577gUW3PMBnXsPwh90UCN7yKV8qP4yEASSyQSBYICskcZ1HPw+HzgWiPX8tu4j9jb/wvI3VjL7pPPo0a2WJS9+y603Po0aAOSkpx5zPdWVmQFln12QiJfAhkPOTqBIIbKGhK7pZI20d+3HYb/33f6AzAZcS0SQSkCI8chjU1mz9gcevG8RWzaIPPr0ffTq1Yf5/7qP2259ANuSuPWWe1HkEJIcYJ9C8n+DAOxX6JpAhrT9O6+88gpnnbwQRRPAjbJ4ycl8t+pjXnziz/xaXs+6TT9w4rQb+GtjwlM/sc9YvaBEKqCAAgr4P4HCFbaAAgoo4P8GbBPHTDN9xnFUllaiKgFSrQ7YGm5aAjGCpFaAW8S8eTfgFdzd8YWrwIVt235hxuxDueuBK1BVH36tiGTKxs6BpkN5ZRhNcUibrfh8Ufb5MPWt7cGwEf2oqIjQr66YsROGo2sKAb+OX1OQMJGkHGamEVG1EMki4WA4CTrjLTQ0bcMXsFm9ZgWhiMjMWdM49thj+fTTT2lvb+foo6ag+YOICiDZpFJ7QEwg+zNEi4P4Q/oB4gj+51tpF8y0zoknXIAklNPZkcPnL0GSxXzbQ5pde9cQ8If4/bcNuEiAhGUbiIqD14aUIWN0Eoz6sXJpZA1sG1xHZfxBR9G1qheyEsTOOUSiIe8NueCAYGHmkqSTHThWBoEUmpbDdBsIBdJAGyWVPiDOLfMvY3f9ejZs+p2iaITKqnIiUT9+XwhR8NpsTNM98N32fT8B0lk8BZkr4DguReEogYDmFXdyjGS8GUWGHZuSREuK0DU/yexuTjhpNC1t9YBIU0MzVV2r0fxJfFEX20whq1BUKuI6oOsSLe27SFtN+PJew7IgguujrNRrZ/IOLc32neuIJZuYN+9MPLJCo7i4C+Xl5VSWlKJKIi3Nu/cfvz/gqXaa2hvZtGkDp50+i8bGeiZPnsQfazdx+GFTGdz/MHBDCFQTDQ8gm9TBBdtq5+cV/2bpS7fz6ZcfeNNvWSiaxO133kDv2gq6VYe8eZRAFIOAj4cfeoxRBx2CYXgkbCLZzEMP38sxx05k1NhyZNVgxYpvgTaWvHM5514+jOqepZw57zImTpjKq68/ANg8//y/2bZtC6+++up/TcqBc1CSBer6j+CvDY2cfdYNfPLp2zS1buHwMUeyuX4Tld1g684fiXVsp6MjxoaNf1LdowxBzHLc5FOZPPFE5s4+m/bYGlrbVgE7uef+s5B8SU/slAOsIjSxhnPmXc5/1mwmWtHBN9+/DcQprtA564LJHDttOpFimz59e5LscMAJY6RCXssnIbbu2sao0QOYduIENm3ZwHU3ns93Kz9lx67NqBp4REAJhlFM16pJfPzx5zzwyPWsWvU57bG9fPXlB/TqVUlDw1YQwDIMoBNBawW5AYQ2BGQkIUBRcTm6GKEo2p8+NcM5+8zz6GiP07VLDa3tHZSEqzntlPM5aco8IqFKQKattZnm1t3cPP9iXnr5SdLxBIJdCrlienQ/irEHzeOoI86mfncOVenGjOmzGTFiBPX1exg79lD8fj8g0NnZiUcyOESjPbzzU7B5/6NXWfb20yxd9izgIhEBysjlvJRDTYkCIiXl5d4siyp1/YbRs6aWgD9KLhNHUC30sETGaOPfzz3N228vp7KqlO7du1PXfwivvvImmuypo0wrQyAg4zgHTpv2jiaymXYgwQUXn05tn6EsXPRQfpLZZx8HmFx2yYU4rkEq1ciqnz7DERJ8//NyIsUuaiQD1KMGJLLxBCAiKxo2Arrmw+/TyGU7QMxw4UWncsut13PJpctIJWyOmnQiA+tGUlFR5hFIIsRim8imO71WWzyj8v95rfUe+1WpCMeR8GkSYKJqNolMK/FkM5630xYvTdEF0Mg5Etie+fi4scdR228opUX9GHPoZGprBxCNlKAIPs455xwOP/xwWltb8z5J/2/eRCLsV2368EvdPUWtBZZpEu+IISsSFRVl3sBbMhCgoqQfro3nxi6K+69P/3O7BRRQQAEF/F0oKJEKKKCAAv5mHFAi2RzIbM+xe+d6brntZCYeXUP/2mHcftPH3PLPOxk99kiwJcwUKP7Q/u3E2vcQLm5DkKuZcEQvlrz5MAFfJVHflPwbZhPXCSM4gLyJ+x+9iqJoOeed8YyXtCU00Rr/idJwF8AmazSja8Nx6YKDiEsbt951LvHOFiaPP5ITTjgTy5WRhTIcW0OUUji0YbKR1994llkzTsWn1AB1vPPuU0ydNhGJErC91of2xE+89MYN/PDjtwwbMpaxo07n0IOnIRJBlPx58mZfYl3eJ8rxzIxlH56BrmkiKhoIKUyzncuunM0dd19LWbgHUIeVCiD7LRBaeHHpfARUhg0Zy5CBkwADI94NzQ85ZwdN7WvpXtkX26hGkv2eIgaDb758l1vn30Tf/n1Z/OzLGEaKX3//lnfefpmnFv/MoqemkoyJTJ9yM127VrH0zQWcOvMkoB8QwGvHaMB2apHyZkymZaLICgdkVl4FaqNhWzaq7KnRTLsNRUqzd8+fXH/jOVx19XmUhubRo6aWTG47Pl+IE2eP4dWlz+KThgMasY5WItFKHn9uFFYuxIjBpzN+7LleS5wAq9d/wRcr/k2XHhFOn3oHuGX72+lyFghKB7abRJdVYskckWAIxzYQ3Qrv7yRA2so1t0zjmGOOJh0PcMxRFyKJldimiJGBQAjiiWZ+X/shAwZ0p7S4Ai+lTvF+MhZIJTiOH0EEQW/irLN6MH1mFd2q+1NRdgndKsZ7Jrsk2dHwCY8+cQPRSDHHHHkeQ2qPQ/d7CXV2No4kW3jO1QZgkjM6UTWdx145jn49J9O4x+GkGVNpaP8Qvx8+fvdnvvpsLfPOmkzXmiq6l95IOBzhgI9N3lPH9edTpZy8p45KrLWVSLEfxBj7zHg+/nwxbdmPeO35rTz60PP07NmFO++7gqKiErpVjGTGCfew+KmHENUW0u4qGusTHDxmMD/89BVl0WHs2ljMgkVLwZVZt/513vnwWT5b+SV33X4SxYGx9O87Ckn08+3KZeyt38HME89ClWrAqfVEGvnTyLIhkdtBUUkGsEiksyBofL3yI6ycjxOPPRczB62NMaq6dQEcHHcNotTGo4+9xcD+Y8nkGkg737L657+47ZpPefqZRWT4lnh8F68vbeXqiydz0aVvY2cDdKazRMt0JBHaW9sIB5LIviRQBU4xsWbwhTOo/vwaNkVsx0HSO7D5ioWPvkrv6kOZeuR1CCp54/J8a5MNyXZw1Z08sfg66ps2suDhpxAYDDmv1dYwdoKQQdP7Yxo2ir+VtLkFv6Lz1ntvc9IJl9PSmKWspDu2k0bS8s7oFqTTWfx+v9dapzj7eQUn18E1/zwORQpz260PouvtbN61hr49poHbk9aWLXy/chMnTDsRUTTJWTlUOeC1gfoVwCBjtuBTgqTTrfj9WaCIts4dlESrwekGYhseoaQBHXS2xomW+tm693WeXfwYv/zUwkdv/8KS15+guCJD644Kzj7/DhAkUtksmq4jYLB915+88vyjpGL1PPDwg/zwnw+Zf9cdXHrWffz2815uvesaQCQbt1n9xxcsffdaXl/SzqknT2buaZczcsQxB3zw4ACZHXPwR+PcfNssRo0ZzvSjzwFqvDkUWkjkfiGklmMxHNsGVRIBk3iyEb9PZvfO7fTq1RewsOwksuTLb1ymqbGZisqegEa8PYnfF0TWlQP733893Hdc/+2BZWLb9UhCNYhJQMPkfepbt1GiTyeo9wEpg53tZPYpc3hr+fv5OD9p//b2xVcUUEABBRTw96FAIhVQQAEF/M048FBr5X8jsmv7X/ToWc77Hz/If1YvZdxhI6gb1I/K6FAU9xBweng1iASJzjZC5Sluuvkkzrv4KALSCMorR9LcvIfy8t5ceO6/6DckzJX/uASXLgiODmITi56+nQsvOAfFHeHtWknx2DNzkRWo6TGQKZMuALcbrgO2C8gw//bzGTy4LyfPmIWRltD8XcnERXxeQJdXd4sbEIhjOSqyUAu5ACiQTTchSQqKWoyRTqCFNmPyE5ddfzHzb7mHyuDxZM0gbk7H5y/P+/sYHHDN9ZQwADimVxzYYOdA0vKDKKawrRSSHALTh2uC4DeBJpYuv5OTTjwFwQ2iCJWYVhrJrkVU4ZGFF7N125+cMe98Ro2chmuBIHt+HKedfjj33X8nsuR5h6z84Qs++GgZR0w8lGXvfEBxscj0qRdy4jHz6Ww3iJZ4BZGVrMA0wBcC1AwOFq4jIaAjCqJHkmHieUV1AiYZ0uj0Z/HiJWzatJpetTB58hieeuIJ5p15DJ99ew/ZxGhGDJ7NccdcgJFtQ9NLsLIisi56RJErcO9DpzP9FD+7d8U5ctyF2GZ3ZClEzrQQtHYE6pGxsEnxwtJv+OaLDdx204tUVhUj6a1ookg668Mvl2HaoGibgRqwFBAgZ+9CVXPYroNEDUZSQg3FyKZVVDGIpDkgdPDaW/+itDjCxvX1nDr9FkQnzuIX76ao1M/xM8dz34N3cfiEI3jvvTfo1lWnskLiovOvAMaTTfZBFHyogSzQwK7m1ei6Tnm4jnhHlHC4BhxId5r4ixWsbBtPL76Hqq4Rvv/+ex5e8ARke4MM2XQchTCi7aVXvbz8cg4eX4TrSAysmwtODZlME76AgmHE0LQI+9t29rcd2mDpXn2rt3PxZWO47prbKYuMwBdw+OCbGwjqvWlvUpg543KQmoA9pLMKqcbRlHWNks1uRw+t4f573mTbzt85+7zpHDxyGjiVnuEwLbzy9rUcNLoXOzZpTDniVEDBRURwuuNkinBsPAN1CZC2eFcQpxtmVkUQc3z4+ZN8veJd7rntJXy+ao9ckjYgI2JTjGSV0dFhUFRmAX8AJWCVk8m4+EIyqfQOAv5dgEbzniLKu5XyyKJJ1PQz2PzXbqZNnsnLz8a488HFQByXMInOKsIhhT17fmPuOSN58cVl9OhyOG17A3mFnneY8+bOoaRLM30HRDnlpMsJa70xTIdAJIJHtqbza74CJ1GCKEPW6mTDpk9R/QleeOlJHrj3PXB1Eu3buH/RHEwnxd6dMi+/+CVeO1OQbCqH7t+XCAnt7S0Uh8oOKFJE8n+jYuZA2Xf9ECygCfiFRDrJv25+mL79I8w6eTrR4BAU4TBwRWwHLDGFKBmk0wY+pQjLcvD7dVKpFh5+7AqK9KFceukN4EKyGYIV+X3k7a0Q8stfMUHIkOpsJBAVgBTJdIbTTp3De+++RTrbxJfv/8rUWXP23x8MR0IVA/mXD3Fuu+0ibv3XYyBYvPTqzcw5+VZsoxgl4LDf84hmPv7+Ru66432iIUh1lvLZx3+hyEX/pYrMy6kcEeQdmPzEdz9+xcQx54M1HFyR1b9/w5c/3E/P2hqmTrkFnKq82MdEJE5Hh0xxJEIi4RKKWLiOs98b3zEN0kaWYLAoTyizP9jT3X+t32dgtM8zzlt/wj6+XUp7fm+SmfeK+wWDNjRGgV1CNmmgBzVOOXkWry1bSiqVJBDc53EmemuJAgoooIAC/k5I8+fPn/9/+yAKKKCAAv7/DGE/i5T3yXEEdL0I23b58ZfvSFsxxh86g57lM2nraCLgKweK93MrmgId7bv5z4+/IQrtbP+rkQGDjyAQKAInxZo/PmDUIf3o2WMkAhGyORdJCHHwQceBYCIKLolWHS0g8vWKh5h18qH06d0bTR4BgowgCAgiiAJMmnAUg+pGAjqyogJJshkVTZa8xGbVYFv9Wzzx71vZuWsbg2snIDqeWkqWg/nWsyyyZoLgpf5sXttGOlZE//6HYztBjKxIW0uKcCiEV324OGQRyIErkcvYpFI5VElFEDw+SZTANkCUVETJx74qTZABMQFkqaurxTKCaHIFyYSJz6cjyArJ9Ea+/8/znHvORQyuG0kmV4+iWHh+LQKhIosRQ0cTClZy7/13c9yJw8nm0vSvG8J3P67ijHmnU919AFVl/dF9xeAoIPoQRVD8kkcWiZ4puWkKKIKGkQBZ8t7Mt8XW8eGXD3LeRZfQ1Pw9hww7n4fuf4CO+GoGHLqOTz9/lcPHH8uIQSdS2q2ZWcddR1FRLQGtBlkKgyPyv9h7zyipyvz793Ny5apOdCLnHBVEgiKKBAUDKKKOCcOImRHFnMcwglkU45gTBoz8VESMoKACIkGSDZ2rqyuffF+cApy569775j/zW+uu2mvVYnU1dfrU8zznW/Xss/f+irKC3i4hCwJ6Fr76+nMmHXUC/Xoei+D6ECUV3AySYnLeX87ipBPPxjIVZCnF9z+vZPwRI9m0aQOHjhiJLAQABVlSEUQZUXTIJF1EFERFwLHT5PUMqhZDFMJAEFkREXBQZB9iYQ3jBujVeQS9+x7BkD5jCZdX8/7bLzDh6GH06duJ2o6l7Nm9kQF9e/H8M19yz103sq++hZxucNcd1zNj+m2kEwl8IR3HrcDRu1NeMhgIoqlVXg6MIKFIXlczG/htx9eMGjuIDtUdCAWqke1qZBUkRUAMpHAQkAIyQ4dPoSzWl8rK4eQzErIYRvFJQA5ZdoAA4EdPSciKDIKEnZURJUCr54JLxtJ1YDMrPv2UGcddz97deQYMOIyetacyoO9kTxXlaiB0Q7SrCZWrIKWRZBBEP2+/ey1zL5jCxg2bGDLkdHA6YWVA1HIM6DeQDuHhdO82jqSeR5RtZGRMwUZW/YiaUigVDmDgujKCW4okiRhmit2NH+IPtzGg7zgwS7BSMqo/5l3rpKjfF6eiqkMhQ0wHNBBDKEoEBBtV2R9G1o2g1htHVzh87DASuZ9IJJuYPOEarrzqPvJ8R2tuNV07DySodgcBHl1yMb36h1j52VdMOmYWgbAf3Ix3gboSe/etpf9QjQ7lFQweOBNRKkX1BbCtnDe2AATIpx2UoKc2yuRFunYbQklJBY3NdfSqPoL21n3cfd+lhCu20NQUZ/vOdrp1z/PiS08xftxEHAxcZERJwhVACfiQLBEnC4IClpFFUXxezJroCZ8c0cJFx7JEMslyIuE+PLH0KoaP1Pj6uxWMHXUurluLaYOogC21Iws2PjVMpl0iHPJDDlS/j6VL51FTG6N/3x5oShlqSMR0GnCFHKIQPMDVrF77AW+8N58RIwYiSK5HMItRVKUEUQzQs8cIXKuMgcP68tu693jj7fv49rt3GXPYRBJxDb9WSkurzdSpM8CuBaeMAYOqkeQkltyCZfiR6IxAEIQoNTVlBIKbMXUYOXIWXbochumK+P0qv+/4kT92rScSdFF85Zi6gCJXEQ31wu+rJKe3omgm1bUSjfHt1O3bx8jhE9D1MLIgIQgSruDg81sIgo2kaOh5CUWWC2o+GUGSUFUfhmkgFUj5tngG1eciChkEspjE0Y0MshRAcGUERBy7kLcv4DWBcAUcQ0JwBJBLkelAJtuEqlnIPj+5nMUbb77BjBNmEAiGONh6sUggFVFEEUX8N1BUIhVRRBFF/KdxgEQqSPjdg89t/O1L+vWLIiGRTmqEIh29HY9gcsdtF3HK7Ml07NiZgL8H3636ip11yxjY9wgGDZ/jETBChvUb3mXYoMPI5mtQxQ4IamH/KYArbEekBIwyXDvD6RfFGDf2MGafMp+S6HT+n7MjPBVNPteEKnb0vpqLYNgtXHX9BB65fxHJvEvEdzg33344O3dsZ/4Vt9K3xwRMU2fRg7dRXpPhg0++5rLLjyKXLuPo8c8VMRMnOAAAIABJREFUwnANvJRlA48M8u5KZ3J5NFElb7Rw2pkTyRttfPLhu6RyBlF/fyAGVvBgpzMKL1XSmNY+lj53B4ccOoRgMMSAnkfT2lBKWVUIyNDcspWK8ho8G1MMTO3AHFgG7Kz/jC+/eYOfNn3MwgX3UFXWHZEQ69a2MfzQzoVzjYFzMIgbwcG1HARJLoy1joBIKmUQDgYLxFIOaOb+B67A0Ns5dORYJh5+JfmsyNvvvsScsycW3oyfD99/hxVf3c0Roy/lxBnzSLbpRKI1AOhZEy2gkE2nCEQE9iu4nntqCa3xfcxf8DfA4fTTTuXOO+6lrLSGcEkFtluPblgocghFqiLT7hAMl/5bC+79Y5khk6kjGPTT3FpHRVkXwIeZV1GUME4+ixiQ+HXD53zw8Uvsq/+DxYuXkIxbREo7YacVpIAL7l6QMjz55G2UV5TQXB9nyrEz6dyjP9dfM4/aTlGiYYHm3aOYd/mVKNEEhh1ApQO2CTgOkiqC5GDbBrmsic+vYhg5AkGblsQOymMxmpN/MGPaSTz55FP07tUXRfYhUAL4wAmCXSAg9y8x+SCp4uYUrEKAuWm3ofiyhdeVgZjEsHehSrtI61FCHIGRw7Ns7d+hKq3eD3ap123Qn8Q0sghOGMGS2VZ3Mxs2reHrL7fywAO/gF0KQo5nX72K6Scdw2+/7aUiNJHevfrjksd2TET8iMhYJsgKB7tXuQKYMu2pFkS1mWD4N+599DqunfcKhl6JKlSTzW1g47YVWGIL67/PMe+iBwrza3qdvWzveIJEwfqaA7dAVAvwzXdPs7PhVaLRKG+9WMfDi1/n150v8vnqV6guOZLJ426msqocApv44ZcXeGrpB/z17Dvp02sovkgI3KB3Tan1wBYsW0KWSnnljRf5+eef6dd3EGedcak39mYYAU/xZRpgiK0E/WUgNpIztuKXxhGv34Mr7ea5V//KmNFH07NvN+6552FOO+VyXnj+cxY/8BQQwS1kvTk4SCSBZiDHtQvncfMtj+LXOgKluJg4tBTqWjWSKZJozRCr+p65l06krRWefWINft+hiBKIBpgiqKoOOLS2b+bZF67kpGlz6d7tcBobf2Dy8bM5Yfpwbr5hBZhl6EYS1RfC0kUQQdZsBOEndPYw86R5LF+2iscffw5d15k6dSq9ew8CYriGhJ7+jOtvPBOTLOdfcAlfrNrJpZc9DoRwkbFJITthMLLg28Hzr/6drVt3c92CZ3HNrgQCCqJkAX9gGtvYsWMvHbuPwKf2IJV1cWydULCFp5++jE9WrODOv9/PksdfYeiQURw2agx9ew9DEgLE21opKSnFdV1Wf/MVww4ZSVjrxN69Cfw+mbIyjVQuTsgfI5lUiQQCB1RIXi3JATYtbU3oeZPa6s6AiGVbIKV5461/8vMva7j71sU4lGDkBXy+AAfkW7ZXlyxLR1ZVj0iWE0CCj798gOZ4K/W/V7Fg/gNMmTKFjz76iGw2W8jRKqKIIooo4r+FIolURBFFFPGfxoH4B73wg4ZpiCgyxBMtREtdJEQvH8ZRWPvjMyz/5GGmzTicQwediShUATbfrHmJLh0HUVszDOyOmIaDpFkgtiAg49ARsbBZzJkN+LQsIs2kM50JKdXkrd1cd+tRXHbho3TtPhavzfr/O4xsDtXnJ5VIEwxJniPHTZHP6/j8JTTta2fZezdy0UXXgdsBJxXghlvPp6LaYfOOj+jdayBTj55L/0GTwSoFWSdv7+OWO+cyeeoEhg85iojSEehMMmEiiXFmzRnD2+8/gIbFk6/eheAGOfu025CpRHC7g7APzydS5o2ZYAM5nnv+Qc4+65zCYAcAkadfuIYfvt/K44+8yfW3nE4kGuSaK1/ETPpx5QyOq+PTSlmy9E5Kyl1OnXUi0JsDXYP0yP6oDwDMvIUguLjYKJrvoDPDhWQuQySsAk2s/eUTvv7qU6ZNnU6vriNJx0UUMYgWi7NnZz2dOx15QCRi5ywkn8yNN/yV2+85D1DZ07CVt957AFWqYt55d9La1k5ZSQu3P3AZXbt1ZM6MW5EYxGcrPmHipKMK57ufrSy09rbBdYMIkuatO9smlUqhaUFkSUWUJXAhnwVJyWPThM+f4vt1K/ll41q6dxlC397DqK0eAWYY23RBbuX+x85k5PgwAwd355uv1rHs5S307zWRBVc9W7Cu6CBkaGjYSDAYJhzuAIRpaWgi3tbAP1+ez+SZW/jno/DkknVAdxB1XNcBIcee+nd5ZMkVHDP+Go6ZeCLC/rkmRi4RxB8BxARHTS1h0KBB9O0+ib9eeBOZNo1gicOOnd/z/bq3sUyB46fNJhbuC/i9jlWu7A1VgTwxbVBCe3j5natRw3u49/bviKo9mDRpClf/7Xx+2byekNqX7j0GkE414Toq4WiA9z56kOOmzCETryUcDdHa+gclJWWIYgAsMKz17Gv8lUwmRa+uU1BDFSC0s+CmqZx86kmMGjCZtrbelESi3sJywbIgnXEwrTwVlZ4K0M5HkRQBJBPL2cHehs2UVFi0t7fz4/d7OGHaWeBWgRkoEDh1ZLNlBPzdC3ZKL+fJJQKO8n9XaThg5NOoIQPPbqZS/ztUdywBrRlo4uElN7D229+5+OJ5fP3DP7HV37nknM9It5VQXlZNY+Neqit74ugCoj8H7MLBs2JZdh5F8vH2u29y/HEzkKUAHlmngBAAIYue3YwWqKCtbROPPnE3N1yzHDMTRpDyyP48EMAx62lra6WsQy9ww2RTeQKhMNl8lkDAx8f/8z7J9Gd8+vnzzJ17LrHSDjz+yNssvudFoBKQcMkX6m8AVw96yij5d9pTP9LUmKBXz5OxzDIQDGTZwDT/AKMzrutHDTWTZRm33HEfd9zwDCIqmfwGVn+xhuMm34GjhxA1G5BxrJAnzBLS2GxFJkpDYytVlZ1w3CzP/fNxfvhhDYsXLUFTumFmJVatupHt235EN/1cdPHlZHIO637ZyLgjJqIK5eiuj79dfgJVFWFmnXI6ffqM5t33PuC4484kncni8wtoslhY2H48+2wzSVMhrAwFV6S5ZRuCtoLV3z7Pxp8dblrwOA89/hC5nMm558zljTdf49NPV/DGay8iIQERcPty2RUncsyUEWzcuJFIoDsXnHs9ji2hqiqC6IDkK/xdvfCw2b1vG19++SXTp5+AYRhUxPoBOhYZnn3+Ec4/6xLv+AUSMKe3YTkpwv4MpmOhiGVAEKwYiBLJRCuRUotX33yOul05/va3Wzj++ON5/fXX8fv9/5+fY0UUUUQRRfyfRZFEKqKIIor4T+MAiZSmEE5EvNWhtCSMrnt5HaJoAWnmnnM0/Ya7TJsxnr6dp4B7OODj6uumceb5Ixjc/WIcAjhGKZIMed1F9ecxHRMjF8KniSSboKxmFxu2f8TXX6/ir395GcvIImqbee+TBzlyxN+JxTp5cRT/EnQKByx3cCDMN5dvxB/MFCiKKNhlB6M13ByZ3AYCWi1GNoA/UsK+xo949qWbufSqWUTkMWAcTjYJvgiIqoVNnMWPLuDKefMQKMElBFYVkgiO00Zb+x7CkQCqorH0qSX85czz0LQYhm6gahGgoTCO1eBEAGhP1BMtNbls/uk0Ne3jpRde5OEldzNoeCldOg6mZ814vvj+NXr06EF16ZHIbjeQmvFYoCQeoRbEMh2y+WYkIUIwVOH9zqzEtUGQdZCTgIVh5MhlbaKxGvRsHi0QxbRkFNkE9vLYszdx8onHURGrItmuEQv0BSHKfY8dyvadP/DE4t+Bci83xFYxMxZKdDstiXVo0kAWLXqMS6+aTUDtiE/rCo5GRv+FL1a/w7GTjsHIVhAIVPPnibKtPIZu4Q9GOCCZsYPk0i7+sEAmFScYDZJp19HUELYuovkK/1UBhCbmL5zN/3y2ktvvuJwZx57rjYtdBQRAgHR6Ly8uu4r6tk8ZPWYYP6zZyLlz7qdDbBgy/T1SwnZRNRtIk82bBHxlNDfmqagIEG/LUFqW4Ny5HTl06An8/IPIkiVvga8RCJLPCbz5+tPMPL0ricbuVFX3B1EHx39gzSVSG9hdv4rV6/7BJWfcyBXXPELdLp0H7lmObdvEymSiMRfDzqBKscLcaniBXgo4Ima+0PpcSvI/nz/NT1teZHv9OqI+H9df9jlff7mBfoMqaU3+zK5duyiNdeKoMXMAP9//sBKTHezdk+HUk27B0h1kLVWYiyiYIU9waO9DUNNALXraRAvZ7K7/lC9WfsvsmfNQ1BiCG8AyNBRVLuT1NANplr50O+EozDjyQUQ3hqNs4fV37qepqZHGvQb/uOelwsS55HNxPl/xCd/++A4XXTaHkHoo0dCgwuVcUF4VatCB3Jn9l7rQygHiwYoc/J1s0lqXp6wmjOWuRVYCtMfzBINhNu16neqaEygPDUQ38iiagUAExwDd0dF8CWRKMXIumk/F0nPIPrGQ76UCeVwy5I00P/34Das/f4e+/XsxZtwwPvvqI0454SagKxAkEYdYWDvoVnLhx7XrGTFyGIgOtp0ir6cIBARcN8Hy999ixvEn4+UExbx16wQPKhclMJ2dKGINuBLp5B5C0f2J30FAxmEH735wO7a7l4fv+QWf3ItDRh3JLXefgkUElS60JuvpEBG9AxLh951f8PfFF3Ls1GlMn3QTitPds2eJFtlkjkDEh0ewNAFxWlONlIQ7gdUZUYyBuBbXyCOo/UF3qW/dxserXmTb9k1ce+0iwspg3l9xJdu2rOHd13/n3Te3o2kxJA0Ufzu7921gy5bNfPzxh8jkOGbyKNqydbz43Ccsf70OKw+mCf5II4a9k//5eAPTps0BTNrbGwmGbRrjG/hh3Zf4Qm3srtvA6TMXEMjNoSn3KjfeeQb1e+GwIZO4fuF7npVTagXagc6FGmTgkfs2YPH56hUcNe4ob02IXWluaSCXT9C5YwUOEgIBL28qIGJYcZqaWuhc07dwLM0jGvfHCAqQSscJl8iAn+bmBCeddBKrV6/Gtm0k6YBXsogiiiiiiP8Cij0wiyiiiCL+azhI1iiKcuBZUQDHzLPqs+fo2S9Msj2FY5QAncDVSCUSDB40lD7dR+MSIJO1kRQvlsZBQDdBQCEYFJEkKC+D9mQzu3f/TqItA66IIGXRnVYiJSFsq7CjOiBLsP/tYR04NyPn4A/KLHn6Tp7950NYduIAuaRnQVRFwlGb5168j4sumYVjtlFTW00q00JE1oB2UJMESgq2IkTa4jkuu/hmoByREqT9iigB2toSaGoMVekIVHL+eXcgOrXgRlHVCg6obPZ32Cq8lWhpKb9sXMv4I0Zx+pknI6Gz/qfvOGzkBHrW9AV0qjr0oFP5YO8FUh7XUYBoYU5sdD2JrDjccc/FfPHl+4XncyDhZS/JOqbTwK66Nbz06qOs+3kVkEDW0kASWd4/ahodyrsTi9RgoxKLloKSBzmBILcz+6xhbNv5EU31Gz1yxBRRwiJXX3ciby57gXC4hAULriPi74VP60wqboIDQd9Axo88H9npTyDQCduwDoxHPmMgyUH8wRISrQlApHFfE+nsbvzRfbjiDhY9Oo9PVz7Oa8vuo65xDVrUORBEvHdPHQgSwUCEW29ZQJfOPQEFw7RB9JFp995ZKBTGzPup7XAIk0eex8JLHqIk0gVcjXxGx7KhubUFF4gn2/H7IuiGQ3lFgD/qkpSUBkklTfp2H8jOHXXUN/wBsskjzyxgxsljefqZJZxxxmX45K5U1XpWPifrBwucPBg5g2+//4wnnnyEXzfuRkcnVupn0pTDeWf5P+nSvTvRWCegEluP4qkyRDxSwVM6IaVRgvECiZhg8+bNjB19HCdMncgV8+4mnwkwderpdOs0hKEDhjJz2gkcNWYCmQxkMjlGHXIYYw8Zz6knnQpuFlmz+Nu159AY3wA0ggSWDkhBIOARSIEYes6hS/VgzprzNzS1MyI2gpDHJY/j6EAGiLN977fs+mMd4ZiNP6Sgai5+n8Dx0ydx8skn49phMolAwVoZwecPsX3nDww7pDvPPv8I0Uiho2OhPfu/cMTCnx8mXtB1BjAP2judnWz69TUCIa8OyIofy8wSLa2hqU5mSJ9ZlISrPFepICEgks4m0HXw+zRcRDJ5B01TwDWRNQUja6D5ygAfEEAgRDplsuW3XQzqP4iXX36OG29ayE/rfsR09wJx4sk9REs0cnmw8gffw4iRw8hncuQzCSTJIhiQENARhQ7MmHoxUEsy4Qe35CCBtJ88c0ERXSCJZbUSipbS0pgE/KSSHiki4nDitFkMHNSbnv3CDD20kmipwPpffkOlO6n2EKWRXqTbJXDD1O+u58GH72HYoZ14Z/nzmHa7RyC5kM/KBIJhWhva2R/iHk83URYuRUTCMIzCxCgIcgXYJWRSCtU1/RgyZDguMpoSAGS6d+lCjx7d6NljACIh/AEvmktAomtNN8aOOYK5cy/AlbIMGNSfIYNG4lieCjGdsfH7AacSxR3AsUef6o0pGtFoLbIYpba8FzMmzWLI4EN4/vmNbNq0GUGTaEvsomMX2PI7WE477U37Cp8RObwbI/sZPrlQlzUsV2DM4RMwXRfHFtF1m4ryKjp37EY6l8O0bAQkgoEgIgIvvPg8V111FRvX7/A6JjoHazt4nzXhkjC6kQWgoqIC0zS9JS0UU5CKKKKIIv7bKCqRiiiiiCL+0/gXJZJnZ9PzCq4rsOnXn+jWo5wPP3yKXzbey7nnnUHfHmcCfUg2VqCF0mhBi5wVR5bKEYQQAvKBL9iiC4bl4Dhp/PvbKOt+2nLf8NTzt3P15Q+A3YdHnrqCj1Y+yDnnzuGkSQ8Qb5EoL4+RaG8mEJJwXRtNVkik0kiiSjhYjutKZJPtBKNxnnrxemZMP4WKSH9w+nh7CAmQ4mR5leXvreKwESfSpfYYdL0B3d7Hk89dx5AhQxgxZCqloT5AT2xbRhKlf8mFOvDAwtYdJEXB0FM4joUv6CeXzuIPloArYuQsnn/9StLZFob2n8qEI09n7546artUsmDBOdx77+2Aw76m7Tzz/IOcOO0SuvUs57U3l/L9qgQTJ0xnyrRxhMJ+Mq3V6BkorQHkOJDm7Q8eplffCgb2mAFUYuZkFF8ABJ0lT82nW2+NltYGqjp0Y+KYEzHJ8+ayV9j2+y4uPPdRKsuqMC1QZAXI0xbfS0kp3L/4Gjb/uh5HauOEc7NExOM48pDrwTi0oARqZNmnxzF17P04coJ7778L1RnK/CtvwCEDroxf7XHAPqdbdWi+ysICK7SjckUsy7NMyorM9m3bWP3TfAKxFvbs2cWAAf3Y/Ot2ph47h71/JDj6sLMxHA1VLANqaWzYSiBsEg6GC5MbBQJg+b25UrxdfCrVSjgc+NME7if2RNIZE39QBHRcsggEcFHJZiAYVMnk40R8OVauuJUJk2YBNeyu/5XvNz/J5CMuwSf0RaUPjzw2k1+3f8ngfsdy0dwX0NtACwOKiWXswnFtVH8U1zERRAOwaG5JUlE2HGzZyynyZfjsi9f48quPmHfuUjrUiCQze8gYW3j3g6coLS3llOMupLlVpaJskHdtOmGyCQiEwSGNoGwo2OkqwOgHksXuvd/y5XcvMHjQoQzpN4Vrr7uSfa0ree2tViZOgA/f2A5ODxBzWCSQ7Wpammw0v0M4lgE3BiY0xjdSWVVDe4tItDQGYhsmv/Lokrs45tgxvPnGu1x/1RvIcoRk/gdUn4mR8xEQDkd2tQPTbphtqL4/QEpQ37aZ6pIp4HYGIKPvRRQ0fFo5kETwQsQAiRWfvo4ktxJvbWTWyWcDpUArX2+4lA0bf+Gi014DOvH8S9fSoSrKrz83M/+yZTQ31lNaG8PW/eSMOKLWSi4PZeFetKUaiEREjEyYUDAB2LiugCCUe50XC3ZbPQdaEDzlym+0tvxCWYcSFj98D/XxLYwaOYURw6fQtXIaO3c20a1rt4P1VDABg0TiD5Y+vYhwyM+eP7Zx1x3vg/Wne6MinqVPyIJbaBEm6Gz7fSVfrP6UZDrHhefegqX7iZWEefqft5FO/046DtcvfAGkX4C9gMyPG7cTDtfSq9MsNm2w6DdIRhLjeJ7REE2t33Dx/KO5f/HDdCk9Acvo6JHKAp5ARwTXdcg723jn/SdAsJl98gUIbg8c3YfoawUiYHjdEZEgb+/AsLNEfB1xnRiC+AvQAgwi31aBL+gd15EMRMHAxkTEZdnyJzj2mOmEfLWeCiocAMELwseWvY6H+TZk1UKRAwiyiqVnyOQb+ennb7nt75cycHAnJKeURfd+wjc/XcmHXyylqkJh67oqHlr0E6Cy7sfX+Pzrt7ni4mU4joMkKdi2jSAIKIrkjc1+5m//ekUvzLmER/CCSwqTZrLZJDcuvJbDRh/Kxg1bOPsvF9Knz1hv3TgmyO2FY8YAjZNOOolly5bhum6RSCqiiCKK+C+jSCIVUUQRRfyn4VLIJynsoFz5wP77i6+WMWxUJQsXXErTrvUsvGs8y974in7dz+SYsU9SWaOSt0AMtiMhA8EDElKhUL1tI4uk5fBayetADbARyGCbg3DNjjz+4lxOOeMoygI9keiB6Uiooh/LTfHSK0/R1FzP1ZfPBxSS2SyCGyQcLPPangstmOzBcUQ0sQzo7H2xBxCThbMRAQfTSKGoMradZ/Hih7nkr9fi85eTzrQTCru4BBBQvaGAg2oosbDZsETyuRy+8D6gnX88uoCAv4TTZ11DNNwbKxPh0ef/wsjRPRk9bBaZtL9gO9v/UaaBIzN16lg+/Ph2UplSwkGRDz57jjGHnE0s2pHtu77goxWv0r36BKZNmeMNmQKukMcmDlYVSG3IqoGZrUBRJOLtu/hq7XNMnzK28F7LaE9ZRMMCjz59O3UNO5l90iL69ByEKnYAC1JJnWiZRnPLD+zcs5LuPSpY97VMQ+4Zwr4+nHj82Vx9wym4RgeG9p/OGWcfSaZ+HI+8MYq+Q/3MGH8LoHLX4gUMHDiYdGs1c2ZfhNd2vQmB4QDkchZ+X5BczkSUQNMkvI0a5HJ7CpkhHtmTTVsEgpXeGnQAC3TTRQ79hiR4lq9cTsfvr/TyplzxAHGVzMZRZD9+1bOWpVMQCnPQASl4uUyJVD2RsI8ddZv46IPPiYU7cOacuWT1NtK5Bl5/dQkNv3/PHbe/g20HkYJZoBXDqgGrA6oogboX+AXTVFGEw4AgCCZPP3Utv279iptuvJVorDeY3Umns4RKBFw3jmsHEd0oiAKGvQNVTdOU2EWHwHRQdSBJQ9sXvP72YiRJIJuMcvWlL2OmYl4beMUh3vYb4bAfQbR45MkFhKIuMh04+9QnMfMuSAkU3z5AxTKD6EaKn7e+xFffv8GA/kNY/tZu7rjtU0qiNjZpFLeGxjqDqloVxEbAD3YEhDZam7KUldWy6efdvPXeI+juZu68/UYS7RYhrQ+yz+XJpYsIRR0GDBjAkAHjwenqTW+BbEDyrv1kahN/v38hwweeyqyZV5JOtxEKtdKYrKNDpAdQiu1aOI5FPp8nEgx7C8DNgZBmytRDqK6q4e67nqZDVU8wO5Fstvh41b3saX2Nd9/7hVUfrcPKDkAKmEgEQUrSnPwBVfET0vohid54h329ER0JLRApWAg5UPN2797CvMtO48KLT+P4qbPA9IPSQqY9RzAaZvppfRk+rDftrSqL71lFKpkgHKktLLJCVlkhg8eyUsiyzHPPPMHZ594IhA6WAiEOJLj5jrn06dWTOafOxevIGAZ28/GqTzj2iMvI5ULoRgI1uJWgnGLZ62s5afoNoJkg1BcG2suoggoSiSTzbxpPn65dOOPUS6ipOJZ83sEX0Qv1vRzXBcNKoqlJjFRHL5TdAZQEhlWHIgueNdiq9IrPfjfWnxVjoveEbQu4jkAutY1waYBEayMOEqVlNUAIx1EQBAEXm3Q2jV+LkUnlyLUnqe4SpGHfGqpqq7y/QzWpDATUCIINuu7iDwlemVeTQIrv1r3BfYsWMm7MVC4+9yH2Jt5i/nWXc/y0kRwyYC69Ok3H5w9gC3tY8dmrTJk4HxsXUxeRxICnsnX/9D7YP/cWB5WuGqbhSTcV1Vu/DnF2NXxK96ouLPt4Oc8/+xrvvrYGy9b44osvyBlNHD9lJlALhIokUhFFFFHE/yKKdrYiiiiiiP80Dny/leBPKiKvvXUjP234lPZkE36pC/f/40tmnXEoVd2aeO3te8AFnwyOrZB3mhBdjzw6+JXZwbUyWLkWzj/veK677my+//YZnnvpTn769WskJYiswdChQ1GkErL5UsBHPp/HdnVkQSCvp+jYqQNgktLjaD6JcNBHOpvw7mATQKGGfNqHly9z0AYFGsl4EPDhkOWpl27im/WvIErtXDl/Ab5AOXoOQsEopu3iuF5nKEfMgWR55NF+Asn1PpJMSz8waC0tTcyceQLRcAlgIftg6tEXMXrY+eSzZQSDHanbswvQsZ0GoAnEFiZNGQWotKf2AQ5TJ55MLOonmd7Jy68+Q7fu1Uw5fiCGs8fbW4kgyD5kuQOyJGJb3gZHVnWQBAR8HDPxBAwUXMJAFdFwP1IZ+GHNFo477gRiJSEcx0CUHAQJgkHPSlTRoTsD+o7DJ3di0uTpDOwzkSkT5wIBRo2PMXZCD2afejZQS7AEJo49nxnjF5I1fEAlotWVAb2mMGf2BQBcd8N1CMTYv+O0LM925PcrB2ySuuEpkvz+juQzIbDK0dMlBPy1pOIurgEtjRmQIas3EE/9xlvvPVV4TSHwtjAf+90qkXAEWZZJZ7wFGNofvfRv+7dYOIKIy6qVX9C9Wxcy6XZS6VYCmshPP31DPL6XfQ3bWbt2JXl7G48+fybPvHMNqtyMK+/xhE12NbijUKRRtDemQcyAs4+XXluEJW7ktnuns/jxI8la6/GF40Acw2pHlE1Qsuj5LKpaTaLNT4fYaJChtbEV25SpLOlP7+6jGdCbZikqAAAgAElEQVR3HAFfBYnWNIoPDAMQdvLJFw+RyK0nbzZTW9uJWbNOorRco6l5C4pfQNHCeCoKP7IYIxisZWC/w6mq6E2v7iMYNfJIDEfHxTlwqVfVqIVximO7O0DaC2KGssoYqXiabVvX0bVLOT7NYcOmtcSi1Uh2KblsloGD+nPMxOls21IPaNhWChRoaN5BXq8H9nHxvCM57uRj+cu5kxDkdOF68joRVkYGA9XYThhZ8KNKPhRVxLQEsMMglKLrKcqrHA4d3ZOnl74BThV2DiIVMsdOPpJE9hcW3NSH+x6djRrOIkne9bH51/UsfXIRjz76dyQxx+dfvsnLLz3BO2+/gOYvwdUVjAwkWswDxMiXX7/DmedN4MnnF3DqX8aAHCObdQlGu5NN+enTvScNda38tGYj2CrhSKlX5/49u82VkOUSsP2cfcY8wMDFxD2wJk0MO4ljZ9i1c0vhdQp6QgIkDj/8cBxkNJ9MJFpOUI6QyDRx0imzvDUoAFRi5KvArQRsDGMPsZjOhAk92b17K4sWPQCOgi8QIZWwSKVccpmCuFDRAAvbzXt/WvLqpSqXeAQSGogKruUJpVwK2e+Sgyt6/L1riwgIyLJNONaVPVubuPX2BWzdtYJXl91JKvc7LgaWZaHrOqIoIsoisRI/HWpdrrn6VFauXM76dV8VLmQdW0whKRaiCj6fQC7tYtveuNqOQXV1JV26dmTSpKNxBYmSkh4cPuow1nzbQO9eY/AFyrAsGYkYh448EkjT1PI7muagKAVm+t/rggD/4ilERJbBizLy2ifahOhUPg3og2NUIFFWGLc4rtzAxq0fAHV49ssiiiiiiCL+N1FUIhVRRBFF/MdRyBjar0ByIJMDQUqz8PYp9ByYpzLamVljbuPFt69h6RsfcOzxcMHc66hQr8B1K4gnTKIlOrIT+lPr78KdXSHHC0tvZcjwMIbdworVrzDj5CnUVA6nRPkriDEMcR0q5bhWZ+LpHLGYjESKnBVn/c9f06VrNbVlNeyqr+ejDz/FtQNcfMHfcAwR0xBIJJJU1pYXOqEZ/DmkWM+D7u5A0tr48ecVjD/kdKAGDNmz2wg7UCWNbDaKRSP3P3Az5VVw6bnz8Cw0EXCrvVDmHKh+sK0supFHkm00v5cJ4u0hRZAbAYONG7fzxJJn0Hwi1167AFn2EYv29s4pBVoUEJLkkjJ+XwBUE9No5fXX3mbmzJnUt/xI106DgDZWf/8RdXV1vPTy8/Tr15v5lz5CVeUQ8ikHn8+PY0LeaSAQkoAAGMGCM9HhvfcfY/rxh2JRjWGa+JWo18IcBVyJZGuSSKzUWwPy59y9dCI9oguZdcp1QD1QSqZZ461Vk3lv2XeY6YGc+ZdzmTZjFH6lGoih53RE/+/cftfVnH3OaXSvPgKXLoCEYbqoitfiOpXKEA5r7A+4zWcd/D4vfBynICxTHQw9jurLcvXCufyw/lNs2eXJx+7j21V7mXrsaVR2GHJQbSZYILi4SDQ0NlBVWUZjSx2V5fvtdAUWDgXBdUi21REp8WHaKRQ5xP4deUP9Vlrbt3HTrX/hscdm88YzAU49/Qy+Wv8Wk465kKDcvXDejRw/dTKZbB2V1RapLEyZPIzqyp6cdNI8Whubuee+m7hqwem8s6yNiy78B8l4ikBQJWNsoTm+jXsXLaCirDOXzltILNQTRYogieWeY82GrLmbUFgtXJeVYHtt2V95+3J6DwizeWM9Z8xc4mWziHsL51UJhr+w560Hwl6ItgDI9UAzLgKGWQtKDGjDJYtCJ+LNjaxc/Tq7G16iU+cQa77ZgGP4GNh3AnPn3ghYfLTiEQaPKOPdd5Zzzmn34lcmkjN24A96CkTQSCfbCEVEVn3zBj+uX0lDYx133HoPuQQYQh1Lnr6fSy94nHBwIJLocO2tc+jYqRJZjnL+nIeQJLDcdkQxi54pwS/5yGfBV7qFex8Zz1dfN3HXTQ8j6cPpN/Dw/ft9LOlNZNK89upvnDr1bghlwQ7gulvZ2/op8UQbg/sdT3t6G/G2JtasruODFcsZPOQQjp44jaGDJ2LmXRSfihdk38hr7z6Grgc5buKtxMos7HwpighZ6wvWrvmCxj0Op5xyGygmSA42zoH0Ha+sCiCoHtnpgqskcQgBIpINSCa2WY/t7mPPzgZ69hwPZol3BN9mdFLouT7IRNF88Nmqh9j084dcefmjQDd0EqhEcB2R7354hWUfXs6gnhPoUj2OIydO5+3X3ub7b3/l7nuXkklnCJYmAMhlanEtCIQAKYNjmYhSDMdwEVUBhIxXt5HA9jKb7P2qMuoAC5FycEKegFUApEYwK8FwWbvlXn7c8jRffbONgb0ncu2lrwMRUukEgZAA5Niy53Nee/1aDhs+lF2/auzYrnPfovexBQcEk8+/uYVfN/7EOWdeh+BE0cTOqFopbS3tlFREibfUUVpRRjzdRiBkIOCw+svvmDBuNqIreppa0USkkXc+eYw9u+vBCXP5RTeSN218Sgn71ake9qvI9ktQQ9hmgUQSHaCVnGEgmeWowf1qMxHwk2prR/OJLHv3GWbPno3XqdFfVCIVUUQRRfwvokgiFVFEEUX8x5Er/OsFqx58LsfbHz9MIr2Nc2b+jR0bBB56ZSgl0Vq61kzirDOvYX8feDvfC0kSsRWPCJAEHUFsAdLcd8/5HD6qJzt+30I0HObZ9z5h7FEljDrkWMYOvgWsPmTTDrqVoaQkfDDK5oAFKY9HDOVY/ODfqe3UiSlTpuAYEtFoF3BC3l6gcHfZtPaiqCa6mUZTImRSCsFwkHy+CZ/PC5C1zDJkuxoEsJWdSKILVGOynaeeXsQRR46mf4+JQOeDdhcBEAut6t2DweP785OyqTSBgB9d2IemmBwyuge33jKHrb+txXUkRo86g9GHX04qoREOeBaRbNIlEBQwcyCpIGpgGy6S7LVNR9jL9bdMp75lAwBlZREuOu9mOpZPQfN3p/WPHKFS0IISCD5cXTlgI9wfB5TPpTCsOJFYDY4NrikjaQKQKngOFfIJFV9A4o77L+HahbPA7ItMJYiQza1i/sJTOXS0xphhl9KckKmq7kSH0gFEwr29TbKYxnbrkAQZyyhBlstA3MIt9xxLVVU5F535EZgVuEIOQXXAybN58yruvPcS7r/nGSqrBoFeCoLO9l2ruW/RDcRKVe65azGplE44PBRbDyIpPvRcGi24P+hZIpdW8Wth5l1yFBMnHokj6MycdS667qBptXiqHAcXE8eOFexVOpIb85avAGh7uGz+KGbOnMnunXvYumkPt9+5AjNlooRT3Hb/BXTqVkp9Qwt/u/gf3H3XP9m142euvuZcdu/ZzuSJc7GNIBIF4koE5EZc20awa0i1wXOv3MqkmSbvLX+afr3GY7T3pbnZ5MKL5gMSza2b+G7tZ6xb9wM3X/cItqUiCVXkMw6+sIjltiOLDaRzW7jphuu5/JKFdOk2HIjiEsQmgp5OEgy4uEISQVCB0sJaLYR2FzbJNgoiMmAgkMUwRVQ5Wlg3P/Pjhpd5e8Uijho/m84Vx9Gz6xgSLRKx8nLizX9QWuGjpXUnn658lk2/rqN7l+Gcc9b9YIZY8uRCdO19Xnp5G7WVkGoq59PP3uTbtcv5ZOUTdKs9nDknLEIJhrnv/qk0JzchuOALHsGl8+6kPOQRk+Anl07jDylAKxCnbt92zjv/Sj75YA2WHsExAqiqerBeuHgOOFFH0BxgB4uXXIyLTofyLpwx8wqgEoiRyW1m04b1fL/2F+ZddD2iVI5pgKJ6WTjpTJJgUMFwMmh0wMxb3P3wCET/Zq6/bB1mtguKECYn7savhanb8yPNyc0MG3gkEPFsfYW8OVfMYBNAQCCZShMJhxCwEXABE4FcoZaGcbMhhEAcyJLO2wTVLqSTEI5QsOd6HRgvWzia7Tsb6NQR2uNw5pnTeOqpD7jqsssYN/I6ECpI58CviYiijmnaIDbx4JMn0qXDRPr3PpKBg4byzJKLaGsNcuWlt5PLVhAsK/lTjJmJg4FEHYaVRM9rhEPV4FYcqImWm0OWEthuBaIgIrAHz1oX4LvVjRx22GhQWvnmm1f4/Y+VnHnq9Zgkie/18fOPvzNpel/21f9GTfVRoFd7eWHhb/jx11WM6H+KN5bEvDwp0fPV6elCZpWk4zoSgmgCOa658Tx279nKk088S8TXi1QizxNL57H847eZfcZo/nrOo0AVUE3eyBTmWkSksVA0/eB6XQDzOvgCAHW89M69xGIq3375HXfe9B5mrhSl0DzCsHUUWTvQnU8UPIHs2DETeP/9D4nF/AfrMftt49KfPmuLKKKIIor4Pw3plltuueV/+ySKKKKIIv7/jf3dzmS8XZhNKtvCvoaddOlWzfLl7/Heeytpa7ZQYuu5Yt4iRg6/GCMZxhVS4LpISoRcxkHSZCSx4DIjCaT59LMXqamN0aGsI+PGHE2og01Dg8HRE2ajSZ2QxA4osoDfr2GZNoLo4FgOolgIsxEO3AanPdFGl85dqayoRFU0JEkD1/cvFjxJzrLrj418++0qOnepJBCoBVRkWeWOe67kvY9eIRwqwcz0oLRMQ1Ta0a04shgikdyOaacYNXQ8UOFlwxy4216wQuD+yQ4hYJsGoiSgqAq4FrKq4SKxc/e3bN70P1xz9Xm89uo77Nqxg8GDj6S0vJKGBoOgX8F1BGQFJBEMy0VWBUTZJZ1Kovpdmho2s2Pnei697FxGjx7Bio9Wc/bp1yErNZjpPKGyUmSfDYKLrYuIkgwC5HMg+wEpjUMbgaANtCOIIqIQ8N6GnANSQB5ZjYILow4/DIQIrh1BklUQdZZ/dDfBSIJhgw9jcP+ZdO7cG3/QTyjQGa9FuQ2igSj4gAgiJeTb4byLJjBqnJ8t237i6HFXgRBCkATApmHvTn777TuGDO+IkXepqqxBVCMgZXhi6W1MnjyOYycdQzBQgd/fCZwaRMHLMpE1kfqmdXyz5n1KSv1EIjUgyTTt/Z7jpk1kyPAB5HMGPi0MQhmOpWFaLpIk4IoqHvlkHxwHAZD/oL51FZJk8swzyxl16BF8++UmBgwYgeXY7G1Yz6RpI5EVGcuq5ZBh0znrjLOoKKugtlMXFKkcwQ0iuNpBElQSEMQcOBGcPHTpWkZpVZyJo4+ivHwww4edwSFDjiCXzaFoEb75fhlIaWo7ltOr2whEMQKuhqwKGGYORfHGbukTDyIKLsuXv8SYMYfiD3TAQSOt+4gEwDASyLL3f6Gwo3UV7/oWBDzSQkZAQUAC8kiSD5CxcyLZ/C7W//QlZZVB/FothwycBZTiU6vAVfCHIvy86QPue+giLKuNI44cy2+/bWXcmFPAjfDb5u+o6ZZgzZqddOsaZECvyVx949Ws+r/Ye88oKcr9C/d5K3ae7snDRDKSlKxIUFAxoMeAAcWEWTFnPeacs0eP8SCoGDGDWVFMICpIznlgYufK90M14Lnr//F67pd+1mKNuKCnuqbqLd7d+7f3Dz8wbnwdB405nXjpILBszNwqvv3udzJJ6NOvNwMHHEBQLQXi5LIGmm4jSbuS/0tJtpk8/MST5M1tjBl9gC+GisCeIHwJ0C3akn8SClpAmrUbVtPU2JsN69vo3XN/goGu4IXRVAs9EEIiQFNDH4QU8s+DK7FlUxvlZaWs37iZRCKEZAeRdYmqht/Y3vI7wwZMw8yVIjQFXc/Qun0n0//zCD/88j6jxozC81QUUe3nZQtwRRZBkHwuTTiskzXaUJUAAgXbVhGSgy/cezhumLaOndgORMMxTMP2XWxpC00PAB7p9A6Cka0YzmK6dS8nFqzhpx9/Zf0Gl9uuvxpEbxwCWI6DokpIWCgihOuZaNFl/L7oZ7756gtUz8Sy/+Srz+cx6bhJaLGGwnPAP5eu8F03H3z0FO/PfouR+x2MqkaBAJ4nQAJZsvHwcEUADxkHC9ARxKmI9UBRAbmDmkqVtev/oK6mP6FAKZHwIBb+uJpnp19OZ2Y9Q/YZBXYlwoWO3Da61Q/AD88P4lgGkmqCyGPms+ihYGEN9rBzAjyb9vatbG/5jS3bltLe1kJ9TX/KyrqCu4P6RoVPPv2Sbds6GTp4HBIl2J5J3syjqQGEHwiF/0GK//4lBWw3jSylCZcodOtez9y5b3LEIRcii8DuR6YkeyAE2ZzAdvy1PJ/P89VX3/CPo45F16S/PC/+eqEW3UlFihQp8ndRdCIVKVKkyN/OrhTc3R3wOF6ajs5tnHXecfzz5kvo22cgUj7ETXdO5oF73sIzwwhZA6cCHMFTz11KWszjnFO/IF6SQBLgeq1IIseKNZ9T36UMx1SJlnQBJHKZikI4MnQkVxFPFIKS3TzIy/BHrfoWnDL+yIGZyyArAlnVyGXSBEMhEBJ44d37ZQTYzjYefvR2Bgzsx6ETjkQ4tViGQNFMXn/3NiYffwj+5qQ/kOOlWWeg6RKjh51LQ20JN9x2FaYh8+Ddb4Nb4Z8QYYMw2JWPsWcD4OBYGWS1YIHAAGqwbBtV2cmmTZ9RX5/gsUfv4tLL7sWlHJcYCl3IdEA4Dh3tW4kn4v5Pwsyzau2vXHvjVI6bdBRDBo5nQL9huE4S23bR9Bp25z5hsHXLr1xz7SOM3n8C511wGVbOQA1oWNZOVK2dp1++hgmHjeaeB2/gxMkHUF9+KH3qr/UPVd0CbGfBnx8R0fojnGpuuGMK3RpH8sCdM0CYIJZy74PnccpJp1NfdyB45UCs8PZb8CvYZRw7gixV4logqeA5Jluaf+Pm+w7m0svOZ+/uN2FlIn44tOK7BmAnecMhoFcXzmWO/7x6Dx98/B/Kysp49IFZ2NkuRCIx0vn1RCO1gEMytZVnX7ydEfsOJJPJc9i4c/DHqfyxrrbWdXz99c8sXryefQYczZGHT0FSIZcDLdqGoBOBQOzeMJo8/Og0xh/Sm19/+450pp2Lz7kUGI6Tq0JWa0Bx6UitJxaNIoj5GTkhB3+8ZyO33Hcta1dv5ZXn5uE5ZQih4PeoL8bJNyArtaRaDNTIegIRHSsdQjiVOK6JHpOxcjJqJAdkSKXaiQTqEfIuccQAxSWbkgmFJJC2gshx6cUnctAh45n30wr2HjSS44+7kOV//sHAfv2Y9cZz2I7JiZPOQVFL/zL654Iw8FB9F4yn+veOYgA7ueXuSZj5NCccO5VB+xxLJqUQDtf9RUhNAy3k+YW1W79k/hdZTjtlGoaZIhrYm9Zmh7KqKDnvKzZtWUavuhFALXO+v5+GbjaLf+ngxMPf9I9FTmLmfyOX34gr7eC5F5dzzeVPg6dg5n29Sw34TWc7NzcTj3RBDSVZ3fY8a1ZtZuiggyiLNOKHUQcL90QeaOGdTx+hJFrNtk0uU064Hgjj5EPIqr/GeTakra1EI6HC/ayDp+KYJrKqgXBo3rqBqpoaHClMcodLotThh4V3sPD3T5l21gyQG/E8FYcW7FQWV2zm8usmM2DgSE6YdAGViTH+iKYESEahRc8knU0SCUX9+6hw/nOGyZxPZ7F+0x+s3/wrj90/l1xKIRgCT25BkASybNpiUF8zxH+ryhq++/kpqqoqaKofjCqFef3NGQTVOo4Y+0+UGJiiA0VahUQ3Uq0hotEgaB14fMJHn87i7tvfo2cP6N5Uy88/beHVmV8TKx3kn09PxRP+t5LZyS8/zWHYiOFs37GR6so6/ABwHcMMoalhTBsUFSRsBFl2hYzbRivrN/zOiy//izNPP5+ePU4ilVxKNFEGZNnSPp1XZv6L8854GM0aSyAQwLXLkBQJOWiwbOmPrFj3OansJjQtwIn/uBQ/vDrohzS5ku/aJMOO1l959PEHWLpkDbPf/p1Mu0I40YbNah598nram6u4647nyGU0XGkn4WDQXzussH9NShRey3d7GY6DLpcAYZLJHWRz66ku3wckDUQOhxSCIJbnIgsZgYGHhJmDM04/h9deexNZKjwr9sw5siftv0iRIkWK/B0URaQiRYoU+V/xl9XW8fKYVprHn7qTSy8/h4AIkm530HUVNWQBm5j1wV0cNOwxgnIfzjzncGbNngJMBlQ8FzxsJMkCOgqvGsYwJdq3RqishGQ6SySqogRkEDvx2ME7Hz7HkRMnoVEFXvfC3yuIW54HnoPrOEiqXMg/ssEL+huJXZ/2ig58kUIDAr7gtUv3kdfw6rt38NYbH3D4Qedz9lkns8/Y/pgmXHPxeQjhsWzZKu69/Tmgyh+VA5By+GJbEN8VtSuANQck+XPZN/zy87d0Jjfx1oef0Lt3H7o11BPWQpw99SLCkS64uRIkrW7Ph9EKbG2ex5Jl8xkxYgixUBOCIA89ejOvvvsiH3/yIFWho8Cp8ufcPJV80iMQkUHJAK088NgFXH3pLfgiShQIYxkOqh4CDNo71xCNaSgC8paL5MVR6eafD8XCtrfx0mvX0dRTQg/ChjVJjjjgTkpL9wI6uOTaIRx1xOGkW0s4+uBbQA/tHtFB3cwd959BOBwj2RLngrPuo6y0AiVog7DYtKWV+loDizaMTE90LY4s+7qf7aZwaUUXTWTSfmV92ljDG+8+wviDR1FT1ohOb3BKsS3wXLOQVwMIm2x2G7qu4tgydj5BKKyA+gPPP/8Ao8cP4K233+aC86+gNDIcqANHo7PdpKRcBS+MkQdJsVDVZrK5FHYuQiQQRwq2glDBqSWX20QwEgJXAUp2Gwhy9nqCqlSoqc/yyRePUtVFJhAI0dBlMJFAPyBM23aD5189kmAwQt/e+zJ2zME8/e/bSaVSjB15EiOHHYdp2gTCYSwjjKoJXNdGEvqedrkEIO/ENDNochOuAZa9HT0ms6vtsDXViaQGiAZqUNBZt241XbvW4Hg5li/dSr9++4Ib/suYqIuH5IsargoWmE4GObSeOd/eiGJ34atPNnLvPTMxDBVdD5FLgiKBGoCWZr/1LhD1r2FPuIDf6iaIF6Z1DKCNtkw7Tq6a8kip32CvwvKlK+jVtTeS7nLbXYcQCHkEpe5ccvk9tHWmcF0XPSDxwEPXoWlZFv36M/17D+O2W54EKVC4DyPk04JAuOS/1i0/pMfFs12EAi0t6yiviAEO2VwnwWAEQQiQsUmQy9uEAmpBFrbAMQrjjhnatqyktLYvjleHXBirzXZsJJ1pp7K2HpALIfY6wjVoafmDRKXN70uW88Hsr7jlnzP9ynoKSwZtOGYryUwHkUgMVa3CyykIwqA7IHUCbYw7vBeP3PMhe/UajabHMKwNfPv9+6xY8x3TzrkCaACrBtdKI4U6/LXIDWAbOfJGlki8HvL+upXKLWH216eyYVmEf17/AU57HMmCZ94ez4bmL+nbpyfVld148cW53HrbDcyYPoc7b59RWEuq8DwV14Nsx06ipQ7QQjrfzAcfv00i0cjYsRMJSL3AUUHuQGBhmxUoHiQ74e4HLiNevYrrrjwRl1YeeuwtJu43i6z7G4/96woef+pOVm6czabNazjukFv49detzP7gZcoih3DpFTfz66L3+eXXL1iy8mPuuOs6vvhsPscdfgPNm6NUVVUWzLMenpvFE1kk2aAz2YZlSqjUURKP4ymQNlcR1XKYdgU4UTRV4bXXb2XTxnVUV3bjtDPu+a+R6D2j0Tk8TDRFBgJgK6CsBQwMI4CuNYDowCNF0tvMi8/OpKm+L8cccTJHHX0878+ei2HY6HrwLxfprgW0SJEiRYr8XRRFpCJFihT5u/k/VlnDzLHkz0WUVQRoqq+hM7eZyy89hhf/PR/fCbOZj7+5lsPH3gJWd7JJFWK/IJy9kaQQuhrxB+NcyBjthENRMnmFoA6aA8hZEBk8Ujzx+DMEQi7nnj0FsLCdUhS5MEr218N0XIRmFZw/hbEy9ELVu1L4h79BsnMTsZIERs5FVypAcdmyvpXahgry5kZmvnUHPXv0Ycx+p9DR2cy3Cx4lkYgyqN/xhPQKLFNC12r9jfcuhF0QrXaFNO/KtkixedsCvvr2NVauWIjt7uD3Jc1cdvnVWFmVIw4+DdeNIkkl4Ib9QG0dTAcy+Q38++UbGDq8D0MGjyQeHgZeiKuuvJBrbz2UilgUGAx2BKQsSALbdOloy1FeXYppdCCpSWS3C0KK7ikXwv+ayiQJRc2CS8rFMUPIsurPaex6D55FJtNKKCIXRhBztDZ3UFZVyaYtf1Bfq2KTRqEOvF6QKwEFLBPQtjNj1n2ceeqpgF54nxF8h0AQB0jnkkRC4KLjuQqyJGNZIKsGEgYQw7bB9Ww01cDw2tGFztadO1FEnEiohkhQIFxw7DyyLjBySXRdBxHCsySEkAr6XgZEkukzbmbRH9+wauVaPpy9AKgAAmTa09x46/VceM699OrTwLYdG5j55jVIksIV02b6sVvCBUWibSsowRRXX3cWTz93CzIeEMJBRqYS3OCeoPWAB5LhW2eEH+a+yxmXTq8gkrBxvQ5ennkXPy2YSzxeyn23zgJ6gRcFIXPvwydj5aNMPuEcenQf5W9WZWhpWcNtd13IrbfcSEzvjhoqBZEjl+lADYAi64CG6dooUohUsp2SWJTb7ricyqoEJx1/NolEI7ixPfe5BJ747+mazo5mSkp3ZQ/p2BlQwr4QkctmCYZ2BZCrpDvSRMJlfqC1DULBbzIkz7bmNmoqGuhsh0AY9AC4pMgYnUR1E4OlaPREsXqT6gRD+oHy0m2s376ZpupT8PNvbHwnyDYyznrCcpRv5/3MwL3GES9vAGKk2jw0JYK+y0gkGYWLXwFXJZu00QMyLh2ogTy5fDvBgODqGy6iurqa0tJSJk95GIEvTCrYZNKbePedGaxZOZ+yhEVFWYBtzXDZtR/iuCvQJBXsGnIdBmrJOiTVwCaAQi8kfFHPYQuXXn4RTz7yIlADXumeNdZp5csv3+Gnn+cxYt+hjBt/WEEUUwrvtxUwMbwMd97+GNWV3bjoglvwFSgTaObJFy8nEAggsr046+zbCu5NXwFLpIQAACAASURBVHTEhs70OkoqImzbvJw77jwfxE5Gj+vB/K+3Uhrtz0knTGbR4jmcfPoE1q9fSVPTREDw2uvPMfmk09jRvp3KRA//HqYKj7gfpyVaQKQBB9NK47jQ2p6lrrob2bxEMFCBx0IkTKAHvjssD6zirGkTUaUqrrvqXuorRiMHJExrEe3JDUSCXQiHPX5ZNI+eXfdjztz3WLjkTXr1HMk5p92Ai8D2TB566D6mTbsEWYTo2BmlS9VeZFMQKnFBdvCcFK5nIkkCI+/iuQqaUo6sCGwFTLeddGoDlSUDcW0JSUmSzX5Hy87tfPzet5w/7eXCOk/BcZrjrXdeZ+TI/elSXU8mYxAOx4A2Xpp5LsccfSHx8AGQCkMYTLEBVSxnXct2fvl+HcccdTonHj+V1199D10rFC/spigiFSlSpMjfTXGVLVKkSJH/H9B1ndbWVsrLKwGFe+77J1MvGszGzd+AXUq+vYHDx14PyKCmCJWqBNUKFEXCsozdryNJFEY3ILirplzZgss2Nm5ajsDAUVbSs081HZ0e0BdFTmCbtr8R3xVDBAjVr4C2nA4gieW0AhZ4HmbOAGEBFrGSKO1tLejBEC07O0AY1HQpxzYgECyl317DGLPfRGxTwzFjaKKe0YNPIKLXIlGGrnUBL4znF4jhmB54CrmMw//1WFqwYAHTX3kZVYPlK5o56ZiL2KvpcI44eBpQg2mGAB3byaGX5CCQQQun0XSXAQMGMH70YcTDTRgZBRyFow6fSkTrA3QBIoUJuhQXX3kijzx9PaG43wykKAkUqQmhCFpb15LLtYMM6ZQJMkRLYshyOXgJII6shtn9aTo2O9rm88ob13PT7VMRohzsGsh1oayqimRyNY8+chdr1m1BIoxFG4iWQmA0qEEbVSvhzFOvA6Js2r6K404awx13X+z/0DxwPQgFYngE8cgX3Fw+ngcOEpBDUQw01aG1PYVjxIEKulT0pbK8mlDI9gOh5VbyzlpgIxlzFUgtIFoRWhJUg4zdWnCgtaGEUpw0ZSzb2xye/c8ltCQ/ARYw6/1LOfyovnw971VsJ8lL029n1IHd2G9MIw7bSGUdOjObQTIorYZZH95Mfb/tzHrvn1iuBW437GSjLyBJOVAMtAi+ImMHwNZx8xKO5YECppUiEu0NXhOSaKC2ajDHHXU5Ea0vnhcFgmD6odd5bzGBaCvPvngnhrEDx8uAZPDVNx9zzLFH8p/pz7N67U888cj1QI5gWEeRfecZxNCkCiRKKIlVsHNHM9269uDggw/m1ddmsFtZLDTQe7uERg9yRgqkDr8JzouR7+gBuUpsS+z+Q8GQiu+4S4HXSSQu+41kf6lJ70z6CeXVVeUgoCTGHrMeChE9ATgo9Eexe/vFX+omykuDQG+aqseBV4aZVcEJ4jiV5MwoYbkHUMGY0ScSVOvBi+NaDtGSCIoMbkH462jfXDhG228eCyrgCFQ54bt2zCocXCq6WKzc+hpedA4SO3EAy7MAgzVrl5LLt6PqJitWLaRHr0oamsro6OxAkfJAGiSJYLSEDRtXcvGVZ/DAY7fg7h5PUvh63g+UlJRw7kVnAFkQaXZs3wiAbUrst+8BnDz5DH799VcQFs1bVjOgbxcWLJzNiVP25+Enr0IXCv336stFF1xCLtUOmGTT24AUo/YfTO/eVTR3/EwmvWz3vYbl35emmQVSPPD4uRw3uSdjxnVDcbtQHq9ny5ZVXHb9FCr7/MAL0+/Hs+rBGo5n1jL5pBvwKOXddz9n645tgITp5sjnciBg0cIvuPqqcwEdTa0mqDdRV70PECEUCAJtSMTI5oNAvODe86/tseP3JRhzefDxW7ClHbS1LELTbKrKm9BEPdDEwN5HEdabGDt6AnW1jUTjLm2ZTUhE0EQ111/1BNFADxQpQZfacto7thNKQCadBkyE7CErMkJS8TyJYCSGrAlMCzqTWRRJUFFSQ0dbyp8yxSYUitDQWM/551/oP2s8QFjkzCW4LGLluvd59vkbAZdwoIpki6Bl6zaqKhuIhy0sbyE50UprawuaqETQk/ryQWQzDslkEtu20TUd7//6lKZIkSJFivytFIO1ixQpUuR/iQCEi2Xn+e33hcRKomi6zroNS3jv41cZPqKeytIx2JkYSsjjvY+eRpZNyhID8cxSUkYLiqz5gcCyhBAuEhkkcthWjoAq8dgLk1m9/luQOznh5JOYeOQhHDLuZEKBRuxMFEkEwQ0idpl+8L/aVgeSksUTaR554lZKSiIoIk4oVIZt57Dtdiy7E1W1yOUz6GoY3DBasBMhh5BkAWjU1dYBIbDKCYcT9Og+ED8jqQzcOLian52t2CDlcd08kqzT3moQjmrssfsAePTp3ZVNW5YwceLBXHLBSewz8GRKYt0xDAlJiYEcwrAcNE1FYPoZNyKDpqWoqKjDccJIbg2aGgEPaqrqCOgVIMr9zBSRZ9o1/6D/PnUcf9IE4uEKBGW4jobkKiD/zCPPn0zOWU2PblXoQasw/qYVDFOSLxzZwhfkAhlmvn0p9zx6MT36mlx/2aWAQjrbiWeEMK0V3PfwpQwa1Jemun2Z+fobfPn1h+xo20ivbqOR1NbC6E2J32QkAvzz5vMZc+AAunavpU+PfYEQkpRG9jRadrYTC7eTsbaiiBi4KqaRRiGAkLci0UbG3E4iUkkuHSSoSEguSJJAoqXQXKVx7nknUVUbJG+kSSQqkaUS/I2qhyKpCLsM5HIG9B1GXVU/amoSHD1xCgt+WsxLLz7Ljz99zfXXPM6QYWORFI/Ro4ZQV1VNfXUvJFGKHoyBJCErefJiGX33GsrBo6bQvdtYAorOP285g1Xrvqa9bQU9epSRtn/i6mvP4rDDTiSf1VB0EJrFkmUf8vV3M+m3d8x3oIlOIEmP7kMoj+zLIRMu5IVnnyNvrGfh73NZtWEuz0yfQ9dGwfjxh9Kz25BCCZVBfUMpfXr1Z999BzP7vX9z0skTeP7F5xgxfCQeMaAE4Sq++8kF0AhHYgwc0IuyRILhw/bHd7IEfKeUBMlUmx8jrKioag5YiyTr4MVRLAGKgqKbIErBDvvuKqHT1tJGMBwDVDwLhKQgKeB4Nq6lIMkWqpRFEnmMfIiQXviWAlKpJLouY+Q9VM3g5oe6szX5BDfe8xi/L3qVxb+uYcSIE1AVfyxVkgTZXDsB3SNrdOBYeZ568kmefvJRjjtxClZWQ9FAyICcQQ8mC9eJTj7fgRpchqQ188jT1/Pn8u+obyyhJFrG/sOPojI+iHEjz0dTGpCREJ6NImxqqkoYOmRvhg7rwZ/LF7KjZTPVdT2p7jKcGa/fx5KlC3nygec5bMIE1FAr4yfsjydUutePQhAglzNZv3E5WaOVssoY+w0bCLiEo77bSNgaakAnXlHJ3oP6oWkKjmsw9ZwTufn2abw2/Sly3jY8kWO/QWcgid6oahnHTurG7E+ewJR/Jp+Fz+csoGffEubM+YIxo4/Hzdt0dLSBZ1JSGSCTWUvXvkmW/raRPt3HsnT5cuToCtqTOSYePZzFqxex8o8gU6Y8jJ0OI+QoQoojRIIuNQ38698v8vPCXxk7chyqqmGYBvUNGjXVFQTULuhyOVgRBCoIzc9Oo53fVj3KnM8fYdOmdfTpPQq8IKZRxuAB/8CzaqipHMDeAwfz86IZfDx3JsMG/QNZ9AQvhqLFkeUE0VAJ3bs1MWLQRIJaH5x8A8KOI4iRz+dZunwR01+7l4MO6o0tdhDQ60Ek+eqbd3n4kXvZuaOVocNGFZ5lWba3rKC1cxV6KItp5QnrXZBlifnff8ynX06noa4XoWh3kBUsayuvzHyQWW8/xoTxB9DUvYGtW7YzZJ/9EURBtKNom+m715FAM1/+8ATf/PRv+nU7gaCaIJ9OYHtZhg/en1Agzssvz+TUKVP93oFCq9yuZ0YxVLtIkSJF/l6KIlKRIkWK/N3szoCw8T+SdfAweemlF/j88884/tgTGD74QKyUS0Vtjn8cdSxCbmPosAH06bU38WgDErUI1cEmTTgQRZFVECa57A62bF3A6689RL/eZaxa8R26FuWree9jWp08/8Tr7NXzVCSvErw8ht2JKkUQElx7y6HoAYPGrjUg8kiKf6CypGKYeYYOHkkkVAuoKJrA8VppadvIP2+9lAkTJqBrETS9BETKH+fxp7dAzpPPp9H0BGbORdby/glw43tGfmSDZGYxY8f1I2e0sO++B2EaHsHQrlG2XSNh/u/H7D+CUCjAL7/Op7FuMI5to2oKLgJHKMiyAp7AMTRkKcSaVat4dsYlHDz2TDS1gY4W0IMWQs1gehvI57Louh+27QmX/fYbxoihYwjrtShUAyF/ekoCx/UYMWQifXuMx/PCdHRkCAZ1kNIgd4KcBMWipaWTUKKd+58+mDEHNXD26Vexb78zcax9sM0EqhLE8ZZzx13nUFYZ4IsvP+eUk89i2dLNnDz5PPYeeACSEsZjJ48+fjdfffklo8eMAVyCeph9RxxI/77DUWWN9uRKlMAO8skouuah6itQ5Q5yaY1QoAxdU5CFiiSluO6mqaxbt4iqGg3PzhON1v53iRERNq60OH3q6dR3aaCqojsyNeCUgKuRT0uoQZVUvh3HS6MqHhCgd4+hqEoFb8x8ja6NDVxx5XkE9TF+zpWQQISBBjo7wwg5gCxruHYAIQeRRQUyNaSTGtFwGdBGdV0am/W8P+dRBg8r4/mXH+eaq2/isYef5YBx+5NMbUbStvLW7GcZOmwgL700k5HD+/L0C+ezYds33HDDpZxx5q3g6gwe2pX6Rok+fRp5493pvPrMvfzxR4bJx15Hsl1FD4ZwHZtAIAye3yI3ZHhvXp3xDHWNfZG0IFqwElkJI7xC6ZoHroXfvCY7WE4nslRQYl2Bkc9j2zkisRCW7bFjx3beeOdFkvktzJv3GQ0N5QRj5SAl8dx2PKMMMw+KruA6GV585U4+/eZxvvr+GVLuF3z01fVs3LgYTXGpre6HIkss+fNzLrhsHIcfdiCqVIZteCiqja7nmD79SVqSH/H1129w9fnfM7jndRy03wAOHDMMVSRo6laHI2XwRA5J5Phgzn9I59fyzuwXGbP/AALRDBMmDuar796mf//+pDJtCLWFT799mKVr32PGG/fzw49fsu/wg1DlASCiDNinAhFYx5ffTefZF+5j0D6j6Nf9aIxkLQE9gCRJKELGNAwURQU0NDXCmNGHkjFd/vxzB+PGnkyPnl0YOmgErin4/Iu5HHjQeDxPp3fTGDwqME3Q9SA9u9az79C9WL9tCRdcdCHN25cQUD3S7WnKa3uCLOF6LoqqYdkanogSizQwdvxhOIrG998twMikuP+2j+jTOIry6jJOPHkvRo0v5813P6amrBvjRp3NIQceSS6doEePQQjRSXv2ZzqSG5FcX4TvUl3N9jXdOeDgc/noszvpPlDj4oueYtjeU/Hsfpx5xu0gNJSghJBUHA9cPILhEAcfcCihUJya6gZAxrJMsC1q6voSCJYihIqQ5b88NyRAo6b0YIbsdTpbNuwkUQ75/Bbf4YZOU9c+DOg/BIFHU0Mt9XVdiUQHgaXx2pu38sGHT1JdmcDNVxKPNSKrTeCWICEQgGmAHrFIJIJoOtTX9sAwJHIpCT2Yo2tTGYcfdjBLli5h4IDB+NasNlZv+IZ5383gzTee5pgjjsfIBVC1IPWNZbRlNtC/z0FADdffPIGVaz/j3LPOpLGuP7Pf/pkDx55Kl/KelCRK2LZtEUtWvcGn865m2D5TIT+A7nWHsOIPk+HDD8M2QIu0g7YKmTgQ5523P+aEE07BtkCRpb/oRs5fHrxFihQpUuTvoCgiFSlSpMj/BPcvv2zWrF3NDz9+T1lZGfuN3A9VCdG//1C+/fEZDjt0HCdMOgc/fLUaSarAM9NcfOVRhGIVVFXVgCOjKC6q6vLZpzMIBw3mfzuXRQu/56yzr2Xdho0YOZmRIyZhZhJ+a5Lkh/06VpiVqxfRkvmSiUdOwDQtXNdEkcP4rgqFLjU1aEocCIIrg2SzadNSVq3+gxH77UNTbS9sxwEnjJANXCvi73dkEEoeVRV4joSiy2TzG1BVCdySPadDSnLPA5cwYmQ/Djr4QFQpTiJRVRiZK6Rig1+9JCwsp50XX/w3a9YsZdTI05CkMkDHxCvUqAskIZAlf8M/99NX6TR+Y8jAo1C8CkJhFaF2AC3c9/Dl/PLLQkaPPgKQEAKCWhiZCII4ohDyLCRwSCNLCRSpkmS7QyBUiW1I6IEQe+Zc/PyoTCZLOGKzbPV3HDryWGTRDYk6sCpRNJ1cxuVfz55HaSV0JlPstVdfBu4zhK6Ng6gs34tMRiGoBzj1zGNRZGhorKOpsY5gMEhTQy9i0RpUOYpHin+/dDcrVv5K78ZRRBMRvpr/JDPeeI5EuA+1XfqRTXUgWUFy+S2kM5uobyzj5f88xgnHTgYR2+0G88PRFWQRQAvlAD+XxXdZBdm0sZmy6hiZXDORsI5fvuWSy1ioWoJMq8mwoSMYtv+BaMLCSVYiMGhrXU8oGsHK6oTCJShKHpcMQg7h6zESioCAroDI8fZ7D/Pt97PI5ds5bcoZ/PLjCs47/Vo0pZrR+x8ByOgBgSxyjBi6L9UV3ei/1wGEIxVs3DKfYSP2Il4Sp0ftaGQvgNA8/30QYez+xwESQwYdgyx1QZPiCFnxiwklCdwAQsggtTB3zvskU4Jly9YxetREoBAKXdjQ7xKTkC1kyaYz1eqLl46MHgqjyGC7NpoWIRYLMGDvHnSv78beA3oRDDhcc+MUli1dQFlpKfFYb7SQwHPzSKrNkGE92Lx1GfuPHkpr+0YsJ83i35YioTKgzxEY2TTr1v9ELNFGujNL7z6jEK6LpCgIYbHP3v3p2bWKxb+vo750FC889TJLl37P2PETaKzdB1cGGQ0JBdCoq+9C94YGOpIt9OzWlZrqakKRMI6jUlM5AFWO4LgWfXrUECl1aW/v5LeFG5l0zBVgari2hh7wEGobf/yxCFmRWbm8mX2HHkowHMKzC/qHJ/xsKd/WRCF9nIbG7nhSlNravQlrMoqk06WqBl3XqW/qiipHMZ0QkhRClsDI2+SsVjL2Jr7+9mMymXVs3riR4yedyE/fL2bA3vvvFl4c4WLbGrIURVGihPQ4npAYPmB/OjqamTVjPr16DKT33vV0Zubzx5Jv+WPxWrB0jjr0HGS1lFiwB+FYCUgZ7nnoHH5Z8BMTj7wYTUkgJJ3uDSNo27GdI44agKRFqCs9BMcrp7FuBJoqISSwPAUhaQjJACwkyUNCRg8ECQYK660nUPUS39EoKVj5DPJ/1dbLgEZyi0YgGCASClJeFUEPCIQIAjGEJOHhIMgjCBCJVIBTBg60Zb8kXpFj+7YWhgw5DlmJFFrX2C0kywFAZFAUidqaHghRSbpTEIvG+GjuTN567yUau9Xx5+LV9O+3N8lkK4GgwUvTH6CmWuW1V39i8R/fcfTR59PR2kkg5NG1oQI/u6mMcQd248abb+KYYyfS3mKyV+8heLZEZVUXkGSisTgNddV89Mkz9Ot2IOFYX8y0yj7DRwOdoHQg5AwyUXxXa4Dp01/j5Mkn+88Wdp2rXc/YvzZ8FilSpEiR/68pBmsXKVKkyP+EXS4k/+v5F52LEDL/evJZQGBbEorq8sizB3H5eQ+AV4dnNPkbXYDgKlY030ePqn8ioWM5Mposg5fhjtsu4MorzmDH9g2UJhLEKkaC19MPwwZMuwNZFkiujpAdkHaybP1X9GiyuO2+fyHZcUbuO45xo08nm5KIl5X95biTgMXadb/z1uxnWLn6N/Ye1IP2Foee3UYw+YSbgByeVYXwIJ+FQHwbrteG8EJMu+RiBg4po1/fwYwadqn/kpIFbOGhp6Zx/gVnEpYqgCb8gOYcEPVbrcAPT05u5777bmP/UUM59PBRkOkNAmwJRMClJbOORDiOjEl7x1bK42V8NOcljjh0AI8/+TXzvlrFm2/OBWktLanfefv9xznvlPuBvQAdD5V83iGgy+xsdognZFQdIIfJNrxcFQHtryHg7HFUeX/5f5JNuiNHJBbFyJnoEY9dddOZDodwNMLLM45j/g+zOfroqezY2c4pU05DEbXYViWqXI8ntfPhh6+wV98e9OhWjYcFBBB0AU8vuNma+fDzZxg/6kiC+miaN21i2cbn6T+gN+Ul4zFTYbRwCTgK7S1bSNRkeeKZm7j4/OOBONAbvDKwgruP3VOTCDbywqu3sXXrZqaecRm33/wkAwcMprGpnomHHca6Tc288cY7HHnYafTtNdwPh9bw92uWA5EW8ILccfsUYgnYuj3D3be9Cbg8P+sqUrmtTDvnWVQSgI7kBXEsULRW5s67lVGj+xCmFhgKdh3J9A9cePElzHjlW5JtLcRKQ2ze+iN33XUXjz8yHTfXA10DV1/A6+/cSzCS45hD78LIqpx5xtk8+dgMSsu7gwFEWkm3qXhOAM+FWLkKko2Vy6PK0YJ2ugLowCOBIIHhVKBIheIvkQGawS0HWyOb28KlVx/Nb38s4eyzz2bb1hamnXcP5VWNhRPih1e/+9F0vvv6Bx564EaS1hq+++EN3HwDG1e6XDjtGkAHbFKp7Vx3wzSeeuJVoNwfc1OSwK+0tG6jPH4iODnQNnLljcOoruzOVdOeQ3gRUCpIt7hESiWwYyB0UD8DNjD/l88YOfgW8LqCksV0PDQ5jmsqWAYoWgeybjDrtYfY2rwcVYkzbdoLGCkVVQZJBtNJoYXSGLaJrtSDKWEb4Ng59EQHsA0Xk1ze4t23P+b4409E14JALXZKQQkE/H296l9rhtmOrntYXh4hgsgk/OY2TMAAxybZmSccSSCr0d2+EtPyQGomqLRg08oPCz/ii0/ncev1jxbWjipMxwHh4joKuhLZLZRYDqi6gWE2E9C2Fs57CLB5+927iZeq9O8/kF8XbOSwCWfQ3hogEesDigFiCznmcvddDxDhEK69/kncNHz386Os3fg9qXyWi8+bS3uynXhCw0XCpAUJHcWrBNGB5eRwHIeAppFOpSiJJrBtBVlEEJK0R4vWd7XXbS2csDi4FXta670kqElWrFjEH4sXMukf12G7ARQdUtntREN5hNmE4+SQlSCoOeAToJN7H53BdZd8see1lExhfTcLv+JABDcbJJ2EaAmIYA5o5q0PXiCbynL0kacRClSgqDKQZOHi2dx+2zXccss1dLaUcuCBF5DP2ATCEi7tZGwJnAhRvQWwyKTa0AIWTzx1P1dcdjfpDpdIaKAfXi7B5rUL+HbRA3w770euvORBevbpzSPPn4SQ4dIzP4FUI2kbonE4/LATmDVrFtGo2D0mvkcZkynGvhYpUqTI30dRRCpSpEiRv5vdEQ0G/r/g/eDm+T/+iG3JjBk9nkzaIBTRSWc3ocu1qIqEkHaAU0nnDiipMXh2+sH06n0Mw4aOIqBUolAGyDTvaKWqMsGa9Uvp3tSEvzkK/0Xg6KA9u5Lv5n9BMtnBKcdOxSCHisIll97NiaeOpk/vrkTlQQSCcbLpZkJRjbZtLdzx8OEsXr6Jw4+oJxJzqaxOsG7dKnSpG0t+28mpk+5l8OiDUGjEs0CRXZB+5o03nqG6ai9++XkVF199GhoxoCd70rwtHnzoDiTJY+wBoxkyaCg7W7fhYRUyoSSUICAXNnxWGbjg2CAXzAxt6VU88NgFjBlzAIcddDJQv0d8kgw6Ugt56MmLuPCCS6iJT8Q1SpF0l01bvqW+dgg4cZAzhR/QrhoqC8gUTpwOXhBEhnyulZdfeQItYDL1tDNxsPnk4++ZePhZ4AXAU8jnmwnoJSAChWPIARad7W2UxJt2h5gvXvkfBgwYhL9pC/DCK6cTisisXxbivKl3Ulopk8t1cv9D93LC5MPp2bOeux+6isau3amt6cGIoccSVfv47XqFsTSn0MCmhvL+N9nVqAe4AlyySCKLQMGjBMcWuA6ouodAkE0bqKE2NKkZiw480uRzgliwHqgBcjz4+EROP/1iVv4p2G/oqYWcHwqmsRwerQjitCcXowUswloXoBbI0ZKZQ3k4AQz1BSzvvzd4Ri6JYaaJJWJ0dmznjnvOpmff7ezcpJBpHsY9jzwHciejR5dz74NTwI3QtcsEKuKHosY3kHeWEJBbgSifzZtLRWUcO1fJPn2PINvWSCTexkOP3EHvPl1xvCzHHDsFULnhynu54pJ7QVEorw3gN16F8EO5wcqCWmLzw/xXeHb6VHrUd0f1Ehw07liqmvLMmPk6l19xIboSAo4GqwKAScfH6d6njgumnUlT3TCgGxDHyYeRdVFw3K0m3xlg1dpfWLL6E/YZadG7dipecl9kOYQtVnP73ZcxcMBQJh03Ff+GMNm5YwEbts3niqvuZ8iQKJZRwiP3/YKqFVQaL7LbaeY4eWS9laUrfmDm609x1y1PACGatxqcOvkM5nw6E0m3uOfuKYwZ35NUWuegA59EkYLkchaSpKDrKnvaEk0/Hyqr07z9F7766SFWrllAZ6fBqOEnc8yk03jvvacpr5BZsirJeVPvoaM9T7yke2EtsgstZK5/f6H5uWT/b/7LRLJLHHD+8nswrBye5xHQ9L/8pcJ15QXBBjMLWhhQknzwyRN8+tkbbN7wB9dcfzbzvlnBNVc+A3TSmW0hmyyjpnoYfgucgksUBQ3TTKJrq9iZ+5xXXp7JFRfcC4xg+dJLmPv5q4ze73q61l9DvFrHZRUWNgFvMJ5pIPRtODRh52wUyUXW2zltygHU1FVy2x2PkU7VUBavwnbaUZVEwRlkkMp/zz+OHU9jfV/uu+0dKst7g+I7KQ2njWwuiaP/zBUXPUE8Xsrj9y8AN4hDG0gx3222+7mTZGeymbJYBW3tLrocIxa0ufO+k9menEfPXg1Egr0565Tn/MZMd9fS4WLbBqriryNvvf0Wxx5zPJKk/GUc1gbWAl3A1x1U7wAAIABJREFUieA4nZhWjmCwGlxo7viG1Zs+YfmiHZx1xsPgKris45W3rmbySWeAWUe2tRfx0sqCkLuW7365iWuuf5Ux+3fl3ttmkXV3sGrVCvbufQSO1RNZ9Q9w/IHHM3v2m4QjICl+eLv/IjpFAalIkSJF/l6KIlKRIkWK/E/xN0N/LlvEKzNeZsHCH/h8zhzALowjlLJh8xoa60r8P2t2AwHz57/Jlz/dxVXX/IcAUUw3iCaV4iHhOmA7BrrmYjp5NDkEhPZs1EUO6ODRpx/gsguvIGtASC9j5w6VihIFdINkehOxcBPZ9Gby9jZuu/0CbrjqUdZt+gPT3cbC3+dy/IkTqSttpCMrmP3mz0w4aBI1tXvjEMRzIv6gitcBykJ2tC6jsmw/zEwFWjiMadloSkVh81wQkR68nTPOPJnyskrA5qZbryZRpnHZhY8ieXHaOjZSWr6D2+/7Jz0axnHkxElEox5Qjj+G1cbyVb/Rp+doIAaWumcERLaAHKncYkLBCLmOOoJaGbIOOWMDwVAXsFVQdjVr/WUkQliF/1DAAcNeg67neWP2Sxx/9KEI4MY7bmDyiefSt9doJCLYpoaiJsBTcPIg64Bw/E2Wa5PudEklTWoqyiBgY+dSeE4ANRBkxYrvqW0IEtDKkMxGvOBOZM3EsQRCkpFk6EhuJh6rwN8gVZBKJonGtgFhjGwUPZAoHP+uijAFXMgaHYTCGcDg7Y9fYfu2Vk47ZRrRQHnhesxh2h6a1AUz34IayON4NpZlEQxUYVkyihQl2WFRUmqQS7YSLPEdHJZloqplBcHKbyWzLNCC24AchuGhK1XkzTZ2JL/h628+pWNbIxdfdCNC1v3jFB6+C8KipWUj7733LpOO/weK4oKdI+D1R9ZLILCK2R/cxIiD0tx040eUR8q47oLviJf28ZvMpAz5ToOAXuW/rUAz0OaLKTT458XMgy4DOTLpNfz62zy6NEq0tC9nxMB/ACPBLt1zHchptu78ghtvOY1hQwZy/KRJXHnlZQRDcO+d95OIHcbDD95FWVkFXSpHMG7cschqEDz4feV5uG6Ypb8bnDLlDrLtQULRYOF1bbZuXc/yta/zx6LNnH7K5cQTITqSW0nERuCkC+NF6q/AHH5e+SWL5nucd9qL4JbhmSoilAN2AA6W5SK7fZG0gjjlqRgZCz2kgsiSyv1Ja/t6NmxdxthhRwNB1qxdxWNPXcT/w957BllV5l3fv533PrFzN00DTc5JMmYEBAVRjIhhZvQ2DIYxO4YRHbOY05jGiHHMWREjigqKCJIzTefuk8OO74d9GvC533q+ed9VT51VRRU0p/fZ+0rnXOta/7V2t2znrLPGcvCEWfz70a/526X3AwNIpuKEQwWlGh55y0RTNCzHQREjhbSyNIi/kbcaWLliLZPHnwhSGGgFUty66B+YuQgLr7sP6AaWDJLg94VXMCrfj/fZ2+6/Wyu7IP5e9bf/q1xwXRdZ7pLz4M9dV9tLdiSzG1ix+g1W/fIlq3/8mqef/I325jTltbXgiLiOTSKzh5KSenKpEFoQLBtcN8my5e/zwy9PUFObJdOpEZAG8ufT/sXXy66gosbl1Zc3cMM/3gMR9rQvJ+m8x03X3sKksUewbpXFA/96mWxSJ6hFEdQEq1Y9w+YdP3PjLc/x8w9bkahBcAyQ8kAeK28hSzpNnd+wu3kFTz7xFI/dv5qfvt/AS689zKTDw8w9+iwgz+LnVzD9mFoef/hdTp93KTWVQ1ADBbJdtfhp9Qcs/fI/aLrEOWdfhuT0RhZDZFPbMCItnH/ZUVx++WW8/upyrrz4JfB8xaVXIPoEQoCDi7lfN3X51XWlCm4HNDzPwMxJaFqUfEZAC4ogbAGauOaGi7h14eu+mTx5/vXExaRTJpddcje4Pdm17Td+W/85v278F9Nnjef6q57nr2c/xJHTFoCSB2L45L6Br57SOGLaKbz37qc4jkMoqOy7J1ferxSwiCKKKKKIPwJFqr6IIooo4g9HYTPkUSB2FJ55+gWampq44cYrSeR3s2nnLwDsaFrO6+88QN7NAN1BzdIRX8eaDZ8xbuSJaEQAFVnUAAnbAklS8I8DJFxH3Peee79EK4DGsCHjsD0Vx/KVFuGgTHsb2LZCwPAJkEC4DMu0GT58ONXd+zFx3LEcMnketqORSAhANYYylMkT5qOpPQvXbsSTzEKZVwnQF40hQA2W6QAdqErWf3ZPKSgPFEaNHEdFeU3hHkWOn3six889BQEFzxMIBEI0de7ml9U/ouoO4bACZPA3EQnAoV+foaQT9j4FUhc8CdfUCGi1SFQRMMqQCi9xbNH3BKGrP8R9J+uFdoR9p+2aVsu2bTGOn3MOeTsMVDBq+FSGDZiCSBVQhoAKQhOJ1EakQJpkajeITdjudhCbCZWmqOiW97kvT0ZWdBRNw8lAfd0YQtFeyIZAIuHgOr4HiqSUkoqruGYJJZEheE4UKANHRJM1Mu5GMvZWZDUHeOQzZuF59qkQAkEZyNOa3Mmexm2omkAunwTyOGSwSeMKcRCbaW/bxH13L+K/zjqHO29/EDCQlSAdsTyRqAJWCMmrAUKAjKLsl6Tn+X9VVcBTcRwFTYuCJKFpGk8//RzRSDVlZWUIQmFgCl3lfhbZbCevvraY1rY9PP7EIwQDZQQjfRDUJGgpwKB3j8No2G5w+JQ6zjpnHt98t5RsHCDPji1reOTR+/3rmuClqnFz5dg5wx9vjgZSGM8E1zbRjSj9+4+le/VBTBhxIZlcD/9391n2AG089Nh1fLs8wfRpcyjRxzFsZCnHnNSHzQ3fADBoRD+69azCdD1MZQvIO0GOMXLoTEYPn8P80/5J526NQMjwhTRCJ7Cb2lqPKQcdSbfuPZAUHcsOUBodBU6BgJQAVLbG1rPki8/4/KulfnvJEoKm0d6UwidTK1CUHoiyQC5p7xvXXYyL4KFpGvXd+zB+7OFABAjR1NxCQ8t2+gyCG29bwY5djWjyAHzVmUA4FCSdi+GSAbI4bg7TyaJ0qc8EMLMOsUQOTenJ5EmzQYgCwcL4CDF0+BB27Nzs97HnsHdB8sS94+V36ez/N/XR/q8rzEvX8YlLUQBJLKwt/H79M3M2iA7hcIjDD5zCnGNncNAho8nGJMrLevt1bmKAZ555nqVfvgW0o2v+tVUZdE1kwsTR9O/fn7FjJ1NeUc/qX7aDB2NGnM/gwedheYDUAIJLbcVIupUOJRiCbP5nVKONrJsmFBZAiuGZbdTV9aSqsgenn34EazZ9A+zxvdktX6GqaCEEIYhIgKrKbqSz7aSzmxk0pDdnnnkmX3+1vNDOZZx68rnY+QBDhgxDED3UAu/nOQ6Qp657KWPG9OfHHz9DEjLIsgmCixFR2dO8BQGFXt0GMH3qnH1tJ4BPDuX3/iyTSQEetpcnlW0v/F8ecLn2H9fw6BN3gRBDM4LgqIX1MAeI2AQQ5Sx7Gtdj5+KAwdEz5hPQCmuJZ9OjbwVHHj2ZHj0rGNJ/OIMHjqVfn5H+8mBrvnqRcGE8JGhOriNSCoJoEgyqhT7fby0voogiiijiD0VRiVREEUUU8YfDAqR9ahegpa2JW++4hrGTutHYuoZu1X2YN/dyHnryUs46ez4hRmHHeyJHdvGX8w/m7LPmMWnwbXihVkBCJIhfbgVewQTasrPIsuTH3KPhn8pSOJXNk8mlUKQIiqjgeiDIeVIxDT3ciSLZ4FSCAHcv+jvnnjcXQxyB42h0Ztdw4ZUHc8ABBzB4wCRmHnYtqmxg5iHv7iQQlYDuiC4IgsXnn9/Fhg2rGDVsDhPHzwO1oDjZn+gRXBwrjaQ65HNJNF2kuWUX0WgpTqaeYFADCSYcVMqDD93N2JHHIcohIIFjeUiKStdGJpf10I0y/xT9/9xsii5mNo2qhclnPBQVRC1DLp1H1cOIks3e02u62soqXEDxjWlbU5RVhejsaCSeaOL7H5Zx8imnAYZPThQsON766HK+WPo9Jxz3Zw6afAgOHTz1zL+orIpw3FGn+9cjA1TiOgnS6TThyBDwgrS2fs3CO07g4bs3AQaZXAZdqkIs+C/ZtousWyDYJNoTbN25glsfPAZFrOCx+79EoR7NCPi3LXaVTYrgGHtP5WOxVgytDE2R9o0bGfL5RhZcUMugQWMpKRvI7NnzqK4eTh4FDwkBFcdzCdhl5JJ59KjmX/P/8K/1BL98SNPBc0wERcDMdaDqLms2fMKwgWOAOtIJh2Co3FekCF1lKHlsJ0kulyUUDPvjN6+TybXwj9uPoaZ3E5aVJ95cx3V/W0Io2tMvF7QN3v3kSt78YBHduocY0uNi5p/8zy6v873+7JlcmkA0BcTY0byM5xc/RjgcIRrszZ9OvRrL0VAkEX9z7peNQRObdn1KKpFk9cqtnHnGzSTi64lEdfY0tVFbeWRBPWKBF8ITtuCSI2XGePH5M1Dlek499iE8sw+BUo1cJoMe1smmBUQEJMNDkJKIQEcqQUmoFvD9hhQVPGwSmZWUBg1cDEQiOI5JR6yByvJKcjkPXS8h2SkSDJRiWin0IH6negXSijzICTzSNO5xqa3pg+uCKKfZsO1VHnj0Ii664K888cDnLLrjWzKdFmLIQ9dtFt1/A4lkO2f+6XT61g0rrCkR8lkZTQHLBUdoQlFAQse2Q8iSTM5qQ1FNJJqAAO3teSKBgSiSvrc/9pJIXQGMewmkLuJo/yACkd+VKO03x+1CeavQNR67UjAFDzwFzwJBcUFoZdkPr/Hbxg/ZtvUDrr/4JzS1BlfIIesWDu288eEiTpz5V0xzHKoKpmWhKgqQx6URkSxQQqwDotpAhGCWdCZOUK8hm2/HMHz1Z3PH02Ttj3jn9c+YP+c9jIpDiac+I57cyJIPPuCC8+4nFXfJ2Sb/fOBUTpp/KEPqj6JUPxA3H0JUAKGd1Wu+ZcTwkaRzjXz6xYts39LGxQuuQaAKCJA3G0jEbCqremLlPCTJw/b2oKp+mbOdziIHPRp2L+enX5bT2LSH+af8F8FgDWCzYuUXLPniE4YOHsXso/4KXre9a6ZHKyCSz0Vx3AzBAIBDU/tOln3zHY2NzZz1l/Mw1DDJ1A5eeu0BTpl3PHZiJGWl1f51lPYCkRRkT+dDXHTeIv7zyipweoIUY9kXn1NX259eA+r5582n8OWXHzKgTy8eeexRXCcMbg2i2M83aJfx+1SM05Jazrvvvss/rn6MjeubcGyPSDjEPiXS/qbkRRRRRBFF/BEokkhFFFFEEX848uz9crs34h4Wv/Q43Xt7WN4epkyaikA9TU05KmpsVAyw62lu3sATz9zEeeedQrk+GyHYdTqs4Ln+Jkrp4mb2fmlO8d9JJJt0JkXQKKGzDUorwBN2I1AHNPr3aHcHz8ShHcfbgyqPhbwMRpZvVj5Inz79qC0dCXZff58nAXIrMTNLWOmJ6EFn+0bue+RUzjjjBPr1Pg6sgfs2iuD/XuHvjmWSN2MEwgbpdAvBoIRfstAHL28gKOCKmxAJ+Pfm+goBUSxcR4dEaj2RiMm2hnX07j4UqCST8ggEuhROhfeyk0hqYefqWSRTHYTDXeU6QWxHR5ZUfPIgA7iYjgBOBFU1aWraSiSqcfc9t3LCiXMZPGAwoOO6KpYJmqaxecuv1PcajCz5JVVWPsXmLesYPKw/ic4MkdJKHD7hsceeZeeujQwePIie3cYzYdx0/nzegdxy71z6VV0A9CeZsdDkctSuTbfYztNPX0fO7KS2toS33n6T625aSG3VUAx5lO+PBGSz7RihXGEMuORMixtuvIrqmgouvfAS/NP8Esy8jaqpQJKr/n4qdbVb6N17ErNmXYmvJKnERiHt5lBFAQUR2Y0U4rbkQucDgks6G0OSQFUlRK8UHLByoARgzW+f8PSzD3Ha6SfTsCvOzOmnIMkR0jGBYFTypSRSHttK4Lo2rgu6EcbMCKhKmJvunEXPYZvo33sSB46YD0yiszlLaVUJjplA0jQeePR4ho0uJVqqMGbgBThmBEktw8qmUbQwjz2xiN9a76RX3WBmTDuB995YzZUXPuQ/p1eyVxGTy4JugOOB47qoGrQ0b6Cq2iWV3cK5C+aw+KkMmAZWFpQIJOMO4aiE5eUQJR3L9tDkOGbnbhADaOFq7HwHrtyGqiikshlCxlDSSYlAWMd0s8gie+d0F4mSyVkEtBC5pP+jYBiQLByvgxtuPodgWOSk48+hb48RmJaKJOaQJAeHNBJR4h0SoUA1kvx7wXmX8E6gy5dI8h+eJH7JkF/+55DAIY6vNXMRKRB7RMAV/aKxQlpd3syjqT6Z6rpg2jkk2UWXkvjebAE/eUwAx7KRtBQILmbOAlFDVUr2W7ssTDuDKks4WEgI5O0smtw1V/0H8MvrDH63uFgKrg25vEkgKu8t580ks2iBHILcAcJu3vv4Kjb+GmHl8hhPPv4GWtl6Pl/2Mus3/cqFf3qIq/6xkA/e/4AlH31MQB1EONoNJychaS4I+b334bGbRFYkKvQlls5QUrIHpChWZgdKoNlv3vwUHNlAUrYA29m9Zyt13U6mZUeWqp7V2OJyftz4Et8v+5HhvedxxGFnF54nAYTwTANBsWmOfcjTz93L1Rffhm32QVYVOmM7KC0JkEuXcuddt3PBRWewdtPbbFjzG+vWNHL33R9C1gAjj2c18dLrd7CrcQWbt/zG0H7H8aczL2Ttus2MOeBAdLUWx1EwLdAMcMUUICITIJ5sIRIRSeXaCOs6ix64DzyJyy++lnQGgnoQy9uCJGURnTFgQqwTSmqz/kLthkB8AajFMbshCYNBzuJPoiD5dAObG97kx+9/4LpLXmV3+5ZCG8j+WpVWUAMa199wEZdcfiZlkQiLX3mXM+dfjW2amCaouov/OUthHnUtnEUUUUQRRfwRkBYuXLjwf/smiiiiiCL+30ahlMMT922WRNi6bSO9+3SjV30tYa0UKEWiFkP1N5OZpERpZZiJE0cTDpchSJV4oofneXieH2kvdMWOw34bMZO9G/1C6Uk2nyBgaFg2qIqEJAOCheAFCqfFDohhkNKs27CMp565mZGDJyFJlUiqS2mlR2mw2t9MelG6oqERE8iSRD4fIJsGTbGorPYYOngEZlbGzqvIhgeCiW3msCwLWfENgK28haJKiLKIqkrs3P0b5154PNOOOBI9WApCBoFO/43cUuwur6EugYIEmuHx1gf/4rvvl2B7aXp1H4SiBkjGTDRDBU/ANh1k3SSdaeCbbz7jjTfe4rDDDmTNpm+ZfexRHDZlCpVlNeTMDJaTRpFsbHIoooIkaZj5GJLsEggqmHaWCWPHkbczyKKGIMjIsgyCiKoYZFIuhh4FFyRZRVOiaEYETQuDK3HvfVczdMhwLDvPzJmz6NVjGOFoJaXlNo//+1H69BhPZeVwZCWILEkk4ml0QwAaWfLFM6iBFNEyj0GDBjDpgBNQxCpwy8CR/RKcgEtTyzr+/dyDBMIiS79+HkfayceffUxD67d8uexdnnr6ARqafuPeB69i3OTurF79BcfNOpb6nmMJRwcBpZimAVIIVfBjyEVEhKzti1zcJIKUI5Xeg6q6qIqELMmAguu4iMi++bkIK3/+mEiJwrSpRzFwwAREyVfISKKCKEMy0YlmSIiSgCTryIpBOpHDCEZJxeO0xtYwbNgQBHMgJeGRdDYpVHQPYFkNyFocPJtx44bRp+4AyksGIXs9EJUg0IikJEBwuWHh9fz1siMoDfdj8IADGdLvSMKBQeAGfme7IxRCnkTZ/4eIQDBYyQ8/fMEvq7/mgIkGLTtC9KwdhqRDe/wXSkq7gQCSmEFwNGxL8MuK1CpkLYiZ3YMSTCNJCdJmGyG9GssKosohHDGOIsKePW04roSHTC6fwlAVVFlFEERUxS8RtEwQRQlRlFj1yw+MGDGcNas30qNnPeFgKQ2Na3n0sXvoP7COQMDAMKoQJQ0rgz/XC2sOkgskCyRSFC+n+6VHYgJYg0+gdkPEIWemUCUVkBHQABnbFnEcCU/0yVwPkCWZjo4suq4giiDLMpIoIeKR7LQwMwISCqICogLxxE503UaQrMLc6Uo+9Nk8x80jiR6uZ2G5eTRZAWw6k21cc91VTD5oAkFdZ1/n+cRbOqaiBUDRJfK5BLKiggO27eB6FrLiIgoS3buVomnldLaLTJsyD0lpQzHylEb70r3qIDo6dnH4lKGsXPkzB06eQypmomsF431B9b3OSAEZNKUEOxcEMYGqNRNvTREIDwYxBLafnOchks61oykykXAN847/M+vWbeDQww4h7TWhazoiLq+/9g6jRowmFNLIpDxUpdRf0kWRgOFx8MTJgMpJJ5/GhIkjqanuDZjIaoSdu9bQ2rGNaYcfSmtsC20tSQ495DQ/wtKTyeccBg+vxhFb2blrAxF9EIdPPRlVilBSXkc+I6Bo0n4HEjKSoCIAui7jkCZvphEVl/HjJ3HIxEPJmg4BvQxsBUn2Ch8/frKnbgCyS2d7K8mYxa33n0y/vqMpLR0MRMgkmpEVB0FWkMUcyC306FFLPiUwdcYJ+GpAhY6WOKFoOYlYK9+teJutu76jvu8Q+veewOqfd3LKSSf5JJIm4MsP909nK0qRiiiiiCL+KBRJpCKKKKKIPxxdMTn7yewF6GiPM3DAMEqD3cnZBpJYhabIIBjgRVB0C9iBJGUBCYQwgqAhCJLvK1O4jvDfpPtdMqEujwubZHoPlpsioIuIsoRp2khi2K8mkg32qRIaufiK46jvnyedzjN46GRsR0CTAwhEcDwdUQjsd3mThN1CUK1ClkQad+/g9jsvZuOmXzn0sJnImgA0AJ2Iso6sylh5P35aFmVERd37ADfceBGz5g5l+JCBiAhct/A8GjtW0L1HGQG9DlGSQLZIxEwcT0YxfCPhd957gQmTRnPw+Ik8//JzPPLwQ8yedRySIoOr4DointjEkBH9GTiwFxddeC2Q5Z6HruWAAw5g+/Y9TBh7IKIEV119KR3JBgYM6oci+N5NklSOnQugahX07TMKvDCyVAlOECuvI8klIHioWgNGUMK2IZHIogdVtIBQIKFUQCTTqTL1yDmMHzuVSKAe3egDQpY+9XU0N7UxY9plZEwVSdKIJWOURGHrzhXccvtZbNy8nLIKj93bN7Njezsjhp2CplQhCmF/aMnguh288/7LTJs2hYF9RjBySJSPvnqS/zp3FvNmHUN7soVDDj6QSZNGES0FQW7njBPPp6LyRMKRiZCrI5+OoCkGnikjCTK5tIbgGcTbG/C8DGqggwsun8VTz92KJyfoP2AYihjFtsLIioOTkxElfzj1728waFgdnh1FEuv8gSoJiLLnl6MJaUQxy6JFt/HLqtXs3rWHESMnkE63oEV2M2LQXGojs+hePQFVqcJiF0cdM5znX7mL9uxSfvt1B4PqZ6BqI5DNweCUEW+3+Pz720nmf+Ojj9/kb+c/wZBeC+jbfQ6KN5SAUYUoOiCYIJog5grtJ2N7WSQpCWIWAQPy0L3nUAYNGk3/Xv3oWR9ix+7lvPveE6zb+h9Gj5hSqLUBwVZRRBAVF4Q4bS3LWfzW5QTLmnj0sWeZdujxbNssU17Wg3inR0PnYnRdpSIymICi+2ScAJKoIwguAo1YwiZEsQNJURHQwVWYNOEo+vUZx4ABIykJV+PisPTzNznksPE8+e8HqOtRQ0VpDQiSP+4K6kdPtnHZgUcbAmkEolh5FVz4df2bPPLiqazasJQxI04lb1kE1TIsR0USI9iOgutJyLKMKJnEEttQJFClgF/G6imoql8iKQoueDbNzXsoL61BVVQkBfI5E89L0h7fzGNP3k1tXTmhSBhJKGcfM2zTEWvh62Wf8fkXS/hs6YccfOAkwEbTFCZOHscFCy5g7rFz+d1iikCsM0EwqoKYwfXakGSHTK6DbDZDpDSEILhAGNUaRI8+fRg1bBJGpBbbTVIaHkj3qllglTJs2AiGDKynrbWJ/r2HoAbCeJbqi/BEQBDwyCAUSj0lVcFzNvDLz5/xzlsfMXH0XHCjIFZiESOdE4kYVSQ7w2hGlPreHg1ty3n93Sc5euZ5lOoTqKsZzPjJ3fnTWcdw5vwzUMV+e1WbrteJKFbR0eZgBCqYOnM4/7zlKmYccTaiJANpBo3UWfXLDwweOJU+fStQjSp6VE/wbcckiCcsIqUqFTURevbqjyb0of+AiSiiT9zG460EwgEQwbYFJMn/QPFcQMzx7fLPWLr0EwYPGQieCoKKLlcUPO4ECjV4PsEmAZJMKtFGtNRAkBPMmDqBW276N9OnnwpIrFr9Lp8ufY0+9d1BcNi5ey1vvvUiup5nSL8DMYJ1tDe2Ul7VCxwBLaSy7KdH2dnyMbNnnIaudueD977mpBPn0BVKiNBFIoGvRiqSSEUUUUQRfxSK5WxFFFFEEX84ujZI+8cLyfzyy6/07zsMQRAwjC6hkoWVU1BkaEt/ykdLHqN/vyHUdxvDicefxjvvNlBSEsG2bWRZ5L8lGAG+B5O239ul2LTjOx5/4mEA7rr5IRIZi7DRG8HEr2AR0n68s9eCI+5mzfo3GTn4JPJWOZpS61eBFbyX/C/rVuH9JJI5EQURTYHZcwbw8jvzefKpuxnQZxqTxpzNVdfcSCqb4eTj5zFn1hmAT5LhyngOCLIHosmSzxYz9YiheJQj0I1777mZE08bTV1VH/AGAL5q6vxLxuJ6WWZPv5RZMxeA4OA6nYhSG998/yljx45HEcuQhD5gargWiMEWUrnNhPQaoAfQwQ+/vsL44dOAMjpiJmUlFXTEmwlFBFRBLTRMBPLKvqYt7FntPMjavi5dtfor1jXcS8ioZfbUi4Ay9pF5fpx5OpkhqNSSSK8jUh72n8fTuPq6Q/n1t5Xcv+g5KqPjCFb0Y+OOHdT3qiWT2METTy7i2ONG0dm2hWi4BDOhMXr8cfgmyBpWRkLRZXDzIKeIxZopKalP6it5AAAgAElEQVTF30il+PtV57Fz5w6uvWYhQ4ZPgVxoHwkoJUjFEoQidVgmKDL+gX7XbRdULJs3/czX3z5GW3s7V1zxd5589gmOO+54NK0SkXJ0LYpAGIFmcKv9KhYyoKzAJo3KKDqaopRVB3CdGKLczoOPLCKTSWE5GUaOOIBZM+eRTJhEIr3ANfaLKO9q9wT3PHoOJ5xyID+t2MCsqZcTazH5dOmjrPr1Wy5ccAV13aeQ7owTiMYx7Ti4QRRhILbkoso2JnFUujyv/HIZiAIyHgkEsqTMTkKqzq6mbdTVdMexFDxLRtFq6Gz9kNIaDWwPvDra95RSXt294FuVQdBjiEKaXessPv3mKdbsfIwZR00nGxtCKhbklJPP5ZqbT2b0uBo2bvqUMf0uZ9bMy0FyeemNBXR0xJk0ch4HjJwNegeQIO85aEINECzMewewSGdsgoGSQju143oxHvzXPwgGNf50+kU4lo6mdo0DFwcVDxNwCpR2CMETQXDZvO0Dvvr+CUorKuloquas0y7FskLkcxAK+ApGWQFBtIAYnenNeKZBWelQ7IyCrHf1UZYuHyOPxkK6V8BP8HNNcvlOZM1XLz73wrMcN/c0woH++62RvsdUR6KR0kgYFwsREcsDVQjgIdLQ2EwoGCmkFUp7B2k6uZtg2OSLb97j/Y9eYueOJkKBcp567DXaOzopLQsiUkamIcC3vzzFyl8/pqauhDPn3waUg11QREmAGwMpxjV/X0BNTRV/vfBqZLEbHpG9K7pEM9DGMbMP5cUnPyYUNkCPgxghnRqIbsg4Ejh2DkPUAVi+7HmeeeUKli1vZvqRI1l0y3fgGIV1dSu+EswAty9utqCpCVpAkkSnSSRcCnKWr5a9zCGTzwFhO1BGIrWFSKgc6IlHOwIB8IKYeUDKoCgeDkkkVIRCupqZTCNpIpIqkjdb0VSl8PCVeF6QVBICQQ9J8sMMGtt38sAD93HbjQ+RTJtIVCBLCngxVD0CQooff36VzVvXUlnWi6mHz+OZF25ny47vUAlx2YInCUTqQEwBq1n2w0f8snIHfzr9UgIhgBgHHzKVV154hy1bd7J+84+UlFVz7NFXomghUtYKbrhjDmecdjEj62dz9DELeP/tZfvWh73lbPvGRBFFFFFEEX8MiiRSEUUUUcT/CPxY+31GsQqNe9opiVQidZ1wa02oXg25NIhajB3tD9OtbDQhrR+PPvwws0/sTV3l3/zLeR6IDqZloioqv0um6YrQ7oKQ4NQ/H8GMmQdRXRPhiitvYvr0w7nrpjfAK0EQbMAhE9cIhKC9fReakSAUHuDfuaPsi/IUANHCL5lTwVNwhBQiAT8pSWwF1vLOB89zzFFnAipX3ngms46ZyyGjz8AlAK6GKJZjZ0U/Sj4cIJlsJxwp1Kq5EXZsbqNX3wqQ/Hh6PAUElWVff8o3q69n3vzZ9CyZi50bjCz5Rs8tbZupqhHJWR3oShi8vr6nkwCu3IwoxYAgOHVkMi0Ewg1AAD+xqoRM1iRgBLDdDLIo732+WOJnHv7X7Zx/7iVEg/3wHAlZzwEd+CSEQeOejXSrTeJ7Dg2gZZdDVW0UJIv333qZo2ed5XNKHqD/xMdLXuK3NTsYc8BEktYKJk+eTFAYi6r3paElR2VVd5qad9OjuoR4uoGSYJfZsAJON2INcUp66oVO8XvHsnKFxDT49dfVrF27lp49qmhu2kGvXr0YOXw8gleCqFQUyhEtEJN4tgdyOWBhO1k8x0WWRUSxi6S0WbToai6//AT8zVkI16tCFCowMyFUnYIZbyMCHjh1/m1JCZ5+6a/YTprqkoM4ZsZl/viRUrQnP6c8XENjWyPdKnoDXSyESjwRJxoJ4vvChLGtELLiq+U8LAREclYeQXTRpEriuTfpzC5n9cYXCXMYdnIYUw+6CEFVsNNp5EAVnpTaO4CzGQND8dvM9XlQRFJACMGFbDaHEXS4ZdGfOejQOtLJDMOHHkhd+XjmnTqGU0+bTiRUydihFxAqqwQpBJ7O6+//BdPbTmujyaQhCxh3SA/WbHuSZ555harwKZzzl5uxrVIqqmOkvA2EBA28CeRiefTSGOt338raNRtZ8yPccOVS2ppbKauuRJThn3dcQmmVzZhxg/hoyfNEwj249JxH/HvGKCwreaCR3Y2rqOvWHRB5+bVX+HzpV0w/YirHnnD93th70QVBAk/swLbiKIoOBMhlMmxv3sDA3mN9AmgvkZfHdlKs37iSZcveJxDK0N6apmftWOYefzaJjjiRsjI8O4cgS7S3NPPSm7cyaMBoDj5kFqJbXRibeTwvjmU5qGoFXcmR+9ZIBzCxSSHjsuSr91ny2ScMHzKKk086FVmI4Jt722i67q91XR0pxti153u2bFvN51+9ybChB/DwQ//mxeffo7a6O6+88QQdrRnOmXcrUqQDWMMrH/2d4X0vYkj/Y8GtJp7aSUirQpJ0mndvoLoeftvwHUMGDscv1arD82Rct1AZKGfpSD7JBWdfx4uv/IYZb8QWQZD7g2iQsRNEQiUoJIAMeWcrq9d8x9q16zjppIvQ5UF4BJBwaWlop6qmFFfI0Ny6g25Vw/cGpFnSWhQp6t+DZYCSACTe+eQaWnd246yzLy60Q5d3FFi2h6zmsLw4klCQBhIGFCTSQIqsuZPW9p18u+ITDD3IIYfMIKwNRaI7ggdZczeGZhTIPP8aqbRHKFhOR7uDLEGkpL0wf2PARjyyNLRY1FUdCDSSZyPPPr6UE4+5Gl0PoAUTiMoOsnY7b72+lGRM4i9nn1LwpIN3332V5SvfZeHCKzn7wv/i4buWENIH0dmRJVwW58e1b/P2Wx/yzn9Ws2pFA5IQQBK7Etrk35PPRRRRRBFF/CEolrMVUUQRRfyPoCs3vMswVETXdWRFRJT8NCZRyCIIHrLmIUkQUOow5HoEsYSXFj/LsXNOBqcHnW0dBEIB7HweRdMLsd6C/+XZAQQBx/QQJQHP9dVD773/CvW9avjpl4+YcfQgKqsqGDnsDFwPPFdEEGVyVhpV9zCCKpoWwLREchnQNLlAOLj7Nm1dnkuCSTIeR9ddBCFFlyHswP5H0N4qEwhW8tEn7zH/1HNQhW4IBBEEHdN0MW0bI6gjiKBphU2AJ2M5uyirkvE8G8GNgKDQ1P4Vd95zMQ2NGxnUZzojBs1BkWsQZZXO9jSeI1NSWoHraChKOf7m1CDdKaLqICg5/FN+jVRnmGAkhCe04pJAxAIEFMXf0La15AgGoyRTOTRN5c4HZ1LVo5mm5i0MG3QKnY0egWiShbeczGGHHEkyblMSLkOUGwAZL1dCKFwNSow7bz2Hioo2Bg48GKdZR4wmOWfBQXy38mOmzhjKyp+XceJxFxDVRyAJI8EME476UdaRUBkCGoZaUmhvAwiBG0FXdFDbgA4effrvvPDSgxx48CgEQUSWMjy++Hw8bRXPPvsx8+dfwvDhkxHlUgQput9Q9CPMBFFF8FQEwaW1rZFoJIogBMHTAJ+gmzx5ClAFwDW3nca6TT/y/YpvmDx+Nrt3OIQjEhm7CZlaBE8ulP200ti2ihkzj6Bnr+5kU2DoFaSSCUoibUAp4UAv8HqBV+X7zWBz2x0X8e2K5/loyX0k4u0MHTIT3CiZVAbTa0aRbQRJQhKrETDR5YFo0lBWrdzKzCPmUxEdDq7FhRdO4ZgTjwDRwHITPP/a9bz90X1s2bmSA0YfjQdksyCrWaAJERkECTObQtUDHDJ5NvXdxxMKldK9qgezTxpJe4fFwQfPZvr0vyELPRG0EHgW8XgTo0cdTd+6ozho3EV0r++PZ6d55oW7aWrroKRC4q33X2bGjPlYdjcMqS+ZWBmqEkAO+POoLBJkaL8DOOzQ6biiTbCkBDMDspFjS8ODePImbrnzKep6tTF+7KHUVA1Dk10stiM51eDJIMpEwgbQSUPTGr795n0mjBvF159/wsyjpmO7OoKn+rbochqBX1l401msWvktkyYdQz4J5TVDEQSVvBlHkTPk+Y0bbjyF5xffyuZN33HwwQcw+bDhVFQb3PvgQnbsWsOkA0ehyBqCaAAegYBKTS+d775bxbixh+E5JYii5JfpCRaSZODYOqKogweOA1ZeKKwpKlLB6K2uVzVGwCGd3sms2fM47dRjCBo9cfMgKQJ4zWQzLSiaAW6YaKSG+p6DsG2HIQMPZOmnPzF96nGUlgaR9QTlFeX06DmZeEcaPRDl6efvZdPmLQwaNJCwMQBdjSIqFqCgqiqSGqairDeCUA5EwNP9kDAPf7GVTBIdLoMGHEpdr/5IuoaiyihoKLJOQNNxhRZEIJnLEFRrKa8YxLatGUYOPQQPGRcXXJdgMAyChCCqhEOV/pougu1ZKIpKNt+EIru+J50ImXQL2/d8hRpsZXD/oSQTGTSpbC+JYmZSKFoQSQiRSpl+uSENdJq/EpSiQIKFd/6JZT++zsSD+7N48avMm30m6WwAwY3iOGluuOFYpk2diUCJrx71gqhKAM8DzRDRdRFBSABxLr/uBEaMGUxYryMSHIuViSIpKslEnoMmzqCtpZHy2gizjj6U+af9BUWspG/9QLbv2EhNrUYwUIGdqaR7H5HPln5K2BhOQ9MyvvzyYw6bMpmgUYtIHT2qerFjdzNLPvmWyy++ClHoWtBk9rJHRRKpiCKKKOIPRVGJVEQRRRTxvwTLsgpqD5BEaS/h45eLgWdbCHIWSDFrzgDGjZvA2actRg84lFdFwQsR70iQzcXQAmkMPYpulOMbabjEOjspKS/Hc7J0xLfjCRkW3nwB199wCdWRYezYWUvPnioQBwQy2QCGWo3r+Wa8tp1BEQI4wlY2bPuYV157hj2NO+lR14t/XPE6eN1IxZPoShQ5mAc6uPbGMzjowEOZOXUeibiIKGiEIhrxVBvRUAmprEVba4xgoITKilpsx8TzPBS5QLC5CjsbP+CiS0/nqBkncfrx96KqMuddMpnRY3tz/NzTqC6diG2CrEJ7ewtl0Z4IUrigxrDZvWsDgtKKIGWpLZ8JDmRySQIREScvIMkBbrrlHB5b/AQnnTiS2UefwZRJJwEBMhmdgB4gmTJxHAtFFVm99klGjepHPlFDSWQ0iHDVP8Zw7nlnUR4eQ7Q0wvX/PIEDRpzMgIGDGTroKKxUECUU4933H+LIo+tRmYgb681t983nhFMPIZFuZ8TIoWiiyH/efZFELE9l5ABmz74MRLtghxIqlJ7YQArsOMi6n3bkBkFyaWlZx89r3ufII+bQ2WlSGh2OZSbZ2fIx3XqIBITxQCV707/2r6ikqywROmNxSktUTDdLOpWjNNLLJyWgQBy64MqYXguffXs/Rxw8DZVK8IaS8ocPoWgM6Cr1M3DtLKJcUJKRBYKkEhJvvv0CW3Z/wtzZCxgx7FBwKgsOzRZ3L7qOaUcP4L33F3P5JVdjJsvRxeHImlpQMfmPEouliZYEEYQN5B2DX1b/zFff3cv27WuZfcTZdHZ0MG5iNat+Wsvxx99NW2uGisooAPFknmi4Hg8RF4in2ykNSiQSMaKRCF0EqZOXiMVbef2d+6muE9i25xPsTA2L7vqEeacOpaqqir9fsohEyiUS6oPnurS1N1JZqfPeBw8wefJETEugpnI0UEM6bRMMRvCI0Z7ag+bVEA6XAQliiZ0sfnURbR3bSSWzhLT+XH/1E1idJWg6EN4OWAUdo4jt1CB7fvmVJzkInuR3pwKp5AY+++JpIhGZDz94izvveBw3LyLqo8HWwAUnB1LIpaHhHTTdYvumRob2OxKjqhqHFHk7hCGX+J46QgxoYNXqJWzcvBzLkpl/8j34iW4NPPzU3cRjea685B5ksQ84BWWRtJbmWCcl4T5oYm1hLFm4xBAxwAvhuiBKFpYF6VSegBFCkkGUTTxyiKTZsvsHvl/+Nhu2vkEqrhN253HV5beRZw1vfLoAAZX13w/i+mseQwvlyOTa6Izvob5+DDgKbh7yloMRSYIgEGuziZaoCHIK2MSXy7/g6Sff4pnHfwIP0plGgqFSEATMXBJVN3CsPJJi+GPDk8ATyWXiyJqCLAf8uSR0All+XvEZX3/xI4cfNoPhYw4jYyfB01DEAIoUKPgMQUdHHknyEHBRdRtDN/A8EUGQSCVzhMI6nucbjX/51RI+XXo/4yeMYe6sG7Azhm9lJ6xl5W/vMGbIsUAVmOW4eRADLohtvl+XV8bGjTtQDJPX3rmZXn2DnDzzn0AO2ERLfit33HEL5/zlBgbWTQJ64lgakpJn2bc38MPKbzn//MvR5G4IDAQvgieASxqRTMF0vYM9HV/z76cWc90V94I32D/QkPP4BwtxuhIjv/9+GT9+v54LLlqImc4gynl2Nqzi59Vfk87u4Yx5N7Fy9Ss88+/XOf/iI/n8ky2sWL6ZR+5/D0PpDUae1tg6phw+nZ9WrkURfRPuvYq2ohKpiCKKKOIPR5FEKqKIIor4X8LvSCRB8v2B9kus9l2vO+jo3MzHnz3MvBNOB8azccvXXHbFBTz3xDLCwRpsr4WdrR/wzdffUls1nBnT5hUu4nLpZRfR2dnOQw89hGGEMPMuuh4FdOLtWe546DhGjovy8ovv8+YL28Cq9/2PAEHL+xtCaR2nnj2eu+6+iSefeoRLL7mcsDATrB4gCZCDVM4kVJbh+1WPM3BwHU88/gKlwZGc/ed/gi0XDolbefGV16nv1YfJEw8lb9poqobrOZhWBs8VwJI5am4vXn/3HkRB455bP+TyS27i/Y+fZ97JJ5LK5AgFouStFDfeuJAjpx/DhLFHouslICiFDW+G2+5ewLARvZk97WbSMQhGAyBYZJJpAuEwty86gzVbPuDEYy9izpFnkcwIyFIQQ6sgmTAJh31lVN7MoykK+XQjr7x5Gzu2ZPj71TchG1n/uewqWju28tyrt3PpRYsRxCy2l8Y2S7GdFEbAxmMjLkEEaoi3tFJRNhQvDYIOaB38uvFJevUpIyL3I5nsTjgcwcNFKJSegMuvv37F1q1r6NevH0OHTgannGS7SLgMkFvJZrI4VoCQUbHXy8hxckiaRDZr4jgemhpEUfbbXf2OSOrgnY9fJRoNs37dNs798zVQICn817l4tojtgCt2oCoe6WwaUQgS0MvJZrMYhgZ5ESSwLYt4Zj13P3gJCFlmzpjLwRPOAtP38HG19YiUks96aGoVniNiu3E/sUnK4JdLang45KwMhlIFaD55JqaBBA6bkJiMm5VJJSFStY6ctx5dKOPWO65l7Pg63n//I+5f9D12ohpPbkYJyCQ640RKhoOnkM1maOxYybkLZtC3bzkHHjSRRx58jaefepE+dYegKt1xrBzpbCuRkhzgsuKXrxg7sp7Tzz2JIf2nMaT/ocyZvYBMqpNAROGb5c8RLE+ydXMjx8/8G8l4FWEjQCYJrrSbhL2UT5Yu5sRj/05Q7cHNt11LMKwSKYEzTjuF115/m1OPvxYnX0MmvR3LzFBWOYJ82kIL+eVoectFUV1EUSabLaRhef4fQcziuI1IInR0tFFWNgA77YEYRdZF8BwQY9xz3yUkM+sZOqQvs2cfwRVXXMXuXUmuvu4Vxo+czMbNW/nPf/7DJRcuwAgWyqQ8i2QsRbi0Gj/9MQC2b96dTYIRhd82fMlb7z5DdQ+Ds+ZfCYTBK8dxAMFDknKkMyZBo6CKo4GcJaArUcDAdUUQTBzHRJFt8nY7rp3EkZfx6ZfP0rqrgpPnXkw0MgzP243tJpk4YRp/u+x8Tp93CjniZDImZYERQBm45f8//lo7gXRhnYzg+58pdLbFKa2oKswJf25kMnECgXDhtZr/3IXXe/jm064DshLDJ0rifP3V5/Ts0Y94wuLNt99kyuFHcvDB0wCNbMpE0zRERWH7lg3U9+2LT7JSuH6B8N37QdBV5vcL737yH2Yc9jcUsXZvaSi0AUEgBJZBNgd60EYQdxeeowzXlhAliZ27vuf2u67h7juWYAQM8t52NIHCM5WRzYkYWgTHLqT6CVt575ObaIlvoL0lzxUL3gCvHjzwxFYEEnQ0VVJWo2A6m1jx40+MH3sYslgPDnjkcIUErZ0r2LTlZ9atX8tBk6dRWTKMysrR4MrguKBmSaRW8sQLZ3DZuevo6PySdRt/ZPlPL3PZX98AIrh5G1HogS3kkRWLw4+YwscffYaiaHt9nooooogiivifQbGcrYgiiijifwmu6/opa/8fe+8ZJlWVdv3/Tj4VO3fTDTQ5ZxAExIiIgIqYFTH7jGF0DOiYs6LimHHMOmIajCgqBkQRZRwTooJIznSqrnzq5P+HU93o+7wf33me/4da1wUXDYeqU/vsvbvvtde9FnSSSYESyQPBx7NsBEkkFNJoad6Goik4rsLb7z1FeaXCtCPOQZQiuG6Gha/eRf8BfTn04BkIfhjXsxBFiR9+XMVxxx9NdXUNIS2OLFdhZECR4ugRlQ8/eYyWxBq61JRTHulJfd3oIGTHAyQXkEEwWL9hDYccdASvL/qASRNmEtX7AzqIAq4JekzC9/N0a4jx9D8WkEpmueKS28CLkUtJ+EBTYhO25TJu3HhkKThll0SRgpknpKkosoRt5dnTvJYjDz2YHXt3sGnjdt5/fwmzTz+ZaKSKtmaPWFxj/YY1JBItTD5sKrF4PUV3cBAMUpndxMoUJow/BEWsBt9FUixOO+0YFr/zOo3dGjj2uCOYcfQMhvQ9EIEYmlKGIofI5x0iYa2okCAwL/dEZN3jp/Uv0qVLF4aNmASoGBkPRa8hEq1j4sQpCK4GoocoJJFlnVS6QCgc4uFn7mbh6y+jhsOMGDgM7BiuUYySl2Tqqh0+WPYmL73+KocfdgIiYrHeDeLVwWfx4kVMnXooPXv2BVTampOUV8Vx3QIFezfhcARVD+1TgQCiKIMooSgqsqziuXSmLgWTreMPLpBk7Ybv6d7YwOGHHYFElM6TfQHAR/AFbAtkMYQg6CiKhqoE/liubyFLkc5iPZPJEa8Q+O6Hz5hyxGQmjZ0CfhVeQUOQQZACs/HA60gkm0kRioWxzAKZTBpf0FDkChwcXN9EEYOWzUx7ikxyF++9v5DlK16kX+PRhPVA3SGHcsiCC4RIpRL06tmH7g2D6dlzAkvefof5D1zKm289SnmlTt/eI8hnTcKxMJ99uZD+AyO0JVo499zzWfXVt2z4bQvTpp4Gfhjf8whFQ4BJJt9Mr+59MH0L0S9j+JCD+PCDL6gqb6BHr74UciY9evWhvqqKQf3GIlCJppYHQi4HwhUOzz57PYn2jWzd3M7oERPwBJsvvljOL2t/pLq2kplTTwKi5DI+C1+7nKWfPEddxVAauvcE0SWf8whFDAxvPbKYQ5SjeIIEAuQMF1WRyebTaGqUUKga/ArMnIKqSAiyg2m2Iivt/PDTpxxy8AGsXv09O3du5pNPf+LMs09i/S8C+48dTXtyCz/99DXbt29g1KgJpNvSqEItWrhrsZ9LA1vDs8ApgBaCTMZhy64V+FIbm7dsZeKkI5GFEL4fwnPBcVxkRUFARhIlEBxcmpEkmVw+B76CJMoIgoBX3B+EYnuupts88/zf+PbbjTQ0VNCn5+EYySh6uAs7dq2iNbWW2u4qn362hPc/WEz/AYOIR4IWtHzWRhIlBEkE0ebXjR9TXRkDYrS3uYTCcSBLKKwCGvlsikwmwcZN61i27GM+/uR9Dph4IPsc6WWMgguy1JkPJ4pucS3ZNHRrpLKyAVmWaU9vYNasuTTv/RdDh/SkurYcQTJYt/ZfvP7GCwwb3B0lLNHW3kYkFAUEPF9AECQAUukkhmEg660M7NMPqZgM6ToupplEUWUgaD91bRFRBlEWQcghYON6aSTJJZ3cQ3VlnKqKanr1PgAECVkQius8CsSD9mVVxvX84l6h06dvNbX1UXbsbGXM8GOC5DkBBCFgLY10GaGIRqGQpLGxF4IfwrdjiBIIctCuHY34yKrDr+vWM33KCUQi3YrtceCYAqKsomkuW7d/y7CBswmFZYysxS/rl9OlciSVVT1IprZgGDaReBxQWLLkA049ZTZCp0SxhBJKKKGE/ymUlEgllFBCCf9L+IMSSfLwSSDgEJAHGnjx4BBagHxmK6FYnqtvPguUJm64/kbK5JngV4Fgcvf9J3PJn68mog7As+IIooUg26z8ajGTJo7jmeef58svvmfalNM58cSzi8bKJi0tnzH/oYsQJItvvt7JI3/7BwP6jUEW6kGJB5Wvr4PsgZAGL4Sb05CigLAL17OQhO7s2bWN+m5VBK0LDiDiugqSUA1oZDJpYmWBRMa0HWQpMFKWRHB9G1HwefGVJ9j423eMn7Af0444hlPnHMuO3WuZccxEzj/7WqrjI8DqDmqWPXvXEI2FEQkRiTRiZFxCkSiIaSCHabejyf1ByAM5fJr45xsLGTZsFIP7HYwgdJj6+vi4CMjYjo0ia394RulMkrvvvJJ4eYa96fd58K6PcO1ynn76SaoqunPCcVeBA4UC6HFA3sPyFffx/aomrrzyRdKtSd5f8SKzTppC3raIKAYKVfh2DVbBRY95wA5efuMJTjt+Ng5xZCLB86c8SLWCID2PAp5nIopxzLyNFnbI5nfy4KPXU1YeY/jQsYwZfgzRSF+wxU6LkHzeQhRFdD0wBBZ/f2AvABhknNVce90VDBo4lHPPuQidXsX377gm8ImhWCdnDYiWeWzY8Q6PLLiPc8+6giH9piNLmeK9h8BTgvcQbQKlhYRtCHgeaBEd8HBsC1kJbsSybFQ1RKFgB74rIhRMCCkgdia5J3nwvr+Sy7Vw/c3Xg1MPgoxhJnj0yWsQhBTbtu7goQee5M7bHyGX8Zh35z28uugapkwfTnVFLYbr8/B9Szlh1jn06j0QUW7BIYXMMKAM3y8gCIHRdDqRJ16pABnefu8xtu36npVfrGL00OO49q8PYtspHnn0XqprY/z0w17+Once0WgdcrQFFx+VMjAVrDQAACAASURBVIy0RjgU3P+ObV/w9EsX4NPETTctRqYrAI6fBSHNKafP4MYbb6Zvz3FEtD58tfZk9hs8nPm3J7j+xofpUJZ8+tXjZL0vaGlOMmv6g0T0fggEBviBQ4xDvpAholdg54upe25xa5GSZPM/Ew2X09aco6q6C4gW77zzBNOmnciebVU09o0AbbgYfP/tekYOPhhFiuK7YQRNwzECY25JB/Aw83m0sA5CCthBoMip+d18jmPkQC/6pwsi7N69k5/WruLTL5+kf58xHD75aHrUj8T3dQRBwnE8ZNnDtjMoikNg3LyLV998nMcf+ydLF/+Crg8GPJB2Yvo/8bcH53Hd5TezfNXnvPnapzxy/3NAdeAj5MvgwdvvPsm2ljewbINLzv87utqf5r1b+fHXN/jkk0+5547XMLIWekhFkFwcJ88dd9zCLbfMIzDiV8FTcEUPFxHXA0UAoWhA7vs5ZEHDdSQkOQ8s4+77b2ftL+uYNOkgFDnEO++8x1//ejWtrW1s3ryZSy96hNvufoCLL7yaeKwCRYwH68V2EUQfURSw7e1oqgQ4JNK7+HzFMlavXsNf/nwjFdGhCF4IRHDlon2dD4nket77+GY+/uSfjBs9kj4NM5h2+FkYXndCcQ3byaPICqBgm8E8aWtPEY5ZhNQysFRQwShsIBQKBZ/fL/oudQSO+pDJ2MSqPAr5JHqoDN/SEWSwTQtZdRHkJGDgeAVkMQpUkmvXiESLe4TsgOAGsi4hAYikmxQy/ntcO/dhXnhxMVt3LebdpS9xyblvgV/H8cefwhtvvFpqXSuhhBJK+F9AiUQqoYQSSvhfwh9JJAGfPAIWQfWv/C7m3GPdL5/w58tO5Nb5FzJy1AAyaZv77ljC2NFTOOXU/wI/Sz4jI1GGVuy4MAsWWjSD4zVx5123M+vYExg+9FCC9hIBPBvQeHfxM7z+5mNcffN0nn9hAQdMnMph468iHtuP5qZtVIZ7IMc9kH7ARUeyhvDJyidozX3KkZPP5fHHnuPcsy6nproveJWk21ziFVJwOCxkCTxxguSt32XLF0fBJZlupTweYcFTd3LIoX0Y0vco8LqBaDL2QJ17HjyR4QOPpTpyEBjdghrOyyLKBggeyUSB8oquQZEoeHhOHlERiq1PbQTeH7/vE4RCVkcPleE4EPBGQULd9p2b6datEZHiabyo8tCC05g582Dqa4aiaYPxnVbeW34bB40/g7g0NeBW/D1IaoQdu5Yw96rZ/PPlz8HcP0jDUkyQc3i+xA0PX82nyz/guCOOZcpBRzJq8HT8bHBrqQJEq+HyS4/hgIn74ds1nDr7wiKRES6SMQRJdQDCbsBh0ZtPctTRUzELLhWx3uCXk8/4hKPFdqHfFVmmaSDLMoWChW27lJfFQbBZuOgujjp6Mq7rUh3tDtT+jsCCoPXHBeIBjyEBosHcm47kvP+azaYNTcw49C+k0zuJx7sEnlVyJYV8Dj2q0pnm5yqBB3znfXXEukOnWXvRqwja8CjDzsjoOrQk1zJ24hDq6qBrPfTtdgB33/E0p58zlU1btnPZ3JMZNbaRhS89ihZR0eQaZs+ew5ln3Mx1Vx2Gk+/GtGln8uH7X9C9Rzd2793N2HEHURbrT5CyZxKYrwfMmWuVIf1OXYVk8uQLZ9GjVxW5tMJR009BEgRMJ0tYjpFIGVSWNeL6YRAiBO5FIRwjUOqEQoC8G+RfMJwNhOTpQFcc00BWg+L5o89eYNXXn5HLWvz7X78w59webN+6h1v/uhXcCJmUQSwewhbTKNIGEkaKstABFDDRiGIUIKyLOE4GTRZJJNpRpVpkVPRoDtfdyMqvPmDpslfp0difc866HlWpLq5Ni33sQI6rrriM+fc/BX5NMI9Fg6amLzn1jFksW7oFQRTwPANR1CgYJnpI46dfP2D+QxdS3y3Mpee/SdfaMWTzOUJ6OZIQtOI5Dsiqg0c7ltdOrrCDRa9+wIXnXI7rx7BNFUnUUFQB8LjqmtkUnG/Yb/RoTpl1PVqomp9/+ozmzEe8+MoLJFsE3nzJ65yrZt5CC6vBevECQtvMyciCFJBe8nYKrGLpJ4vZtVnn4v+aB9i0pL5j3boNHDhuDqkExOPliGpHEqWNZTqoWnVgOG+Dqxq4uIF3mV/cXYTfTWsfWpr3UlP/Kz//+i2SIHL//ffz1BMv0Jbaw6WXXMFTTz3Dxt82MWTYESTTNm2tOfr3HoJpgaaG6WhLDnpAFTas/5m3P7yNCYdWMGhIT5a+t5LZM+8EBuCZoaCTVUuCW862tdBjMCC9zJ0PzSafhwZtGhf/ZSEIVbjkkcTiKQWhfYmegknQIieCX4+ZC1SZmUwT8+4/B0HKc8N184hr44Oh6QhWFAzwbDwXBHSEYtqaZ7uIihQwW51tgqFiNCIYZjuSmsK3VTQaWLryCj5Y+iZnHP8EYyYcQPP2Vmobyyl477Pgsee58s+L8N1yjp11EosXL6JQcNBDRf82OoIfSq1tJZRQQgn/SZRIpBJKKKGE/yX8N2Ntt3iaXfz518wV0KIukOXW22fzXxeeQGV1PzRqOO7EE3j1tSdxHAfXrCamjywms7Gv6BXBdTNIaoEPP3qbwycfgSTFAh8KAFHDaNcIRWH33s00dN/JF6tfZPzIQ1CYRD7ZBTVUoKXJ4PUP5pIoLGXM6AkcdeAt3DTvAmbM3B/X6E4sFmVY/ylADW62HEkpvr8MiFmCSqPD56PDu0LAcW1kCTpivYOktBT5TD2qVIthtjL+8BpefPVqRvWbAzSAE5yCFwzQ42m27fiap59+hoYufTjlxIuoqAyUHfgeSG0E6gUN3Mai8TYg7QGguQkqK7ogqwIdJMnTzy9gxIhRjB01CQ8BkQiwimdevIlMNsFlFywCKvC8zYhiBJxB4EHOzCLEDK694yQmT6znmMPmQlsjRCsDc1lfBEFj0vkjOPH0SRxz0MGonkJXdWhAmHkhkBwQUpjuL2iSQnurSEXVSDxTQNTUYo+hiO8HKoM/+rx4eLZJkHQtBua/roDrC8HzwKNgZdBVlZyRQ9fDSIJefB4eYOCSQcLHdF00qe53ZJVHoCxxgEiRUAAwyFjriKmBcq5gx8im9vLiwkXMOf0cdK2MSDy07/n75cFLCIFaYh+83/1ZLP5uYPqb0YVa8GpYueoD1qz9mAMOU2hq3sx+oyZToU9i8VtPMmikgq6HqSk7gHC4B6u+fY8J+00jmYhRXllDKruGsqiGmfPR1DjIXQKCETqNxl0bfAfkcMeaEcmmMkTLqoqf2wDagzmISKC2KWBZYVS5DtuIoIQpkqYOmOUULNBjSWz2IPrgOD6aUoPnOIiyDJRj52QUvcg8iGlgD2CSKSSI6XVAUzB/6YlbiCBpUfDFIFVRTCMJEslMjmhMQyKMgELg47ONcFjG83PYhoiAyvsfPEXOaCEc1hl/wBj2tuxm1NBJeIgINJBMqlSUV1Fo28jhM0ay38QoZWVVfPN1K08//iENjf3J5XbT1LqBs885j+XLlrNnbzMvvrCYLZt3Mm/ePD745HnWbX6Hgw8bweqVjcy9/G58HAR80mmXeCwgJl2hHYndeNg4aKiUY3siilhJOmUHKkMRwOSfb91FvOYH/vnCpzz/5FcsX/kCWWM706ccRFOLwjNPLaK8PMqpx8+jumYwubRBpEwDoQnI8uW/3+NfX/3E7JMvo0t9r+Kz3EHK3M4dt9/FzKPOZNL4w3F9D9+TkaVKPFtj3rx5nH/BydTWVgEmqXSWsngjZt5H0ypAyuLjAfFgiQgUCZgsVi6LGomRbM3hA/GyCJIis/KLZYwfvz+yotPelqSiqq5IstjFqajhuB6K1EEgdawPF2wNx4Y1m55gxbcPUV0T5/3FP/LyU6uBalzHRpILBGrQrpCtgrDJ8i8v5rs1b9OjVxfG9L+S3n1mApWd6sbg9YvJj1Acn3RxT7CR6FPcv3L4fMPC1+/hpzUbmX/zMvAbMb0NmKZJPFZFLpclEgnazVxLQvCjiLJUVL52jFGwj3luURUppIFWMlYTMVVmV/MPPPPCrZw68z561JyAGlICJaz0LTjjOl/nqKOPYcmSd4qKtd+P1b59pIQSSiihhP8MSrtsCSWUUML/T2FZzr4vfJF4rJpEM0BXDth/Fo6f5Lctn/PO+0/tuy6wjuk8wJZUHavgMWTQOCSpAtBADIGg4roWsh5cW11bD1QxqP9UFHphOTLhMhVZE6lvzPHSqy9yyIFHc9SBp2Kxm359RrL/4JNQ5RiRcHnwushISufhf1E5IwXkAXH++C1HRJZkDNPAdm1a2psR0CkUIpiGjCBZxCpEjj56NJXxQQTFewzkNAggiQAOH3y0iGGjujFsVFcqqvVOUsWxfMDh/ItOZur0CaSSCXKZwFM4kdwO2NTW1RV9P4IizbDT9Ovfg0GD+gEOYvF+2xIuslDFeRccDSRJ7GlHFIaRTwWtb74F4WiUZWt/4cNVP/P1z81AJb6qBf8omfiSiitAplDHz+tkyuWDqVInYeQ1wCXVvBU7nQE/jiYBtFBRHQIhh2knisWpHfzqUPL4nbcetK95IXzHA/Js3/4je1t+RVKCCzzfRhACJUAkpCMJkMun6WTW/AiOrQMRFCkoAvehozBTg2s7lU0yMbUHhhPGJRK06Sx9FE/axap/f0QkUoOXi4JdCV55oFRQ0iBn+e/E0e+VYh6goAt9oVADJkwcM405J17FiD5ncMSEG4jrh7Jze5jDJp3LgF4z6VE/jXBoEriDmLDfmRj5KOXljRQKEmXRrviFRrRINxKpPAhikCjnBvPBF8ARDeRYggcevYiDp3Rn9hkHISrZIhkXArcS/F5ghfByGr7TFceuCtrRvEjQLuaAZ0YpZDSMdtBVAIOFL83ntXf+zpKPXgZERKm+mEin4Pk2rgWuCUEhHyeT84jpjQTqqO5AjDPPOoTnX7qT5pbVODQhSiaCH/hWlcVkHMvGcQ3SqXbAJBwWgSxbtn7D/L9dydPP3sGxx5/LrCMvY0DPY3CyAxg1ZCZ5E1oSeQSqqYg24uUi3H7rjRx7whCG7Rfl6x+2cd5Fh3PfA7eQbN1NJNKD3j0O409n341IA2++/QpjD6hhxLgoBXcLp514FkP6HovZPpRzz7wGkDEME/CIx8NYlk9ra5LPV3zEY8/fxz0P3YZKHMMCUQhh26CqGqIYqOYcz+LkWacxcvgkPLsSPInRY3syfuJQCmY9DRVzuPHqfzJuUhceefxaENOEYyY+TaSN34A9jBhbRV03h7y1hYBUjgK1CG41DV27sGLlh4CHa5Uji13wPR9RAUHK8/iTf2P1T1+ws+kXXnvjWSCLFhaC1isEBKR9y0HIAUnuvefPvLH4b8BvlFe7VFR2x7LC+F6YocMmICtVmKaE54dxLB1RigPhQL2DhmN3MvB/3DOFQDXZ2NibM2ZfyswZ5+OZ9UA1uVyCe+67lqGjevHywnvZvfVziCRoa/qeQw88lmOmXcya7wx69x0PVqD885FI55MUnHwweTvXpFKciyFAwsUEATzPJW+JNNQMpCreHd+1sXLNaKpBPCbg+kluv/M67rn3ZsBAUn0Mw+i8932qSDdY9SKB2ToKO5ubWfPTdzzyxFxqKgYydMAR9Os3DrU8R/PenSCa5DM6bq5jLDw8z8LzvD/6vP2fY1ZCCSWUUMJ/BCUlUgkllFDC/xL+2M7mF9vZHIICQgNXw8qBj4WmJ0EtADXk20KE43DceQJTZnTllOMvo0K8As/ySZvfUR7vTpDWI9Kyt42auu7gi/hOkCIkqeC4PnmvjYgeXOe6QauUIul4BDKR9kQTgrSLZ/55HGFxBBef+QaWVUCL7MIz++MWBJSyDQQ/tHcJUpoEBSSDoC3IAr8uSOwSAdWg06gHsehFZNGebkXVfCJaDdiBQsT0f0NTk3zzyxLGDpkLhXiQ+qW8j+wejmeqiOGdrPjmURY8fg+HHTKDs2ffgmf0RJUrECWJHTu28s6ya5h1/OE0VOzHrONn4wsG11z/J8aPOhOsLkFit1hAIIdDFhkXGx/BjyGgIwlxMCGTcInVbw4IBaGO9r0JKqrqcEyLNevfZOFnN/HF3hMYNbSWs489lGEVIwgBrmfgis3YdKG5SePut5/gwj/9iR6Ab0Kt1sazT5+DHrIYMnAiijSIR5+bw/EnTWb7Zol8qo6+/UYxdepxxTGT8IgACpJnBG1TnYfvHgi7+eiz52lu3URFRRkzJt9I4OPi0tq+m23bN7Ns2TLG738ABx0wBdeTEHw96DSRwPEcXNdFU35nqi2YBK1ecYI3K8a/daihitdZtoWs/hjEt1OOmStHU6PFDjU7+H++AoKHg0kH8fjfYSIh4mdlRF0AOYFltuN6EArVkTUcQqEo4HPpxSOprttNPidw782/IMj1eG47oh4DWy56IO8CYmRTOtGISlOzQW2DgkcekxQCUVR8PLby/ofPIogeO3fs4aJzbgcaA2+yourLMpOooRB4GonmLNG4jxoWgDSpZA7HFqiq6g2uCKIJUhLHziMrNfieAqKGV2ydxE8hODpmPkQoqhS5s2CcfNtHEPWgtpcAeQWvvfUO27akmXvFNeD3xs2D5YBa1kI+ZWDkTGrrG0m3b2Tzts/ZsvUHmprXcvIpJ7Lso0854cQbwesNlg6KypNPX0pd7xSZXJLpR15OhT4FnAxPPDma1es34vhw8UVHMqjXeXywuIlZJ55d9BjLBPtQroVwxGXjlnX07TWYgPTS8D0DQfRJtpYTjimomkOgZAuRy3nouowvbaMl+xWP//0ZJo68lKlTZgIyrhOICGUVgg+fJ2fuJqI5JJp8km3Qe3BRbVio7JyKqGvIZSXwuuA6EK8Ms+LLhaz77UsmTBrE8H6TaW+PUlHRG5ygra65dSuhqrWsWPEZUyefjuwMDwQ/pFB0C0jy9AvzCYVFjp11JBs3bGfVl79w8gnnENG7omoBERi0ZQW+TOefN40zz5/IkveeYdr0w3n/vV+48/ZdCNiIOPgUsFwD2/MIK+WksnlCaghFUvA9AUXR8FzwPJA7tsqOFjAvBIJHwVmDrgDEsbK9UVUwvF8peL+y9JO7oV0jkWpm5+5ddO82iov+/BjZdocFj7zCX2+6obgvVwZG7IUdqJqEIujB8/PFzrnuC2D7QQCn1LHWfdi7fStdenQLPrfcxl0PHkU8VsNF515De7rAh0s/ZuYxJxBS6/GsGmRFC84SMIJ5X1RveQ74PkWlZJas/SvPPXspl573FTiQ2OvTJt7Iywvfp2vtOM6bMx/PiYHmIsoWU4+cxuLF76JroY4NkBKBVEIJJZTwP4MSiVRCCSWU8J9GZ6HdIRvpUBjJpFIFyuKxfdd0/LAuQTL1MxdcfDpnnnkm0444HZwIyFLg+SM7/LrhC579x8M0NMp079aL46ffjG9XIwg6jryOa249jUkHDmX6odfh53tgGgXi5ZVBTeIDCuzYs5ob7p5IY+Xx3HbNQix1DZoqkstLPPL8MYw5oD9mqjdHjH0IU1nOw49fweyTzqMxegliOMnN91ewf/8nmT7jbHbuWE+3xq4EBJZFJreBWKQa3G5B3SB5IDYVzZB9kDZy3S1ziJQZHD1rHMN7Xo+R64Lg6+jRDv8MkUxKQAvB3KtP54QzezB+1D34LuSsjdz3wOHU1WXAkzhw7J8YPeIGsDRyGdCrPUSSCATGzvc8cCUzZhxIodDMxnVN9GiYzIRJpwVDL5jF51IcGCi+v4lgVwGwfe8iNm3/gq9XreGauc+x/sckz7x4Pau+W8oZl/amrvscBvcbTbf4IUhGPLCcEsHXdoOynvkP38TeTIp8SuOpe9/CtCCi1vHF8g8ZPao/rrCHE2ZPwXJtzjrjFJxcL6YecTzdGxtoa02iKwMJaQKiFMwPCk6x/9HvtBPyPRNBDr5wPB9ZbAJ8vlzxGT/8spi08Qu5ZJzTTrySIcP244bbptPYo4H/OvN+brzpKnbvaeeCC+YyZtRRiGIUH3DJ4GIgO7U4ro2mSexz1YUOPylwyBubcN0Ejzz2MKJs8+dLLyYqVwO1QCM4CojQlFrO408+xJWX30RUGY2VB09uwfXyRPR68FUQdwEejlGOrMWC9SMkMd0EmqQXByFCh5G7k1eR9TCuk0NSO56jjeU2owgRBDHErbfcQCq/h9NOP5oePXpQU9YHiJPPF/Bdi12tX7DwlQe5+MIrEO0B1NYOIiDQRHCj4O8F2SIouDVso4lnnnuQXgMk/vXdW6xbvwnXhu61x3PH7feiaXVIQqToBxO0bXaMmml8zW23/oWu3RtJJrNcf/0CCvkIergW01DwPRk9JNK6dzfVDRJG3iYUrgsMy52AaPDlAqK8hfMvmcIhB09m/dombr3hUUSvumj2FSTvQQG8niBuIGtuRfLrCSkj2bxzCdfdNpMNGz2+/thDRgB1F1+vvp/Wtj288/Z3PPHId4G5vuCSzewmGouSySSJaD0RRQXkXLBWvHLad0EkDmoEkAPS2HEEZDEwtS4YoIcByeC1xY+yftNKevYVOHnG4yiSjmW3oCrlPPX89XTvE2fFyg+569pPgvF2BfCNopu3RroFYjEQZGhNrKW6rh+p9B7K4hoFvw1d6ALEcC0FUXbwxb1FiiFcbMkUSbTupbKijnzOJRyKBdNa6zAHN0ikDHStjLBeH/y//+biLBdfywO2Y/g7efa5eRx26AwG9RrD8hUbGTb8KKrLw1h2AlXZwwefPcKOnZtZ8PfPWP3lFlrTUBHuiSTnABOPCKKjBWpDKV98fvUIpoDvgRhazbwnJ5FNVHHnNb/iG6FgG5DBlt/mi68X0tbWxG/rtzJ2xCkcMmEuqtilaEsXqKU8v4AoKCx6/SW+++FH7rnzISAa+D15Mq4VHDbgQzJpI6rtxOMVwdxzA+WcpAFKlkJ2EzfcfCHNbXu446YlNPYYgmuDpNv4KHguIK3nt22f8/rrb9Kn52hOO/5GcIqef4pHU2IVdZURkmaWcmUSVg5UBdB/ZtV37/LCc6/zyL3vIuu1IDZhGEmOnHoib77+IVW1XYvtdh3fQh2E/ys5XUIJJZRQwv8rlCj7EkoooYT/cQRqDssuUFYWwXGgYPqB6Wx+3zUrv/qI08+czqj9+mAYSZDCtLe2Iso5Dpvan4H9RjPn1MuIaD04Zvp0wMF1FAo5kBFx/SyjxvVFFVS0UJh4VRwr3/4Hs+W777qKxt4G8coEQgiefn4uV1x7BMnEFnr2LuOAEfsx+aDTAmWFlKS82qRnbXc83+HXtcs48KChHHb4BNKZjTz46LXcM38u4JBL54lF4hhmG4jg2IBgks/upL0p0emsvG3TTuLhSob3HA1UEgrr6BHIZlySCcBVkCQZVc2z/6Qh9OkzhEzBw5UgFipn4vipGBmVIyefwIghY4rpPhCKgI+HRyWmXYbrhxk/dhK9ew3kvSVLGTasH4OG1v/umUh0KsA6fxXJJMWmYLbwyIIFlFdWc+Xcv5DP7WH5ypfxhATde0bo130c+/fvTt94BToeigSaApoIulTGM88+SJdan5bNP3HasWORacZ32kg0Zenf+zAisf5ooXoGD+vLqP0a+PCTJcRiVdTWdMdxXKqq64joQpBSJkK6fR24beC2Bwo1yQbBRZA08DXypowgKIHRj21TVlbG8BH96dWnhqlHHsaQYWOw8hkae8YYN74ve/d+z8DBlaxb/x0PPXI9nt8M2GRzWQQiyJQhyaBpHQRbRy+dRcHKYXtBi0w4JHHRn8+iZ48aJk4cX1QlhYrj6eFLgOiwfPlbGPkWXlz4BL6bQdU9dM0iEvJxnTRtLXtxSQA+shYjl/TIpy0SiZ0sXfoy36/5GMiDHybXHqGQjiNr4UAQohT9jkjw6/ovOHzyAWTzrUCB9Ru/Zk/rR1x/y5ksfHkemUwO0AiHw0RidXz+2VeEQzGeefoFamv7BkU1v/vIcjiYF75Lcm8TSqiSCy6+lsMOOooN6zdxyMGDGDm6OzYushYOjLk7eYeAbBMQEdDQQ1054rDJTJk6kpoGh5/WvckVV8/moYevRwu5FOwkLc07qG6Ic+tt1/L3J+az9pcvKeRMkEDUs0hyKwLNTJw0gv32H0h1bRhRVLGtKNgh/EIUqAEq2bplI2ddcCSPPHEzIV3GM2Hjr0kqyhvo1giymglaUd2u9OpxOGPHnMSUQ88BR6NgtJBMbiIaC9PanCQWK0eUFOw8gIXjtpFMbqOiNkhe84UUrp8BgnYj1y0mGIY69h6NKYeeynVX3EWPxmpyKQMQi0l9EnPmzOHIAyfj2BlamluLS1QAWSaTSpNLJ/HII2iA6FFd14221nbK4hFMEuiCg+3ZpJI2og+CICPiYJMA2hg6op6HH76dyuouIIYJR2PBFqAGc/qJ5x7g+ZeforKsG2G9S6Dc8aKBl5YfIWjtLO7lAnR4voWECvr0G0Mo1AuXegb0P4SK8jIc20FVNGy7nT69qjn00FFUV8OFl59HdbwSSQTTKWBTwDAyWNYfv1fgCwgSiHIwPlOnTqWxsSs7dqxB0MA2AAsUBnHI/icxfsJMvv73LsZPmIEaqgi2Mgl27PiZ5154mO27fgEMxo4dTXk8iucFJwu+G7SuSWrwtq4N5VUC8bhKNt0c7K9ikccTwS14eJaKiEgq3UxVZV0wJD54uHjYZPOw+IPn8Gni+BMOZPfutQS+S0E7aSa1k6efuZcvv19GmdYLxwW1uMwSCZgwZhqGYVKwWylkduBZ7Vx3zeU0N+2kqraaXCrNf4f3f/m7EkoooYQS/l+hpEQqoYQSSvgfxz5FUiqToCwW+d2/RegwOr587qnMv+/OYkR2N3AjGEY7oWiGtVsWMbjXKPKOD1YjIa0Ox7FRNBWcOMhN7Gj9lu7VXcEfGYgpVAvEX7n9jsuoKOvCny+5izvvmcOUE7MM6XUGEWEi73x2KUccMgvddKYXGQAAIABJREFUPhPD24bh2lSGB2KkagiV7cRiM6JfjuwOZ9OmT6np2kY82pXj5hzAQQfvz2Xn3QYM5scff2TD1pX06t2NiDKEgQNH89WXr/D5ysXk2hq5447Had3bRnVDFUgmTj6L7FcFST+yQ2tiD6qqEo9WEZA7OYKWmCYsorgoOI5DTI4HihxNK/qUOAQKIg2XGsQi1yGIgNBCMrmDjz58i2NmHIce7gpiGUEB2KEO0/a1dECxraMFDwvLCBMKRcnl24iEU1x81cksmP93cq6N5DWgyz3xvRyIeQQ/QjapE42rIMLfn7yaCy44iS+//YBJ+02mua1AbdUAki1hyisqKOQd9HgbL712G29/8hj77VdJcscY5t32ZnE+SOBFMI00L7x+Jb9ueQvR6UpdTQ/+csntKGIDoBXb3Wz8olG4TAT8CvDtorJnJ9l8jGh4YHFcfyjOxUa+/X4Rv275kvHjx9HYdTwqQ4AKjJyIroMv5RCR8XwQBQXPA1HYdxZlFuD2e8YwctRg1v60m2uuXIhMA2KH0bpk49OKQJpNO7+kT7fDyObyRCM+c687nwH9h9O7V38OOXgiC574G7FwV0YMnsHo4VOKnSoOM48bxmVXn0hNbTk3XH8j40YdzzVz5we+MlZoH0Eqm1z05xms3/gtJ582jZ9/3Mndt72MGsryz49OYMSYBlR68+PyEZx4wkUgbqVQ8Ph69Sus+HIxklDG1Ze8iCzVgZgLxsrSuOaGs+ndq4qfftzG/fc+j23KhCs0sqldiGoLsmqiaiGgEYiQaPWprFD3mQrj7ZtfDvzjmZt4e9nt9B4Q4ZDDx7Dk3W+4/C93URmbQCTUh4heST6/i8f+cTpf/nsFbc3w6bubkOlNOvcbe1r/zdpNi/nso+3cfvudxPWuQD1Y5X8YC8jR1P4FsYosr776Ouec8gCFVE/0sjbgZ26cP5u6iv05/aRrEK1hxKtNQMa3FdK5nSSMz/jHwseYOHYWRxx6WTAerkYuYxAp38CO5jU8+OCDXHjenfTt3Q2P3eCPQxTKsJ0sSlFl07nGKMe2NAyzhXgsDW6fYperDZaCYfiE4lkcfyey2ADsBaLgdd3XUakm2LjpOxYvfpcTjz+bxh5DgWY++9cStmz7mbNPvgbXq8B3wshqDtgEGHjYzH/gb3z44Yd8unQl+9oqO4hjm+b2dZx66mzuuOUxJoyfXFxDv1O3CBQ9kETwi4oa0aDgNKPLBSCE7cvIQg0eClIxhdDM/cpb7z3Mojde5O57H6dfj6OAShxLRlHd4lqUwJeLCkkrmCi+hmsZyKqOZRio4QL5fIZwWAN88ukIqXaH+m41GPkkoYjArr1r6drQm31+dAawnURuE/PnPcu8OxYUP4xCQIppxQ1Po8NUb8euf3HPg3/ijhtfobysEdxy7DwoIUBuAa8GxHVs2rKM5V8s4bwzHgevEh8dQdyND9h+iJ/W/4N/vHAfD9+1gCWfrOSowy/FtSuQFBXYw/rtS1j8zqecd/rzREOVWJZDNKqAkCCbX09L63Yeeuh2Lr7wIvr1HcOePa2cesrFfPb5z8U9W/k/lEil1rYSSiihhP8kSiRSCSWUUMJ/HMEpe/DDbvGvBMjlEzg08+bi51mzZg23Xnsf8XiXwChCgET7dioragE9MCeWBDxxDd99/yOjRg9EJklQAPQGpzF4Xckhl5GJxAM/EdDwClpwgi2neeWNsxk8UqS6qgvPPf4ja1enmHbUJOacvAA8OPrkCNXV1Ty3YFunQbdhm4RkDcNpIxSygBC7N0FDbwU8FaTtrPjmKXL5JB8v/Yb5d76GJIokrc95/NkbOXr6bOLhvrz98tfMmDmO3j0OBb+hSPokaG1Zz9V/vYqnH12NhYkeNgnSgRxAwSdOJmMRj0XxyOFQIFPIUqU34Ns6ghAUd46RAC1T9FPx8fx6RD/wGPE9EAUPQS1+UZBAlQMFT0f8fEek3O+9fnwwXQ9ZFbEdF0WWAJuHHruDJe8vYr+xI7n6qmuQ3GoqlK6BmkHpSPLSSLVnKKvoyj5FgYLjtPHE03exfcdGQnoZt9z0CKCRz+SRZFjxzQKGDx9OXfkx2DklSP3CAU/Gd+Hr1S/xyls3cc1f76W+vA8uFUh0ob29QEV5GQCWk0OUPGQhaNEpWGC57cSiHlCG4Mk4NshaGhDZvaFAQ18NhBZsL4PtioSVakCkPdtGOBxGE2sIfJkEBFQMwySkhzDNYEh1HRz3B2RFIlAfVRVN1f/osyKQw7R2k2quobq6nKzzHchtxPUhgE6usJGInsP1uyE6jYE3UNEvaG/zKrrUihRoZc3P3zB0wBGElb4EqXHlZNpAViBUblOw1qGrDjatKHQBashmDKKxEIZRIBSqwrfiCDIgJnC9FIb/HVHJJet5RMWDgDIgVZwLXcnby5DUFBJVyHSnkBfQw3E+/+w9XNr49rsvueCii4mHxtPcnKK2qguGESjjOhVJHZ2AUhstLStQwnv56NN3mXLEUVRoI4EKoCv4ccwMaFEwnB8IqbniuA4AO4ptAWIWSW+huamNLl26ABK5jE8k0rAvGV5sQZRM9iVwBaRpOrOJeCxQiBmGzKcff8+yT1Zy/98e2hfa58Eb7zzE3uwiNm5ZzeQDz2XsoL9QV9sHANe1kLQd+KQQCHHfva8w96qbsK0UilRVNPrPUeA3ln7yEul0mpkzzqGQrqWusndnKl0qkaOsMliDudZKFAkUHYRQgudfuI/lXz3DdVc/wICep+1LWRS305xcg2O7LHz+Hf561UNAhrbsTvJGG91rhmHaOppShu0389Jr84jFVcaOGoko2zS37GTZp0s5+aRTWfXVt2z6rY3r5v4t2KcJQgEeeugpBg0czoRxU4iVVXfOYwDEomm0HwruqTNZM0joc/ER0XGRkYNeUxCytOxey+o1PzDlyONw/AokQUfAAD+EWYDA4qcJHx38siKHXEDwdXwbhGALCm5Fb8J1CyAlaG1NU1d5cIdvNUg5EAqBTx0inmMiygXAZPnyVUwYfxB6KIZrO0iKSi6TRpIk9HAE1yngeQ6Kuod2XuHU6W/x6ksfoYm9CYUFWhIbeXnxJfzl3A/wnN2ImsHP676gX+9D0dS64HuWkKbgZNDkOB47WfTaPzjmmJn4ThTBq0ZXapA0mYK5FZQ9rFy5hsmT/oTl2Nhukmg4glPw8Umi6Car177AgsduQ/K78PiCdznq6FN4fdGn6KHKQB3WSSJ5RRKphBJKKKGE/xRKJFIJJZRQwn8caYLT5UgnQZEvWDh+O19+/Sa7m3/i3FMvBn9IoO8XO47aA7NrzwZRjvLMM/OYPFOnofJQVHEkx504lKEju3DDDTeh+gfh5sAoQLQC9jS1UN9QFZhX+wpPPD6fHTvXcOudsyiwhmuuv5W9zTDvxnn0adwfgRFAmq9/vRhRcuhVeRHVVZODFg4BjCyEYltpy//CvXc8zj23vQvkQdB56sU5DByp8PLLL/P3ez4jl+5DJFYFwmZeefNBDpk0i/raQQSE1xYghm92QVAimNbPPPzoHVx++ZU4hT7okQpuvfMq4pUFGnt0Zcb0Y3HNKjSpAVkKyCK3AJIcpItFynI8/tSdbPjtV0456XzGjj0mMKAFEHdjW2UoSiTw2AhDPmMQjoXIJUHXQOpor/kduRfEtFsElXQIBwsPkaAIDzD3+rP59oePOHLq0diWyM1XzUdGDTxD7OJHFbdiOm0seOxh0m0RbrnlYbycTN6yuO3ekzn5tGkMGNSdqNKTbFYgGhlYFCI44PrB6bpiAru4/K9zeOCe1whUBRawE7Bobd7F/fffy4ABgxg2fBSKVMnLzy/lxuseIFxeiS8F/reOA5btI0k+mravwLIdFyvvEtdVfAdSaSivChL21m35iseevBWl7Cfq6mo4a9b71NfXY1p5NLXDF8nG8gxUUWZX0w5uvO5UDjzwEM4+61KgRzB/OuO9bXwyCKhgRfepc0SPfCZHWIsFdbYGiAlAw8qDqkQCMgJAzGJau1FUB5c0Cv3pMJG3CwUUXQc8bDOLokkEA5rjldcfxLcaqK/rzSEHT8VzFfAVJEkIyDQ9sNuxyKNFcuCp5BJlRGLFZymwz+RaANuwUEIqCGlyuT189e2rCPoWfljzOUOH7c+08Y+RyhSIhusREIokjl38EMGYOFYWWevwkxIAFccykFWRex+4iFC8nfNmP0hIbwQ0CrkclpUnXqEHc9MOfLcsE/SKLGDS3r6bkF6GHgoIP8fK8tpbf+fnX75h4OAezDnlNiDCPfdeRtL6mE2bNrHoua+AnrS1b6Gqojv49SA0YRZcVKkaQbHYsP0NKqoU3nrjY2afcCNLP3qD77//jqzRhGklSSTSvPSPpcgMCOyRTBDDwW2adhJNCcz2XVxeXfQOp5x4AXYhhCSDaW7gljv/RFVNiGuvuB0z3x9NKStyunuA7SQL27n1lnt54O5/0tYiUFXTUHwgLXi0IZICRmKYENJkLC+DSATPVVCVEIGvUBt7k7vxTYGqWgVVgB9/W8Fbb73FOWf/ie61/x977xkdR5l1//4qdXWUWsGSnG2Mc8ABnAg2GGzDgMk5mQzDAANDhiENOQwZEwaToxnyAANDxkQDBgM2zkGWrKzOXfH8P1TLNnPv/fbnfde6q/daWsqlJ5zzqOvU2XtPRKEPnqOgGYLrWuh6aRIENNHfaNdpVikHIlsLN54XCEVnc2nicZO8lcM0E2giOJaFoap4dhEtFjjrCQHV1wh1IF4NigKWk+L5V6/mxCPPAxkArgZGFinEg4KnYYFtguGD0kIhG+bxl06mo3sNK35wePqxJaVYK/DZ4g+4794F7LfvQZxw4tnYORVVNdDDPigeuXSWWEWPYL6DVUwz/6Qjuf2Om+jbZwi2rOfJN2czoe9jTJo4F7w4mXQ3iarN/Np+C3+/ROXB+x4P6lRa0GWX7XaJmjpqT0MT29bMKUAmBdW1bCssA0rIR3yVbBYSlQUgjWDQtSVMdU0Ux7ZQw99xz4LzKeY1aquHcuONT7BubUdpb8pFpDLKKKOM/0mUT9kyyiijjP8F2LZNKpXCNE2SySQ51wnYHq4WFCLEDMRsJYqqRwGXd959Fc/zCGkJ3KLP6FHjmTplBiHiALS02MRLjR/1Db0A8PwcKG0U7Cb23W8vHCdKjOHsv8+RVKj9aEjOwi32gWJw8+27IeprhlNbMxXsOIUCgcZQFGALdz9wEWMm9CoVWxzWr/6SCTtNpW/DaHaZuA8QR1fqwNOBWo4+5Dx6140HknhFF6jE92wUvQasMMV0LbN2PwWKI/CKtSARPvvsE4aPGMb06VMJE0ZTdcTXyOcC3ShNBSlSsnbOs3zNV/TfIckuu0wAMRAbct0AaYyQA4qDqgUaGdGKgPIUqww0qa28DT50t3olGQ0Xy24GOoB2HGcLQcGmJdi4khO2YRZJFZo48JA9mTRxF4LuhV8RWksbDL6AqSu0dv7ET8s/4y9/ORVFh3hViCmTd2fSuJloUgskicd7BxfXfFBSoKdB9xE205paSkM/4dV/LcCV9aWxdCKFVhbcew0TJ0ZpbP4nn399B089ew77HbAjISMFihMI7ipBd040qmwtIK1dvxJw8HyLRIlyp4QgWbq5U3V4/eW3mTVjLgcfcAR//uNF1Nf1xfdUzFAY17fwKZAqbEbUDjrzK1DNNo48Yj6ubZQ0r7pBbaPobS4V5lwghmUZJde0NNn82mBfQglQApFkBKxsAsQkFA391sDNjWOGBqMyIIgXvzpw23IN0pk2II1VbMUwDTpa8ti5OL5bwZhxQ5kzex57zprJutanufPRfegovhHUbEs0KkUHQ48ECaQoxCqCsdh2Cyhtwc27mgUljacUg/H4FZjGMPaZcSF7T7mWi057h32n/hUoUJkw0TSbfLGDztQmIIdPBiiQy2fQQ3GgIug2IQkSx7IiOEWVi86/nMGDBxMJW0Ar0I2qF6ioMvBpA9rx6EQNQzgGViFPsZDnyace49q/XUZA/yyQymxB1TzGjBvOl9++hmV1gCgM7r8LB+x7KutW+Rxw4AkAaOF2oAlw8WnCDKfw1Q6QKEMH7ENtbBKnnXAx0WiIgw6aysFHTsSIbWa3mcPZfeZInlt0F6gbIQRqj+45LqYRo2iHgQZ8r47DDj4V14FwRFDUIoZhcOTRBzJi5A6AhhFyA20mAYhgi08yPJSpU3YDOhC1HSjgFiJALSrJUr5COFSF4xqE1Fp8N0pIjwX0wVIXVkNyGL3rxxNS+gHVDOg7nkioL9WVO5JOq8E++BUU8z66HsWxbcRzg9hVHMQNzhHPBtBw3MBtzO5xGtOCccfjFYBGxIyRK+RB8TDCKvg2WqQCKfjgBxRQTQPwSXd3AvDev1+nq7ORLW3rSnQ2AAXHo/Sq3cIqAIpF0e4kEleYOn00U6ePoq1zDVCku3sL6UwHU6ZOYu5+e7Lw8XuBPEU7hR4uUb3ECIr9YhCIlSl4nsecufvw9TeLAZ+QUkVD3UBqa3oHY7A8ElUmDp0sXfYRqpEPUl0AUXGsIvGkTtEWChnIZ3Lg5Uq5AoYJieDfFVLqKAtyXg26GSPB/HwsFITq2kDnzHdMNG0QQwZO4bhjTmPgwMF4LpQd2cooo4wy/ndQ7kQqo4wyyvjd8f+ks7mey5q1v1B0mxg3ahAKlWRae5OoAdfJoZtmoMHRQ59QLTo71xCOekTDdThOkWeeX8Bxx56Arg4k2x4jHC/gSBORiEbBjhAJVQBZXDayfsNaqiv6ke5K8diTNzJ48ED2mnkEAwZOweqOYEYToLexfMMdfP7lhzSvHsCVly8CLUsq24EmDTTn7+aWOy/h/D9ewugBF7F65Wcs/fF9DjvsJsTPlWy9wS/WU90LMLNAM1BN4IhksHr1O3y8+CX+MOtiGnqPAmMtkCWXcejozDNg4EQ2b1lL34YoLkU0oijUbe3isiww9SyoxVInQJ7X3n2VebMPoeiF0NxafNeguWk1z7x4PnNmz2fS+D3xvRh6OERwg+zj2gahUAjf7aaQUYjFezofuvn7PafR2rEa39OYf9wFjByxCz4RoN82Kg2NfL/qTSYMnQFU8PTzT7Ch+VH22vUsdptwYdCZEO6m4Kzgyeev49TjL6ajw8fx0vSt2wGoJ59RiIbrgq4NE2y/kUeeupC1a9ex27T9mDzuePr27839C67jzLOPwSnGCIdjPP3iDRRyq+lcEWHDpmWceNYM3vv0SWbN2YvOdoUpk06ltuYPdDQ51PSJg5IrhV2whgWnhWgoR2t6E1XxUViWRjwSg5KOUjDBOLgmvmujhm06WpupqR0KgO0W0UI5NFw682t59fUn6VVfwfdLv+Sqcz8ExcOxNnDPo2cTqcjx8adf8Owji3HtMahuHEMHQm1cd8feeH6eow+6hRE7HFLqTLLwHQ9VjZY+zwECEt/WnNdDG1J9sl0q8SRYRRszniGwn1dx7BCG1rB1vwr+l4TVkaxbv5IPv7qdI4/en0XPfsKBs+6kuiZO45Yf6Nd/IDZLue+hK4hGqlj9s8v1N/6Vm/5+Mn37J9nSlOGqC14hsLKPkEp5VFZUBQmtgO12snHTahY8fAfTd53EzBlz0JQoyXgFkGNd02oG99mRgCIXRrZ2T3Sj4AEG6ZSDqcUwo2F8twsfFz2kcdzxBzBh4lhatnRw6y2PgxcDcXC9XGDChgGS56fln5NKdbLrtNlsq74FekRFJ0fI2xlxSsLIxlo+//JTdpmwP06himiyG/B5+MFHaS+8waXnX47KcHAD6lrQhdUJ6IjkyOQ3oJndxPQ60oUM4YjCzysWc8r8y9lvzqFcf+1DOJ6BQghdDZPLgGEEBUrdcPEkh6ZoFHJZPH0VmhImEhoCmLi5GI4FkTgQsnCLPo1tH7N87eu89/Z3/Ly0m1eeWUE0AUW3lWffOBHVmsXRR1yIGSKgEG5rHCzlbEBRs7MqoagHqov4GZSA6wsSp5gG1xXi1Uop9hy24x9i5QUzkkAcnaJTRNFdHC9FIhojXxCikapt1DZAFJ9UNkcybvPscw/z7ZeLuePuJ8GLgB/pqd2gKB2AhuekyRWbqUjk+Ps9D3H+n24mn65A033CcY2gEBulmIoTrizw+Tf/4LkXHuXe2y9h1ZYVJIzJNNTMBtGw8nkstw3NbMf1M1RGIyx67WWyGYuTjrspEAnfHqoFFNmw8XvuvPt6Lr/0Bup6DeLVD09k3swHUZVEcC6QJWt/y9ufXcic6QupCI/GcQXX7yIS6qBImjA1pTzp5MFHrmbO7NMYPHAaYOAUBM2wUfUCjpvB0MPk8y7RaB1CHIU2XDrRMYFa0q0KiUQMJQTibMbyNoOqcPjhp/HGm1/gFDyMcHy7TiQHBY1ycamMMsoo4/dDuYhURhlllPE/Dh/B5eNP3kfTYPddp+HhUcikiCeEgt1NJFQFXgP40dIT2yKKIeBFyGSaSSQtIApelA1rMwwcWgtsBDI88PSVuLkdOfn4y4hHewGNFO0U4VAdf/nzqRx14mgWPHQ7e+wxl/nHXE2qeSghJUkkDn84YgCz5o7ignPPx7IG4NMLVzrRqOL0c3dm1pyxnHTomdx174toRivnnHk5MIDrbzmfkKkwadx+zJx6KlrJDQiFrXq62dwmnnnpGkZOUJk+6UR06cvDzx1JZ2otnhti+YpmzjtjEWNHz0KUDK5rE9KrMPWagOZUoj6dcVo/Pv2kmb/f+2fmzv4THr2ACK6noPgWIUPl0otP55xz59G333RwwogfJ2tlCZkqaC4hPYonOXRlC2tWbWTIkJl4xSK2bOS6W06gImkwb/+j2aHfTCKhycEE9MDZCQx8ry+Kb+CRRzdyLP7uSYYP70VtbCiWXYuh9EY1NBw7xZa2n+nfN8mqDT/xzAv3sPOkXZm+81FUVw4Hp4Zsd0BBRG9mxYZFjBi4F1APdi8KGYhUQi5bIBYNuqg+++ItJk/rTYidKKRaiVQKHcUtJBM1OMTY1Cl0dpsM3SFBJaCVXM6QqsBlT2+m4P/Eq68/ieGN57BDz8DDQKUbpcfOnorA0h6VbMcW4r0qgQjFoosZVhAlT1t7E/W1FWxs+ZUB9f0JaHZJ8BVQNYr5NOlshrq6vgScMANBx7LzGHoH361YyC6jxgRzZQJWLoRpmqAXcSwbI1QDSoFAY8YEIuAG7nA9RSPXzWFZDrFYshRwBtlUhnhlj2D6NmqoeAqKFgIxcAo+nidoaqDDY5iAniNd/JSKsEZwszyydI31tHavpy45lNsfOpNoBUybPIdVy9Mcsf85CGF8P4Kmhkv5bfHsS/eioHP0YfPJWWluveOvjBkzkmU/ruC6K+/DdnRUiQb5YYCCg0qajq7NrFuzittuu4pb77iSXlWTMY0qHDdDJFoFRJCCgaJB4+ZN1NbrmFEbRQaCUsBxtmAYBuKHA9qgEi1pjzkgPtluhXgywT9f+xvvLv4bw4aOwC324pJzX8SzYuRyORSjk6zzPR9/8D1z9zqdZGJwsLRqgcDfPSjoZXJtJJIqHVtUamqrSGU2UVm1gY0tG/lq8SoOnnceuh7buv6ZfIpENEGgq6WTSmVJVsbIF1eSKaynvmoCS5c088mXT3Pun64E6YWTUjHiQfhipMm7SzD1CjQawOkX5EcCMH7gnfe+Z+4+xwE6+GDbECppRQPbqGiAaxXQdR00DbtgoetBt6MWUvFsQTOVYD3tTt5+5w2at6zn+OPnEzFrcR0liE0BTwRNa+Ltj55ml0l7UJsICsQ9hSRRgg87Or8hWeXy1utPM7DfRCZMmgN+PXlLIRLRUUjjuWt54OG/UVEZxvM8Tj7hPArFHJHwjuD2ATWHZecwzYpSgctH6OS6m8/np2WrWPTMaxScIqrXDzPcC1wzODeS3UAalyYs1+a5Zxdx6gl/B7/itzRe1Skd1p0UnVYKBYeqir7AcmAAgoFjRQiZMTLZjbz69l0cf/iVeEQQwujk6LA+ZMn3H/HhO19wyH5/4rMvXqLgriKkj+K8s+8gpFcBYfLFTbzzn6fZ3LSeXNbn0gv+DiQo2mE0Pc/d919Jd2ojs2dP5dGHn2LksF249OJHSDWnqeytgWdxzNFn8uwLb22bg9rzv9VC4b+5dGWUUUYZZfzfRPmELaOMMsr4vbFVqNmnxz3MsnN0dnbS1ZkF4qiEUMPN+GzkkitO5m83X4AvhaB4ooKih8EPbo4S8WqyWRekFisfQ1Fd8sUV3HDrX7jqb1dQdFo484yTiEfj4Kk4bhRNqQBMBgyq55kX7uLbpR4zZ+4NFKisqwie+Ouw0+hZVCWGksrmMc16IqFaEuEYquaAV8UO/XfFxuTOu59i7fqlgE5HRwupdCvJapNRY/sHOkMqpZsStr7IV408K1Z9x7qNP6BqNl1dXViWwyGHHEExr3DqKSczYsQowqE4ESNJIlIXaKNIUEAKLmNhOy1cdsVYFDULFLE8B0HB8wTdCJHLZbnk0ovo229YMCk9iqKbJBKVmGYUVMFH8JQczZ3fs/DJm0HtwvY62dj4K75YjBw5kn59BxKJNgTNOR5s7+KmYqB4IFYI31WZPnEGtbGJNLZs4U/nH8KTz92IZ9sYRh39+04Horz8ykucdcZfmDp5Bi8sWsiNt5zP2+8+T7yWgMaGyoiBu5HOOqS6CrQ0eUQq4LtvvyWW8LbG0W7T9iVkNIDhEampJW3FCSfGU2QAeWo44+Jrue+5heT4zX3zNlcwPNq2bGDq5DHM3msGhVxPkaaCoHugCiQK4lDIbuaG287g3HP3AwXCEZ1sLo1KiPraAaQyPr17jQx+hzrApqW5EdAIRwZQVzs+cHAiiScekCUcEjS1mpE77s3mDpvOfDfgYJpxnIIBEsEI+aWx9ig8W8GbCsViDjNuk7c2cP2tp/P8S3fz8acvBz/rx4gnGihkLILiUwfNLd8H8+tx11Ky6GaWcMKjBz3qAAAgAElEQVSlaGUwSnblvy7/hXvvXcCqjRuAGLhJultDwCAMGQr+Dlx4xg2cfvR5TBgynSP2P57ubBYFDU01KBQK+H4QHQcfeARHHzafzu4sMbOCgw86nNn7/IGqZB1g0LS5HVTwtZ4UMYAwtVX9aGxsZOcpw3jyuVsQYwN6qAPHzQEmTRu3oITg6yVf8PBj1/Ly6w+jIKVaWQhDjwEmioRBiQdi7JYJfpyujgyCBUqBPWZM467b7ufYY49nyJCBQJ50Ok1FVRWqCr2rR3PUYReQTA4uJW+WQNst2Jd161dzy+2XsXbdj0QjQTGiMtmX1u5OBtQP4cB5h6JrSfJ5C9vNA9288PJdNHV8D3STznRiGklA57Gnb2bBwzeRyTdju2nShZWsb/oQUTYGIvmlIlAu5RLV+6NRCSjYlh8UkDSABvbcc0/AwvWKoGxfQHK25m3weSagdGkCvk8oFEI1jGCNpYgWdkE80l1dGKEQc/fdmzlzZ5HJduJ5No5jb71ePlek4KX58acveH7RIwRdX+5vzv3m5m7qqqvRFJsXXnqUDz9+A9dpA9XGdYMKu1Ow+XXlUto6V9HRtYlffl5Bc+t6brz5r7S2rkBsD6jCNPuxcuUyfl3/L7Z0/AgkOP3kK1j0zNe4XgV33HUN9zzwV3744QMAYokIkEAI43lxYvogTjr+QoKi7vZnAyUKqkKhmOfzzz/nsssu4qsl7wMxhBwKDoEsnUEivgO7T54f5AkhMmkXiFBt1rLjjjuyZMlyJk+eQZ8+/fjl50Z0Xcd1pZTPGtFwkkP2P5xjjz2e5597BcdRyOZszJCJbfnMmbsPdQ0VnHDKNbSn11BVn2HZ0veprKsj056ioy1NNmP91gThN/D/375YRhlllFHG/y1IGWWUUUYZvy88EfF7PrBFJCsiWbnnvlvk1NPmy4YNm2ThY3fI4u/Pk4ee3U2++uVyEflURFIijoibFRHHE3G7xS740t3eIdlOVyQnIpaISKvcdN90ufKmXeXOe06TF989SkRWiO1kRCwRzwr+tJOzRGS1zD8b+WLpaSKyWUS+F5EmEcmLOCLiiohni9gpufzc62XyxD3l7gf/JK7fJCKeZDOdIrJR3vj3efLrpmtE/J9F7Kwcc+wkWbXuJSlay0WkKCIZEVknIptKH3eJyBL500UN8uVPR4nItyJ+VkSWichK+fj9N0VkbTAO8Upvwbr5bvA+k0qLSEbOOSci2fxl8vb7h8rtC/aVN9+/R/LSKJliOlhmEUl1bAz+tpcX8Wy54brz5c67zpcvvl4kIh3iS1ZE1sgp51aLJy+LyE8islKmTUc2t90rIm9I0X5Njjl8l2Bd7NLa+MVg3H5wXas7JeJ5IsXgS088cYs0df1DGjufERFHxBGxu0XE75BHFp4lntssIlvksefOlQ2tL4glH4ovK6Qr/bOIFMW1RFyxJe2mJFNMyYV/PURuvm9/effTP4vIahHpKK1Nu6TkaynISilIRlIi0iIizSLyzPffyRJpkVXSLY7YpfXPbJ3HLTfNlwE7IHPmIanOb0QkL65XWmc7iCknIyJ+t2QzX8i/3jtYLFlQWtmiiGyRO/5+nkyfPkjaWtaI+CJ2wRfHFhE3L14uLV0tbSKOSL4rWDfX6skBEc/zZMumZhHfk0x6jdx4+/7y/IvXBZfOBWOwio3BeH1HRH4RkR9EZKVkuxtFpEs2bPpALr56vHz23aXywafXyA23HiYiRXHSIl46WPpi8Ue56oa95Opbx8nesweWYnCDnHC2Kq9/MlduXzAlyDFPxHO3lFbvaxH5XER+Eq/oi5MT6Wixg723RKye8PSllMcp8fx8aeFSpf3JlL5XFBFHulJNpb8dfK+7KyupLlcc2SSWrBZHusQVW3xPpLXZFfFENm76WHLuK/LGR/vLmx//Qf71wTkisk5ct1GKzlLJuItE5F/y4ddXieNv2BqfVjEr4ua2xazdM95ikFu+I55VDNbVS4lIZ2lsGREpimenRKRdilabOAURKZTiXtaJyIrgZz2RF187R1Y13iT7H4G4zupS3nbJ59/eKvNPHyEiKyXVZYsvjvjSKrZ8JN+vvVbueWJvEVksm7d8I+KLOHaTbMndJk8sOlwmT4tKe8e3IvJPefDJfUXka2ltWR7ksV8s5Z8jIl3S2b1SRDLS2dom+XSmNL/NpTXOi4hIoVCQbWdRcbszuFGefuYGuebak6Vp01LxrYyIZ4tvNclrL18rF1+8lyy4/yoRSUmhsEZENsi2s6xLRPJi5fJiWwUR6RJfPheRL+WkM3cprVFquyMsL64jpbh6Q9L2bXL7nTMlOP+6pKO9VUQ88ZyNIrJMli67XU47c7DYzsfS3vW85L3H5e775wb76IiIb0t7++dyywM7yhEnqiLSKuKKdDYX5Ltv35Mrb6uV626bKMec1FfEbxdxSue/L7J+/edy6SUnS/OmlcFaeKW97XnzPREpimWtE5E1kreWyJPPnSMiS+SjL66VF/75Z9m44ZPSGeiJ+I50dv4o2UK7ZNPB33jj3evljvv3l+7sv0XcFnGspfLehxdI0V4mHa2bRXxP8umM3HvPVfKXiw6QzVveF5EmyXR1B2d9aaLrN78vz7xypvhytzz4wkA59izksMMGiXi2tG7+UV554SHpW1cjmY7C1rUOjhevdLY7UkYZZZRRxu+HMp2tjDLKKOP3xvaUgRK1o2hnuPiSCxk2bAf+dNbZPPX0gxx/3FyKTg7T6ItPFSLV5LqhshL++dK1DB2ZZNzYEylaCuJWBmLXik97ahl3338Vp5x6IoPqdgB2JOgsKT0R97e5B+VzLoqWJRKPB50ZajceDoKJ61YQLj31P/f0A3nrP69z1W17cdihFxJV9wFXD5pxtBY8WtGIkMvEePChi0DvoF+fERw0+xrMeCXo3axc/iX33LmQ6285h2RVA+m08OuGlxk9cipRfTCBdXoNUB1ohGibgQi+HUPVzGD4BoiURKLVMLgmX3x3M0u+f5OqmiS77zGXgXUzgmvQb7tuEx/wKGaL5O1NXHHTNIaNqmHHwbuw606XUZ0cB0oHban1VFfWY9sakVCYruxaVq7+mJbWFbz+6svcc9d9RI39Aqt6cUFLkys08pdLjuPkk09l8vijQapw0jpbmjbQZ2AlWjSLh4bQG0UCs7VcZwuxWpP29iyReD+iJTkS17PR1RACeH4RhTBftnzLJVdfSFi1OWDGdE48+mgiGISUSlRiCJWAxzPPXY3n24wePYb62uH07zcavOR2FugEgtYSLYkLA2oH1900n+EjBzF39qFURkfi+xEUpSIIzx6RXCVHsdCELwWiURWnEMLQhgWNBOpH3P/gORxwwMEM6PuHUryFaW1to65XFJTEb2LO90DVHXzfRTVMUCw8Wc87/36LN956hlvvOpMKtYHNTb3o22ci+ZRLtNIER8dy27jjvv2ZNH4gbS15Hr7/C159ZTHVDTXAZnDHg+NCJLAux6tB8iXqY7yZdevfp6h/x2MLX2TwgEkcf+xZxI0R5HMammpiRsIEnSoeEHxsFTswwzE8P4KmVFO0wDTBV3y0UjfXhx+9QLf3Ep9+upi/X/cOne0VJKtiiBdCUytBd7dL/kDEKZPJkEhUks85KIpGJNqFIxaGUkM2axGPVmw7M5SeGN7Ipk2f8mvjS3z4wTLm7HU203f+I7rR4/RWgVhBk6Lng6GDY1n4XoFwTOfbr//JD78s4tfVX6P7c7nhxgWluTp0dxRIVvXbli9Kmq16WFs7ObaNvxRAJYkgG7QmbHcVijsAXa8NuiVpo7urm2RyCLbEUdVObFp59sWbKeTaaW/p5NpL7wJUTjj+GLpTHRxw8LEctt/NVFXHyGTbSVSFwAuc59RwM59+fT+fvbeEP//xH0Qq++GpWYQCHoJJbbDv/AJSB/QNBJ4LYNkZ4kkzEKeWUienAq7aRTq/AlXyXHv5Ldx564ugGfzjrotZ+PQDHH1Sb9LZ0VxxxaNAhEw6Q6KiHs9S0EJRxPHJ5YrEq1bzweIHWPz1C3gdB3HN1Y+B0YlvFSlmKti0ZQmfLb2BP+zxN+5beAo5ay1Tpo3jwbu/5qbr7mba1LPAMWhvaaF24CpymSHEwr1xHVj0xnVknWWEIlkq4vXMnfoIz785k6bmpVxx3pe0tnXw9oePsGb9Gk468hEGDKnHVX5lyfJbGV53BrU19WRy1cTDQ/BLmnrrWxayYf1XvPHPd7jz1jWBrlbpvLcKacxYj4hUz967fPrRS+w+czS+FFCVBFs252noOwTI4PETV153BscedA1jxs0j0xomUVcEUlx38/WcfeZtJJO1QBavWEEoZAAWmdx6EgmDl15+nubmLZxz9hVAjEIuRyRWHVBW9cChDTbz0RdvUZmoY8KYY/CtOKrZDDgM6D+SjZsy5HMukWgomGeJzqZhlh3ayiijjDJ+R5RP2DLKKKOM/wUoikI4HGbQoEEA7Df3UPCHEzaGk7MM/EAohVilRzq/Dk9bQ30/GygQNoVINHAD6u5OYxpJJo3fk+rKHQjoSD3uWKUjfqsQMUQrdCKJCI5V2I4uFIiQGnrPzzoM2CHO0cftxOSd9yGq9S9ZD4FIDp8OilYWCBGL9Wblxtdpav2Jru4t2H4LDz10KZ2dS1i8ZCF77NMbVSqAesJGHQMadiOqD8fKVwCDQPqC21NwqAViOE6p+qABYqNoHoqqAD5oBmNH7kXjWpi954kMrJsCJAjcl7abLw6+YxGOq1RVx5g+dQ4NtaMZO2o3qqt6BdfCpFdlPzTihENVQJSqeD/eevMjNqzrYNTwqXh2nB5BatdxAMF14IjDTmby+LmAil3MYySg/8giWnQN8CuwkXR+LariBu5oqgA+tfUQi1nkCk0otOF4m1EUC1VJY2gb0LXNPPPCOSxb8REhYwPHH30UCaWesLIjijcAcWtAdDxfZ+OGNupqBzJ0x9FUJWuC+W8nOh3oCZW+sJX2oXDccSew156zqYzWsnr1KlRV26YbA6AETlHhSJRoNM7111/JeX/+E+kMtLd0ABUs/XYjTzz6Gu0tLTj5HKBS12sQPgF1CbUzcDMzcqjhNOjdqKEU0AU4aEodq1b/zPIVP7Dg/idZvbmRG2+5iJdfvYtoZZFff/0Z1wVTr2X/OWcxZ5/D2WnCMA45ZigvvnYTkCJf6A1AoZgCXLq7fgGtFSXq4/o2mfQannn+Qf5++wMMGzKVynh/FAl4m9FYJWYkFuQKJqDR2f4TZ52+P2Y4RHtrO5pSDR6EQ0EhzJNW2jsa8RybaVP35OB9zmHsiH3J5yqorh6E+ApaSKFobU+l2bawWmDDhaJAJKICRTzJAwUM0y8V/bZ7K9m0u36GhvoBTNl5Dj//0IJGBIjiShHL6YAQeGKhaAUUJUco7Ad6P2KQrOzPEYf9kXn7n8aY0eNId7fTQ++qqPwvYeWtLwl7hKT/v58xih3CsyoI6UMxzCEoXg3YMaAXlRWDQRK4BQWNOIoX54C5xzFl531R/RogQtH2SVbVkM/7fPfNKqrqs2C04SmttLVtQOgEvRuoYPfJZzFz5n7k8l10duQBhc5sCp0o4qngwEfvv8edd91MJt2M7+XxJEe8KoTvZYAivpcl1dWN7wu5XI7q6A4kY6OYsduB4OZAzaPpLsceM4WnH2+mT/0YfC9YZ9NIBvVjUwMlSyq7ATXUhojFzhN3Z87s/Vi54V9gtAAFVDOMYjYyZKTCzlMHkqhS2f+Ag5gyZSbff7+SAw+exRNPPwpaGt/PUNu/Bqjh3D+fyuLFn6FH4MB5h9JQ35vWLXmGD9mDSKXFScdexcRRx4JRR3VNkqOOOoJQSMNxLTTqMBlGRB3Pm289DxgkYvXbmZe5DKyfzJBBk6iv741dbAXVBdWhuWkdZsxkW/FILbm16ey+x77YlnD1VdezaWMjDX2Gku20yKcE24qybnUHJ83/IxtXbyBRXUNQiI1yyknnYhq1+L6JJzFCphEUKlUfTdNobmlkt912R1NNgv9BChEzCZ6BeAT/E/x6ulI+M6cdzoQx+7FhVeo3tPDJk3cGfMKR0H/FcPnWpowyyijj90a5E6mMMsoo4/dGz8N8IHgB7AE2r77+Kv0H9GHcuDEYahzsCEKWjlwTNVV9ABOFDNDB326fTVvnem649isSRh8su4qQHkMEFFVQlKBtx7Z8QoZa6mLwQQncheyCRShslFo0Si0+Xgw0F680wHyuiOe2kaxUOPSwHenXt4a77/4AGASeCVoaSHP/Py7jlPl/JqzvAIVePPbqXpx09E1Ab6656iKOOX4uycp6nnj6fs4953xMf+9gDcI58GNkUzniFbGtjVL/3eiAD75voeo+onSCkkUhBsTxi0lUHdx8Br1CcKw0jqMTjdcGXUgKpfkVKebzhKNFujONJBNVdHS3U5NswLI9zFB/chmNWELBcUBXTRwHQmGf7757h4kTR5QGFAKnH54NWqwAbAEMrKKKadaBEjgaOX4jx8+fw+AhtRx14h94adF/SKhjmb7LvkwYOY1YjcFrTz3AT+3vsseME9h957kU/CIRdSA4gbOQaIJdUPjzTbtw2tnz6Fs9nvrQBDo6bbpbPIaMGAqKj0sGnwIhFIKuthThUC0QASl1syhpgg6N4MZsK7Q0K1b9h4cevo/urgKP/eN1ulNFKiv7l0LUBTw8t4u/XnUu06ZPpH//SsbvtCvQj1yui1jMp7v9JzLZdo485nT2mT2bp556ly+/WENdr0Hgu4h4KLpHzyYX8zZhszbYYDdw2Xv0+TM5+bTD8JwQl15yJZHKdn5ctpwF9zzN4L4HgcQoZnw0JYOR2MDiz55kweN3kC/A/OP+wry5t5c6rTSs/GYuumYaw4eNI8wExo2ZzqPPnUlLWxtnnX4FwwbPZdCgHUrBpiOeBmKgqPGg4KoVeObJizlg3mSOOfoUNm1y+OrzXwnHhgXpqvugdpV+PwJOhK7sMqqqBoMTp30L1PZvAwr4UomqRLdPenL5HNFoFKX0tU2Nm3jwsYuIx8OcPP986qsG4PohdDVa+o1AO+2yy+ex2x4j6Uxt4fgjbwZ/ONjgqqCHmoEC3cU2NNpJhKuCvKYaaCCf84lGE3SlNhKOCBEzAVi0dzRSW9MLSIBUbsubHie8rc5WPUn5X05XPdJuBqBkESuOUnol6Wkuql7ALhpoXjjQNNJ9UFOAgmt7gIIecsjam1nf+A2XXXUmbzy9jLY2h169BmIXVEJGEjsPWqQLzVhJoDU0jEx3DeGEgqoJdlEjooeCsWvL+fGnbxg3ZiYQwrFUUC2WfPs5vyz/niOPOIF4rB9tbR306lVHJqXg20JldQS0JiCD1b0RsXXuuP1JzrvkZuJVvYPlKBkWFu1m3n7vST7/6t8MGVbDmccuBDXGNdfviy2buPGaN8AbEtTojBbQNnLOxTM5/eTbqKmpQUToW9ePb5ctZtmy5cw/5gKgnvaWFLW9hpHOL+HsP17AU0++iucVKMpPfPj+l+w/53y6Mz+R0BNo4TrwYxRzjYQrFLK5buLRSeRSOrE4fLnkJf790ZVURXfmj2c9gmb4uBTIF10qw3Vkskt47oUb8bwazjr9ctrauwibMRTCxBMNBC51xnbdsxYoLaxe+T1PPP48f7t6IaiRUhp10N7+LbvvNoc9dz2KO299DrMmS+CQGCKXriEag0zORSFNosIEHAqFNsIRA9t2+Pc7HzJv3jF0tKao6dUXcV0UIwtWEt8GNRHEuO8lUP1eOGziq6/f4l9vv8kvy5p47bVPgBCCsV3vnIuGWu5EKqOMMsr4HaFdc8011/xvD6KMMsoo4//X2L7Lo0ce2rbJZDJUViapq23AlyJNrV9yyNGTmbn3eKIxhebGFMnKgaDE2GXCDJAKxg2fAYTR1So8B1LdPtGoSrEouI6KGVLYyktSeopJWTQjT3vXOk488SgOP+wwFEUHNbBQU0VDRcUMhQiHBShgu1u45OIbgAGIXY2iqojYCC5TJk3GdsDQE6DG2Wn4Xih6PeBy2dWnctbZhxM2+jBz1/noSh1IHAE2tb9MZWI4oYgHahF8s2SoZYHaRGB9Hgy9UOjECHu8/PoDPPXcAvbecy4QRlGiUADVNMEz0DQTw6igpK673Xq76IbGrXeex1tvv8EeU08kER6JolbhSyeaFiOkx+hKpYhFEwHtTINiQeg/sC/B0/FwyVo+hKoDaisOTWhouMVadDXCV9/8h5dfu59nnn+AO65dygH7n0VDcihvv/Ep1151HwP67EBI90BvZvny95l34KWMHjYb/N4Yfh257hCaEVCRNKOIYmxi3JDJjOw3i7hWw1VXnMf3335IVZ3PoEHV+ORQ0XE9F+ims7uZFxc9y6pVaxgzejxI5Lcx50d/uy6KxQUX/JlRI3bimKPnU1/Xj3A4BmgoJaoleKiqQ0WlwZ4zZ9DQkCBb3MgfLz6An37+jGx3jlEjhnDf/bfRZ3CB4aPrue3Oa6itGoDiVQfX0gxQ0mSyzXR3dZFMDgRPCwzcVNB12GXKFHQlgaEl2W/ugbR1ruPSSy+id/VY8vkwRqiIbgqaHqNjYzerlndw4YWXMGnn8fTuV88Nt53L6lXfssuEg9FVn182PMInn//Irz+vpnHzJu69+3wmTR3FpFF/pDo5hnzOwjBjgI2iuiiqD0ooULf2DcaN34lH7ruOH5ev4tob5/Lav+6iV61Jbd2OZFqLmEYNaCooHlZeQzG6CBmwpTlFptDIZVcfQUfXOiaM25WgM66nOqoQMgxEfApWCkMXKivCzJqxC1OmTaUyEohtq0qYbZaGwVmx96xZNNT2Y/LO+wENuEUDRdHQDPCVPFm7g0UvPcBnnzzBqtVfoxkWd997PzNnHIRpVuL7Cma0Ek1Pks+188KiR3jzXy+z4telTN55MiixYIyilArMPsEmsXXs295viyNRLArOWhQ9habVgtIjf74cRd+EJc1EwrGSbXwhKDoplah+DFWLgBrH0ELUVVUya9+BfPJeO+PGTuGrHx5n0Wu3MX3SsWi6gmNrPPrcJdx0+6Us+349++57LLlMira2Nmqrem3XPJOhvq7nHNDQ9DCK4jGg/wAqKiPU1tajqhFMPYKqVWCaBuFoCHFaUfQczZtWctdd97P3vJPYY9bhhCJxQMN3QNFLMRvyGDmiN8lajWXLP2KPKeeCpzBz1p4U8xmSsQGofgTDiAai5mqSsaNG8OyLT3HAnD9RERsD1NGnvjexigh33nsje804CEWJYBhxTNPnkIOPAHQc2yES0hm240QKeZ9ffv2cp598gA/fe4Xp0yYT0nqjqP0Iaf3wHDBjCqjQr38vYhUtPL7weWbNPgDRXEw9ifgxFNsgEosxesQw1jZ+g2Jk6de/nrfeeY2mzS0MHTo2OPdE2/rgw7dyKEYOIUuhUGDUuF2DorQPEEVXdPr068PgQRMYN3EnmluX8fW3b/PGO8+w+657oKgWWqgV8XPceOO1vPLKIvbee28MI4GuxRk+fDxIiGisilymg1B0PfAdMJhiUWfpyoW8+MoCpk+eDlqIMy8Yx54zZ9DZmeXxx/7FJZdcVAoAHdkaoyrq1nJtGWWUUUYZvwfKRaQyyiijjP9RBDdqumZgWTbJyhpUTSdkeEybNZbX3r6DBQ/cTj6XYfrkA8ENI5aObvRlxPDg5tSyTXQlRDoFVVXBzYNueOiGlBoGlO2eJAuu18oFlxzHl998wCMLFqIoFaVvO2SzeUwjgu+BuFKij5ks/3EdY8bNAEwUzQRfQ5EwilIBaiXtbVtIJMI0tf5I3BhKtriU+x46l/c/28DAIZvpyv7C4AH9QY2BvpHHXzyfr5a8y26Tjy7djxax8zG0sIsozSikgHqsvI3nOHiSJWT6/P3uq5gxcwqDBu6IoQe287adRwuDSBuK4ZPL5gmZsa1zzuddjJBOd1cTRjjLiSecQjHdm4gZwrcVFCOHqkZATCJRjaCNIqB06SEFyCCS4947b+fFZ59jzh8OxfcKiLaBG2+9mN59GqivHwui84/HbsKMpbnyr+eTMMYAgW7U7L3nAlFQQ6WOjS7WtyyntXMzP6xcQOOmtXy7ZBljx45FDy9F07uwCiEuvHI2TWt+wM21MnDHBgrFZk457SQGDRyK61dRyEdxrWqioQSqupau3CZm7robY0bvDIRAYiVqoI5r6aiqGsjYeA6KXgQ8Dj74CKZO2ZP6ugFsKxIYgcsXpQ42HD7++G2++XYx6zes5PkXnmDS1F04dN6J7DLxQBY9/QoNDQM46ND92GPqH4iG+qHQFxRo6/6aux/4E/f94zTe/Wgh6G20t29m8A6DwPBAt7EsC12tBkkGxRxSjB05i4g+ArEHouthRM2g4AEmmqsyatJUVF0jkTD58OMPOf6kw5gx9QAKHfUY0RiNLW9z8cXHcfyRlzN37pG0pH5kQN3O+IVJ+D6YcQ0osnL1V1x6+bm0t29mwvhJFPOBq1+qaR3JaocJUxRefOk9Zs0eimOp1FWOIRbvB74Cuk4m1UGukOKZf15Gyvqct//zGKvWv88ZZx9KQ0MvErER6FqM7XhpgI8nFqYRFGktSaMrITQqaWxKU5HoDWKCqPi+ii9asHd+EjM0ANRw8HteM0ZYpSuVJpezqUjUMXjQYBYuuBtdj7GpsZW/XnYTqlIN6PiqXkoLF123GT58IHP3mc27/3mTPXbbG4hQyBYw9HDprLDJ2+0Igu8raGqI3xRoS21IttWCqrUz78A9OPzg+YhvoIeFd/5zP6+88Q8++M9bDO6jU9XLY9n3b/Pc8wuZOnX3Up7pOA6ouoZgoji12LbNC4sWcvhBhzBt8lQUrQhaBrQUO+00hoMO2Z+VKzsZvsMEEgmDZFWU9pYOotEKUOG5fz7Eon8+za7T90bTEnS124RDFShahOqqelQ1AURR1eCcyOZXcNHlhzNiXIKqiu7BNJMAACAASURBVL4kKvuT7tJ58L57mHvA7qAUsO00uhG4uGVSXZjhgPLVp6E/M6bN5cdlH3DjbacxY06EYUMmc/5fzuCdT6/n868X0VA1nrqGgVQmwXIMdhw8m65WE12JoBk6KDoDBg7iwQUvsPesw0FtA+kVdIYRQTdcwOfOe6/n7f88yQlHX4zrr+ab797kgIPmoRgJnEIOLSwUnJVkC41EwkGXXe/6JEYInnrhIQ7a7wyymQoiph7UP9UiYut89/O/+fmX75i+y0xGjxhH4+ZOBg8aiWt5wVmvBdRYxcjwn/cfZczo/tQ2hIlFa4MxKoAjaDGD0aNHM3rMNLLZIjW13ewwKEpFfRseLZxy1ixefv12jjnsZCZMnMK4cWOpqxsAEgIlQnA4BnS2UFjhg8X/4L4nzmfOnmeCH6O+f45Vq1YxYexudHR00G9oN4s/+ZmT55/Hq6+8xISJk+nbZwCgItvF6X+VPcsoo4wyyvi/jHKvZxlllFHG/ziCo1dTQ6iqFnQFYTDvgF1p2tzKlMk7M23qZMADDxQNVLXHBlzDDMVBIBrdKnNDQF0qiQvjbhNIdn1QXHaaMIIhO/bB8fNACAUTH5dQOAQ+uLYDYqEYOqBz2MGnYuXN0nhLnQk91A7PpHfvHQCfex+4FkVRuODCs/GlwOCBkM1m+XLJW5xy9lzWrvkRyNO8ZT17z/oDKGE8SwWihCJgFXIohHE8DXwwoyGKVp54RSWBzk4fRo8aS9SspKdKFKpQyHavw5MMttVBrMIExccPHLuJRg06OrpIVtWwx7S5mFo1kUhAwVAN0LQShWkr9c3dTovGLV2rgBGCww7/P+y9d5gUVfb//6qqrs6TGQaGISMw5CAwoCRBARXTrmkFc1p33TXuGjFLUNecs7i6BnRNIJhQDKgoEiTDADMMk2c6d1c6vz+qZ9DPfsJf+3mez/fX7+fpp6HndtWte8+9Xedd57zPiWCnUL0Or735KiUlJdkxcb9z7LFzmD59Bj782CrUN+7ghhsvIJ44AJig2IDG7ffcy9bqg3QprWDnnp84bFBPTj39eDx+kz9dfwqnnzOFNV+tZGf1VppbdvDpp+8AFsceN4/GhjiJpI5HLUL3BAmGIJ6Ms3b9am6/42a++PZjwKG1tQEr45BJuj30eDVsS7DNNKrXjRNJp6K4Tpueff3yNkD51btlOUyePIUxY8aw8I5HOOfkv9CzbCxIISefcB6nnPYHepYfie0UkUwGQEpAcXjuxfvZtGUNA4eUMubwARwxeTTDRw7EwU2HhHY0PePaXQIcSwALx/FiZ0JYGRVV08hkOnOm2LJ1PQ8suoFbF/yBppY6Tj3xbLr4RwB5BPLdMJgfv9/Fq39/H4UwLU0NlBUMBvLw+HDTqrJaP3uqdzHz6GmUdSuhre0g/rCXVKyRgooiRkyYwKiR44hEYda0+Rx5xIn4C4rJLj3sTAqfL0BpWSmJdD1dyxW694TZx4+ld2kZ5T2649PzO8/VgfZIOwAZ212jPoXstQUoKe4B6FhZrWxVAU3rUDx2o6SQAC++9Bh3Lb6W7ze8T1FhmNKSXmgUUJLfhz//+Q5mTPsNzQ1JDKvDmJ2sM22ikEEchaC/CFscNm3azE8b1wGCrutZM1DxeHS8PhWfx4tpmqTSqf9EHkkh2hLnmzXfc/IJJ/PMk0+4BeNNmzHDxnD2GeczdsQkHnpkMXNnT+ftd58nEEwRi+4HPQ0KJJNxLMtExUs42IMRI0YzbOgYoBCFLggpIMGV187ntjuuw0Fj6JBRFJaUoHosMulG8gs0kgmHTEaYMWMGRx45mdtvvwvQKSrujuoJu8QcfsCXHUf3Cprb9jJ0RDkfffI2GSMDBJk542R69+uPOG1AEq9PAS1DY8Me8go7IvoCmEYAKGVX9Y8MGhbm+pv+gK51wTDSDBxSgMEOVq76AEQlkbAYOWwyOCpeXUX3AvgpKehJ5cDDKSrohpGxgVhWHZ3O6CrbURg2fAj5hYJlakyfPpfCwnwu+/3F1NWuRw+1s37TKyy5/0qK84MIFhBEpYJjjpnN8JEDEDRCAXf+2iJNgIlHCzCxaiqG4aASALxMGH+EO/8+H6pXIRGL0tpcx7LXX+Cll5/kyuvO5rsfPkacZtAypONx8CpgWZi2m7IazvcDGVoze1m3/lPaYrs5etYoRozpwsL7bqEgvyirAaiBomcjnjpSJd1qAL16DKNPz+Ek4iksC7yU8ZuTLgSKKSnpiyr51OxrJOQvwePx0dzcTFukjRxyyCGHHP53kYtEyiGHHHL4X4cb/WHbDsFgGF33oSgBZkz9HeUlFbS1ttC1qDshbxHoeYAQTTegexPYkkFTVDIZLz4fxOImPr+rAXTIA1FxiQJA85DK1HCgYQNTplVRHO4PTtZpVWy8qg9FyaB505x+2hG0t+1h1IhKPP4KPFqhS6rgAP5DqSMKrnAzSZLGPgYfNoXp0ybRWB/jnruf5qknn6V7jyL69hnAuOHn4A8OwK914/BRU8EpQ0UnE/ciInhDNqCjUdGpPeLzuacwMgaTJk2kvKwnTS1tpJImwXApKDG8QeGZZx5kV/V2KiuHo6pebFtH0yAaS1FUFMT1GANAAI/Xh2k4aJ6syLTiR3BQFMO9ICWrrUKK+oat5Of5EEkyYcJoTEtB0zX279vNWaddQElRDxAdy7Tp2asn3Up74ZDmlntO5oOP7qGwawtv/PNFZs8+DQjQbHhoytjMPOlM+hZMZki/cYS8/VCdAjxei0hiEzdfdwMH6mop6hLhuisXMm3WfKAP6WgFBYWV6Hoppm3SEtnNbQvPYO6cgbz2xgeMHz+JUSPHoSoB8vPKSCVtAmF/VjQ3g+oB1ZOgg7zx6H4gP5v25s2SXB7orGbkEhDJRDuHHz4Gv9+Dbaf5/aVXUzl4PkXhvqiqD80XwIpmUH09UJ0B6NLNtQ/FS8Zox3ZsrrjiD0wdcwZFoWGE/GPAKkJR3eMpqonqFKJqoHiFcy8+hiGDR1Fa1hOxvKg61Nc1UZDfjWefuJ8v1z5PQddW/nL9GSQzGcLBSsx4JZpW5GbgOTDzmKMYO+JI6g/Geebp5/nm27Ws+243VeOPB9VwX1gM6N+XYUNGMXDAUAKBAnBADzjAAXbv+ormZpMjJh3Fffe8x6xZVwBhMql2PIEUqi6I40HVgqSt7fy0+WMOHKinta2ZDVt+ZkDfMfjUIahax0Jxoyz8fi8/b9nAN99+xO0L/8IHq5YRadMYNWIyuhYgnQKv7haasx1B81hAKlsR0IOZSFLb+BN5xSZvvLWUE4+9lETUi1dXQHGo6DmKXr1HMnXqMXj1LrgV1nQUFFQyqGTQ1DwAVEVj4qSxrF37A/16DyUQKiQRTeP1e1nz5cc89dwSvvxqLcfMmIvjgEfzHlr32CAeQr5SuhXmUzVlPDdddRuzZxxHQNMpKCskP68XQwbNpH+/EioG5OOoBuOqhpPOROnSpYBIy0EKSnxkEnXoPnf9q3YF/fuMwXLiXHv97xl/+BzicYejZ0+gLbmNa65ZxK3XP9ehKMUNN5xHXd1O+vWrxBuA/DyVAX37sHdvA6NHHwGOFysNqqdjL/ylzg+ECtoZP2o41bX7GFF5AtFWhXB+F6omj8ewW/CoYTJGmm+//Zxlb71CY9N+hgwZhpnW8Hq7glVM5dDDGDS4J7blMGTApZxyyjkcMa4/H3y4gvKCEzl8xDg0r4/8/L4kEgahfE82qMsBPGhKPhMmTHfnW4uBU+j2UQVUExyNAf36Ud+8jeGVx4BEmDHjFHqVj+Shx2+guv4d6qLLmHTkOLxaJXnBAaTaAjiGSigvwKBhfUgnC/F5XJ20UNhLOl2Dbabo3q2c2tpmhg+ZQjwuhILdENuDoqqgmFhWBNQ0I0f2o/cALyefeiRbtv3A0pdeY9TQSRR06YqdslD9GqqqYVs+VBX2NX3Jzuof+HH951TvrGft1z9w1u9OZv33jUyZfCymKeh6kbv/SHa/USzcCnoeiguHkIim6VYylnAwBFoxPq0P2GGcjI9eFQM4ZuZZiOPn+edeYdGiB9y0SbTs9LoWkotEyiGHHHL49yInrJ1DDjnk8G9HB7FzCCJg2w6eLKnhCOyvbaNnryQP3PsnupWVcdb8G0i1+AgUlSBqihvuvIji4jTjxh7FtAm/w7QCmKZJMKBDNu3HjW4wwXKr3Cg6LF/1APsbPqVnrx4cN/0aMPuDAhkPeAGFBqxMDZ+sfpzHn34Ow4QXX/ie0qLDs4SLiRvh5F5HPBolGNJR1DTRRC0F4UHs3v4jTz93P/klCS699GKK8/vz7VfVTKg6DTIqeGFvwxus+3YXUyaeSdeufTjQvJxHn1jEMUedxrSqP4IKhtmM1x/CMVRSqRTBMChagmQqSibtUFTUDyOaxhv0s2njGvKKApR3H4iiBdH1PDqUWWziYHhxzAISiTiFpUnXUSEAZglokLGa8XkDQOgX2iom0MC33y9n+5atnH3OpUAZZlrQ/R2lzx0cK4nq8YET7tQPaYy+SyRygLZoDeOHH0/M7o2m9WB/XFj5/XL0kMP0ngmeWvwUF17yW5565gGCwTwW3vE2rndpUrvToaJPv6yYM9iKGzTlqHDbXZex5ou3+GLlc4CPutoelFd0JZ6oJxwqwBUUFnSfhk0dQhIzVUws0cg/Xn+OwmKdmdPOpLzsCDfqAUDL4KaC6G5WX7ZMdjx6EH8gjUdXOPvs43n4oacoKJwAtPP0c1fw/dcfoyo+pk05hzPmXQd4cRwb1fFj2hEctZGUWUthaAg4ZWTawRcCy7HxBNzoLycdwrHBsNs42P4RW3d9RGlpGaOHnoRXHQmOTnt7NbUHV9HetgHNozCx6lQyiXJ8wX4k2j2E8rLzZgGeBvBEiUWbyMsvyq6HEFgl4MkyTQiOlUFRFBQlG5pmq6BZrFrxEgMGFvH12i85bu5J/OPVlahKNy686DJELERNoOMF8sHwYdGSFbcOIDTz05ZviLVrTKm6PKsFpGbXI9n1k8GmiabITkRJY8Z70qVoAJk0FBW6emCmnULVTBQlxutvv0Ce12DYkFH07jsdy2zGo7tVEXGGdHARCPuBXkTjTRSEs5Edku8ajZOdU8Uk3mYRLlZBTQHt7pcpBNt7iERV4rSnN/HWGx9z0txzKS7s7gpvd0CxQIQDP6zjvZUPs37LGwwZOIW1X29m6JBR6P4kf134KBhFJONJgsWuJtsPG97ms09X8e1XPzJ96vFsWL+ZE46fzbgJM+na9RSXCNQA39fAPq67/l3+etWDFHXpCsoeMoTxSlcUJcETT5zJ3tqfaKyPsnjhB3gDXbjm5ssoyhOW3P4MkEdrg0pxcUlWEzwb4uVkK4R1is7buFFK+ViGgqChe7OFD0R3RaVpBVKsWLWMKZOPJhQYAFb4F1t6koN1W+hefjiIA3odYIBZBh4Pba3VFBUNBrWFDI04ksKndEclD8cJoqq2K4yvd8mOb6pjI+rca6CF519exMcrX2DOjNOYN+8F8Ozn7eXXsPbnN9j9M7z5QoxYRCUvL5jVxreIyW6CwXwcpztig1cFtP1AA61tBsVFA7FND5oayKZLOlhGEo/PAuJYtoFH87F119/52yN/paYGPlz2AS888y3zf3c5mtoFfBa2kkGVEKkE4P8JwznAvYtv5atPqvls9TpcUXQ/1dV19O07FCOp4/VlF67CId0sfGAHQDtIe3sLiI/Cwv6uinx2SAyzAVWCoHg4/vhj+fDjj4gn4oRC4WzcndopDZ8jkXLIIYcc/n3IpbPlkEMOOfyvwPmXTzya+qs0kUBQxZEElp1kwoSxAKhKwHUGCbFtyz7mHD+RseP7Y9EOSoZgoCPlTHcdHweXdfjF7q6qKtOmTWPm9Jl0KOC2NB3qlThJPD6HohKHkWPzmH3sCEqLPCSS7Vk/Rse9yW8GGjHsRlRNRVGCFIR7A1G27PgcS91D/xEHueXuebS0NjBk4HSMVCOW45Z4/+Tz1/HlNREuioEW5dmXbyRc3IQ31OKKa2txvH4FHBPV4yPgL0DRQoCfG29YwF133QXY6FoBkvIzfPgR9Ok7HK8/DKIhIqQzMeqbatBw0Lx+dC8E/GF2V/9MfdM2IOGOjbjizlkv/BcpO64w7wcfrKChoaljplyNG1sH0wdOINtOOlP87Di01HTjsN6/ZUDFHA40aXi1HpjAsy++wdvLV7HkwYd45uU7GDZ0MMed8AcKu9Zz3Ml9cIwozz2zkHsfOIuKAV0BSCWSmLaDaJB04kjWqZs6bS4wCBhCeffBIMWEQxWAn1g0iu7T2LZjLQ88soCbbvs9gYBG1y6FGFaMgYP6Ut6t/D9YYdZQfvk4SVTC+YV49CAtLU1UVg6loLCIhLmHjGyjNbmGgm6NVE0rIFTYTKR9E8IebG0nGTOC7k/j8zq8+tozXPr7s6mt2YUvq9+s6lHXliwvqs/CE4BgXhG9evZj6Khidu5fwZ+vPRkwiLSnKCzWWf31S/Qb0J2iggpIDcSnDwTLQ6goBZqbfojugJaPWCp5+QVZe/WAbYIn47K22Ygr1ZNPKqGAkgfiJxFPAwGGVM6gX//J/ObUM3j+pacZPKKcUKGDKA6aGkClKxkzDeKmmXqUEuAwkP4o9GL0kGlMmTT7P6R+uWhqbiJjZVBR6VbQle75ZfQqryAY8LpVqxQHw0qiqBlUxaAtfoC00cL+g9+zfNWLgInHEwbyADd6KpUCRzJAFNMRovEkadvM2nR2b+ngIRydcEEAFB+xSIKOCCmARDz+q74W+gs5Z/7ZFBTk/+uFIIBBfeN6ovHtjD68hMrhPsZP7ELfAQqmvZfrLjmJpY/cSjDYE+gKFDK4chSHDexPMKwwbHhv+vctJBGv4ZOP3nLXfrbSezxRQDLTn6NnnEhRaR4oCVojaTwUdI6raccpyNfYsStCaWkxXp/Chg3rqTu4n5TRAhgUd8nLMgkdQuFGNuIlQypZj5nxgHQDpxjb9KAoCqaVRERFLJ14O2D6SKczWI7JnGNmEQoEAAs0p3MoDuw9SPde/UA5yM0LzueWG28APNy56GwuuGg0RSVp2totNu5Yy8uvPUJd0xYUMrTFG3EQBItIvMkl0ZQELmnlVhxMRJNk4joNB+D7Hz+ioSXF+o2rsynFFZx87JVccsHv6dltNOJ4ycsPApFsgT0PXrWctBVD1Dia7tpBa0szH3/2Kmu/+R4I4lg+UPwgkE6k8Ph8gM2TTz/EhRdewP7d+6kcMJapU6sYNEijse0g06dPRwuEsinQWqeZBQIQ9JRR6O3NZRffzFOPLCdyIABOH0xD+PLLr/l582a8gdB/sKmOiqUZIIktMRbe+yeWvfcgsdheRCCTMdzfB58Hj8+PpgaIx9OASjiUT86dySGHHHL430UuEimHHHLI4d+NzmiAFK63oOI4flQl+4RfgUw6js+fwTAO4vVmI4qkq1tdS1yf0FZjKNSTMCPk6z148Kkz+O6btfz92WZw8hAHHC9oNIBddui8noMYRgavtwfYOqlUC3ooQEoJErQOyea2Jav58PO3OPa4YyhQQ24fCIFTjJkEPdwKHOTRFy9m5IjxHD5yLhKfRCDf5oknbqNHHz/LV9/Bn//8Z3p2mU7APJFUOomvaDMeRViy5DZKe7bw/bfV3Lf4HZ547i4uueQOgmpfMplCvL6NLHn0SoYOqWDWEQvRPS7hcfXVFzJ80kFmzTyL7kVTQXqAYrJz78cc1mcUWN3dPKDATp5/9kYMw+SS3y8BetF2UKGoez1DxvZn2Qsr6Nd7Or6wjmnWotOrc/w7q5grB/hx03Ia6pqZM+t0cMpcsWrFcVO/FAtQMTMKuu4FgYwBvoBDU9M3lJYOByPfnTMfxMx6HnjmGlZ/txIUhapBVSy4+h78njirPlnGMTOO5Xen/ZEbbrqJYSNGY9qlqFo+ybRJwK+76U0W6B5IGwYer4HiqSWAguIM6jAn0Ddwy8LfM+PoI1jz2TaqqsYzdvwgCrUpoOVlo8myxAphXI2Yjif8DnAQ7B5IytWPrmv/lEuvmkFZdxjQdzA3/Pk1WuoGUlJukLK+IZ5op7SgH8mkj2BQ4/JrzuKUM8aw6weLiy65hkR7HY2tdVSUD0L3loBSAWZWbFoDtGx/JAiGB3wJZp8UxuOHfB+88kItjpUirXzHrXefxcD+o9m91eSuv/6I6ugQBlv7BI3R2UiwJE8+fyM9+4ao2bePS85ZQCZZQSYdJKgX4Qk6bsQREI9CuARQLEzLQNeCv1ijZOfY1WkC3LLjHhXX0RVXm8wOuhSMliTSXk9N7UYKCsP0rBgIUoaR9qHa4AkCaitGJkNbu0FBuAd7DnzCO+8/SCyxjrtv2gdWgFtvvYQ+I2s497T7sDI98ehhUBuYPqUbxxzdi+tvfhvL7oumFWCZKroG5585Ecc6wLbtNUw+oidzTx3Fq++8RybRnWce34WqBYlHDhIu8ZFuS+Mv9PHA47+hqCyC4ezkolOfAvM0MlEPHh9o4RbAQaT0UFTaL99tIZNO4gt5QW0GbARBIUTaNPDrNtW7P6Nu3zr27d1NfZOHVZ//k2Ej+nPvoucQ6YGihHFTK1WamzX21zQwZvSYQwS4ZpI2duD32jgYWKkw3kAJDq1ctWAG+cXNDOozlYnjj+XAXofJk44GdCy7mJ923kY80s5by77kxquXUhCuxB/MzxJJTvZSUqx47R5eW/YaL7y+HKQXtmWw6uO3+OLrZdxw7RLyAsOINhnkl+9ny843WPbme9x83eugFPL2W/ey6uO3qOhZzo1Xf4iVgNU//Ym62MPMmHQe2zbtZ8b0Z4hGdrKvbj1/vOKvnHfWkYyfMB2vT+G0ebdz+Z+msXlDhPvu+JGmeuhSlg2S9Bqg1ZIxbHzaYZ3pvXgaiCS38tiTN7Hhpy08sGgl3bpXEm2vIb9Q5YcftzBmxGyMjI1PD7s/OVKH6kth40fEh0oeqZiPUH4rsJm3VrzCKXOuZMGC+/jjH/5EfkEYv6+Py7cpgLeWPXu/574ld/HoY0sBlaV/f5rKYf05fOQU3DThngg6JnGQsLt9Zms7KGqUWKSRgDMATxAsXxvvrb6NVatWcd/tHxL0lAAekskEweBBsAaQMXzYngZ0pxXNauTjlSuoGj+T/B5jQAKkDT+qruDN/mBNmzqVD1etxO/3u+v0P5hsDjnkkEMO/z7kNJFyyCGHHP7d6LirVQwOiV74QBQUFQyrjfqG3Tx4782MHjOEO+++k8LCEsrLD3MdVgVQBEVRyBgF6Foejplh3Q/vseSuv4H0QGwf6ApJuxavqgHhQ06xKqgSJBVTUPHgDRmoio2GH49pQLIOnHYCeR76DBqIXylAI+wSWIoHHC9iwYGDO3nkiSVEEtWcfNIZhLQ+YPXASClMrJrBoIFTITmISYdfjFcbgGnamIZKwN8bqMDniRGJ13HFlVcT0Lsxcdxx6MoAUukgul8lQz1ff/MhF5xxPZrWDRRIZ2pIy2Z+d/L55AV6gVNGQ/M+wiGDr797nX69+6MpZVkSqJYPVz7PrFnHUFo6CkkHCBRluPIvk7nmhokMH3AuPqUENIX26HqCeRXgUbPfTYASARp59c0nKS3pymH9BgGF2VQfJTt/NqCgqX6MpIMoCbz+NAuXXELtgXUc1rcnvmAJiVQtDz9zFk+/cDkjRnspCYe4/ILLmHbk6TQ2NLNs2ZtMPnIGeeGujB4zgkGVo4Awqqqj0orPE0PFRFe8eBUVjwM+0VBJs3n7Cn7Y/AE9upXhDQCaF+jKxnUNnP6b3zPliCPp17s3fk8BKH3BCIDjdyNvbC+uYI9b0t3VF2/k4edPob42zuChVaheeOyJmxgwsJRrr7qdoydfhRgDCeX5QHxkEoUUFfQGCmiqF/JCgxk/ejZDBw5j7Og/YLaV4Q8MoKh4NJrei7SRj3h8iEelNR0nZaQI+hxuvvMsvvn2baZMnQkY5OXv54gjKzjv/BNY8f671NS0UL3D5rKLH2PMiDOpGn8cvjyDJ166ns/XvEgq00K/PnPclEIlSP8+gxlROZXDR80Biqne3Uh59wqisQj+vBivvLaA519dQHvqZ0YOPxzEi6b4scVE0SKgtKIoCQ6FEvmxUhpmWsHjCYDjczPFEFcMXwFFSeH3w8efvEtDXQNbf97GkGEjsMwE3pDC+k3/4JNvbuel1+7gN3OPQtVVdlavod8gH4UlSdr3DqCiTz+mHT2UUUMDvL3sO4YOP4L21ho01cO0qtH06TGKsp7jUNWuNNTHEGyamr7l668epVcvByeR5KY/vk2Pbr057rip/PbMJSh2KdiuCL1l7OWH9Wv4aM21RJo0/njhSwwvvxEtkMf7n1/EN1vuwRe26Fo0lWQ0hJ7VJDtEqpkuAa4m8PhS2EYLqsdNA3XoSmObSiBUiIKPaLSVVR8uY+r0Scw98WLmzT+PYUOH8/prnzJm9O/cuVJ1BA/+YA+6datAUQRFsoSmouHxJFn95T9pbGzgk5VrGT16FpGWDCNGl/P4E+9QNeZk/vn6ZuaddisebwFmxodOKeUl4+nTqw9HzZjE2yse5t3332L61DmIVQCOjqg2CiqH9ZpKRfeelPcdAU4Bqsehb/9C8orr2bLpGwb2GYFlOnjDCT75/BW2bv2ZIyecgOaEGTpyCEcdNYGaA5sZNfxUVB36DSjkow/fZNOPG8gkdfyEqeg7gbLSQZw7bx6jR43mxZdepKWljcceuJ2hlVMoKSinoqIvoXAeqYSD7lXA0wy04NG8tDUFCfizgueqhV+voH+PWZx3ziLCwR7gePH5S0ERNm39iDVrX6FHH4W8PB3HSLP804f4++sPMm3yXDTFhyMOPq8fFJVtNesIF6TpXtyXUF6Yhx5ZwhGTRxDwFlFXmyC/MMiata+ycMmVXHDxcfSqGAJ0YeSISaz5ZjV/f+N5upQV061LH1oimVfhSwAAIABJREFUUXx+A5QwimKiKBqKAvc9/CcqhxWQXzgQPBY2IcJ5XenbZyi9uxeiEKSm2qZLcRFtbUle/edNhIuSlHWZgMfj0Fa/nX17f2bX9q955ol7mXXiUVhWmlgiTTAYBEXhtddf56yzzkLTXFbp12UBcsghhxxy+HciF4mUQw455PDvhpB9Gp7JfhD4hchrlBdevYeG+v1cftGFnHLq8bz51tuEA6VAd0SKcKvZmIjoKDYYJnh9e1HwIBkHRbdZt/5H7nl0AUOHDWfBNc/jeh8dERVZnSQM9u/fRa9eg7ENQVPDoNSDto99277h+XdfZdqc+YwfPpOg9AfTT0cFeMuK8uXaf7J9xwYuueg8IIxj+1GVbi6votcCzTS0NFFWeHSWaxHQm9m2ZQ9vvvEaN918Eag2kOLa66/ktN/eyLixc0AgZcRxM/MOgnEYyXQMtHYU/x4WPTCfv1y8llBeAbFmH4q+kXBBhkhqB6pdRl64ClBJpn/msScXMXzYWPr3Gcmrrz7O9Vc9x85dW+g9wE8wGMaRJFdefRFnnvonxo+Zj+pL4IZA+LLvSX7e+j1DK8e682SXgKpiK6BioXQwgrbH1fJQDgBR3njjUX4z9wJUPQBKhnMvmsacUw6jpm43J55wIWHtKLp3mYAADz62kPPPOY1AQOPh+/9GYVEp+XlF/PbUS4ilbfL0cldfxbMfO7OV+sZa7rzjPgoC/bn04ivpM2AM6GFsO4OmtyPEUBgMpg9bYmjeJqIRBdXuSTjf0/l43kgK3qBySHVWySBkUGilrvVzyouPASnFNCLovgNAK3sP1tKn+wk46XxU/17uf+gOBg4cwqyjzsXjzSeTaqepZTcVFf3BKkU84OAgqKQsN/gnbbpi6TYOQgaHBF1oZ1/TCsJBL11Ds7AjfYjH0hR084OnBewkJlF0rTdOOkw6A/4QpOzN+H02qbSK5vQlENR/YecKmXQEn8/DvfffTHnPIDt2beLW6+8Aimlp2UPCaMcf9KJ78/FoIfK8vbAJoeJqwijZlLdfpoJFW8DvBW8I8Bo4ioEiblSVosQRiaEoyeygeunQt3L/neb+x65i5lHH06PbEMKB3ry14lYU/y40cTjpyA945PE7qW36gpHjCph/2ktgRcGzDRjnhoVhgBLCtHVUTSOWaOKFZ2+lvCTG2q+WM3vqMWzfAMPGdeGn3V9w5bXLwKoE4LrrL8QfiHCgtpZHHruJeWefSkF+Ia2tFuMPP5Zrrr6b+vpGPly1nAsvOh3DcdDV7igd5egASLN16+fU1e9kT/U3KIrGhefdQ9qwcaQQny8f2wBFyeBRm/hp3Xts3Pgd51zwCInoAUKFQcyUD10rdQ/nTWDThmV0w+PxoKpRFMn/Bdm+H2jFweLlZz/i7HnX45ighlpIGNsJ+Qa5ZeZNzyHJKRPaGuOEi2LoIRPDrsOrFQL5iHQHx125qnRMjQV4iLdBuBgymf387eEz8Rg61974GkihSyyzl1fffJpoNMEl5y8mHfPiz9MxrG1Iph++QBcQEycS592PruG9f37O/IunsPKDKJdeeBe9DxsEWgpbtrB8xfvMnX2Zmz6mRLnnb+cz86i5jB51PJDPeZccwX33305x8DBa6/tRXJR/aAqyzx4cS1A1BTsDliP48tqBBh5+YhFvvvkmn3/8A2BRfWAV191wA6+9uBnwY4uOJl1Bgbb0T6z5+jlOmHE+yYzDF2s+ZvbM6UA50BXbSKN5t5BiBy+8eCc+xnL+OfewbdtO+g3swd1LFnDSiacwdPBkPEoRNg6KE3CF/LFQyFAf+YJXXnmCqy56CwDHE0AMd+9RPbUolJKO+bANCOXDpz+dya69eznp6G/oWtjKpyvv4ccfVvDh8g0MGAQlJd1RfL0597ybGdBvChDmlFNOYdmyZa62WQ455JBDDv+ryCUR55BDDv/PoaSkpFM497+6wXz55Zd/1U5VVSZOnPgv7a666ipCodCv2g0ZMoTq6ur/sd3EiRPddh1VjTqqpv2iZLZDip82fkXNge14dJg3/zTSRoxY2tX2cKtn2Z3nURxX5sWxEyBlKHoFeDTW/fgFVRMPY8L4sbiEiAkkcVOGNMDhQN0Wvl77IaCi6UFQU+zbvJZzf3sMDz12H7ZqUjW8ChUvVodMRdax8/hSDK7sQ0lJCUIeOAWIHQAnQ1trih83rWTF50/zj2X3ZlOnAE0BYnz1/SvEMtuxTI1U0ksqraDpXvr3HYpjgiMOAZ+CbQewnBAI+LxhgqEC7r//fo48YgpBf1c3rUw8vPf+qzz62G1s3bKRvHA+557zG1qbawj6S/jtaecza8ap/OPNtzlr/il4gkEqh00lGKykrb2WXXu/Zeaswxk7diypVIrOqDDCQCFQSs/yEcQjDhg+nISDrXTUvVORDlZNBZcUjLN7xxpUiaPqpWC60QOnn3oy77+zkbamFC11QrfiUWCUcaC+lVGjDic/VIpH9bFt6w6qJkzkiElTaY+1E/bnIXENHB/VW3/kkacWcOeSP1Dex6K03Mu27ZtBKQMjhEaxSyxiEYnsAT2RreqlkB/uTTjocedCi4KWQfNkje5Xj45cDZ0uBSNJJ3TAg+7zUt+yj6VvPsvXX38FWKg+i0hmHYdP7MmYwwdRU7eZRYuu5M13HqKiIujaGfDVDy/wzid3s7f5ExxPE5oKAR/85ba7mHvmaRxMxvBQgEYx+aEKgr6ugAdNh4JSPzU7a5gzfSrNTdXoWrZMvQeCIVA0MG0/Kl0I+3tjZcI4tkqngLW4elWmoVJY0IVRo0YxatRIMk4CCFFSMoZe3afx0Yof+WD5O3y6+h0yNKCh4BK7ITfaqENHCPfQ+SWg+zOuOLeSOTR04jZQFB8iFq//42XuvmMBifYY9XUJxAoRjxvUHWjhb/c9yjNPv4yR8nLGSZczd/bZ/HbOZXiCQZa9/RJ7923n7WUfs39nLXgsrrjhJBbdeTMoFrHGfaCk0D0ZVCVNQdjPiSf8lu7dhzJn1vkcc9LZXH7LORw2rIR9+7cBUdCSoDqUlZUyYMBAAoEA2DBr1nhOOX0yYyf24Ou1a8kkulHRfRTnnX0VkMKRxuxcWp2XmYzHqKysZMb0KVx4/hm0RvaSTLbh9+roHgdVQFVA13UULciQoeMo69qPSEMMx9YBH5rmxUiBnd3KNDS8uoaq4p5PcTqjngwrRiTRiIrKyafMBQ1UL6DkE/KVYxoZGuv3E09G3AgpJUUyafDByqXooQDYIZLtxbikSDaV85c/AzrgxMBJEC505zGdFHxaMT9+uxO7xcJOpF17oJBxYyfzznuvUFu7E9sMgJ2P19MFX0h1iWRHR5UidKU7Dz3wPMWlBTQ21dN74CDSSbDMAJpSyuw5Z4JSSjqmAQG6dStk8+bVwEEymQbGTxjNBx98QCTZSnFpfmckmGPbYIE4aVRfElSwBTd6CZ1Y3MLnKWPS+ONxbJcMbW5uJi9cTAdjLHJIk68w0IUd22sAH0FfIePHVWGSBGxaGuvQvCrb927mnnvv5os1O6ip3Qd4GDx4DF61kGNnn8yoynHoipd4MolGANUGFV+WhFXJyyug/mALqYSAGkQh2akfZ9qFID40D6DFQYXKykosy0HJeiVHzZrBpX+4EEtgwsQhjBw9kK4lYZa+8NQvFif/LYG0ZMmSX90H/Ge/7wATJ05EVdXOdiUlJSxZsuRXbaqrq/+lXSgU4qqrrvqXdkOGDPkf2+WQQw45/J+H5JBDDjn8P4alS5fK4sWLJRgMyn+2zS1dulQURRFFUaSqqkrmzZsnFRUVAkhFRUVnuyuvvFIA0XW9s11lZaUAEgwGZc+ePSIiMm/evP+2nUhaROLZd1vEFknGRdrb4iJSI5deM0wee/FUSSU/FZE1IvKZiKwVkT3iSEwcyYgjGbHFkVirSDqWcv+eFnGaRUS2yG23HSfNiZfEku0ipohIs4jsEJFdImJIMrlHHn3qQlm38RFJxhpFxJC/v3KT/O60gdLc9K6IrJO91mfSKPukXuqlVVLiOJI9Vkz+9sgZ8vwrF4jIJhE7LmKLOIYpqdRuiUZ3yPG/KZSHn50lIh9IKr1NxEqJ2CIiO2T+pUGpaXlMRFpELBGRVtlf9544hiniiIgkRaRBJOMOj5MUSUcdibW1SmPjT+45JS7imCKmyN9fPk+uv7FcZh+H3PfAcfLTplckkvhJHKmTmFkjprSILU3Za68TsSMiTlxENsv7y/8q3627T0R2iki9OyeWuOdOZ98tESsVFzHTYsfiYopIKvtnSwxxxMj2uUa++PSvctuCvvLl6nPEadkpidqNIs4+EVkvH314rTQceEVEaiRelzUBRyQarxORRhFnv9jpbRKPbBTHqBaRiETiTSK2LW11u2X6zDzJyCuyN7JY3v7skux8NovZ3tkZEYnJ3UtOl0/X3CORxBoR2SORyHYRx5RtG3fJ7XfMksX3zpIv1izJntMdY3fcTXEkIiIREdMSKykitiPiNMufrqnqtEPHbpKDB9fLg0t7yOJHx4rIenn3o0vlyw2XyovvjJPTzwvK7ppXRaRO3lw5QzbUXiwReUos2SwRKym1EUPm/fEO2ZcWaXLPlj1/xO2T1IltbBeR7+TGBSMlad8jIq+IyDaxJC2WiCQNUyyxJZpulqTVLpYYEkmkXXvJuMezMnERiYnYra6tSYu0te4QkaTYbdm5NUQa6naLyG6xZLOI7BZb4uLYIo6VtXe7Ywdokb0178voKmTIKOS6W0pFZKfYEhPHEXFsEXEMSScbRKRGRKqzr1jnuRy7XkQ+FJFPpLH1I3EydtYQdkjaXiNiOCKyTUQ+l207X5Elt98qImul2Zovr//9Flly9+ny2eoF8uHHt4jIZnFku4jUimPWi1hxkXRcxGyUh+6eJNs33CrHH4uIbBSRiDhmVEQi0nDgMxHZJH/8A/L4E6PkhaXHi8g2SaYaRCQpsXitJNOb5M9XTJBE+nNxpN61705bsUWkRhLpNXLcycifri6VJ5/6k6xY8aA7f2ZU7HRcxDHESjeLSKPYmT0iTlpuvulsmX1sf9m86TOJuttO9ry1IqYlImlxZH12LUZEpFk+WHWn/OOtC+X8S/tIMvGN+7ltS13NLmlp2SSGtVVEdotp/ywiu8SWHSJSK1+vXSgPP3KWu7ZtW8Rw59wxRRxHxJaoOHJQ7lx8oqTlcxHZ4k5zdr03166WD5Y+KpLI2oEl2bnaLbvrHpYTTh4oYrjbn/t5rZhOjYgtkm6wRJza7Br9UJqaVrjXKIaYkpT9DdvFdBLumDq2RFp3i2V9KpdcUiB//Uu5JJLrROQHmXf+QBHZ5Z7bkuw+07FvNorInqyNd9hqUkQiYhmt7qZgd7RbL99+91x2o2gR067PnlvEkTqxZauItIlIm1j2Hln91X1ZG06LiCEt0Q9l/bZbZN7FyIerbhRxDPc6k6nsPLWJSLJjG3G7aXas67QY8oPUt7wnTtKdc5Ft4oghVnZOzKRIW+t2sewN8sc/ThKRj8SUr92fG6kVkU9EZJmcdw6y5pP58vXqP0rzgbdk367PRCQppmnK3Llz5b/Dnj17ZPHixbJ48WIBpKqq6l/aVFVVCSDFxcUyb948qaqqEkVRBJDFixd3tisuLv5Vuzlz5nTeX8yZM6ezXcdnlZWVncfTdV0AmTdv3n/b3xxyyCGH/0vIkUg55JDD/7PouPH7j6ioqBBFUWTp0qW/+rzjhrLjc13XRdf1TrKoAx2kUcfN43/Vbs6cOdmbx9+Je5edFhFTxBbJpERaW6JS2/C9fPzNHfLj1kdEZIdcceUEmXtKgfzjrSukqe07cZ0VQ0wzI46kRCQmIo3y4IOzZOUbL4mYSbnrluny+GPzReQH9zyGiEij1NStlAcfPV8ymX0iUi1ffHOfiGwQcUwxzJhccccMWb9tmWQkJs12Qi6991659uXn5Iv2OmkRUzLugUSkRl56/TwR+VxENkgq3uI6FIlWefaFq2XV5wvEvfGPi0hSHnzoCrngwqMklagXx24Ske9EZK3YdqTT0cgY20QkLXW1W6Wm5lsRqRExRDJRkZYWt49ii6SjlpgxEdcxrhOxHXnu+TNlxarzRGSNrN/4rIhskrT8LPF0g8RSSTHFFkvaRKRWEq31YkYyIrYhixf9Ts48q0L++e7VIvZe1zHKknpiui/LEEmlt8t9D5wui+85XhYsmCKmpCVmiaQkKY3RnRJL7RXX6d0hs2ci558bkHPPRt75x+Xy/Wf3icguSTdvdhk+p8X1Oq1Dx3eduQ7Pq03EaRexYyJiiyMiGVkvZ//hMNl08E1pljq59bElcvPfXpJms8O/jYjILkmlt4lpHJBkcpfEM2tEZL10OK6Gs06uvnmg3P90DznmJKRyNHLNX6eISLPrSNoippH1+cSUSOsBcVmPNnecZaPEU2tFZJ9YSZFH//aciHwjLsm5VkTWywOPnSZPvTJNLrtelY27bxaRFln63CXy2P1nSsuB1WJF26W5Ji2xJhHbEIlnomJKvZxz+Rh5Z81xsuqLhWI7eySdrJbWprUiUitt9VvcuTBExHKJneYs99WeOij3PnmBLHriRFn06EniyAZpj28Qw/5J/v76FfLp2qvk/Mvz5Lo7DpPHnj1dDHO7iLSImYyJSLO8+OLlcu5F/aUtsVJcksnuJI0cMcSRuOw/8JNEkztFpEbS8r2s/Wmh3HjXAFn97dmybMWRsmv/++JIrJNgMTMuEWJbeyXa9qOI1Eh78/rsGDZL2vhZ3l5+ldyx6CR5/c2FImLIBysXylsr58tfbzlB9u3fJS6J9IOI1EqkYZfcced4+fS7IXL7TbNFnN0iskMc2SEiu7OvGom0bRFxWuTA9u/l1JlHimRMkZhIutEdNyPl9k+stNjGBlm1/HpZfOdg2bHpfnlg8VniEgBJ2XPwY7n9byfIA89Mkkj6blly/2hpaNkl6XSyc11Emw0RiYlp7JLGprfl4kt7i8gm2bH1dRGpFrHqJd60Q8SJiBjNkkzUiEibGPZ+aYwul7q2N2X+BePcdR9PZ8dmp4idkScfXyS33X+UnHLmcDn3oqMlZW6TtHwsLcln5dSzdVm/8X4RqZbmhh0itkiiPSmffvqKrN/wujzy+GUiUi9G5qBYRpOI7JBnXzxd/nxNP1lw5yTpIF/MmEhLg0ue7GtYJe+vuknWbrpf2o2vxOlkDCNy800zZf+Wt8RpbXX3Biu7VqVFRNaKIzvdzwwRx7IlY+/PrrfdEon+U0R2iJlaIbG2b+WDlTfJLYunyZr194kp68SUpBxsahSRiNhSI6a5T0RaZP/+V+TFl+eIyEERaZRodIuYmcZOgti1je9EpF5Ms8YlJR1TxBLJxE1JxZtEpFFMs0bisWr3b0a2z46R/Xd2n8nCkTr3/4ZIS0OjpJMN0tiy2t0bbBHJiBjWVsk4H8tL/5jt2pxxaE02NO7PHtMW00qJSI0kW5tFpFYaG9eKyG6JW2/LYy8cK2Ilsl/cIZOPQ/5y+yQRWyQVMUWkRazMFtm49Wa5/PczxU4dFEv2yq49b8vFlxwmCxdOlZ1bH5ATZ3UVSW0SSbeLxA2x0hmJx+NywgkniIiIbXeyvv8l/jMSafXq1f/y4EjEJZ8URck+ADr0MOk/I6E67jH27NnzL/cFvzxeMBgURVH+x37mkEMOOfxfQS6dLYcccvj/HQ4cOEBRURHz5s371eeLFi0C4NFHH6W6uhrTNBk7dix9+/b9VbulS5ei6zrffvstL7/88n/Zbvny5QCsXv0FblUsAAEFvF5IpVLYlsKAfiMZdNgY4m1JopEMe6sjKHjpUlgGqDgiqKonq8eTIJ1qIRwqZvS4HuCpw7CbGT16CBAGCeBYACpPPfk8AwcOxOu1iSYamVx1DBACPIgoXHjRpQwbNBGHMLoapKnZYejQifQq6I6JiYqBm9biMHL4eNyKPDr+UAgUN51i2bJlTJo0KdsujWXX0hzdwLEnjMcfDKGoKtBMxN5LIpXuTCvx6kXs2/sz3XvkUVHRBXBorG/CG4TCYkil6kGx8AU1PDo4JAATVINe/QZTWNIPKGPQwMOxsPDhw+8rQPcEME1QMYEMwbwy4jGLaEsd332/htPPPIFj507CsU3SEQ+pdBTUDIlMDEfLkLK24fc1k5GdlPexqGn4CoUMlmkiTopQEMJ+hW071lF/oJrBQ0dSVTWT+Wefy/jJ/Tl8cn/2bP2Sxffe8Qth8wxoTeBpcCVuBLAVnIwD4qZ/YLp5PumUoJHHiJGT6NfNFdtujdqceuZ8PJ6O2dAQNPy+IixTQ9Vslr56L/c9fgUL77maxoMH0ZUgU6ZOorW1laFD/UybFsa0k8QTDYhkyBgGHk+2L+IhP78c/j/23jvMiirr9/9UOrlPZ5puugmiCAioCAIiQUGRIAImUFBxVMQcEMxhMIGKY2R0DBhfFcWcFVBRBAURFFAyTWg6nT45VFj3jzrgzDjze987v3ufe987/X2eehrO2bXPrr3X3lV71fp+l2OQTQvgYeGiRSz7+ktMO47mSzH53HFANXAk2D3JWDm2bf+VoYPH8tjd39HzoPMAlbqGVZRVJGiIfIdm7KK0UiVU6NKdgnqQj975jEMqD+e4Yy6id9cLUM1OkGtPcVlHECiqqAAcUE3Qmtm5axu+vNBz2GfQpkKlR48a2te0RaGIwmA3DLUTI4ZN4bh+ExnY/2SO7T+OAX0mYGhdwCxB94RYvupmmlJfcP7Fw3l14ZO4lK2sW7EDiEHWNKmpqqHAXwaE0KWGfodP4fZZbzG4z9VMOOkROtf0BsDKyzDphpvWT9V8ZDIZALxGCZiVkCvFaxRS0zHI2An92Nf4C3tr9zF88AUce9Q0unYZhOZxOJAFUbzMmDmdL79aSbJFpUuX9qQTfqA9ClVkLT9QwJkTT+OLrz4gHt3AFyteY9CITjTv+w60KN4i1+YMn4Xt5GioaySTEmLRFKdM6MuHHy7kwgung+0nEs+w5Os3aYpupG2bcsLeoykv7IttCx6P78A6VlDoUgV1o5TyssM449QLAIv2NVXunMy0ECwNgZ3h1ltvoLa2FgBFhfKCMiqLKjhhxPGgmHi8sGnTGu65+0ZQM1w07VxOOWU8dXX1rF+/EZ/ux0uAjRvX4/VqLF/+FS3NeyltU07tlhYCfj+9DjsGlQLWrN4EThmZeCGZRAEQZuo5VzBh3NkoWg7YC1oDegBKSgEqaN/mGCqKexJv1lGdYixHJZ5MYEqCihqDX2uXoRSnXNriAaaUFyhCwUcilcV0QNFUPGqQRe+8w3U3XsTaDe8zasQA5j08l1BRZ044cSRtKkp4461nWb1pMQo2XkMDXN0gTdPAKaBtZU+69hgAjh8IUBBqh24U5383zbsfv8iMW6byy+ZvufHWC7jj7umkMztAM/EEwOv1Aj50tZSgvxpsnVQkQd3OPW7GuwPUVYffKIo6qZQDAiVl5Xj9QcpL2gIKyVgaVDC0QjxKKVPOvAYxVaxM/lQF2pSXuOOOja5luOPOU1i87HEiLSsoL1eBBubcN4uiUhu0ZmKpjUCAi6aN5oijSognf8EXNnHSGprRjq6HHMbhPXvxxdLP0UigkeXIXn1JJ3UOPnQwxx4zDrzVoBYCBqIYqKqK/P+UdH377bcBuPzyy//m806dOtGvXz9SqRQAy5cvB+Dll1/+XR3nnnsuAAsXLmTz5s2A+/zw9/VNmDABEfkdTa4VrWhFK/67Qv/Pi7SiFa1oxf9b6NevH+PHj//d5/s3P+A+FAIUFxf/rhxAQUEBAHv27AH4h/UBlJSU5B9GDSCf+UlxsCwvtbW1qHqaI/v0RscH4TBz736a2rpfaFtVCXjJmYKhe3ClH9wl2+cL0/2g4eRYyd13TiIYVvlq2SL69Z8KZFH9AF5mXH0nilHPMy/NpqXZ5JrLZ4PdFhzwaAEOrTieur0tlJaDrsPj91xHHAgAxfjRUwnwOqCV0KvrqdiWBWKg6RpgoepeXn35UwzbD3oE2MxjL1zGgCFHMvLY0YidI5bazh3zTmfgsSdyyrBTEByyacHnL6GwdDO9+1Qz8JijuOSCWzmo4xGgWqgE8QeSbNv5MXfOvpf77llAibccV/BYY+jgswAd2+mIz5vFYQc2DtmkQsAHaK4OSLQuyN1zpnJYH6G4qpbXX38NqAFyXHndRB7604eAScaKo3lBVVSWfv0qm7cuxet3+PTTjxk7+gyS8ThezY+hJtGIse6XVWzbupOTR57JRRffTk1NO0JBL1CPbdk88exTzJn7dN4C9r+rybpjozs4toqqW6i60LB7E599/jm9e/fh0B59QRVijW259g8LqI/V4g9nuGnWVDRMcpaBVwPNCaIQxMqCL5Bk/dZXWL/lbVavhrdfXUhpsBTsEoYPuAEtV85PP6+jxzFHcuygUYSCxdh2Bp/P1Z5ynLx2r5t0Dq+vGJw0fXoPoW1VEEODjLkRX7ASSVaj+CBr7SCZcrjwvDs4pN1RRJoTFJe0ASfEjGuWgZYXFVKyzH/oGopKdQpLImzb/QWdOvuJ535FkrcR9pdhpcFbmOCGm8cydGh/tm/fyosvv8fBXcHna8O8uW+gSppLL7+KB/80l8mnXIBCENdhWo2VS6B7TUpLKsha9Zw67kIKA2VAADO3B8NTyA03TmLsOXswDINBvSdxWKdwflxaQMuCUwQ2eI0id6jymmX7L0On3W+yZP4kYKPrkMuAxwug8cPqVSxd8iGJRIxbbn4QHMimwGu0o0PbEykr7kivQ8oh66V2927a1lQz5axLydEIBMhkFHzeME8uuIdfNg5h/U/fsnH9CnoetZt27cqwbYWSkkqSiRZe/Y/3eP7FByko0pk05SRm3Xoe9zz5MpdNe4gO1RNImi1oKPj0UsrbtgOlgFPHTWXOA0ewZAkMH7GGyupD8RWHmXzqDKKjz8BnBUg1ufc8AAAgAElEQVTtqeK8KfMRPUEq3YShhchlbEKBoOuQIAR4GTZ8Gk89OZP6vfv4avEyjhs8jNKSCs49bxoTJ47l1jtuIRgOc//9TxEOVWARZcrpl5HL5vB4PUCM8acN4NLpI3hs/gJ6dhrC0s9OJxqxSCQ0Vv34Pdtr9+D1FDFy5MmsXbeSwUPCVHc8FARK2xQieiFPPPkIqRahoMBPIgoQROEQBg88hG6HjMuvl3sRtQGHclQpBydIn94ngZoGfIgNgWAIcLjwost55tknGWKm0Y0yUPdr7wSBQ4EEoYIYDpDO+DCMYsaPPZ/uPUu4446JPPjwk3yx9FvIebGp5pTRV1FVVsBXK5eQStdTWFhOJBZHQScYCqOrBrpazVGHnwsSAscCx4Nj66gavPQf81ny9fNonjjPPf8ks26ZxOeLP8Lvb8Z2VDS1EEX35rXAdOyMm6hRC+ykuDBOJr0Ln7ca12GaBgpcX5IaJhDQsFOgaQ7iJFHUNNlsBE33uqtVNseKlctZ9uVH3HjTc+j7xfjVJm65azo1NTVcdM5MslLHBdOPZMlHy/hs8RoWf7qe+fNf5PqZdzBsxCRGHx8hHAhgi8Hx/S9k7U/fUVCgY2Vr0f2l1O/cSZv23fjD9AE8/cg8kJUc1KkXzXuzrFlRi5Vsy/Qr7gYpIhKJEiwowDBUUA1M09Xe+1eFtdu2bUv//v3p16/f776LRqO/++zvXxLtr2M/fv31VwzD+Iflevbs+S+1sRWtaEUr/q/F/+lQqFa0ohWt+N+Ff0Zn+8/KL1269ICOwl/rIvx92ZKSkv9yOZcWEReXGhEVEVs++3SpfPzRYhGxxTYtkZiI5GKSTKwXlyaRpyA4Ipl0PmzfiotYpkg0Iy++1EW27Rkqk6ciTy04UlwtjF2STK0XsVPS0lQnjmyUx549SZri70sysU1SzXJA78OOikhOxEw3ii1NUpv6VZISd2lsSXFllfIUhnREJBeT3zRjHFsiDXmeUUZEnKg4slFuu2tkvu1NIrJHVv3wmog0Siy2R3KSloS1y+0KS2T2vSfIDbcdIm+9d4mI1MqNM8fJ/EdnSy6VljvvO0lm3tFZ3vtyvPy49TqXf2W755kSl73xfZK1RExHpCmxVnbWLROxRaz9bbS2iEhUrr92isx9+HCZ8wxy3oWl8tabs6X/AGT77kdEnJykM3GxbVsSiZg4kpZXFt4vIuslFl8uiz990qWiZUXiTRER+VVmzxki9/xpkDQkXxeXZtQgIglxbFOi9TERyxYzs/uvOs9turX/EFebRaRekon1cuPMcbJx/Ruyb+8XEk9tEEca3dPSIuJkJCcxabEbpdnOSTJPhbOiDSKZprzezjfy8vuD5ZGnRsr23W+KmJk8Vc796yQzYiViLp9M4nnbc/W5bFskmRT5ce0qOWdqb4lE87SZ3G4RiYlYWRHTkmzclliDmafYREXkC7ltTm+596HjZfad54s4pmQScRGJS1YikpaoNKV2y6ada+W1hU+IbdVJMrpeRLaIlfxOXK2q+IHxdP+/4QCl8M3XbxBHXpFkY62INMkTf5kgP6ydLY//eZKIROTXdd/Jlg2fy8SzCmVP7Rqpq63/TdMqt98ebRGpl0jLGrFljYisF7F2iEjclZHJ5g9HRMSdJ47skIaWtXLVdWfKXXMvkbrG5WLJGmlJfCh/eni83Hn3IMnaG8WUZkmnrAO6NZl4WiKNv4irKbNDDmhtSUp+3rhQbrm3qzzy9AhJWUslnYhINLpB0taXkjQjYskW2a9lk4vnZPolVfLUX04SO75UNq65RZ79jytkxu0TxZF6cXWKTLHSCUnH94pjbxOX3va91Na+JG/8xxPusDsi6WyDWE7c7Q877l6/fCYfvnKHzJ55kSTjbgv3pbeIJS6d8L0XH5OZl0yWjVu/zF9DY34ex0WcnJjJtFix/ZzM5ZJLfCIfL7peRFZJcvd7IvKTNNd/LSJ7JOnUimmJJNMiWScn+2m8Ytsi8rWcPRUZPQb54KMbxJF6SSZykoztt4d6qW96T75d9YCIrJY7/jhSnn5liNx21wgRqZcPl8yUW+7tLktWXOWueY4tYufESeQnWDopsaa9v9mXI5K2N8ldjwyX2fcNll9/eE5cnbVdksu40kymIxI1fxFHmqSl2XI1ryQuTl73x8mJ5ExbHFkntqyVrBV157MjkpVN0hRZKiLf5kXqXPpqJi8rJXY6vybWu9RJyz2vPrVTMpKQjORh53WNDughbRKRT+WxBcfn58gOaWz6TlYs/0hEcmJm4rKrdrXMue8i2br9YxHZIYnkKqmtmydfrDhfDuuFrFj+qbg6Xb+6kyPn2oc42XxbmqQpslL+vOBMmX332eJYLXldpV2Sza2Wefedl7eBhIg0Sk6WS8R6Te55dLg0JpfKMy9fIpddgUyc4JN484eye9PaA5p8qcyPko6LNDbEJZn7UfbtyLrrmikiUivLV94kzz53sttnVlxEtsg9M7uIyDfy8cI/yeov38vbiy1NLfvEkohYEslr0omccMIJ8l8F/4SO9o/wwgsvHNA/EvmN5v6P8Nf3/wP3+v+kXCta0YpW/L+A1kikVrSiFa0AunfvTnNzM/3792fIkCGsWLHif+0PKAA+wIdlOWiaSiaTJZXKII6KqgAFaWbeOIihg/sw4pgb0fR2JHJfESry4fUdhJULo3rylISAF5ETuOO2BUyaMoTPPv6C1d/9hd59TyDgryaZ0CgsrMAxK5h+3osoNAI2BLNguW+b1aD7ka6WggOlRjO29QsevQSMTmRj4M0nv/KFf7sOy7bQdZWi0nI3asMEvCYKOV5a9CGOfi23zXwcTSrp1nEQkqrHbziAH8UpIZWGYABunvUQ0dR3KKrD/PnTuWDaH6iqGofuhekX3c28++5k08p2jB44hYED2nH1tTMYPuwC9BKDolAxODa6spGXXphGeWlHzhh7JJovgK0Bio5m7uOO2+7CU6CwZu0LbFv1KM+/PJvl33xDpqUa0gY+v4JpN+L3KSjYnDbubBCNglB7jjvuCOyMgaaBz1ME7OaYPtX06NadskB7sNqjiBfLSaB79xAubwGK0JwqcHRQG4AkkdQeCvwdMLQiHDyAFwcFX7Atd855hBnXnUd5WZCxIwfQvVd3HnzkdvbsiXHf/R9jSGe8FugGbiYrgUzGg1/NklZW89OPP3PywAcJBXu7Y5GFVAYChW4WQCUQQ7M9bkYnK4Gm1+FGaBSRjofxeAu4/74Z1DWvpijcETsNiXgcj15KoNgCJYJpRAh5urr1W2FQBnPt9I8oKFCBelpiy3jmmec4+8zzKKvsD3gJ+cOEa6roVNOTrOngD1eQTgte30HkcEizD0MN4QF0qcbMfsv9TwyhoqaEzoeMprTdVE6fMImff32NPkdVcNEFD3BE93Ykdhl07FDN0y/cxR/n3EFldYbZ915HpNFi3n0vkktBJg3hEhUUjaLCUiwzi+p0Bj0NpECpJ531k0o7lJa3A0pRCIGofP7eaxw/9ChUr4ap6Ch0Juyr4bKLDuaXjZ/jUWMA6J5iN6rDSOMNOXgDXfJRHhbQBKKCspmCoHDVlE/w+4rwqx6Sys88vuAC+h9byvfLarj2ivsByKRb8IWyXHLlLJKpFt5Z/Bbjxp7KoYf3AgnnJ5lDKhEjECxBM4Ik480EC72kUxptK6qYMNHPk8/cwxmTxlPg70Q8alFUAI8/eTOWuoVfv9rLow+/wUmnloKWxXGauHTqUPy+BB2qchzTtyPl1Zv44Zt9HNrpIXC6YeZAFDC8oAeM/XxK0LpiBA1OHHcckCBQVQ7s4dzJo3jh2Q8I+tuiF7iUNs023LXDgWQsSrCsLSX+Q6juCrfefA/Dht2GP+BSr9Ip0NVyigKj6dFlOJDg2htuxq+3cM700TzwxCgun3YfR/c+iTU/bABaQMmB0w5Fg3i0nvWbl7J4xT2cNm4aFeETyMbaUV5Two2XLSDdEuGCk4dBh3oK21Vz621LCFkHE/LB47PvpahA5+Jr5oF4aWiupby0jHgySsjXFsNSyaba4g1H+WrJVRw/dA7JVIhQuC3xlhglBe3JZQw8QUBrwOvPAo2gwqI3n+bRxx9j8ae/oFCJhkGJv20+26MDjoo4OpZTi6ZpqEohWDWgd2DqqYcDAcysQWlJiPd33c538x9j2NBT2bl3CZUdN3DBha/w+Sdb8RlVVFe0o9BfzwfvncMHH3zA0f075BfvFjCKUVARcm5mO1IUFxVz0bk3cNtd92KqLUQam6gor8C0YeDQAfxx3rHces1fgDZYTpxPPnodv1/48P0PmDrpCiJ1DXTv0oZQ8ZGEikrz9NBSNMfAEwBVVfAoBxOo9OSTlKZ585VX2L27lhEjzgLHAMfLmy++wupNvwJ+Thx/MWR00rEs/iKd4sIC4pk0QV8JuawbtOXxeBAyeZo3uLRD9UBG0X8FL774Iueccw6KorBo0aJ/rZJWtKIVrfg3QKsmUita0Yp/e3Tv3p0NGzbQrVu3A/oH/6th2zauFpFGMpnlg/c/ZsuWzezZs4u6ukYi0TgvPD+fgsIso04aihYKQgZCRTpr1r7Lrbdeie7RcLABARWGDj6bM067jtWrNlPZri0VFUFSLQ0IOoGgBwFyOYBSBH+epZNF9j9ga3+l++GAX/fg100gSTzRiLeU3x7IVZOcE2F33a/oehawyWRTOK6EDpGGWiDDqDGdGHRcXwSbXBb8hcV8uex1nn9xLt+vXYHX8BMIunW2tMS5/75HqNvbQDTWTKeDuqN5oCXZREm4lFtuupurrrmbF59dxOy7LuW004eRNRsxMFBQMFQLSNCxfSljR5+IangQZX8maYuMWYenIABSxBG9zqFXjwFMnz4dAF9BJShQt2sXhu5BVXRs00HBB0oYM+OQTmXQ8tIwugeQNI88/BJz7rmTz19/F7JG/jsDmwjCXhpbNqNoOrm0BeQwpZHbbr+E555/EIjnu9vAwY9NEMHPQZ270feovpQWBajf/j2BcJKag31AHABVXMqZqmURieL1Cf/xyvMsWvQ027dvJ1R4sLtxMyGXEwJFDmammUyqAWjgnvsvZ/ad03jzneeIpSPcfvcMbr5jGq+8/iCGL0MsXstllw7GiQXRPKUUtSkkUGLS2LQVSCOO6wzYr6KYiIKhluKIzq76n3nu5XtpaFrLO+++gIpK3u8IefMxDBUb0P0KjgqRVJSxF4zn1ntmsG7jBnC8XHXVNZw4ahBdulfz0hsvc/IZxxGTtQw8vjvduvfBTDskmloIlYGq+bj4kusxlGpWrF1JeUWQ9geF2bV3NY7WyONP3c78J+5j/cafAQPdCIHTQjq6EWhE9WXxF6iUtnEpqdu3NYAToGnPDoYPG8LJo05n9LAzaFvShURKQdGK0PRKuncfgZV1nTmRhp2gW0Rbdrsdv/9iRQe8RBp+4c57p/HeB69RUlaDP1RAvCFGMCAMGNCFjLmH5qZNKKggNr6gwa5dO+jR5QT6HTGBUaOnAO3BCYMD2zZvBrL4AypWLuvasDeMmRb8gTIUzctts6+ivuVb9uz7CRWHwsIgqUyCiy4+l/MuOJc+ffu5/kMli5NpxM5FaVtWyLgxJxEIOBQW21S2VVm/bhlYabBcp45mQCyZIpaIgAamaWHjRQiSSmpg+8DS+GrxYo4d0Jd5985FLyjCsQXLZn+WeTBMgqUamXgTkyadTUPjHoYMPhIzp+CI66zyBdy5pusQ8HsRQqhKMSpVTBh/OkXFQRA/JeFDOH7IBHfhwiaXZwwXFPk4tGsnTh47nAf+dBMbN39FebUPV4ysDH/oUM49+2LWrodgoVAcUAj5Ye/W3Vx/6438uv47IA22Q1GoFJsUih53J6ADXn8Z4GX5Vx+zfuOnhMJpIEeHjoeSTYfx+MIgQfbVb+HL5Qu5atYk9uxeS3mbAkaOOo6LLzsjP69NVAwUVBRsMilQND+GrqMqFjmzmUzGIhPT8AfKMbNJDMPAlAwTTxvFnr3beHfRO5x4/AQyqTQnnjAa8KKpOkg5BeGutK/pwcCBA92O2e9gwQRxAA+CiqAjuP1cWdUJyzFBsxB0gr4Sju5zDDUdSli3aRUrV33N3Ln30KF9Z/odNZhYcxpQ6X3kWAYPPQXQQcmQzuwDJUssFgPFQtMUUAL5Dszi5Boob1NEIm4T8pVBphnUJOPPncjEKeNhv9aRDv5CA0gTT9QR9ulkM3GamxpZ9vVSEokYH3z4Hiu//5Z0Nn3gXuve8/7nsd+BBPD8888zZMiQf62iVrSiFa34N0BrJFIrWtGKf1ts27aN0aNHH3AgrV+//ndlli5dysyZM//l38hkMvh8PldINQ9FsfH6FHJWDFVVaG7ZRdeu3ejSpSuP/2Uj3bos4ORBXTGsMh6ddztZmpkxYz6QRsWL42jkEg7VNd2orgnz9rvzSKVirKzcyPhTBgMhHIFMJkcg6MENHyjF3UT4fxN8Jg2a1938aiZbd67ivY8WUFZaxVmn3uruzxxAwFKaufv+q9B0hzPPmMwh7Qcg6KgEQKC4vBJopChQzbC+o8jmLPxeiEbWsuaXNxlzygQ6tu+FSIJYPEth2MeF0y7i+QUP4fcXcv2s00knPWjBJN+sfYGVy99hSP8hHD9wMnvrNzBi7GggRUVFDYKBLaCIDk4bjh88jUCgPWR0bAFNhyefu4dONTlGHn8lKIXsrt1C3/69yZoR7p13NSOGXsyRR06ibbuOxBstvB4djx/MDKg+EMniLzCAZlDLwQbbcjju+MPZuG4DOUfA47i6KUqWzVt+4cefltGr23DKwpDLWniCHgylkEsuvoaAtxrwoIi7o1bRcBQNCDLtguvQdYeLpgwnFa3lulunEwyXg+Mj1txMQUEJChbQiG03o4d1vl35Ao88ORtXwaoJ1AR4LTyBZqCJ2x6YRkFBkLr6ZoadOJC+fY7BQ3fC/r4M6Duaqo7CYYdUUrvvA267+1w+/HA2h5bu49C+pTz65CQ+X/Y5x/aZRHVFP8489UpsE5LaOgo85YRKfESTu/jxxxW0xH/gw08/pk2JQSjoQyGGQpjf4GCJhaYYqCi8/+H7vPfx+3RqU8M5Zw8i3vADmZSPx+Z/Ck4JzS1x+h81j0P67mT7rzlGHnMtZUYvoB5TNnLpVbcx65oXaN+pKx0rT6WqTQP9eu3XfGkG1jL10u5UFHQlkQphWV62b/2ZxpYFvPfBZ2RSCr26j6ZH9/H07nM8CHTsVMH8v8zilYX38fyClyilGzYBAAKBJjLOXsQy8Es7Zlw9C1uiOGqMe+c8RqzFR2FREPIRSq74fJCX3ryaE05ux5ZfWsDTBCQpaNPIVbNGc+fdN/PxZ7t5891llJVNZ+zISyktrqGy/AgycRvQ8Pk8rmZNyCKR3MlfFtxCOttMJpNl/iOvY2YCGN5CNEIgDmYywx23/JFY7geeeuIVqiYfiW360DSF3bvrKC4tZtK5E5lz/01s3rKDG265l+qOHXjkkffZt2cD8RaLaAQ6dRpAfd1PxJtNbJqJJtLowSANTRvBsQmHjsB2HKKpelTx4TcKiSdaiEd3M2jwiRx71CAee+AlqE8QN5rIqGl8toamZgkFVJZ/+xlLl7zLDTfcjNd/Jb2PGkcyaZPMbCEc0FxBazVMNluE1+PHNr349W401dcy4cQHyZh7+WHVj7zzzlwC/hA33TAb8CNqwtUV0qAoXEVR+HI6tK1l9dpP+X71F0w+/XbCRT5QVE48/0bWXTyENTu+ZvEXrzCk63jaFCnMnTWDeU8sgFwQVC8fvvsli1c+xWG9OnPh5CvAX0kuloRknGP6TuZP8y+n0yEHc+NVj1K7w0tNZS/IQjYHFW16UNGmDW3aBHnt1U8ZOWYYJxzfjmz6y7yNeFHE1WED8HkBRyeVy7B+ww88/vhjPHDffIqL27CnbgN33HU5ndoP47ypf6C05ChGDrkFw6qExBGcPupBisrau3NADSFOHEVznZk9ewzDfdRX3YifvH9GEUDxgFKQvx+YTJ96C+AQKBGiiXoKQ0EgwGmj76bAdxCQI+NspEfXE7AyhUT3/gykGTp4MlYuiW03EomtY+Hrr6Brfi48/2awdcTSXSecZiO5BJYdp98xh/L5kucxlR1cce0VHHVEX6acez6qfZjbLm0raDqXXTyNMyaNp6S0gEBBjnkPPczWLSbPPfsONlF0XWdfXRO9evjY77p2dcr+5/D3DqS/T7rxX0UkEvmXzmtFK1rRiv9uaHUitaIVrfi3xLZt2+jRowepVIr+/fv/LgJp5syZzJo1658+FEYiEdq1a3dAlPPNN9/8h86mVCpFr169iMUSKIpQUBAkHA4yfPggunStIRaP0Pngtghp+vUfzMgR/Vm6dCmfvvEHnnh2JUf16cH7n72BkGPrlnV0qO6FZqj4goCtgxqmX5/x9O1zOD0OG4OVULGzGhmnnsKwB2jAckLoFLoOIYW8krIbzYBigWoDCV5duIANvy7H5w1y1qlXgVqMOD4UQEel88Ht6XJoRyraluCQw+8rcOkJmsW9t19L1o5y8rgzUCnG7ykGsSgsMahrWc+Lr+7jxmsvRFVNCsMaQjMLX13oNkYMnFQ5fr+PMZPGoYe38fi82VQFD8JJhbnu6vngTUFWx4yUYhS7kQqSAcXXiaA/SC6Rw+MRdDULJPEaMPL4P+DQjEqED7++nTMmHssDD93PtAtvpyJ0BKC6zhc9jidUCYARAEji8bsb/4XvPs7Bbc+nc4fDCLcpoGePgTh2ASNPOx2cDKgO33z5PouXv8a0iy6jvLgrWBAq9AFZRHx0O3ggECKVyBIIRfI+PM2NQsFys6Th8M03Wzj7jH7cfM1jrFptMX7sdzz0yFuuv8/SQfGgewp58c93UxQswMxVYhglOJkwqt9LKrqXlxY+TKCoic5dSmnXrootW/306XEuleGjwS7FSjv07DqSiopyHCtCTUUTj/35Bi65+Bz8/Mh7n77GuRf14Yh+FfTreT2G2o5MtgGfH3wUImhYNhQGq+l3RBvgWBJNhYw+aTQ+X3newPaHAribOl1RydlpPJrO6JHDGT1yKDEzTbFeiVW1E11fx7Zffdx5x9eESoroeVwpR1SewdGVlTjZojxNbC+fLHmBx/58Locd2Y3hg4/loQe/ItbSSGlZiFgMCgu7Ah5KjBypuE2oIAhAMBCiuupcjup9KoZuMPfBP7Llkw28+cEDzL79QcCk2+GFvHrWk6z49gdKK47Bp1Xg4MeyCvDqAUwtA3qOP82/m0xmGymzls8+f5/xY252fbR6HGjCdRCU0r66J888+WcOO2Q08XoVzd/Monfno6uFhLRRDO9zLKeu3kJCEjz35AucPuFCLMePryAAmFi5KHqogERiD6ECnW49KykqqeKBBx7hwUdncfVlDwAmrjfVg89fSrrRZtXKXVxz+TVs+fknOrQ7CtVsR7isimRuL0awkTETTkHVfEy79HJeW/g+OdNHScnRnHlGF/bu3UJl2xLaV24lnfHg8yfp0DFANLWBju1tdPxkk7vxBWpobMmAmIhq89Xij9jw83dE6jYRra/nzlvmQYkHXzqEgoVXA7RmQBjQ/yR6dh0MdKD3kceA40XXFJKZJpZ8/R6fL13Iw3c9g9fbEcFGU0NYaSgtqSHTAumcnw4dm7n1j5fw1psfAGHAj+5JuqYnWVB8YJVyw3WPs6n2debedxcXn/eQyxqzIdLswSgtIhn18s3nrzByyHGwq46Qx8ZdXDwgFmNPG4S/dAdfLPuS/ZE8nrAX8NN/YB/6jejFvfffx+vvPUXHmj7UdOiI7QTwBnWwQ6AG6Nr5NLpeczKQJmcm2b1bxc3EZ+xP1OmG+SkgFgT8bTi819HMuM6LP5TFYQ9lbW1Gje1L/W4fbctqwHY4rJeFR1X4ctnrLP7mZY4c0JVjB43HrwwiEHTjHeORHAXhkr+9IanuWoOdp33t1w5XDFANbAc03SQUCgFCNJakMNzDpVQqUfr2GYxf6Q5aBSOG9yYSXUGxF3QjCFoC1chw5lkjeeONRVhOI7pajKCCZuFYTahe4bXXFvD96k944IE70FQ/h/fuwI7dPzL90kt44i8/s+Tz+1my7BlMM8v4CRNYveJzCgs8vPfxQvzFkMpCIreeXzavpaSkhL5HHQuiEo+lyZkpSktDuNFX/zWyxdy5c7n++uuB/28H0hdffPG76KR169Yd+HeXLl349ttv2bZt2+/EtZcuXQpAVVXVf6lNrWhFK1rxfzta6WytaEUr/u3w1w6kyZMn/1MKWyAQYMWKFWzbtu1vPp8yZQoiwtChQxkyZAiGYbBq1arflRs1ahQAnTsfTDgcymd0c9izdxeWk6UgHKCubhc+Q3Oz3wBH9z2WyspKjh82EOwWSkoLqa2t5dVXX+Wgzp3QlHyedxOyiRzpuMnUc2fQ47DjAD/xhIk34CEQ0IEkidxedFVxnT02+U2DlT/yWiX5ncQZp09C1/yMGjmOppZ6wELRyO90DEaNmEjP7oMo9NSQTFq0RFtAhWxyO598tgjLSdK2oppsyiQbz4HobNu2iTYVVfQ+aiCGWoJjCVkzhZKnoYCOIxqqz8e+PVAcOpaD2p2KV+0BVKF6i/nxhyWMOekgzpjYFaPNDvf1h+Xue8QClEI8oXLwWOSsfUAjkydOAqqxcgfjON04qO1UwpzJhBMfp6pgHJrSmVgkBjTzyJ9v4Kf1n4HaQjK5B1FagDhCI/5Qmk6dKjA8ritt+8597K1r4esvvwHHws7G2Fm7hbFjTqa8uBPg+au02jqK4mdffRPpVBZV3d+Zbl2uI8kLhIk1pgj6dLxGOQcfWsalV3Tn9LP6oBhbsXN7QdkH6l5gH7HkeoaNOArD0wVybcEqBTNEwN+RqjY9Ofu06xl49BnEmkIMHjiOkK8zkisFGzLZKFU17YhFTRJRHxAi7D+U9k58lCQAACAASURBVBVTKK8o4ptvvmH3Nh/dq2eiJHtCrgSfV6Mh/jMGBirwyy8bWfndKsCDSIBTx/0BQy0nsi+B625UUdHzh4GKgU8LoKITaWmmpSWJ3ykjk8ghuTAQ5sobh7N2+yOYxjqKCnohdCGZ1UjnIm53OYdz8nH3UbszyGVX9CNYsou6yPuEAhUoUkNhwaEgBSBeDCNIIFCGnfSTbvZTWXE4Bodh6BWARtbazd765YTLWoAIO2q3cPThJ1AcPIKBx4zCtGOYRFABMX0gQXQ9jEM9qVgOn68LJQWdOHHUUSRzP4G+F4jgZi8rB9vPzm3NFIc70dzgUFBczMLXX6aiMsyYMaNo2JOgsPgwbKoJKUdz6bSHaVPaB6/hZrhDAugePygWoYIybMtg7JjTOeigLpx99pmEQj6279gAZLHtNCgmaC2s2/gyH3x+I28vvJ/VKz9j65YlqOWbEG0zjpNmz65mSkuqqGzbkeHDRlJUWE48mqOhKcHefSkMXyW+YDvaVHSjsKANuiGgZmho+pXJ557MxZeeyfqf11C7fQcFwXLCwRJCoRADB/Rn3NhTOKRzF6qr2/H0sw+TrF1LNBLDzgmJWIJ9e+sByKTThIragV0CVhDSOl6PRpuidhzeoy+H9+jLhm2bAduNvlPB3u9tESguLaFtWRleHGrat6GpPorkvGiGFxTI5VzNOJEcYHNITR8mnX4JLS0JUAxUwyDnKHiNcvr2Gsyo4UOgaTNUBWlfXeWuiYoJ6m5aWn7mhOPGMPWcK3GkApwQTibHimWf8OJrj6LaFQzqdzaxaI5XX58PbELzbQPDBBvMpEo2Xgjix8yBxyihuLASRDuQAdBdKxxQXF8S6Bh6mO6HHoHPKETFh4cwpcU15LIODU0R0Lx8t3Yhr713I299/Ee69Qrx08YlFISEQMAANDJJE0MPYab5bT1SLVCaQWkAPeX6rpT8kXcoaQpuBk58ZLIm2WyWrVvX424XfPiVanD8B6JUiwsPAg2ikTigUxKqoSRYwyGde6CrBo4dxQiaoKQwJY5pRxk+YhgHdT4YVfUBBn37DuHnn7dRXd0NHIgnYxSX6jyzYCvRlkb69z6GEcNPpk0ZOCZ07V6EaUfpdFAZixcvJpXKEIuaFBT4KS0t5bcQ2v8cU6ZMYdasWfj9fpYsWfIPHUiXXnopwAEq9F/jgw8+QFEUTj/9dAYMGADAWWed9Tdltm3bxhdffIFhGP9yhFMrWtGKVvzfBkVE5D8v1opWtKIV//1QWlpKc3Mzf7/MBYNBUqkUgUCAXr16/e688ePHM3PmTObOncusWbNQFOVAxFE0GmXDhg0EAgF++uknOnXqxDXXXMODDz74T8slE0m3YjekBFdDxeT+B+dS37CXGTOuok1JO3B0NmxcxEOPnc+Jx05lwsQbePKJ6RzctSvHDbkCRfFDtsTdhKgecFJkc3E8/hyKroMdBNtAVA/1zT/y0KOzGTP2OI7pOxkypW4bNMBIAI4bwWKQ31wksZw9bPzlRyoraygt6oT7lt8CvOSyXuIxk9IS729+EMUiYzaTlVVMu+RsLpx6MUOPOQ0ldwiSLUDzQCSxio3bFzKgzxiy8WPxFmSp3fkTny55lWg0wqWX3oBHC5PN+PB4QyQVqN33Ay8+ewdnTBhPp/JOTJt+IpPOP4wVK1dz2oQ/cGT32yFbCh4/trI/O71gs53nF9xBNLKbqy6/BUMbTCIq+HwKugHZXA6vX3fFfWyIJxMUFG7m5TfmM/HUy1FxHRqJeASPL4ei5ahr2EhNxRiwvaTTG/j8qzc4um9/2pQdBk6ASNM2issLgCRQDXjzjgAF04xi+DSSiWaCwSLE1khHWvB6g2iBItLxHP4Cj9vFGi6VR9IsfmcOnbvU0KH7ULCqMOMKRqgQ0mlXx8pTD4aA0hkcHUmB47jMRLwZUOO4myjd1VLxmriRZ67TcOuuFTz06F2MOGEso4ZdBQTBbgZtOQvffwgzW0jvblfTtctJWGYW3bec5z+cyaEdJlJZUcXGDVvA9nDikJGAxi23zeKgjjUE/DpnTrwNKMJxVCwTPHk/pTjkHZKWqxtkQbQxQmG4mPrIejbsuw9/WQzDaM8hVXeiOEEUFQzWYZADqzPk3FTsBLYBaRx0VEqBIJloGl+wgmzMQddVtACgOKCa2JkYjz/5EC3p71n+3ccMG9aVCePO48fVOxg35iaseDGptEa4zEt9tA5/UCXkKQDHTzoBmg90T5YX37weO72dXNLk4gvnAEWAhmmDoZXh7tbTQAvz599GVrZRt8vk3rvf4r6HT2LH3tV4fbD2Gy+FwYOZesH5VFYcRu/DRxxIzx6JJClu4weJk87E8XurEQsUbwvCbhRsook0haFq9r8HNHNJDE+hy6PyRrjrhvEc3vNoVn+3k1lXLyTjBLFIgZ6gqCiMbQuCjsfvJ5nNYFkW6IKjWBT4A5C0cWxIZfbiDSRZvvp5tmxfQ5/egzhrwhzWrGpE9DBeQ0X15HDS9ezc/isdD2rDtg0rWfDMn9AN4fxL57Hyh+/4bvVXlLRxOOjgKvbV1TP9gruA9mC5NFHHgViqjqJSH5DCthQ03QByZK0GDF2INFv4tW4EwhpffncPP21Yhpku5MqLFuX94Q4odt7O47z1wSOMGzUVnAqww/n55Q5RcxQUbS8F4RQ/LHuCt556iKBRQEusnNlPfopeGELjF1599c8s+7qWRx5+iT27Vaoqy0FtBvbxzvt3MXb0o1gZP6pvJ1+vfJVBRx8LBMnmCvF6OoEYZBI5fCFPXsTaBBRyKR2Pz4+VAd1vufN+v/icLaApZFIJfAGDv/JIY9omCgWoOT+q/yP2NH3ALTc9Rk1NDccMHcLAgWcSZIy7IPJbleLkUIwcd8+5hC07vsEhyVkTL+KEwafhSIhsWsXvb+fOy/0/p7jzx3K28OW3L3P8wCux00VofpNULEEgWOxejgp4Yvl/GIgprn4aKRQtzauvP8kXX37GvXMfpLZ2N2vWrObtRW9w3YwZ9O7VB80IEalrwrZUyqq6g+2nOfUZN902hlwmx9OPLQMOJVNfT+3er1i1/m2GnjyaZ557h4cf+Ji6HRkQ72/afftp2hj8NdlCUZTfRRzvv28D9O/fn3+E/eX36yaWlJTQpUsXAFatWoVpmn9T7/5njn9UbvLkybzwwgv/8Hda0YpWtOK/Hf6P5oZrRSta0Yr/jSgpKfmHqXn52/fAvzv+OhXwCy+8INXV1Qe+UxRFunXrJlu3bv2bOufMmfPPyzl/XdIWkZwkUg1y1uRT5I23nhWRiMSSu0QkISeP6iTf/3CxiHwk1116tLz8/ERpiSwSM7NXRHaJFdsjZnSvSLZZnHSTmIl6sbP51NBmRsTMSSa9U35Y87Lc98BkEflJROrclNGm5LPOR0QkIZITSUbMfEr4hIhTL4n4DhG7RaxsQtx8zPXSEt/pNjsrkom5f9000KbYskdmPzNehk7xyyc/zhFLdrjXeyDVekLc9OKb3Rz3skdENsusm06StLVO3DTiERGJS8LZLFlZKZNneaTenitJWSDHDymRJx+7VDZt+ot8+dUct6wTF5EmNx23WLLPEdltxeS72pdk3Hk+ufehwSKyMd/fe0RkvXyy/Hp5eMFI+WHz/SKyXtLZ5vxF7JDG5hXipq7Puf2UE0lH3L9OWiTXkhExs/l21h3oE0ci4qbPXiMiP4qbCj3pnuSkRSQjVjYmIilJxvZJKl4vdvpzeeLhsbLo9Wtl5YpHZOp5vfNj9KP88eahsu2nh+WTdyfJo/OOkKfmnyirv3tcok3fipgJyTbXidhN8txjf5CvPpkl4qwRM/OzSK5exIyIk6kTkV2yc+sXItIkdqrRzayei+bb/ZOIfCODRiAXX1shIt+Lk0uL5EQyu0VmX3eniOyUeQ+Nkbc+PVXefnu+iCXS0pQRkZWSlu/z1/mDpO0fRGSbmGattETWueMr37vj6dgH0qvbKdfurJTb3Zlki4hkxM4k8zaZkVwiIVauWd78/Bx58IWuctcT/WVHbUayOddk9kU/kktm6PLAY11kT+3rrl1lRay0LTNurpSXFo6UZxacKSJNrt3lROzULkml35Z5j/aRHzZeKUu+eFJEfhaRjWJZv4pIVPZuXy9iNsuj8y6RZ5+eKTt2/CxiiWQjedtNi2ST+0Rkh4jskEjqp7xdbRGxczLvgSvl5UVT5Zqbj5Lmlp3i5EQySRGRlIhZJ1nzE0mmPhGROln07lRJy5/k4ac7y5Iv/ih/vGO8XH97d3n2lUly063jJZH8WUTq8+O0W0QaRCQjZsJti5VJ5+2vSRzLPUR2ybqfF8mYcTVy511j5N45g+TWG9uIyGty9XlFcv3F7WTGZQdLU92XIhKRxL7dIqkWkWxUrJadko5sFpF9kslsl5bUZtkX3yi7m9aLnYlJriUikV1rRMwf5cO3z5ahg5EP3z1LGnd/Kg1bNotkTInv2S52dJPE61bK1h/flnT9SnGiyyTT8oqs/OoamXf3VIk1rpTa7e/LggXnS8Z8T5pib4rIRrf9OZGmPSmRtEhkX5Obzt0x82ndoyJSK+9/Mkuuuv4QOeu8g8WR7WJam0XkWxH5SpZ9+7hrIKZrayIpETvh9svWW+XcC3pILi5iNomY6Yz7vSREnCYRJyciccmlPpbnHxwqV08qlrfm3yC5eIM40iQi6+WrxffIRRf0kZzp2vry71+XPz10jTw470rJxNeJSEqsTFJSid2u7Uk8P9fismXbR/LWe3dIwlx+YK10JJ5fI0xJx2OSibfkz9sjv2x6T6LRX9zvYin3nP2H5dq7I1GJ/A/23jpKrirt//0cP+Vd7d1xd0ISYiRBggULzgDB3SFk0ODuFtwGdyfBIVhgkCghxD3d6bSVVx3d94/TMPPOveudP+5v3nfdu+qTVatXr1RyqvZ+zj5nP+d5vt90UxCXqWYhnMVCiMVCuMvE3I9uFGecP1HcdOss4RX/eY22u+JqgxDi7+Kqm0cIX7wh5n15ihi9K+LqG3cVn3x5rRBiddf7sqKQygXnbE4I398sPv7mnCAu7eBctorbxR/XD+EKUbSWCiG2Ca/kB8ctdr1EuxBioWjNvi7Ov3SPrjVinfjquxe6jpUWws4E8+cIIfJCeLYQQqwVT78wQ5x29kAh7I3BcfLBWiHEuq41aLk46bRpIpfvFEJ0fVe/6/XnwP2Df72uCyHEhAkT/u29wL++X9O0P/8uHA6L/fffX/wr/0/vmzlz5v/tfWXKlCnz/2XKlUhlypQp8z9OUGr/8ScfkkjEGTt2LKoik0238e1Xb/PqOxcycsgoFv64iYcefYRorCe6OZF0egWJZAIQWJk0Rrwa0EDE8G0ZT3ZRNZm29q84YNq+RCNVzP9qKb7tIus64GPlixiRShAR8AxQfCxrO4ZpEjy5DQVPkxUd27YoljIkKqK4vo0qK7S0tlBdXR201XX5cF3+7DWs3rCG3vW9mHXqVVRJtYTU4GvahWb0uEX7jg08/bcH2HlsHz786H0qK/tw5eVPosm98D0ZSXERlMhnPX746S0mjxtNONaD9OYwoaiGHGtHKCq+X4VsFdEiDk35zZiRoeywZSyvjaeeOpEbLjibJA1IDAV0fPLI+GzatpFouApFUQmFIhiaSsHKETYSgIrvOMiqSiFrEY7GsHPgOBCJ0eVO52OVCkiaiiNkTEPHsdt57LHrkfwsPbp34/AjriPoswv0pkp5D9MMB/ZW2IBgnz1jTD+imr33PZwPPvyMrdvaiMQijB45nF1GDeaaqx6i0KlTmRzII088gazVomp1uIUoqg47mjYSiqwjVgXZnEcs2gBE+MN56ZlnHkBC5pRTLwdM8KuCQ7vBr7ffdzK77T6eXccdyo5tMmZIJl4ZDvpE/CiorTzw6HFst75i2qRZTB49E8XrRspeg2d1p6oqhGXnUIgEbZJu16E9AaGmrvgOAUrQ/uPIyJoEeCDngRxgkM3axGIOUAmlKGiQyi4nFlPIFzuIR+txRT+KaYjFIJVeQEVSBpEEu09XRd16INM1tg5PPH07GzetZsuWLYTMBEcdcSK6FmLrVpsZM+4AobJmxQa61fVBkcCIw8JFT/HgE2dwzgVH0bvn8dRX7gNOCEoliHSCvCXomZRqgD5AOghsv4J8ppNIRaA/k8sZGHocTYdsNk3MTIC2BsjTsilBXa84xdxWQtEYfjGJbOogteB6Hp3tHjW13bGKBXzfx7F94rFG/BLYUgeW20IiUUnL9laqkt1RtQoAdrQup6VtLbXdTeoSPfB8ieXf/8yzj9/BfS88BekCi5fsYMDI3clZLrVxix+++pgXX3yeO2+7CRSJx595nsq6RkaOm0KfwTthWTa6p0BJpqo6CqKdRx44B+Q8v63YyN13zUX16rjv9vNZ8Pf57Dx2MJXVvWhpyTN79hwiiQoypQ3ops2O9RXEInUoBnjkSTYGmlmepaHIOi3boa4OQFCyNmHGVLZtWcG8eR9z5tkXAyVsu4NnX3iW2upBHHrIUbheEVWupFhwURUdzTTxHQ9ZjgaVSJKF72eQle28+958Dp0+M6iY0VP88ONctq1bQm7zIvY+8A66Dx0Dylbs/Cq+//on9tj3AjwLlEjQzgoeTz/xJCeeehqoCj4yP32/jB8XLOGkGedT01hNIZciHK0Ex/hHBZAO7ZkFbG5ayMOPzeHxB9YgSTZCFFEkj0KuSNiMBKJuWoFNG5by6JNPcPutz4NfAy64LqihrmuFH1ROoheD34uRoMLISvPg4+cRi/Xi1NOvAs3h3odnc8mZD3VZOlpAAV9k8HwLTVEoWGnCRggo0LxjNX979nFWrVrJuHETsYsmRxx6Mj17TwSvAs/yKbntROItwABwDApWM+FoEVBJpywSFRBUrBrgBfplwgmucEq4CDQTVIdVIAhRtC3Cepc9p+jqpRP/pKwh+eSz7ciaTGdnmtra3qhKCN8DWQaBh+tn8X2fgw86jE8/mR8sQP+6k5EoU6ZMmTL/QcqaSGXKlCnzP06QfAmZMRLxanxPwfPBcWwmT9qdmpokw4cPJZlMkIhXoodr8YqQSNaAU8DOtPDOe6/iWxlwS4CEh4SmaUj4XDH7AoYM7c/Mi2cBIWQ9DOTYtPFnzr/wZFqbtuEWCiBBurMZw1QAh82b1uHbLq4bJLlUVSdsBokqVS7w49I3mfvZQ7z/8cNABtvLs2H9Dl56bT69Bkzm2JMuJWLUouhQtIKvqemC5Ut+5u8/zael/Wfeef8xho6oZ9ZfL0AWKvgykgS2qwIRYmaCfSfNIBztD26SRHUITVNRtRCyrGALkDQdUKiMVOEi8/q7c7n+ljvY2tKKTJSU4wd6K2h4ro7jqfTqNoyqZC8qYt0w1Aos20fXgsRZR2srsuaClCMcL+F6zaClEErnP9pgAMOMomkmiqzTmS6i6yGampo4/PDDOfzIo7o2RX9oPXmYkRCe52EXA/vpHS1bmLbfcMaP3oshA/dgYN+RLFuSZcLYvendczhrVzdj6nDO2ddy3jnXoYd7IkQEMFC7HIdc4ROrSvLcsw/w84+/0bYjRZC0CRTTFy5cyKGHHk4xm8a3LBC5wJipS/OkrnoQu47bn472NLXdKohXKkCKXOevXHP1kSxZ+BmnnXomY3buhet6FItZkKAiWkk8GsJzwLY8VFX6p/YRQAhynTvw/DRQAEogl5A1GyQXIXJks82AjSBLLBbMT6qzgOND646tVCQGoEgDCLkDcOw0Pq2YMUBAwtwF7GEg1YPhgmYBOng9gQaEa7B23Qqm7jOScMzn9DNm0Lw1z+67n8qMI6/kj9aWAUP6oBtgxKCQ6uS7776md+8kO40cTn1lLdDB8kVv8eGH9/H3L56FUgrcwCJ9R1MLqZYC+OGgLQ8l0JoSNYEQsVzAdrLEYgmQ4PeV33H73Zfw5tsvgqsRivYKWkilePB5RA2y342amoGAgRHSufHmSznuhOls2boG2YC8vZann7+Z+x68irr6GlRD+8PVntq63gwaOBzPFQhMXD/Ce+/+nddf+52mxevACzNy5O4YoRpcT2b9+sV8MO9Z1q9byMsvPkSsIc6I4f2pr0ny848/EjerKORLZAvtVDXWYnV2km5u5eADDqNX9/4MGzqSUFUdra3b+H7BPM44/QCWLF7EgP6NbN60AVmOks/pINVRtOP0HDSMWCyBJhkkk/XYGQcn66JoOihQ1wD5AtilFGbMB5q5+sZT2LZjIZs2LgIUdK2WM0+7hkMPObPrfFZBVBEy6oKkhSh0xRiAApKErISBHhx0wHEgZSh528hkmlizbgkrVn7Lkh/n881Xn3YlL6Loke70HzoWRAglFCKdaWL7xoU0r13GjONOwXdDeF4UnUrGjZ/ExMmTSFZGCXTNAlcwy7JBBa8rkVRV0Y1RQydTEe8GgC9cJEngY2MaCqg+KA6IHD171NK7dy/+SIZkUiI43yUnaIOTA82kXLaI7dq4Xfp2i5d+zeqNnxGKlhC+SqHgM3HXMbhe1/mHRSbTgizpaEoUiBE2+lPIVWIXIzTUjqBU9Lnooovp1r2arU2r+fvPnwF5cAsohkwkWoPrVIJvgAzhqEXQLmZx74NX8cvytwm0wP7h+inpICQPkPG9MEHbZxyIIhPFFxogUSxkAAe7sB2kFEgZwEN4IUJGI431Q/B8CQ8HX3FwJfAkhWxGoZDVUOQoIGPbfwj58y9aU2XKlClT5j9FuRKpTJkyZf43ELBh/WYQEvX19YQiGl6pFUUp8tDjJ7Jy5SJ23mkyp5x+HpKoRWYsrtuGagaVEIt+XsDosVPpaElTWTcYuySjmwotO7Zx0627cdF5VzNgwJ6IYg22SLFh2xcsWPAJU/c4iD499wQpRK6YIhrWueGmS9nRuoWRw8dy5hl3gpDJFzJEomHw1UAziU2cNnN/Tjr5GCaN3AOXRiRqgUqWZ6AqHty3JwlSGhrgFjvQTIu775hNyVnPrnvbvPX6D5x22jmMHn4KMJRMMYKiBYdRgLAPyO1AiVKqhBnuBwq0pFcTr0wgUYdJnoefvJGiuZXd9rmJZ1/4isFDu3H8gQO4/+Gz+Oztn/j+vTTCBF+2kOUsEhlAxUVBpRowcGwbXS9x4kl78tfLLmCnYTvz2ttPsmzlPNau2US3upFcOetRamqGdeluGF0P0H2gSDaXIRYBSfpDc6gHQWlOl/MdJsVciVA0TlAt44FIgSSTS7tEE5WBXombAVXqGmcfRDdAw7aa0E0dS4BwKlBkCU0t0tb5GWvWLGXiqOtAUcDzEZ6FpHiks+sxTDDDPcl3OEQqw0ARz/NxSzGMUJy2zp+proKnX76TX5dsY7+ph3PPbXdx3R1/YfyYw9C1KkpuJ65VgyLqCIWquty14uSLHWiGhyaHQeg4lo6mFnD8dm6+/QxGj5nAtH2OxtQr8XwD28kTMiTunTObdLqZpi1bGbbTCD758keevG8x3btXkS81IbkSYbMh2PvKgNoJ5g6yXicxZSRuRyhIk0UIhKyVWFDBVITbbj2L31b9wu0PXkz33vXBOFMNfl/w4+CqCNNBYhuZjg3cfecdzJ79AEa0qqsSYjNINtDAsl8+ZsH3TzFmzCBmX/Eixxx1GG3tIQq2yxlnn0X3blPJtmaJNZQIsgbJYINf2kQ0HAPi4Ki4/i/ccv+hHPGX3bjw1Ff58ss1lLIprrn2cro39uOEE4+hsnrPIExkQCqSK63n48+e5IiDD+DhJ5/h/DNuBzYBBd75aB5TJ59EIjaAUiaKGVUpWdswTLC8ApoaR8HnvjvuZOl3P/Prsp/4esEXRGsSlEScdNbHsxcR0dp54+Xn+PnbHzDD1dz2wOvIWjXtWQ1VjRKLG+xoXUNENVn4/des+PUnZs6cgRQLgxzDTVcy5577KHW+zrqNrcTj0NahceP1j9LQ/QCUSAMlxaHkpAjJGSLhEI5VomTlmDXrYmKJOFfOvozKqgQ33HAdZ599HsuXLeORpy8hWSPQTcFj973HGafexKMPv4RqdAMRwi3K5KytVFRW4ubCqHow/CV3FYZhIHk9g4FU8sFPOwQqOP5aNLUAVCFoQWIHN5x4EGrFccy+53nyznYiYRtQuOvKBxGKzWU3HsX69fN55+0vmXXZ6yASCFdF0nyglSCJksct9UfVDYp2lpApUSgVCZvxrgkNquNAxiWO53VgKAUK7lq++vQ7tmxq44hDT6O6PoSgk3TOoSI2HCcfQzMkSsUiZuwPHaUQuHFQXXKFdqLhKEFF3EZ+3XQnT875iTuvX4UZiYG0Dt+LdyXSijzz4tX8/ut2brh2DuFQj6CoDjji0L1468O/AXk6OzfzzQ+fMmTIEJ5/7hWunHUbMhWEIrUgxYNKKBeKdo5Q7HfufuBu4rFqTjr1EN6eey8H7fYSsWgVSJBJrSWeTIKfpJAtEk7ICOHj+RGyBUEsKmFbRcKmQTa9llhC4dLLTmDqHnuz336HUbIbCRt1+DbIWiD/59KJQOBjIBFBFaD4cMBBh/HhR+/g+z6y/E/VSP4f59T/i+tzmTJlypT5b1Guv/766/+3P0SZMmXK/P8ZQZf7zb/ilMC1SFYnsFMpVDwko8jX839k+lHjGDNhZ5599RY8JUXPbruTy/gYoRAQJlnZHVWLE4omAQVF0di+pYNYqJrfVn7IoYecBlSDnEAy4lRV6Sxa8SN//+krVi1fhqy38/Sb1zFm5734ecFSJowfwtFHTUMRtfiehh52cVhPqnMV4VAIaGDK5NPo03MfbGppR2ChUUChn6qQsCCpgCm1U8huwfdK+L6OpifZdcq+TJo0mldfupYzj7uPocNPwU33oSBrOKZCk2dx/RNz+XbRJkYPa6SQWs/1N15GojpMz97dQDKIGjVoIooKzHnmLNbveI543UIOGX0t0ydMYnRjf6JaFEV7kVNP3Z2EehByyEWWZqrVSAAAIABJREFUZCRMJBJIxFCIIiEj4aMoNlCiR582hg0ZTDEP2zcXWb3hbc6/8HBOOvp8IuFdQUojpAISce67+0KW/PosHR0LGDZkLyS/DqQEruThd9mAC0zARBIqmm7iOwUcO0sx14keimFTTc6sooCBJOVpWv0ln7//DF998yEjJuyDQgN2QaXk5pHUEsLzsQoyYbMCCBMO1dCj2yhwqkh3bsGMCSQljlN0sdw27p0ziykTd8eINIITo5gLo+sJhC9Q9AzhcFC11L/vaA458BQG9B/HXlNPZPjw/ShaJXRN47kXXuD99+bRr18vqqq6B+2PkoWuRVCkGK6nIcsGkupjSQ6yGmGXSdMYMXgqrtcNx0uAGkZSLXxaWbj6Fc499yhGDRnKnIfmcNejp9C/ey+QNHS/Hk2J0dnWQUl0EkrmaEot5Z4HruLWG+7kL0eejOX5qKaCEvJxXQ8ZBTSVpUtu4MNP7yUU3U48aXDv/Y8wfvyeqFIdql4D6Hi+hKQqrFnwLE/dfSGnz9ibD79egqVUUFE3FKhEQQVLcP1fr6BbYx8+/fR7ErUuqdJmTj3/YIaMTPLdj+/z1fw36NUvgi5raIoJapZU20q++OwdhgwbAbhglxBemt594tx95xyevP8VHrn7Efr3D3P/Iw/Qq3EbH7/zLftNPwdXASG5CAwMqZbujbuQK3jsMekIsHuA1xuU3gwZMBrTqAURQzUtrrv1YG667XzWrVvNflPPBz+KJMWYOGkPDj5sH4476QhiDXUs+OILPn3vHSKyS/XAiaQ7U3Srq8HLbiFc0YeqAQeSEfUk4t1IiCxKqYCbl6ntpfHG3DtYvn4Bld17UV09mlSHjmI2sPPosUyeuBumkeSo6cdgtZf4+tP57H3MMdjFFCU5h685uJ6gULDwhIypm0zbaypTxo/hmUfuYNL4/rRv/Jl5HzzJwTPGMXSnWlpbmxncdx/G7DyT6XtdgKxXgbod21tMutBEZVVvPFtCMdNIWhsLFj7Fu++9zrIla9hl9D4AWEUXVdcQooAkqXS0QCTSh2w6j2FGEH41exx4PbsdsC9IGRZ9/iZqsY1ohc6kvUbxy9xXmTBlX5INY2nNGsRjlcSiYSTFAVIsWvAe8977G78t+4xR4/fDlkxkVcdDQ1bDCIK2Nx8NFwOBiQRocgbYwNvzLmTuB6/Qo0c9UyZfhJAq8aUKVD2OIkVQdGjvaEHRsuh6UFLj5SRkOYyvtIHio4hKLNtEUUPUVoxjl7GnoaoNaJqEJIWQZJd8Nk9nR4Zxk4osWb6EiWOnoSlVlPg7ml7HIYdWccnME5m465HE4kMYMuhAksmB7LnHwRiGxvc/fsZ7HzxDj74+8WgUVB1FFtiOxooVK1m7dh27TpjKls023QZECKm9kQQIZRmq6oJTj6brCKUZX0rhSlVohoSQcugqyK6B7xTQzBT77jOSF59+j3HjDsTXa3CsEn6pgGYaSL6Hn3ewSx6+DLqiIEsgyTIvvvQcxx57LJIkIUn/VBlZTiCVKVOmzH+ccjtbmTJlyvwvUSqVKFkFABRFQQqHsXIdLPt1ER9++CHdakbQu8fOTB51MOATrwyT6SyR6SxhhiqxijaO1SV4I1nU94gTqZCY+973bN/sYefjwVNZAR3FFKNHj0LTXfoNrOGZ5+9iwsT+xM2enH7yeTQmJ6MbI7jksoO45qbDkMjy3Mt389orz+GVLDzPAlHCI8/mljXceMM1zHn0QQx0HB/kUB7kFny2EYtBKAyhaFAukO10UNR67GKMzlQBnAJqyMFz8yi4xDSF31d8xxGH70o8LHjksXuYstuuTJo4hcD+2vsvjnCD+o5D83swath4dC0OgGZCIdNMXWMNfWoHkC2m//0EiAip5iTDBx6FrplE43DA9GM4+/j32bn/RUAP7EIrJWHjdzmb/fTLcvr0GsaoUVMA9R8tHKjIvgkYSBSRsMh05EGoyFqY226/hONOngR+CYGGS1CroBDmb0+/yuqVW5m654HImBSKDpIEiXg9htIDXepFIloDQFv7RhatfJWrbzkchCBRWx3YWwkZhMoXn39DQ31PFC3+ZwsKSgaUDA89fgWXXX4OQWtJLfFIn66BKNKtZ+D2FQ1XUyg5pDqLdGvsxS+/LOoafx/huvieh23bqIqKD6QKedwgJYeqhkHEUVDwvT8a7CqxnQYuOOFp4spoUm0dNFbHGdp4BJCkVMqDkSNlbSLZTSVZm8ArVvLuq9+yvW0px58xkk+/nkO8MosW7gSRQtV1hJBItRb4YsXHHHz6eOI9BO++8SrTxo1mxXffYYTDeHiUZI8OPce6Ld/xwsuvsXhxG913PoaDDjyB7vW98BEIqQiSg1fczh77jGO3PaeQqKimR+Mwdt/1aPIdCQb3PYgTj7manvV78MO3TUhSBJdtnHz6KC68cnfWt7zLkl9fpbPzFwjBG2/M5/mXXmTI8DiVdePp1bgfktuXyVPAMBpY9VvXppcU0B78VHwScYfqpATsAI3Aot3SyLTHwasERwU/wtFHzQha9lrWgJTD8Xx8AflsGiUUJxKuhLxNPldi6dKl/PrrYmKhKhrqBjCo/zgqk30ZO3Z3+vbqS1UyhqYVEXI7Qk4TS+ik2rfRUN+dcWMns35tM6YRQ5JUJAk8z6FY8jjgpFNRVJV9DtiXVD4Fiowiq4TMOL6ngEigUIVwYwg/TqiyP/HqoZx3zu0Q2pmD97+MIf0PZsnC7Tz1xLus/H0Hu07cBzwfx3cpZtM49nbOOPs4vv76iyBSiw6SrOMLj169ejB5yhgWLZ0PSg48MOQwflFDkmMgCWoaKkDK8MAjl7Nq40dIcmvgbChs5r35Mnc/cBdvvvcWD9xyHeQ7GTC0P0gakGDyrpNorFMIdH2K4FUyeMAeHH/CRaze+CvgI//LH+mfXvIft9gCIIIgydiRh7FpI5ww43SQLfKFIpZXQpeqyHaq4KpUJRuIROoIqpBS3PPAxdjWCnzyqLKKJMA0NCTAoURtsppIWMIqCUDjoQcf475Hz6auIYTBBE466RRCIQvXsXCKFYDLtm3bGLnTLlQkG1GVMKDioyETAkx2Gj6RMaOm8PFH8wHjz0pMQ0/Sv+8Izj5zJiGjlrGj9yFpDAQfsqkMN9w8i8uuOAEUH9+Bzowgb0WRJLrivA2Z4JpnFWWggvWrOkhGhxOND8DzHaJRg1BcAblA86bfyBc7UDUPuWulkboyRLIsBxVIZcqUKVPmf5xyO1uZMmXK/If5L5VIXTbT4LPw7z9iFfPsuvvu4HiguiCW8NAjtzN57wHsPOx0go2ECtTS3LyK+qpJSJoMvguKAFwQFh0dLaia4Nxzz2X21ccxZPC+QA3CDVGwwQynUMjx0Sdvsf/Uw7nx5tlce8PFQG9wYyBZ3HTDNA49biAjBk/EZSj33vYBF593GnqsglKmgJmIAjYXXnMBfQeN4PgZZ2NIdURp4cprj+LTz7/l0isOY/26ZkaPnMp+e5yHTCPY4Houq9Y9x7CdxhC0GyWx/DCuXE2nk+fpN17guL9Mo49i8ePPnzKg70hqq3oDCSBMkA1xg3/rxjnvrOk8/PSJ4BwJQHvLNqq6e5x+aS96dk8w++wmFEP/NxOj4ubBEc3c8/QUevet4vjpD4O1Czfdfi6+/hvbW7Yw5/5v8EmiiAhuqUQuv4Gq6hC+V49QTEpuDk31UZ04kgKSvAXQcHP1qBqgOTzy1IGMn1LLmCG3ctTpd2Akajn/gvMY1bua1KafULwi1X37Yfk6wtYxzRBgIVwFSY7g5kFSQQlluPexQzhmxv5UiuPxRAehsInsdwPJ5OtvXmf3vYcBDVCqAhUsfzWy3sGb7z7MsYdeDt5wvCKUHAc5tJ6QGQLq8N0isipjW3mamrbSu09f/hCBF74INuZdVt4uMsWSg2ZqNKVbaW1rYXC/QRi2hqkGcV6yfUztjzYTi/tunkG3hk7WrF3P2Rc/ip4YRCjSyKbOAjXJJBoFNASlthzRsATh7YBGLhMlGm4EWcF3LWRNAVSyHRZq1UZMfCR02rdlqYr3gFACFJW85GPjI8jwzWdz2GfEPkQquoOqkc5sJVJZgUcYnWokTwbRTD63nYgZAyMEngRKl024JKCQA2MgIFMobOXVt2/n6BNG8fBjtzF9+gGsWp6jV/eRfP3pVk4/9QqiFc1YbMBw9+0SsYdM9lPikeGIVCNSDXjSVmRsguRjgnVbvuXFl+5C1xSunPUaZ517GPnSNg48aF+OPfwqoAaQ+WXpM5x7wdls3gjbN+8gXywSMiPIvhH0AZXy4DvYxRZSHVux7DxKcgIxzSeiFpC1Itg6TQUTJRIBqYm6ZIq2lhaKmQoWLvuK5b8v4sSTzkCilmi4DxI6lutQGQ/jpLahGw7ptt+Y98HbhMw4K1fluebmZ8jLYfKOhXA1EpEQrlOikG+nJplA0k0KOzKEKyqDuJCh4GwmW9zIs889xuWX3grUdSVFU8y+aTq50maS0dFcfvGThMxGhF9C0grk7EVce8PFnH/eTPo2TgCvD8hqoCX0X2zeBYXiJm689UJmzbocQ/QlnoyAm+fuO66jf59Gli5exHV33cOjt9zC8OETmLDb0WhJAWzj/blvsvSXDq65+m/gQ8nZzMff3Mah+98Mourfrv+5HESj4FkZFNOhkNlIOG4AEtmiQTTUjUJOIfLHeiUDpJkz5xKmH7InmVwLV/z1KuZ9sgqfSoQVR9EhU1zDldedwHFHXcKkcUd2Hc0DLL5efC7vvbaWe2/6nsefu4itzSv464UPkUj0JWi3XQzEgAFk04JoLIrtgyJ7qLKPUyiimfDYk7dx1mlXIxEJWuF0QHYITBosdDMOcjDkltNCU/oRmps2MHLwyQhnGNFEHcIHTwXYiISDTAWSV0OmNU28TgEpC3Y1yBpCdXCcDnTNwcq3MXPmxTzyxIuAhu3qyHIYVQ4E4qZPn87777+PECKoRCpTpkyZMv9jlJNIZcqUKfMfRvCv1fU++B5z33uPUj7PkX85ClBY9O2HLF//AqvXreTIY/dh56E34FsuckRl7rsvsGLDJ1xy3nOoukGwQQqewmZSLYQjGqoGuXw70cgOAjHTGny/G44H2cIOYhEJQ5WDp8q+GXwyZQlOp02uuJHf1rxBKt/Mhk3NaPJEzj7xNdAKkG+CeAykNKefcRJG3GDWpbfQs34kRStKyNjCW+/exl77juXHhfNIdVgM6DuWcSNOBr/nP1yLpBSo24A0lu+jyzvRkYoRrZBw8ZHYzOtv3olXdDjthGvIZhxi0fpgY4j750huXFKi95AqXPcHVHViIKak5OlMrSDLZ/RIDqaQOZBIXPk3M2MBnYDC6o1f0Ld3AzJxZPpy4aVT+WrBMp7/22306X8SptJA23aLRNggGiOoXPHAlov4koWGj0YSiT8cyMKIfAWSobBi+cfMOGN/6ntCdcPemJFdmHHiKQwa0J8K3Sckcl2C3BBseotY1g5uufNixo7biYP3O45SoZpMe4Taxlo8tx3FSBNslDPkckWikVHgaDjeDrRQBpwavFIDJUsiUt0BdODTjEwvcHvh5EEzoOTvwAyrgI5rgapFES44bhFVt8gXOkDJ8Pjjj7PLTtOYPGV3PAwUI4QHFHw4+6LziFUm2GOv3RjZcxUJtZqe3SeC6M1vvy7g+wVvs3XLPE47YR8+mzuXQQMm0bR9KEefPZOMgIKk8vmSD3j+4fvpX9uDR256EjIFiOU5ZsZJ3HX74yQSCeLJMHM/fIYPPnyZvn37cvkl13LPtceSaGhg3D6HUN//UG5+5QPee+czPn/9LeyNOYb2iCJ54OkOitdJLrONd+c+QGtxPQ09evKX/WfjFoagCXB80EJgZQRGTAIfVv86n9feuJfO1GZq6mQG7bwfw0ZMZtCAibTtSFNdE4hoe14ORUlQyNqEo7WkMnl88kQjKrpaAb6MVcxhRHzsrIVMDDVsIhQXCQ8wwAVPdJIrrOXnn75j9NAZlLSFKGYbX331FQfvewFhsz9gc8nV4xk9oQrTiNKtZgqjhx2OoSURIoEkYrRva8M0ZCJxG6vzdzo7mwlVTUDxJXTFR7Vt5Hg3cnmXcNykqfMXHnriEuIRE0PUcOHMixBCQzeryXaGKRZ0JElCj3iETQVNS/DTd3NZ+PMbrF+9hGuvuYm5cxdx7ElXUfIjdKRzoFqYhgOyhUSaeNTAdRwMvYrMdot4VV/8gkNJCMIVXtf5qIIwQXKw7VZ0fStnXDyda668j8bqSahSX5wiaKZL0V3Bjo5VvPLyq1w+62YkDNo6N/PiS89z6CGH07vHSFxH73Kzs4B01wqSJJVuxdRVzJBKkKgnWGOEx903XIeqylx89XUgdJBU3n3jXabsORXF1ElE47TlOqiJNgSiPf8dEl3/vwfEsTs19Cik88u55rbDefCOD+jsSBJPRFAUj0MOnkom18JVV51KNAq/LvmNM8+5BdJJiEk4noomJbFdD93cQVPnD1x+yb3ceetzNDTUAykK1jZUYwe5dJzK2G40b9vM2vXLmLL7TmSyncRj/Vjz+8t8OPcLjjnuRuoaByFEIH0kA3axhOwpaCEBSidQCZ4WfAUVkFysQgHDjCP8oHBLuCDESl5550Ief+wz7r5rFuPGnEWqo5aKeCIYiz9MCrpE/l2niGoWePap6ylmsxzzlzOQ9MFUVCsEVUs2H3/8DvvtfQSSEgPqg+RiV/HRYYcdxjvvvPNv1vgyZcqUKfOfoJxEKlOmTJn/MP81ieQDPr8tW8rxx81g8q4TmPPYo+BY3HfbLPY+uJbZV9/OX46dyoxjPyG4a7c44YQ9eebVmWgMwfZcdKUO3w0hfI1spkBFdQXCyyMpwR22KBhYroYRkfEVgM0otHHrA2dwxKF7MqjXJGAsF108kpoaj1xLHWedfAeHHnsY5160L2edOwcnZ6BFFY7a/0BG7zKGK6+/jEcffxAjqnPqiZcCCYQfxfdcFG070AG0cv/j9yCJCBecdTuy1IiVFximCUqRE0/elUOO2JsjDj4FGI6dBy0waQOtlcefvo5jjzqBZHwnECEK2SzhuI7vlpBVk1ynSzQSw7cc5Nh2cHsAFqgOQYNYCxADuzvo7r+ZGQfXT5PugKpofTBRBjSnPubL+Z8zbe/jqEz0xaEi2Pe4EFL+MaF5qxn0EtlSlsqwgU4ztjDQpSHgR0HOgdvB1deewrJl33DIoftz9OlP4lOJ2RULEh4CQUeqjWQsTCHXSWUiDOSZcfJEBgxqxHN0brr2LfD6gZBx8hZaNM39j5xO0Wpj4IARHHHIbKycyz33X0co3sHMC+8H0R28wDWpkCsG1Q/C69r1/UtwyjkQ4WAi/gxYG5QSb73zGHvttQcV8WFd8RhUInWZRNFlxMeMM4/l0P1XIeXDHHPk5YSU8dw/50a695FIp7+gvkrjy3nLCOsxGhsO4Lwr55AlwpnXXUsoKXP2jAMYUFOL0tFCvDLGy6/dz8Qpe9OzcRQKCcDlgw/f4uADDgcUrJKGtHE1eq8+FCSV35QQT338OaFYnNP3OIC+ZAlTRLSX8BK98NUOVm79nPMv/guvPv8gjeHBwHDSzfXEYxJSl8mdlQPHdohWaJx18jTOv+AgmlpWsnDxRwwbcxCotRwy7RxK+TimGbQ0em5QtNS0NUVjQwWuDCgOEjuQ6YYkoD21iUeePZ7LZs7GoB92aQC6STAngYIwaA4dbYuJxRQ0dcyfDl6e76CI2j9zqQV5KWFzO82prbz2wnw8C5qa09xzz6t0tsnYBYdkPITkbePh+2dRXWnw6+o2rr7uVoqFEg/f9zRb1nbwzHNv4Hk2nc5mCtp2GhsS3Dz7clwfTj31QvoOGEVbk4IkxTBMBaGmsZ082BUI0gh/A+2tG0jGk5hqI4nGkXRuT5OsrcVywRU5wmGFlrbl1FfHeOn1Z1n40yIun3UtdQ0DKKQtwome/CORo4LQ8DwbSbaR5RTQQt7bQljphyRGgAulApiJIr6XRkJHkiop5VxUo0Q6s4MHH7qNG264oSuQPZ596Ta2bP+FM8+4gtr4YfBHiAsI2oEFwskjST6oDq88cRtbNzVz6ey7wYyAWwDdR2DgEcInjk4H895+kUwmw7EnnICVz2PEE8w6/zwuuugieg4YCJQ45Zw9ufuOJ6iKjwS7oUs4PsU3i+7mobve5vWXlwfnndLBK6/eQCRmccllj/PoQwez8tftHLbv7XTvPhUiRTram6iM9gMDkLYCm7oS+X3wPYtzLjqQW+64mOrIdBBhOlLLqIzvHJyoejPQwcknz6KY+5F4LMmTf/sBIcIgxfC7zmoJGXytyx2uDYh3mQoIfDcT5PTRsPIqhqHx+rwbeeWl53jn9TcAD7vQwl33XU1H2ueeO+eRyvjE5QZkIwKA54Osg1XKYoYEOOs4acZURo6cwhmnv0CsVuWa2WeSL6W5994HwNVBTVJoUwgnQkEySoZp06bx8ccfk8lkiMfj/2atL1OmTJky/ycpC2uXKVOmzP8AQRLJ5w+RossvnUVVZSW9e/Vg7KhRaJrKF5+8xOFHT+a3X39lxIjB9O22P6gqdr6NigqT6m4+L776MkJ4dG8YgCRHkWUDMxRDuB6SGiSQip02WiiGqktkcqAYDo60HZ8O6rq7LPj+TT774lMmT5hBrrSMBd8vZ7+9pqG6w/BEK5XJXgwaMJ5QArKt21izeh3XXHcj6AYjhg1l59FjkKUQuayDrsaQJRnLspBkhUyxja/mf88eu+1Pj8ahgIKqeXheHlnxSGe2MHT4YCpreqKIWhQBVhEcO+ggGjt6J0JGFcWsQinvEE1EKBZb0A0NUBBuhFLJQQ25yKoAIl1CqoJgd2EASXDVwEb7v0UGoREJJ2lvhnwGInGIRToZNnQKEXMQrg2yEughqbKDLPnBcdwiulFizYYlLFr8C336N/LSGzfx/LOvMXXScahqDOQ2hGjhmwXvsnJ5MwP7jWb0xOmAhIHdpfEhcNEwzSgPPj6HRb98z7BBA5Cw+WDu28iSTlWyFxNG749dkFENA8VMgdzOcy/MYdnyZRQLBcaN2gvTjLK1aSWqkccq+uhyFF2pQVEkNE3DK0lBK5hc7HIjk7uyd3S1qGgggkgVHkiqBJJHXV2CyopqgvaXQOnI74robLGIqWmAy8+LfqDQ8TOdrTmSiV7U1w8lHIvwzYJvOPmUYxk1YjfWbvidRLKKu+6az0nnnoCh1/Ppt79z3LGnMbixHo0iTzw8m27VEsNH7URD9RBkKgCDbC7PiGFjgBBWScYwGlCUCMhhZLMSVY0zetAIhvceSBwJFZfmps1U1vYkX9RotTfx+PP3c84Fx/LBm18zZezB2FmTSCKBr/jIagkkC9UQ6CGJXGoHe+09mV4De9GjsTt77jedwQN3p3evkahKBaquk8m240s5dMMhX8iTSMSQZQVfAmQfiRwScdra2lm87Aua2ucTiytUJCvRlW5IstW1WZcpZCTuu/9Kvpj/KsuWf8+uk6eBK4OqIssa+U4d4YDwwYzpgEfM7MmE8YfgWmkMLcqQoeOJRmNkMkVMU0W4nVRVyNTXVfL+++9y5NFHISsKjd37kM/YDOk9EEPTcHCRQiaFksOgPj2or+/GD98vpK6mG8mKnkiSge+7WG6GcMTEKijIiksoDJoik0zWEo7VkW7pBOFgRhRyWRfb9nAdl4pYDFfY9O7RD9MIM+/9j9lt973QzDD/SLFL/JEhcB0fSVKQZYXW1HYqwgb5koMuNyJcGU0H2y6i6mEkKQqOhCLLKIqOoYfI5dMMGjwkiHEsfLmTjvR6li5dyYTRxwTLRVciNZux8D0JzQiBEiRYe9bU8dlnn1BfX0k8oqHGooCJTwQwESgo5Ojbq54vv/yciVOmoBo6IPho7nss+P479j/oIKBAZ245Cxb8wqTxe4NI0tqaJxKTUc0Ua37byh6TDkKWTNxSiViiRM/eVbSn5rJ69Wo+nNfEycceT9joh+N1EK2IASbpVBtvvfcE3/00l13H7gdEkWSZUCTHp5+/y8Qxp4EvIalpVC0BsoLjdqAoMt98+w3N2xYzbNhIdt9zOpJkUrQsVBUkPKQ/s8g+SFawLkgCcJBki63b1hCPx8hlLcyoyuDBgh59orzy3JtMnngIvqXy6htPIGkO++93OKahMvuyi0hEa2js0QdZgVzBQlVAVUyQJZb+8hXDhuzMTmOng5enpibB7ytXMXHiBHSzChzQjCilrI8aDvTE3njjjT+FtRXl31WdlilTpkyZ/5OUk0hlypQp8x/H77ox71K5xue3X5fS0tLMtVfPJlFTDXYn9XUlLpx5LrVVPTnq6EMwQj1Bz6HoJfoNHMnxxx7CJZfNZFCfnSiWJDS1CjwF1/ZQDEEqtZHWtg1U1Wnce+81/LRoPrvtMQEheWgYaETYtq2Z5UtXcOpJVxMJjeW9eQ+wx579+OjTD1m0eAU3XvM2u+xyJKF4GGQfIwKaodC9x1CKOQnDrMT1NTQlimHEkSQV3wVNi4AXIhSqIp9R6N19J5KV9UCBvLUB227GMCx2HjmemoruyFI9shwmm/XQdQlJpFBNF5Dx3RC6kcQIaTRvX8KjT1/FiJH9MPUoTjGGmvRxVBePKEVPQVFkBAoSCpIfBV8Nhln5d0kkBdfRKNo7iCUjhCrgkGOGsWTVJ+w15VysQhgj1Bw4u3mgytsoZNdi59vRoxLbt3/PN9/No662nsE9RrJy7RecffqlREJDAY8TZoxl1brvGD68O3fe9SLjx04HuQYDF4UsMjYuCgVivPvtVzz0+GPccO0VeFlBdU0//JLBJTPnMHniCRTaY4STIVBauPGOyYzYBRb/mOaIIw7n3LP+SjgyEFmN8cOCzzn6uL157ZW3efP1D5i61zRUNUw2YxOKqthWHkUrAnYgsiSCBBmyRFBl1IUASRFYxRKxeJJ8roQyf7m4AAAgAElEQVSuV/CH/ZGMQEYQ1iRSHZtJp7Zx7EEHMLDbBHYddxg9eg5HMWPU1O/MlN2OQzfG4tGNc664ikEjR/DE4+cSiQxHlavZe/JEulXECUsRNGwisTbWr99Az8aDMENjEXYlkhzHMJIEdU8OqiqB5JMJ2aCbSJJC3NWotqDegyjQ3KHz8gfL+GHFWjp2LGPw8OHk9RA33vQ8D17/GqKUwAyHQN3E1bcdyYK/P8+vv31Mr95RomEPJJtIshGoQ9X6gugLfh35TCVmSCdj/U48uo7XPrqexSvf4o23n2O/vSaDHEKSdGRJQSKKRJZIJE1dvU5ID7N21W98Of9NJk+c+n+x955BdlRnu/a1Ou6cJifNKI9yzkIEiSBMkMnJZIzBGGzAGOPX5GByMAgDxiQTbLKIxiAyJoOIymk0Oe28d+fvRw/Gb9V36pxT5+M7f/ZV1aWpGc302qu7V+9+9n3fD7fd9Xsef/JPrFv3HnvstZSZs6Ms328c23a+y4xpM/yaCgWyhe2Ew3HUoIaswcat7/CnP9/GqFETSMTaaR3dxsxZS1CUCI5QSGcGCEdliplOhJ1h+6aN7Nq2nQlTp1Hf3IzhuOyzx54E62uQVHDLDkqyCSHCxJUgLa1tTJ02ndq6BvoHMiiKjue5KBoUi3lUEUKSQJEkJEdFEzEkQqxauRe5oa/xjO1oWjU1yWaELVFIu0QirQT1ZsaNXcCM9gWUcibBaBzflqmMbH4ukJBkZEUGT8cwPNZv/pBnnnqJhfP2plg0KJYy2N7QSHaYhlMSSDqg5pAUg4nt4/EtvwEKWY/WlikYZfDMJFMnLfPXh5FN11VURfYLqMLfZyDUTCqikne/4pMv/8HOnZ2MH7sfwtEAGSGyuFYGJRAll80xdvwkRny17LZ4NzZt2sqihYsQwmLihCbeffsrli1diSdFCEUDgEASGvvvt9LPpyolyGdt6ltbiEaq2Hf5cjZu/ADbyFAq9jF7t0XImukP2IqhaiYzZraxveMzprQvxj/jBbGYzLvvfsTuS44BFxQtBaILRBfFcgbhNLF092kIN8MXn2/h4EN+SrFoEwxG8bBGgqsZORbfhb8rfKc5fPrZv/DCi0+i6RITJkxncKCTW/50Bm+9/SRDnfCjJb/GLIZoaLFJ1MojY1NZvfoXvLDmIY7/6SkgBXG8PKocQ3IksKNMGTOO2XMXQEDgWhnC8RieKzOxfTqSp/kyP9NACSsgBIZpsmbNGg4//PBKAalChQoV/i9QsbNVqFChwg+Mh4v4dwEJvlMk/e3hh9hnxXKS1TUg5zj/Z7PYY8/l/PTUx9htL3j0oTc58bSDmTZjDr++8O8UM52Ekn4HMM+JI0Qcx/SQAzbpzDfcfd9lRGKC9d98xPHHncbcmXvg0YjLKPBUBnuL1NYF6On4lPpRYzCtOJrazZIl45k6K8j5557H+LYLfCuDkuamO66gt/9Trr30VmAMuBFsBxQVPCwcz0GgIf8798PGtU0kOQooWEYGNZDh6hvOQvayLJrazrKVF4BbTbmgYogBUHYSC0gILFbfcTcvvfwJzz79LyRFx3Uy/OLX+xBJ9XHqyefSUr8Q1VxKXyCHTIDOfpe/3nM/l1x0BhqgYiF7I1Yt4f5HztD/+MgUS3lUOYGq9QBdPP/etSxffBpB9sC2BYqyC9w28OCtd6/ki8/WsnPLIKqsk2wsM759FgcfeCaZwXriVRaMdDeCHC+suZkFi6ZSXVPHX+56mDVPvsKTrwwjezZYgyBcLDnGTinM8gMO56brLmPF5NHEPIW+7TupbQmBItG/s4eausmYpQGQh/nbc7+hpTXFsrnXIOkuxWyBUGii/7rVIZ557nJWHXgc0AKe4OLLzqaltYaPP/kXN13/Z8LB8eCFR+bJt/L49hXw/VLf4auUHNNG1jQ84f9MII2cww4DXduoboxjFYZQwxq4MZDCmLZDWQriSRrDpsXV19+AHpY57ZQT8YpZZtTVgxf53jon8vjFBPw59AIYpQKm4RCNx0HKADl+deGhnHjKj/n66685ZtWp2MxEJkoxO0Q4rPvnoVWEgEIZ3+C4I9PFxPhYPu2zWPPqe0ydNI7VvzuRuqBNWxU0jpvAeRdcCpTJZnYRi9dw9VVX09o6mR0781z4m5txbZ30MERjoAegt2+IunoFlw4kyjgYyNTjq7Vi/jw6YX+a1DzDwxtIJhtx8gFstwtJ70XVx9DZswnhSWze2MWyZYdhlL7gwUeuIhozWH3zKxx66DXsvsfezJw7Cl8pFqFY2sk32x+gZHbz8YffcNYJt6PKE3y1iesgFJVieRjbyFPq30ZTfYxi505KWZnVjzzO+Rf/nqxZICl5/Onyq9EknZ/dcAddGZtgOI46NAx6Bj1s4XoeQkpQLqnkcgXiqShGqYDqBfFci4Auo9gyuAJZU7jgrFXs2vU2qSponT6D3gGXye1zOOEnFyLLTSAFQEiguiAZ/rknACLfF3Yk8IuFUC47BAIyNl188enXzJ69nPRwB6+8+jTfbn6DBfMXM2nCQlqb9xwJ1C5+fw47YcyyihbQKeTyhBPfKUF1v3Oh9x+dvcR314LhF5PsEEhpkDezZcuX3P7Hh7j55pf834OR7mNlJNUvwhrFInooBB64pomkaeA6fvMDxwQRpVjKIYcdZMIYhsDMGbz55o189tWTbN++g9+efxvtU/YFNLCKdGx5n1yuh+tvuphkPMFvL7uZmrpp4IymmNtFKFHgiWduJBmezvIVp+CUSsghC9DJD4WIJAL+VGjd7Op/gzfefooDd7+DUNTi2cdXc9ixZ4JXh2VKSIoEsjtiZxN+EvZ/+rAlG0QRGODKay5m3332Z/rkFejBJEXjXbZse5WJTT9CzS1CJOD6m5fQNbiBm29ah1sKIIkXuejc1Vxy6V/QkmNx1TKCKBgCScDa53/HM88+QPfgMLetvp9IajSgEY3UkEkPEk8koJiGUAKowvMCHH300TzwwAPouv4/WecrVKhQocL/11R6Y1aoUKHC/yVWrFjB66+/Dq7Ltm++oFAcZteuTo44Yjr77bccKaaiBUz2XbmUUv8QoXgrEMU0VHIZ18/FVgVgY1hDxFMOBx+yG54TJBUfA8QZyBaxbImBfpvamhC4LrF4AMfpJe9sID1cxf33vsHCWafRXLc72ex2UAp4uOjJTk467TDKXonvniZkGYpFABlZKBh2CdsZxg+TLpPNpsGTyQxmUfUolm2SL6QZTvcxb94UMFywNAKhIPGIwtXXnc2fH7mEtz66n56Bbzj5lGORFIVspgfDSjN73hhKVi+RmEtAcpF1KLo2JjoPPfo83QM54DuN10jhSNggsv8LR0AQDEYpZQUeDZhE2LBxBwqjKJdVbFvBMFvJ9DngwZaN65g3ZwKLFk4lGhUM9G0nFvFtRfFEK1jN4KWAMkaxg1gsQnXNKL758nPyuV4OP3qFf9N1FD+w11WRRJAA8MvzLkYLpvDQfYtdIARSEeimZpQMogstEkTYQepji9hjyVmU8ioQQ1eqcIuAAeWMxaoDfwKE8EwXhMNXG17j/U//jqNsJBgs+/kmDiMPiWW+L974///fGy4g4dgSru03NOffBSRfUVfdUMvNV1/OHbfeBJggDQEmmhJGCI0SHp6WQ0r2MHpKI8loLY114wAZI2vjjVR63JzuF5UI4VkK3d096CGNaDI6og6JgBtjwaxDmTH+KI5ZdQ0wEyUfReQhHKrDsQE5iB1I4FCNShOq2cik+DwgSKq6jlOO+THj2yfym/86jmh1P2f/8nCyQwYwhsJwhFh8Bul+i7qa0UyaNIlYPIgkW8i6jaxbaKECnpSmtj5BoRBGMIXO7jok5mCYbXheDcMDij/HEr44xYmQDM4BuwE5GEGPtKBqM3CNKprqZ9PYMIs5M/YFK4geauPEn5zLkYeeQXPDVBRZ55133hqZcwXPhlCogdrkdCa2HcDuC85EVWaS3jUIroqqaBhOgeFMH9FYgEcfe4jfnn02a9Y8T9XoGZz7y98TjDciKQG0qiiWk2bb9i/AySLr4HkekXAVklAZGhqit6+brVs3oukSwaCObdtIkuTbnjyQPRVZCSHQQNE5+MD9CeowbUoDcxdHSNR2smHbs+RL30AoB3oeVIOd6z/inX8+BWYWDx3Pw9+Efx17WNgUkVQbcJEJMWH8NMAlkQyx54o57L7XNP7+1J0899J9IIbBDoJTBU6d3zVNCqEoCkjw8ecv0Tf4KdDtXyiiNGLV8ouhuAZmOYttZUGUyKW3Q9kAmhg7djnLdtsbxBDIBf+4OhKuG/KVfJ6KHoz/++tCwcOzVL9g5gRxs3GwJBQRR0Hys4eESiwSZdWhh3H8SQcRqs6xbuPD9HV8gTWcBaOJllErmTzjcI4/6le4jsSRRx7Or87+KQOdHYRCAcDl8b/9nSefeAKvVEYOhHENF7wYkVgApMLIdR2luWYc49rjxJMqqpbisGPPxBo2wVVQZckXIo50XsRTvi/ofXepe34WGijsu89K5s1ZiudBftgEuxbHDKNF6xAx/3f23HM3OnYOgpdC8qrYsK6feTNWokfGISQNwy3hUcTBBSXLXqtmcNzJezBtejOnn34c0UiQaCTM6rtv49bbbqCY7eGFFx7hnFOOZP1X6xBCYNv/s8y7ChUqVKjwQ1FRIlWoUKHCD44FCLwRu5Cfx2Hz4D2r6dj8JWf97AR+evoR3Pngb/jo4z4+/WSQo445ktETJ7Llq3dprKslmBoNooQt9WASQDLHorhRZNlDqDmgwF1/uosjjjyOZHzEyuEJf2dSCSiPjEUjP1wmkkjhuIL0UIaqGoW+nk5SqWoULYbrgCTbrHnxbn60/0pkkjhOClmSsW0QkoUsC1zXt7Ip2hC//O10ps4cy2GH/Ia4uhiQEJ4fdnrKmUkG02lOPe53HLDblSMZRmkIb+WrzV/T3NSGXcixdcvnzF+wApxZIGfxH+6SdHa/R1NTFLzReKZLSbfZOtTDr868nmce++tIaaPEYHorDYkx9PZlqauuYzgNyZSLQwYFD4h9b3UTLkglPEvFw6ZofkkkPJLY6owFEQYpw0D/u5x+1IkcechRLN59Kr+6+Od4Nlx9zb0MZnewaNF54MSwrUEyOY+q6moK6QzhaA8oG/j5L1Zx4P4raapZxJT23ZDCC/ErCxYIFw8JAwUTEx2HXR1fM7Y5AMLjgnNPp729nZNP+ikoNeT6ykSr6v0xygpWXkJVVQaHi1RV1+AYYJEjECniF/VknnjkQq684m9cf9Mv2HPv45CV0Qiq8JD88xBg5OF9Y26YSCxJT7qXiYkaIi6AiyHZ2GioSEgjwhHDyBEKWDh089ZbbzFv1h6ExHjQPBzPQ9UVHDLceufvUEM2ktA4dOX5xANtBP3oGGzDQAlLFHq+5qbbriRVW8fPzvolrlyL60TRVT9suD/9OjffdjkTxk3jxGOuxC7HUfSQrzzx5BGFRIEb/3geTz33BMlEhL8//DIhaRw4IZCjpM1hosEk0og4LWdkCAdlJEz6Ogeoa6oGtnPL7T/jjbc/YsK4Zi469yHC8jI8S0KLjRw2ZQjT7ELTerni5l9ilZs49aSLaalb/H3L+uIQ4UAKRMG3EmFilUENVIObAEdnqCtLqi4GqgVyLyDo6ZOoq27wBSxqHugEqoEAeEFwpO9j1QIG0E2xnOauO6+lMPQVlp3ismueo7czT11TgB1bPyMkFcj1ZNi1rZdly1eyc7jAqInTWLezg4mjWrCHd6ErgqLhoCSacCyNmKPxyvMXIMtf0t3bz+YdYS69/mXSQ2X6BjpoblIZSncR0KPEwqMY6ikTi6XAM/BEP7LWhaa7GIZNMJICIWGbIRSp1r+uHHj36ft4ac1f+HbrTp78V6e/Xo3kc7kj2e8uYLsgpGGuv+Fo8kNlrrnqKRAShtmHrvWxoetLNn3bzT57no4mNYAp+cfpu4g0UcIwOxjO7OS8X5/Nw/c/B14rw2aWgK4RJM03rz7KP556jK/f/5T5ey7iubffZ+783bjkD2/6dRMxBFo/jjHRV13K4NkWlqmiBcH2QFYNCmYJTdLRlCB4I1lXbsl/IYYEoQiG8PBGYvX9lLd+IM0nHz9DOFLHuHHLUJQUHjEs00TTBJDjV6cfz7V3/pRn1zxBX4fElk1bUZQSV15xGnfdeSdrX/ycae3zufya2zGCcaxiHZ4rE03lgT48bAStYFf566/UjVly0ALNflB70UDVbFTNL4A6JSiaFnrcRS3pCAHoBYbtboLaOASgGCArLp4jITSDTHon8VgbAI6xC9spoYfGgqmCXAIvA4rLc4/+mQOPPXWk6D5ynORv2bDhVd5+4SGmzTicrkw/r737NBdfciFP/+VDTj/79zDUxV23XsYn601u+OODnHj6Kdz7wF9IJJL+/ea7xG2XEWXZ/9ZNukKFChUq/G9QyUSqUKFChR+c797V+g9JAkC4fPDum8hejt0P2ptxjWFKw1tZtN+xTJuwiOqa0chaklRtG2q4hnLJRNFG4dlj0LxmVDeEJCt4jo1QcoDLrMl7EQq14rdjG3kHLUwQac78xRGcedaZLN9zKQ0NY5FkHcn1cN1uHvzrrey2bD6SrOI5Lo5domQOMW3yNCQCQBBJ8rt8WU4BVbXxsDBNE4HO7bddwFD2K2bNmcX4MQvwqEGgYZQkVBU++vAJzj7nTKZN25dAOATWMIQzIILUJOeAVUs8Xk9TcxNQDUYKZBu/iKQTSzj85IT9OWCfY1GCLp998xGTR7VzwP4HEVIDKFiY9hCpkIaHRDScwDYkImHoG1xPLCTY1bORWKQa1wLT8HCcHIYxRDqdIRIvc+fdF3HJZefTUN1CVbgWlTQX//Z4nnjqWm647nZGj55DY9s0LLZw4gnnM37CMlpax5Du9/NUTjpjDmtevYhRo2VGt41m9R9v5LHH7qOrM82pJ16FbO5GRJ6H7ZYw7RyG6WKaDqZlE9Y88kM99HWvR1VMAqpOIVNAElEOP+wEbFvBNi3uf+jPDAx0UJUK4Fo5AlGJru4tpJIxNm1YTywWIBDTAQfbyHDLLdfRmJK58Q9XMnbqCkrDVQwMOwSjGp4o4WGA6+FhYzl5Tjrv5wy6ZTZu2MSiyTPRHDHS91vBEYLMcA/hYAQXF13NUPY62dn9EQ8+cA+bN29hyW4HkC0MIasG+UIXIT3Dg49cwvzZzRx7yHKiYR3ZNOnt6SJSnUTS8+AM8pd7buTUU05k3PgpxKqbSA8ZGCUV11AxjDzX33Qhl156BQ117UTDM7CLESRXIZPup1Q0QQbHK9PaWsX4cXWcfcbplPNZItEojjWIZWXpGuhCLpUo9PcRDsTY2TdMOFGNSRBJ1nFLJmoghYTGlKljmTRpNu3teyErKeQgoBbYsetZEuG52JlalGCCpYv2ZO6MfSlkNCKhOvLFHEIp4Dg5lFICHBBqnvc/+AcffPAed9x+C/uu2AdJFwRjkO77HKs8gB6uYfuOfjKlMqG4juXm0JXv1owCvnJGAvR/Z0+Xihm++vYdPvnsbU464SiW7bUf6z5dx/vvvcP0aZNxbYeAGmHy+KX0dH9DX98O5i2czVCxTM4wcJQwPT29lPNFcpkcnidhOYJMuoRVttHkjXz88d/YsH4rBx92Ck1tSzEMQVNDNRf+5qfMXTQVSVLR1AjJmmZkRUELB7AxeO+jD3jxldfZvH6IVKKJ3196LUt224v0cJmQFkEULUbNmMCU1moSNbWMnrYY27JxbRvHdujc1UkimUASLpl0Px79zJpdR2aoRPu4ZShyEEXVuPKGi5g2bQYzZyxGF40IynieQ7FQRAsEQLIYGtxJNKoQCUdIJuoY3TYNnDhCU3BxKRldfP7G85i5QeZNa+fyP7zF35+7h2AwwJgpu/uVEtXEzzCKY9vgugXkwACOEUZWJSy3RNHJYDkOvb0D5NIFEtEIVi5Nvm8rD9z8e9Y8/ww7dm5lfPtUipaDYRlYRgHHMHHKMqOa2onHR+EQYDhXoGAaGI6JrqmUckWmT5uL5eSZNHk2s2YsZr8V++HaJo8+cgejWoKcePzhfP3Vh/z1kQeZNHc21VX1FPI2t6w+myfW3EF9QxP1yQUITwEsLFPCcoe4697fsnnbO8yZPRvMJI6hUC4V8dQOQpEyDjJ2TkbRBXh5NC1CR08RiSAByUPysgi9iM2HPP/mBVRXJQjqOo6lkC1sIRxqACeIk3eRggWwh/nHi4/y8N13s3T+IgZ6exgY6EIOBEgP99DdtZalS04gnhrPcLrM/HkrmDpuD3RT4tvPXuCZF+9ky7ZeTjvjHO5/6AFOOPkUJEnFRUb8Z2G8UkSqUKFChR+Uip2tQoUKFf7/RoBrlpi/YA6to1tAMpm1z168/so/sHZ1kqhvRA1FcQATGZMgJSWCLVRky68LuSPNtfwC0hBff/kWZ515ysjft/9jMwGLQFDh4FXLmD59KoND3YAFksGzTz9MenAnpjFEodCDkMuoukskpABlugY6RgbtArYfaIyJwETXQdXhi6/+xS/O/B37LzsZnRpkdFxUJEmAKFGTGkdb8yzikRTbtr7Kg49eyp23XIFVlBFECQbjlHMF8ALgJEbsE7K/TznLn++9jv1+tBQtbGOWB1j76mt8sf5LwloAzwWBS1jREbhI/sf+qBq4nkFddYxtO7/k2Wf+Dph4lLHsIoZdwrJMVE3C8wxCoQABTWX+3BkMD3eSy3TQ072ZuhqJUKSG2qZJoNfQ2DKLWKINy1Lp7e1FyGWG0tspmd0sWjgeQRrPySBJCkcedSp33vkokUgj8WQdahhMx8R2TGzbwbY9HFMwOJilVLK44fqbeOaZZ8ilBeFAKwvm7s3woEHXrmFkSaG9fRzjxo9iON2FGrQxzH66ezfxrw9eYczYBgIhAIPenZtQdJ1/vvgcLzy3FtcOgKUQTjTQ2NSC41g4jo3jFnG8PJ5bRJY8li/djRMPOpaD9lmJKvi3pUXyfLFAXVJDIku51IlFP0Hh8O23HzJ7znjqagIghgiHXHRNkIiFAQ/P8/j880+YMe9oLr7kVIZyX1M/JoDndWOXe0HzOPyIo4gn6mkYNQFEkIAW8G1VMYgmk1x9xXWUy2Ua65pBWJQNAwQkqmqwLYVs2kQiSmvjLPZZfjiJWCN1taN54L7bOPf80znn3BN4/a01pOqj1IyuIZ3pobWtGRfIuwaBcIRQrIb8oMac6Qew957HsGThj+jv6QXZACUPYpAHHrmOzz9+n2LZwikpYNcSj7XRVNeGpoHnmpTLZcolF88F25RxTZXWlsnMmrmIvVfsN2IfHOLzz14m0RRmKLOd++67jXBUpn3cGHRFBySKZpYnn3yI519+jB2d6zDMXj9DSALPcQkEZdauXcuGDRu4+pprgRZOPukc1n31AX974h7K5RJbNu/k52eeSL6Y459r32PH9vWoikdDfRW6DC2N9STDQaKhILInMAplHMtC0mVsoGxBy9hGXnzlNUAiHg9TLJSIhmO8+s83uOeeewmF4+QzGT8bSAhC4Tjt7VOYNm0GGzZ+S8euHXiOwaOPPkJtXR226+IqCuZghrr2Kfz4yKNxHA/HcUbOS4vWcU0YpUEy2S4CgTKxoE51tIkZ0xagB2NYpm/tU+QAn3/2Nabh4QvMLFz8LpClQh6wSVVVARKW4zBn9mK+C+7O5IYxMYjoKXZbcQCOnOCA037F8oPG0TRxFiuOOpE/3/RrcPrwk7XCeB6gGCgBC8ighf21XNcVQnqAYrFIdXUtNak6ckPD9PYMcP211/PBe2/SPr6Nji3ryaYHMYs5ysUCpVJpZDMolW2MskU+X6SYL2CaFmbZwigZFItlHNslHmmlmA0S1hpxbZ333v2EBx/q4OiTfkF37y6EYtHZM8DL/3ie7p6dxBMBfvmrs1mzZj2vv/FPhGL6uWaKjUBDCMH0Wa188fVblIxeZM1fz8PxEGqgQNnpRREKgYQLXhZcB6Ns0lSfIBL28OwsqBJQwqSPZLUgFovgeR62U+SlVx6mr3sdOCDpUEpnQQ6y1/L9+GzdJ9x0y0U89fSdKKqB7Ki0jZpEbe0Y0tkiejBEtlCmo7OHsmUyMDzIpNmzmT5jGrsvX0xf3zaE5CLLvp7rvz3OCPt/IQ+vQoUKFSr8n1BRIlWoUKHCD43njSgJvvto1EVSbGqqo0yaM4Et697hzJ8czfFHHUvDrBWUBjwUJYirBijiYaGCEsb0IDjSYV6E8ny78UHeeO8e1rx4E4P9O7j48mshnwZN4AkHsMCzQSryzruvcuppJ1OdbCASTYFtgSjz1CN3cNHlv0FWTK68/FI+/Ph9Zs+ZjEWWvz/9CAKNlsaxuJ6EEBaSsIAcUMSlhO2WOWTVApLRKeTz1ZhuHBcdnCABXQJ2MWX8EqLxSbhemmX7L2fPg5o46ScXISvtZAZKCCwsc5Bi3iWoV/uZQZIFlEHK8PzLd7NoaTuXXXYhL778dy675FZaayegSjoKMq6VxbWL7Nz+DQ/edyfjRjcRCksIOQ/kOP64wzj3vF8Sj9UgSVC2yniS4zsfXIHt5Jk1awKLFi6goamNRG0d//rnE3Ts+AxBgTEzjqCqeQEbt3UxfcZ8JNGEUQgQj0XIZvupawjw9ddv8vPjLkEUG0lG5jBnzt40NDUQiSV5f92L3PzHC3n82TtZeeBK8BSEpyJ5Koqrkc/lMUsltu/cxKGH/Yj65GyywxqSiJBK1SLLAZAcJkyZyMMP/4VnnnuUBYtncfUNVzMw2MXcOTOpbajGM4c4/6zj6dn1DVPHpVj38ZvcfOMdyKmJGMMeSqBmRE1WwhMmAgPhOX4XJ6mGuTPm0dXbw+jqOoRlokolUMsIaYiSsR3b6+fyy8+lt289n3z6InNmTuSKK39FTSrMnnssJpWMI8kRPHRM02NoMIumhDj+2NMI6mn2X3kgrWPGsKSlU/QAACAASURBVH3rV/zlodvo7NjB1GlTCcVbGO4pEdTj4ICmQ0DzkJQAkOH3l58A0jDrN35CKhYjEUvgOAVkYRIOVwMawWCcgb48igij67UYpQxd3ZtZ9eOV7L3fAmJVQa76rwvo2vYtU2ZOQQ6FSHsZFCmKhx/uq8oaSkBCkjxkKUg4Uk0pb+A6RRTV5Ytv3mVX33Oc91+noQW6mD1nKZ7jYRg5LKuAJEuoSoigXofqCeSghGlYhMNxFDlCXW0zhpXhqj+cw+bt73PReb/l43VrOfwne/DF128TiTQR1ZsJKCE0NcDkySE6+7/k5VeeZd68WWhygJ07N5GoSiAkl8WLFrJ08e6YRpAxzcuxSgpHHLcf7ZMbkLwgMiotTWOYOWs0Pz58Kd1du3jhH68yevRo6usakcwCbnoAxbYIqSEEOoFAhF0DndQ3unR2b2TbjgH2PuBkWtoWkC/ZBGTBXvvuRSIep7dnkLlzl6AFovjt/DwsM0c0FqKxoYV9Vixn1Jg29v/RSiRZwvV0IrEUZVugRYNYwqJgg6rE/O6AkgeSjWUOEQxbBHSTUmETgYCDY6nUJKeTz6gEg2GE7DF33nTuu+8hVu13DIIE1934a3Qd2ka3YRglXv3nS1x77VXMmjOdZGIUAb0OvBAYEI4ovlMNm1CykbYx0wk1T2P/Y84gk/EIuCod3Wt49In72GPpPgjRilDySHIPm7Z+zOYtb1Jb04ysakAWQZlCySAVr0JXdHp3ddLS2MCTj95LVEpz/o03klRVqqrrUVUdVUgokoz03SYkLNPFNDzCkTiKUFAlFbNcRpNVYrEYrhnHLIbQlQSlUon9Dz2EOTN0rrr8QoKBIJOmTmXi5Ils7y4wf+5i8vkC1akIhx6xiOefe5n99zsEIUuAjaSoWFaGYAhSqWrGj56B4wheeulF1r7+JPPntaNKUSQSPP7gRWxa9xbV0WpkOYXDAJbZRSjiQMaBQBVGESa1rkCVplEc1NE1DZQOTvrZ8fQPvcy8xXsSiLVQzts4lssZPz+c7Tvf5dtN77LqgEMppCNoopbqqsk0j56GFEkzcUaSV99+lFdfXUtdfRONNdP5/PMdfL35M6bPnsTrb37IMceegW0JhARCgBCubyNFofI5eYUKFSr8cFQykSpUqFDhh8azR4pI0khWqYtMkbVr1/DtV2+yfeOnNDQ1ce5vrweqsK0wiqpTsIZRVTHS0033I1m8HhyzhKy7fPzlq7z++quce/Y5vPzMWn508GlQckGN4xL2g24A5Cw9/RtprG/BsgSqXI9TMrGGuwg0qSMh1BIP/OUhTjj5nJFBGzz2zF/58cHHoYgUuDqy5AIlHn7yj9hOiUMPOYLuzjRfrHuUQw/8IzhhhrJF4qkQOCDLLtnS28TU+WAp3H73z9nnhHnEEs0E2Y0AEXo73uTVf/6N8eOmMn/uweihYXCDviIJyVdSKf3c9MdfMHZcG/uv3AvFW4xrJ5HVIDgOSC4Iiz/eeCmnnHwUrmsTqaplJNCEf3uACOHZLumciaJoCCFjWy6m2Y9t9dLY3ISdHsTIlbji0nNIJGUmTgzTsOzXtE3cnSg6OBYBKYbsSBTTeUJVZbq617Np05tc+otLOPaYszjppMvJmh7JFoXtOz5h5cG7c9/9v2XezFlkcq1IdhWyHUZ4MrKjYVMmmoiwq389NU1Rcn0hJCdINBaiWBomXhWjv28b5/zyZyxZupCjjzkU23NAUfBsh5CmoQmbQnaQB+69lZamEO++8yKe43D1jfcRik3DscJI2liEqmK4BQQmsucguzJ4ErmBIqGqBHJQJVtIo6glQloZKPDxp8+xZs0aLrpoNbZtosgWjz9+P599/gHlcppbbrwJTU/x2F8fZMsOjd/97nYy6RLxWLWvCvCKeHY/Apl0X55EbQRT7kKT6xnszRINNKKpAW69+Qq+/vZTWkaHOO64Y6itbSecqAIhYeXBLMuEow24Vo6dnd9wwy3nMX3WPhx55Gm4joTk6sRjMfAMBgc3U9UgsWvntwi1SFNjg5/BpCXYtKmLsy67gdGTZ1L0glx10R+okSR0ern59gvIF4aIhFOcfeZlKGIsuApD/VlSdSEc8SjrN/+L/MAoFsw7GWwdxy1jugVUNYrjBsANIewsjmugaiOB2I5GqVwAKU84nmPbzi/J5DbxwXsbOP7oS3G9KJYToKo6znedDkHhqhtPZHRbHa++8j533fEEqpKklPcIRmKA4dtZCdC9TaKhTcN1OsnkNhMMKGQyOWKhBAoe6fQQkp0nb0q0TphKR08eqWRwzYW/JiApnPqz82gYM5OCBwN2hri2ldW3XUBHdy8PPPYB2VI9EiESEgjVwHazKEoQ0PFsgVCUkXXDwnMLCMkjN7yLaDJMqThMMFSD48UZGjTRQzUI2aZo96BJElHXt6G6SHiSjaIZuFYf6XQ3b619kk8++oprrn0S5NF+RzUZPKcAShYB2J6MLGrJFD/ksYcfIZ+1OP+8K0bG43D55b/n4otvADfiCyotIJjFD5S3gAjFskMhL4gmUwRkwLS58Q+TWfPKJt58ZxtOrg05mga68YCHHr6W4489G8dxWP3n28gVDY468ueMaZxKIe2QGegiHtHJ9nzLdf91OjffcS80jqY0ZOGoCRyh4KKCJyEBllHGKJVwXZeW0WPJZTLYto0QAs92CIfD5LIm6XQaXfNonlDDlq8+ZFfnV+y+xxzuWv1Hnn3mGe6650Eaxy3BMiVyGROkEkLJUZ2swbRdHDNKMJTE736nUMpbBIO6n1lEluFsD0898Q9OOfk3lIsSEjZa6F3OOeonTJt0EKeetxpCXThiiMsuOp9f/ewqvFAbqWQjZg4cy0LTQQ6plIZ60ROf8+7H97F0yZUUMs3IrkKmfyvhyDYe/fulbNmyhfPPuZea6gPZsaWXtLmNJ567j19f9hOiqkRHbgu/OecP3Hb9PRhDMUI6vP/pg6z+0x189kWRzk6PTMYlEpOQJL8oCMNAYmT9r1ChQoUKPwQVJVKFChUq/NAIZyTMWRppdiPoHezmkUce5vPPP+K4447h6ON/QSf1OCQwPJAlCMoF3PJONKWMQhHJskAkKGQd9FArjjWG/fY+Hckbiyoi/P6Ck9DVDGMmLUJ4CQSqv4kg0UgSPB1ZJMAJIEk6limjhkM45RKSGmPjN11Mmb6EYt5G1SJMbZ+JIoJI6EjCz9oBh2eee4yzTz8TXQpw9733c9ABy4kEJmEbKqGYiicgn4NAQCApg8iEQXHp3PkJh5x6GR9vkAnULqG1QeOWWw+iZKzn0B8fD0qC6247nJqGHJ7RRDjchmdGEWqUob4hxoyrJ1UdQhETkcRIG3Vhj7R0krHyRcZObEWLBLh39fUMD7q01Lcj2RGEnMDMFRF4SJ5DWI+QGy4QDkZxLEEsXItwQtimwhmnn83FF19OIlFPXd1Y7n/5VT7fso58uYPGZCt2uUhQitK3y8Ey80iyyurV1/Pbi6bz2NMP8fSLj3DkcafiuAkCWgvHH3kOYxuWIZltOEIDzyOb7qO6qZbOzV8SCUtAGQsXyxXIsoekmFhuHoRLuVwiHE4yf/7uTJu6mIBWi6bW4dpJFJIIV0W4Nqom89zzj9A7sJ7DjlhBNt/FOx99xMOPPUNP3wBzFy5neLiAJINjO+hKCMeQKJa6ufWeQ+np+hSr1E/bmEaEDCXPQRNBNn2zlZOOOQvTSREOVaMoKn09GY498nT22etwdLkK4aoEAwGWrpiDGvDo6NzIdX+4hldeXsPCeTMJRCM4JQgl2sDVcBwZx4yjq7UgImRzw7z/0UucdPJBwDZeePkOQqle3nr3cdqamwkFUmjRCHgZcuVPeOypKzj21MmMnzidhto2HM8gFvYVEblhA1kECESTBOUY559/Ph0D6xnXOIZQJMqqVYcyakI7u7q7WX3jPQSEjoaDTIbZ8yezx9J9mTl7PqqcQBJBQCUY1vEcCUmupzY4i+a6/cj3x9DUAMUcKIrAcS0Mo0RAd8gWv0KovhoqlazBs0OochRVjuG5im+5q2tm4bz9kEUS1xa+aikawg/hDzCctdl96RJmTV3CiuWrCOj1gO4rd1wZPA1BAFCQdYEQAlmOEQzV0d/7Gf987XG+3fgxg0MSsehEouEAb733Pq+ufYt77r6XfZYuYc95s5jQ2sbL/3iNSdPnUF1TjaI6VIVVli5awsSJc2hqmYmkptBUDUXyg+klRcdXe/gqEHA5+6wzePONN9hrz32Q5BB6UGXblm945tmn+eDD95k/dzdMExQtgqRreCpossel55zMXX+6g2XLFlNV14BtG2SG++ju6CA73MOJx54ObiNyIEm5mEXRDYTsjOg6dSQRolj0CAQMxo0dz5xZiwgGUyOLr8u8uQtQtSTYMgjIpoc4YN/Z9HZtYMzYRqKxJobyFvFUDZ7toeKBI7N4aQsDAwMs2W0VkoiDbGO6ZTw7yISxE9D0MpJUoHtgA3WN1dTXN9Hd3UVjUwvDfduIhj1kuYDkeYwa146qB1GDMUzTQbgCz5XBE3iehCzJBDSdoK5jFfMIz0RXBJ5jYdplypZBITtIdU2YdG4nt9x4Kbs6dnDQgUfj2TWMG72QH686larURAqlEEbZQdOipJJjCYWqAI3X1r7AA/f9jRXLD8UoKJhlh1A0CJJHf18X4XANQb2Oqe0LkJUoiqohayovPfUHNn7+IVYR9tzrCAgI8MpMn9bKL84+i+NOPp1iJo3ldBOu2YUU6OS0Ew+nsXoqjdUTaayZhhIag+KF0AISA11DhHQbXfMYGizQUD+DdJ+GrAtqRuXxlAJj2ubR3x8goc9kwvhpRKNRhGogqxaNjWG6Ovv49LNtnPnz/yIckf3bq/CtzX5hUMf/4KBChQoVKvwQVLSeFSpUqPBD8/+i9ywVLf71/sfsvsfeTJsxny+3buKg44/BBrZ3bAEMTHMQNSCDl8e3dgFukGiqCVCpbWxkW1cvhlfmvU9fZFvvJzz+4h9Ayv/3fXvyv9tP+1/737ekEEg6rhQGwuy2bF9wA7i2DgTx+C5v4rvMCQWQ0fWRlt5oHH3UcdTXTAXJRcg27kir7lDY370qErz/3ss8/tdb+fKLT2kbswgtMoEZsxsAlwMP2pd5c+bgeQLPs9B0j0y+gyuvvJLXX3kdofmvWZWTPPTg47y+9n1/HAI/90K4fNdLfe6cJTimQ2/HNt56503GTpiKGq5B6EmwdbRoFFmWKOQGGO7bRUAVZIYHSFXXIokgEkGKJcGchXsQSzWzcNkBpOom8+nnX7Ft60Zee20NVdEYmmxSzA7g2YJoNE4olMAwZLKlfhpa4OAj9sGhRDZTpL8vS1U8xWC3Rde2HK6posgaiuxSHNjOu+89z1tvvcDgYAfRUBhZCgEOnmTgCQtPuHjCw3Y8qqoaiMaqKJclZBFFcqIIJwxuENfT8dAJhOOceMqZjJs0A4sAQlKYMn0Kk6dOAuERS4TxPJtsdoi+7g7kkE6kWmXI+JREqp831j7KP198ENOxKRtRbOqYMuEAUNqR5SSOrQJR5s3fi3hqHNHkRORAE0Kvx7IlimY/eWMbTz9/NzPm1LPvj2YSq7IY7P+Sa677DR+/+zzFfD+4ETwviIevQpFliQsvuYj2KRO4/77H6dqZoSa8B0cfeA3x5FTuuP16PnjrKcxSJ0E1wc9OvJKJzacxpnkOBSND2chjmEVsxyRZGyNeWwuWQJHDHH3kyYxpm0J180SQoyycu4BDf3wIqw74ERoCgYWCiiBJgNHINBBWWvDzc0qk87tAKpE3hoAs6ze8z2WXnUKkoQAhm3DUw7IsVCWEa3vIukpVTQpZsVn7xktIuvALyeBfg24EnBgy4ymVdCSlSCCUo6YxjFmwyacdNm3e6Qelq0kg7AcUo4L9H2/bvmvDLiAYlbBdvylYvq+ErkWYO3seS5Ysomy4FAoeshph8pSZrFp1BGPaxpKMx6ifOpkpkyZx8MEHki/mGB4egrKJ4sgM9RWoSfnz4I6oKBEj6wkK/90y5DF58mTSw1lcx18r0kNZGhtb2GvPfcilc2z+dgMBRUbywDT8rJ9CJs2ime0sWzybZ558jFI2w8BAGiGCtE+axZZNPUQaxuHYEr0dHbgURnLeyiN79cfiOC6aFKMq2Uoy2UQ+mwfXb5cXCkf/23zFalLMnTOdge5tNDTXsWH9l1QnEsiAThm8Ilh50BvQtQiukcEwTSzbRJOSqGqSSKQFX1maZ/r0KcyePZNYJEpLUxM7Nm/gkot/z0033UisuZmZC5ew+p77uPGa6zDLpf92HxD4DTS/z4O2kXCQsJGFhYTFQH8PwaBGdU2SSFinoSFJbV2S7bu24aKRz0tU1U2kunEy2ZwH7kiBzxPggVn0Q9kXLpzH119/SSGTR9dUbAugH+ihpjYJbgrsBJqWAlHCo4CLYOXKQ6mra2D7jk2gS2BplAsK1fVtTJzUDnYNQT3Aum+e4I47T+Wrbx/id5cfwJ/uP4V0biN4HpmBDJLqz38qGeHll17j1+ddwRNPvMXkhUuJViu0ThpFT/cgzY3VFHMDyJ5LIVdg7Og2AGQlimmG0PUaamtaaGpqQdXE9xMJ/3GfqqRqV6hQocIPSUWJVKFChQo/NMIc+VcZsbNBIp6iULJZsdfejBo1jp+ffTZHn3I4oxoTjK9OcNXV5/H2a0/wrzde4uP3/4Wd92gdNxukAIgiHdl1zN17AoSGWTh3PN9seZmGpj4O/PEsmuv3Ai/JSI/rkScV4/uCi6fgCBh2JLSggoFBOlugrq6NcsEjPFIBEuL/Ye+8ouSqzm39rbVj5arOWS21co4ooYACICEJhEAEGYzhOIBtMGAM2IAB29gGE00wApNNMMEyNkjkKIFAQmARlbPUubpy7Xgfqo3PebsPl/Ny6+uXHj16dO1dvUKtuf9/Ttn/N4z+KPXSh/PRo0eg60EEAUKhOhQvgue1oxhZPOEiRJBszsVUJclkL1u/eJohw3RWrvouS077BTvS8Ofn/kk42M6SibMZMugYfLsKLRCkp+cQTz/1OHff+SYD20bhe4cRSp6d23fT1bOLM1f+BFVtKl2XyFNq+zGAIKoZQ2ouF198Adf99hoq60bhOSF8T0NRBMheUDPc9YfLmL9sAdde9hMCEWgbMRSn4JPNFnEEzD12HmowQm/Bw4y18NTzr1JdVcmd1/6CjgNdxMIWTraHqsoB7O34FKHbzJ19EmFZha4O5qiZK3CIkC1Y1NdXkOs7TEV1lmgsheUFsawihtrDj394Ouees4jRY1rRTYFLmEw+iKLI/vOuxBcKvoB8oYCPwHFtpArFfBEd4+ukP1+C76scf+LphMN1RKKDOHreOfR25zj7nMupqmgFEcfDJZc/hKZlueSSb/P+O89zzXUXcv5lx/Dhm1v42VV/oqVqMFlZh2bW46CTMCuhqKMEAnhCRwiQMowgjKQCRIiuI0fY+uWH5Ao2w1uPYvPH/+K755xHfYuJJvPc++cbOHBgNyOGDyMai2GadYCCJ8CTHqrq4OWTbHx3PcmOfSw79mzeeyvHmFGzufnmHzFrYZiMvYlHnriWV156g5bGUVRHFpIr+rieSixag2v7mIaG5+Q5cnAnkeogQvVoqqujrn4Qnbvaiakhjl1+OsMGDGPkiJGAJE4A6WjkcgqalsAnihBB3nzrFT79agPbd33E4GENuF6O1166iaraXixlC1de/SMO7H+bYEgyYMAU3IJBKFZJsucwHR17uP/+P7N48ULuuP1mZs+e1y/AaP1zUKE330401Iybq0CVlaxbt5p3N93GC6/dxiknnU57ZyWq0FGFjpAm+Aq+5yGUf7eO8XW3ZoEMpq4jJDjFLFbeAS+IqlUxbPgkook4mWwWzUxguQrHLlyEm+njyNaPeeWVdTz65F+Zc+wJFIs5TCtPur2LcKCCbNYj0TAIGx0QpQYhX/avBbKkgOACHpMmTmTW0XMJRSrBVzGDAVRNIWgajB8zhsYBI5AWYCsI4RMPBYkGPAYHe8jni1RWVDJs8iw0JYKQYXQ1xtGzjwdL5+DBFE1tDbzy+pO89NpTbNvxCWPHTMKyVVQlgG5oeK5AiggQQtcj9PZ0EQjq4Lv4roYQGkjoziRJHt5E+76t/P2JP/Otc77Hzh07qa6sQ/RsB7cdu3sPSqiRqbNmkuzbhWscIGjUkc2o+I6PqkVApFl97518tPlTFs8/k1xGI9XtEQvWsnDOXN58/Q0mjhuBWd3MvCXL6U0X+OvTa5g+fTalSHoV4UuEr+ALDykcFCyEsFEp0t15kK6eDuqb60ln00g3iOuAR4qqmggtLYOorx2OrlXT25MklU4SjvYLyiKNoroYehzf1fDJYAQ6OfPMc9i3t4OKRA1CzeNrO/j7iw/zwJ8f5thjziwtpwJQSlWQDgEUDQpdB3h/w0aOOWYxoaqRaGYNnujkmPmTIN9Kps9iyOhGPvzwBd548yWWnnAMp65cyI8uPo3b77qfM884A0NVQc/gFw8wbvQoDKOanl6bwUMHMGhMJfsPbGVw6zTq6mySvQdxbZuAbuD5vfjY2IUqKA7AymWZt3ARb765kVNWno5HyXOwJMj1ty7/Dw/CMmXKlCnz/5qyiFSmTJky3zhfR6l9XTxQsGD3jv3MmT2bTDrLiy/8jQljA4xprSegeGzd/AaXX3ER9z/0CINHTWD5yovwRSXZlIdiepz/89O45Krv8+HHH5Atmpyx+AradwaZPuF7GMF46XAn3NLryiLIHEir9DMhcRSVXb09nHHuyUw/ehKJijiaNNFUAyEAvFKr2NciUv+tCBVTN7FdH8dV0dUKct0am7Y+gQx0EwtW4/oJDENi5SEcruCUM0/gg01vUxVUqR6+hD1uLz3ubr6/8FSizgAo1qJqlRT9DKOHHo+KxpCWmSA9HvjLhbz19rN866wfcfTRY9HkWHwRwhcuPnnARYgQVk6Ao+CLLMGwxoSJY+l1FDQlgaaqSOmR6tzMq2sfYtTwCHGZIxhQmLf8eJxCDil1NFOj6NlY0iZZzFFEEIw3sOyE7zDn6GMI6xnsXpePN73EE4//iWmTl1DZYqOHLPqSJs0V02gdMI3OlAW6RnNDPcnUASqqPJ689wreevlBBo1ajBkIEIvnaKw3ePjB3xCK6tiOTTg6CM1owXNVhF+q9MIvVXoI6aGoDo6XJhgWuF4GRQiQRTzplQQndCCKGWwjla5AiiZGjpmGkzFQtRqyWfDII41ONCPFju2vc/mVZ/G9C85G+JNYtuBycIegGK3kfIOC6iKxCahJUIvYMoDt+lh+FseVmHoCuwCeK4gkwgwdWk9r08mkemqZM3MZrmOiazoX/eSHHDl8iN/fcAeDRxyN6msIVcGTNr508IVNMBgg3d1Lc8Mgjp+9lLaBIxk3ZQy263L0tBU0Vs1h8PCVzBh7EhPHzaWpYSCem0Eq9UiRIJvx8FwHRA4pC8RqNa649Dt8/tl7TJ0xFauQoLZpCO++9CZ333oHo8aPpSJWjY6O8CS4LlpAUHQsMtkMmqEyqLWR5kG1jB4+EQhgqvUklLE0DzqOiA7Pv7COsSPHsfXjI8yefRqeLfGcDKGISy5lMnnSdFw/z9Kli/onj1fqucED6RKJNZNKFcHroDv5KXXNSd7a8AynnH4S0UQLoVA9ploSP7KpPnRd9uu4Fgi734jaByHwhYFHCkX2oBkKu7b2MLh1Fq5TwZ5DX6KG8wiCeCJCOFZFJpVFFLOsf2MtUydP4qwLL8QWOn3dvaz+zW949R/rmDdvEb5iEq1vwkZFIFBFvxZdUi/71xgH8PA9F10PIqWJXfBQNMGnn27mzbfepK25hYAaxsnaGME4tpVn74HtfLXlbZ6/92qOX3wSoxYcx85P91JROxhdr0AqEbK9RXQlTLyqnv0HPmXy1CFU1Gpkc32oWoR4rBHb8lBVDSuvUkiDrknyGYgkQv3roIeQpUrMfBFczWbq9IEsPH4a1aZL04hJSMfllMWLWXXKfB761fk89Y+HWLj8MlD62Lj5Kf7x+s188N5hZs9cgaoLvLxDLtPN9KMX8uGGfzFk6GR8uwpVVFIZa0I4MGPa0WimjhWOYdugmkF6ejKMGTkWUBC+0i8iSTzFBWGj+jYSC5Uiq++/m3ffeYvjli4iWyzgF6rwHRPXy1BdEyMULglmhQLEKgzMCGQKR1CUAL7oQdEsDKOWnp52Vv/5Jp594Q8cN28hFVUtoBSQWgqFIANahrBhwzvMnz+llESoKODEQAZKzly2pG3cII6dNY5zv3cxS064FFUFoRW4/palSNHF0NGTKR5pYsr4hSxa/CM09RgoTqetJc7i5VHWPP0G8ajC/X/6JZs3rWXKpOm88OImevqKnHzmfC6+7kTeff9ZHr77NvYf2MRxSy4kkB9M8kgNfv/DAmFYmHqYWDBMb2cf9/75QUaMGUFzU0N/QV7pC+/fLtvf6KZepkyZMv9fU25nK1OmTJlvGl8tPRn9b21tmgaDhwzgwP49xCJBJo8fx+gBw4loQSwvz6nf/g4FGeWeR56jM+tzpLMd384RjpWi6+2CwZpn3yOdCtLaOgmfKIsXn0skMbq/Zc0F3wZh4wkPV4CLxBMennBwpc3ja//GqLETGd40BOFbSCx8Ca4EV2qkfZc0AdJAUfKf9hkcdEXBUBXwPZ584m5eeunv7NzxJQKJ45TilV3XI9/XRWUE5s+uprGpiTvuvZhn7r+WQK4Ly7PABzcH2V4LhRBOXjJpwhQ6O/aDkuPFdY/ROjiG56SQwgQv1H8R1n87IxTRjCJSy+F6FguPWwYEiZvVGJrR34bjoaphTlhyOnv39hFqHc2sOceTPpzCK3q4doZMXzvxqIJn54hHoqiqSraQpdCXI6ZH8bwi967+Lbfd8WvOXLUSIyDo7UiCo1BbU0nBllh4JOI1+EWDjvbDHBV1AAAAIABJREFU6FKwf9uX7Ni5jZGjB9A4oJZUKkVHe5pBQyYxdspxTJm+mBGT5+P5CsKzUcijYIOv46PhCbD9IoqiITyJk+tDoRdPFvFkEV/m8WWp9U2g0tORIhqN4HsqHQcPoobCJHszxOIhBBDQDYJakCFDR5HLKSiigUENk7FTAlyDg1/tJWqaBBDoeIDVn5YHeSuP64DjltxHFBNUQ5BK5+hK5yjaHoEw5HJQtH1u+O21jB47nknj5xOJDwQcDN1BiiyK76D4HhKXI4e2EW+soLPrMEQaIDyAQCxKLBElU1TRjCZIVWCKwdTWjkILVyBDRfKujaKBrgeJRhIUsgXSmSRuMUk4qmAGwfXyxCtr6Np1iK+272b8pNFs3PghxaKFwC/dmwKQxtAE8WgC11LIFSwMqaJgl5LscKhubgOrAsuOMWliG5s++Iwlxy/HyYAWkmhBHV8WqW8NU8we4bWXX6KzvQf6554ri7hKEVuxcS0IGTrJ1G7+8tgtXHXFj0mEEnzw9hYCGFhWDwCe5xOKRUFK8Gz+x0IClKpaQKPUCvnray7gpVceY+vWt/AdMLQKFD9I3gHH90kmk0TDJu+8+wZvvvM2N91+O8muHqRp0jZiGN+78IfYShQzVktVQwNgf928JvBKFYDCBpkFMpRMmj2kGiRf9HBdBy2gYHsZHv7Lar7c/gmrH1xNX28KFwPXlkhV0NAUpWVQPZWNI3j8qTUU9+znhut+zuEd/2LPFx8gRZZ88jCFbCdOvpvmQc1ksz0MahnICccuY1BLG0IITNPELoJpSMJRBST89sYrueynPyDZe+h/vFOahIgSwUsqYDRzsMMjeyDJWy++CvkkhAXB2hjB6ggUfcBg7qzFTB4/h43vvcSB/ZsBGyk1QokWKBrU1gylqqoNKQzCkTj5fJHuvgxqIEImB1GzikwKhgyeyLGLluFKF1fJ48v81/9LxRPofhGVLKpvg2cwb/6JNAwYguOoaEqCYCROrCKBZkRxXB1VDQOSeDxKb283PZ1dVFZUl6pOob/qzaOqLkBDQxhD6xemEXhksKwAkKCry+OSn1yNSxKfw4CFZ5XEQh+w8x70+aiBWiprG3F8F0UDy/Y595wL2PLZOxza9zmer6FqzZCtACsEfTB63ALGjFvEvm3bueum66mNqmz74gOSySOcesopPPjY4wTMCEsWn0BNTYw9Ozvp7uzh4Fd78aWO7/skotX4jopnW2TznXjkiURNers7WLv2BWyvNP6A/+QolClTpkyZb5RyOluZMmXKfNP0P7n3xdcfdSkWk6x/53WiAY+pMybTc+AwFVWtFBSbLl3hq8MdfPvSq3j18ReIAdX5vah6ruS4TZhdnT73PPgUNQ1VnPOtZUSwMHHIpFOEtThIDRQdFImNgtNvsy3wwLXo8C2uWfM3Th01nwVDKrByu5GmSVEfye4OSNTArFXHMWLaCVzy/QtpBQbr4Ge7kIEMSBccDWSCH31vBHfefz9OMYjQx+GLGJmUj7Q7iFb2MHvYSIww/OWfj3L7vVdw1lnfZXjbf4HTCGoayGLZGjqV4CW55po5nP2tK2lqruWU78xj/PgGLvzew9TUV4E9HtQciAylk78LJLnz3t9TXZ3gtJPPBwJAJT2WIKzrKEAhkyJkmoCPnc3hejZmOAG+Rvrgl1x77X8Ri5s0tTRz9ncuIe+H8XQDV1fw2gVVDQl2736U8y86j1gEVi65iKULf4Yer4FCklT+MEUjSDTmUkiZkGnA944QDrqoWpEzz5iOFujhokvvpWXgbOK1zfSk0ujBMKqQCNfBKSSxskmE30FV42CSHbUknRwimCQeV8gckjQm6kG0M3pIM69+/BkVVSG+2r6FhtomDCWModSg+gGEWkqsc5V9KLIaiIITIpPuIhzPksn2Eg7X4hYiKKbD6vt/SCET48ILbiDdm8eniFRtduzagWkGGD5mCgUkxYJFyIxh2T6O72HqJfNaiYfl5lGUFA4JrIJP1Mywv/0VWmuH03Wgiqp4M2gbwciBZQKDwA+xf/dWbr/nYga21TB65FTmHPVjcGPg5SgG8qQMFdOGkO0h+9Lk93/BU6/8jennnYAZaiVutGLlIaJGMEMOmZ49hON50Pp9iFBp39NLbetIIAt+N7YdKZkt4/T/TgDoYueODtpap5U8w5wcn25/lueevw9QOHnZfzFh7MrS/LW2YugFKAQopEOY8aF092apqAnx3e9Poy32OZ4b4913epg7/2wuueoqXOnhKDaWVPGFQOmLEw8Ljux9jSOHPqPz8FYWnn422EZpbngNONIETaEUflZqG3M9F0XqpaRFVcH3oZjxMDUJWp49nz3Ih5te5bXXPuRPd33Ijt1ZGppr2F/oRUoL3bMI2ElUO0PBKvLOex8w+qg5YCaoraugY/9eKuNz6EjuorKugBHIUhmaAK4G1kEIHuCTTV+x5ZMN3Hb3vfx9zd+pSAwioI1G0cDrF5cUSolfLll+euXlXH3FQ1REB7F/Xx411IurfkkkECTmj4R8J2gOn7y9hgfvu52zzlhJOBxm/cZN7NzbyabPD/LYM8/y3uY36Og6zIHDh7j88l8R0JpBRLBSEj0IqA6IPnozW3jv/Xd58M9P8PQT74IXBYzSW9jVRyEW5GBvN7XROGFVgJXjH3ddz9JLTqVg5NBFBOlPpVg8gKpaKJ7kyWd/yvoNL3D5j5+jadA8SrJaKQXBtQp0J3uJx+N0dHVSV1dL0bbI96UJFHyKXgwlECJHNzJ0GGQOxfdQi/UodpRIOMSTf/4Jr617lB3b8jz990/o9HRClSrNDbUUDwfIaBkcxUL0O1QJHxTfQ/gS6YtSZ6Fw8bQsrq2hKVEilRpwGMjz8EOr+fbZV4GfwFfyeHYFUv1PcVxf7hX2HHiTEQ0XoCuNpc0q1L9/KR7ZVApF9TBDOq5dAOHQm+5iz/4djBw2FsON4xUCaOFAqfhWzWJrKXzhoHfu5Y+/+AHbd33GzIWzWbHqJxTcRsLxWvqsPmytg68+2Yg4fIjXt+zm3IuuIxSO49suXt7BtnyKMgiKT0s97P5qC0tP+TZ33v84s2YtxKfkA9XfwF2mTJkyZb5hyu1sZcqUKfO/hfjPg1Irm2FQUyOP3r+a9evWcewJJ0KwAkeJ8urmbfzx/ueYtvBsho5sJQ9UaHE0Pw7FGrxiFBlKMn92iA+2/4n3t9zFqy8/y9zJp2D1RTHUOKghsL1+Tx0XXXgoOHjFFKomcYoZho0ewaBwBb+45Dzee38dC45fwvp/dfDs39YxZ8Y4Xln7FxbNGM/xI8YTo4ApLYTuce21V/LJnsPkAwkCNUNYuWwmdi6HFqhDijg+BpoiUGSaj9f/neHDDX5+9fepaKzELkSZdtSpQIDzL1jFoMFVRGMBdC3U33KSI9l7gJnzVpHrc3j3/TWcuuIHjBh5AiApphOougZCAT9AyWTb4/PPv+Lkk05HUyuACD1pwV4nx6mrTufZF9Zw0slL0TTwpUvaTqNHg3R07sROf8kdt1/C3j0fM3fudE5cugozOhjpRREE8D2B7qbI9+3jmef+xFFTh3L0jHksXfpjUslS0lpvuoNYrYOv7iWgGqhKGsvdiVfUSWcsHKeHjr5dXHrJr2hsHk8wHMXxXRy7gK/YOHaGeEgjlT5CTV0UOx+kt6NIPBoj2bmfymCEWKiC1KEDRGvi/PzCH3PXPXdS19xCZ/shPnj/HT791+cMaRuBoVWAMJCKC/i0d3/BPXffg+96VCZqCSd0duzczOtvrOOJJx5l9qw5pDK7yPpbWb7kMjyrAalqhCoP8JNfzsA1tjN1+lTcYoiAHsBQNbLZPkKmgaGAgo3npYEChnTwqEDxdEypocgQiXANPd0elfE2yAvaO/bz3nvv8NpbL9J5JM22r75k8qzJTD6qlTnHzKV10FC6OvJk0zqhsIknFBTfR0gLTxbRKjwu/eV3efejV/h861vkk++z/vWnqK9VaWisJ5VKs3PfPuqahpLtFXjFCE5e5eHHbuCrnf9EEVBbN51VZy3goUdu5swzzieZdJk+t55IVHDUtNEoWp507hDBEPi+x4mLv8282cvxXZNIuAXfVVDVaiia4JioehDHLuD4OXQDZkybyfFLVzBtwjKamqex9MQzMcwgAoGPgvRCqE4IVTEo5PuorK2kbuBQ2gaP5PlHnuFvj6/hn39bx/y581AiVUgpyOYyaLpA4OJ6Fr3JLtLpFJFIGCE8VKMAWhqvmCKkjGVI42IWHnMmH255kcFDQwiRo2g5KHj9JegqjtBxfJ224aMJmEESkTB+MUd1LEqys4gRkOiGS3WiklxORVMNtn66haeevJ8TFq1i4tTpLF02jTv++EfWrHmBk5afRbrPxTRL1+n7cYSII4lyzNxZSLL4fh+hgEeuO0+lOQw3V0neV1BNHcUwqKur5e7V97Ftz37e3/IFF13xS+K1gxk3cRbjZ86mpamecCRAJpvjqMlHgwjQ09VNOBYFwLYKSOkSMANUV7Vw9qoLKOZ0VC0EOLz50iP86c5ltIwJE6goYIRUDBkBEWDYpMVg1dHXLpCGiSYrUXUFKSVIi0isC0Xv47Kf3sj6t9dw4infKq1DEnzPpljI4eFgGgrpdBLLyuN7naj6l8Qbm8gkU+haDb4XRLhRpGcg/ZI/VFexl3Gzmti++z2aBiZ44q/Pcta5S3GsHVx50UlMbq0mVFWJJ/uFI7z+vaTk/eMLiScEvh8AL4HnSaSexTBD9HVqmIE26qvGEo4HQHbh040QtQjhIoQNCDS9j3AErvzpTSw6YRkYonR/QCGXQdMUNE3BcQo4jo2UklAgRGNdM9IRKKqOEpBYqW4UAzzp4woVDw07dwgRqmf+su9SO2Au0Zpm1rzyBC+/vQZf8WlqmEht5WAGt7VhxpppGjSSI4e7kVJHomAGAvi+j4pFX+duXnjhRTZt+Yzf3nQ7PpJ/V1iVnZDKlClT5n+HsohUpkyZMv9b/DtIxgdd07HTKW694TesXLacgePHgfRxUdl1JM3eQ1nqB03hquvvZMOGjzl54VSEZaEVNIQBhlFAcohPvnyDWdNH0lI9gLbmozCCpYoTFInrC6Th0dO9m5BZBJHni4/f4rbfXIGV62bG2MnE1QCbN77MpT+/AKEHuHX1XxnaNpxoIMC5J89k7uiBRMhiSA+8HAiHDidL8+Rp3P3Es3zSZTN7ZC333H4nu3cdZszYmfgoKNJG1fI8/vjtbN78Ol/s+Bdf7vyK0067HbyWkt+SupeZ02aiKgEsS0chj/BS1NZUEDAGYkTq6GrvZcqkBURCtaX49GBl/5up9KdESRAe48dNQFMNIIZblKjBIKvXvsiZZ53GD77zPYpeN4bilFqTDJ/tu3dSVanxve/M4YyVM7n4uuuIKDq33vQok8ctIBiuxisWgBzhavCzB3nk0dX84ue/YfCIueSSURw3gq97BKI6V193AVZmG6lOl0OHvuT9Tc9QER9IU2Mz7T07GTJsKM1DF2HlBbZrYTsOUhGo0kNTfTy/wL1/up3hwwZh+Rp9+Q4eefQyZHEPo0e2Qt8RLrl4CQf3v8vKs09BMeqImCbhoEFbawsTxkzGKYpSmpdUkNIFafPD88/hqp9fQ2NDE6F4glT3YU499UTmz5vPqaecgmMXyRdyTBg9l1y2hlAoiFRVDnXtYemJi5k+9jgMrQ6PMNlkD7oqCARMBC49HfsR5DAND0UUEeSQCITQKFopfNGJlH0Egwbp3j5c0cUdd19IJn+I5aecyYRJMxkychSdh3fxzxef5pFHH2Djxg9ZtPgMguEa8qIkeARcB1exKGoWOwr7aC+0M3zUYLLbdvLtpTM5fskyaqobsAsanh6kK9nFNdddQWNjJa2DB+AX81TVxJh/7MmEjFp0o4r9+/ew4uQVPLvmEZRAJxde/G1i4QayuR7ufeCXdPd9xauvr2XhMWdj5WK4ToB4RRU+Hq7tgaUj3DCYUXCzeKIHwyhVBaluBcU+BdVooqVlLKGaGjw3gxAOEh/VCSHdAK500EyVYsbGLQg0rZJhE+cQ1RJ88dlnbNzwJtPmLkLRDKQUSOnSl+pl1bdO5YNNGzjjtBWAjY+J6xkIoSC1JIoaovPQYd5863k++mQNr7/4DuOHLUCVJQ8DITRsGcCSESxfQ0qdgISQb0Mhg6kIfFvB8Qvk8im0YIBQqBohBbUNtYweOw4z0Eq2r5ff3XIVH2/9iKuvuYq66sEgNNKZJC+98iJ/fe5m1q5dy8L5y1HdZpy+MNnuPNFqjcyRHSTqqzF1lbyv4zhFCoUcvnBYsXIlO/cfYdMnX/Dd8y+lecRkWhqH0XW4i0RdNTU1NQjXY926tYyfMJVAKILjSXxPohoKQgo81ycQaMAtBtGMGIVcDtVwaB1aS9zfxx/uuZeNmz5m0aJVCKkhHA+3O8krz/2dRx54gMlTjiJk1uE5RYQmQBS544/XsO7lzVx5+Q9Jdvcwd+Fp/YEDLr5nUSik6Ut2U1sdw7ayGJrgnXee57k1v2fKhJk4rk9FrA4rp4Ov9s8VF4GLE6il6CaZddQk9u3r5uxVl1I3aAiak2PZgjn87rLfsGDZSSDcfiGwJEmWzOlFSUAS4AkV/CCesJB6DtOoxNQi4EE4GsOVPdx1//XUDwiSCDWBEAhUPFdBURx6ervZteMIR8+ZBdLFszSEKlH1Uou057kgfIxAAM91S55ORYn0fLJ9R7jvzt8xZvQg9LCKJxUcEcD3QxSUHNVNY2kcPJN0PkJHzyGmHt3KkKG13HDdr1kwcyVWTgE1gmbEkUoARTEwgzEy+SyqoqCLIpV1MaIBhU2bPmLDB1u48KIryNsuqmJQFpHKlClT5n+PsidSmTJlyvwvIfz+MCMA18VzfOyiw7Qp06C7i117NqGSYfzIQcybPpFnn3iYVStP5ne/vhCAgGmTz+0HtQgOqLRwzKRzqdAmUl8xGPw+/OweXMUuaSuKB+TZ/OFrvPH6M3j5/Wz58DXGjh7AycsWQKYXsik0zScWjrP66ftp7zhEsZBl9KBGnnroz/zyqsuxnQzggpRkrSztPZ385YmHENJhQEsNqXQBz9OZOWMu3cluJC6ZbC/gcuDAAWrrGuju7eOUFWdCIUGx2wAMgiGNnJUlm8ujaxGEqpLJdVLR0Ey6pxNsl/POu5TG5iEIVWIGgv0pc6W2nhIe4FG0MgA4dhbHLfn3jBoxmng0QpE0UU3DwCVX6MYtZKmMRQkFTA4eKHLBBY/SuW0HX3y5k3ETjkKRBjhFBEUUmab9y828+uo/aahtALOWA1/sJ2gmQGpk83nS+Rw+CiMHj6MmUUWmL8eIIaMZMm4QRzq38eAjq/n0010c3LaPULACVYZwLYFnQzZdQPEkRw52UFfbSGV1M7V1CXr6dpHMfEJ390a81Jd07N1MNJ5kwwdrue7Gi6ioiZLpTdLb2UUwXkEhWyAUKHkeSZ9+U3SHuXMWEq9sJBSrBh98V3DxhZczdtRkNMUgGo7Q2Dic3r4KVDVCss+jvTNNQ81UDH8GMB7BAIoFH0OTKLrK3h1fABbxaJBAUAVswMYq9iCwkKSxnR58P4tEIV9IEakOkMruY8asiaw6exX19SOwi6UIdjMQoacnx7BhE6ioaAI1gDAEjlK6BzwP6Us8ofCLm25m7YbN7D6Y4pa7nuLw9j66v+gEvQYnX8o+fPKvjzFp6jBy9gFy+e1c+vMVvL3xwf7RkgLRwcU/+QNzZ36fS39yM1MmLqQuNp9Rw05gSOskxo0bw9RpE7BtGzwd3YigG1HwXIToQTVTSANKUWWAKvBI41gZVD1IIJxAC1SiRetIZvIU030IUUSIItK3kb6H6vcb10uBakRRtQQQgaSL4+jMnj2XzR9tRBX9xupCwXZs0pk+Tl6xnFGjRgAuLgVcv+Qt5mEAOrlcN5W1BlOnj+NH5/+Y3Tv28PknH6G5Dopfqttw0XGEQSBcwZHOJH29SToO7SfZ0Y7q+diFXqx8Ctey0dQg4OF4NgW7SChUS/eRFKF4HZ9++jlDhrbx+OOP4VFElYJEPMZJS09i0ZKZvPjCs/R2d4EHnqUQMky2bXqDM08/nm3rXwYvC46FYxdwHQvfdQhVVzN18hQWHX8C2UwOfIkUOvFENaDi5vMMHtSGqRv8u8WvaOdwXQ88r+Rfjgl+AEUL4hTADIXw3Dw4MHnODxg/YglWJkreVyjiY6kWaqPJ3AUjcK1DPPHI/eAW8F0PfBXPcjl24QpGDh1ATdVAutuzAPjCg/7MTYFDIh7m0IG96CoYmuDYhQupqx5KT08PUEAYHkKmkCKH6G+l9ASElCCFLoliJ8j1aFTGhpA66HH4sE++UMnwUceCL/t9xFyE75Xm+debi4cvPHxZ7E9Wy4OvlwapBMf7t0e/g9Rgw4YNuGQRKICC8AQQor56DJf//NqSEuO5SKV/jfVK662maV+/pOeBFBpgYBdcAobCtm3/4sV1z4LMg3DwkXhIunochBLEFxBNBPni839x2403s3/HHgY1NFJXE6a2KkLO0dH0EHauQDgYwvE8fKmAptDdfZhDX35CPpvlW6vOJhyO4ngupmb+X+2/ZcqUKVPm/x1lT6QyZcqU+aYpRcf8J+DMBywHFHj23rtYcdpyzjtrCcvOmciJp32fzm5BrHI4ncTZ3d3LwMoEcTpZ+7ebqI3AUUcdjxGeSiEVxAz3JyTJLnCzgAdqM3v37qKhPkY2u52PN73I8CE1/Pr6a9m/I8Ojj95GdMBo8BrBTYCW5JpfXUDrlKM46fjrUdGI4nD7H37AMUuXMGrYVFxUJHDFLy9h0MgWps6dzU23/ombfvcgTdglryVUwOi/SwtIgX8ERI4X/vYEs2atIBo6HmzIu90EEnuAqlL7hRtFqh3ccssPaWsdzokrfoSbc1ECCXbu+JAVp53A9757Aef+1/dL1TaoX1cBQBIoAA6WrSGJgFbLfgeqVIdC/jDVAZfxgwZy3rnf4r++exG+GicYMbjsxytYfuICZkw/jsf+8jdWnXEpItwIVjf43Vx5zVl8uH4TM6dP54orrkUzG4AIqjmAZLqIraYRWgHh9ZGwXKSp4RYhm08RTPTywEN3MWnSfBqqplLf2gZKFd2HO9F1iWUXcNwimlYyB06l+6isqSTv9vHe+38n0/MSW954l5njl2DKCm689z6WrxrDsjMuQ7gT6d27hw8+fJcvtm3lV9fdSMES6FoVeiJMunc7kaow+HFy3RkURUGROqoZBFWCUwTdI929j0hVDZ4fwvckigiTz9tYBUkspn49dosFCyPcScf+A9x/3wOMHz+RxScsAkPhkh+dx8hRw1BUl++cdwelRECbA3t20NQ84uuB71uHyRYOohk6QomBF+DrhC+R73fyVcGN4ggDy7QxsnkCeQ8rrJEzJVc/vprTli2nqqDScCDHnm2P8/qGDRzuzPL7x14kl02iBQWaapHOtRMJhihmPfxCNb7dStHtId6g4xcSCA1Q9wF78GlDuI14Xgqp7QHyQAInPxBV1ejs6KW60aPgr0cIMJiKlYyhR32QSX5w7gk0VAzjF1fchFVMEKhVKOQsOo4cor4hzL79W7jr7tv40fd/TFP9GFQZI2+Cj4pwAwhfoHkSLaj2GyOnQKRBtpTGuqD/mmygSFeyA1VVCQQCKIqkSAaNSnS/Giw4svsr6uprybTv5IYbzmXYiCo2f5ThjvueZ9veA4hILZY0cPMZIoaC17WHu2+6lnRvN4Vcht/dciuBmkZsDELV9QRDJg42EpCEEY4Kqo3DZ3z08bu8tPZNrr7yXjqP5KiuS+A5fUjVBkpeRG+/vI6nn/kV69d/QlM9dOyE2RNXcuO9j+DoSVTDxU51ocV1UFycIx2odU1gCXADoNVh5bNAEj0G2Fm62tupqGsj70gMsxa/KNF0wC9i27mS55UvSXZlcPwkVbVaaSxmYniZLLK6EksFBw+fAiFSYCXx9u7n5FXnsOadzRRSLmZFFSh5IM9ba19g1syjkYE6UFR84SOEwHVypHq6UBXB2rX/YMP6t7nt9lvpbu8lqNUSqFIopo9gRBV6e7rR1ACIOLpeg1QM+vYVkYWtJNoi4BqQHsBh26MokmiKR2NlG4gu7rrlWjQjzKqzvk9Pb4qqumb6shlCUZNsPgNkqaqwKOZ1sskYNfUtOJ6Fqtr4dGOTJOfnuOnX1/Obq/8I/gC629NUVif6y9Q8bLsPTTPJpbOYRgipaWRSyX4Tc53/mFh7CE9FyhAU+8A5zDnnnkjRznH3fQ8Sqx6GUBrJFQSqr2CYFtn0YVz7EHu+/JS1z/2Dy39+FWBxwoxZDJ80gRsf+IDfXHUR+VQ3p525inBjG+gqrpUhYrXz3KP38uw/X+MPd6zmlrvv44EnnkPVQvj9im7JE8mj/Iy8TJkyZb5Zyu1sZcqUKfON0++s/e86ewGOC4qmoBsaFS3NjBrRQm/HZl567jHeeGkNf7jxKkaPHcL4tlaE20FMZnjmkXtYeda3MMMN9HVYhOMV/YlpEpwwOAlwKkCRxBMKdqGTcNShtUFy5c9+SECDhQtmsH79h3z49gaGDpxIINLIXb+7ll27PuOyS39Bb1oSM6KopJg2YyiVVW04xPAJ4gFrX3uR555+iI/ffZMRjY1Mam0lHm8CgvC1rWkp8nvH9s959OGHmTZ9LkNHTMMwx9BzsIgvVAJhG6Hq4NaAFyppFUqaV19/hrNW/RDNMJCawC7ASaccy70P3sy0qfPwhE1AN79+H0tiVZZrf305b7z9MguOOQGpaAgMQlIhYPcR0jy2vvIch7/cQnU4yNELlqB5YRzLoJhVWLjiPHq7LKZMnY9DgGR3Nz5JVCPPh5te4Prr/8C8BcsIVg/BzgewXZ183kbRwZcWrusifYNQpBmcDG6ummBiCD/72Ym8/+F6Viw/kaZBM3BTB0llbUzlB22qAAAgAElEQVQjRDaVRJeSSDCIKlSKuSKVlQ1ksi4RNY7qhghr1cQCI1l88mUMHLWIY+YsYMpRp5PPD8BQW3jwwVuIVcQ5beWpxOMJMn0ZwrVVeMn93Hnb5TRUShS3jnBVM6pp4BdzSM3ETbtIM8aOrZu5+eZrufqX5/PprocZ0DiMmpo2fCeFNL7CU79EVfvIZQQBM0Yxv49bb7uVn152GSMnTCGfyaEgsCyXE09awVEz5oAbZvtX7/DwQzdz/+p7WLniuwDk0+1owQy9vUmEDKLIekqlPFqpYsIPlJL3/BCg4QuPdLYLUwVNU8gVchQKReZPW4STk4SVBFWJZu555iqqB8dY/9EGamMR7rvrVh5/8AEWzl+C9FvJpqoIh0dQzLUTrLERvoeq1CJ0G6QDfiX5bBOaHsItShTdoFCwULVqivkAuhHBsSAS10hnD/Piuj/y7vp1aIpGY2sbCJfPP97E9ClTSXYmObh7F6PHj6Avv49wIkCsMsGhfbt4+ZXnSVTEWL36Lk488WQ8z0HR1P45U5JmXCnRjdL3SK8/pjzcv3Z4lKpuAHwCZoiAHkaVJh55THK4dgiFMJn8Tm74/UW8+urzzJiykCXL5zFoYJiOtE7TwLG4CKQqMVVJUAdTdQkFVGYdPYPjjj2WVE87D/zldk498wxMM8bfn1/HE8/9iXc2/JPZs6dRyBt4jo6igSIsGusGMnPWseRTKvGKau68/Spuvf2XLFuyAkUzwc8xYHAFTXUeqfSn3PDbX/D8mtdZMG8J40cPRwnB3Tdexx033cCuLR/Qu283r778Gkd27mHYxOkUkhapgk+4IkEueQQjoJFuP0yiaQBCBnEcSc4BFRNVLbVxWnY3Aourr76SOXNnEK8M8fY7L/LCP57kk41rmXTM0YCLgoqQCj4akjDSiyECFZy0YC5qjYPIGyS7UgTiEbBitA6ajNAipfVWUfCFQAiB73oUC1n6kn2MGj4E6TjEw2Gq64ehiQa++PQ97rr7eqprkmzZ/Dq/veEqXn11AyeedBaOI4gmLLa+cStP3vdz7rrxNt7Y+A6jjp5IS1sNMuqxa08Xbr6DeUuO49EHHmXyhGk0tQ0F2yafTeJ5GTTV5umn7+SNV+5lyoRJxAKtSM1EqodIZj/lt7ddwuDhY6gOtjFvzkK6OncSCjUQDEZAKQAa3e0u4ZgBvoGmBxGqh+/a+L6HEKAo/17jRWmcColEBU2An2fmzEkIfKbOm8fpy08m2dtLQJc01raCk0YP5dj95VpGjRrJ1BHzUOwQaBpu/iuSmRRzjz+D4TUGTz1wC2++vo5vX/BjCIRQFGiskmx5cx2WZ/DYk/9g196DXHTJlbj4/RVV/NshCspNbWXKlCnzjVKW6suUKVPmm+a/1Xv++yholXouaBrcBlIweMJk6uvbGDlsFJ99/Bmzp46jpTqMRp64YgAKixauwAy0AEFilRVgF0qHTWmXPjP7/S/Q3wJjhsL0HNzFzy7+Cd3tsOkDi5HDJ/Dm61swg1XkhQDHYdf2ndQkagigURep6N8YSm0itp/9+k/3pHvZ+P5mlp94MpXRBGOGDqdlwCC+FgPQ+e/byueff8Hs2ccCYax0qcIkknAIVhcQplsSDTyzv9qldPHz5x1LINKIXcgCPpoRYPzEiQweOoRYvA4zEKVU8dR/2O4/0Dz37BpOPeU0QOK6DgJRslr1S5UbR/ZuR8Giq/0Q5PIgNYQaYumSM8ENopkx0kUXPRol77q4vsRxJE1NQ6gfOIxQRRMUJb7QkYqKHlTRdB/PcfBtHwWFdOduPtz0PggVL1ny6Vh4zGQGDB9G9tBuujsOoqk+vX0lA+1YVRg9rGGGNIIBA9/36Ozsprezg5baRsZOO4npM0+lkFHp7chS23gU4fBowkYzAT3A0pNPZvqMo2kaOYJdO3dSURmFYgaZMNm4/hV+/+ufEamqoPfgfpx0N8giqB5C+GAXeeWVtezdv409eyAWdShk+sCy0TWAI6z61nzuWn0hwahNIZXFCEe49je/RVV1cD0C8UqEMJg1ewHBWB3FtA1qjgcfuoHPvnyFcDxPPtNJT3s7/4e9+4qSo74Xff+t2NU5TM55RppRzkISQkIJkEgiCUxmY0w220RjtgNgm2SSBTY5G2FykMhJEgpIIIRyHE3OPZ274nkY2Wffc+/j5ZyH05+1ak13v0yt7n9X+PUvuCPw9HP38vpbzx7NFpH/H2tlJJCkHn0dBCwCbi+SooACbo9C0KOSGewgIFgUhb20JQfotAymLlrAHffczVvvrmL6hGbOPvkEnLSJSwgT8BYxPASqHCST6MV2dABi0VYMvWvkO2lIRKP9SO40CAlUxQe4calBACRFR9cT+P1hpk2ZT1P9BPr7+7DMGHo6RfO4qYxqmcbJJ53IyeeczAN/vJ4///kO2g/tBMugor6Jy6+8gUULl3HZ5VdjWRZafh6SDZJjjpQ1CSaOYI28JRKMpEm5+f+6THMQ/lszYQXHcpFJ2ciOAqLBK6/9BVPsJJrah+w2SUYNsCPMW3gKhiBgY5FORnFJOsmhLtKJIZKZNGoghOoLsHz5cs67YDnJVJQ9e3dzyimncPHFZ1NY4KWv/whetwvTBkEQsJEADREvXk8EgNEttTQ2VXD7r28EdLra9gM246Yu5MzlV1NcOB6P38+sBRMR8h1629u44hdXcdvtt7Nn336WnncBhcXltLZ1Yw0n0QqL8QcCZNMJ/KEQR3bs4Mm/P8XuTVtwTBvHAVFWEIBsOslwtBe3W+L77V9RVRviw4/fwDQSNDePYtqsKfQbB8DqwOjexfDh3cjOyNFrpLhMASnA3r0HeObPv0UKBYiUl+KYaZBltm3YxXv/eB4n2nX00xgJpgiOgOCIVDY0EIzkMW/ucRQVFTPY3kEi6jB6QjNTpoxhx49bqa6qYFTjaAzdpq+vj3h8mM5tm9mw8UtMK4k/ANNmtHDvA79l7ZY1HOneiS/gkDUyWKkUM2fPIWuaJAYGSCWSOLaBbaZIxvqYPK6Zrz7bym9/fRPpZDc3X3sxkCTkDZAXzufFZ1/BRkBE44knHwbS9PUcYHj4MAgm/uDIxDnnXwd9wHEcNK8Xt8/3/1qLOAKWY4EokUxmKSisoKiwnFR3Dx5VZtf2TTz5t3txEgb68DCZvgF27dzD6nfeQykvpaOnCzuZIb+sgd6BBK37f+SGKy+gbe8gA12dxIf7iScTJFJJrESc2soyli5dyvTpM6itrQfANO3/Zaf+1+c5OTk5Of9/y2Ui5eTk5PzU7KO/jAojl7cmoIsCBpCxDWRFBVGmrHYC773+Fg2NVSRSaU4582IkAnR2DRDwllNWOR5ELxAglcygeAUQkyDGQLSwHA1HAFEE0imQBZ5b+QBhr8acGdO56T+vJi/SwllnX0trT5qJcxfhpEUCqszpp5yIKxRBJkR/Xz8+r8Fdd11O256DTJ48HQUFl8vF3t27ufzSS5k6cRbz5p4EWR9Ifhxh5O5XONqjyDYMRo0eQyRciqyEcYwgou7C8Wzg8aevJjrYT13V8SNZVAI4Sh8CaSoqGiFVjuQGx7JwzAgnLV2EI2RxifXIgh8B+WjwSWOk1EfgnHNW4POGsAwNzV3MQHcSj08EMc7K39/MlnUfsOyUE5g5Zw4FDRNICyHStodkwsDj1UijY2CTti00dwifJ4JlKEwcN5OM4SGTdaGbGqLsGtllMUMq3Y8qq7gVH5rL5Ll//oqurgEmTzwOQYpjG1EWz1/MmjeeZcv69fjkCGVNVRhilCcev4c3X3sGPdFLbVUpimoTTSYoqajg26+f5IetH0M2jOMNkFdTjOmBlB5gaMgk4FPRAsNILoWi0kL2795Ow6hR/Pqmm9ixcS3jqwJ8vPpVfG6D2JDClAVzEN0ZsHoQXDJWOouo2HzwwXMUlpoUFqW48er7GNWyFCwVOznIeefN4y/330xRYYSiokr0dAzF4wFAlFQEyQcomKaE15cPtgtZC4PdxcYtT1NRLTN/3hyaxixAdhwkrZf9h7/ioguvIDacRHYV4ogpHDGLI1g4wsjkMkc0ccQUopjBTILq9uOoEpY+iJSOceeVFzPQtZPt+9bR5u1m/ZFhTjvtKjyBck6aOYe6PA/vvPIc0yZNxR2pJ2O6UL2g6gHSGQHV5aWvfz+vvvUgHd070Y1hKqtL0YW9PPH8L/juh4+ZOumkf2dEIWYRpCSSIoDtIhQcRW31LGprx5DJZtHTLkTTi6REuO/31/Lyc38ma+1h4vQZrP/qa2bNOgU7qWJkJArKGqgqr0WQ3YhISKaDhIMtWjiigSEbiJIycgssuBD/VRoqwNGUQ2CkETKoOLaKIGhI+HjtyZfp7tzLfQ//gp9duoRJ00dT11hO49gGjuztpaRsKlECJIwMHreKRho5049HtsiL+MkYJilBwesP89l7/2TX4XX4QhEaGifj9eeRl2dQ1xCkKJwPRDAFCYcslm0giyEEQmDJYBvUNniYNLmUaK+b8ZOm4Q+6efbJh3hj1Uecf/6tDPT5Of2sCymo8CF73bhcxfQPRaluaGLG7OPwlVQxavQUGifMwJtXQzRm4AgSsmhhpofASmHqWVav+Zh5J56OqviwRY34QJpAWEHTDK765emctWIhLWOrefDB+1h++nJEGYrLI6w/8AZzJk9i6MAe7rr1v1h89lmIooOOgCM4SLZOUW012ze+jt9dhc8bQPJmcWzwuBXaOj/h74/fyaJTLsTGhSjIOKaJnkqjCSPH+UR/HxIC/qIgajjLxnXP8vXat2g72Mb5l/2BqS0LcaxiJs+YiT/kxrA0RJfD+6u/5MZbbmHi1NOYesyx1NeV4bZ1fFmVYCRMLJWivq6F0oo6MsksAZ8btxuef+ZhHrn/bq678nJiXYNsXLuB519ciW508u3GLSw84UyaKqfz8vPvsPy0cwCdg0c+4rlnnuX0M05g1Tv3Ul/fjNuVjyNEsfGgZ0GWdARJJB4dJp1M4nK5+O/Be1sQiBsZRMFBc6kIikpdUws9hw5x5+8fxe0aZNqkRqZOPwYpmI+sBSgvbuDTtd9QWBLGXxqmL+kwZsppHHv8GUTcwwzs+ZyIMkgsBuPnHoOphchkkvzw5Tt079/B5GMWc/rZF/HmO6tZsuw03B7/v0+1I3v2ryBSLhspJycn56eS64mUk5OT81OzTUDGEcAS/lXsNbJ9+uXLnDB3CVnDRtU1XG6d1OBePPkjfX/ae+OUF9YTb8vij/i474kb2P79Tp579k0wBExdR/aogAOWNJLJIbhxklEEyeSdVY8h2AMsu/QiyDog5RPv1PFXlpIS0nicABefPAFFHaBp/GSuv/EhJLePrVveY+2X73H1ZdcgiiXgG2mGresGqjrSwDfeZ+IS/agRD5YAIjYCWcDAMnQk5V+ZSdJI/5ss4P6M6286h9/d8RJB18KRy30xiyMNHP1NXwazkFSmC49PwdHzOdL9I1WVeejpEgTBQZH/W4MpkaOlGCagg6ng2DKC7MY025DlFKcdO403/vE00USWcNN4sCMMpjSwXUS8bn55zYXc/JtfUlxaSl//MLIYwu/OZ2hgkIK8IMN6AkESEZGwLAMBC7fLIjk8gN8TxsiY7Nr/OR2xFzj+mF9ixCoR7CRuWUAOK1x02iTu+M9fUzv+bExNIJbp5a7bb2TqpLHs3PE9u/Yd4tRTz2HJiRfj2HmsfvdX2FaSs1bczZFolOKqAI5o4LFrICuwfdOHfPnlK9zwh1fpPLyfwoIgRw4c4tMPP+Kyn61A8KT5dNVfqCjz0zjzRtqHevjw49dRtDSnn3IxvsA4jHiKT758hYUn1SBL+ZCZC4kkBIHUID9u/4Jbb7+exqZaJkwexxlnnc2Nt/2RhvoxaEox/3HpdYiaZ+R9Fw2MdBrF7QbHAmE/ltlHNubC4znuaGLAEA8/fDkdHV38+Z7H0J0iHNHEhpEApCONrGHBRBATSI6NKhfw5BN/Y8ueLdz484uobWiETBqGO6GkgDPuuor5Jz7MkokzGDjSzdRyFy/98Romj29k1PSpOK4yEqYbX6SBWE8nwcJi0uk2BPdejKSF31eOpStIahFPPr2SaXOztB3uZvbkawiGGsBxgTCIrkdRVT84YdCP9omS4yBnSMckRMuHnTZxe9uwjVZefOVPnLriNgKhchBqwHaBYRKP9SIJcQZ7O7n/vvv4y8NPjlSiSiaW4GBKNm41gIiMgOvo/wfn6NFCOLroDTN7dBIh2I6D6FggDoLVDZJAygjS2zWA32sx0PUlGz75gs5DQ0w8/QYqa8dQGAiQ7upg53df8s6bL+MN+Lnp1j/y27tX8vnHn/D2iw8i+Aa58LIb+Oc/11FU0wzCXla9sZKNa7fw57vfwNKKkMkgkSTaa7D2i0385d57mHFsOTXNAgsXz6aq+EZ+e+t1RFM7efCvF3L+Befz7UaoLK1m1UufEwzl44g2lmzjWDqx4SHyCiLoqTQWLtzeEBlbIZ3K4tVkrEwMsgncIR84Fo89cD+/uPHXIIhYaMSj/YRCDpDCpIcHHryPq664DlXxI0k2N95yJeV1ZZz/H+fz4+q1fPfZJk6YcxqjTjgVFBUTmZHcKgcG0qx5/35ee+c7bv3NndSPLwciOINJ4sm1XHjGhbz5TRrL0ZCkJIZhkhgYRpUsNEHin6+8gK5Hee7l+/jTg//FlDnTGTiyn59ffBuvvLSFbEbDcQVJir2oXguNUXg0yPTsQnP7cHQvQkigrfU7brrhCl55Yg09VpqElSE/XIzsuIjFYpQU5oMdIzbcxrq1n5AX8jPtuBNJtP7IR1/8k5defYPXP/iOxKCNL1TDYGyQSEEY2EcqvZG339zBKaecjcubRqICKMNhmFQ6iFfz8fKLjxKN93Lllb9ANy0Exw+Oa2QlCgaOmEWSZGzLRBU0iPeDT+GpB+7grfdfJRDw8/hfH8NfMQUnE8DBQ29vlA3ff8iseU1YloFp5EO6HFsfhuj7fPHKw2xZ+wPT5o5nzZ4Yl/zqbsa3NCP1H+Tp++9my54Yjzyziutuup3nX3uLeDKF2zuSJTVyDrGPzmnLycnJyfmp5DKRcnJycn5qggGICLaAIIAodOHCj+rAqy+dD4lhRjW2IEsqjhXE8ZRgCS4G04d4+uk7ueU/L+XKq2+AVJwtO57nuqtX4AuoIHkY6IzidZfBsHY0q2fkhlJQFCxbpm7UbJqnzicRy6L6C0DyoCghjFQWcyDG8pNOJ25vZtaiIq6/6lf0de5m1Qt34VNMzvrZSoblMFErn6tvmI6VHmDs2ElHx/zYuIQSJLcCchTLjmPZGSRx5DJelGRAYCg2gNslgzAMSi/Y9cydegU+/1gc2UCQdBDBscKIgp+MYWOLSVyaBkg4VpJwJA9jWEd1OUhCFgwTpJFSPGSJZCqDqroZCUKkEMQ4yZ7tHNi7kV9ddiGzp81k2sxTcZfOwrAKSZkePEIWnzRIdng/3Ue2c+zxs2C4h1TnYXyagxpQ8QZc9KZSWKILEzCE1NHPEjIJgcywjpXpIja0lycfv5nJY+ooDpYh2dWYVgG2EEOV07z26gvMnrSYkKAhF4zDLbj54as12OkBDh7axI13/CcLTlqExwry6YufM3vxacw+YQXx4UEG2g7y8etv8NpjK6kLZujb9yV/vfNWqvMjdLeZlOQVI2hhBG+ElqmzSKOy8uEn2LLpEHl546lqPplwaSnvrHmPi35+EZJchq2X4RCgpmE8tiRhOyp6KoPjWAjpNNg6Dz14Jy3jmvj5VdcwaeoCNK2YCaPKWHjcSUwZdwJ22iAT7eHF53/L2q9fJJU8gk8R8YarAR+iGEARJXASEO9n26fvI5mtXHX9dDoOfU3APwZRjNDZniC/sIK0GefuP13DCy89SHFYoa7cT/v+9+hr3cAVPzuX4qJ6yCqglGGIxehpL8c2LOT40eNwhgaoyPcRjSWYsWg5+Y0zSeka111zPScvWYjkNknZBsNWAlsJ8tILz5NNfsWq5+5hetMKRKGCSTOaKfDOoKF8MW41ODLiTtRBN5BQjlZ3ZsFwRhqT632gmkhWGsWvonh8ZKwACbuYGXMuYXBQYnDQwZEcnnj2AV5b9SBdbVsZPrielbddRyi7j319OhVNzYiCzkBPGwV+hVefepAXHr+fTZ+8S1OJHzU/SFqwMG0T23SwLAtVkfhq7Qc8+MhvaO/cRl1TGS6lAVssJWkVEUuaeD0SimjRs2cn1tBBagtlfGVlBMMNWKafdCZMUXEBzaP9OJlOPnjqEQ5/sYGm4gjr9+xg0cIrWbjwEspLahG9aSDD6FEtLFmyHFFW+NMjv+Wfb97PkrktSLEYoyfUEhC3cdWtM+nqGWDVKxtZtGQ6U48PU9OgcunF1/HoAxcxcYxAxBvj9hvvZOv6d9n27VrKa0rJLw7h8Ur8/W/3se/Qbppbmkim4ziWgWBkcdkpYkODBItqcfAiSF6mzj4WhBgYfWz/6gVeW3Mz9z90Iz9s/5qXn/2Ue+98D1WqQ5JCCEIv04914+hxWirPp7qygsFMnGNOPZGnH/87XsVLQWEd8c5eNL8X3DL1E8bzxfpVvLTqr5x33lUQc/HuY0/x1lOvE3RijJ91Cd48P7awE0GSMRwvCT2FpXuZMmUelh2lvKqbH9e2c2RvB9Nmncr0qcuwlEIczUNWNnDnCwgunXQigZ7QEKwijKyKaXWgBDoIFkokoj2MHjeJlBBAUILopo1uGQiSiCOOzGiwJS9l1eP46NM1vP/q79i8aSdnn3E3c487j1CZhyH9AAm7jXCkEQMfLzx1AZ+v3sQVV/4DRaxGpBZDEHGEGDgqLjsMJoydXEFW34YS6EZxZzDNIIaRh2nJmFI/ltzK0NAhNFvnurMuYPbEcZjxPmYsmc77677GEctZcuKlKHKAvoEBjnS1YksO4yfOYLjPgYwbJWujWQO4hDjh/AJeeut9bv7DzdSPaSEbPULb9+uYt/g49m7Zy8qn36a2fhQLFi3h4ZWPcekVV6Gqrv9ZyT1yws2FkHJycnJ+YvL/6R3IycnJ+b+P+O/qlO6uPkavGIseS+EoGpaTHulHIWYp9BRw6GA75114Kaga+ANIQhmff7aTFefPAtOgoKqYIz/upLjQh+oMsX3rBhRfESUlLSTiBjgKoqzjCFFSmT7272ujqX4y/b19BF1umpuaeeXtLxk7LsmunT3s3nWAgweGOHnZDI7sbcU/upK77nqQ/UeiNLTMZM/uVvxqGEEUka0gljKILSaxnJGRz4ZhEIsl8Pv9+P1e+vr6GPbHyaT6qCwR2bJlLcfMOJ79uzYzEO+jsKQA3TCxDI3YcBZvyI2siGDZYDsosoiRTaMn0ziWTSgYZDhmoqoebFFAkCXSmShBn0om2sFtN/ycXdu6+eWvTmfL7r0sWrSIssJiWo/sJ9OTwhA9OLIHl5NEteIk4n0UlVbQu/8wqWSS99/7gK7+GItPPZtQQRmCFkBRRnrjCEIaybEACTIKggGJbIp4PAlikIN7+lj7ybOE/Ec4ZfkF7OvYRSzZTrC2EX/zeNozbjrWfYNb6kPSUowZ10JhRRVh72za9vg4sGsr/3j7HkqmXcvOtmG+2/Itn3/yIVOnTGDBCZN59pWHMbMpvPmQFZNEykswFJEf9u0m6ThUVFby4/bv+eHwYU4/5RTKqyrYuW8bwaIQ48fMof2QRSbVBtYwI2WAGZBigIOeGUCyFWTbQSRLVeMYps2eQLiwnH0He8mLqOhGCW1taQQOoXh0LIb5ft8Grrv2VwwNmRhWJeu+6KKwxKS781s2b3iKLz/4jKmTxhLrM7n7D3fS39rFc89+QMbVyY2/ugevXyU+PIDmMoh3dTG2spqPV73Bhy+8QGWVh1lz5pHNmBiGyM49+/EXgOgNksyYJA2VgR/3M6q+jujAEAG/l+3bthEO+bn1pmsoKy3gsisv4t4/34fsimBh4/F58EoqYxqbyQ6mUAuKsQ3oGuimLK+QdGwQ25KIx5P4fREEQfpv31sDj0tiqP0Q4RKF2355Df5QEfOPW4YsFRAK56G6ZPbuOIKMhqKq2E6W2uo6Ih6wU3E+/XQNoUiIqqoKpkwdi9dlsumbr6msKGXL5l288dZrJOMJFsxbwhPPP8MFN1RhiAqCIyLaEgIOtp4mMRzj+OPm0d5xmPaD++k3EngCAWKmQ3FlOT53AcmkzcQFp+Hze3D0BJXjziZjluL1QFKCkN9L1SiVCVPHcunbJ1Dd5GYg0UE66VBU00Be3I0k6kA3xy8cz8KFx3LLTY9gOyKzZo7h4F6L3/3mHv7r2vtALECTmyE2lRnjFzF7YhXDsWGCgVqKC7LkhUBzhdFcfv75+nccM7uIGVNnsnt/lM4jIoHAIJKapKbBz/tr3uakpQswdA9Gxo8meelNH+L5F57g5OXnkV9Ujqa50FQTRcuCYtPU3MDhTDmRYoXJk47h7NMfIpbYRSBYjZ3SiKciZIzpaHY+fQd7KKjNY97cJaSjw/T29vLNN+sIBQt49tkncdBZcdZ5BPIUDN3BsRVIpUn2ZahubOC7776mZtRo7n/gt/zi5ht5/IWbOOGEM6gsnokkKCiKH5AoLq6lYdTlJHplHnj4Ac48J0lJWREGMkPxGJ5QgP6uftw+AUmSsOwkgmGAfXQbiNPWfgBNySedFDBFC1O0ER2wBAfBga6uIXxuDQEbWZZYsmQBb732Ebu2HSaVkikqrsXQd7P6w5do7Wrj3DMfpCA4mfPPv5ifX3w1A13tDA5J1DRWknUMBMFAsEUkQ0d0QM6kqCiqYt0nXzBr1mIGeg/hGAa2YIPSCUoPQX8hfZk4oVCIP/z2D9x5390c2tfPmSdfREPVWCLBIN9tXk9+UTGaaGMaCQ7s3Ykoikg2yI51tDeYhebxoKg+brvj99z9+zs49dSzaD3Sy+71GxnVPJUTT1rKd9t20Iwr1ygAACAASURBVNnVhcftA8chqxvILuXfRXa5AFJOTk7OTy+XiZSTk5PzkxvJRPp3/x8hi572IEvQ07uFubOWE0uIZFUZTJANA9HUaW8/SO/gMItOOovDfVnCheUUhP2UllejugQkTDra9+IICfyRDN1DW/n7c3cjykFKS+rJZjM4js3AUDs9ffv5ZuMXtLUfZPyEMaRTQ2AYHDN9HieeOJHj559OYWQaPk81EGTy9PkEikbxQ3s7b3zwBb+/6w4iodFo3mpUOR9HlEgbYAi9+FU/dkYgPhhDQSbiD1EYzicxFMclusAQCPpcrFp1Lz3dnfi8Cg31RahKlJde+iubN35KeWkBeZF8FEU72hLbQRIlNE2js6MNQXIIhQIMxwdRI6UYooLhWDhOmqBmURJSufuWn6NluomoFoVhmfYhiRuvv5I//+l3uAMyeRWlOLKF6vahiS5EW0DQXBSUVaJ5/JiOyKdfrefscy+kqLQK24Z4LIkmeUd6l1sZsExE0wFDxbZkDFtE9QYZNXoM6z/dyOzppzJ35mmsXfs12w5spScdRamq5a5XP+Ll9Tv42WmzMYZ3M3/WbFSliMqK5fQN1ZPWC3nuxQe56PKxfPTZV2TSErNnzuXkpcsZ2zyVcLCc3l6D2obpZEwfl1x9Bz2OjOGS0IoKuPr2X/P8m2+wYft28qsqOeVnF7C/b5BIyIuREgl5q7CzeciihiNEEcQEgiMhmMXYdhC8GpIcRFI9CKqGL+LDmxehZyhBqKiBtvY4quTCECSyooEuRjEVnXFTJ2JJBSTTQTT3GLKZHob6trH2q3dZvOAYujuOsPz08zjzzEvJWArX3Xgrxy5ayOjJjeRFCnG7ZLLJGG4nxbIzTqaloIil809kzT/fIZmMs27TNuYvXkGSPKRgOQN2gKt+dx+b9rfz5e6DnDnnOIbbOyjOy6O/p52amhLSqRgTJ49hwQnHMXbSOLweN/nuPFLDcVyih5ryED6tl9ENzaBXIbiDxKzDvP7PR/nhh/WMHTMBny+IIuaRTgpYpjiyWTaDg7t55sWHePeDZ6lvKkbEZNfObUwc04wippCcBC4xRUV+EZGgmyOtB6mvrcEjadRX17N00TJOWnwKZeWNDKZ6eOWVvxHyS3z22XtEIkFuuf3XJDIZzjj/IiRvgEh+JVgi2ALYNo7toMoORUUR8sJ+6mtqSPX1cvOFZ9LXto/jjz8OyeUmaUt4PMUkbA8FFdOIVM1EVTUkNY4i62ieJInBGKpcA04tp5xwCYsWnsWxxy6kW48ytnkcZ5yxjF27NzN/wURmHjMOcPD7PQQDBZREamgsPwZjKMKoptH846m/cfLpyxEjY1HlUjwhL0Y2QHzYoKCgnqUL57J102bee+cjps+oIq3bXPXL66mqrSWheykpLUCSFRxTJhKooKF2HPGhFJg2thVH1TLUNVVy2+23cOKJxxPJ87J69Sr++pff03ZoJ0da97FmzY/8168fwbQcduxazaHW7Wzc+ClNjWORKCTsbaYg1IzbpfHEY4/y6F//SnV1Ncceu4A1az7imFkzWXjqAr7bvJYN67YwY+YcFhy/CLc7REGkkkhFE0Xl5cw69hgKyouYMW8aBcUax8yawMq//55zTjsH2/ZiZQNYVhpZdREI1uEvLsURTBqmTqanp41N337HD9t+QFN95AfzCAcKSDsJbHRs08C0UhhGnJ6uLsKhMiaNO56hfhnBJfOv0QyCMzL4oKggQnRwANvUERwTRZYZHorT0TPAhMkNFDdGGOwfYMrEY9mwdiczpkxFlIeRxIPs2HGYxQsuBkFlcCiF4rJwLHukLNrQwHRQFAuv4vD6K6/TureHCY3zcDkhNFFGkywU0UXbgRR57gBfffgm1117LV1dQzhOOaUFTRT5XHTs20pYTWFlh8gLqCRiQyguF6ZlYeNgCg4WAiYSjilyzKyZfPXVl9iOTEV1Hdt3Hmbdxu9paJpMaVk9u/ftZ/GJJ/GP19/mov+4AkmW/l3dnAsi5eTk5PzvkQsi5eTk5PzkdBCko31fwBF0VHFkKpnPF0e1C/GHKkgIBrJt4bJ1VNvCJascM38ZojsPf1E9Sy44i9OXNFBQ6uY3/3Utc+fMwO128cG7n9HSPJ3WtiHa25MsXLAcIyuhZx0yGROPV+Gtd15lcGiAyy//OXt2H8brdpEfkbBtEbcnj2Cwjv4+CUEOUD9qPP1Dw9iKRjSVoKgoH9G2CSqFFIZKSQ6k0WSTsF8hld7Lnb+5k5amFiJBH0G/C1OPk4j143bJ9HV3UVpUSG9PKzt2rmXFmedyYM9uXnv5WUY3FrN/3w/MmDqBcc0TiQ9n8KkaflnELdpEe9r54M1XmTphNP0dB3lj1QsMD3RQVFhINjVE2CugWnFcQoq1n6/hzVVvcv89v6G37xBXXnMTk2cvxzGG+HbzV8yYPQl/UR7I0siIeUtBsCUMQcBAJJkxCUQKyWShvn4U6UwWyzARRVAdB8FOItrDiHYcx8riUlRSaZOMY5K1bWTNxaTxU3C58vC53GBGqazLY/6Cedx4972cdP71zFt2Lru/fISv3nmf6WPPIz5QSNYpJW4nKKryUVPrZ0zTaGqrpzKm5RiefOwFNq3fyaSxc8imPIxqno8v0MC4yacg+ypoH+qkvLqWlGXx2dq1eAMBrvnPX3GwvZud+w5jCC7KgkEkS8BxHExdx7bTyLKNKAiIgjTSg0qy0Z0MWCBYFjgm/qBKQWGEzq4eBvqTlJXm4ZJ3Yeh9+NxhUjEXmbgLVSzBpYYI+oPE0+2EFBGfqjN+TD2trVuxrQTfbFjL7ONOAKWEBYsvZdLUeUTCJpgaPd2DRML5aHkRuvbvQ/EFkbUCwsX1TJ97PGeeezkpKwCufFKmAKqbweQQJ550PMtOno8v3kHn/q38+tZraawvIxLxY9lZfMEI8Qz4I6VkHS/xJGgFpfTFTTSvxT9evpPNG9aR7FUoKK5F8rUzeVIzFaU1qFIRihTEzHrAkRBlE1HJICoJUnovNQ2lrDj/HBTZZOmSUxBticbqUax8+CHeffs1SvI9vPby39m6+UtmzJiI6Fh4PW5UxcXKRx/l63UbePOD1ejpfm66/moCvgAzpk6ncdQE9rb2MOvYxbT1JimrHQ1pkEwHwbZwnCzYOpaZ5IfvNyFjURgJ4cYh3+8mlU1T1TAaxRvGHyzBQgRBI+OoDGdUPIYLWZb4fvMX9PfvpbyuaWRUfcLgZ6cfz6uv3cn2/Tu5449v4iocpH/oI3yBJNPnnIuSrmZM01xS1kHmLl7ImUvnk1fUQFP1aAZj6wmVDHP/Y7cxZ+48VK/O3p7PCLkb8LvDCJaI5NGoKiommbQ595xLUVx5yEqE4rJqUB0sS0RTwjjZPMaNnoORFsC0cGlJJDmJ5nWjqB6mTZlGdV0t2WSU+ppqIqEA277/gRNOXIqVHUfAV0VZ8ShOPnkpEyZMwrYcmppGg2DhCAmSqX4cTKbOHMPUaZO57fY7OOfsS6ipGU1hQQVd7W00NY4G2834CTMQUCgtqqaoejSIMv39fehApKyCbLqfSCiIZPsR1E4ef2Yls2eegiL6sKVOJNUhFQ+RNjK0TBqNIDq8+c5rrPrH6+zbs48vPl7HuWddjGyrJB0DBGkkOCSYSI7J8y+8wEdrPqWkuIbq2nrSZgpHsJCwEB0bEYfBvh7qa6sY6OtB0xQC7kI8WhPLTl3KA49dw7r1nzBh9Gn41NHMO+48fAGHQ4e+4MabLueeP/2NWMyFKLuIxuP4/O6RIIwtIzoyAg6y6iBgk0lbxKIGTfVTsB0VR3CwRAMciWJfGelEN+2Hv+a9995hyoxjKSmejpUV2PT58+zf8THffPw6H3/4Lp99+B62YzNuyhSiiQyW42A4AoYDliOSSpn0DwyxdOlJKC4vt9z8G86/6AoGh7O0jJuBJ5jH9OnT6emP8vm6DZx7/oX09vbj9Xn/HUAS/lthW05OTk7OTyMXsM/Jycn5P8Q2QdcNUskMtjXSJNfBRHAMBMfE4/GTSVv0DSTYdqQVR5HIL8rHsAwmjB+Lx6thWzrjx4xH8xdTWjSKs8+8Ett0YZkiXk8YlxJAQGP8uCk01DczHM1QUlyFJLt49LEHeOnVJ4gnswwNZZAUFwNDUVSXG8Oy6ek5RL5PpaEizPzpxxByu+nv6sDKphFNCzMzwOq3X2ZsSyN1taXkRTzYVhJRSKPIOjt+/JZnnl6JJJi4FImzzryQ3p4hPvnwM9yaRl4wQDaRIB1PEhuKUZJfiJBJog/307F/F1vWfs4zjz/Ie6+/xKa1nzLU08rcmRM5uP0bOvZsRo+2IxnDOHqCro5Wzr3wdPyFFdS0TKE/YeHx+DFNi8suu4xnn30a2zax7Cy6kUHXdQzDwOfzkcnq7D/YSjJjUVldh+EIaC43gUCAgNeHolioioFL0XEpGVxKBkgiiBlUt4LkkjBFEdHjwxPyk0j1kRdWyPNqdOzby+GdB6kpKiUgqny0eg3LTjqNRMyhpKQOxS1gioMMDh+kaVQDsQGJgoIiuntb+fKrj9iz+3scMnz19WesXPkoO3ftIpSfR+/gEG5ZIxNP41M9LFt8AicvORG3rPLtN5tpqG1i7pz5SI5GdLiPRKqLofgBBCmFrlvoGQFd19GtPkyzD0tPYmeTI38zSQRDR7ZNwj43xfl5CFaKB/58M4899Dv27dhCWPNSFChGtTw4GZvernaqKgIEQyKqIlBVVcEP23ZTWFTBscctIKMbdPb0k0jDA/c/xp133I2ddWisaSSZ0Nm9fQ+mL0xK9dNjKxS2TKGyeRr9MRtvoBDN5UOTFAQjzpLZE5hYn485cADB6mXzt59QWKiwfu2HJGMDyI6DnnVwa/lksyqmECTjDZNx+enPOtial8FEjHETx1BU6EOTUySjncQGk4SDZVimPHLTHIuBYIKYHpmCKEUpLS+hrraRnTu389KLq3j2mZeoKK+jt2eIwd4hxo4ex4MP/IX2jt0MDh5h9erXyWSixOJDaF4FRxapHzMadzjMoYOtbPh6I44poYheurui1FaPIZ0RcbnCCIIbRVRQRQFZdFAkkGQHUbLY9v0WvvrsYwa6uhEch2VnrWDBScuoHTOe6FAMPWMgA44BHgG8soDkwHBHF688/zx/+9uDkI2CaIOTxZITZIBggQvBEwHibN76DTv3fAOxNIHCeiRPGUNDQ4wZC9dcfwbJoe3gSeIOZWiYWEk01c3v7/4Dw9kYtcU1eLwyogKWORJsGBrUKcirZfrMC8iL1FNcPIpo1CbgzUdwBCRZADHL0GAXsWgfpqmjpx1MXULPSMSiWerrRpOJpxAcGcdymDRxJuPHzqCmfiLpdJq6ptE4toKmFhEJ1rDo+LNwuQvxBnxoAQVfCIIlPkTJxO2RaW5uxucNMXr8DBxLo7J+AqVlDZx44jIySYNMyqGwrJ6O/a1Ee3vw+LzkVVWhhQopLasCQyIVE6mtaSI+PITgmKiaRdboI2v0YdoGibRNIm3S3tnFuIkT2LFjBwcPHmTt2vXoGYNMykC0tZHSYwFEwUEUYdasWXi9Xl5/exX9Qx3Yjg62gWNZIycP28Tr0dizayf3/OmPvPDsM1iWRV1DM4apsnz5JTz95DoKC8pQfX4GOoeI9kZpHj2TK6/4FQ8+/Bj+kB8Ei9LSErBBsCUExwHHwMZAFx2Slk1l7cjkvJSeJaOnSBmpo4+zDPZ1UlEcYu/e72jt2M/9D96LL+BHU1Tqa8uYNb2FPTsP0NHaw/ZtbbS3HaLjSCuqKqOqKqrqQlE1ZFWjpLQSRXVj2SrhcAlnnPkzguECpk6bSVrXiScTdPf2I8gyyWQSURQpKioA/ufMOJx/ja3IycnJyfmp5DKRcnJycn5yBnA0E0kAR8ggOhqOA2evmMnPL7kBxVeIaVtkY30c2bcdl1tC0fyIngISWXjoqaeoKK9iVuNMSkK1tO7bS2VhEW5RY+uG72gaP5mfrTiHrK4zZfIsYkMWelYkmxZwqS6qqqrJzysllRDJC9XQ2trOtzs/5IwVy8lmfYhygGRmGEdI4/YohCM+JKGfRE8H5SETzQSXkyGggaBnIBNHcjp59YVHueDCK0il4zz8yD18v20tU6aOJjrczdNPP8bVV/8C2zawBAFbCFEUqUKT/Sw+fi633nwDTY2NtDRPorpyEk5Wpu/wbv7+4N0ENPjo3de47PyzOXHhXD7/8H3GNNbS3FTP1k/eoq7QDYk+Og/tobm5hbffeY+lZ15AVisgUj0B21uGYkl8+uGbrPzrQ9x06y04rhC2oKFpBegJg4JggNa2AxQU5CMrKi6XG8XlAVECxwHTAccmlehi1aon8XhTFOQL/OPlx1m16mUKi4spKC8kqcfRggr9fYdY9frzbPv2M049YQ73/v63/LD5W8477VwmN04hX1RItPYzedQkLDOF6tN54PHfMXnOGMIhH3IK8oUgXYnd1DTlMdB/gF/ffCW63svmTZ+wYPEs6prKGUz24Qt68Yt+BN1GT6WpKi2lurAUTZA4buZcSoIFmAkdEjDQv4Mv173KD7vfYsa06UR7VTxqES7N5v6Hf84P2z+lqrCaIn+QsKYS8Ug8/sgfaT2wk/xAgJKCUr75+BNOmdNEUJXpa9/PU39/GEePMrZ5NEYqiSYKDPW2ser1P7B2/RoSsRRTxp7M7OnnkR8aSzi/kqyQZvXnrxOOKJy/dAWRYC3ZtEJW8BKTROTKCqIuP622GydcRtCfTyJhIkleXJKEnhxCyfSRL/aS5/SR53QwNLAHxZVm7+4tzDtuJmWFJQQDYVRXAWk9gGEFSEsh1OIgt/zlYT7ftI3PvngDyd5BcWGQN15azYEDe8nY7UjU4FVHYelucBQkWSAQdpC1flzeDI889hvWf7OT4WGT2bPnMW3yHCaOOY7OthT5eXVMmTaLlpbxhMIe6upDDET7UT1uvv5mPWs3fIMtWsxfvIDGsU2MmtDC9xu+46UX3uSHH1vZuauDcROOw7C8KFKQvoEU4KLUo2ElY1hWimiiG49HJJnq55hp4/jum3Uc3ruTpsYWEu48fMWV6KZMa3sntZWVKAJogJROo0kiSDEuXjEVlzvK4fbvOfXU01G0MGgypy2bx+4Dn7N+y07OOPcWFFeGxfOmUVM6Cp9chitYBFacghIfpy2dxr4jX/D0U0+x/NTTWbtpDS+++Cx/uvdpxresQJPrcYQQsmSDmEZUDbCyZGJpGpunMq5lMisfe5PmlnnkR+pJRQUiITemMYAgd/H+R8/z9ruvM2/+AjS1Ck2pwrBd6KaAJIj43D6Sw0m8wTwEXaGuZiyyEGLijCospx9BMLF1P3amlEw8jCqEyeqDZLKH8PhFsule/vbkX9j6/UYu/49rEew89KSASJhMwsIwbSRBQpXdSIIXPWHi9brp6m6luLqS5HAC3dJQ3R4wVFxSAfmlfpadcAbZjIAgJXjp5bvo6txJQ/14HDlCz0Abbo+bqqpqLjzvSmqqm3nvnc+49JJLsW0bRQlSGAkjGnFaD+4k4Japr6tF0VR6hzsZP70Wj+YDy8HIpnGrMpFwkOHBfsqKi+hqb+XA3t2MH9dCOp0i4M1jqNvPmadfhMulMDjQTl6BhuYqIhMPUlCUz74DbVTXjCMUycMwQHAEFFHESCXobj/Ix198QPmEWmwcUqkM2ayFkc0Sz8RBtfDm+Vi9+i3avv8UnxbjhJOms3XHXoaSWcZOno/H66BJh+lo3cRwdIips45lztyZfPL1JqYftwjJFcBxBGxHAMdBcAT6uvopyA+DqaPKCqZpUlxSQjAUIpFME87Pw9BNJEXj48++5PyLLsY+mngkwtEAkjmS+ZvLRsrJycn5yeSCSDk5OTk/OWskgOSII62RhCQiHlIpaOtcTeeRfppqmvH7C5DsKJ9++TaJTJyCsjo6+pIEw3mcuHABk8dOolTMJ9bnZmxjDYd2buaJlQ+x/NRFPPbwXVQ1BhGUYUpL6lAkH263F7fmxTB0XJqEZTrkRco4fGCQ519eRe2EGsprSigqmohpaQjyIF6fgMflJhlPsP6LVXz02utsWfca+YF8Coo9DA+3ochugsFiTPoZ1TQGf6gSt8fLvkMHuODi87AFA9uy8HgDtDRPxO0OktYlohkXPtVPKBBhsO8If7n3BXp699E3ECO/YDSlJTWctfwExjbXU11by+y5c7EFmUhhKQuWLGM4bVBdN4r927cytrGeD957nxkzjyEQKmRUywQELZ+47QMtj7Sp8MyjD+CWHS656GKKSmrJEsQRAmSyEmGfn64je2nbv4PV77/JwgUL0dMZBEFGQERwxJFJeg74IxopI0ZTYzGv/ePv7PjhWypKyqlraCEQyUd1aWTTcT544zlcksV/XHYePd3dbN++n1GjJ7NkwWkY8RRCPMaiORfiUgx+98cz6RrYyIqLzkQVKqkubqZz5y6euf96vtq6H6+vjsVzT6bAW0LIVUhNWRMtTTPp60kSjlQTH7ZRFTeCIyIBkmOh2BboWbyShEsQEQ0Ll6Xw9LP34NJ0zr9gGYN9GazM/2DvvoLkqs/1339XXqtznBw0M5JGaZRzDiAhCQRI5GSMcQBj420bnDbGYMz2Bm9jgslgbLIxOZskskBIIiggUJYmh85pxf+F8K7ap+pcnDrFPhenPzdd1TfT1V211tS73t/zRNEUPx5ZgtE88+fPoq1pCpIj4ZRNhgf7MDSB41avoqmxheGhEhPGTKPUnWbPl/t4d9OTqP4RFCOL67m0t0+hXBGRxThaopsN609jTMcs3FIrw/0iiUQz6Vwf/qhHXXOAlqZ66qOjKVZUihVANVBiQQZLBfrSOa658Xb27j1MYbCX2V2TyaYySLZDIhJEMNOI5hA3/eFqSqlDvPzm2+zYtYvzzj2PA19+yYyp03FdB0UNYgSTDAyNULTLDFS6mTtrKtMnT+ack5ezZE6CqRMnsmrD5cycsoDaUTVEfNMI+VswzTKCaCPIeVxhGNtNk8704/NrSNTwxe7D1NfUoWkRECOUyirDaRtR0ynj0TCqnvGTxjN24ixmz1tB57gZjJs4lcamdmRNJ1cxUf0+zjztG0yevgDVl0BUg3SOm4oiG/Qc7savK0QCKk/f/xc+/uh9/vbAnRy7eiGaz8G00tx925/YtPE1SqkRmhubGTRh3LjxjAwOEDJUoiE/iA54FoJdAtEG6ROWzmmmXBjm888PcM63f8y2Te/zlzv/TGokx0U/uZZzz78YOaBAKY6qTyNCE+edt5pHH76KF164j4bGiTS1rGPWpHNYvuhi/MHJtI1ezPzZG5CVGoqFIqqoYhghEPI4lSE2b3qLq6+4ggXzFiOj0dg0jrXrzqRsS7z/3ms88fBvsCpZmuvrkAkxa/qxZPMuo8dOoOLlcSQTy1NQVR9mKc/rLz3DrTf/id2fbWfO3EWoWgiMOI4pgRMGJwp2EhwDz1ORtQLvb7uX516/ht1736GzfRmTuiaTyRaYNHEuVsWHLAVxXRFEC0+oUHFKOI6IW1ZQJQ3Jq7Bq1QI+2ryJDetPxzH93HfHDWz96B3GTZqIh4/hkQKeY2OW+2iuD/Lmqy8ya+Y0BLWVRCJEPFrD0ECOoUGb9o4pnHfehbSMbca08ziZEfxSgRuvu4wXnrqfBXNnoWphWkeNIRSPUdeWRHYUrLLNow89wIfvv8vQQD8LFsylv/sQYzvamD5lMolIlNraJmzTpK4mQTgSxPZAMwLIapBSxcX0PCKRMDNnL0bVAgwOjaBrPjzbRZUVcqke6ms1jgzs4T9u+j2rlixDLNrEgwESQY2hoQMIlMgV07TUh9n49z9yaP92mpvHkDH9rDvtm+g1SQJhj/c3Ps37b7/Fjn0pzv72TxndNZumMVOpax2P7YgIiIh4yJ6HiEcxX0SToJAd5NNt29i3ZydNTXUoqkR9Q5Lu3m48NBTdz7Mv/pPzvnE+rgBHR0ZfbSB5DghH20Grqqqqqr4e1SFSVVVV1dfOBWTwhK82kXKIBHBsiw+23MWF3/geI/1Fct1FjKDJixsf55wLzydbAV1LEvAFkJ08YjGFaIYI+AuYhU948ek7qIupPPWPR/n3X/+WF198g2lTZlPfVIduaHhYiJJA2cxQLI2QL2QJBeOUS1CouLROnk0o4WegVwU3gCD0IWGjiT5ivlqeevx2Vi9ZQ660m3Xrv8H5l5yLrVbomnUsRStGkTyuXEck3E657DJ56iwkRcEfDKOpQeobRnPkcJ5CQUQ14uAL4DgVSqU0sZBLTW2BfCnL9NmzmTR1MZmSy9zF83l90ybWnXU+aqSWeMtYlGgzOw4OM2riXEZMg+XHriJriezrTRGvaebHP/05za0dNDe3Y5oOVtlEl0RqYwbjOzpoa+mgUJAoWhEQwyhakPpkkO9feDpNcT/fu+A80qksVqWCabnIqo6AgOAJCLjYSNQ2NBOL6vztntuY0DmRcR1TmDhhHmVTIxiMM9zfx4FNG/n0o82ks3lijWNZtPYcGsZOJ1URcSURURMolwYYGv6C997ZyPJla9CNejTJT8Sn8NaTd3Ho4xdpm3oyyYZphLQoVrbI/i8OsH3zx/z13ofZ8uE25s5Ziqz6qSgqjgie6IBggWghCA5WpYwoCkiSh+SVmDBuPHNmLkFwooT8TSiKSCY7gM+nEfTVMG3KMg4PFdF8cUqmSGvHWPyxCILhI2+LyMFGVCVCRLOJ1UV588PXWXXS6XRNP4aOCasoOmFsSSZQ60OV20kP+smkXRqbdW6+69s8/fLvGUh9woTOpbiFKYwMaoixIp6kIijy0SYqJ49P8WiORpk2pot5nROY3l6DX7QREalULAaHUwiqQe2Y8YzqnETd6Im0j53PqmM2EPTXMHflGn520XfYsf0TuvsO0d7ZjO63CeoF2sUepMwAs9pGc+3PLkEzj/Duq5uY1HoSGbeRa5js6wAAIABJREFUlFdCE5KUiyU0fxl/0CWV3YdmgOOISEKA2uQ4Jo6bxuKFC4nVJhlOjeDgo2SCK+l4uoMlWog+lXzOwBMTFMsGopQgHG3GcjRsT0UxApiuRG9vL7FELS0dY+maMgUPG9wikZBETVhEtFNMaGli3uxpHHf8Mp55+RHe/+BNtu/4gMVzZnDcokWkBnp467VXeOet1/nyk02smD+T++64ldtvuZmXnn6KE047HQSZ/t5+fv29CziwK8t3fnEnx845C1+ihvoWiZlz29h/eDudk6czNDSMEIihEoGShBJMcsra+bhChu07dvHcC5+wYd1lqFqSYCQJkgSujmtFkVSLSmUnoWgQO1NkaGiQYCxJU/MoJEdgatdkisUykibTN3yE1rH1NDaq1Pi7uerK6/Esk9aWqeQLCmMmTsYVoSJkKbp5RElHFB08e4SZC7tYsWgWt99xIyet30A6k8bzQCIKKIAIovnVQKiM4i9TV6/gkOHTbQdYueIXqHKAcZ0z6e/LoigBECUKlSH8kTLd/TuIxiMoYhDBktE0P1ZukHUnLuKVl15kzTFrKGRUFq6dgBHKsOfwJxjaeEQ7RE2tgT+i47N8xPwxfnPljzj1rJ/iWBYD/YPU1XQSizWwbes+xk8aS7Y4QNEaIeb18/MfnMDFFx3PuDFJXn7hNcaPW4LrBtBC9diSxnD3APFQkIkTxvPKyy/y6MMPsGblMcQjIfbs3s3u3TsZGDjMzTddTcAnUVtbS7i5gYHBPURr/JhCibxpYfiDFDMVBvpH8IdCmKaJ7YAqKSiKSDgkc/jgNgzDZXjgCCcsWsEDN93By489zqTmGn747e/w2vP/4Iff+w4NEYNrLruHoJ5h06Z+vnXpfxKp64CITs/AAVprmwhpDcxfczZ1o6dTFvz44k3kig6SpCK5Iorrobg2suegqCLl/Aj1NWHqkhGe+PuDNDTE0TSB31z1K1paWgnH6lGNKE8+8zznnn8+8NVRNs/haO2pDUggVBM7qqqqqr4u8v/XH6Cqqqrq/39cEMDwK2zd9hEeFo0dnWT2OrhWntqmOoazQ1jUENBkZEnANS38qokr7ccRszz+1M28/tobTJ/axPy5C8D287MfX8f+g93YjsnA4F7wNJobx1EspRjb2Uq5XGbfni/pHD2H2d48ymENURmkuXkMdlHCsfagiuDaDoKtoMs+ksl6unt7ONTTTTgZQQ5oHOjvRSGMP+pH9gKUTQXTUrArZQJhla1bt/Pg/Q/wg0t+SmvbOAb6csiqn6KZQRZsLLeCqglkiynWnbyG9jGTsamQK4vUd3TQPnEagdpGcoUSkmyQNwWUUAOpioqDyra9h2lKtFHbNon7Hnqcto5ONEVH8lxUxzq6neMJTJ8+jeFD++k+MoARrMHwRxgplqiJBygUckyb2sVg7xGCmsqh3l6CkRocxcD+v/xaguynlC/TX8oydkwXSxctpr15MpmCgKL5yKVLxPxxZoztwswXmTtnAYIRYrDg4goijqiAm0MWXSS5hwcfvptkZBJrj72IntQI99z3Z4b7DyAP7GFGxygWr1uCF0lQGenmb3+5gf5D+wgHFMLRAFNmzKGh0WbfQB+22HL0Sb4AguAerX8XHJBdBNEFz8O0s/jUICG9DkX2cfDQHp5/8R9s2fohf/yvm/ErjWzZfJBwWwO2bZA1C/RnivQMZ+msGUOxVGGwb4TmpMpjT93F8EgP68+4gIWLT0FSEuw7KBKrTyIrZXLeXjzJJRCJoCDjIfH5rv0sWz6VmTOnkaiL4wTjxOuDDLvbwXaQXRfBc6GSwycZWJUR2v0xbNtBKA6TypSR5RCxRCM+02ZwZJhPdh8kHm8hEFVJVjTEchnJLbHzzfd4883PWLVKZcWYRlwvhWk7yI7NP/92A/sGyiRqJmMPDTJ+1GLGNHWSzQsUfWHkYB1OGVTZRjc88sUhXt/4Ijt37uSKX/0ewdPJZ10CCY2+/kMoKiSSMUzLoG8gA5JBqVJAVG1c10YUIuCALKqoapBSsYQoBHC8CpZlYTkyyfoGXNOinCuhyipO2WRooIeNr/8TSShy1lknk/DXYJplZB2mTJ6ILdl8+tlm6huSxEUfk7sm0lLXwFMvvYJYTuMXLU5ccwwNja1s+WQHdrGEHEigxWpYesxE9mw/iHloF7fc9Aj7B/dz3+O3YPg11p14MVhtxENjsP6VUKwAxTxSbTtnf/+3dHQs5JW3dhCIC5TNIrJcAsqYZhLVpwJw3fX/wfmnXM64rnXUBGvJDhxCkiTWnHIG5NJ4okfRzKAHBHbv/RinkCaitzK6tZ5YRGPfgbdo6ZyCJjbjCir5vIamB1EUFaucwXOL4On4YhorjlmIS4l4SwNDPVnUiHM0vwobBA9cH5l0AT3SRjFdx5I5P2PJHA2v7KdYzKPpErJkIIoiougiSiaWm2PX7s1UTJtJ7UswBcC2EQWPpq4ufn/tNWiJOOmURW/3Dlw5TaxORVP9SK6PQwe3Ucruo3PsAqZN8TNx/BPkc2kE0SMciGFWPEaGTR599GlEVWT+4g72ffIJTQmL+XPG0Ht4B+WKSWqkDwmVSkmkIqkgQyAQRBAEXNtkaGCQwf4M3YcPUxOLcWDfHjZu3MiR3u10dKoc2LeNSZ0nUtw1zHcuPZXZizu59srryZYSDAy6JPwRwiERSVRQVRVZ1gj6I+SHByhVhvnd767CFcpcd8MNYFt0tXVAKo3Ps1m9dDqf7tzFx++/w+iOJk46UaO322LajBUU8jLRRIyhYh96wE+IMNNm1CAm68m5kC5mKZsekqKBJwM2ggeS5+EKoMgisdo4TiWHIolEoxF27viEuXNnEo+GePvtjZw5ahqSJP3f31urqqqqqr521U2kqqqqqq+b99VqvXC0qdtBxsKjbJfwh5oZPW4hhbxLpL6VnqDMIb+Ph159lxWzVhAte8ilEiW7QiAMmrmJt19+lf2HD3DJT/+L5jHH8cRrW1l14mkM9CXIFwUSWj8v3H4r5oHP8fo28vwTd9PZuRhJ8LjmF6eypCNCW0whW5EJKX5Sg8OIQhlPEHEQUQyDkpNm9rzlqOEJzFxwJvHadqZNm8aEjons27GVKR1R0t27+HDjs4SbGrEAz7LxOTY3XH0Zsya3Mn/BWFLlPEXBh6Ab4FWIBFSGB/vwGT4mTphBY8skhoZMahtaGRjOgB5j8vhpVPpHCLgSftFPOFjP/v3dRPwB7NwIgUoKPxYPPXAfqXyGS376E9rGjSNXcalURColl8Zkkuuu/j5rjl2O41ZQdA1J8dA0AdO2sDyZCTMWMWbGEkK1rahGmHShgilo2LJOTTSCWUzRFhV56rZLeOXvNzB/8QmkvQl0TN6ALbWgSQJ//P2PSPd9wuSpo5BGzWbs3GPQ4y2oWhzJE5EFMHDRBQnVUzA9kw/f3cYPfn4FWw/vJxeSeenRRzl+5kJ+9O+/Rl0+j1C8gb4D+9ENP39//GVqmsfz7Ut/w4oTz0IMJED3o2gyilCilO9DFkrcdffNvPDSsyxftYKRXAElEMJEJKRHqQsGMLPDyMVBPCvHQCrL8SedihGIYOgais/HF4dTJGI1lEsFauoSlPMZdBkaYxE0J8enbz3Bln8+zCmnnk/zpBPJ2Q2USj50q4xkplAlyJcNLBEM08aoWGipMseccDwtk2fh7xjFcPd+rv/h+Xz6xiOo9DN1SiducZh0Kk0olEAUj9aKS56FaPdy6UXHMqolwHPPvsj8RUsolwtYdp54OIwh6mR6SshigANDQ0SaW3j0tZdZe/I6wjWjaKhpIx5tRZGClMoi7U1TmL9sPcmGdlavPxsjMR5ffBqeEcNTRRRPRsq7hMIhBosp9vYc5kjPblYsmYlnljFUA+QwXsnhycceQ1EzvP/OZsaNmstIXwZ/wMa1bbyKjiGNwnL7UJQyhlKg4mYoy1ARBWxRQfAcVDxUE5x8mbhu4BULBHWRZE2YzvGjGcpnEYJBQqEGgslmbrv+P3nlyWf53nnfo7FpEorRSG3DKDonz2TS5Kkcd9q3mbd4Nb39NqM6JvDam69x2lkbqGsfBaiUiiZT5x/HvGNPR4o10Nk5luHMCFMnz0XWa4AklayHbIj0f7GHYMIPch70ChesPY73X9jIeWd/h6UnnQ6SgyAfweIwMiKSV0d+EFRDJB4Z5r5772TV2g0gVNCCDhIVRCnGyJCLJ3jccctF3HbNVfzw1HPRyzpS6xTOPOtUYoZKuu8Ar7zyGguXHkex6GFocbyKh+M6iG4JWTLJ5GxCsdFMm3MyVs5DzGf56Lm7+OdLLzJj+ioUKYKl5hlyPiGcEBkpithOM6IYwjRFXDOHgIcejCAiYrsmsgHhuIIjlMC1GThwiI4JnciCTSrVixoMYJcl/OEGSlkTTVfQ9AiR4FiivnHIgoGoZghGPbZtf48xY9tIlXLMmbuMf9x5K3/96008//yjrFxzOrYb4LF/fMD119/KDy89C8dJUxkyaB87GzXaSLh+El8edpk19xQkKYabLxKVbQxZpVxwqQk3sGBBI463nYceuZcdn73P+d/8CeMmTOGl119j5cnns33/dpo6xtDe2cHydQ00tijU1HbgFGqJRTwEt0jYpyBJAoP7DhDxB7DMYQRniHNOnMqyiRXGNIaYe+z3OdSdxgokeO6dzSxefQK7P/uU3Z/uYuXkRn5z6TX85z1/4+2te1l15gVotQ0M5XNIioHkybiWgCkodJs2lldB10XswhCGpiBrPmrqGzFLeahk8alFPv/kYf7jios58sV7PP/YXSyZPYGnH3+GzrYoK1cu5M1332LU2GnYosq2j7dx2imn4Dk2ong0b/BoFpLy1WtVVVVV1delOkSqqqqq+l/y1Wk2QEIELMdkZKRETbIBwRYQyw5OIMEfH3qU+fNWUkeMmKngliyMZIRLLvs277/8IBdc8Es++2IPC5acTUP7DFatXcPBg59TGNIo5ofwBUrcf8dDfPjuVj7aupv155xM2/g1FE2HPZ+/waIJk4jU1pMtFvHpOqJog2iBIIAgIKsyHjaepFKsuBj+COVSHkPVsYomLz77JBPGNHL3bTezfMksQg1jicQUXLePK39+LsmQzjmnfwNdbaXsRigLUK4UCOoyol0Gxybk95PNl/j3K36Lg0IsWU8onqR3YIDWuig3/vYX/PaKn3HOGachSSL/9V+/45H7buFHF25gYLgfPRTBxuOMs84lEk0yNJLDH66jaMskGlq58eYbOWH5DPyhMOlsnlAiTt/AEK4goPv8mI6ApPqQZZWhgT5ChgquTSqbR/WHGOzvJhLQuPW6KxkpDnLSmecwad4qDEHDj0OrHz544ymKpTxLj11FTgiQc3RsJDRJO5qp5HpIHA2MPZraIWIFgkycOJkEAjFXoHT4IO9t2cTMlcsI1dZxZMcRnnniOSKxJIFgjEVLj2POgmX4ggmG01mStfXs2/clfl3HJ2v4FYU3/vkS8UiYC889D8o2yVACyQShVEExQoBJW2sdIwP78Mci1I+ZQLCmDtMDyylimznaa2L0799FR3OSXKoXzy4T8Glkc1l8hsZ1v7+CczesYOr8JRzMyjiiD9cz0cQ8sZiGoEgMV6CiCGiOiOzKSJ5MTtXJqj4ymsZJa07i+LmLaKyJM5w5wq233M7L/3yVtrGTCSYaKZQtbNdDkkGTRVYsWcGopsnMnns8I+kCiCb+SJF77v0NW7e+wJLF4ylUFPb19HLjHbcyb/kSZs6czYTOLuLBeiqWSMWSscUAoeQYUkUXTzYQVANZDBwNz8ZE84qorkNAN8iWS5iCRyweZ+aMqcRDEcKBJKLso2QrhKQWxrS10zx6hKZRErJQTz4j4lOTWG4BSTSJxCMczDgoWgBVALNsIkoqAqB6FhErS9ApEAqFOXToCLfc+CcefeQRtn38MYuWLkXRfIyeNIVgoo5ErI4j+/ayfesm7HKBcChKbdM4vjg4yMMPPcb9f72fcDhKQ8dESqZAuQyGahCK6jz/wjMsOuYYsCQMXwjcIDgSCArBRJy5ixch6wFABRRcz0NSRZRiGjmsHN3qESxWL15Ef88QL770KouOWYWneGza8gDPPn8fH3/6HjMnz8Mjx6MP/5atOx5h/75drD/9NBAUECxERQEhwsGDI5hWgfraAs1Rm5t+fTunXHw5Rl0jI9378WkaTc1t7O/NMWrcXEomeKZNUAG7MMjN1/+SPds/5Lj1p+EUTWzXj2zbyBEf5t4t3HzTrZz7k++C2cNll13AtKld1ESSBFSFgC6gyBqq6+B52aPHPT0XVVEQcBBFl127PsPw6USjUbZs/Zj21jZk3UfBcTEFHUkPIukyeTOHqFcQkMHTwPWD4IJYxHFtPv/8S2pq2hClCD41yaxjp9D75QhbNh/iD398jGXHnMJFFy1n8wcfcNoJq1AcGREJLawTSISJJOsZO2EW6WETs5QnGqzwwtO3sm3XRjS/R9Boxq+FWLp4Be+89Tp2pZZ1G84iFPNx3PoltLYtZ8r02TQ1jwZRwvC5HNjXRzI8kaDWimPZjOSGiYR9UM4S9qmcuu4EVhxzLJqscdLqY7nnlr/R05uja8HxJBtH0Z8usnb9BgaGhujqbMc1c+zZ+i62WSQlBfnGty4i0tBKqmwSCAexHA/JBREPBA9X84NdppwdIelT2fflbqZMm8bLLzzH6KY4qpXCLA5hhCTMkkkmVaAmUc+iBcvZ9eUXZHImb23awk9+fjVaoJZs0ebJJ5/k5PUnYxj6V3fYr/rZhGoWUlVVVdXXrTpEqqqqqvq6CfyPjE+RoyGiZqVMIZslEgoiI5EbTlOK+vjky70smrUIX84lgYYcClIxM1x34285Z/0aRs88jtpEDL+/gexIAVGqYGgOqX6XtpYkJmk+em8nOz8/xIUXraK/4NExYSW24LH5vWdYt3w1B/ceRk9ECQVDDKdHqKlJUKpUEAQPRVEQXA9RFHFcC0F0UCQPq1IBIJ0eoq4mzj8e/zsbNpxIUYjjC7oUC4fYt+ttfvGTXxKNj8a1GhkugOATUDQJXYBSPossi5TyGcxKhf2HDjN/4ULqm1qpODa1tbUc2ruT9197nlnTJnDcurV8+tln7Nu7k/Gjm2hrCKAnGsiYNuM6xyOLMqmhND49iCso5E0X1e/no48/Ys7EVmLJOhTV4J6/Pki0pgFBVDCCIVwXfLqKKno0J8J8ufMTzHKR+oYWRrI5DF0jqCu898ZLjJk+g6bOyTgVUKw8SnGI+264isJIL+d89wd4Wgz8ddx2843cc8ftnHziiVSKZWRFPvprCwIeAp4AObtCMOBHzmSIeB7vPfMMm3dvo37iaFxZ4fA720mVKtS3jQJRIhFP4noujmNRrhTwGwqeV2FkaIjhgQx1dXWYpSLN9XW0NjSRG86gCzL14RrcYoW+XI4jR/aTy43wwN/uYSCTpbZjPCXLxcZGxEb0TBoCKo/cfw+iZxEK6CSTUSLRKEPDQ2h+g03vbaQuKjJp5jx6cg7+UIR8dhiFMkd6DpOvlHANA0sRUBwR0ZUQPZm8opDxXO57/DGcnMnVP/kVH374EUZIxHJVxk2cTsGSGTNuMoKk4Hog4OA3ZOIxP7oR5sDhIcLxKHpA59Pt77HxzecJhPx0tLfiC47iP/90IyPZDLv3fM68mbMRbHCKNpYNnigj6gGGRtJEonEEQSSXSRPw60i4SJ6NhIXkgesKuJKIi4tr25TyBSRBxkOhbIu4gkpuyCPeUsvV157C+K4mVKmdbEZgcDCNEbDQDI+h9CA+fzOibaO5NmEjgGl7CAjInofqlVE8i8FMjngiQWNTA41NTdiux/SZsyhVLCquh+V47Nm5A10RmD1tAls++hDdMBg7ZRbJhhZGjxqFaZrc8qcb2L1nHwFfgFnzltJ3aB/jpk3Ar6nUt7WRHS6i+cNHB0iSDKKAZ5UxKxVEUcCxPERZRVIk8ED2K2DnQXGhlEWyHMaPm8jSlashHMUVBFobokyfMZU333yXBXNXIRs6k6eNoq/vM7Z/coA5U5by40t+xuYt7xGLRqlr6EQRAyiSg9+X5rrf3UYp7RIyYrRO6cIt5QhFozieRKiuHSPagGmCKor4JZOIz0NxMgz3HmLOzDmUSmUMfxTRtcAu8dLf/8Lrb+zknNNmotRLtCYDPP73fzKmfRyf7/yQe++4EcMxqInGee7Fx/nj9X/g8507mTKlC3AZHOzj1df+yaJF8+kfGqCzayLxWBPpokOhbKMbUQqlPL0DB9F9IsGQgGP96+jUV1svgo1lmSQSCRqaJ2L4ajBzeRRpkL8/8CYfbT7Ewe4y+w7u4aST1jJtSgeyY+KVXQJhgWf/+Sj/fO15hkaGaWsdR33raCKJMNnenTQ3qTz9yhN8sHULG064kHSqgFWx8PnDJOITaBvdiStZ6CGHQi6IpgaQRB8eLsVSjva2iehaHMGLYPhClG0bwSmiemUI6Gx9821O/saFOCWbYtaiUvI467zv8/xrrxGvbaBiuoiSRHZ4hPGtjURDfra9/xaaLnIgVWL23PmIRpiKoFIul0GUEXGRcBBxsQUZTRTwKkWoFHjuuecJR6PEoyGs3CBXXX4J+/Z+wYQZcykVXSKRWiZOnElD02hax0xi9PgpvPPBx4ztmgVKAESNt99+hwu++S08PIR/DZCqqqqqqv5XVIdIVVVVVV8z76tXgaNRHV+NFMgNj6CKIoLnEtRVQkGZgWyO0R1dtERraDGClPszaD6VfOEwsxZ0sWTlKZRGVGLJBMPDFZK1jfR17yCeVBALMju2v8vFl/+Y6//4MMtXn0Rr1xi65q6gp1ckHg9z7+1XcfKqk4lF41z6b+fzzNOPMWpUC/V1CSzHQRAEZEUFT0CSHBSjiCAUMHQD2xRR1QChYJSOMe0sXbYEWXPpS6voepFS6RBbP3qGpx57g7DRTk1yCWhBik4/uEWkSgVZcImGQ9zzl3tYtGQZ47umEghHyVcsdN1PIhmhONTNwV1bWDh/Oldd8XMuuvjbPP/kg2xYs5j3X3qUD3tSNE6cQl08SbF3GK3i0pSsJ58r4OkqmXKeWfNnkdAVyo7AULrIgZ4Bps+aTygSwzD8uK6FYBeR7TwP3nEDn295l1ENNUTicRRfkKHhEWTRo2vcaCKjZ6EmWihnR1Aye+ne8QbCwGfMnzGVK35/L+OmLuPNzft59oGb6GxpZfVxx1E2TUTFwBUFHEHEFkU8UUBx/aTsEj6/QF3Ux8Y/38qVv/oZyYY6Js1ZzON/fowzLr6IWEsTsmqAAJlcBs+rEA/raIqHVcry51tupmvKIsKhKAGfn/p4nN3bd/LI3ffSHEry60t/wquPP8G8tcej6DKy6GFVCqw9eQPD+QquKBHw6UhuiYBocevVl7NkwQwM1UV0Stx+282UiikqpRzxWIi9X3xGU30AQfURiMZx7AqJmA+rnEIPqOgBA1cAU5KQ3KPDM1tQKCgaPbkim7d/zp//eAcxo5b2MeOYNmscx6w5jVmLVuIKAWQtjD8QQpDAb2js27eFdz94hMeevIv1p51O9+AIFctCUAxWrzyDWTNWoUmjyJcdFh6zjDkL57B23TrsoomKhiHoCLIPW5ApWzaJaBzbKpPPZFE8h7BPQ/QcRBwkXFzBw5IFbNdEckETNQJGAlGJYnk6jqCgqBKJmiSb3niaSdMTvPP2hyxYcjaDvQMEozYuwyDYNIabUHp7MfKDNOsCqu1QdiRcQaEs6ViSSEXS8IcMhlJDxKJJxk2azNgJXahGENUXQVIMbGQK6X40HfZ98RnPPPMkpgMz5q+gYmu4rsjyZatYPH8+PX3dvPfOJsY1txHyG/hqI9S3t7Jn6zbqR086eqRW+CoG0xNBkZE1HUQVUVYoVEpIskK5kOLaS7/D/Q/fTU/3Hi655Lt8+1sXIiXrQTPoH0rhyRHESi0KjcyashKn7EeSAyDKTBg7h1NOv4ZwaCazZ84nlT3Ck88+xcJFK3AcH5ZjEo17TJ7UzCsvfYKkhWkdM4Yrr7iCTZs2s2DlOkpqgr6RMr5gGLlU5IuPXufaKy5i7qRmrHyWSbPmoeo+PEHGtMrIqkRTIkF/7yYOHnkR2TrE3bfdy+/+9AJBvQbNPsLfH7qBV57dyEnHr2Hygmk0JaNsfP0Vpk/tIhGLE4mE2bV9J489+g9OOeVscoJLxgbXCwJ+VNHPyFAfyaTIs8/ez/Mv3M38ucs4Gi2qHL26CxaZTJpEIoaqx8DTyQ4PceXPz+VHP7qVn/3yKpYsPZ277r6W7u7tnLl+HnYmg1e0yUu91LRFyGYK3H77XSyYs5SwBKXUIZ5+4mY2f/gEFS1IyTaY3LWchoYkn+/7mER9gnnzT2QoA6FoLeliBl2OgJVARCEUFgj72sgMC4QicXKpNFY+RB4FQ3VQ1QKp7R+w5YONLF2xBlkN4G+YwPjxxxGuHc3krlquuOI3rFy1FjxIxpNkBgepSST58MNNHO4dpK5tNHMXLCJVqGALR3vSJBFEz0P8Kv/PdVUk20R2bFoSQRpq4vz0Jz9k+fyZ3Hvj71i9YCLPPP0mJ37nMtrHzmRs1zzqWidgS2Hq2ibhSBFMIcCsucvIFE1K5Qr33/8AJ6xbRyAQQPzq71ZVVVVV/e+oDpGqqqqqvmb/6oz5764Y1wPXIzUwgCyLVGyTSMRAkFNEIxHsikt5JIthi4QjIm6lDyNaJlEbon9AJhjuYNvHW2hINqNKMqFAhct+eA6qE+amm67h4ou+TUvLdKKxWmpHJSkWywTFMAd3bSbbs5kn7nuYd9/cSLLBR9eUycycO5d4PE6h7OKhoCoaniciyg6lcjf9A4d58G+PsWThajKZEvU1zaQygyiGwrr1a5g993giwQghI8o/HnyK73/vcqZOnYOoyQxkuvHkEqokINtHvwnHcfj448/omjody3URRRld9+O5UC44hMnlAAAgAElEQVQ7qLZDWJP4wUXX8a1vnYGi+lm2cBExQ+ej11+lZuYcRndNQsrnueWKX9G3YzvFwV6CPhktICMrFoXiCEbZplSyMXxBYrWNKLof03awHRNDFRGdMk4+xStPPcLPLr2IlsZaVM1gMFtiVHsHuUyaZDyK45iEdIXUUA+/u+ZXaLrGmaeu5+577mf+ohOZO30Bv7z8V/zootM5ad06AoEwjqDgSRKOIOIJgODgCQ6S66csO4zYQ4zYGWI+kU9ffIMdb37E+K5ZBGbPxNQUAqEoCCKqIpPLjqCrEsX8MD//+eUsXTSPGXPnkxECaKEQyAIPP/IQW7Zt47xzzuZ7F17EGaecwjnnnIW/ppFkOIjiOIxvb6O7ZwifEUGVZBSzglJKE9IUps6dz2133cuRniPIkse3zj2dCR31tNeF2fLmc1i5AV5+YSN2yeK4ZUtJ9RwirErcecftaIpGwOcn4vfhemVUz0T2bATAlgQi4RCrVqzEzpbJdA/S1NzAwd4DIIfo6c8gqCFqG1pxbQtZFDA0gW9+43RU1WHx0uOoqelCUhKYloSq+BEFHVkI4llBbK9MqpghVpOgv6+fiBFClzRkW8Rxj25/iYJNrc/k/Vde4O/338PLzz/H2uNPwBVkTEmjIOsUZY2sY2KoAlHl6NaEbUqUbJ2C5SGKEgHVJTWwl9HjmhCFCIvnXkh+SOCJZx5k575/cPjwXioFmUm1y3jipu/z2ZvP8Ph9N9FzeC/jZ87GFj0KikJZcSkrHrJXPnpNkBQUw0euYKMZQXKFEp4ngifQ3BIFoUIu1U9Hewd9gymWrFpP0dGQRR2rYhMO+Ji7YDYzp82itbmDUj6PL2rw9jNP8+DDf+ejDz5l0bJV4MlHN70kEEQR2wUEkUKlgqbplJ0yAV1l6fw5fHHgcy79+Y85/5yz+d2VV7HkmOPA9ggk6hAUDdUTQVCQlACS7nLLn67hpRceY8kxG8CqIdPnkqiJMHXuWJYvm0soFOfAviFEQNXK1NXVcN75/8b02YsIBAJMmzKF3r4BGkePxzPilEyPUDCAWEwzoT3B9Okd/OXOu9DkKA889BSrTz0TS1SwZBXbhlDdGBYtSfLG+6/R3ZcjXwjz9IPPsXb9Kfhqmzhpwxl0TRpD45RO8KChtgbBs5m1dCmC41IpFJgxYy4tjW0MZbIImkEhaxGW4hiehs8WSeoiBmmmT2nHJ6SorZ+O54a+GtC5IBWo2EMEwg6XX3YxW7e8yfwFM8llMjz65HNMnj6TpvZavnn+6ZxyxnoyPXu5+pcX8eRjd7D81NXUtozm1Zc+4Kf/dgVRI4ZdSqNKJgHDRpLKTF14Bhf94CoUVWckvw092sczL91Fsr6TWHQiuaKEosl4bgrBiVKp5PGH85TzPlQ5gCAOomglDDVBUZTBqeDL7MUIwfuvP8WTzz1Bsi6OL5zEVhUqbp5QTMSsWLiCgiTKuLaL61hkszlOWHs8uWKFU84+C58/SCqbx3YFNEUGQfrvhyUCHhVTxBA9QppMdvAw8UiIY5Yto7E2gVMc5KmHnmbmvLFExi9G9vnpHUkj6X6KDvSmMvQMjzB99nwGhlPIqkIwGOTuu+/hkUce5ZJLLqluIlVVVVX9L6v2X1ZVVVV9zf67L8b7n+/btk3/8BD+SIh0McvBPZ9SKQ+iOFnGNMfw6SZ4GcSgRyrdzQ1/ug7DHyOf9xjbOQFJkKgUi9xw/XW0tjQxffo0Tjr5eMa3N2AW0siicLRSW/Coj/p46K5bOHbhLArpAlYpj6rqtLS0YOh+UiOZ//nhvKP/kLuuyzPPPsXUqVMBAdeBweERsrkShaJJ1+TpTJo0gUpeQnBqWLLwXJKJNrSQjh7OEE066Kr032064UiMoeEUS1ccg+16KLKGJCrks2mSiQSKoCPi5847H6CtLUBHRxfhSAOxWCOJWDO7Pz/A5PHjGOg+SO+hvRQyA6T6DvDg3X9mbGOcwsBB4rqAmx0iEQoQD0fwHBdRkImEY5TLZVRV5cC+/biOTWtLE63NTXiORaWQI5cdIaArdHd3I4oirifgt7LUGy7X/8c1ROrHUDduJuVAIwXPx4SxHeQGDjNzbBON9Q20tY4im80SCoVwPeFo85EA2CZ2KU9atvjwww+59Lvf5/bb7yQ4voN9uRQLFixCNqHil5ANH5lsnlKpQj6fxx8KkqxL8thjj9HQ0IDluDguhOvryFgVlHAQKejHiEeoa29j9YYTmDRrOs2jR+OaNhoyqivwtzv/QmOijpAeoDSc49Dnu/n1j3/CX+76C5YWI9Y0mnlLVzBq9HgEXN548RmuveJyHrzjr7z14jusWXUSgi3y5bZtPPHXv7Dxxedorm/ghLUn4lYsFMsmIXsYbhnFKyJ6RSK6gGQWUEpFNMeiJhYhnRohlqzHQcEfjBAKRRjqHyCTHsG1LQqZNKetP5t/u/gPTGo/gdxgCKccIBZqRBQFNK2CKwyD1IOqusQiEayKSTQcQ/AE/KqPYqGALHlfHVergFgiM3CAmF9i6sROyuUyoqTgj9XiBhMUJT+BeAPIEm4lh2AVMHSZQNCHJEnUxBMU0sOEglHyeRdVTVAsKAQCNaxYuorJk7ro6+mlsa6FfNlmwwUXcvq3v8Pqk9fR03uQ9NABSqlD+LwB7NRO7rzu37DNNI1N9aTTWSqWTSafx7ZcVEVHEI5m9hRKecpmhWt+dy3jJk7knHO/Qals4goiCBKWDablksnkUHQDx3IwLYdK/xCL1m/guDVr+WzHbjIDwyBCqVzE++o65DgOAIZmAKBJRxvWCIe57DdXgaCg6D7Wr18PsgySRDo7Atggl0CqgJTGrnxOrCZLhQNAFuQCobgJunT06udZQIVoOPBVBpFKvmTTOziEHvRTrJg0NNRxxumnUpdMILgWzU11DPT3YDsVUFUkw09tcwff+t6PCUbqwZJI5wsoRoCSI4AcwfWpLFl5Bu980MP02WvYuusTvEoWewhQWvjki11884wTGd53gJG+PlauXEnvnj1Y5TKiKFIpmTQ3tVFf04whB0gGY5ipHKXhEVTTxBwZQsQjc/AwffsOIroquP9qGQOECvGEn0z+MGtPnMuhni3kij0sX76OX//2MkR9hHCNh6gI4IlEwvVceeVlROM2P//FL1ClKBde8EOS0WZ8mp9HH36EkaFhJsycQ093lrvvvY3Lf3EJglQmngih6SK19TEGh3pQfRK5whBXX/MLCoV+JMkkEBBJpwbw+URMM4vsg0KxG4zS0VuRKxw9ehaN0tpSi0COu+/+A1dc9T0s7zAOQ6BprFlzPIlEAsMwUFUVQZKpb2olW7L5Yt9BXn19I+HaWiLhIKrkYegKEvbRLSTAQwTPoTaRJD0ywn9d/wci4TCaoYMoEgzHaG42aG0ZxY03/wlEj/qmejKlPLbk4gv6aGxppGyW0AwVw6eRyWTw+/1897vfxTTN/5d36Kqqqqqq/6eqm0hVVVVVXzOHo89IRfhqkORRKmb56LOP2d19gDHTJmELJg/ceyOdo8fQ1NjI4b2f8MHm13h141M0tca59vdXcsG3voPqH4Pg+pCEArInIHlw0w1XsnrNIlqbZ9E0qoGWhIBIDN0fIuvlkSWbwqFeFs0YzXuvP8DyRccwceocVp5yJk1tXSj+BKarYgv6V9sFGngekgiq7PHeO5s56cTTqZQ9gqEQiqagqAqBYBhFM0gmRuFVQhRTIivWnokqOFh2hv+88WfsPfA5k6fMx6y46LqfoXSOQDhBrKYWDxFFEhgZHsDMjvDME0/R3jb1/7B330FyVdei/78nd46TsyYoSzPKOSIJJGGJJEzGOIATvraxDc42DhdscMJgwBjbCIPJSUSJnAwmCAlQHmlGmjzTufv0ye8PYfv5+lb96vf7Xdv1Xs2natdUT52u2jXVvc+sddZeG8GVGDh6jDkLlrDhtHMoOD76+zP85jdbaW9qY/KiBYiSSMjzqA74+dOz20mlDVasnMNjjz/M0LFuHvzjHwjoBrZ9vIl3VW0DA6OjRKNRjHKRqZPbuf/uO/nNb27l61+5jC/9x6d57733CEUr2N87SMOEiQRDQbLpFFF7gF9c/W0++YWvsXjdmUzqXI7fV8m3v30Vvd0H8fkkLr74ItxIEMsTcFU/ZU9EVlRy6RRhn0yVX8ErZXng6Hv85sqruePL32XZtFl4zdWEpnawYN06jhzuJVgRR0BDcqXjz9UFBxEYGhygv3+QLWeeA4JGpKIOXdNQVIWyVWJCezMLly0lnc8xf/lypHCErOVi2wLlTJqLzjuP2V1dTO+ch2F5hEMhvv/1r7BkRjsnrDkJtW0ucxYuIRSOEosluO23t3DfndsIaBZnnb4O0yhzzse/zezOOXzrss+Ry4wwMjzCBZd8nuGMSXNLB/09R2lvrmDo0D7KhRz1jfWInodrlIjKKoptIosurmviSgIuKh4KgicjCwK2nqG+vgo9fZQZUzqIhkJocoR8AaKRBI5lUiql8CyDmkQ1qqDimA6uIHzQdkzAZwt4pTJhUaBYGEWQTHwBD79k0FTfwMLFC1iyYjWuKKOGI/RmM4yWDVZv3sSPr7uBZbOm8NCtP+b5x+7m0QfvZkrXHBobm9BTg0Rlk8xoFY5XQSCs4wllcimHcLACHJfZXXORPAUpWsefChLhti5iFZXUVMV5+ol7uW/rdbz8wK1U5l/i5Ol+Xnqzm3CiBdUfRtct4vEKSoUSouAS8onkR4+RrK3gvT17OfO0zXz7W9/h1NPPwlFjWIIfTxARhA/6zmgSshSkfzDN97//fW7ZeittjU0s33QKp24+B3+0EiQdx8yh+I5v/ZElCQER8YNqEfEva5QtYNkWkqxQLBZZNvckls/qpHbiVHyBICI2gjgGpkthNIsv7jGjcwK2bdHethLcKJZhIlku+NKk+vdy9VXfYeOaM4lG4vzyl9fwxPZHOe28SxgdzVLQTfRsHzueeIB8uo8JLfWoqogsWBjFNJ/4+PkcOtrNZz/zVWSvknVnXgSBCMGwxuBgH1XRKq7/4fUs3jiLRNVctnz467S1zePiz56PJ4nI6kTschhCJWLJKL/8yW8551OXct211/L4E0+yeu2JuIKEi4IrHP9M+tUgUtnFzWbJ9B3m4nNOIywaUM7w06uvpvtAL2s3XYJLEJBANEHK8rvbfsmf/vwE4YjCrb97io995FxUsYOymEXSLPpGh4mF2ylkBYLxKP5giaXLJtMydRnhUBtOUaCcLxMJSOx+5zmeePJhVi1dRVvHQn7/yDV0zm9k+eINjPTnyGdM5s8+kba2lby/521CCQM52MO9d9zB4kWLKRbS1Lc30HPwXVSfjiQf4/Y7ruOFZ7YxoX0ejXUJHrj1F/zoq5dz+umnkDHL9PR1U9ug4JP6qEpIBEPtKFqIkXQWy3ZQRJnU0DA/+em1NNTVM3tWFzffciMvPvscp2/5MC4iI8ND+DUfnnC8OshFxKf5MYsZ/D6Rna+/xn0PPcqqDadQtkWam1tZMHc+BVuiY94i6psaGE6NgOgiyCII3gf3TxcJj+HhUaqra3jkkW1cffWPiIQj/EPjwXHjxo0b9081nkQaN27cuH+yv0siAeAhqCKPPrud3z98D/1mju9dfRVxIcTG1etRNYlYQOXRpx5iy/lnU1vfSlNjBxWJFgQpiugEUYQMiisgeh533/Vrps6YSDA0Gdmncd/Wn/C7P+6gbeYC5Jo4eb1IfbSagf6DvPKnR5AjLXQtXo8Ua6Hshih7IWzRh+OpgISiHj+GXBZFHFuhpWkK4WAcy7UxbZ1AyIfq8zOaylJZ2YxPjuBTRYIhCcnNYXs6pgVPPvUyp556Lv5AAMd2yBZB9oWxPBHbFVBkmYqwH9EyuOHaH7Bw3nyqGtopWwbzF81m5bo17DxwGEsLo4WiGI7LnK5ZEKvCdI73IpnQ0cGjz+1g2frVTJ8zh56jAyxdupJnHt5Gofs9jvb08vOfXstwOs/8pUspFIuEIkFct8zdd9/FeRddTDIewy4XaGhs5PY/3kNDx3RaJ01H10uoooDhFEnU1lNdP4mwEmfsyFH0gUE8q8Snv/JV6qd3ccx0sBURS1TAF6FoOBTzeSY0NpA6vJ9Htv6aFx97ADegcuOVVxEoeITUKFqylrwsI4dj3Hfvndx7w3WcdOLpgPJBT5Hjn55gOMS06V2YlkgkXsfIaJ6AKlJKjxHUJFRRIBQIks0XsTwFw1MoI2I5IKoi6z60nkUrljBULJG1HRwJioURzjrteFNktAoco0woEGRsLM1DjzzBT3/1S9affgF1HbNYccpF5ORaXFlkblcH1c21dC5ZgtIwFTdeR9Z2CYRCXH35ZQwPD1M2HRomTiZbMJA9iYAawHVdXAVsHERBxENFQEDwBNxygeqYH8Urc9V3vkIuvY+PfOxili6voK4ugSfYyJJBKOCjnLMwch6xYDOWngc8RA9ET8DnuqCXiAUl9OIARX0YSxNIqVW4gQSeP4JpOfg0meHRYwT8Lpd++jy+csVlrNr4Yb57+eeYGi8SlnPU1YT48673WLJyNebgMT5/6slsufBy/HEJ3R1B8MrIYph9+94nEDKxzREaG2rpHS5gV03k0MGDLJ42idxAH0vmzkHyBE5eO59nHnuF4aODvHVgmHM/cik+XxSjbOI5AslYmEhQ5dVnt3HTdVfx8tu7OPPsc/FJEmecegaxihqyhoAlaoi4CLgIgoWJQDprUJGsZ92J6znvIxdQVVeP4o8gqnFMGxyrn2987VLe2/UmixYvBk86/vcHRMH7YH2SMXQZKRjCckz8/ggzJzbz8x/9lC3nXgCSgiCafOaC03nhqbfYeNpFIHog+GhvWwxWHdgikqaCqHDxloX8+te3UJUUeWHHLtqbJrJq9WLe2PkKFfFKfOEYpqfw5osPs++tF9j54oPUJP3s2fc+1ZURahoaWLlmNX39x9jx6HOs3XA+aH4eu+k6rvzupaxd2EU0HuOF2+7nhq138OELPodgKWihGG6xiByoxNUd+gf6qKqtZdbMxZx2zic4ur+bdadt4eWXX2bxspW4goQjKMcTSagoWgC9lCeolPEpZe7Y+gv+9OpzfOGKr7BgyQm89V4fy9ZtwBX/tqYjWHR1drF71x6WLtrIFy79IiP9IhLVaIFqvnjZVRw6XObc8y7ljTd3M69zNslEHC3agOqrRBNC+GSBgObx4x99geGx3fiCHouWnYjp1LJg9QROXb+JzLAPyYrjl0PoOciOCtQ1ViPJJapqBLrf72PxkjnEI7WM9RV4Yvvvef3NR1m6ahFHuvey49l7WLJ4EX6rxKxZs3j7z++w/1CaL3//56xavJpbr7sGxnZzrPswLbPPpGx7lHSDUDCCUSoxoaGe6mSC3950I+tPWseu995BECRy+TwlXWf2rC6KpRIeEp5wPEWpqDKjQ8fwKQKJeIypsxcRrG4HLUahLKL4YlTWd1BT10hZN5EEBQEFWVCQXBnJFY+fYueJBENBCqUS27fv4MILL0RTNcaTSOPGjRv3rzWeRBo3bty4fzKP/5JEEj36MyM8/9rLxNsb2TfQw6y5i/js6Z+nJlZJcWwIWRbYd+QA0+cuYjRbYkLjbGxdA9lDcnwoYg7ZPR6/lcojLFm5lGBoCqbr8tsbr+TDH/smOSHEU7veJlZRgagLVNbE2N/7Dude8i0I1KPbMQx8FCwJ05YQZR+CAKoiI3gWMgqmrlJZUc/o6CiRWABFFdDLRSRJpVAw8AWSDPWO0TY9yd59O7jsq1tYvHA1lhFh6byLaGyYSl7vY2RsCClYD7KCK0joZRNVAjufQsYkO9TLvNldEIgQjgcw7Dxj+VGiDbUUkcibBi3tLfhUAV1JojtBykiMGjpOIMTaU89Ai8SZNGkmhgHb/ngXdVKOkzdtJhAIMGP+EmqbWylbBqqqksmM4roCsxeuIJ1Os3rpQiZPm47pCixceRK5koleKpKMR9GDEZxoLbKncdXnPsfh115g87zpNNRXk4/V4WudytupMmFNwFN86DYIikZAURAtg5BT5r7f/JIZrY1kn3uHI6MjJJYvwozGkIcdJvtrMXMFHn3yPr5+6cdQg3W4aIg4CDh4Aiiqj2yuTLKyjsGhAn4lSMjMk/Bp9Ozfz1OPP04kECQUipPN6TiegqwG8VcnGC2OEa1JMJQdg2gUIRZDF1ymTmsmk+6lVMrx4O130TV1CoIHldV1TOpahL+mg4GChBVrJSXGSaOSKWWJJwSe/fMr3P/M8/z8/ifYly6RbGkhWZVkdO9Bzjr3QmpbJzFUtJDVCI6n4tdCGICpypgCqJ6L6EmICIgeYBuY+TFEp8TKhZ2888YrrFkzk+bGqUQj9dx44w08/PAdzF/YjMBR7rrrZzz1xC0sW7gaFwX4oBLJcYhpGj/42he5597f8PiT97P27LO56LrHSNS2kqifQN/hw4Rlm6qGJOWh9zjy7rO4rsHsVWfxzc98lmUTBdxCDw888Cyvv/cOExtbueGqH3L6wrkMykXyYgmfEiSgth4/xc06yE9/dQavvf4k+/f1MKVuFY3eUVrEDFu//1Xu+d1WNp35SbqWb8Kr62LJhz/GlLVnMbNrEWXdwjIFHNcjncpQFQ+jSQ4dzRWcuGo+U+avQAvEcMslPNtl9/t7CCUbsEQV8YOTr0TPRgxEkGQ/eBqeIBBNRlCCQTxRwRE0PAlURjlhxRxsu0xtVT2SGjq+KnnC8Y7/AJ6MhYgrC4iigmWW6ZgylS0bNkEwDIKMXjpEx9QxDh3eT21FA7+6+cs88PBNnHTSieDGKZsWjjSGnNf50IeX0TkxzN1/fILrfnwTFYkahkcHWL12MeFoEsMGA40lU2voqAmQ632bRx98ksmdHfx+623MW7EWf9BPIqxx+gkfYu/2P3PnNVdz283XccaH5nD113/A2aeeyOJNZ3PaSZfQN3iQYq6PcCLM03e+wG9/8Rsef/xWtnz0VChEcMthPM9BCwbR8zoLlyz+oHeZhIeCi4YjSuSNMrLiEPDrBOMiG05aiCNZzFywHEMOsfHCz1O2siAYHxwpL4InU8jbFHISS5acR8/eMh0T5lLWTX527ePc8OsdeE4LM+bM4JEH7uQP9/yeT3/8q2SGYySrImTTg6iCgeelaZ0gsf3522mdWM+SDeeiyhOoq57M7p3DXPThr7B8cRfVtSLf/OanqYi3Eg40E/BVYRkSq5avwLTTDPe7BLVWpnYFOXD4NerrqmhsaGXB4jYevPc29ux8g5bqdtaccBonbL4UtEZUU2VyTYhHf/csq1Z0IbWeQCSWIJXKYFk2nmlil4t0tLYgehbTpk9m+oypbNy4garqKrbedjs7tm9n0ZJlx6u7BAkPAd0oUl8VIxmPIKsqSqgaXYqTNY4nkATRh4vKsQNHScaqCIYSOI6I4CpIrorsKKj28aSzJ0HZMtmx42kuufiSD26q40mkcePGjftXkv/dExj3f67u7m5uvvnmv75es2YNa9as+Yfr0uk099xzD93d3QDMmTOHLVu2/MvmOW7cv9vfb2UDEKlKVFBXU0sp1UNV2EdTZYxJk9vJDB8lVtfAwfffZtPGM4goETyhTE93HxXxChTPAMHAFhQEUUR2XU5cs5baugp6enNYose0RSdz2Y9/StvsFZzxyXORPYlStoTPdVFCDfSP5ggGwzjy8S67og2IAq7gIggfxJRIeIJAKBahqJewAb1cxK+JYOWRNImgJqJIPtpmTOTtV7fz/HM76Jw4jYbqKvS8n3A8yYH9u9HaQlhWieFUlpbKOMVUigl1CcrFYWw7RzikseW0U/EH4wxZJulUkarqJGXDYixdJFHXxoGRvSieQlEvIsgunisg+VRMFKbPmouihUiPjDKxvpYje/cSiYaZvngJU9etY5cFQjhIIZ/FJ4q4pk7YrzKluRm/blEZq6b3WA9+v4+V604m7yr4VIVwMESpXKYguQTCCXxlm6pwhNltLVz/45+gqwKbv3YlfQffp72lDbKjuIaFZpQJSjYRTaK/9zBVfolSpkBFtIoxMcvqDespOGUU06VG9mOmh6moDrN53XqqWzsY0sER3b8c5QcImKaJJAnkCxlCQRlV9JB1A7uk8/afXqCYSdPe1MDAaIbayjpGMgZ6ycCybZK1tQyPDiAaBtmRYcJNAY71H2VK0sctt/+ew4e6SaoNiKKITwuRzhTxReI4qkygMo7lCWSyBVLFEtObaikc7eXtt3YRjMU5cfZ8yhhMa6qk2NfLptPOwJFDFMs6iap6RoYzBDUfjmgjehYAkmsQsF1M0cPjeN8cw0pTmfBhlIv4Y0nCdW2cfOIqwMehQz2kU6PEoxH8Ppmf33gjhw91c8F5F4JgIaIheYDgIgoGAtBzdD8Tp01mwuQ28gUdBJ1nX30eTYG57ZPAyuGaHk89voMlnTN5+9AROuI+env3MaVtDjVHjrByQxn13UEWLpjFkjnzcbp7Sdc34Kuto1RwKVkCogihUIgPbTyDXM5m55+HqamvQx/+EyFNxRVsZsyZw1ev/A7f+s9rkMIJ+seG8fnDJON1RMMxRkaz/OaGX2NZNmduOY2umVMpGhaaP05dZTuvvv42NWGFac3NdNRr6B7Yknl8q6Njo7kWupUBV8SyTHyKhus4iD4/OAIIIIng2ipSqJ7l65rA9oENqAAu2BZ4Dog2fs1PwSwTVCUENQh2GSqToOeZ1FjBvrG3aZ4wjer6USrrI3TOncGhHnC9IqaZwueLg6JCSAUpStes1Zyw7l3wRRjJ5Kmub2UoewjXNdECcTAd8AVonDaL2TMWMXD0SYJqCFn1MTQ6RmU0TkNjK7f+5NfYh8YYOXaEE5bPp2XqdDacJUB1DfT2QWUV9W1t4GX51IZ1hL0aNm/+EDf+YTtedgSbFhQ1gCUalPQiFdU1HN7/DsmqJCICjnC8atQRBBNuF8QAACAASURBVJBFNMFDz2YpugViDQ1s2/4cn/niNfjCQfSxUVDAFfjbUwJUZCnI6pUbGevL0NDUQSpdpLKpgsaWTjqaFvLOznd57rrfsev17Rw69Ba6blDdpJEv5pFFh2DIx+CxMerqWlDUanr7SgwfGSSbdnAEm9bmLmbPnMH2R+6k9ZLNdHbU8cJT99HVtQzXcomE6nDsUXRdwBZlEi0JhkaDBKMt1NTPANvBGywiejLZXJadO3eyeGEVKCqpY4PEo1FaJs5hzYaZPPzgM1zzsTieZWFncqiqD8GBTLGE50pMnD2f3rE8liMyoaqeTLmXnGFhmPYHSbm/JXUUzYdeMjF1k4KroPhCyMEA4VCYscNHEH2gYPHg3bfwxa99E0WJMjRWwueP4iHiCS4ILp7gkndN3KBKxtBxELEtE01R+d+6DzLe8nXcuHH/DOOx798Inud5/8+XjRv3j3bs2MHatWv/+vryyy/nqquu+rtr3nzzTdauXUs6nf6738+ZM4ebbrqJOXPm/EvmOm7cv5VnHz9W+297HzDLJZ7c8RDdPW+x+92XOPvs8/HJjYghPwNDg8T8EYK2iGYfD1TKsognWtT6VLKORlqIongWPrdIhTvAHbfdyokXXkqkvpWiV8faL36KWSvnc+7atUzrTZPdvZsHnnmEj3z1Uwwe7Wbf/oNMWbKKsmHS1NwBnkA6nUdT/UiiSLmkE0+EGc0MoAUjFPIGVX4Dn1hg50v3Y5sCM+ashdBMMtE8La7GDd+7hnM+dCqJ5hB1lVF++IXPo7RP5EGK1E2dzcmdm3ln6y0UDrzPFy44idse+i0NMyYxecp0wl6MW2/YyvKT1zNr6RqG0zaO5CcYrSGn5zGsHI5RwHVyhEngCjJlNY8jWQRMGSlvYx0d5NVn7sbxcsxbOpfKmZvYVjrC+73daIeGqB0u0Hf4MJ+6/NOkR/t5+vf3MaNuGjOXr6TPr6CrEv7KakrpLBGfj2KpgCe7uK6FWSpS64/Q8/ou5k+Zwr2/vYnzztrEUKqbQz37GUSm66JvkQCeu+nnVNl5FsyZTt/gIHt6x5ACNZyyeQs7+4ZJNfmZ7roEhlL8/tofse7rn+HI4aMUenPEN6wiWduIUzSJxGOkUqOEgwHymTEimoBfEXn+qSf50Pp1RMMhHn9sG3t2vctHLrgIy3YomiIFN4guBsgWDKaGajioDGN6RToFkXJeJ99cw9jBXvbcfhevDB2gcWYNp27+OJXBNsoFBUFTKAV04k0hXM8mJoVwTY2U5MPnWFQLOW78ybeYPmMiy9csJj2W4f03diEXPGZsvJCiFMATwBFEwCUY0PCMFGamn1efe4L84DBixuXir19BwTE51L+P/mN7cRyPpatO4nBGJRKto1IyEPU8z7/wAuvWbyCfzyOIMtlsFhCP97fKO9iijCcJBCISY727eOXpx+jet5vrbrmHo8N5vGQVO/veIF4znXTWxrSi1EeT+D2HSnOAKneA6350JZYaZNMFX2LigvXsen8PAb+ObPYR0fxISpzRXAQ1XIHh2JTcIh5looIL5TJWvoQUDjGSz6F7Zao0G7+mMtDfT2tjI8sWn8GC+c1cfNEnmDm9k0K2QDZXpqYiSXlshHDQz66db/PaO7tYf8oZ6GqQMctFCWokozHswREaRY2AKvNe7hil1jCjR3vpiFdy2zevJDExxMknb6ZcVNj2yPNs3HQ2sUQlug0l20aUJAq2gC37kBAojKbxJ3zocgHF1pnk2YzsfIt0OcWfRvZz5ikXMzAq0jZ5Jhm7jE8pUBtVuOtHX2H3awf5jxu3Y3tlhFABya/z/vvvMmPqHDIDLtWhyaRHSlTHsoTjGvmSRdaSOTZWQJQ1PAEkz0H0bCTPhXKRytYkqWPHqBnJkDrWR3j+TN4+2kPFhMnUBarIZFNM8lk8c9M11E1o4uW9h1h/+Q85kirSlIzjHzyMNmkepcwYfrNIYLCb733+CoJB0P0+vvX7O9k9ViBc0YBp+BCMEdqaKpjUksS1dMRoHNdS6c+BEooR0GR8Rw+heAalch69sZYDL7zPHz77bfTCGLe8fg9mvB7LVRBFkbJuMTg4jGmauK6N45q4rouNyOe+/FN2vh3AtTU8811efuwG3FKRP9x2Dx+9/AyG9b3EAnVIhTK//dnVNNbX07lgFVrlBERfkNrKCsqZAXpGM1RWJpGzPTz866s597STOfj+O9z20PNcf++T9I4WUeN1oOcxAR2FsiihqjLlUoGI4mJnR6mMhRkY7EbD5vvf+Daf+PinWX3iFnrGDPKFEm3NlXzva5/B7xicOH06e7v7SZVVTj/nQkpKCF3zgSqTd8v4AxpiIYsoiqiqSiqVOp6M9vn+7hboagGCWZeCZZCq8BNOlahurqHPSNOQKxOoDhEM2bz0x2tZsOZMxpxKTMJIwRrMUhHRNYlrNoZk84tt93MslWFw31HeeOIFZD7IhWIDDh4WAj7Gn5OPGzfuf9r/39h3+/btxOPxf8lc/9nGV9hx/5+tWbOGv+QgBeEfy4jT6fRfv2h33333XzOwN998M1dccQWXXHIJb7zxxr9uwuPG/bsIgCAe/+kdH6qq0trSxg3X/4Dzzz8FRQ6gBIKECg5VWg2FcpliwsegdjzxFDIgYioUzBKyP4QqSziGiSuKfOWr3+PLX7qUQlkn1dNDeeQ9vvux9YTrEqhDO2kWA9y87dckAy7V0hCvv7aNyRNnoIoCldU1DPcdQVVVFMmHY1iYtktlRQXZzCiCXaY0UqS+opp3Xn+eob59OOYQW879OGUryOGRFJLsUbTgM5/7IvFojKOlXt4d6mdf/yCKLZKYPomju/dSs2Az/vlzsCY0ISVb6Fy+icqWWqqqanhrxytsPvNslKp6bDGA328RDIYYHOgmFA3i2PrxShNfiFLRAxwswcN1HCwLfP4A199+B5/66Cm0t9XSf/QgMcNjads0nEyBfcfeJzOSZ9ncRZSzRaZMaKdnUjt1XdMZqJHJhX2URZFjmT6Crkh9vILR0X6qqysYG8jSUFPL4OgwiUUzOWCZLPrE+XzvqqvokESSqsZZp59Fz7BFiiJ9QZl9+47yp5++S0yEletPRps3jz2iRaYiQEO8gp989j9oCvipmzuNm269kQo3wHcvvpxXfBB2JXJZAyhS4wuhiBJG2WT6xBn85qYbmT9jBmO9ozz45mPs37uX5YsXUypauJ7A448/QW3jRNRoFfWNLfjtEd576g5MPUP/wT4m1UxkT76ImrOIdh/gS1PbEP0tIDagpwT8ogqOg4hD1PWTLelYwTj4IpRKKeKxGANHBtjykU+TSETICQYPvfAClZFKtnz4VIaLLjIeLiKi54HgUc5kiAZFLNujnNc585wLqIjXMVIuI/r9aGqEWW1daJZHOO0wN9zI7oOjlJri2ILCrFWn0JMqgaDhOTaiGgEgXXIIJpvJ5Ms4nomuG+zZ30Nb60Qm1VVw0ekb+cRnv8Rjz72OYeg4wqOcde5HSVRHCEsGI8MDBJIqTz77Omd/4UuMZHXiHe08/vorvP72W4wOHebC09cihiKAhlJZScTMIXgFLM9EDSgM9vRQLpRomTCRXQe6kUJhcqPD7Hr7aTRF5YWXXuSyy77MXXddg+vA5ZdfQWdnJ7W19Zx//iU8+/QLPPfkY1Ql4nztiisI1jcQiEcYGM2CP0htpcx7Lz3Bu3du46V39hGqV7nwS5/ije88SUiWGKxOcurnzmPbj3/Oj7f/iG9+91ssnr2AG67/FR/+yIUQiRCqriCTzeIGZWqHskRlP6mogO4UmKIF6U2lGUh41DY0MvTmCMd2DWOtkmmsn8jgcIFQfRWiLdBzsJdV89eTNF/DHhikpb2JEd3AcGFaxwLSOR21IsFIeQShUiaVHuXqH/+SRFUtqzacgmWKRGKJDyodXUTPQ/AkXnn5Xd76z2ewBIPzvnEJic5lKGWVGW3VuLZGPushZjX2pjJMveTTxGMxONRPoBSmM9mCLhiM1blono3Pr6JEVGwzwpU3/ieOafD17/yQ4b09TGmaRHosjeSzKOf7ePWJx7n26W3MnzcHy4bzL/kSDQ3TSOezlFAIV1dz3y+u5sU3XuWib3+ThatXUfGlFPfes/V4VYzjIogCPp8Pw7AYHRtCEAQ8z8PzHDzPw3ISHDlch2MXmbN0Pnt2D3NkLEXHhGrO/+J57BsaQQp3oLkSfhxOPuUU3nr9dZatWsIb+wYQJBgYHaYuEaExlMT1bNobZrN07cm8uvN9HMOmddoMjg1lsCQ/hWyRgKghSBDSJCQzh0/0UdbHKJQ9GhubGB0eJlk/mbDs8eXLvsGxI4f5yIc387Urr6autpaDB9/jki9cBmaZW6/9T8654BK+/cOfstzMI2sKsk8mU0gTrYzhumUMy8LzPAzDQJZlRPEfq4DCkku1XyTjeWTyKSZVN+K4Bh1Vcbb+5Bt0LZ/LynVLKcsxBtJlCKsIkkI2nSEeDmDqBgAvPPcMmm0SlyWOZjPHgxj3g3ss8vH77N9axI8bN27c/6j/N7Hv9u3b/1qldPXVV3PFFVdw5plnsn379n/dhP+JxlfZcf80O3bsIJ1Oc9NNN/1dCd/FF1/MxRdfzJtvvsmOHTv+jTMcN+5fw/vL+C9tG4J+P2bZIhmvPF6pJMsc23+YJ+5+iJ69h8hbFmOuQdo1KFkGtm4gKyqO52LoOrpeJFcqMnHGTIayeURVJZqIU11XwfQZU2hqrMc1DVzB42DvEcqeR1bXSVbX0n2kB7+qkMukSIZDJMMhBLuMTwS/DHoxh6EXiQT8iI5J/+F97N35JumRYYKhCL0Dw2T0MoFwCCwB1wLXERnM5UnZFo7PR8vkKZimSzFVpKtjCkI5R2dnJ9O7ZpN3ZZqmzEYKJHHw4QtFKVseybpmhjMFHNcilx4h4gPRLpFPj1IsFjEsD8sFy3VxbQcsB8f20C2byZ2dpIoGx4ZSRCNJSqNjHH3/ALPaJnPG+k001TYyY9oMbNvlaHcvfT29BIMBCsUMQ4P9ZMdGkCyLhCyz55VXef/FV/BGxqjQ/FiFEqLPx1C5QNGn4CbiZCyHOV2LEEoeT97+EP37j5CMJahob2PMsWhtr6cyWYFesJBjcYZw8DVW4xkWMSXIpElTeHH3LhYtWkRnWxu53l5kz8ISPIquhWta+HWHntffYdvNW7nvlt+T9IdQAiEiNTUc2H+E9o5pNDe3IkoqTz75FJM6JlJXW83ECU2ENYk3X9rO6L7dxG0DMlmWze6knEoTCQRJqhUsmLeQ9rYpZEwFQ9JAlXEkD8PSKZXLuIrCmCdyrGgyPDSAruvYLviCMXJlG1cOcNKpZzFn+RoGchaW7eFZNp5lfjAsHKPM3X+4k8e2PcrM6TOpr2tkIJuhYHsc6u3nzjvuZWLzRJoqGtBMkfJwluntk8kWHHQ0BH8MV/ITilUjyH4UXwjVF0CUFAbGshiuiOEpSGqYyZNn0tY+mUwqy7RJE3n9xecxszk2L1lHSyhOSC+jZscgM0xzIkA8GqRl8jTEUBIlXkHOMtlz5BAjxQLhyhocOYQrBTFRKdgOufwoRiGFaJewMyO8sP0xfnLV93js0QdpbqilsaqC2e0dvPvQ47x2x71MUiNM0mLUWhJza1u49Ixz6YhWkjt4BMeyqW6sZ8XaNeQNg4O9RzFdl7LtIGsysUQUY+gY1bLD5g0rmdAgk0j6eXDrb/nIhpOZOWECr7/6EoomE3Q1lnVOpTKSZPbMWUyaNImqmmoMx6LsWqRLOWKqh5qQMZQSo+/tJr9nHwOj/Tz08P289fSLJCY0UTN5IgumLWDb/Y8RCkbJ5IqksgUQFSKhBH9+8W2ee+x1eg/sQc9mcU3IpQxyGQvblnE9D3wWWsyjoiqO67oUchnqqqtpqqvBs8t4VhnXNnBsA9eymTK5EyNVJjOcI9g2gUG/TN50UAQfiiVjezLBRCVyrIqRMuTxkWzoYCxXomTajOV0XCWMrhsMDw+TzufwQiHkyiRuMEAqb3L/3fcQdAS8bAa/UKA6JtM5pZmOCTWogkX3vt0c2bcbrBIaLq5p4ZR0Tr/gPFacsJpXnnsOHIv21cuRNJkH/ngnkiTheQK2bQMuguDhuvZfE0jHF38/6WENTJ0zztpMyTL49g9/iO5YSGGRn1z/W351y2MkK1oZGBrmWH8/ldUV9PQcJhjS8AU0TMfEdj2y+QKmI2C4MG/xClqnzKR3KEXR9OgbHsWTVMqmiyPIGIaFaxUx86MY2T4K6WM8+uh9ZItZ1GCIsZzJ0f40dfVNLFq0iNaGana99hxuMUUiFiZVLJO1XJo7O4k21NM6dRJqNES2lGFstB+rnMU18uTHRlFVFVmW8TwPSZIAsG3778axg/soDA+iWAaTGutI9R3ByIzh5jJMm9DMs488yNcuu4y6CdOIVzfiISNICpLgIQkg4iEKAiIefQcP0VJVhWgaSID6d3GcCEiMhzfjxo37d7j55pv/Gvv+79vcLr/8ci6//HJ27NjBm2+++W+c4f+c8cba4/5HfPe732Xp0qV/94XZunUrL7/8MjfddBN+v/8f3rN161amTZvG0qVL/5VTHTfuX84C3A+yR54AogDlUglJFPCpMi1NjchaiFQZrrv+eqbNn8OqU05moJBC9ECzIGS6qI5HCZeSaeALByhbOrlyjo6pk2lun0ymZFAolsgrFfz8/kfoTpVorJuMVNSYtmwNE9dvok8JMm3OaoKJZkqlIpJj8+iD9zM6cJRpk9oYONZL2K+B51BRmWA0NYzPdfjF975FVUQhEQuxdvMp+KqaKDgK6RKEVBW55KHIAbKSQMpnE0jGmNs+mdamSaw85Swaq2qpxqD/2ACmJyLFqyjiAzlIKl1gUmsH/micMSdAMJJE8wxUTCQjjV8R8CQZy/UQfGFcV0UURFTBQsNFFGSKukFdSxtVddVUNTZw7x1/JHVkkBknLENEwm9KLOyaixQJkVdcbrruZ7i9wwy/e5D2RA0JLULM8KgXQlTlHfY+/iyToxVUuiJ/3rWTRGUFDgK6ZaMpGqqssbBzLlElyDvv7WPNpjNIds7j9rv/iC5aSI5H9ugInXMXs3DjJnp9GoMS3PzAH2kriaxqmcTKNSvoDpbZuOYEZoSqSe3tptASo8fvJycKqLpBIlvm4V/dyuRoJbKk8Pae97n3rVfoWLaIafWT6WifQiAYQxJVdu3aw8IFiygXi4Q0Hw8/cC/6wCEmJIO0JuJYhSzTTzoJr3M64bldVK5ZTKolTn5CM/1qDNcvUXIzmEIWNWQiV4Zwon6ufehxurN5ZkZcKv0qTYkImiSSKxZxNT9DY0VsT0GUgqiihCQISIKILAgouARVmbHBftauXMX0KdPp6x/E84V54PGnOdTbx9oT1hL1+7ENi1t/+wd27+thwow5yPEYguZDEAQcy8Iyy2gS5FMjWHqJqN+HLGsEgiFEz8GzDYKiQ1UiSV1VFZNmLGD63CUsWrGBoKCwaf0a7EIaPX2MoOpgldJ84StfZvKs+VhKkHzRRghGidY0MHvePCa1TSbpS2DrYNsSgqLhyB5qOIrnivgFmVRqmM5ZnfT199A1dRKFsQF8ZpEZXS3MnNdFsDLB1AVzSXsOKc+gcmoH7QtmMnnZHIqWiKL5aW3voGvufKRAAFOQKDoWBdviYO8R3rjulxQO7qd23TzqZ00mqQZoSLv0Hxtg1flnsWDDiQhITE008eTTz/HgE09zwoYPUdnQhCuKlA0DnyIS9wfwFYfJeWOEQzJNGYPeP79BYEodM2dOo3hkkEJEI9HcyORgHTvfeZ94QwNSUKOyqZLMyDGqIwGqTIuQ6PHnkQGmzpyB4alIagyfL47nSkgYYKcwCsNojsCSxUvxBJFEIkY2m0KWBEQcJFxEPBBE4pEaZkxspbaxmmBjAse1iBkKguFQ0i1SikCio5FPfvxjDO3cy0nL1uC5EuVkkH6ziO3ZVLgqjf4g6CU820IOaJiqSMq0mb98JY9se4rlS5YTjvkxpDGefXob3QffZ+b0qSxYsBDbFrjnvkc5ae0mtHgVgqTgC2o4ZoZILMgJGzaSP9CDmM2y7KPnce33v8kpF3wSxxMRBDCtEj093aiajCCCJB7f5ia51ex4rJ+2OSIfvXgt7RMqOH3DCUQjIkcHDqKF5vPgA0e57Xc/49MfO42OxgoaG2rwh/2M5EogywiqhqIojOZNFM2HLHoMDQ4Tr6rh3QM9zF66jinzllCyBfyxBIaeR1YcMPoISKNocpqWphieaLJ77x4q6yoZHjJJRKrBKhMNBjBTx3jhyft45fkdhKtqqJ3UhacEaWufiD8SZ+qUqZR0nY7mBrxykY76Wo7ue5fmmmpKtogoiriui6ZpOI7z14qkv47cKLueeIIdj28jUBniB5/9D8445SRaWuuotS2e3v4IWb3IoRxMmrEQ11OQBBVNUSkXs3iOgYhDc1MD5VKemR0TOfDuXk475Qw09b/8fykI4y22x40b90/338W+27Zt4+WXX+buu+/+b9+zdetWtmzZQmtr679qmv8049vZxv3T/Xd7P//SC+m/7hcdN+7/Tn97KvqXiiRf2E/ZLJIv22TyNpGkj4JhkZvcwP6WEE9lepiihmkyJEb7B8nYJfztTWRTKSLxCH39R7jx97cyf9FC2idOJSL4kRSTeDzA9jf2MXlqF8tWLMXtGSIcV3HDEYZlg4Ls59iYjUeIcMjPz3/8QzasXcX6k9bw2muvsW//QTpOPY3RXInB0TFMJcCEpgq+eOknaa6N44uG6fNgOGMiiCFCoQCCayJJGrphUZTAEASGMmmSwRBVSZEDA6OEY2GEUoFIPIYlKORdEctRCQoyQX+SouMQSFYxMmIS9vuRPRlJUdn+9HPMnrsATw4BYNsuvqCGZ5Rx00Vkt4QWTiJFw2QMF9Mn89aeQ7y7/wifv+jjDKdHkYMRJFklq8iUBOgtlgjWViMfy2N2D+DvTfPGO/uoap1Ay/yFVMcTLFi6kMpkBT+//mdMXDqbqqifgf5R5je0ks8WkDQwfVHcGZUsnfQVRlSVo30HOdJ3lI2TllC1tJ2KUxKIisqbZhkCNdiDQ1x04fns+u4NtE/r4kBfP9NWrUA34aHf3UmNL0zn2StJCyrBgA/PLiAnAjSvmE3nzE4eeuYp3hs6xqeu/A6erRFPVKOqKoVcnmDQz2nnfgQ9n6e2oZGeI91UJKMs2XwCqV072fnySxR1l1uff5nI0hOwY3EIKgTLBZJaAF8qheUYqF6eZESB7DC1RpASNhdsOAE5UsGff/Y1Dmt+3n7+Jdra20FVWHH66dTWNmEYNn7Jw9DLeJ5LRSJJPjPK7b+7haO9vdRVJTn/rLMYGRwgmajFRGbTxlNxZQXNJ1IUCuhGkdMv+zSHRwyGVR2prCN5Lq5nE8BCwsEtF3jz2cc4uG8vH1p/EhMmTMA1wthlB2QVn6oyNpQmGKjGkML0FSwcU6Cy0sedzzzCrjf/REXIz8YTT+JIbz9LFiym/8gwK9rmY2kmJUcg6ZPxbAfF04h6AUzdJpoI0zPSw2BNBwP+KIHSMBNUhyVrTiObH6Zr4RyGD+zhN9fdQIs/RGr/AUplaGht5YDSyNv7DvDazp1cec1/4moC2UKJQkDE8WnkHQ9RVhE8cFQVAQj5VdqjQU666DN0H9xHv6hR37mA9upphOpG+d4Nv2CGDm44RKQiidPisvGSS7jrwcfoK+m4gkhA9lGnOMg5E1UWuePlbVQXLXYPZfnEeR+lKBTp3vYcz+x+i0/+9Id4JYeYGCZSKXL2WR/CCFnYIQPT7KeqSsYy0tQ2Jzl6NMmJJ25Aj6soSgzZC2AbNj7LJCzJ3PyLG6itjXP+x77AwFCaEzds5PY772BwcIhVq1dTXVfP6FgWnz9AoZDHXxFCaw2yYuYiXvzDHYz29zPv8i/RUxxDa2wgZDgc6n6DK7/5Ja677BtU+wIcHOghGkmgRCDui5B5rw85FeaWq65ipJDmBzddg+H3Y0VklAis+dg56FUaGbNMIFJJuG4iej7D8k3nEKhu4MypK2iZvR8xVEUuUyaSiJPT+9DLY9S1VMHQIOFIBJqSFHuPsGTFGlzbQRAUyuUSqirhuDqqFkAvmeSyWSZOnMxof4Gu9jIXfH45AW8X86dEIKdTrcXwAnHOXH0yfbvaefZPh0lW1HPX9b/Cr7msPelEJjRNZOeew8SqmhlNZYlEkgCk8jpquIKy53D6RZ/FFhT+F3vnHWVXXe79z+5nn16m95ZJ772SQAiBUIUgCHIBITRFvKJEUBG9ighKUdQgWCjSFaWJCQGEUAKBQEJ6m95Pr7u+fwz4el+9V++79Hqvzmet35o1a/asfc7M2vt3nu9+nu83lTdAlDFKecIRgXQqTn29h8ceeozTTjmWI4df5f133yRv+ihMqGFa27F0HB7GE44wmImTKxawcyVkSry15UWi4xcQilWS78niFV2S/YlR364tr/Kj792Bpso01NRw6VWfwRZH782iKGIYBoIwGgRQLBaJRCIYhkF5KMCyM87g6uuuZdnCeexatAA7l2bL5o384hvfYvnKxUxefgwHpHJcV6E8FEEUZaxigZIqgqBgWgYicOIxqyiVSrhFA6/2B95LHyhHggtjKtIYY4zxv5VEIvFnu5Uikcjf3Vd4TEQa4+/CP4qp2Bhj/CUo/N/cmA/lJMO2CJXFqGkehxQIkisKNNa14TZV8+Mdr2I/9yueOvfzPHLT3by2+SWuuvPrDOXTxMIVvL/zbR557F6GUkl2vOfl7b3dnHj8iTQGvWSG4rz1i7s44eNnEOl6i0Mvvs6VX7mFr9xzO5XNlUhGnqqigqppGOFKLrnsU9TEfHR1HOHhB+5j+tx5xJMjoPhAD9CdKVLo6kcpFnnggQdpnTyZ5uXH4Q9WYRoOcsnFFtwP0nNEZAdUByiZGL8T4wAAIABJREFUhLwB9IjG3kQWSZDB1bAEGVMCwS3hcxxCrkwub+CENbqHhqjwhgiLRfqSg/j9PizFixatJJ0uYtsmQsmg5ObwSQIzJ7Xzres+z7SjVlA7aSolWcKQZCrqm7nwkssouXlSmSReUSGoBEm5AgVZQikvY8XRx5ItetAsGampCsNrUzZ/Gu+WksRcAWFyPXlZoP7c1Zw0dy7bX3qFA+/uY9P+n+PTAqw5+2NExjdxQMpDhZ/+TILWifVcWncxL937IJ2yw+IzT8LxqcQ1F5/tEFO9ZPuGmNk0Di0SJiWIWJKPZH8ava6V6SuPxlXDtMU9CJZEPuDnXYYxl7ZzqC7ExMoTmJRfTYXp577b76ZlxjimT5tJMBqj4Ai4roCtaCQySSqamqlpaWF7epiW8lZqalOojsXshSdi+2vJSCp9Q0N0PLqJjZufZ/0NX2SwlOcXj95Psq+D9oBKKV+iqn08J173dYayJVL9h1iyfBVHXpc4/8y19CVTVFVXkzAKiKaN4EqoPh+FUomh5DCxoJdiKcupp6yhubmZjs4ufIEQHV29vPXaGyw44VR8Xi8Fq4hlm9iKQL6URq6OYMsOaraEx3YQsJE+MGEeGBygrjzG3CmnE42EqQsJ3P3Tu9nf0U/7lHl85MQT0ctquOeee+jMOVQ2jefoU05mYGQ3E+dNpX58PV5JwV9WTXtlIwsjdcTjBsWRLF6PD1ewsMUSrmCiWZDq7WFiUzXdvfuRrU5u/MFGYi3T8R06zIZrrqSYMek8OIJhDLLll08guQ6fvPRy3uvaz8ZNv6Nu0mx+/uqbnLPuclZ96l/ZH+8jEAgwZJXwihKCO9qX4wII4GKOpiS6DjImRyrCVLadQDiTwx5yKGkRsuUO8xev4ue3/YyPXnUph8QSTXX1xGIVfKyhFTEURLVF+jq7aYnGuOFfP4ORy3H5hi8hD8TZ9PivufTTn+XKz16FoofZZxTJlURCWogjA0MceHUjW7du5ZSzz6SssRY9HOVw1yHKvDo33fQ1smmLz154AbYtkM7EEa0sYV8In09DyGa58oIreGPLy/QNZZECEToHE5xx1sfY+tqr7Nixg3CsDEGRERQVf1ih4GQxwi77Duwk8/o7tGp+enbtwD+phW5zhGpXp9wyUarLOffrn+OgNUKw3MMPrroS0RVQyyo446ov4CZt1l/1WX766IPIgpfewSQ5x8Ib9lE/YwopL2QNE2EQJs5ciaJIdKYUQphEIzXMWNaKgRerkGWku4MfPvQdZs9uZODAQZ6+435uv/MBolNn45s4gQs+/2UMS0DzeshkEsSCXm67/WZKpRIL5i9l5vRFdHf3cskFV9Bc3UZlbCpOMYFQKvHMo7/k/od/TmWkgcYJbxGNLWBkYJjB3iRrVq7GMeKs/9dPctFnv0xD+3SGUlmCgQiOawHgImIKKqIwuquM9nSN7iySa+A6BXCLDKWK4PXz7OYXaG1u4aRjjuHL136XcaEQP3v+Pq6+/rt0jGQY19LMsjWnk+7bxyOPH2Cq9xAV/hCCreD1VXJ4zz6a6mvIpOLMmTmHRwJhFEnm4L4OhofSUOn/oz1P0zQCgQDpdBpBEIiUVTJyqI8zzz2PZKbAJy7/JN6oTjalUFvfzFnnnMfukSQtta2IJQPNKjLQ10c0HKZQKKD5vRQRkAQJI5cdHSWUZGSPTiqdJRj0j4pHY4wxxhj/i1m/fv3vR+L+HC0tLXzzm9/8u6W+jQ0NjzHGGGP8jRFckD5YH2I4NjYiiq4jKB4MBwqZHG2t7cTjSdrHT8QfDrP5dy9T39LA/KVLCEUiqKrG4X0HCHlU4kMDyKJIuKwCzRfC5/FSyuapj+pMb6xETg3y0mMPMqu1Dj8GiltAdUpoVhHZMilaDtU1dWiahmlYRKNRpk6dSqysAlFRydkO0eZxyOEyduzeR0NTC1OnzUKSvWSyBvmcgWhZOIIzWvjiILkOiu1QHgjSc/gQ6WQKQXARZQUbDVsQcAEJk4Bs43MdKoJ+spk84WgEXbDI9HdSyOcIRsK0TJqKo+pYHxRKiiRQKmYp5NP0HzlMSJFYOGcGkuiCBJlinkKpRCgUYvNLm+np7sYxTBRJpVAwEESZUtFAV3WWLl5GoK4KJxrE31xHMeAh51XoLmToKWYYdgza5s1ioK+L3du3oksiOCb19bWIikw6n0eSJEzTplQ0yecy2LZFziowaeoUQMR1QBZEcCxkTSWieQjpPu685x62vr+DfM5EVQKUt7ajNDaQTJcgZ+GxBcxCAVcUUHw6SsBD12AfM2fPwS1aRH0h5s6eQ1l5lGw+hysraF4fJVFE0HRyhkk8m6WufSKK6GVcQzvHzF+O3xZ54/GnOPi712hRPBTfeZ954Qp8tsU7b7xJKl2goa6dqkgtflTceB5nKI5u2cyaM5e29nYWL15GOFZBc1MbpmHjOKAooyM32WIB1aPhCejYrsXixYuorq2mtrYW2aOzY9duXnxlC/0DvaP+SoaJKsqEfH6qYzECHhWxVMIni4iu84EBM6N/S0EkEitnyoy5VNc3EYxVYlgOgyMjrFmzBtd28Hp0Xtn8PHvee4fd27ayb/s2SvF+KjwqFE00UUXzhbEkHVPSSeVNHEQCPj+CIwMuomAiYCAIBtWVZRQLKRrqotx26/XUVnpZPGcSTZVh8iP9ZJMJGhrqGEpl8IQjpHIWiidAdVMbS487jtaJM1h0zGpM0ctQ2kDQAqSLDnqoHBd51AsNEQcZEMEVEF0RyR01n6YyRj8mdrJIpRoiqAex/Toz582huaoWsViiq7MTy3axXZdQrIy8bZMsZPFFA6QLWY5fs5pp06cS8YRwgkGaZs0iWl7OL371FJHJbcxbtRInY4DkIVhVw7LVqynZNgf37sPK5wkoCuPb25k2cxZZxyFYFSM9mEBxBcpDASRMbDsPuDiihO4vY+K0Odiiii1pFG0XQZQJhENU1lSjqB4UTcN0oWQ75PN5ZEGisbGZtgkTGUqlUGQVVR3tMjELRUKKxtDQEOPmzkEI+ckUS1TrHqKOS1AUOdzfQ1YwiDXUcOa55yIrOl49RNAbRkImEAiMevYoMj5vFEnyUSi66L4okuLDRiZfMMhm8yiiRCzgQxQsXn/jZb5/5w+Z3D6O66+/Hi0SYiieAEGjWDBxHAevz0MymeCENas488wz2Lt3DzW1VZSVlTF1xmS2797CSLJAwF+Dg8KyZcuYM3kGEjrZzAArVk7Eq0soooKIgK6o1JRFefPVlxnq6cIjK+AISK6DyOg14QoCtiBhCxKuIIxeJzhIrguWiyLreAIVTJy2iLmLT+Dg4SHamyZR7ZXZ/+Y7dO7axxtbXsIbipApOaihMlLZPDMmwpxp0+jYsxevotHTO8DP7v05LiL5osFQIk7L5EmsPvUUYjV1iNofWxUAGIZBPB7H6/Wi6zrpfIFfPPUM77y/BwOBVL5I3rCJVdeih2K8svUtXEki6NXp7+wiMdhLMRVHdi1kwcG1LFzXRVR0JNVLIBgFScYGfEE/Dh94DgLgjLb8jjHGGGP8L2L9+vXcdNNNtLS08Mgjj7Bx48b/cG3YsIFEIsGZZ575d/MXHutE+idg27ZtrF+//r/0O7Nnz/6jyMK/JmNjbGP8U2F/8PWDgDZbAEtwKWGTsS0EV8BxJZKHejl9/nK2vryFY6ctYKCU5Yq7vsXvNj7Htp4DjNgm5XIZi+bMY/n8dj5VXc373UM889ZhaurbsPoOUh2JUl1Vj5G3KQtWEPFV0lBRjq+iiW7ToCgp2IJMLmsxRJ6UncNjpwiFwlRUVKFoOsPxJEXVhxuK8uDv3qRRs+nr7OLsT12GiUK2KKH5IqiqS6iUoVcsYosisg1eE1zZxBiJc8+/fYNT1p6POncmOdtEEMJYQhZXLKBZaRgcYsur7zJnyVLKGlt4492tJN98noCicMxZ53Gku5dQ/XgSjkjezSFKAl4JZEVGsgw2P/Yok2oqGTi0DzNchhiM4uBiGaMOVN2HDnHROReSTluUqT580TAFDwwmu6mT/Wx6/DEqFs4mE/ZTEaujp5AjGK0g0z1ASPJQrkXpOnyEjQ/di6eUZ9qKuejVlVQ2tDDks4joCmWOgpkxqRQimMUsObPEcZefg2y7qEUXKWuhCApJn01RF2nX/Dz90gt89PJ1hCe30mkWEFGomDGXPSE/br+F41WwAl6ceBzrnUMIiWESb+zlwtPP5s1X3kaP1HPCZZ/AZydxBRd/OERRlElm8jiih5JgoYigaCpYAq88+BSe7n4mnnc6377pWyxcciwxbyWF9AHcxCEmTJpI3OvwdiGFMXUGg4rKwO49XPOZ64hWlENjPSmhxPxjTgHTZfXaT3DgwBFqWppJFnOIuo4jCIyk86jhEIIq0nlwP1tf2sSsqRNpbm0ikUwiKDp7jnRhyzIfu+AchEAEw3GRSib73niDJx/5Mc3Nzaw6+UyEJEi+MA4yjgDOBwViHgEkkFwRu+jiE7ycfcU1aFqQyXN14n0dvLbxOc46egFVDU2kSwZliSPs2vw0r+85iF5ezerzLkYZF8FSXNKOgCSaZIwcqhzElBwMuYQrjIpXI8kcXjHHw089yBkfX8QX7r6NT562gLuf/zEbe7Zywjmns6u/m+bJU5jUPI3IWh3LlnjinvvIZEu8s6ObH933BG/v6eDl117g+LUnIngcIrEQcbsPFwHcD94jMlBAcG1EXGTbpdvIYdsuk+vree7u++gY7OWk80/HrdU5qX0Vvf19HFVXS364REV5GZ3xBCVJBE1CkxQKks2klYuYsmI+2RGLUqCC9qNqaa5s49V332K3WUCqrSWQ9ZBOmhiuQUjR+eS/Xo9mljAKeYKml/5kgrTm8IVbvsdIxxBNlp+n7/8VGTPPORdfSKZYIOMUEHWFnCVAeTOGP4DlmOiRCrqHE1TXNRIIx4hns7iyFyQZyxWpLG8jfngfiWKBypNX87KZ5uSJ00llSlRoYZJGnC4rg6esikOdCeqDOlHFzwWfuoLvfvtWdu3YwdqvzqN7uJuiXCCuQ6BkYBYcNEUjn0kQjmjkiwmqw2Wk4hLpTAavT0dGI+QL4zouPo+CIqoU48Pg5PjMlRdz8+3XcfzqBdSN6Kz71KfpiCcJR+uxMnmC5REGB3ooq/AyMHSQadOmEg6H2b17P6IoMDDQx7XXX8vm1Uu54eZn6O1L8f1bv0Rta4xPf+4rFDIiP3niYRqm9eAP2Gh48IkKEX+YqMfDC7/ZRGPTJBasmEomY6F4BVycUblIGHWVGt1WHETXRsJEcsHKyIhiiIFhBykwhyImuVInnbsL3Hb1zex5cxs9W+/njm9+g3tf/zi7Dx0mLhU47uQzmd3ewOWfvJZnt3Rx3dfqmTJ7Aftv+BIZQSCJQ9G1OeGCCxgZGeHsa2aQtF3UP7Hl6bpOMBhkZGQEWZZJJVPoFXVseXMryxQfNQ1B9ncdxKtFWLbmZG787k18+Vs3UxoZpsKvsHfbFt56/Q1WHXc87XPmM5DK4PrCiJoPQRDIGDZZwyFjGSiyigyoOCDY4FogaIw9Jx9jjH9u1q9f/182sf57JacdOnSIm266iZUrV/7Fr2Ht2rW0trayfv36v0va+ZiI9I+I8++HwWfPhI3P/T/HiP99j2kSicQfja99eFH/IxiLjTHGn0Xg/z4ZdUEUHHRFJ1PKsnPv++w5dIB0osDn1q1H7ErwtTMvwJZdsoaFWB9l0RUf5/IvXMW311/PyPAg48a1Mtz9Pr7yMpR0lqcefIDxSpALzjmeHVtfZvGqj5LVvJgGfOFbPybZN0yv7ZBVJFIeiQHBA3IJnwpy3kbyyyQkh2UfPx8zV6DggmUXEeUS6Z7DTFt9DJd8/ZsURvqxEJFlmT3vvUPPwUMsbq5DG183+tZEB0scLYYraupxUfEGgxhBPynLQZZlHEFCdkS8psPXr72GW/7tZsJVUXaZBdKlEkcOd3PFpRczbBgMF4oEAgIlScYVRDyWjYWBJxbCyTtYikJNaztyMERRU7BsA8WVQRQomi4z56/ALrmIjsH+vf088+I25q2cT1VDjHzfMC0tM3BiLUQitRSycRq8AQa7+2kOVuH2DxM00+Sff41prZOZPXcWB+NxWptaePaFl+jsG+ETH72AB+/4EUcvXMKy+fNxKiMcTA9hBD309QzQrkZxswaKBLYikRYt9vX2M37GdMqrKykYBlHZQ0l1Kfq8FAUFCZ1Or00x382iQIBHbrmHabWNnHjGaYiHR4h5gnR4RTbc/QNuXHU0alU5BcfGRMD1KKRtg7DPj2DkKQg29BTI9qWYVNvEDzb8AL2ujAVrT2ZvfphObZhDIVADQ1T5beadfy59GZew5qV1LUiNFXRkRnB0m2FbwJMyqK+o573DPcSa2ukpmhhyAEmScU0DWdQwDIuRoREef/QXTB1Xz97dexjX3EJ5dR17D3Uyb9kKyiuiuGYCR3RRBAEpZ/GTO39IFIvqthC/u/8JPn7l5xmyZNKqDIKDZjnIroONiuFRsCUZ04ZMskRlWQUDw0lCQQFJ83H+5Vfw+F23ULNvB5qisr1nEDGRw6/4qGqI0FzfRsKWsWUZV7QRJTBNC2QHS3R+f6k6ok2gKoqRLXDmheexr/cFHv/hcdiZwyydVEad3+WsNaeg1wZpXLyc0075OJKsMKzpfOSTl5FI5TlVq+S1jkNc/c2v4Q0GuO2ZB3n86UfYvn8Hs6oCSA5YAgiuiOioWI48ersQJWxRImKAIGkcLCVYctoJTDzQwcZf/Yoll56G7ZrkjRS7fvgiu3IWn1j3CVQjjz8Woic1ghQOYqoiku7FKhbJ6BpVCQGMIu6MCUyeWIs2mCcUizFUJlDeU6AhECCrKriKw7Y332b/np0U7ruf2+/+Pn0jcXR/NRUN5ehDRa5Y+y9cd/uNxEdG0HxeFAmKZgnB40GQZFzbxnVk0nmLskg1B3e/Q8inE/R4SJsORVdA84fo6x+iVi9Hjogctoc49qpPMZIwsdMmvpgHob6VfL6fkZEM4yLN5IcH8dRGSYVkzvi3G5AJ0r2rm3ybl0LJImdalAYS1JRVUkpniOg6ueEhfvPw/QRDERavPp2oR+W1Fzey540XueyzV4NlYTkmtmngjYRBFEEu8bmrb8SDwusbfk71+HpKUZ3DI/sQR6A+Vkt5uAzbTiArLrKqY1ga6bSHa79wKzfeeBPZfJ6ps5cRKjuLhx/9DZ/6/K386DtfJC26xGo0Zi4K8JUbVxLVx/P5z3yaX/z0a+zZ+RqnrD2ffvMXnHraRznQk0ENRHGdNAImiithCKP3WwcRzbLRnQwIJRzBwXR8yB4fiSJowQi2lWfVMefhGepByKXZub2DYhxOP2MFu/buorJpHBEnzYTgPLr370LMuUwYX4GVK7D0hHNYffxpZFUv3ooKDK9NxhUINNWTzlk0+iNY3YdwBBFLkEc7TQWXgzt38e77Ozn9rHOxESivqqQpVk+va+GPRskOjPDN279DeVs9N1x0KZdccy14/UiOxWsvb2bv9m3EomEeffx+blg4H8vI4y2rpJjP8MDdPyCXy6GILsLvIyvAwUECcB0QHMZEpDHG+Ofh94mYf8CNN974774XhP/ZZmnXXHMN69at+4uPj0QibNiw4e+W9jZ2h/1HxPkL1n8DHwpEf6rNbkxEGuOfCVcC94NpFT4oGGUccC0CfoVt77xEy4xWUqEQ5HIEZROrkKJajxEJV3HzHd/DX6Vwy5cuI1rupTeXQPFXsD+bQqmJ8ZF5U/lYVRSdBN4YhAUXn20SkAS+uv7TpIU4VQEB/0APkpGi2+gl7ymS7OgiLHiQy+v5bU8/F/z45wyrZURr2ggGRVzjAKvLBYT3trLr/R0UNAVTV8mkenjxifuR0720VpfhL0kotoAtiMR1kUGvxu5UHm/dBCrrx5MpFbFlm4KYxqtq+MUAckFn0ripvH9wDyP5BEWhyIxFS2idt4akr4lEMIKnoQ4rlSCZ6CKiKQQSBaLlNRQFmcG8wbxTP0axrp0+PGQlHVlSUUURUQTDE2DqSefihqP4Gv3c9cvf8dLbJmVVS4j3Jdm1v8iW7hyl+ql0pW3kfI6IaBEJSnSURsgEIGmP0L3zJQYVL+8WZMKNU/AZXpyOJEtjjfz65tuoUyWqdBmfJjHcP0zAVVGHingEnW7HIldfzqvpfh587llcSWawPMyMY1chFIqkDx1GzA+zP32Yoq9IYDCF40CN6qHWdMge6SJdyvF21wHSjWV0hkR6FZstL7yEtfswz33v+0QDGmk7hU2JrJkmq9ootoOUzFM0Svg9jew1JO7dv41hr4e1F32GEbECW6hHTvqJNQTwN9Tj9/px9/bx7vd+ztY7f4ovM4Lsy+OLSViFHGWOh5qKSrr6ewm31pNQHdIaGFgIpRw+1yEkOgQtETFt0BCtIqqGOGPN6Wiil1y2RKSyDjUcIWO5lBSdkmuBbFOwMpx58fnMWb0GqaKOCz97HcPJEoV4ESSRQEwjVBih0clz5MWnCcg5iqUBNNlkeriCH3z+y3zxwovp7exgWJEZ9IepXLiSNWvXsWLxKXitAIWAnznHryQumvTnhvBEVAwxj6KBLEtEQgFk0UKxBPSCippT8KKTL+awFB8DSYmAfyFmqQo91M7K8y6nfeVqFi6ay6q5RxEczKIU8tiSSY+TJJcr4DggCA7RqgD3PvQj/vXaT3LlNevIuiPUT6jA68TRjEH8Wgmf5uBTJUqpPBFvjFTWJNDQgifvIA9nGRjO8J7kMjC1kcbzTiYlCwT1ME0Nk5my6FiGTQtP0E9IyuNJd1ElOwRsi7AvTDyexxcsx1FHjcez+SIZXSGtupR7PJBLUTIG2fzkT/nixWcT3/kmkmIwc9VCpi2ZQar7AD+74ctkdu1AF2VEb4CG5jZ2Hu4g3NiGFqplJGHgJExiRpEHvvNlUodep04xsdM5dCXEcFbCwodfD5Af7sHJJREklWQ2gxMskfDlSIpZwqZIfUpk488eoXv3AUqFNPHeLijY+L0ayewAWthD0jAYTElk7QhJW0UtD2N4dAIFlRn+RhrlIJph43UcfBEPTlDg+Pmz0bMp2toryA7sZ1pNgL0vPQdWHjeVQJZ0sLxgabiyQ9Lykyw2kLOamHnyWVAF37j2dJ657+u0t1eAJSHIGrLmIigWrhQmmQrR213JkUM+hoeDpEegUoqgM0BlrETGMLn1nt9Q0howtRLHrazjy585kRpfks7OXezsi1M+fRlS7Ww+tu6L7O9M4Xr8JEWLvFCiaOawUiNkkgMIXhlDcfE5RR6/4wa6tj3BG6/dRbz0LhU1Nka2D90xcLIZCtkUJdGlEAhTNWchniCceebHmDG1na7Du3ALBgMHEoyvnIKWVzn3lFPxCDpJowmvbxKDWYd81oWITtHM0H3kAKVCluz+g9x/zSd58qavcdeXriV7cD8Nukp7zEdIKpLJjCCpEknDwKmMcPL5ZzHc18FQpodjTljMQO9hUopFpLkJV/UgCyIrVq1CDQdYtHIF13z1ixzqPkA4ouMRSoTcHNMqVKrcBIFSkqAooPGhj7YMSCB8uNmOMcYY/yy4rvtn138HH9a1jz766B/97MPa90/5An/ob/Sn6uJDhw6xadOmP1rbtm1j7dq1f9PJof+MsU6kf0TMv+CY/4b//Nq1a1m/fj2XXHIJkUjk9xGImzZt+v3M5x/GIo4xxj8q5gfK7ajjxSgSkBse4dF7f0JDeRQjMYxiltC8ECqU8BVc8mYCvDqevEVLOMTaq06mIIMrCKRVjXB+1DfF61O48q4bqPiFj4aaGo698Cr6Bnp48/FnmOWq6HaOwUKRcK0PS4WajIhomgzMqqPnYB8DPSl+88qrfGTteYQdP05nijefeYxdQ+9z9qkX8ZvfvMhlV1/FUDaFZVnUlZdRGfURH+lD9KmkJRHVEpEckG3QTAnV1fnidV/jUGKAQb/D7oO7mK6W4Y/WUcgVCHv9RCsr2bTpObJuiYVrz2NX5zDHHn0sWbuILDgURoaZowcYUgQe2/Az9j2yiY/d8XUyQY2g7iOVy6GiYokiIiKy44x6yXwQgde1az/QT6xCprPrAN/4zpMoQYOgVsG3nv0ms6dPJ68a1OrQ8fZ2Nr3zFsecfS4evYJEPMObr76OLoWZsPAoSr4AQ8kUFYqHoKoxo6mJg6++zuxFi5g3dxY333k7en0di5Yvx6eXU/Ko5DwKO3s76ciOsPToZciCiLRziO8/8xzLLlxDJFbG6zduoKyyltAxAhPrpnHrTx7i7X2vUB7wcMHqE2lubmPqvNkUfCojpRzegIfZDbUExo1j1dyJpEUX2RZp90VI23nyuh9xeIi0bWNpMl+99et4y11WLTqB1QunEC9JuK6P7kQejXKWnHQBE2dO4JCtcc+3b2Zu4yzOPuV0VArYroiFSNATxk1LeLIJ6lWdkZE43soq+ns6KZVKVIeCWI6NqIqksjmqm5o4ve4sNLuEYRaRZQnBFVBcAVwRDZD7stzz0w2YtsHNt99EwK9TFEVsQeadXIZgXRTiBsHyMPs73mOhR+U7N1zP/Pnz6e/rxF9XQyGVYIdps7dZJbrieD6/+ykubFlLWUlm6UlrOVgYxDO9ifYFDRyb97B55/ucfcwxJEQBUXLwaQqZeJKmikp0QaRUKCIjoIj6qNeVZWELfOBdJOM6OlahSM6UEEQ/npDKNTfeRG4wTteRPhSvn7RZoqBr5CLh0XQpU8CxHDQzQ3NDNZNbazGyaaxUkd/88iEGBjs49sTTmTZ9Dvu27+CRu+8nGivn7M9+kiOdh1Acm8amBvwZB9t26e48wPQpDaQTcQqCH8QyhLZWPvv1lfQOdjCxrpnPX3U5VeOmcPSaU7F8OoIUIpmyaNVCCCGb8kgLB3t6qYuGKfhtciMjhJMFZs+bS1k4yquvvs7JbZMomS4c3OUSAAAgAElEQVTNE6Zzwy23semJX/H9H/yE7z10Bru6h+nzFTncP8CWJ1+gqaqVWQvnMJzrx3JyTK4r5+DmjUyINhESo3g9EomBEWJehQ3fvpG6gMtHP3EJI2IJv0/CMCxwRYr5Ik53iq7t+8l2DvDMu7u4av5MXK+PolnAFRwc0cEW1dFIeaQPPKUAyaAk6XjLIlgll2LAT8dQF81lEVJGgkIQqpormKLN43D3IA31zfhck0fTw0wqa6KuTeWqL32VFStORfGWkSslUYUyBDtKJl2iKlgDA6/zxQvP5YGHnwK7hO5RAZN86gi3fPtaTj75Kmqq2/j2Lbew/KgV/MvHz6axXmX53Ol89JJLqfuXY/GG/bz11mF2HTjA1JYCHtnA7wkxf9Ykjux5iV3v7UKWVVzZS3V7DYVSAawiWjLHUCLOjjffwjzSxYVXX0lWgIMHjzCzoY10X4Lnn36BM6/7OJ+57t/46g23gR0hOZilsiyKVcpQQsHyhgg0TsQxJeKdQ6iVQ1RGQiC6eKuqSSsiZbOnka8M4q+tJD+Q5nu3fIdHTvgevoJDMZFkvB4hrrocyZfw6T7qqqsYyRmc9y/n8/17fkRNXSXrLjmHsoCGRzIxiikKKZe0J01/bxeN1TEmtDcjGHk8SJimSzyeory8EtHrw3UdonUNtEyZiqzAhMpyHnrwEfYf6OCKi9ex5tgV3Hjj20TDEWzDQlC1Mc1ojDH+yXGcP98hIYp/+xvFh7Xvh3Xuhwlqf1j7/iWpaolEgksuueRPilEf8l8ZfftbIH3lK1/5yt/t7GP8bSje8Oc7kbSv/FVPecMNN7BkyZJ/Jwrpus7KlSu57777uOuuu7jvvvu44447uOOOO9B1nSeffJKampq/6usYY4z/idgfDMhICKMikgN2Loto27z60ma+dPXVzGwZj98USZpDtFoK5ZZC2iMj2TbnH3cC2372ILNPOpaUJ4Zqi6Q1mYakRFleIjBtHAdadJKbt7OgcTLlra1Ex9WhKgJKOsO4eVNQSga/e+BxXtuyhROmzadYyLDH6mVOUyPFeIKjFy5CNyQmeCKYg4O89ptfcdnlF+Fqfra+s4Mp4ycx3N1PbiSF16Mzd9EiItWVJFyTRCyA7AgorkvAcPHYLmFXIn6kC6PSzyfu+SaeqJ9l/jIK+TySAqrq8uKmpzhn7WmEvH62btnKsnmLcQpZLDuLaWVo9HvZdOsPObhnJ6/8+mkm+4LMP/VobMEkpsgU+wZoiEWJhcOU8nlcQUR2RCRXwGsKTI36+cn3r6NzVydXXHE1WrmPoVw3RTlNX/p9zjnvPEQ3RaWb56UHH0TOGJxwzKmIYhlbt2znjZe38fEz/wUz4qNgG+iSgCbZ7HjvHfr6uzjc1cXezkM8/Otf0zMyxJkXXES0ooKRXBYtHCSRydDU1ER3ZzfjWlswsnl+8vhDNE0fT/PCqZiWia8/S+3saTjt9ex5dz+vPP4MExuriXg1Prb2LCoaG5i4YAF5j4LHq+GVBMptm+njWmFCG/tSKdpC9Yy8uJO9z2/lnm/dhtdyaJ45gQE3z/jZUzjxlMW0TKqib7gbf1kDt3zvAX755G9J5fIsWLSEjqEUQzmDTG+Os047i8d++ThPbPo1C445GlkNUMpJeE2R1x++jz3b36G5pYVEqcCP7rmb8rpaqhrrkXSVnGkQLIuRSI8gyhI2JprmwXZcZElGcEQUBzw2PPqDuwj4fDQ2NFDf2kSikKeAiyNJ5B0bGwerYJCQDGINZdx363c5sHsPR604GrGmEsUfpJQ12eukeX3fTtpb2jht2mKmE2KiJ4Zkmph+ibhZAEXgJ5+7geFckUNdPcRqahFFhYCu4xVFCsMjlEfCZHI5NF0nXyggCAK2Y8Mftr8L4Bc9OCULS5MpCC6oHo4MDqMFQqDo2I6IIHsoOCqmLeAI4PF6cB0LbAs3YxBwdUKSn6lTW4lE/bz60kY6d73Ni4/fS7lk01YbYersqQg+DSMS4uBAP3VqgM23beDle+6j+4XXOG7ZSRxOhnj5/REu//Id7Dmym1Wrjmekv5fpM2azr3OYabMXkS65CJaDmc/z23vvJfPGe9SpXipaGogPj/DbHz3I26+9RfucefjyMjMmzyYyYSIyITQ5hGnLKNUxpi1fyvQFy7j2ki+xaMoCDjDI9PbJbPvFb9n0zHOc+tHT6fIUcHw2sUKRN594liVHryILuK6FKlpoRpJjl8xi39tbKOWz1NdWQj6PX/ARVHU0V2bj40/x/BPPsn9gP13pQY5eeTyhynJypTwIAq5ro6oKkgwu9qgHjmCCYBFQJORMmsHEIB16nmh1GHOgn4jrIqsuUVmhfeIMutIBMCwsw2HC5CZe2PYi9z32Xd7c9SKLjp5BKXEERZARzAA+OYBqgixZHNM+nW0vPs97r+/i6Lmruemm66mrVqlsCxONQLHg4FgOQwMjrLt4LYc7tvH21t8iF/OccPJKZNlg8rSJLFw4m76eA3zpuqu5+MKLcOwwU6etovtAH317DzB76lSCNSHiYhpDyBNxTMI9g7S1Tmfh9EW8/NBjTGppwKvI1FZUs+eVdxEEjYzgof3oY5k9azXlZW3IUhVePUYqk8J1wevVKRkOZWV1+NMpNr74EtOXr6SyuoZsPoXHJzBQTOObPI5sTSU5QeXoppmEowUmzaqkRRLIdOxn43d+TMhSaFq2lN5slmnTp1AzYy7+5nGYiszsRfPQNQcoUlVThWMa1ODD7B9iUl0d3/3GjWzf+harV55AVXkNti1hWhIBf4REzsGVFaZMn4qoqvzy8cfALDF3xjR6jxxgfFsbsh6hetw0Nr62nXMvvoyiDZI4qiOJuKMbrCAB/7NHV8YYY4y/HtYH5vv/2ZIk6a96zv+o9m1pafl9zfv/W/suXbqUTZs2sXbtWk466SSWLFnyJ9dfIkj9rRgTkf4Ryf0FIpL+lb/qKYvFIitXrvyjNryamhrWrVtHS0sLNTU1TJ48mZNOOol77713bJRtjH8a/pSIJDo2219/nd/95lmOW3YUZT4f2VwSLaiS7RokFI4Qtw0kw+DN519AKRRomTObrBZAdEQMScZnyqNdElUhnnnjFb788ctYvfJ4vKrOzpFuqlrraW5toN9IseeVrWx/7mVmrR710ZFUgWZR5KfX3sC+l99gycTpyLJOXyqOVh1h4pKpEFQpCRrTp86mzBfmezffRjaeZFz7eCxVoiRLpGXA6yNSEPCN2spQUCFtFFAUhWEjS49QQImn2HbjnTTWNdBU30i2lGbpigVYdo73dr/P8uUr6R6Ik5cdsqKFIbqEZJ29z/6O404/je7uTioUH5El0xCMAs7IMBsffRyfK/DsM08zZdIUbFFEQBzterFFlHySA/tf59jl59I8cRxXXnslb21/m2TS4bTT5mKlZYI+Fb/l8t4Lb1MZqqOmpp2CK1EzvgXZpzFp8RzSmIiqiuhaFPJJBuL9LD9mOVvf3c5Rq9dw3icuYcaCpQQrK3AVGUuRyZQKFIwiuqpSU1mFYJhQKKIfNwOtJ8HkQBkeV6Js1iS66oJky4M8/O17WLj0KOqqQyyeNxc5FqVfkhgWBeSqSopGnhu/egN9O99hwbw5dEpBEDTkpM3Dd/6Yga5e2puasUyTg10d+D1+tGiMbCaOKItUlpXz6MNP8dab79PQUMtFF1+A4IGMZVASDE5bcwLf/Nr1xGoiXH7NlfjLowyPpPDpPt5+5UXEdD/BSITGSRPRQhGC4RBtbe04BROKJkFRwRiKE1ZVsE1cB1L5LLKm4aoqtmBjiy6m6tK2fB6eunKqJrURqixHdkDMFMl19DItUo2eLVFWXs4nv3EdD/zqYea0tnP6aacTK6vCjAQYiqcIa0Ea6uu5cNHxrAg307A3xV1XfpGuN95l6Zz5CMk8ZVkRvSdLY0MtsxYsobl9AnXNbaiqh4GuHtrq6zi48z3WnnIyms9HS3s7gigiCAKGaSDKf/ChUwCvo+Lz+OlOJ3DDARKGSdERkEQPriMiChKegkP9oIkykKS5vJxSMUnByuJKJoIukXULpO0cliij+Pwce8xiIgGdtooQQjHPlMmTCNY3k5BUjqRzaLoPT6ZA9xuv46ZTJPsHaZq6hN2pEM+8cpAhJ0qZP8mCWdOJeUTymRQLFy9FEiTsYgkzMUBYcpjRXE7wvf289eSTvJk4yLRZU5krRCjmsgTmTaC6JKE4IgMRFbEg4VUDFAUHsTHMoJMjXSxyfPt8rr7iYtZceg6Z4RSnHL2aVaecBF4VucJLMTeCJxHHjCd5u3uYKfOXkC1k8XkUzHwKs1Rk8pSJlCyXzc8/T2tLKyVDpWhYSIrK+PETUVQNy4DZcxbQMnsK73cfJBgKAuC6Dqomj0a8u9YHItJo++FDV36J7s1bqPZ7qZnZits/hPvOPp6/8Q5yvX08+J076TjQR2jaEjQEVFVh/jFLuPgLl6LpKqZoYeZTfPfWOxnszTJ70bE4poAiCwhGhqhU4IH7X6WtqZ4z1n2aPbve4nt33sJZa09A1XUkIUAinqG1qZXOzr2cvOYonn7ifmSjyEfOWIMolkAsMjzcR1VlmN88s5lTTrmQUGgKHUmLU9as5bRVJyJJCofSfXS7aUzJoXikm+9f+jlWn3omQV1n2y8fppjsYty4Wu6//wGee+xZPnv9v9E0Zw7ZshhVwUo6u4aprGxiJDFEKCRh2Tm8fplMPo8rS0xraOS9vQeYs3wlAwP9lMWC4JTImQW8lXUk0PFIPlZMbGfu8vEc7HuXgy9uZmZjE90vvcPLz79CaMUC5LpaDNsmq/nJqjrtUyYgyC47tr3CM08+Tk9XFwsWLqBKCbDhO7dzaN9+Tjz5FJ7ZuIn5y45GC0YwJY1AtIx03kLxxcgUixiWRTaXY9nSRfzq0Yd5+le/4oKPnkHQF6YvB1Kknkef3sSF6y7CtEGWRhvshTERaYwx/ikxTfPPikiy/Ncdw/mPat/Jkyezbt06IpEILS0tTJ48mfPOO48NGzb8RbXvh11L11xzDRs2bGDlypV/cv09BSQYG2f7x+TvEG36n81jRiKR/5JR2Bhj/FMgK1SUlbN8yVJUGwqZNK7o0N81QMfufZi6DzUcBMdCUAQIBRFtBckBWxCRbZG0KiLL0N87xIlTFqIEQry0czuxyhpqauoY6O7g2Z8+wkmXncP2gR4yEZ3xRy0mnczj07xo6Rx7t73FR04/h4grUJBkMn6Bki6DJKOKYOESCQQJBsNoiofx4yYhSx7yroiie5FEE9UcTWXzmGBIkFegsr6JwpF+tJzJigkz+Mktt/CJ9knMbB6Hky8SjIYZjB+ksbYGa8cOhrMpXE8EbyxKIpOgJFgM5kqEaxrwl1dT3z6J5Bu7yAkCimOzY9tbtNXVkhgYwMjmkV0HyRk19obRuGdD06htnUCkvIF4fJjDh3fjCeTp7coTkWKcuOQcevv34tG9lNW0E/KHKatqonukm/Z5c+nP9xEX8+QMEw0BCZFILEb75CmooSA1rW2UXInKhmbEeIakmcXBoWgbiJpEXVU1I8kEuseHYJlEPD463n6DIz97mEVX1xGpKSdplMg5RcJ6ELVkM2PFYqqUAvXlZRxIZKicPJXDg4PkswZS0aJoupyw9iREj4plCoS9YcxUiqwEdfU1NI5r5dWtr3Hh2ZcRa6hivyuTL3oQrBxHejo4sHcfV11xEbo/RirVR9ukOnpSXVTURenqPciFl57LkqOWsGXnW1RNbMBrGuhehZa2BmraK/CXVZCSRTL5DPW1daiuiyZIaIKEki/hd0R8okI6V0LwasiBABYuovihHZ+DK0NJFakc34YiwM79+5lQU8/9P/oxnXv2c9UF69j27k7eHRigcUI9E6onM3fiLDymSK5koKheJNUiGAwyuL+HkmEhFS22bt7I3OVLSIzE0QQJCha+cIhHn3wIMzfEMadEGDd1Gjt27mLSjBmUR8Jk/w979xll11kleP9/crg5VM5ZoZSzZEu2LAcZZ2MwmGCiaZimmx5oumFoDA10Y0KTwQa7AdtgwAHnIFu2LDnKsiwrx5JUUuW6OZ08H0Qz/b4zPbBm1uAZXL+1zrr3w61ae61b99Zz9rP3fnJZtj71FNe+/Rq2bt3K8rXrSNXVIUnS/3jBGQSMjIxw0w+/ycDZS7jyyivxKjY120a2AzRFRcfnkZt/wiv7dvPRL/8damcSQxVBlfA8C3AIR01yWYt4NM1kaYLm3gEOPL+N8WwW4egQ5ZZhKq1dyIJEKhLH8C0ufefVbH3oEQ7s2ctIIctNN3+HqVoMBI21Vy8lsCsYUZnGdJKR08Po4RipkMldP7yT+kSYCxf10daR5sgQTBw7QGH0JEtm9aM0xRgiIBQx0EyTopOhPpLAtmu4okvOKuFRIxLViEUkFjT2M3byFMvnLiE/NI6v6gQS6J6AIKg0tLdjnHMW37pvK1cYBkKlghd4+IKEoJqMT+SIN7QyPvkMASKSZuDIUPJ9RFng/KsvY/k5Z6OaOpOBRXt3F77rnGlT/Z9Y1NbJy48+yfGmOgbXD5KUZeKpNLsdmNvSyVhdM4/e9xh91/8NlVrtzKlijgSOgKwmWb58A4YgMtB3gN17D4EgYGMjiwKqGLB+4yUsXrCIlhVngZlGQEJTQwiBgSLEGDl9gpDRwJEjh2ioS1AuF/jMZz7D43fdy+TEKLKpE2sL0dvVyPFTE1xy2aVUbZOpnIwSbeXw6REmKgWaW1KYsRQNdQFWrUIymWbWrEHKxQwBNebP7cYih1XJsHHjuUwfmQZZwvIEqq7PgUMHGeifz4mjRwibOoguNTuLG8RQQwqiKBBqrOc9H76BTD5PS0Mjp08dob0hii5pVGs+eqASj0c4fGIvFb1AJG7y4t7XyZ44zuzOTg6PTYEsMVXIEfdFYk31jE4X0L0ASdUQFZn+/n7ylSqe7TA2MUKpVubYKy/y1uvfTffs2RRsm0jg4ykSiqZSzRbA8Qh8kWgyyfhYmRPDozQ0NPHay9v5wuc/z03f/CH1TR0cGitihGMEgDRzJzNjxpven2rm0b/3h+59P/3pT/8v/d5/myX8v/rzfyozlUh/jop/RCVS+MY3LLwZM95sgjMHeQMC4r9tjlbKvPj8cxgi7H99F74KVtrk6Ye3sNMqsSM3zkVLlmMIHg19bQitjSSFKDUfBFMlGih85eE7efrEPl67fxPzT7vUr11IOWVSNsMcOzrMvT++k8hImQcOv87Zf/cXbC9nuHP3yyxsn0fciFIrT/H4U5u4/rr34lgeo5ZLcsFsSp5FkyjT7uvkyzbFqoPr+JSKFc4+5xwsAqoiOJKMryh02Sr1OY/axDTp2Z0cNi12jx+nKZZgtp4kUXR5z+I1pEcnKduwffurJNqbiNXFyFVzDC5ZAuEojh7C1SNUVA3LjCAqYRZ1LWB3IUu0qZXFg0sZbwjTEU9QnZhifu9cnnjoca5829swQlEsWcYTz0wvd0WJnCzQOTBIoRRFCLk8vXUbExMVUuJchne9yqzmOWCYhOMdfOPHd7LzxBirL7iInFTgZHUIoi4FtYpb0jHkJJKqUiyXUKNxAklj3tKzaOycx8nxCtmqjyVbiKqKGgphOQ6JWAynUkOwLFpiKZxsnnVSA/GjGVpXLiIfOBhVkYd+eAeFwyN86l03kE/p6ErA6PQUN/3qHv7pl/fz+Et76RhYRHtDGytWrEHVAxxV4dSoS3eqDTMa4Wu3/4RKROGSt1/Dd399G3WhRiJVhbExl1S8DdGWOXnkBK8//wJvOe8sGpIaakxg0ptGishYTgVdqmGEAqbyo5RwqWtrw3EcwqpApTKNUp+gJAuUZBlfklFlhdzJ07QFCvn9h3n2Z3dx69e+we6XtjN2/ATdA31oyQSZYhElaqCGNabzU+QLeUKqgW87OLZDyAjjVGo8+9Rm1p61mt72ViYmx7j6bW9jycb1tM/tRym6NKebCJDJij6CrCOUbaI1sOrC5JtMxuam6V6/nOUbz6VWqlGJm2TiJnudPG89bwNaPEmxZiNrBqahUc4XCEsC5569HFPXePt73kcsXYfreei6TjQWpVKrIooiQRCgaioxPUQ0HueZXa9w4PQpvECgId2A5kuogogv+Ki+w+KWFHpE5RcP3MeGy68iny2SMEI8eNtPePK2H1E6tIe+1W/hdNkhkk4wnisyZ95i2nsGKYghYn3zOGUJpPUI1uQ0kWiEiuzQsWwea669nGlRY9f+KSZGx3jrNddx9VtaCUsWO59+kC1PPMTSZUtQRQG3XOCcJXMYaEvzm+99m5pWxYoK9Hd38Oj999O2oJ+W/g6euPtudrz+KmKdQTkqEVXCqJqGJdpodSqqZmMKPvd890ccfX0Xb/3g9VhBQDFhkJcDAllk4vW9TO3Zze6921l9wbm0LT+fsXwRUYJENMLxsQmau+eQcWSUaIrBwYWkm9oYtwNygs+x7CQNfZ1kaxUEU8FSRZyQSlX0kH0BEf/M+6BoSKJMEIhkM0Uy03laWzo4t28Wpw7sQ4/rdJ69gLiuIE8XmDg1yuprryRbsbn8uncS7myiMHaKplSKhq4+KpUASaujZkfRlS6SRhuSotM3fw5Zp4Kr+EiqhBFNEG3rAUkDIWDpijWsW3Uu4fY5WEUZxwnhByaioIEAiqySTKVoa24llqojQMYTfA4eO0hndyfzFqzh5lse4XNf+AGPvPAyp8bG2fiWi7FlielqjpHTp4lIOnVShCO7DvHLB3/Oyy9sQilPsOnZ7ay94mySXb0smreKiXKZU6UMQb1OTzqJJIFv1xCDPLGoi+tmsZwiHhLlmk1VAN8w0TSTSj7HN//x86yeP4jiitSbLTSoHbhll2h3nIpVoOaWGIjXsf/4EB9474foWDDIVDqC5weEVYVSzUEzYwSOhWdb9DSleP3VHaQb2ujqm40bSPQvnM/yDecSaWlh1soVEI1R8lxcWWAqnyEUDuGWHCRZACHAsmwURaW9pYW3XHIJp04Os+fgEHW9Cwn0GJs2beL973sPASALZ+YM/n4XVfjdKRYzZsx4U7Bt+w9WIqmq+kaH+Uc5duwYDz300O+rmf5vNZNE+nOU+yOSSNEb37DwZsx4sxF+Xx545pkoAKrEj3/0Ax647ze0tjYxb9kSMkrAK68eI+ibzaING0i5Hr5dwBZ9yqqO6RuoGoxkJ+ipb+GZo3uQQirWwWE+fsGVjMYCKrhUxjzibT3oqTq27djFwJUXkazvoC3eTnrWPEKpZqqqjNoUITWnm47+flxZwY0mOFLKETIMKk9v595PfwXLNOlaOJ+KbdPc203BsXEVBf93i3TJFzAyFW757Jc4vnsf81cvI2NCuVZhYV0bB+97ku9/8h+YPHCQgfk9fPH7PyLZ3sX8VSvJZqZIxaLs2rmbp559ntmzFhJkqkSMMCUBAgcSUoiM7BELhSgeOYnSkWJs+DQL5y5G8hRuv+NOrr3uempAVZZwJIFAAEcKkJIJ8tMiiqaTK53i+e2vcdH5V7H+7HdwYu9JLrvsLFKtaYani2x56QjJ9ln0LJlLJZjGFYtIqogka4ToZsfLh9i8eQu9c+ZgeRJqJEm2JPHXn/wqTz6zk20vv0ZTR5R4uo5SrYogCuSnplECMAWRkC9gChJBENC1aB6jMRFPkUlURb751INsV/Mk5s2i10yRHx8h3tjITx/ZRqESwh13mTu4nnojTWBDuC7CsXKGVPdccidOc9PXbyLS18pl73gbtuUyVLW5+gMf4mc3386dD9zN2rPWE45E+Kd//hIf+/D1zOptwscmIzmcxMU1TUxBQ8FCwMKXJdCSiGoaUdBwyyXSyQglIcARVdzftYrIQcCshmZyBw7ymU/9Z/TpaZpbGumbP4dV684m3dlO0XUJhyOIro9YLBFMTrNm1jzUiSq6K6K6EiDiynDxVZfS2N+BEJM59+LzCAsaE1aZCh5pOUxYCVOp2pRUCU8QMBwRN6yRcysQBNRHIji1MhPlPGJzmiG7hheL0tjcSjSAgu2ihkMcOHSQz332s+zc+Qo7XtjG81ueYtXqlZyaypFsaELTdXzfp1gqofxu0SkIAoIoMjU9jif6DC5fwqLlK9n80BMsn7MQzQsQcPBFn5pao6hV6V63hu51l3BsQqCjaR7FUxUi4xkWiXDg0edQe3ppnT+PsuuQtzwcNPRoI+F0K64ZoyqI1IdNnGoF14OCZeNrCpXARlBlrrz0rVx+6VsY7G1Gko7jWXkGupowTZ1wqomi5fCFL36R0ycPs+7ssziUOc3QjoN4tsCit11Bx+B8Hv/xr3n+hVe49u8/SeHYKPf84tcsOv9cZCmGhUzNsqkLm+ilMglB5rKNlzKeL5Du7kSNRph0a4SiUaxymbgo0lEXZ3zqJN39PQwXPVobUhzZ/Qq/vuMnLFm+ipPjWaIt/RSLNUTfplSxsEMxTpXy7Ds+xN6hI7S1tiEGPp4IgRAgCD4SPiIBQQCqaiCJKtlshWS8EUUOY1tQ06p88xvf5NWDh2me105zZyuu4zKiQnF2BwOrz0ZPp1Cp8Pcf/ysef+BBrr36bfhaFEmLYnsmflkhHW1g1uKFVMpZMARKVhFBUBADHQEDX1KoKgKqoONZAnq8FT1Sx969J0BScQIX13dwAVFUaO+Zg6ikCEebOTE8SldPF+MTk4hmjLvufoZ0cw8nX3qeY9PDvPsj7yRTHqdRDrj3pm8wN5qiu6mFlkVzOfv8pZw6fYix40PEe5pZuPFSKuE28lM+RihMLXAQogJSqcTk2Bg9La0UMiPouodVyfP05m0YZhO2rWDpKqWajSHI6AIc3reTpcsX09DYTCEvInhponUt7CuN8pGr3klzLE23WceSqy6mKghUVQnR0BGOjxNRBGTXw7FclMDFICAsS7S3dzFr0RrMZBvT5TK2puGqOp4ZphKIWK6Lqmr4VpWmRJyIm/gAACAASURBVAS/XGJ2czO5zCS5UgEEAUk3cH0ByxFQtRBvu+56pssOSDKbn9rEh993PaIfIP9+dyb4XQJpZtL2jBlvJpZl/cEkkqZpb3SYf5REIsF3vvMdRkdHueaaa97ocP5DM0Wgf47+8ID6GTNm/An9u+Xt7x8FAbY8v42IIjN7cC6lUolEuplF69Zz7649NMVbsIsTxHQNx3dQPAEhGqJSGicVDjE6NcpFi1ewa/9eVlz/bspmCCuXJxwzEZQY3/zZLxiZHKVzcA4nJguc7UdoUBRe3LWdvnN7UUyDUnWYxp4+ikFAIAmcyE0ynjAxxCg//da3WFaR0AQF34PpYpF4OkXZtdElESEAyQc1gJrvcvjoIea0dVM+fhopMEkBp/fs55mHH6VcyRIKzSHa344TMQg112PZHgkjieH7PHn/4yhmlKgnkjIMDh4bItRWj1tzyE5kaexJs3PTE0xtfYllc5NgxhjNFBDzZbq65jCVLSAnwgQCBMKZL8BA9PG9GoocRZGqqH7A7MF+Fq5YQFRtJmsJnMqcwBRkEukOalJApLEOIRQmIiQRRAHfg0pWJBxOs2/vSfKlKo6vEApHmMgUETyDrOUg4CDXbNKNDUTiMdx8BlWVUQUwZYWwKJEZGUMEis1JTGRqXo2QplOSPZIr59F+zgIGVi3D3z5MS10DvqiycHAJI88Oge1z6z/fxoU//TZmOMGRU1vIGgLT5WnMagFJklg6fyGzu/sYPzTM8gvOZ/PQEV6eHGd23yxUwycUN1h61gq6ZvdSqJUoWFXE5lYK1RqWq6OUqhi6QSC5uL5CuSbSpqYpF/KkEw2UMseRDQUfiUASIRARAx/XrnHbv97Cpeeto1mWUdqaSQ3009jbTtG1EDUd33FpS6bZu3ULj/7q19gXbmRg8Up84UzbYYBAOBRldHSUwK1RF1bY8cLzNKuNRDsaqKoCVqZCzivgI+Aj4gvgCyJF0SWsaOiWRyTvUnY9ku2tHCkUqbkeUydOMb+7F9F18R0P2w+wHI93vec9lPIZNj98LwlD5sYv3kjfkrV8bNEySpUKoihiWRa4Dn4QIIoiMgrpxjoyhRyqblIXCvO+a69D9UD2fQIxIBBdXMlHjobI+D6f/9oPcYNm9m57BdHPsJAiy2NFOtrivPrcZhZeeh4np8uIqka2XMH1fXw3QPF9TDlgIjuJLAm4rk9nfRu+XWNiYohwOEmtfArflVH0KJbvossSjghNPf1MVRxa2rq49gMf4bZ/+SeGxqZZ8/Z3UlCeY2p0AiHVghp2SYlptu3Yw9Ovvc7CvkV4+QCqImI6gu8qyLJIxNYZPTJOfXcXjimz4ML1KMkITuBjeAIRQaFiO7TM7oX8KZb4i6lO52hNdROWHRKaz7rFsxHcCpFQimKxSKlYJBVV8QVwJYV0uo7VjfX86pd3wJIViAGIAUgBeAGIgs/vEwPB70Yo+yLpVAuu65HLFqjIRVasWcy+V3dy/49vZ6C1nZAlMLBiKcOaylTVgmKJuOqxdHAu5UIVx6qhKyKe7xAIIqIiYpWKaIaB5vnokomvuVgVC1M0CZAJ8PEEBxSJG//xi/zlJz6LHksTS9VTrGQQ5QDPdfF98EWJ0XyZ6fEq3W3dqGqKStnCcRyShsro5Ck8r0zvgrmczhzk1OQxVK9EayJEfanCI9/9IZtb6/jIN7/MxOlTzJ67gHs3v8SiFWs5mfdxA5eF/YsIrCKnh6YxRQ1NFGlKR7HKFnIgEVgB9akmAlchEWlGVpO4RoBjF6hUKkhODSNsUA5chvNTRFLzOH48S3Zqgr7z5mJNO3znq//C6II1XDHnYwyNjNGQSBF2fDrDKSxdIFt1AI94NEp2agxfE4gnmqgKJpmig2RGKBYKIAoomongBXhWDV0SqVoWsiUxffwYbaqJ5NWIhcJYgY/tgalHMDWV1u45ZIs2AiAHNnJg/+7bwOPf6pBmkkczZrw5vRHtbP+ndHd3c/PNN3PDDTeQTCb/w9lHS5Ys+Z+21P2fNlOJ9Odo6o+oREre+IaFN2PGm8+ZdrYA4fcfQVHw2fbcVpYumc/GjRcyemoEWYkyFmvkyd8+S3e0AT0eINayaLZLq1rPMbdGKqEwduQ4JMKsTfawNNZCqL+F7WaBPk8jWfJ4tQLPDp2gt72fv77kXbQNzuXg8Bh33XkvoWgDlzQuQTk6jVzMAT61Qpl0qoEhReTvHvg5OQ20TI5+LcJVH/0Ie06dIN3VRsapERgangCKL6B6Z05Bq4Vh670PE/IEhIk8/Z1dqEWLn33pGwy/vpd/+NyNbHjHZUx2aCy6+FLmr1lHLlcmHkjkDg1RHJ5g49qLUDNVNn3nh0zs28uaC9ZSmxinP56gbBf40sf+kqVGiLnzOimHkkzmLcq5KpnxKRatWoktiVQVAUcOCARAsDFFD7VUh6ZOImpFFqw6m2RrMy+8PsTLrx7nsuvaiGhFsvk8i9ZdyLqLLuKe++/jid/ezeKuOSTFOsJ2IyNjcOcvf4sRMmnpbEcPhfnKV7/BspXnEza6ODGUIxpJ8parlmLbDp7vU6uWccsV7r/3Xn7549s4ffgwQdUi3NVCohTgaDKOImPLMjFXZmWohaGv38ULL7xAU10KMVDonLWazc8ex84LpIIWHrn3Nzz14CZWnr+Chw+9xNOZIfoTjXz4smuY39uLNZrhxU3PcSxuIK1YwLlXX8N5C5sZzxzB0W3mrZpPtjCFpKm4ms6wGOGhQ5MUnRAtnoEhBgSegB+YKGYXX/v6z7nrzge5YO05RAUB3RNQfBHxd8eqCwRUctOMnzzCnNk9XHLJBuhuRmiuY9qv4uomhhZC9QS846PceeNXOKexi6ULl3C0K05Bk6goAq4kUs3maZFU+qJJfvXlmzi65WWee2QLvauWY+sqYTTqo0ny5RolVSAQBAwXir6LaCi4eCSQiE1VeeBbt3L3T+7gQFDjyZOHyHfEmaeFEVSVimXT1FjP1VdejmEofOyG9zO7r4MLN26kpWsWaiiC7ThUq1UEUaRcrdDY1EQikaBmWYxnRwlUMCNRvKpL2JWQazaq7+FKDq7k4YsuwakKIbWZ7jmX88Tzk4TqBvGkNNOlEd51w2XMP38FgWDR0tYApo4fgKyFsS0XXVHx7TKm5lNQfHxVJuqFUEerFA4Ns+P+h/nVz35M50Aj6SaDjJ9HjUaxPQ9VU5muepiNPRwYmcZMtnD5VVfR1NbDdEWgfWAplVCSRGs/QVWjs3OQPUMj/PpXDzLYu4iu3jno8XrueeIF/uV7t2OXXIzRIt/7hy8il0WU1mbMBbMpihZWoUKba2AKCjXbIhN2EaKw5/HHOfDkNg4NHyUqlTj22lZ2bHmYK698OzXHAy2Gho+TPYnguVT8CBY+jmOzYN58TMcn7IDmBegeSL4H4pnPdRAIqIqJJOokE01851s387WbvsuCeStoawtjHjxBOuvgHxtlzws7OPDcThZsOI+cohHLS6QFHSs3BmWbar7A5e9+J1JIwhKqBJqNptTQJB/yFXY9/xxj+RFaGhoRfQXNjyD6KoEg4IsuauAwOT7Gpz77BT740U/wyuvbKbsl1LCHpHoguQiSTlWIc/Wl7+WOXz7C3/zVJ5nKjtDQ2sRoZorHN79EIKr8/Cuf5eIr19AxO05DXOSJb3wV64ln6JNVDo0eQV/dhySprFy0mgvOuxKzcyFuug+zbTn/6d2f4qkHH+aiiy5CCUtY2SpbnngOt+TQ09qBJilEzAT7943w+KO78d04yc46wqpKYyhMQzrJsnVLKEcExj2XjBrjxUPjfPy//AMHDx2jv2LwN9e8D63kUO5L0jmnH6dqMfz0Kzz5pW9zcHQfDbEEW7e9xNEDh1i+aDG+61DzBMpCmLKnUCjliMaTKIqB44LkS0g1i7Ao4E9PoxaLPHnf3Tx0z11cevnlaNEY45ksoUQDhapDoeoQiiTwEXBdB0XwefrJJ3jv+96L4LtndmV+Vx0bMNPINmPGm021Wv2DlUi6rr/RYf7RduzYwXPPPUc2m+XYsWP/w8swDN7znve8YTHOJJH+HE3+EUmk9I1vWHgzZrzZBNh4gIt0ZhAoIHkiETegRQp4+bd38+LjzzB/1WW8/cuf4NpPXE9XU4LGio+pR6gIGgXfh6lptv/iDp584H7O2XAuh44cxoiFKRSqxJU4+aLH6YrLp370W1rae+lta6cxaSAVy2y551GO7zvMpevPQTMdCDmcqowjJdO8eGSYLXsPMnvRcrIHhhkw6pjT0Mk3fnort/70XjzbprM9jVXJ4VcrhJUQTs2iZhUpWxPIldMc2L8PP2yy8V0fQku3oEajDOXG6F27kviCuRwpZShg4/s65WINSRQpWSWCaJxE5yCpzjV8/NP/xIET+3nr+97JV7/+Pe7+1QM0d89lomBxdGwcob2djpWruO1z/8iWu37D2eetp33xUk5XPRzJxBc1CpUaHhJ3P7aV3SdUku06OXeMQmma/JSFW/I5uP8AaqxCQ3sEUZSwbJETRzPc96tH2L7tJEsWXUz3QA8FL4cbPojoyyiA7/msWHU2vgtHDu3i3FVz6UsZTBx5lYHuMHULVGzXwS0Z6H4Dn/v0lzlwdIgPfOij5H2BzsXLUEJhqp5LIIkEjk2tkielqyQ0kVd2P8dZl68jFvHRTZiuipx7weXUNTXw6s6nKQZHmLOglWXr5rLzlRe4fHAxbaaGYBXIjU7hVB2e2fQiSzpn0y0FpPKTePZJQmGNwIdCpkaARMkuUbDKlAsZGiWZJqtEj66wY/9Ovv2L37D5tSMIyQE2P/EEH/qr95OuH0MKT5IT6pHCYUxNQql5jBw8yX/5xFdw/Cjv+dgnOVwqIcUiWH6JUESh5k7jOjY1y8YNYlx41fuJdg/SOGc+fq6AGtgoWJSDCTAtxqsFMr5D54JVhOuaOHzgZZqTYUwhhCQlGR7JUvElQoqE4bkIVgazfIBStsRE3mG3X8/tR07yug7m/DrWrZzF+rk9LJBN5GmbaC5PMxK/vvVOPvftW/nyT37DeHqAR49k6Jq/hnjIQPfyZMsTCFGFv//pnbxqazz46i48U8XOHSMdSJh2gGS7yK5PSFOoVvOAixL4aB6EHImEnqDiuUgRj0vWzuZ9K7r46Ib5hEYOcvrQPjY9sYVLP3cj475HYJdJhlXsaoFoKo0tejh+Dckt4gdh8HUED3xJRYrXMWfVlewdD/jBrx/lxX3HWL9xA4bj4BGQd20Kk3n+9h0f4Oi2l7h0zRqIKhzNjOErSapCgNEQx/VqBIqIXBdnzYa1zEoZnNz+KPbEUbZv2swH3v9hdh86yI7XXuIjn/ogh8b28fSebbz7Y+9iNHuKSMzEnsxQF2joepixbIZSSMARHcyyxeHd+7j/iW1cef37aR1cw0k7SaShj2qpQiMl9j1xD0/dfQcrL7yA2ydLHNh1Gs1sglQdmuSSGDtNiwYFNceOiM1IOE15Gu4uHyPulqiPS+TjFXrau7niqmv5T1/4AZdfsY6WjjbmrD2Xy659F4sWL2LfwQOsWrOKtBnH92RqThVZLtHS38eCtWvQ4ylsUaOQrxJUXUxBxi3l8JxJ1LDLX/zFB3jHNdcwPV45U0Vkuwi6yFR+mBPZKDna+c2Th+haegUf/cz3ueM3z5MrCbQ2NWNbLq+/+AjO8DOsW7mWocNHOOeSKyhrDlm7SODleNt5q7nqrPlExDIxsYIwehp1KsP83j62HzvGixOjNKxYw8Dis5ClFrJFAzsSoxjeR5kjDB+qkI638tQLt7H+4mVgBdiTx+jvquPx+2+nuT5EzQZJjrH3pMsPfrmNZ3ee4NqNi5CsSfJWkYlKnpFqiZIkU7RtpvOjxOsCKsURNg6exV984EKSMYfDR4fZ+vAtXLy8hUQg0dWwjnuf/gZtcY3XXnqG+x97jvGx3SxaPo+yKpLTNCY8B9tQUAUJzTOQXB214hIOpknGSuTyJ/HUEFNOAw9t3oWkxWmav4Bp36ZQqxDYVQzAt6ogq4zmplA1kVwhw1PPPM0HP/RhfAIE8b+doijMpJBmzHjTqVarf/A1hmH8CSL535fNZrnsssvo7u5m27ZtfPvb3+bGG2/87643MoEEIAR/TvVfM87Y+0f8A50787bPmPGn4mHhIeKjAGf6iJ1MnqE9r7P90Xt58bH76J01n+Syi9gWTDJSziBkSgyG6xgYGMDBx7aqtIsqD3zv6yTaWpiz/hzC9U0MnxwhFa5HFHROFfJUXJd/fWov5563moaogpA9SSwQUVwNy/VQYwoFN4sgCXiywuObt3DhFdfgOD61co2EbJAZGeGn3/oOi3rncuroNFe/fSPJNhFLKFG1bCBC4IpIAshCDcPNEZITnDg5TlvHPCpehWI1gxGTcPyAUhUK5QLxtIIQhCCQEQQBSfbwXIF4rIH7frONwmSJ6685h2ohw8R0gZrlgarR2N6CHlWoORZuUKbudI6Ro8dpXbaUcT/gngcfJxWNc/GFG8jZeY6dOsbslet44IkhchPbuO7a8wiJVSoZAbumUPFDTFkZZM3GtBwkVwVaOXwkw2s7snhIDM5uYNacGKHECUQrhFsTaW2dze49B9F0EeQMbU0xDFFn766D9MwaJKOXkQIF3RMJrCJToyeQJIm6hk6qtTAnh6dBGaWrp54g8LAdD1ULIclRXEdg8+YXaWjqZGFHHtvKY5lzeP2ox4kT44SEgLNX9KDpPhOVYVINdUgVB6uWxxBd1EAlcCUeuOdJrrrmrRhxH1FxyTs5KjUJITAJGXXU3DJIOQTRBUFECExkTyXshPn+PbdjJZuJNwwwf9Gl7H95D8WpYRb32Jyzopm0mqIpHSPsO3z7xn+mv2uA7a+9TlRPE0lG0JIyPSvPItxoEkmoOEIRQTYQA5PjByeYPD3GS1ufotGQaCqNYtR30Tl7EWpjP1UURNki8KuYUpHnn3qM1mQrbT0D1EwVs7mRsuviByLPbnqG/bt2M9jVx5KVrWjJTsqeyRRxykoNM+qDNY5ZkxCqInG9DlebJFnKQSHPVDZD34YLOFEqEukbYGJ0hEZR4dlfPIRcnCLZHGHh2rWMmPXkwq0IlkvIKzFLLeJO1c7MiRJEXEVCDYfp6elBDHzkIEDyz7RhOa6LYyrkVcAJ6FXCBKUyHckkLx18DSVuMi13YRULDDSECOwaZizF3qNjVGyHVDhMbeo0fkTBEx0kaQJRqCD6CqrUT6XUw9e+9Vv2HjzJwnntfOZvZmHhUw1c6rUwuZ1HeerhR9nx+m6+eOcPKakilbKH7jlIWEiBjSeoxKJpAstCOHWEPsOjUCjwynCR5LzlRLrmMDwyTNz0qTdgcnSEeDyFEItQ8LIMJFp44od3IZsxBlYuJteoooYhMZlDzRbZv3sTSzdeynjRx2xZQDKexC3lCVsFBLvGgw89xoZr30G2Y4DP/OXnueiat/Pk6B6ciZPc/5G/YmLfAagLccgUaNSbqe0Z4Vi9w8/+7pMs7GyhaXY7n/7ETeCF+drX7+Ev//5qdBGwS2Bn+OBFb2f8VJ4HX98HOgSaQ6U0yt++9xrqWrr42Mc/gR5J8/TmbfT393PL976D7Dmcv2E1oYTCXff8lP45/cwZXICktKDqbUxla5SrRWJplZLXydiUx8f/+h9o6l6MrBoQWIwcfYl//uy7iRkeLdI4u37+LRZe91n2T3s8tmuIZYt66WxN4haG0WNRSpZLqxxj/PAQv/3lz+lsbuDd77yWzVueoaN/gGhzO7amUygVqNZ8BCmKkXIplSqUM93UJxoZHnmE2XOaESwHNz+N6Ftsf/4Z3nLhBTzzwi7MaBPtgxfy4b/9FyLJJv7+L85GEXJ4gogviPgIaJpBoVAgEgkRuB5GKMXJY1XShkNzpEhcbuZff/KPXPPONUSjncAyDu+6leGf3kuuBEJMICdpHJmu0bNgkMGzzqVnwRKmsznEpILs62AFuIUSmpjliafvI55uYOnqd/GZz/+SwHX40PvWkOyqpyqUkcSAmCAgW2eqCPKOS2BouDULWZa59dZb2b9vPzWrhq79/ysMZqZ1zJjxZjI9Pf0HX5NKpf4Ekfzvu+WWW7jhhhvYtGkTGzZseKPD+Q/NNA//OfpDVUgzM5NmzPiT+rcxn/+W3vUB2dBQQgY1PLRknERLI5ICyxrbEE5NMnbwCMfHR8hVS/i+j4JIrlgi0dRGoOjIhoGi6WimgefYiAQYikQ8bBDXfQyvjOyVCGk+qbiBLLskIjq+U0WTPTTFJ2oaWOUKUUMnFYthKBqBY+N7Lr3dXXR39xCJNyCpERxfQNFUHM/D9wNi4RSJSD2KkMAN4hQsmVRzL2OZaSRdwIhqaKaEG7joWohENIEkSYiiiCieeZRlCVHy8Pwarlemp6+TQNYoWgGtXf1kyxWefHorIGBbLrWqRdiMEK1rJtXWhSNqxFL1iKJIV3cnvm1xYNdOxk+dQHRdTuzZz7zZg9TF6ijlysTjSezAI5KMsufIQYxImGQqjq7JGKZIMm3Q0BBFFdQz1UdCBKdo4hOghmROnR7iyME9FDNT6LKM7VoosTCp7jZqqoFv1ZGb8vB8m1DUoaXLoLMvgePbHDkyxssvHSQZS6IrMrquEzJNDD2K74fYu2+C0VGZ6YkYsp5E0AxkXePg0cPkJkdZtmwBhg6y7JKKRXDtGo7jIEkKZsSkVC0wOjWCaMpMlzLIYQ1HDpBUk/p0G6lkMyEzjq6FUBUdVdHQtDOXrusoukF7ezdrVq5m9cqVnLP2XCZ37gVPx65E6ahfgOq7lCanKU1M09/WyTkrV9IaSrFo7gBz+rrxKhVk4phqI2IQx7LVMwOPazaJdJQdrz5PY1uc/rlttLQ3snjZUpKJesRARcLAt2XsKiRijfT2LyTS0IerxsnZNiOZU0xkh3G9Eq5dpaO1g8G5y9DiHQhqDE01SMkerapDg29hWj4KMRDqKJOkKIepGUni3bMI1TUgiT5NiTDW+HEaVZf2WIiWdD3vesd7Wb/6bJoiMeolgTrfpT0SIuKB4kioRhxZjyFoJoJqIBkGrijiiDK2KGFJEo4oIJkakiJjBy624DBuZRm1s+wcH0LsrMdtjqMYGj0dPThli8D2GBkaQRU0ZF9HFkwETGSiyEIYWVSQZBtJqWKaNarWJJdfejGXXPgW9u7ahyqCKgvguHi2Q31LE+svOJ8VZ63G9QTy+SIE3plp9b53Zq4PHvlimanpLD+67TYee2YL5SAg1NlCqDHFaGYMX3BJRiOookxnaxcNqS58R6ezs5sTJ4ZZtXIFO154lpipEJIlfCsgkE2MRDOaDFPDx5C8KqrkUyjkyWQy6PE6HD3Jkg2XUXMVUlaZy9avZHZvA5Lu8+qhfWR9iZpsYpdlxDGLRLZEc9ggmanx8tbXeOiRJ1CKFhRz4Dt86mNX897rvsQzz72GKwFBhY1vfSuJ1tnc86/PkJkCC5DCGt//159x4sQJPvSBD+LWqsQjJoFV5vKLzyc7MUIiGiaZTFJXX4/j15jMnEZSbAKhRjwRQZIkTCOK55RJxCTOXreE0T0vIYtVzlmzhP7uFjRZQBJA8UTc8RKO49A1ux9fgUP79lObLqA6Z+bJlZSATLVELJUgEAWKls10sUBdawup+gZcIcAlIBKViSZEVFXl+CF4/P7jvPLSEaoVh7p0O64jM5mZxPYV1EgdA4OLKVZdXNfnxMkh8plxBvtaePsVFyJrMqJmoqgGmqJhSiaN0UaicpTWSCtCWcIueGzZ/iJT5QBbFanIHk0986lKYSqyQkXyGJi/nPpwlI66CHE5Qmu4njTgTBQ4uG07CVcg7oiENRlNF1ANGU1XkJUQixau4/ChCXw3xgXnvZVIuInW9jYc30MSRSKGSUM0jikK+KUSHXVJrHyBxvomEvEGXAdARpZU/vvbmZmF7owZbyZ/qJXt/6WamWPHjgH8h7OQ/m8x08725+j0H9HO1nTjGxbejBlvNgLB7+Yh/beFrqTIjE6NcWToME2dbej1dcTq07RnXDbf/mtCIZ01116GJEv4NYuEZCKIIoNzFxBva0dJpTl26hTpVD2S6xOSZXK5SUTBZ9GsAQw3h+5kMYMylekpNFGhXMoRiamIQhUxcCnnbXRVZ+jwMUrZAmFZQ7Zd6iJRBjo7aKzvYu7gemxRxJYKyGaA63tEjHpKU3Ds0ASvPXeQY6d9Xt03wQuvHGLO4nmM546ihqFi5c5UupDGtgL0kIJIGBEdQRCwnTKKCuVyiSVLlpKuayJfdVGi9QRaiMee3ELf7Nk0NzeDAKoiY1sWAlF8I8moU8NWJEr5LKuWLsQpTpPPjHHOOauxaz6FKYn1qxeTm5hAkyUsLyAUi/Prhx5k7cbzyeXHUd0Cteo4KGXCCYG2rnqKpXH6ehtIxCRUsYwSCyjUMjz2wMP0tbQwf3YfsmwRmAFZRaCoK5wuBDx+56tMT2SYMz+J7R8FuYDt22haG9u2DGHVDDasnU2tOnXm70JUsFyVO+54Bj9oYHIyjWP3k26eJpyWKQYmR06OIKoB8/qakPwpfLcAgoUgSWiKiSh5IFoIooCkqoRTTXTMns94ucRIpoCupjh1osDu3ccoFnySqRgIDgEenuvg2z6ua1MuTNO7sJvAFBgaPsj+A3to6mymv6uBi9adRa2UparlEUIhXEmhd958KpLIwIr5iHUm4dY6hFSM7/30Qbrb5hGNpjAiITxPQBR1qlWLUmmcy646B1+WiHSspBA1yIU8CuEi03IGLxLGCcd59bDFS/tzPPnSXkZrJeSEgRwWERSBaNigra6N7rYeupp6GUdmulxDAMJCBcPOIZTzyEEYWe2l6iQZr8YpKUlefn6IQ0erhI0WVClK3KxHqUCTlMKb8unrXUCtXCEkBai+y+lDBzmxZw+m5dAdSxMWNcq2iCUp2IAr+PiSQDyZwBfAEwV8QQBEWnoWlAAAIABJREFU1KqFbVkYckBck0jHDPbsfo2m/naKEtxx3z00pxP84uavIpROsHvn0xw+uIvO/m40XcSySkiCDX4zeAnEQEAMRIRAo1x2MEMaqQaPzh6fK66ci2znkCUwZAlsD7tSo6u/j655gwSREMNj48SiBrpgo0g+kugTSBojkxkkVWXJonns2vkSx3M5UqtXM5TJ0trRTiJiYHgWmZOThI06ArkFR4wzOraf7oYWqidPockBzY11YMrUPAlZSeIEIZLSNEeHjpIrVqkh01DfQjKVZGRsEiFaT0FKoOhhpl97gaWrF3I6d4o556wgmy/RqKbQlShiVaItmiRazDEkFemNtPHIsV0cLkwxK1nPxrddCWINp1SgbWA9a89aQl1LnBWr5zJn6UW88toIf/elW1l2wbk09cbIVzNEtST79x3i+7fcxrat25DwEAWfiCZRyk3R0dVJvuLQ3NXCc9ufpqWjkYcffYjZg8upVSW++92bkeUYra0JoiYsXzLIeG6Cqy+9gPaGMHN6GojrDr5dxB0/jXh4GHHOPEZdFzmd5viO3Qw0tFAfMqlqPlU1IKlGEByHsbER6pobGZg7D09RKfsu5cAjb9UolU9gOXlUuYGkeRWlqTa2vbCJCzcuZHR4AjHQqW+KU7R0CmUH3QzjegGiLFNXX08obHLW6sU0pXTKbgE/8BFcEcGTkFyF6dEimx9/jnJBZHDOKqZyZbKyzabH9jN3aRwtFqWxbQ1ENcqCxEjZQVbDjO3dzevHTxPr6GTDFVdz3sZLGMsVqfiwbNVqitUKFbmGH3j4roPnukiizAsv7mPR4vX87Re+zev7JtBEhbdcuYhcNYuugmBVUUpFon7AY/f8hn27drJ0+XK+94PbsR2ZbKbEDTe8D1GUzsxE+n3iKOD/u20zY8aMP3elUukPJpFCodAbHeYfJZFIcMstt5BIJDjrrLPe6HD+QzNJpD9Hw39EEqnlxjcsvBkz3nwCxH+3qA0AN3BJ1iU4cOQwNd9FS6eYHJ/i2a/+mAtXrWXOikVsnTxOW30zEVlDKjt4ssR0vkKqvZObbv4BcxcuQPDByhUIKxrZ3BSSEBBkChieRYgAXQRJMPjlrx5hfCzHoiXLKRVzyJKGZ7k01jfR1dqJJkh4FZvnnt6MHATIQsDWrdt5+vmD2KJPQ7tB2SmgGiaiF+HZJ/fwygv7CUl1zF99HZv+K3tvGm3JVd15/mKOuHHn6c1jvpcv53keNM9CQsaWKQwCbJcbu7pWlYtuG1WXy4Zy02WVsTFYxkaGAiMxCiFhkISkRFJmKiWlUqlMZSrn4eX85jvHjTmiPiTY5bbb6EPZcsP7rbVXxF3rxLk71l0rdtz/2XufPUcQ1QLl7hLFTpNIDNE0HauqooTdSEIGQRaJgzRxZBIFKoZhEMcRmpagbYXs3v06L77yBuu3Xo+oKiRzOVasXIbjWqiajKoohL6PL2YRknksMcTFYWSgC1OT6MqkSZgGsijx3PMvcfLoJJvWrUGKJLp7e6i16tSsOpmOIjXLIqHpxM0mZkLGiuv4YgvUNoUOhYzZRBQnMLQZfDWk7XksGhxhYe8wjco0hikRp2RONyvYukIi24V7tsryZf0UyzKW1UIQiwR+Dl3ro6enjxUrR7CbExTyOcIAXC9A0TJcvFIllSkzMzGHmu5Dz4xjFjUuzjXZsGUz5VKKtGIj+RUk0UdUFVqWi6woCJKHH7aQFAM1kaejdx1HT7T562/u5vQVWLNyFROXKwSuzJrVm7HtFghthDhAEkASZSRRIJmWmWpNke5KEgl1kGa55YaFyOIl+jsjPMXiP//pp5nJlciMrUFfsIAD1VnOxg2c7gxhfw/HbJ+tCzexbsVCgthirjGDkcrgBzL1mku+UKZlNYkkk7acJNJFPCHGF0JkLUXb1iFOs2PHYdqhTHLQxOzMkC8PoIoFFKFA2BZRYhHDkLHa01iRh2JqRIrAoXPnaQoJnn31CHp6kNf3HWfXCy8xfvII9dY0y0aXsnhsKcQxxXySKPAwlAREKb72ref40jcfZXjpQgqlPE4Q0NeZZ/FQP81qjf6eXs5dqSArIorgYygxYuwgxQ4dhRQi/o96scSIgOqJSH5Ap6LSPHuapx9+hGQQcfjVN9i6bAMrukd5Zs83uOHGIfa/8i1uuH4Z9eZFlJREqSuJ7ddRdZdYjBAkB0GMgQyEZcKgiCCIIE0QxmeR5IskxSyh56PGIrEfYiSTTNfmaMUBc406fQMDOE4bMXaBECGO8FERtCRBLJHJJlm2eJRyfz9ytoNcoYM/+tQf8frevSwaHqKrd4iqHfGbv/8ZXj9xlvfdtYXa5DR/8slPYrVq3HTLDTiIhLKJ5UkEooGp+/hKgt1vHOOmO3+eyHOIvDaltEG92SDf0c1co05hdJjjE2fJFjMITYtVpQV0alkURFRcVMOnqrhseuB+Nq66mZP9efyhPn7vNz5KvlzElyS0pEF3r0nbDvnYRz+KJGUBgRtv28zyNcvJlBS0lEE+WeTeX/o1PvvnXyBSTC5NVpBUg5m5Km03YGzpMrRkEcsx6R1awIKRPvLFMouXraZeFRkeXM9j336Grz/8fd73r65DoE42pbNm5RJalQlCt4oSWRRSGl67ST6X5dD4SUY2b2Nqdo5MtsiCkVGypQLNeo1OXcWoWbRaFqKssHBsMb1Dw7Rsl0hVEY0EatLEiyLEOEBVZYJApTbTy9Gjpzk38xg33DLEFz73ON/51jNs3LQOOZlBUDQUSabZapFJpYniGFmGqckLFPIqQRAho6KgICMhChrP7N7LC/sOcODKDJlFKwlTGmsWD7Hn2XNsu64bSdBpVbtxBY+m46CZeeasiOFty1h4+02kVyzDymeY0WT00X5W3nkTJ50q7ZSGLCrIgkQUh/hem4iANWs3cGV6mhtvuI1zZ47z0d/+FcYvH0LWBDqLKbxGg6TncfjlV3CbdaqNOiOLVrDv4FkOHTmDpul8+MO/jKL8OLT+WESKuNp5cF5EmmeenxWazeZPFJGSyeQ77ebbwnEc9uzZw/e//32q1SrAP9hYu1qtXl1kfYeYL2f7aWS+nG2eef5FIvxPR0EQCWMBP4oxcgXqLRtZVpEllXKhTDFfYsnoGJ7j4FhtwtDHDXyMdJrDR49RaVgUimUqjTqqphOGIZIkIUkCkhOQk3SEto9rBaTTZVQ9x9IVGxkfnyZf6INYI6EbV7dpt11MVed7j3+HOAgxTZNisciht97k/OxZhkeGcEIfSVGw2i6xoHDk6AmSqSxNy+HoiYvoWgcdXQtRtAKyliGMdHxXJpvt4spEk+eee4XJKw1SZifTE21+8NRuKrMOcaRTrbQxzTTjFy4QhBGWY2PZFh1dZWzHIgx9VE1mcvIKhqrxuYf+khdffhk1YaIldDzPwW63aDQayIpOrtDJ8ROn2bZxE626jePFzMw0UVUdQ1NRpBBNEgltkUxiIbLQh5EYpNXWqFsRZjKDIAsEuFe3wbZbpNNJYkHADVzMVBLbtlANnQuXLqEoEmHUpn8wQU9PitnZCvncGClzBW2rTLMpUuxKoqVbqLqC54Ioa+QKZfSEwZbtG8mXDcSUhJqoUujMY7kBbujT2VlElEI8r4GqigjEKIqGkcwQizG27xEi4AdgtQPOnJ5m584jYCymq7yJKNKZnJoliERcP8JxfOIgRlNViGJ810OIRIIwxZFDl4m9BLqUIZ9NEQVV+gczhOEcXtSA3hHyPSO0wgQnrzQJE3nkYhFH1Th49hz7jpwlEls0rcvIqoOmxzSbFlEkEIQamlaiWhPRFBMjmMJo+xgNGXO2jDHRgTaRIGsl2DI6xIbl3Sxd0ce67RsolAewmwaq2I0mdCIKBhEQyi2U2KbVmKNpt1m87ToOztrUtA7O1TwSCYOhvizvf/c63nVtN6VslXb7JLJepWtAw2UST6ow51d46ch+2lLM86/tR+/opR5fLVGzHYuu7hKz9Rm0XIakIeE15ihnE8h+C1MMiawaauiBaxO5NjEicxL4SZPZRo2+7i4WLVxAX08XkRtAO8SMNG6/827ShTILRhaSSCW54853YSbTXLw8QWdXH5cmKkh6jaZ3Ai3VJKSJYojE6EhCkaCdxVSGSKkDRMT4jssffPL/4blnnsWLQpRkAkmXkUSYvXwZ0zSRFQNBlGk0bRRZJ4hFREXHcn3kZAozlaE9XUFyY0rZApVKDS2VpOG6CEkdNZ/m4KkjXBg/R3dXL8vXrWOqUmOu1UbXk9iWg6onCAURXyvgGyUWLN/AxMwcdrtBzlQQ/CYdGZnQmkaQQ/7jn3+RS5aNkUqSqLVYmixQ1E1UWSAQ21yYPkNLE9ny8z/PX37rcZZvvI5Fq7awcGw1IiZgIKAhC/B//dZ/QJWAqzvOYzsx268bYNniDnoyBhJQ82RsoOaAi47lC2iZInIqTytWmLMiUrleTp+awvF0BDGN1YRCrpfz45O8+857ccOrYqEQu1iNGdr1KWRsMgkZQxWwWg1kWaZJzIpfeDe1dotSOo0RRaQ6ipyuzJLp66Vby9LRDMkpGrVGHSfwqNWb2H5ALMmIskKj1QQhwtCztJo+igrJrMPY0jSJTA3LvcA997wbWTIQSRFFAVEU4fgBZjJD3bIxU1mMRIJkyqDeqCCGMXIYo4simqzQcm2WrFvN2uu200yozCU1onwWIxL51Q/8MqaSwm6F/Nf/+9PMzbSRJZNGtY2smjQNk8lIwEumEfNFhEyGZLnExeoMgSqBqRChI6AiCBKCHCMqEe2gQVdfDi+c5Fd//Q5krUJndwemaVCv11EUhaeeeoqZmRmy+SKZQoFcuci2a69hcHAQwzCwbfcdieXzzDPPvyx+msrZHnroIfbv30+1WuWBBx7g5ptv/gft/vvvf0f9nM9E+mnk3NvIROr/+Dvm3jzz/EwSi4gCfycfKQ5jDr55CEFSCQKJHz75Iq+/8QbFoWGidArB1FHDGCUCQYiJRGi2PB576rus2b6FSqXC2MIxIssFP8CPQkRFxT03xfjRoxTyWT79uYfoGF7BD148yPjlKouXryaRTlMsl2k1pxEQEWMJEYHnnnmW66+9lp7eLuqNCkOjI6STRfpGyohKG0FViAKVOMpgaiVSmTxTUxNcnHHI5PPcdttNHDywh5nKOcrFIoaWoN1SeH3vKY6cPcKN11/D7p0HeHbHTrZvvZ7OrgKe10YQJCRRo9zZi5Yw6OoqIok+shwgCG0C30JXRCRRwHc95uo+nX29ZEoJkG0M0UcMfSQkYiVLw5NYsGwDHd0DzFZbnDpzAcM0UcyIIHJwHQsllFG8Di6c0Dj8lsuuF49RbReZnjMgKmMqGRQhgRaH+LJGs+VSyHQzeXkWy7MxMiqeHNByPQhjJM9ncYeKmQrRjCQH36xz8HWfg2/M8tLLu1BTcxipKqZuEsYqsaTTtiNefu0gAyMLCCKXC5PHWb9piEwuIBJjpqp1wtDFaVUwJYeEfHWL86ojcezsHNMzNZLJFKIcE4ciupZl36vnaFsZxkY341gyV67sZfu2TSwcW8I3vvZNjh59g0WLepCkGIkYTTJQ5DxWo5/z52R0fRFxUEaONHrLRcQAopZHWi/Q37eSkcwCXvrufl577mWsqRk2rRzhrX176U6WqY3bvPDEQ5hJC0nzMLNJ/EAjaZZ4cedB3nzzBKtXrsMOI9pGiBOIoOhoSpK/+vLXOXf+MpbrI+lpfF0k0W0gqyrtuYhvfuHbvPnaMUqZPNlikobdINBs4pZIKtfJywcOog2MsuetS7iextRknbuvXcn6pZ0k/XOoXgtFThOFCpGgMDzcTQS4gUJbHGTBimu59oYtLF+9isjM4sgGThAgcPW38ESRtmwQVifoLprsePIx9r/2EqMDvZi6RjKZQxKTuI7A+brNqazCTOAy0FskxELM6RjdJVKDw0RGAT1dpJ1bwFQlYtHAaoiLEPYQCMPIyjCxMER1VicKuhga2MD5KxeRUj5nrxwlkRGxHBtDSSORIvJktKREPpNnQU8/r+3dx96jB+gc6sHHw1RFUpKAUepDTaSxmjaSoPDUc3vYd/AYCTNNNpMkk5DxHY+0nGa2FbBi641IWpKnnn2WW991K7P1CttvuobKzAWuWz5KRMzCFWtYsmkbyY5+XEHFdnxUQ0aUfKars5T6hkFJ4LsWP3z8q3zlL/6EAy89wzXXbKXh2EjpHOq663jy6a+jhzbX5Xsw5iIcPUETB0uYpaucBD1H19Bq9n53Dx//tx/iwFP7+OD61XgzFmqoIQkKyE1UI8GRwy6//Vtf5u73rCFSPJKJaRKaDI0EsgQHzlUZHVtFLiPw1pEzSLJELEgEgowragSCgW2LpLI5bNemaXloWonASxJ6BosWLWHLxvVksgESAZIg4nsOttVAFkLcdpN0Ko2ZTDPjtZnIKCQ9AT2ECIl6OsWbl87xxoEDrJAUxp97kQe/8VWuu+MOvvb1b1FvWixbtYZaw6LtuphJEz/wiTyROFRQdQnFjEhkGows1RGJ0cROWs02K5YsQhRnkCIXXZF/1DD7qqjXDkIiEWJJQJWT+G2XhCzQqM4SCZDu66Ilhpy0mlzC5/XX93BNLs+ffepL3HrrRkIvS1/3Gj71mU9wxx13818+8aeMjS1gbHAETUyhegqnDhznCw/+JUnZYGx4AXHgo4oikpdAEmIiPPyoDmLM5GyVweFhYsnGCy+RLah4nkAsBoiEyHFMd67E8RNnaPgBN7z3vViKTu/AMOs3rOPZZ5/mo//Hv8H3Q2RZ5G9XSK+WlM5nIs0zz88OjUbjJ4pI6XT6nXbzbTE8PMxdd93FBz/4wX/U7rrrrnc0E2leRPpp5OzbEJEGP/6OuTfPPD97CH/nTBQipFhEiAQOHTiELKrEnsz3v/08Z4SIrb/4HsxcnpQnIEcRCDG+HCEgUO7ooNzbxY49O/mFX7yXC+cvYggKsqRQt2xqlsO+7z/ObTduZaoywZTTYnTdZtK9I+j5Av1jQ9hRi0sT50koIVfT/q+2/l6/fiMdXSXc0MPxbURNZHCoE1Fs4sdtglDF9SVefPEgHZ19dPV3MF0fZ2ruHD93zw1Alaee+grvf9/deH4TSQgQRAlJUSkVUiSzIfl8EVkWGBkdRNE8IpoYCYm23aJYyFIoJFFiG1V2USQHgTaaBlHoE0Qhup6glC/R2ZFHVF2CoIISecRBSBAaeHoHR87PEJgFGnaVvfuOkMp2sGjpGKE/RxRYYLdIBDpqkOPMuRnkVI6mpBIqSToHVzM90aYjX0AVZeS4jR9JJMwie/YcpG75KCkTI2cgSgGdmTzJUKZTTyGFLWLBBUXkueffxHM7mZsLiOOYdRv7SedFkFyQFQyzhO3JvLLnBEuWrMd1QgqFBFFUxTBF5qoVsvkCqaSBENjouGiCQiAoVG2DI6frrF19MwkjhyR6CPhAQE9XL6MLRjg7fohU0mf7DSOcOXuCw0feYnJiil/7tQ8gizaSGEIYEvsQBCDoWdLZUXbvPM3EpRaH33yLpaNDZBNptEghakX0mFnmTk9yeNdR3nfX7WxaMYYhTtKdUUjFMs8/tpPf+PA9jIx2ks6kQVGJxSSVaps9e/axeds6ZMPnUrPJhVQ/NdGmpdv4yRl6lubQestMRx57dp/mTE3l+P5jdJf66Ewo9BQk7rlrC7rhIJhJBD3HD3Ye57knT1AsDbBt6zXg11lQLrCgUOS65UsxwwaBNUMxmyJu9vCtvz7OMzsO4UZFFg0sIKMXaddl/vCPn2Dv3tP0ZyNUXeWP/vJRLszYLFiwGBkPEY9IFPBEhf6OEufOnmF6rkJHVxcDQ2OY6TJ2YKKkBnGDDK+fmsDSFGTb57XHv8Oi7hIdA90045imkURMdhEqKb6y+wTHx6dZtXgluWw/lVqMqA9z6lyLj//+n/P8D99g7+4Gf/bgU3iCjJiAxStX4UYOnm+j6xGSbBPEFjP1Nr7lkUTjhpuuJ9VTJNdVRFAiioqM1Gzyue+8yJ59bxL4EguGxlC0LLte3sfsbI3rr9lIuz6FJAKyypyY5Ew9INc7xPU3XEdQmaQ7raM3Jrhz03IIfaaqNSqSzqcf/g4/fP0IC8aWo2siqtDk2JFX2fXU46xdspBSJkHYmkWwptmyZglvHtzP1tvuwegZ48pcm6HufpqNwwyWVNK2TaY8yp+++DLPnzjB4iVjlBGpVWw6myof/JUPY062+JWbNoLno6YSSLrIOQ8EVeOe9/8nvvvMq9QDld/5gwf49f/9l4iICYMIVTHxbLjxptWUTAHBA7c+TWzXEAkQhKvP2kgQ8DwPP2iRTGsIokwQSCS0HK12FT+qkExbiEIMKAiCTOB62JaFZTVZunQ5Fy9eZrZax0zniSIJLfJBCLFUkaaeom9kjL17XmHr0iGyeQ1HU1mycjWyqPHnDz3EurWbSKYzxMTUahVkMUYUQ1RVwQ/Bo4as+bTrJQxxBEmy2bJ1OYE7SWSdwpQjRGJsJ0JPl6i3fWIjhZEr4QoqM/UqyYSKb9WR44Av/Oln2LxhPflMlrXrN1GtVqmfO8eWwT4OHX2L9du3UasmOT89xc0/txUtU+ToyRrHz+xiYdciHn7oYSbOXObaDVuYPHeFrlKJ0bER/DgAYgRfRZQcItq4UYNYMAmDPF/84qMoUpLhoUGajSaSJBKLIYIQIcQiiqJx4vwVBlauRugdoK1r+I6Fa9V568h+fv03PoKswNUi8fh/irIC8yLSPPP87FCv13+iiJTJZN5pN98WuVyO4eHhn2jvpIAE8yLSTyen3oaItODj75h788zzs0bMj19no6ufIiAWkEJ+JCIpyK7MYN9KnHUjDGxYgR7JlGo+iCGBGOEoMUoU4jguZsZk2frVXLhwiXQiiRYqSMg02jaKYRBcPEY2J1LsK2AOdpIZHETOd5DuKCCbAo9//5tcuHiaJcMDxIKAEF/dDtn2PNq2TaVWRdJldEPAcWYJoiaCJCDIKTQ1x+49hxkZG0MxYtZsHOHaLUPIUgOBGuvWLSFpRoCFH9WJ8MnmU/QMpNFNi4RpsHDhIG2nTiw0kFULP2ygqgKeZyNHHqLgoCo+YdBAkUNURcC2HXRdI4oEsmYGRQgIpTaC7KBJEpIgYpidPL3rLQ6fnkTKdtA3mGP/GyeYrjQYGuhBlZvgt8FuYAYmsiBQHpNIDXvUmUTORJy7cBojrdHfLSOJFQTOE2MikGK24lLu6yff1UGtPYOpCqRCiUysotkK9ZZNMpWg5kzT0TdId88KJqZm0dUUK1YOIiLgSVeIxZB2y2BmxufwwRkK+WFUKcP4mVNk0zqKAbMz03T29ODYdVQxJCEERAEEsY6Q6KfhZDn8+hQz01WymZiE3iYKLTQ1oFSUWDCSoFz2cIUGJ0+exXUc7rjtdlyrgSQ5RJGLKoiosoGoujj6MRrtNp4nMDExzi/cez1DAyoSLYSogSQHXJ67xBtvHmLd5utJlnV8qUqcmKAVTJLImNx8yz10ZjJIkkgUSzhhjO2L5AtlSp0lHH+apn0OJRmBDB2qTsKRKPlFuuV+jrx8krgVMrZsMdWZOvnUCoQ2DPYEdHVM0naOkcgEtLwEBw5N8sYei0z5ety2RYKIXmmCXn+GUSVErFSJogBkiSuNOVotj9NVh0z/EAuX9qLF4xSzNoNlGctt8x/+3UdY05vkO9/+Ph1jm6g2Y3q7e8hIHkbkIgKBIHHx0iSFzl66+gfIl3twI4OOvsWMT/n8xcPP8OiTL3Hi+BS/uHQVW7P9vPWlr3LimWdYs3IZ5VwJtAJnTk7zpc9/laOxw+nJo7zwzNcwUgJr1izl5Plx5KTC8NgIguTxf/7n97Llxl76FuZ5ed8RjMQA+16t8qlPfoWN67YgyxqKBnONNoacoDubp9lq0BI90AUcu8HeHzzNif2vYYxuZ3yiyvnxiywZWUg2XWbN+s2MLVpM2pCRgiZO6GAbKucDhSdfP87+Y2fYsmY1+fYMcnWaKzuf4sn//nnW3nwrSjrLnJKmY8lGXj18kp7OHnJGTDHt0d+dYmWnzmNf/gve2PUMjanzvPfdt7Hv1d28975/jTG0iglKxI5I14VTLFufI5PxeG7HM4R9yzmV7+VCJDGY7yIxUSFRzlKYarLXHmfbyABELpcTU7RljQuCyO2f+W/8xYM78P00jqrxiT/599z6c+/lK489i6RmyaZzpHSQtQg1EpEdC0UOmTlxECloocYuYhwiCAGxEIFgU2tOYGZUECPSZpZ6o0kyFRJGs6SLTVxHg9hEFGR8z8OyLModHfzJZx/ED2Fk4UIaU3UGgiS+YmNpAVVd4tt//UOeeuJp7rzhJkKzjVOU2LhuI3MTFXL5DiRBZuOmbbieSxhECAQUsmnCeBpZBd9NEggOTlvi8MtlPvPpJ9h2TZFUrkU60ebIq08xcfEMvf0LiCWTyZqNksjiShpff+x7XLgyx+iqhcSRTVqIaM5M4k1NsX5sCR1GAmfOonphkutWriYKmizbuJhHv/sCX/7aLk5OHeOau9cTqWnq7Rzb7+ynHSQ5OzXJ6JKlLFuzknxfF51jAxyaOM2Lx/bjmjIFPYUsWkRYeKEDcQ5DHmPyUsQj3/wel0/Psm7tZgSpRShGxMQgiAwNjSGksuQGhjntOnxv1/OUDZWugsnRo4f5wAd+CVkS/06U/dv9UOeZZ56fFWq12k8UkbLZ7Dvt5v8n+/fv50Mf+hCGYbB06dK3fd3999/PAw88wAc/+MF/Qu/+Yeafsj+NzPdEmmeef1EIf1OKLV59z5UAKSKUAiLp6qprLPqsXDPGL7z7ViYvn6XemCWQfEIhIhTjH8tPlEtFmtUaWd0E16WUyyOIMX4UIAhgmiZrb7wevVxm1nEodXYxNTWBa7ewWjUc18cJJPoHF1991Y4hEgIiMUBUIgrlHMmUjtOy8F0HVRPQlRhKT3CSAAAgAElEQVQ5CvHsNm3fJt2T4+D4W5y4cg5fhJnZK4iiR1dnjlKpQLXZJBJFojjG9208r0EY2BiKxMSVcSxrhrZbwRdDXFGkGcaERgJX1qlHOiEGSiQi+RFyFBPGEk6sISp5HFdFCgLwHaI4RhJ1dEwEX0ExEsw2polji8X93VTqDvnOMqNLRklnTMQoRowEiGUCEVzFZ656iVblHAY1lg4mKWR9DKWGIlmIgoUYuSS0gCio0dHRSSRmqLcUAjEJikYkRIgKxKGH79kQx7SbbXp7OkhnYjS9TVePTjatIRKhxBq6ZmIkNFJplY6uJN29GVTVJZ/RGegu4zWnkGKbge5BhDiBHwjEkkIUKhCKmEpMNhWiGpDJJ0hkUniIOEGEoqnY7Tpi1KKQjJDQyOTKTE3XeH3/ftI5E0VVr5Y9ijGt2Kfle9iBSGdXhrvuXMealWWUsIrgtZEiH1mW8fEo9RVZu30NqzYvpOpMkCwaVBt1VCNJtV6lbk0z3Z7GwiNWJRQtQSwqXK7MccWqURfhXLXBjj27Eb06Sdcn0fbQ2iHN2TqrVi/lhuvXs3ZJJwt7NIZ606xdMYopRWiyhKaohILOyUuTTFo25ugI/Qs6eNdd2ymVdZrNJvga1apNtmggaTaxaFPu6iZZNNi2fTkbN4zQ05VEM3V8JN48Oc6zO3fy8t7dTE1e5hfvuYPrNiznzpu2UC5liQSZEI0oVlBDkUWjG9j32gSvH7RJFPqZnGvzqf/2Vf7Lf3qQm2++no/+9r9HUlNYtWmisMl9v/pe9EwCqx0hk6Yx49Oqe9RqDc6cPEymmMfyXa5UZnj1yGsoiofszrF6qMjtt21i1jmNmK6TTsbccvt1lHvzmLLDkrFunn3+BWZm28RRls9+++t85bmnqMQgJlIk1TR6pJFSEmzZtpnhJYtozE1STiaQfJfOQgE5cpFDm7ypMTNxCc1IgCAR4JJMmaxZuYqOQg5DCiGK6B8cITZ6iDNjXK4JeIhEnstwf4l/de/dtBwRIz3M9FydmekaLTtiy9ZruOmWW/B9n0SmyAd+7d/St2gVQSijhhEpSSSlqjSn6zQbHqNbtlMxVcRiljnP5cSlaaR8B81Wm3bkomdM7nrPu/ijP/wkrigxSx0JidWrFiGoMroRc/jZb7KsD5aMQjGf5uX9RxBMnRYBbmxD7BP7NhBhmEkiQSJEIUa6WnZMQDql8NST36Zy6iSpMKbptPCJaMpgRz6RGyJGCmKkAAGx4BMLEAUCsavwV3/5Fb72xa9SzmbxRIUgThGhQaxx4zXXs2HdKhBsjGSGTKnEuSvnQZGQkbj1mpupXLhE3Kzz5iu72PXMDhQxRRQbxLFCIMnEYg4fjVVrRgnwOXWkhkwPTatNT0cHrVaD2foMgeiRSGkEeMiaipA0ODM7SSAptEKZK5bI068c54U3L+KZHVyca6MYCl15je7ONEIqRb6YY/euF/DqF3BqEzitJulUgptu28ZL+/bR21fiPffezfLVi5ioXAZDxFEixFyWc40mJ2bnCMQfRbBYRIhU5EikXZlhtLtMv5rh3PFDVE+fQw9Ajn4UK2OR08dP0VnsQFFUzGKe8mAfR48fQwwF2paFpmo/jrJ/G2PnmWeenzn+/94Tae3atZw9e5aPfOQj7N+//21d89BDD/HAAw+wdu3af2Lv/mHmM5F+Gjn+NjKRFn78HXNvnnl+5ggBAUIRAmJcIhw8XNHjzcOvEWFjBzXcYBJx9hIlMUKXPaKywcXmHIEqkkgkuTQxhRYI6KJM1LDIKTphy0IkwgtsbKeJ57RoJBPU9QSufnVnLE3U8C2HlK7TdkTcMMOikWUknDooEk7cRstqOKFFHPgErksCFTmGQA+Qoog0BoEoEuoCZ4QKy27aQq63E6Et0WkqSLFGvRGwY/dBUqVutFSOeqtFMpFCCGUMRUdyHRRFRFElHCkiMpPMeCqTlkBDyeCn+9l/1qcy0WKBqaN6AZpmcNk3kEsrGb/kcfqtGovyChIOtpFAJo9QkbDqIU0lZGQkz4KSzAJN5SvPnSSSPZasGKKzIDB56jh+ywfJpG4azErQqnj0azn6NYli7NKXkegtmyTVCD32SIYxYXQJSWrjBv1cmS5zcTIkTsokiyGS6uEEHpIkkjIdoiDAUDvwHRFDtTGNKl2dNrmUhRi1kMISgm/i+RaGGdM1IKFqE8ThBZJynZTkkkzO4fsNZmcLxEonthegyjGqmyR2JMRoBlE6iapLdPSIyKZPICgIahZd6kQJDRK+jxp4NOkBKYvreyxZMoAke0RyiOU6BKqCmDGZqMHRg2l0KUTzzzJY8hGtaUq5Mp4DZlcHkanRblkoOrTsy5hmiOc2SEhplMAkIZqosU3bqNOyLdqWjSrlaYsmUq7I9w8f4I0Ll7nm5z9E1/BS0p5NstVCs1uochM72cDKNLHVGgpNRvqzlEc0BOE8ijNHfTbCC8rMCYM89fopHFVicEWJ7QtjVPUNpOQcRy95fP+lgHMNE70vQEpdQdY8gnYSV4jJaAFlE/x6lW9864c8teMI33t5khve8+sUOzrQglnSiTaRd4WM1oKoxiNf/zpf+NI3iEKNdUvX8dBDzzI328n+Q3m6V4bEYcCyvvtIxGUa8g8xyy5yaoCX3/xzXr+4ix+efYH/+LnP8cF/96f82Vd3Mrj0VlbcuJW+1cPMZBJIXszt19/E0VPjrF2/it4wJDk5Q78oUIvrXJBDzlyZ5dDuvZg9IYVemwHzCOXsNFeaLpfON8hm1uDcNcSECNnOPmhLZD0VpS2gCzJeQkIoZejL5rht4zq2rxojalZICi6m6KJGFqoh0o5ikAU00WVmLsCutsjEFosKIWlD4uysjbH2I3x+V8T0pEXnYIreooLoXkaNLJ587CSPfeMwuU6PRcvWEif7KfSMgpKk6fn0LN1IlRyVMAcuZK05zMCmpSZBSxPIRf74ez9kttjNky/uYWpqilqtRSaXZkFSQSrlCM0Ozus6//355/k37/8NMshkEdje1c/uXT/gu1/4BL93/69SpIkzO8329Uv5zs7nGFyxHE3RiQSJhGgTyiqWG/LW+Cxf/tYP+IPPfIElqzbR0TuAiEt18iTb1oyw6w//gkM7djJ8+y28euwiD+7ZyfUbbiGadsinB3G9ED0VUGleZna6RbMaM5BfyviB48yNX6Q8WOJ701M8+70DTJ8/w8Yl20FWOH3+TQaGNHJWGb3exjHaeL5EPiiRCg0e+7MHuXHNAt56ZRdHj5xh1eq7aNgppqoeX3v6CQ4dj+kfWklP/zlyksjT365SqeQodkd0mBKhmqB7xTIutGoo6SSe4DPpWZy268QdGRb3jfH880c4WU9zvJnhUtRJx/V3crTtsO/i63SOaniJgD/5s2+xZsESNiwd4tRrP+D3fuNDdPf30m7XmLUvMT4xxYaihkELNahD3EKQfdpiREtP8tcvH6ARGWwZ7kOPBOJAQnAkzDCmdfYQFw/8kLtXL2Ao8pk9cZiB4QFcSUQykxBAKtTwmy6O53AuqjHRnOOGkZWUBJOn/voHfOj9H8Iw01xdoBGJEYgQ5qWkeeb5GaNSqfxEESmXy73Tbv6jbNu2jYcffpjPfvaz7Nmzh6NHj7Jjx46/Z48++ii/+Zu/ycMPP8zatWv5/Oc/j2EY/+z+zotIP40cfRsi0qKPv2PuzTPPvxTuu+8+fud3foff/d3f5YknnkDXdVasWPF3xoyPj/P+97+f+++/n09+8pM88cQTVCoVtm7d+hPH/b/nEwQQEBCIrrb9DEMO7z+AGkuEQUQsGYSCii/q+ILOviMnuFBpEWhpXNVET+ZJBd7fuw9BEAjDEMdxAFBEHy3yUWMfLQpQY5+EBJrgkRBiuvIJDDlgfHaKbKGA67gIPkihgIKE73mExDiSQtVXUOQcdrWNpEi4joWgSuTMDO25Ki/v2MOirjKaauI4Ii+9+iZ9w6McPXaaIJQIwiSHDk+QzHSjGCJ2IKCnCzQtl5bVRtVU2o06/V0dVKanmJ6cZLgrQ0dBxw49ZsSYGc3ka098jxOH3mDzuuVoHQJt0SPlStSaFs8c20/bEMkJMl16AkWUuRyDYCxhZOEIiqyy65lnMGIJGYV0Mku17XFpqkJnuZdEQiWMgquZFUaSiYbLbKUJgogUxjgJlUagc2VKZP9rR1ElnyULk6TVOprvIwQiYpzAk0RiZBBAjkOEyCed1MkXMsw1mniChJIr8c3vPMHpk6chDBns7CByHcQwQlEFgtjjUqNBoXcJbxyqcfToEWYmjjPSlULBxEwVudJsU+7pYTjOkRUgEXs05+aoz8yhSBqqKiMlYiI1puHOkU64ZIw23QUFLWyTVhXCtktCNsER2bPjVawZi8WjRXTTJxQjlHIRN5+jmdT40q4ncRUYFhIoEaihgBqCGoICKBHIkYAYi7gVncWlVWTCMo3zDdJGmtB1EUSHRcMlwtollMo0vZ5OaKj4KY1I00gGOqm2QSZK0YhUXjx/ju+9ugu1mKBpzZEtFrDDkLYXU52bY0G5wKJShtFkB63ZWUwlw8nDFQZL6+kr9NKR1ZGcCMlN4TtZ3jh/Ad+LMUyDmalLLBnt5eZr1nH3zZsYKsp05iLUVIyvRERICALIscTi0YXcfvvtdA8O0CZk6dZOFq/PsXVzN5J6DF93WbptLR1rcmy4qYtMOmJhwWTLYCc3rd3CpWNNDGU9pb5bMcor+OJzT/LilZc4HVzkf7v1HhyvhaC53HPnTYhvnSFl+2S6y5y3W+iCDokUM60WL50+yfWrtxPXAj79tUdIdwyzvLCG4wfP8uXvPoGxsANntsm7t16DMzWBIYcgRThyTKAaiHoGJZmk4TSxIhdZkwmUCF8MCUTwpAhfionEiEw2R8NTuXR5ilNH3uSWa1biWFXMVIYdLx/i1RdeZ3VKZeWGLuZUB0ewUWOFqZemGN97jHW3lkkPlwnmbFJxhBqGrF65BPQEHhKupBKKEAsRvghGKkWlcoVSJslQ/wCP/NU30WMd0wv5ueuv5/COp3n3lvXIsYQdq6xft577//Uvk0JA910E16WgprnppmtxYhAkiRkrpJgtEuNyy6b1BIS868O/xplLF3jXxrWIooKmGrx1+CjrVq9l4vJlPv3HD/DBD/wSWE16VJFvf+qPmDh+hg//yq8iZDsor9vEhUqN3//4J3jfB96PbZ8jkYpoNiXa7TSqmkDWQ8qdIm8dOkSIxIXJJqtv3cSZ1w9SyngMd/WSTOUoZTPk0kXOHPCRxTS+GJDRy+h+GilS+d5j3yKXS7B56zZ27n6F8+cnWLPiXXQW+sn1Rnz7849TqadY0DXI8qVFdr7yHc5N7OVd77mGhJFEL/YyHcmcmmmx8/WjTFshie4hgmyBWixy4ZV9DGSy9Hd3sW7lYk6Mv0XPaJELs2eZCufYc+4Ys/UW1VdP8IPHv8lH3vde3n3H7ahpjZYcUQ3b7D5xgK6BTkZ0/UcdiGLE+OpZy3EJIpHenn5a1Tpr+npRYwjjGD8IkBDZvesFzl08j6oILFu2mJrgI68YRkgYIIpEEThCjCsJKAmdopZkRbEXodGmo1hk565ddPX1UiwWSGUyf5OMFHM1H2l8fJw77riDj33sYzz44IPs2LGDLVu2/L0/kjt37uR973vf/7Jx88wzzz8/c3NzP1FEyufz77Sb/yjd3d3ce++9OI7D2bNnefTRR9mzZ8/fs/3797N27VruvfdePv/5z79jz6B5sf6nkX/GcrYdO3Zw//33c//997Njx47/dRPPM88/IePj4xQKBR555BFOnz4NwKuvvsp9993HHXfc8Tfjdu7cybJly3j66aeZmpoCYO/evXzsYx9j8+bNfzPukUceYcGCBX9n3I/nu++++/7e94v8qJ11KCAEIEUiUnw1fT9GJkIiQuLs+Ulmmy5dgwu5XLE4fv7S27o/KQIxunqU4gg5CjCEAD3y0MIWGdEl9hp848lnmGm2ESKVyAc1FJGu9pYlFMAXFbRkN4GQRUvkSCk6GU2lpCkoro3seWTTKRKmTuB6CIJANp3jyFsnaDVdevvHOH56krmmQMORafkSMw2PthsxO1djenKGYjpNIZXCb1RJCAHV6XEk0aft2dhEqNkys7bD4jUr6Fo8xMzcWao4tIhQEdFVjSilkuotkdANDCRURaESuNSqDU4cP835C5cxEml6+wbJZotEoYgq64R+RMLM4EYSoSgTCDIeMtWWQ6QaiIkM6CYkSkzUAy5MTpLJ6axaNkRSClADHzESkGMJYolAUAkEFSGOkGMXJbaRQhvHbSMZJqKWYqrZIpAkNm3ZzNrVa/CabWQ/IvJsgsDBx0dJl/ClNJYX0dXRSU9HGUWIURWdlhtw+Mwkl2dsFDdA9gIk18Ot1WlVKiiySChGuLGPTYCs2OiaRT4roQhthKCNHAVogBZKRJZPc6aGJvokEwp+6OLiM2M1qAsR4/VZLE0i3deNHIk/suhvLQQxEhDiq9bq7OEHlyfZcekSu8+c5tSVS3R2lunQVPKtNj0ti8VqAtUNCSUR3zCYsGwqc200RyMRJ2k5MSempkgND7Bk01o6hnpJF7PkSjmShsrasQWsGVtApwauNY2hQuC2WTIywMqlA3SXTaTQQ1d0TDWB1bA4efYKc80WzbZHT28XCxf2MzbSRSEZEDTPoytt6n6TiucQSyKSJKFLIuV8HiQQVQkhqTPbnmKmeQbPO4bkxwSSyXn7Mv/1K59hthVy+dIseUXh1NEkn/n0Dvbtu0DfQC8r1g3yi++/kd+6/yNs3rAZLdIQZ6rE7TqvvLaHF559lse/+FeceusorhBTEwMIQmi3EYUQW5XwbEgpBTZcezeOlGL5wuVcu3Ur5nAH167ZwrL+UZpzc2i6AJJPJAX4cYQTgBtI2KFPG49IBl+OceOAQIwJxIhYiEGIiRHxEMhkMvR0lkhoAlHg4fsusgIdxf/B3pvHyVGeh7rPV3tV793Ts4802iWEhNiFxG5sNi8BAk4cGZI4hpwk18HY50LinJzYuSfBPrk4BJ841o0dn0BuYoO32GYVNgKBBGhBElpGy4w0+9p7V3Xt548BEoJvwj04TmLP8/t9f3TVO9/X1T1d7/e+9S4pehbnOV0dR5Zi0s2QpBORVlT0rhSDTHDWWevQWz65ZJo4jlFVlYmJCQjnNx+RmB+BND9agUtSVcG2aU1MceGiJXz0Azdw1qJFaC2HD910A0cOHKRZq1MrlVlUSBADOmApOgk9gQy0GyqPP/kkz+47jJawqHkeJhJmVKFdNVlz1vnsPnjstfLLEn7gIuIYx66x9oyVnLNhA/lcDlWAcFzO6VvKqRKMTYyyrK2LVw4f5tjBY3SuOoNqKNCS4Is6KAbP/HAvD/7t13ECm0Cu0YzqpAs5xsYrqEj0dbVz7XuuQI186lOT5PUEQS3iicd38f3HXwSSCMmYTyeMQkwrxfe//xhDQ0Ncf917OHX8AH7VxZAMEpqE1t7B5FiJ8mxMiMP6cwssWWkwU5ml4gjsUCXUUhR7l/LiK6+ya98Btj33AmdesJFCXz+9i/pIWhpdOYNFRYsP33INi3sydHfnEQkDpdCOq+isXdlPRz7L0PEBUtkEZbsCBBTaMphZg90v7/on2kcggLSepDObpT41SVCpIMWCGOm1IQgkaOvpItvexmyzQvuSbgr9nUSZBKEQBG6AG/iouQy+qRBrClrdRZmq0ZHOEUYRsYDzzjuP7t7et+jX13Xyrl27aLValEolHnvsMVatWsVDDz30huyHP/xhLr/8cnbtmr+O1+WWLVv2vyW3wAIL/Nvwk0xn+8e279tNPXu7LF26lC996Uvs3r37n72Wp556invvvfff1Im9EIn008jBtxGJtPYP3vEyd9xxB3feeecbntEHH3yQiYkJ3ve+973juRdY4F+T6667juPHj7Nx40ZOnz7N3XffzW233cY3vvEN9u7di2VZbN68mUsuuYS5uTm2bNnCvn37uPvuu7n11lt58skneeWVV6jValx99dVcccUVtFotPv7xj7Njx443zbdjxw6shMXmize/0XhYAuQAYjdk/+69KJJKHMRI8rzTRyAhxdDZ08erA8fQEwlm6w0u3rwJvTT9luv5p5FISDqxUIhfq/MRC5kgiomJEXIEoUuka/zg+AgXnb8JI4hR/AgrAkkIXN+nJUc05QQjJZPde46zqLNA2CphyDF5SydotkjrFpVSjY4MyCJGVRUWL1tJtpAhxCfXXmRotISR6iZT7GBiegRZT6In0xw5fITerg5SuowlCQxCkopEb0eenkyS2HcIhcyc0HCsDIW2LG1JiUtXd1MXIZGmg+szWSkz7lXp6ulBsVuIKKQe+ewZPMXJk3NsuvRsLrhwPYqwKVoakhTSajWJNbAyaVqBYHBoiEQ6AYpGA5WJmku+vRckiTAMmAlURkouF5x/OTlLpy0jMMQspmxjqRaqMPACDUfTiIWEFrvocQtdCkEEeEIjNPM0Q4k4naDarNFmWshhQNE0wHMIQ5fYELhygJfoZt+RScaHPS656Cx6ixK0pmi1dE6OVigZbRSXLybVqhGoAa7iEihgWBZt7T2ExATYhMIljCXiWKDrBkQxqqIgCRnP94ljGSNhEQUBXR15UpkQWfeRNJlmKHF8fJKq7ZDr7iCpqvS4MoJ5Z4MQ8XwNGEXClyUCScWVVb5am2Jnc5b9w8c4410Xk+4rMtKcAx18u4HkuEihoBXLNCydadtmaHQGVUqBnqYpm8wqGiKTJp9K0mWp6M0aWhwjI2EaSfTAJafFSNUJYqMEZo1QdrDSGlV7gkTeAbVCKOq0gjqHBo9x5rmX0JZPI2SIJY98MYvtO5SbFQpdbZyYHKNVzGILQcFKgBdAw0EWMZJl4ikw1mpghzIJK4FpVzC8tUyxnGeOn2DNNR9g5BWf8/ov4aYrr+epl3o4WTIp9i/h6e3f5sLzO+kqeFA9xhVrejivqw2rYmMkZDrySSqnh9nYt4SBw0foXLKYRhQR+zGB3KKtM8O6c89GqXiYwmTFuRcyN14iLyksWtTFhovXk4xhdbGNXFghK9cI7GkU2QdJwg0kiBXMpIIkh5imRtOpoyjKa9/nfPqPHAkiITHjhYhApbstRzFl0NtuYZgKpWqZ9u5FdC/t59GXnmDjxcso+ApS4NIKfTrPvxgpn+e88/ME1SbD5RqhGhIqMTue/yGLlq1CUS0iDJRIYIQRCEEDn05LpT4+xte+uJVf/9BHSKLTpmpsWreGoDrJ6iXdTFUbDM1WeeTbj7JkcT/dmQSy583vaQIFWa1Tl0227x4g0b+KoiEze3I/J1/4Lt/5wQ95dP8Ev/t7f8i6nEYcRogwZnZ8Eg3B5gsu4MrLLmZsbJiOXBq/NI1VrfHIrv3Ips/ff2Mba95/I9edexV6KsOjX/8GF27oQxAg5DzlaotSbYY/+x/3cdkVF7Pxgou57rqf49Irr6XSFBzbd5TedpOMblJI5THkCMtM8cjXX8aLfC69YgNS6GHIMqXyNIYeMT5+gkzOYnTsBO95zyY6ckUM1SPSW1x40fUMHpuku9hNLuVzwaYVnHvhGeiahm+Dlkgz4zg4EZx97oXceONNjM/OcmR4iMmZaVLVMpvOWEFG8fFr46RFk65Cgu1PPcp7b7gJLZln5tQ479mwlkbs0JfNoeZMrPYsTrlC6DnIxQQj+w+wcfUaEPNRSFIsIcWCZq1J0PLp7+5lSbGdtKaBJAjjCD8MiOQIIQkiKebq916DpMsYXUUaiRThXIOcmiIAjrkldg0exQl9FosEnaHGbLOKIwKOHhvgnt/7PRzHQdXUeV0InBoa4t3vfjdRFPHggw/yta99jU996lNYlsWTTz7J448/zoc+9CEOHDjAXXfdhWVZPPXUU/z5n/85n/rUp1i+fDnf+ta3+O53v8t/+S//he3bt/9IOcuy2LZt2xtyCyywwL8ds7Oz/6ITqa2t7R2v809t361bt/7M2r4LTqSfRl55G06k9X/wjpbYtm0bd955J7fffjtPPfUUd999N+Vyma1bt7J27dr/X5XlF1jgJ81HP/pRent7OXTo0BvHcrkcN9xwA3/2Z3/GkSNHuOuuu/jEJz7BmjVrePrpp98kd91113H//fczOjrKDTfcwL333svGjRt5+OGH3zLf/fffT71e51c+8qtIQrzWhViAJDM6Ms7Le/bR3beYWr0MbhlNRJgKaPgkNJmVy5eS1CUsS6U6PUa7JL/leoQQBEFAq9VCkiRqUYo40c6MHWLke5hoeNhCRskUCFSNdLGd41MzdK0/j5xhkhESOcMgatkgget7OHKMJ1ns2T+O48WsPXMpdm2aOAowohBVKCgxFDs60KRZhGgR4YEUopkR2YKK0AJs16UVCmyvTnlunKXLlqArKrKIWNLbhfBbxIFL6DRIJQws3UT1PeKWTzZdYNeBo1RaIUu72+nUFcTECcJYp+VHvDw+SLG3nRXpAnorQC+m+N6u57ADn42r12PlTBS9Md8FTm5iihaS7GO7FUI9QE6aOC4kDQNViQlFzPD0LEahi0xbkTiMiP0WlZZEjIpERCYlEHITWdikUhZ208f1YlQrjR1HqLKMhofARVEVpuZmkRMZqi4cPjZEtiNDb0cbed1AlQUi8AhDF9f3EIaCHTpM1ASm1YHX0gndWUzTJpsIqNk6B09OoPauoKL6pBdZHG9OMRWWiXSFzv5+FMWCMCLybArpFLsH6hiZpUQig25lCGNwQ59YlQjUEA+HQneefFsWSXcRwoMwRotN1vWfyZJsO71mgqQfoKgK4XzQFaES46vgqwpVZBqShK2bpEyNjb29bFi0iIIq4asRflJjTIv59r69nFIMnj4+wK5DL9PXvYjFXYuo1RzUJUt4cvAIA3aFvftf5ZKVa1mu6uSrdVK2gxrEyJFEw/XQVBmBg80CWMIAACAASURBVKW2qJshnp6iEagEikqo+viyT6wlqLbAzHeQzKVpNxJIckjg2whLJzCThMksXrqTV0brTAsNUUhzauQ0Xak0UhiQEgLL0JmslYl0jf0nTzA9FlGdbrAopbJ3p8//fPwgQ0de4tXJCsdfqjG0d5Cv/MnHufGTv8LFl55BUk0xc7rOV/7s/+H9V13D4jaJqHGInFKhHAh6852kI1jWu4hVF2ygq6sX1YvpzbQzGjZJZMEKbdptF9nSCbQIq+bRl86hZGMitUGyPkkqCDCdORJ+idr4MZ7d9n2atVlWr14NAWRMA99poAsBvo8cCWRkZBQyVhKn5qCj4kcSRyt1urJ5FLtOQonR5ADF0IiQkSQVKYbLrr4crRs+98jf0UjGtPf3EU9H9BW6mJRPUksneHbgCH3LFyMSMkocsKh3ObqeJHYkEoFEXshIETQ0kKpl2pMJEj50FnqwzCS9+TxyaGMqAVbGROTyVFGYa9TZf+AVrth4Aa7bQDN0JkoVUkkZK9+FnF/EoZMV1vckWFyw6O1J8eDffJNqYjF//dW/5j9vuYGWbaObJscPHOCB+/47O7b/gPdefx1RGGA7DkrCYMeOF9hyz6+y8ap38dIP9vHA332D33zPL0Icc/mas8haFrYTMlM+za5923jq6R9SyC/muqtvpV5tYqQUavYsD351N3OzNi8deI7rPvB+4iigVBonnVNRzBwbNi4lnw2R4gZBUEWxQhb3d3L+ReexYs1yavYU7/3AxTTr+ykWIyZnVcxcGxvOWUwubfLfP30/l226jLHhEbraLXQP4sgDNUaXBSkpJqiWMOSA5Us7yVsyY0cPcNbqJcT1WZKST9p3kKsN1i/qR1QDcnGSNV197BzZQ9fZq6meGMPNWMjJBCv0PLHTIt1dZGP7IoQMge+jSvPpwnEMqqy+dn8LyFkaigDf80ikEjScJmbaRNFV2nu7iGWJQBEEskyrCf1WG7EboCYTzGgRFFIMjQ6zvNhNUG+g5JJ4ImLHCy9w2223kUgm39CFURTxsY99jFdeeYUtW7bwj02czZs3c+LECfbs2YMkSXznO9/hxIkT/NZv/RZ33HHHG3Lr16/nxIkTvPLKK1iWxRe+8AVGR0f5yle+wvvf//43zffiiy8yMDDA8uXL35IKv8ACC/zkmJmZ+RedSMVi8R2tsXXrVj796U9z++23s3v3bn77t3/7Ddv34osvZunSpT+mq/mPwUI6208j8dsY75DXU9dez8XM5XLce++9AD/20L4FFvhx8rnPfQ6Ayy+//C3nlixZQi6XY2xs7I0Q9Uwm8yPl8vk8tm2/4Thavnz5j5SzLIvjx4/PH4j+4cfne8F8Woes0AojPCHIF7MYhoYc+AjPRQ1c9KhFkoCsEpHV394tO5VvZ7YZ0Na7koHxEt2r1nNsoszBU2NMNlrMegGSlUSJIuQ4JooCvHC+u9DrQ4rn0+HWrVnJzOwkB08MoOcy5Lu6iZBRIlCiCCn2iSUfhI8kXGQcJNEkCiqEfgXPL7N4cYFzzlrJsmV9yCIkjjzaiwVmZqZQFIVMJoORsJgrl/D8kJbrzzuaYjBllf6ebupzJUpTU5i6gRqCIqnk+nsQlk5G1sjJKnXXQS/MdzsyY1jWlyKbBl13KZXHccIGXtBEqDEBHi2vie82CYMWiogwdZVMJs3Q0ElKpRJz5RLHjx+nmEmT0nVC3yZWAjzhUnZbzNZtrEwe1TQwTQ1NEsRhgOO5eCHoqRRGOo2qGRi6TkJXUKIAKQ5BRMQimk8bFDHCULFbDsQSSUOnXilRbMvT3duFosmEUkQil2Hxsn4iYlLteY7XSgw1K2QW9xKbBqcmJ6k7DoZuIiPTqDVJpLvQkl20YoPRqSqtUMKXwJcglEJC2SeUPEIpIBLzTxkEoEeCRAgpX5D3IBNAIEkEkoQvx/hyRCBFNLwWgSpD0qIWx4iJSTobDXo9l6zdRKlW0TyfhJECT9C38iwo1cAp88KunYwNniKVzFAXAVPVKcbGT7Jm7SqkWoN8KJP2I4wgIvYCAs8nRsKNPNzQI5Ji3NhkpmpiezkC0YZiZrEDiZdeOcWeA5PsOzxNrr0XybdRIhdDl3FaHpPVBkdOj3NiokJu0SoKfatoIdPdu4hyvUFITMNu4vouuqri2g6GqrF65RosTaflOxw7cZSOzhzkE+T7OvB8h+OnjuPGc7izz2IGx9i0YQmf/NjHuPGmX8DKFCm3QsqBRslXqUQRUijI6SlWLFvB9lcPoGUzZBMZZNcjUgWIAD0MyXgOQmoSyg6NySnCSgM7tAlEi6IhyKgBeVNGuDYp00JTdUZOj+LbLaTAJ2g1kYIAKYhQIxlDMzEMC0XRmC3V0I0k9ZrD4YFBRqZnKJVKiMDHUmUs3cB2PEBCE4J8xiLUoBZ75JYv5dXTpxGmgakpJFSFUAJHinFkqPgtGkGAmkigaRp2s0XkBliagV2zmZ2eQaAiKRpIMsuWLUORBXIcIcchUughxT5HBo4yWykj6xqLl/Tz8p7dlO0KRiJJKARGLo2PRAQ8+uijPPTVL6NKgB+CkeTXfuXXOGvVckxJ0PJD4njeod+ez2PpGilLpzI7je+5uEHIjB2w6X03orcVOV0qM1evIjsusuOSRVAwTeTIwNRSmOa8Y7mru4M4UqjMRehGmpbnoJsBijAZma7QuXw11VCgpDOoKQs/aHD2hmWsWt2OJBwQLqHsEskunhxQ8TwaASSyeabLM+w/+CQHX32GzrZeZmZGcPxRksmAhJFj8Og4PYV+WtUGSuyjxCFqFKCHLazAJRV75KWQdOCSFz69XUUQAXHoIqIIDdDDCMuPSLsheScg4Ye0L+2nc+0arEKBoZlpXElFhBJ6rDE9Okm7Nd8yW5bl+VTIwMf3fVRVRVdUNClGCjwyCQtNgcBrEUY+07OzxIqErOm4cUQrioiEghopRH6M3WoRBAGFbB7HtqlUKrSkmI6VS/Cl+fumnrCwkok3trRxHCOEeCNF/cEHH3yLbvzMZz4DwM6dOymXywDcd999b5Fbt24dAAcPHnzj2JYtW94i9/o+Ynx8/G3p5gUWWOBfh59EOtvg4CAwb/vC/MPiu+++G+BnsqSL8m/9Bhb4V8D/yS31enEv+Icf1wIL/Humu7sb4I2N5o9CUZQ3NoU33HDD25r39U3nP8UwDAAkYkBAPJ8+IjSFqXqdsUaNRBTiplJMuCX0SKDHoMkqkR+QlGNCWWBqEpGkQvNfLmr29e8+QaprES8fO0Wj5dBIpJmSTLryRaylXQycPk4unaEwV0cPGwSBQz3y0ZQQSZKIRIwSShixT161Oe+CJWz+wLs4cXA3u/cdZPOSpRhBgEyEShOASIh5xxMueuwjhINqRnSkPJzaEHPhDN1ZBVmqQRgTBC49vR00qlUqTYeklUDLJhh2QvRQsCShUW81MNQIJXQRIkI1TAIEkmRRt22SvXliu4UehYRBRLPaoFAoks0VCGpNdNmhFXu06ipB1CCSDWwvIlA1GoFDLIUUs2niRg3h1ZGlFglV4T1XbGLw5Cli12bzxvPw6g6S5ONIHqEp0woFrpwgU+yk4rdQDBncGbQAwihCNk1iNc3+0RlsxyXpl0glcyzKW2Q9h1iEIMBTIJAjQkXD90BGQWm5FE2faXsML9YQSgctKcYydZxmgJ42MEKf2dlhUCNWnH8h+bRCxR/FsFR8R6JcczBVE80QZNo6mZwtUStP02aGqEaK0G2CiEAECCLmnyfFSPG8A0mOwEAmEwFRhBJ72CJgDpPoNQcjRCCgGXg8v2snZr4Dq9jD+oRJl98isFtIvqAjk8VpeASn5thy5rsIJyUGpSI3/dGvEJ0s4c42aAYBL7y4g/4NK3GqdVZ352mbtZGaZaKoiWYqOOp8ulxgzrc5F6GE7Teo2nm+8a0BDDXNiv4Cmy7tQ5U8CpleDk1OMFd1iP2TbO4SBCIkmUhQajbp61lNK5R5avtejmz9Oh3rz2BqfD/nb1zLDRdegFurkMwazFRmSBd7aNkOl591PpOjDsvXr0PyB/jlT2xmz1iZy26+gS9/89ss/oX17H3uCRrmOIu9AD1fYGS6Spho4xc/eS0Hhg+R7V/Gsy9F7N07wMj4o/zull8iqUjsfnEvw7ZDZ7WOISyiRoNEh4buS1iejxU4yKIGko6MgiobVD2bSLTQhI/tuphqkkao0N55Jjf94npe2LUTJzJpOjZWUiWhWTh+QIjAJ8YNPFo+mMk0jVAm0buIs1aspDIxTHt7G0wMk0pZ1CsOeqFIqVLnjz/9+1x2/Q081ppk2WKNn9t8E4997St4JYfHnnuByXGX935wFVlMLj57M6Zso0Y+ufYuwjAmCGJiTWWsXiWtK7S191OSBV4kUbJt2pcvpeRCqAqQfITvQuSzuLeHY9MVQk3m2isv5YNXXUoCmKtPIyQZM1Hg6SNH6FuxnnvuuIkbf+E3SAhAS0AYc+75/fy383V+/9c/iArIUQwxNGtzbFi9gtWrV2PJgtlaDSmRxUj34mc9nGCSXFeOj//hf0X+woOkk9AZQyyqtOwAoYekLZ0z16zgzBVX8PST+/DdkERKEMctFMXnynefz4GZAS78hRsY0jW++fiTWKLG+y5dQ8q0UfUmbsshFj6hHBAg48YZWmYaSdHpXXMJjbhCEAf89f98nP/0O7eRyvkYKZvqqMfZa1byjb/+S27+4PUsWdaGbETIUoQWRShxjHCaJEwLS4JWs0pGxCw9YyXCaRLGglhWcQMJBQURS5ihix4FKEJiolJnXB7mly+5hufHh5hCY64U4AQxSmcHlaEZ5LYYWVUJ3QgkBUXVaLQcJCnCMGWIAhpz4yQtE9tvYqoCSTUJxXyLCUmxIAYpVvH9mFbaRE6oRIqENz7NukQHS89KYeaT7J8ZQZMElmG+VpxdwgsDVFmeL+4dv16Vab724ZIlS96kG4eHh9+WPn+df26fsMACC/z7IYp+jAV//wUWbN95FiKRfhoJ3sZ4h9x+++3kcjluueUWPvvZz7J161ZuueUWcrkct99++ztfYIEF/pXYsmULQgj27NnD0NDQm8499NBDlEqlHxlV9E4RYn5jG8cxQQQeMNewmWw5/PDVfTx14AAH6xGVRJGakqUcWQRSCmKdOJQJWxGB3Xpbay1f0kXgNbFMBTfyGBofRUknqAUu331mG3NeE9UQLFJizMBGqC6R5uOoHp48/5RXCyUSgUtRLRE4Qzz24hNMK4KeCy6iKSeZf3YNCi3iKEkcZiFMowQmeiBIKypBpcSyzjxnLG6nO6eSoITszaCEc6StiEp1hlbo0wpj7Fjh+aODPD9Tod7Ty2jYwjEFXUvaCIRNNXJpKArTskktk8C1NBgtkfAjqmZE3QxZliuyQs1itmLCpEpRlUgCOB4pM0ci1YWQc7hRhoaXRrOKKHFIWvYw4wZq2CAhucyOnMBSItJ6zMzoCRLNOZaY8y3iJ+ozjLVsjjkRk3KCAyNjTDo15mpjmEENPXbwkTk228BPdVBcvo5MWwemCFjRmSbnNkj681EHgexRMyJeGj7GnlMnsH2QAgOtOcVlZ3WzYXUfsR5BQmesUeXk2CkODRxgUY/F5OGX6I3SRKerOINzxNMtoorHySOnsV3wdZMp1yedrlGdewn846zsN/BKpzFDn6QXY3kqlmtieTpGAEoEUiwRC4EnhzQUj6bqUVebOLKD4QtMH8wgwvLB8CGnmHTn2smaKYQvY6cyzGoqdtJCzluUqhN4TgnLrxBPDbIqAbdevBFOjFJ3qngpGVfx2XLp5VwY6by/vYdscxa9EBN0qZTyEhOJmBOhzeFmiSNzs5SCEFcoCEknbUlcduE5XLXpQs5c3kFsH0F4R9mwOseZK4r83PXnc8YZWRRVRQJcu057Rqd04gBmY5zbr72Iz939UTZ1Jtny8x/konMu4qU9uxG6zHSrilVIU5qbRvUiSsdP8+U/fpBPf/zPOTksse/Eq+x+9u/541//GNf2r+actd387h9/kr3NiGltKRNSHyd9hS9872/5mxe+xl/98K+45/5PMerU6Fp7FrpW5JE9L/OqLuH39fKRWz6KjEpFl3CKFrrtkLbzSH4HM2YCOY6wggi7mKCaTNOmdpNXuxiLVRxTYS4SNI0ujsxYfPLeR/jGD0d55KkjNNUMnp6hGQuaAhxVoaqqnLRtHvjWI3xtx3OEPV0MODY/GDjG957eTqtlYwhIGxZ93cvQlCzLlpzJqiVr+dwf/iHX3nIDxUIHuYbB//G+X4VJm498+DaGT56gO0iyKbuSpZ5JrhySrfp0q2nkWCaRyaB0tjGZlDhmulTakviOIJR0RDLNrBxRt3TqakxDjghEiBGD1vDoMzIsMrO4Ew2SgOS26EjlKCQyxMDd934JVYEggi3vOgsTiNEJ5AIBOjkCckELN4znI5GikISism7VCg7sfonfuP3XGD59ktiXKGqLqTpp4rLK7EgVilm+ct99HCofRzY9StosqWINTZpCDZOs6buSbKKD6665gv5lYDsTJK0ETiNi42UFVl+1hAef/xp/+eLTrHj3dUzGJnO1EKfaZObUMFqgI4c6ITq+MLGlNh559Ai/84d/Ry1aTjNazOhQATnI4oUeyCX8oEkmWeDnbzyblUvneObxL1A0FtGSTVzJJMCEWEeONIQdYXgCoxFitSLS9QZa3cEyMwRqkilhMmNYzFgKFdOjbtYIlCY3XfRednzzaYZenWRipsWX//4pzN5ljLjw7Vf3IzrbEVGM57SIJYGs6YSSTCKXQTFVml6DFi3sxjRS1CSbUGnWK+iqTBhAo+lhu4JISuArJnJfJ4+dfpUXJoeYi30y9ZhFMwEbyKK1QgJDQjI0VEOfr8kGyLJC+I+iDC7aNN/04kMf+tBbdOM999wDwG/+5m/+b+nxBRZY4N8nURT9i+OdcvPNNwNwyy23sHXr1p9523fBifTTiP82xjtk6dKl3HzzzQwODnLPPfdwxx13MDg4yM033/wzlxO6wH887rzzTnzf58wzz+Suu+5i+/btfPjDH+bWW28F4Itf/OK/yroR88WIA+DAwFH2HdrP49ueoN5qsHTlCp5/+RBzzRhfsfBkgxYqgdCIhI4imxhKAjmOkV/bMAeSgicpuLL22ph/vWHVUjauXsLFZ63CyEqYeY2z1iyjM2chgiZre7ugVKKoKSiBj6rKqIZKLF5XCYJIvPaOhcf6s1fjOg0OHz5Es9mcT8OTXkvHkgJ80sRRmii25gvmRDqtBiTMdggVgkYT2XVRAh9LU9A0BT8McEIfT5GIdA0jm8EG5o4fo2Wo7Bke4nSjhh1H1Jo1UqkEmUKeRiR4bugErVSSpW2LUDyZyShiRpVxbI+iapFTDezQI2j5JCST/kIPicjAq0a4zQhdThJ5Co2aT4MQV1OwFZWaJFGRA8ykRpaIvKKSy2cQsUelMceB8ghRe5psdxf9Pf28OniKMzZdhJFro5AuEAqP0G+hKgq5jiLVah1L1kmHKq2ajWJZROIf1G4sYkIBmy++nJ+78WaaLUhmOnE1necPHmTf0EH2Tpzk1dERxmbqrFy7kg+8/0qMxgzruttYoSfITNcwTpcw6h5ZxcC3W6i6SWAmGI8CxkZfZf2aImtWFmhURtCTKmo4/x2bnoHlmpieihlEqOF838BQSNj4NCSPuuxSlUMcQrQoRI0ilNc6/6kRmEJi3aIlrGnrYkU2R0rOs2PfcR7dtZdTjQZhPsGU4fFccJrG+W0MdTSYksp0VGJsYvyMQaBKVE+PskYkWGxLWAhGVIfjcZ1h0aKe1JDSFmrCZO2qVViaSRTKhHGKBNOsXuGRL4yQz4+TkobpSs5Rq+ykvWeGQDpMbMxS0ixcWUdWLAw3otvUWZwysUePk7Snufa8tZzZ04HbbNC7agWPvrgTva8XX9fRFYPeQhtm0+GP7vkjfu8T99LVfgEdHYv54Adu4tdvuZ3Hvvxt+hIFdj+3jyNDNvfv2MnfHj3N//XQDrbtqLNh7c381q2/z7KMxnvPi7h0xSBhXOH5iTF2jgyzfd8Bju3YR0HPUHU9arpA9kEJVHyhUzIM5FDH8hSe2fMyO/bvwy95yK7BuB3gBxplLcFwqoDUuYoP/eJvUSwsY/tLB1CSOaJIo+VEECvIuoFk6dRFgJJLcXxqlCOnB0m1tbFq+TJmfvAk4uQIkSQ43qwy4rh49QBnpslNN93E9773Pc6wYWLnAaSCySvlCaS2PM3DJ8kdOc3wSwc4MXgMq2qTiCQMYZCWklh6gpYmM9MsoygKX3r+cT7x5c9jINAVDb8V0/BiGhI0JXAECBQ0ycRrRSQTWZKpDBddsIkN6y5DsoFAYE+XMYB3X3YFOqCKkI9/9Jf56jf/lu3HjjAVgAvIgYsVh9TmSii6ChGUbYfi4n7WnH8+hZ5e/vS+B+jKdfKZz/wJN7zvFkJfZ/nSddhRyO79L1Nc28d0XCPoSDPbHKXVKqHKaaS4gCJUejpTVCqHKXaYNOwmZiLHqwOP8wtbruCc81Zz4eaNfPE//5/sOXSSYtcKQicmKafB7yIOOgjjJAEJWiLJBe/6ID1nXMFdv/MXDAz43HjD7/G7v7sVN2ogySGNuk/ghZQbh1myxuTGD15Bww+paSqupCJHKsQaerpt3kETGRiygSR0koqJJZlEkU491Khm2zidTjCSmnck2WpEJEImdh/kjI5+NpyxmmVd3Szr6+Pw5DBGZwHb9WgZGjNSjB3FpLUE4zMz7Dt+lIPjwwSaiheCH0qUhgd5YftTlGbH0GWJuOaiygZaKsfB0XFOT5dxJI3HjxzgtAyPHdjPy+NjJPJdHDkxwst7D7HvxYPUHZ/n9+3l+89sY7ZW4aV9L7N7/17E6+kqQnDf/30f+XyeXbt2cdFFF/HQQw/x0EMPcdFFF7Fr1y7y+fyPTE1bYIEF/uPyk3AinXvuuVx11VUMDg5yxx13cMcdd1Aul39mbd+FdLafRn4CEX333HMPW7du5fbbb3/DM/vwww+zdevWN9VHWmCBf4/cd999HD16lMcff5zPf/7zfP7zn3/j3MaNG7nssst48cUXgTfXRHgnPP7oEzz6+GOUKmWmq1X0dJJW6KMTsPOpJ3jm298mhco3jrzKmmXLKebydHYUUWUFWZXQdR1DERR1jVBIBLKCJ2v4ksJ0ow5IiGSWOAgxGk0KsYRdK9G2sovtO3fQKwsCu0F1ZJSD33mSZW0dDFkmia42ZqZKtLe3I/kBdt3Bc11m7Sa1KGa66lCXJSpejS5Dxx86iitUGooAVeCYEZKmY6YsgkaVVEqh5kg0WhLFVC/VsVHsyjTdbW14boKR8WkCRdCII+qBx6bNl6ApOjMTk4SNMpw8RGXwTK688jpmJieYHh8jCgJmSwOYXZ2MHR/ghBfQccZ6phyJMFA5eOQwuc4CVn8/9dkK7ZpKuh7hEBI0bTQtRdLxSQiXTC7NwKnTdKSTRBmLIafK4kIf0zMSmUUd/OCVnazLa6zzNCTfp5XUEaksx8qTmO+/gmy6yOz2V8lNhCzqzbPv5Cm80Ql6Rmcw+xWkhk8xkihHDu1yCmV8lI4gTSVIMOTJeLJBbWYS1dIol+dQNB2tITFRH8Eyc5yYLLHb9ug8YxNDpybIn9lP0m8RDBzm6InDJCOZHk+hLSWYmz1MVkDaFUiGQqNZxsrIVGdGGa/6NNIKXZ5JvWWiSCavHtrHUHWGCwqLaWqwSs+jCxUraaKqPpW5EsliHhBYpk5CkhFCoVW3SaUK2LhEUURMiOv7BEGA32rgewLfD7GbLvsE1DMKqy+4EDuMoNbAR5Do6kXLFHGeHWSN2U1aFoRWnXKtybJcJy41hsstEig4xTb+/vguViezJJsOzYkSOc0iJ2u4A0dQlQSZTI5SOaToS7j6NDV8MlaOcDhNpq2dCdfHKUgouTSjpyto6QRpH5JBjOaEFAs9+I6CsCzKssbU8BjpzgwSLvvHhimsW89fPbmdJZLBajVFaWicvKJTbe3HkzQCx0GRHXw/JN3Vy003X87JPc+Qj0M8T+Jbe17loP0KF555IXtLhzi87bskLYVbL7uBUy+dYGJ8nDVXX83k/oPUh6ZYmkzz3NM/pNfQEbrAyJpYloGeb+JHPmG5Pl/g248o+CEJ3ea5XU/Q0VnkzFVLqA+O8oR9mO++8CJ/9Ud/S6o+y20bz+LE5g5Eq0abkgSRJNAEthfihA5LOnM87zfobGuj19RJN5q4lRnu2ryB5sOPkv3Ur/LAi0/xc5d/gPPKPjIuQcojTqnoc3NsOe9S/JOHOTR1nAMnj3LV8g30Ls+y+/EnuPKyy5gcn2WyQyGMfMxpQdQImepK0aXlSU3ZSO1Fdh57hp3PPEpGkmjLZglNFbo7CBJgSirNusfs5Bw1NWbfq8dp6Ekyq1ZSn6vwjW8+ybLONJmONGZc5cYLVjNbmya0baZPTfG9gYOM7NrOlk3XsGZ5Pxc5MklNo+OMPggD6pUq9VjlqZf2Yts2R8bnyCYLlMtlgt4U9BWZlmMGXnmF7g6LWHapTE4gpVKU7Iguv51MJoVDTGRWCKISUpxC8hVmWxUkzcRMKqxdsYqByUmaB0dZlj4LpJiUqqBaGaxcFSUy+G+f+Rq3f+xWRK5GyZnF7OygJrXwNQ0hZ3nmsT2svOUcIhp4yZDQVZARtNxh0sk0F15yG8lUnoHJCeK0CXM2faSpxBFVERISklU1ynaNihVzanQc0ZKZdMA1LZ4aGmTFxedB6LM8itiUyjM2NIjSluTSvnaee+E7VEXIxN6XmTDnU639H77MvpZCY0OGPk9ikQNtXR3U0zo/OPAyUSjoMBKEksZ5S1fy3Re38YMXnmbt2osohDpaOsmpZpXEuhVse/hJVq1Zw9JNF/L/PvIwK/vO5FSk8MVdL1H1mwwfPYIYnyX7cpby3CAoMYxP86dfeID6Rv75/QAAIABJREFUXJmEotHX1UNPXy+33XYbu3fv5tJLL2XXrl3s2rXrDT0shOCb3/zmj0WnL7DAAj9b3HPPPWzbtu1Ntu/rEUk/btt3cHCQz372s5x77rncfvvtlMtlbrnlFrZt2/ZGIMe/ta0t4h9HpakF/n3xp+JNL/eMwD3f+ycyi676Z6c499xz/z//OQcHB1m2bBk333wzX//619907pZbbuHhhx/m5MmTP5Ne2QX+YzE0NMTDDz/MwYMHeeihh7Asi2az+ca5pUuXsnHjRnbu3PmWv00kEhiGwf3338+HP/xhrr32Wh599NG3yEmSRE9PDyPDI/MlkQAn8AhEzONPPMEv/fKtKJqGoahI9RaO4+B5HlEUYRjGm4sCioBC1kRECiE6Nc3EUWS6Lzib8cGTLO1ZTN4w2f3It9GjGDmdpfvW6zg5PEL8/CFE6BFnFDobLqoTECQsGnKEE4dIUYzmBGghRAICQ6FlGAS+yubrr2ds+DgTRw+ieC6ZIKblucSGSlkKIL2CtKnhVafR3Ap6IkWl6ZPpXMzswBGImvMXHupgaBD484V1JFh03rnMzs5inz4NSJDNQ8Pm5++8i0ceeGD+Q5QFyVyKxtgopibj9C9m0TXXM/ytx2F8his/eCMr16/hL+79A1A0FARa00NJ6vi+j6boyLJCaWYOoepkC3nKs3Osu+JK+jdu5Ltf+jKLr9xM1/JFSAmJ8vP7mHnsOSxFY7gxiZlqJ84l6b/hXbgHhyk/f5BWFNE6v8h5v/YRxp/eA3+zjWqihBKBEzh4agz1EClUWZRbzClNkHvXZrLTkwztep6UZRAEHmEEniSBYgIKq66+nkHf4ZprruG7/+MBOHsRjM2hHBkkjBz0lkex5DCSmA8pLbRkkr7MVFKlpcisXr2ek7sPw+IO+i89n+PPPgteBYrtrFq9nsTybvb+yV/AmsW0ByqzkxNErRapCEJFYDtNCEP0TAYpiBBBhOxHKAhaLRtZVUBT8KKQII6QZRU5AjmOkKKYupllxQeuZnpmnOozzyMaLZRMGr9NBTWNdczGjARzWY/eO36eyakpgoFhPvobv81X//h+/Ikpsmev46yfv4rtD3wJo1wjatRQwhAA2w9BVkFSWXH9+5l9aRfl+gjk0uBEdDoWkhswTpPkxWfjuD5JM0m8dBG14QEwdc47+xwGHn0Wp1IjmJiisOVGrnrPu/n+f/0jGidPQjYHqQzM1MgJFbVexfccEB6RnCAUErEIiSQPiFA0lSiUMLQEsqTgxwrlRhOEBAIUWZDJpJkrz4IqwK1DMgmpdkhmYWwcGnWKbUWi8ixEMV4c4oiITFJDiAhJkpFkFSEEddshRiIWErbjYDYD+pQkx5bkOOPj/wl5xxHuXHE2yaTCyUwTqb2TxniVPjlNNpdkqjJDlBAMDJ8kk0qTT+cwY4OoGSOrHmZjiMEHnuTJM9s5tCKL5kh8su0cipFEKxUwE5YxPJdCaGD7Mad60jQ1iZEXX+GyMMnEwFF6169kaXoJh9PQMAT9Wpbv3P+XzNpNDk2cxkqlqbbrUJ2hN5PHqTRJGiaVSo1YUUFWiIMQtRWRymSZ9B387gIda9ZRTBQZOXCU952xjvLpo2TbLUadERpmkrCzDbURcH7YzqGET/+6NUw+v5spf451jobqBzQ6dWJPRlF0rGInRybGiAToYUhnINCNPKf0DEa+gN6YQQ5spNYcsqEw64dIySQVIXO2E6M3GjSVmEJnO+esOZOg4WAJBTsO8GXwLZXTU1N0L1vNwNBpar6EoZsQBKzuakdpVigkLe79/B70pM2HPrKB0xPHGW8qiMT5TI25zA2OMX5gB7/0/rMwjABHC6m6FQxJIoOKcCNcSaVFjJLL4Hk2DdthwrF5dvtOirUIzfXxA5tppYmU0JFdD4sEvpxFyeRYef21NFIKSxcv5nu//2nyZRspdHG0FmakkEikCBWFIJeiHHi4tRqmZBJaGms+cjUD39lO91iLpqUyjUvhf7H35lFyXfW972fvM9epoat6VGuebEueLQ/YBmxANtghJJBrCGAngSR2VkJuEpIHJLlJbshd72Huu1xyc5MXHEIIMZBYBDOZGFuAZWzkQe1BtixLtlpDt1rdXV3zcOa93x8licEOcAMJw+rPWmf1qlO7T51Vp87Ze3/37/f9XbiFpf1HcNsJJoKXeh3mrQ6LSUK3plgdVmjn8sy5mk1XXMyhux6gUChgb9tAnAgaB2YYu/Ji+jOLvOKtP0vZd/mnd/4JUdZHDtm85MpLqB6e4YG77qHilwYr4qdsBwd/ANi1axcPP/wwH/3oR9m/f/+39NOnIpOmp6df4J30/ve/n3e/+938zu/8Drt37+ahhx56UWPeU+1uvfVW3vWud/0fjD6WWWaZHySPPfbYC/b9xV/8Bfv37z/9ulAofNfj3HvvvS+6/9Tc9+abbz5trH2Ka665hp07d1Kv1ymXy/+HZ/5CGo0GGzdupNFo8KEPfYibb7759GfcfPPNTE1NMTU1dfq9HxbLkUg/iXxbutq2Cbj3V76tzf/14jfJ98IpE7FTKuw3c8MNN7Bjxw6mp6eXRaRlfuRZv34973rXuxgeHgb4lo5h/fr1CCE4ePDgC/5v165d9Pt9zjvvPG688UZ+4Rd+4XTk0re301oPTLdPjmoF4Jk2SitG8iWsWJH2u/SUxrNsPM/D8zy01kRRhJTfSH9KpcGCTPET8CODTMXgGlx90+v5+uN72CqLeI2QgxMVct2U0FCcNTFB79hxwiQFKWnEfbpxiNQKpEtkCa546VU8+egUcdgYVLjRIDKFkWS4Xo6Z/U9RXTqOoVN0EtMLU6Tr0+gHMFpm9SWX8NPXXsWOj32YxuFnaHe7IBx+6w//C3/0tl8AvwS9DngGRKd8nQxIMo7t3QtJBL5DYfV6Ok8dBNPlU3/1lyA0v/inf8zf/z//jW63TWliBbkwRE5WeNkFm/n4R/4Wb6jIQ/f8C1+95wuYE+NURsq84fWv56//+//k/JdeTSI0z+x7ig3nnE398SfQQcCGl1zM1H33064u0Hj6AAQtUjNj4fgMhz+5A6wclYJLLAVjusxSolBLHZ792OcY6VhU+gFxschZb38bO7/8Rdj9NGuFgh70cxaJjLn4qlex54GHUHHK+C9cz5HHpghHchz+6hN4OkM3W4g0JlcoEPcDzHXDpFJxzOtQNBSf/5s/xzbgjddey+2//QdkCz20o0i0QDHwHhFBCEoTSk1oa7AUN77jV/nAO36f+vNHeS7qs/Y1V7L2snPp15rs+cc7Yf+jMDzE1isuIzwyx2L1CJgJHeWAbeOtX8OWMzdz7ODztOcXEElCzjChl5FLfLTWdPshRt7HdU1SlZKlIaliIN5FEc994UuUSgXMVLNqqMx8u0U2MoYKIkomdOI242s30vzHe0nrVcRQhc//0a0wW2V8bJTqnqf42v2PUPYdhEpR2iK1DBIJ7mSZ8199DQdmZsjWFGhM2XDeFbziP72O6sEjPP2XtyNMBwolXvMzN3Ds2FEe+ZednLflLPYeOAELS+z5/NfAUZjnnMX5r3oDzz7xDP/08S+ywsvRbcbYOkbXqvjCxFUK4VhkvkFNdvF7EjsbmM9rJJkEiUCbBu04QCsQmcEIBkpndHoBOBZB3mP9eecw02ugix7KEOim4g9//9188L1/Qi9uUz3+PJ7tIoXAlBYFYWFLh4yMRCuSOCXTgiBOETkfw3FBSgJXcLCbgeFweO9e7KUjpFddQL1XIwhTuqnmnucOUD86xwWbN3PhuVvx0oiz1p6B6gfofkYQtshSaNoJj9Rm+cUb34i/dS1lo8n0/AJVHIJGj0onxOp1kSuGSCOJJ02KzRjHhCgxGRkdY8N1a1mI2zwiEnL+OK2kzXufe5BqexqqEawcoXXpanhgP0VvjPm0T+ok1EzAk0wmNnY7xTAd2gWLo90apDEc6fHad/w2zzy+n/PO30q3H5AfKWE6Bn7mU7zkQhbjDKlbxAspm7wCx786RVFAUhliqdNFximW4eD6LmBS7bWh4IEpsRyLNEzotXtIbeLEBipoEAddXCNjqDjCUr1FEKaUx1eweOIwJcNCeB6zrYCtwqXT65MCXnEITcr8QptycSMPf/lh/LzLRVs3YwhFFISkzcWTJtQZP/3Lr8awGgTJQVw7xO5GGNYSqzYOMbZ6JcU1Z9Gt2NSDmCyJGS2NYiQpdqxITU0XONqoYqYJW9wJOobF0qVrUdVZsrsOUDFcahtXoEohat9hSmMjJN0Yx8joLs0zff8ulpIexZddCSRknkalGt/MkYsE+USQZJpqvUWaN6HosvLcc3n+qSdxegkyZ7Hk9aHbIZ+zWXrmGYzN6xnOXCatPPt2f5GWE5NIC8fNk2YmnoQJYdJ+bC+TSuFnAUeeeADLzDEZmyw8+lWGpcu9H/1zRBZTTqp4pQKBlDx691cpez45w0YnCZgWwOmUtlNcddVVzMzMsH//fiqVyrcs9JwSkf74j//4BZXc7rzzTgAuuugiqtUqDz30EDfddNO/2u6yyy578UHGMsss8x/Ci6Wrfbv32cUXX/xvPv53mvtu376dnTt3MjU1xfbt3zlI43thx44dNBoN7r33XrZv387U1BQ7d+7k3e9+9+kAj40bN7Jjx44fqoi07In0k4j6Hrbvg1Pi0NTU1AveO7VvWUBa5seF66+/nnq9znXXXfcCn4TLLruMer3O6tWr2bVrFzBYebz++uuBb3RQp9pt3br1dLt3vvOdp9udKgEKkCQJ7VYLQ0h8x8XINHnbpZjzUUoNUoSSb5RJtm0bx3HwPA8nn0NpTaoUMskQSQZpxtOHDpIfHeLRRx/hiUcfBQOkDQLF/OEj1GePkzctCpaBMMAtOAyNlmnXl4jjiPMuvIBIpViOjW0PNseycW0TT0rmjx4iaNYw0Zimief6SMNBmA5nX3QZwysmCLWmOjtLulSDIET4hdMrQ4ZpA5J1F1/I5ou3IXwf27C/8TxyPRgd5vrXXQ+ZgigZqG1JhOU6UCril8uDyKxM0Zs7wb3/vAPSCIIeBVPiaUV6/DhnnXUWhmND0MetjHK4WocgYNNFF0GrATpldNUkTs7jxJGjzD37HFSGOL7vKQ4/8zSyWKFs2sQipdFv4wkTr1SCoSLYJqrggnBwlaD5xAF47BnINGESYpg+Ml+CyUkuuPAy6ERQrrDusoug7BM89TSEXYq+S962KTgeRcuGLCUNA4pbzyTotwkbi3DoAENSUz9yFNpdxvIFCrkSRS+P43gYpo1vu+QcFyvnQs4F32Fq72M06zUc26Fk2NSPzSJ7EcF8FU7UYKGOm0D/2AlqR2dAWjA6BqvXwKpVnHn+BWy7/KUsLVWJGw2iRoN6vU6j3SJ1csR2DrM4xPotWznnwouxvMG5mKaNaZqULJuKlAzbDjoMyLIM33Wg24d2ByliLFOyMH+cbOYEXmqgFxdRzQ6+74ClUb02m0ojeLHGzMDUBmiJ0oItZ59NebhCc6nK9ANfg14fmR9isdXh6akpiitX4/sFCCM+9bcf4ZHP3Ilrmuz9u0/CkUVysaSSKzG28Uwu2HAGq4plCp0Y2Qox+xmjpRFGKsMU8wVM2yTTKUmWkqoMMo3tOoP70XZwT/7t9/vEcUySpqQ6AxOEShBZwlAxh+vZTEyOc9bWLbzq2mt5zWtfxyuufQ0cOMBH3n8rroqg12Zk1QRuwcPzXSzLwhQm/X5IEMXEiUZhoA0DbAcNpIZElocGAsuGVRD0+cW3voXW/BEavSrS1ox5RaJ2xOazzuPVb30rX3/+Wb708EOcqDeJgwRTQdoNkEpj2QbaMjgRp2SFAhW/zJCRIxOwqENEJc/Q0BAFL087jqhHAVgGZqJwwow1oxMEWULfECjfY37IITMsykOjGGsnsW64FufczVD0OP/nXgdDBdr1pYH/mmNB0YcoJEsydJoQhgHVsANmCgUfLJshP0d9cYE46IMtyZUKpELj2h5Jpmk32rTafZr9PlE3oOIVGSqWMDRoy8As5AbPkE6Xfq+HFIJUZac92gIyhGXg24K026Dg2eR9l6FymcWlKoVCiXKpwuLCAqIyhBgbZV4ren6O41FEOlQk8j1OBH1qScbwqrXYZokHvvogX737HjonjpO169hZH0dmGIZBmKaUVw6Bp1AqxbEswnaTTmuepaVjHJ1/Hm/c50S/xVy7Sb3TG1RBEyZpkAISXBunPERkWkQapHBIHBc2rkHbNsqyMccqbLjofEoTEwRRRIrGMiSeZdCYmcUKImafehqSPu6Qh5F3ULaFaVvkHJeSm2OyPIKKEuxcjg1nboYs5sSzh4jCEOm7lDyfIdOFDM44/xx6KqHX6zE0NonjlLAtn1yugDYt0jTFEQLR7ZFzJBYpBVJKQmGFAXbURXdbhLOHCY4dZsh3kFmE6vcZLwyR9kIcw8QyLcKTEcRCfGskPsAtt9zyomlsH/jAB7Asi49//OPcdNNNHD58mMOHD3P99dd/i3fSe9/7XoQQp9sBL2h31VVX/RtHIMsss8wPgm+O2v/Xtu+HUxFGO3fufMF7jUYD4HTFtu+XU8c7NZe+9dZbAb5FMPpBRDx9vyxHIv0kkv37Hn7Dhg1s3779dK7mN3si3XrrrWzfvn1ZRFrmx4Lbb7+du++++wUrlKfYvXv36dXKq6+++vR+IQQ33njjadFp9+7dbN26lf37979ou5efHGAmySBMsFQsgYaC42GlGtKYWCts3yPLMoQQCCHQWg88aE52gFGmwDWxMPAzkyQ1qWaCvf/jg7BpDew/QbOjUG6MCBSm57DnS19CCptcoojTFNvThFFI2O8jh0qobounntlHWK9jGTlQJztapTGyjF7rBKZpYLmSJAiQqSIzfFJpoA2H548vkrY104/vgYUqYCK8PLrT5+47PoNwh8iqC+QnRlh/zpk88ZUH0L0uo5UJ5oM+WRDilEaJVEa31cLWGZ50CMxBytSH3/V7vOH3fpdPf+g24jDmjKERluaOEfR7iH7I5PAQi0eOoTWMrVvF3vt389TU44g1a3n44SfJT1Rg9SZ6aQbj41AqEAch0dFZhktjtJ49CIWYja/+afxUcOzJo5hJTMPNcD0HXQ8Zv+Risg0rCCd8gr2HWHz8EGvme9Q++SVYOg6egyoUaGsBhoQwZHp6HnLDsNThyecPwLE5qPaQtkmn36aQmXiGRVTvMVookyaSTfkhHv3i5+gZGY6TY/GJPXxx/xTDk5tQxxokgGbwO0jTlCxIiJKE2ByU0SaT3PlXH2TD5DpUJ2Jhdg4Z9Hjs6CLt56Y5ozhOTcGaWDCzcw/Dho1OUvpRxMT2C+k1a9SrbfZN7YN2gmV4mMLCyVKSUp6W60Cagm8yctF5bFg9ydf3PoqIEkytcKRJp7nAyPAIzZlpCiWfuV4TL+chgz5Dns9Ss06SHwheE90CbZESjJZYXKwxesVFrLrkXIxGg8P/cC9FaWIiyIQgSyWIjP17nuLx+x8EPwdaQ9/g4s0bWTcxyX6lCOePM1kcomco9IF9UCrA0Spn2MMcStv0swCjNES8/xCz03Mcy+6naxkIz0Slisw0qKYdVp+3me2v3s4XPno73cPHkbFm2HRIxcBkXJAhRIIWCqlBmAZEKWSKxJF0rQSUQAroRwlq7jjT+5+BnAemibN+HY5t03p6L27Bgiwl7LcwhUGGxBQGprZIJeiTKz9KCzI1MD9/95/+GbfeeivatLn5f36A2/7mb7j8197GX//Bn1AcLuL7krzWeNJl556DzNs5kleMYa9bw9S+pyllKas2n8V4IY8goNluYxYLWLak5I5guSXqTx3hrI2jdNdt5NEHHyQojJALLYb8Im2nT2hqyFJcQ1Lw88h8iVhonulUGV+7ikaWsfgvD3Phli2sXzVOdXNGstSGux/AfG4R+hH4Prraw7v4DM5/+eUcfOAx4ocOMeQMsZQEsGmUl/3qm5n5zJfpHF3gv7/7PWy94GK8oQLtuEuWpiTdDitHK7RnWohmB8ew6E0UaYQRpBk5FDlTolONyhI8YZAz8yBMOr2YYs6hGfXpxyHDQ0NE7QZ5U5LzbBbnZikUfFrtHus3n8lTzx9lvtZiw9kXcKRZxfcFi7bJOdvO5s/v+hLXvewVbFm7hn/65Cep1mq85pqf4vzCmbjawkpSpr56Dz/z09fiuh7Vbkgvk8SZZN/hx6mdeI5rt07SmltizKuwlAX4jkU1DvBWTOAN5SlEw2TdDr1+iMwkRdMhESaxhJH1aznS73K4lrGOAvWHnoeiQf6lF9E9scSRdo3N+Y2k7ZRIJeSKRerVJYb8EqOJRrXaLMweZXzVME7eoql7RJaLaCvsLMNINc35LuvXjlEPe9z32c9TzJVpP7yPLOuTDo8xavj0lpoMj7iMFYvsf+RhRHEldq+F5bhYSFSqSWyTMAwwY40pU/SQ4ER1Ec/xycKYMW+IwMooSoukksO0oH/wBNI2KZguIlKYpoPIFEka4uZyJGmCYRiIb4revfzyy+n3+1x33XUvKvR85CMf4ZZbbjltvn2KXC7Hnj17gEFU8sc+9jHe/va3v6BdpVI53W6ZZZb54fGDMM7+Tmzbto1t27Zx2223sX379tMRR7fddtvpue8PSti54YYbuPXWW7n44ovZtm3b6TS2DRs2nPZKmpqa+pYF6h8Gy55IP4n86QtXYl7An3x/l316epo3vvGNTE1Nnb5pGo0G27Zt44477lgWkZb5seD9738/d955J+973/u+40rirl27+OxnP8vu3bt5/etfzw033PACD4VT7T784Q/z/PPPf0u7b/ZoAAamDVqztLjIWWeciW3bKDRBEn/H880EiJyJ2UoZyXx6jkXDVFz2Kzew60t3Ua6FFDsJNdllSNhEWlMtmJDB+oZCyZS5YkI+SZBK0DN9QnNwcoaCYgRuPBCsYqlJhMZUoIQiMRSG1kgFIjWInQJ9AQwVOe/K17D33rswdYTbq+FYOTJt0o0lOuiR0yGBTEnXj8J8HcKUISdP0O8RmRJsCTkDNORrIQaSlm2BKcGyWH3JNub2P4uvQLa7mFlCzrXpxwmO42ApA6E1iZC0XUgkBJZFfmQTV7zq5dzzqX8Ez+aSq17KxtWr+dTf/j1ptUbJdDC6EXU/4uW//jZ0q8/+v/8cOWFSzykyAaN9aJ57BkG5SJLFcPAohBmTlsd81OLMbefiOzZ7dj3Etb/2GzQteOT2f4CZLhQKEHbZ+vOv5ZmP72BNfoIlPUOWReQSE1tb2KlJLehgmjlEpYTKOxBWidpNiuUJlsIWxdVbaO+fARWQGxljvB9xxOgwFCnymUlLxbRXF2C8wvrhFfTuexovhb4FTq7EbLNGycsxHChmoyabRZ6qD7lUERmKtmOx6bqfoXZ8ltlnnsEzDIxeFzfNMHSKqRV11+bM//pfqC8ucOyuz3PdL/0iz049zuH77ke0e8h+RMWwiQmwXRthWSyGPRgqQBCRixSmUvRsTSYFsgUXiwpNUg6KDqbhYGxdT+QBnRrUJVQblHM+QRiTqAypwTUtzCyBJEOkMalW9FeMkqo+RAnrIhtPw7G4SVwyKeXy9I/XyFsTKJWgsggvN0gbVWhma1XGV29iZuY4q8vjVH1FmMzBmlHI23C4ih+4DEUCvxlxxEqJTRgtD5H0W8RRQKFUZLHRRguJOzLCr//ub/PwYw/wyNcfQoQZcSvENm3QEo1JJgbVDwtZRM6CTthBGIOV1JxXQAgDoRzILDKRoGSGRpBKSSYgyFIm1q9HOg5zzx1gYsu5zO89hD2xEhF3GDb7/NFv3IQpNX2vyKefX+KZWpeq7POaKy/j6Qe+zkX5Mq+/4EKyWh2hITEgliaJIcksm/ElTcF0OSYiPpUdITMVZ1cmOKuhaTRrHDACOp0Om0bHGA8lBctlvr7E12cPsuXSS1FZxkp3ksVHn2Xl5CTZSJ5/eugrPPPgg7zlzTfxib/4a2w9iI5Mgw4tPyN/6fnEvQjzcA3djUnyLvoV55IFS1zgjXPg7l2ESrH6zDM4f9tFHF84zrDjUpQ2TqdHkEJl1WqOdZv01ozQa3Qgjql4NvmZBYq2JI4jCq6BEZtIYZF5Pq2cRVcl+JU8QW2JImCqQVqvkgolIBMSZTgowyEIU1IlkDmPbhIxec4ZPPjUY6yujHHplnMZES7Hpg/TbDY568xzGImLPLDrc4yUXdJggVe88gqEITm6sEQkfKIM2itWc/TZfVy9di3V2WOEYUjb84hsh5Y0aIUBI64NcYQOelSEwFdQTg0SIVn0LdqO5HjeoNXu87reKORyfGWrS/e5GRb2HaTWnIW9jzNsjqPshEavhWfmKLk5zFaMlaQooejbKT1b07cFrBiHA3Os9UcxwhStNT2ZkAnwPA8rSbHTjLYDqZRMdCRWBo2cweGywNEm5Z4m6bQpSAedgbYs0pJLnPSwMgUyoGenaAEishGppBw59FaUoBHQHDFIkpDV3QwpQXdjDARxljIzP4cwDJAvPu69/PLLKZfLL7pI9M3cfvvtfOITnwDgLW95y79ave17bbfMMsv8x/Ji3qXfzuWXX/59fcb09DTXXHMN09PTL5j73nvvvT/Q6KCdO3fynve8h6mpKW644QY+9KEPUS6Xec973nNatLrjjjt+qBFJyyLSTyJ/9D2ISH/2g7nst9122+k80Q0bNvxQczOXWebHhVN3Xy8MqIwMI6XENi1E9t1XUjrdPuWRUeqtHm5lmDAMuOLlL+Whr3yZyVwOSynaaYJuhXiVEsdpkdt8JsV9s4Cm5seUwwQ7g77p0LcG4pShwY/BTQYiUmgMRCQrk2RCkRoKQysMBaa26BkmfQX588/mTa95E3/7x79PueIj2ydIlcT2y/QiSRb28AiI0fQdQEtM00aFMRJBKjQIPTDa1pDLBi9DwyaTEoQFSjM0NowlDPrNOutJGPTzAAAgAElEQVTtEmmc0vQF82Ebz7TJCYmXDiZ8AxFJkqusZHJykieffBLTMHBdF9M26QZ9Mp2iajUmRsZo6T6BSBHSYDgxsIP05MQRlISa67J205nUH3mG1eURqkGHqtGE9SVe++u/xcOfv5fq7r3Iq1+KqjW58a1v5/Z3vBNWTuCPlOhNP894P8Gqt+iUsoFwh0uSaEyrQNwPMS2HNOhTHh0mqB3DEtBRks2/+6usLI5z3wf/hive/AZmnnoapvaxIHs4iaaMTavfJThznMr6VQwZDtWde3Bth5ZMiZQkq5RQ3Q5rJiYZu3Qr+z+7k14O8v1BPmEiTWLpobsBOSlwhMBOB6IPKBCKumsyestNdFptGoemoboE8wuQaopeiSHboTdXRZRAJBkpgvK5Z7Hmsou472OfYKiR4WYp88UMEGxJV6BSzdH2PNLNk2aK2DYgZ/Lz/+9/5a47PoUxM0/z8AxokLk8Kk5wkpRCmuILSRFFFMbMVVy6IgEhKCy1GbFLLHkZHRFBkGDkK2S2hyccypikzSaBC4lrEjoONDvkh1fhp4KF+jGMq87m0mtfSqZCHvn7f8ae6TAqchi1kPZkiWbaw0pTnCym4vscP36C4bFx6mFE2uthjI2RmRG0OiAsPOliRhmCgVirT6bctB1QaULRtoj7PTxTYps2ShskmGSGjaNTBIMJdiYkGokyDRINQZYhLRMngjVpgb5nMzM/x8qCxzt/75d5fOYZHra7bLr2Z7GtEtO79/DSLWciw4AVGPhBQA6QWqKEIBUmhoZCZtEmYQSPThRwn93k4NwsF6zdzHA1RJbzhKbk+focJd9hVSelJGyaKmK2YHLg0FHOW3MGm0LJ4rhDRyWs7dv88998gse681z4y28iPVbjwL1fJ6rWyemEdGWFuLEI69ZAtcnKcy/g+MEDWBefw5WXX8r9/+uvKHdiavUal12/nfNecgm79z3BuF9ixPBw5tuUfY/ZE/OoVaM8NASt506wZe0GNmxYx4nP72LjOZsJsx5OdwkntSGTJIZDz3doJgGZqfANSUFrbJUhUKRi4HuVCgOkQZYKTGlgYVIIQaUZcdljrtdk+9WvwEklRjPAN2201MRAjCTWAX7BZ9eDX2bdhrVMrl5Jv98nSVLCICYcmyRpBGxw8pw4fAQlYppmQgREwsYxCzhZRJqFJCrANwRWpvATDdqgbdsEluB4QfLMiaP8J72G8STH7++9Z+BFd2SaM37uDRzc9QDmTA2ZJtz8u+/gf//1/0YqGE0N/F6MoRSBpWi7irYjefU7fp0v/eXfUU4NiFMKeY8sS7BNE9kPcdWpRQdQQuJkEqEhBqK8SyuJBpF6pRxDXbBSTWLZHE6a+DmLQpxhqZhqPiIyTAxRYv34WoLnFqkXLEZFjg2vvpS9Tz8J+6ZJs4iilugkJjMlx+bnECeXaCSDvuM038NQeJlllvnJ4MEHH/yuba688sofyGf9MOe+09PTp4WrHzbL6Ww/ifz7RvR9C8ui0TLLfA+cGtierByjTu5KUGCb2K6LbVkkze53PZSUEu3ZUHAJhQHa4uDjT+HHEMmQrk6xLI9AxXjChNXrOOfSS3nu2TkEaiDiqMFqsS0glYNN6oGQJPQ3zlcxmLQOhuffiJISGsQgnApDp+x9cgrI8ByTCBBCo0VKJiWpzEiURgtACUzLBqVRWqGlRABaD9QaiSIx9GDSgcLM5MnvyyALIuIswy8W6NVTwjCm7pgwOkRQr5O6eUytMJTC0GAqaLeXUGGXvNAQJfTbHbyCj+U7JJ0OjFcIpMIOFUG/j3QdenKQDpFLIJPQtEDEEbq6xOqcj50puv0Oxe0X0z60l+MHj1D9ygNgFymvGaf24G6sWEHZZ/yyc9mwdhW7544w5Nh0es1BFbPMILItVJYQF3OsOu88Zh/eTenMDTSqC1S8It1mjeGzzua5vXt5zh2CUp4tl1/GseefJ1MZSiekmUGcxfimTbcb0DyxSLMfkBeaUMcEUkFqYlkGURSy6cJziVdW6NmAObjudjaorKaDDo5pIOMUIUBoSSZPplGJQXrIsc9/EVwX6vWBx9HIKDnD5qxVa2kvLLGkFoi7PSquT9yPOfvcC9CVCojB781LFOgMpOSInRD4Gaxey4qRCU7MzEO9AeUh7n14N52RHK/f9lN87raPkWUKlQ6S+SKdobKITApAExMinNLATDfL8MoTBJnGWz1MmrcJFhbJ+ikUDYJNq7HHxmgfeB6z2iJpdvHXrmXyl26g0e5xlTfJHR/+ENnTz7J7bhaadeineGaePpq0ZGJXCtCKSFWKKwzm5+cZKQ/Ra3fJNCDNgRjc7oOXx8kgCyIcYQ7uv1MTW6EwK+PEzTqpNJGmTdjpMDRWIsoUiZYYngPBSRN8/Y1HSb/dpzI6SjC/iHRsTGHSVR3mYmD1OGkz4twt2yhsWM3jB75M0TZY4XgUR0YZQZPzfdwwIOx38Hz/5PPIQGgwM5DEtN0ETxlkScp4ocCxMMFPYLQ4TNs26NcaOCnkbA9H9HENiZUJhopFdD/C7KU0dUiaKxP1A2KV0eo30a7J48cO8LOveC17H30MEpd+O8E2LfB8hleuphZnXLL9amppTLjvMFUzj+jHiCzFAnQSMz83S2V8FB2kdMOQipvDyJnYjkRZEktoiokg19csHq8Sa4NjccRcdY5zSxZSSJTWKDl4DueKBardGgUvR7vZZMRxB9+34GQlPNAqxZUWKovRaYgbWxhC0k1j8qZABV2UMijZJlnQQ0uN7drEOgFDE5JgVkaopeArQbXZZOVwhUIhT5WEoUIOHaSkaYzpKkwRgwRHCawgxDM0iYZIGpimHkTlpIPnna1SdCopxpr1nodpGqR9DbMLsGIE2iEnjs5ApklNixySlZNrsUtl4n4P6dlk/RgDMJREKrAyk+nHn4FuQOrk0ELTSkPcnINt2gStNq7jEqkEQwNaEZiD74xIkUsUnTQjdU26MiLNUgrY+KUSpCk6TjAzjZdK7MwkFZLUUFx06SXcf+Dz9DttZMljxfgEJ+ZnaZkzIDKU0mSpRpgSdbInEnyTyesLQn+XWWaZn3T+I2Ni/r3nvrfddhs7duz4ru1uuOGGZWPtZX7AJN/D9mPA1NQUt9xyC5VK5bRHzIttGzdu5JZbbjltRLbMMj/KKAa2ZTEQ6BQ8m8iR9LLvfmMKDblymYal2PTGa8DJICcxw5RyKtCWoClD0ijBw8MwHPyVqzlQXaRrWUSGCZjYqYGTGrjp4BBWNhATTPXCTkFhoDHQmAg9EH1UlmAJMExBa26GR+/fiTPs04/b2HmJcjSxmRBZCZmVEtiDdBk30aggJI0ihGehpUIIjYnGzzTeybSayBwIG7ZS+JnCy2ImS8NYSIRtEpsuiZMnrlS46jdvgU2TJHlB0xlEDSAUgoQsa7E0e4gVeZcyirGch2+Y9JOQsZdfxk/9xttoqRae1qywPXJaEziD1D0/UeSSQUqYrzTpwiLzosOTVoMgF/GyCy+BownVv72XXN2BnqavY8j5/N0f/gkv+c+3sJBWWcxraC1wpHmceS/AwcKMQBkGuDZsXEnh5dvggjO56td/CVYMESnJRGUNtSPHufBXfpVtb34To296Azse+AqzT+xBSslQ3h+UEM8UrjCh3SWcmydpdnFsk8hUZA6sc0s4i20KboGg3uKBO3ZgaAWZohgphgNFJUwpeBrXiHHMFGmkKJkSGRBY0LUHv4XCbIPKsRqy1se2PDh0mM0rV6Gk4MDcLH3HANNCJhIVpHz+M3fxhfd9AJRFPjIpZiZ2OhAMg0TB5edx3e+9g5WrNsBslSFVQhysUvvYPVx19Xbu//IuslYLsoTX3Px2rrzpTbB+gmTcpzPqsDSkSa0SnWZ74OW1Zh2L/Zj5TPCq3/wdguExGFnBpb/1O4y95a1cfP6VrM0KjByPMef6jOfG6C22eO6uXSzd/TXu+NSnIFIUehYrjiecUbfZEuWJ+wGN9hKlN7ycN7/rHVz7cz+LtiT9OGRiYoJup4MtDYqOh+N6pItNcomHtRRTiEzK0hl85yhSIyayIgIrIS44eGefS78fgu1RdEok7QBLGXh+jmbUO3kHJhg6w1Yplo4ZzTnoVpMJP8cKzyMj4PiGlNHfuo7Sr/wUC0HI448eRHUMLtl8HhsWulx2qMWri6OU603s6iIybFMZ9slkRmoMIviklhgaEjPkaDlkrhTQcSPyhub8sZWs1DbtuSX+6RM72CCLnDu6npLpIjohTpgxmivSWWzyyvMuY701hF2SrJ9r8JLZHmuPNei06tBsoO/8Knf+wfvw1qzhF2/9bxhnrSFu1MBwaPT6rH31q/jMPV8iPDSNWU2ofuEhnG5MGgYUHIeJkTJh1KUXd4nI0ALiIGHPsX14IwWatUXGLYeXFFexKXRxeoLRNRuprRkjOW8DiyKi4wp6jiBwJUnOoh73GVm/munaPKltkAkGZu7IgfE3DMTvKCAvYdiSRDIgdhNaoktalkwd38fXnnuYZj6kkQ+p+xFtp4NpNFB2SkdHrN12MQ8dmWE2UhRXrGKpWeOLd/0z99+9AxHVMEWMFjFR1gbVwFB1immTkaCD3+2T64XYSYzKIuIsJJODSDU3TfGTlFWdkEsNh67T5aDbYqyXUDq4gG2N8NqrX8PYhk3g2Shl8Wfvfd/AoFxoTvTapCejiQwtMZWJmxjM3f8ko7lhSDSm5zCx9QwWojazUZPQhb4DLU8NFiKAugdVH3o25CKNoRWq4rPpDa8kXlOmVZRUzlzHha96GSBxUoNyYFIKDHKJgKhFtbVAmgWgIo4fnebuz32aZ5/YQ86E9GTqZ4gisw0SIOXbasb8By6kLrPMMj8aKKW+6/bjzqkqbTt37jwdCfXDZDmd7SeRd34PSzAf+NG+7FNTU1xzzTU0Gg1uuOGG7+ixND09zY4dOyiXyxw6dOhHwrF+mWW+BQ0IdTKYYCDTdDREAl71n38b9+xNrHAs7v6VX2Pt5EoW5mvkcwXqrQa+7TNUKdHpNSmUCxxv1QiVorhmHXGkCdsd/Fhh65jMikmNlL6dx/HXkizVUGaEJySxZ5CJjLG+g3uig+datPN9ajbE1Ta5BFYYRRqWJDElljIoCo+aYdLrdSiRkWV1Nq/bxGxjgUBInFyR6mIN1y/gqAQ7U9gqJZFg5n1iLWlVF8mRUamMcjhsYMZgZxJTK7Rp0M8SSoUC/XYLgNQYBKsUnDzdOCUdyrPisvNYv24VD+/8Mn6jixU65EolWp7mrMsu4pEv3YObK1KQORqdDqvP2MjM/HH8ToM079Pr9ZnYsJn56RmKnofOUvLDeVpCEeRzrBweZfaJxyCLcYQmn2jcRJAJSde2cRcarFmziseSOqwYhRPzjPvjmCeW6KoeOmfSziIcawwj0yhpYE0O06mdAA1mpChrQRpGuGWb5nyNYMX4oKpWZQzaClQMF29iyxVXsP9Tn4H1G6DVYWS0RG1mhgs2beLxL3wOMClmNoQZq6RPpz3HxOR6nm7MYuVsjEKeRslg5JzzWdo5xXDTgKJHO+ySiAyvkCPfCwGNlSlSA3qWgbFlC8NScvjrD4LKGPZzJyfQksgwAIkXRSAUmVCno5RM00ZmYhBglAmavZicX8KolGjlE3jZNkr9lPD2u1iDwfFJg34SIHPjqIIFnR5g84Y330heW3zhzs9SP7EAOQGOCVkEtkV501k05qsDT63iMFQXKbVrDPsFZsoGL3n9T8HEGF9731+CVSAX64GQZqqBt1ZogSswyJBRl6Kbox8n+CtW8cq33Mizx46xd9eXYamGpQVWkjJiuqRhgPI9MsekGrYH1ewKRa75mddy752fxo4grjUZLlWohS2wNEyMwPEOhpCMxhlR1KEhQ9yxUcJGA2d4krjVp1A6g9e945e4/b/8AcWCT7s2y+rSKHnpseHmN3PXxz5CudVns+3RjFOU5xNpTTMMyRdy9LoNJApRdGmYKfglVuVXYM01+c13vgN3OE/TjhmJDaJji9imSbK2TC/uk2sE5B2PRd9B4vDUwVmeMFLOXDXONVlC3epSwkD2U6K2JIptsE06fsq+oE4ajzMyUuS+Z7/KTaPrWG96NC3Fg1bMGjWKIW2s8Cgj7QAfFz83wm9+8P3Uwi6U8pjNHmssn+mwC29+HTz6DOs2bOTIvofBM5CLPYqJxmklhELh5WxUGtKNurzuhtciHItQANrBzEzs1GIhqbGiUII0Q5gu3YUmXqlAwxFkcYI9XMLxLeZn9nOGNUaSDlJ6n/MVZ111BXf88z+woTzJGfkSotMiB4yFBl4kyLTBc5tL7KGDqPV5TWcYurPois2JIRcpclx07avY31xgjT/EhiNN8okmFBG26aDiiEZuYLxvewUWeh3MiRXk2nC838YMuwxbLqO2z5OPPkreFHi2IEkiXMdBx4o2AmFIRBIyMVHm6OwMgS3wJ1ewuNTHtl0caWGRkoQJw7ky73///4BLzoCDR3nDK9/Mp6NnQErWrNzIsa/vhmadgm3hq5io00FqkMpAKpvYkDSSlFWlEWbbNTZccRHXveUNfPI970O2exiew+KwyWQ7wEvASyWRIUmlRDkSHUVoAflKkS2vex2PfObLyG5M34J4LI81V2O0p3CzhEOVlNCCYmJjeylRp4Ht5TB7LsqtUO+HXPfzr+fTf/eXDA9VsKMErTXTR45gWwOV2/iW/vY/pGdfZpllfkS47777vmubby588+PKKU/i6elp7r333h9qWttyOttPIj/+YitvfOMbAdizZ8/3dIPcdttt3HLLLdxyyy3ccccd/96nt8wy/2ZOpZQ5YhCNJPIlgnyJNjFmTtLv9zEcl8Q08K0ihilpdLoYnkmr1QSlsLTG7YbIUJOFGcrQJFIhUZhKw7rVnLt2G4d2P0rYW8JutgkMG2SCSgwUJsLJIYyQuN9ifO1KvGYCnYzQgX4aMpIbprPUp1v00aaJIQRpBkdnZxBDHmmcIeMQX1hInWKoQQoU2kYDJxZrjKyYwDZdZBqxUG9AfiCgCQ0GkijTYJjU2x3KboEg7KAzsJCDdAXLgLhHVfVRS3Nk/Q4yA9OR1NtLDJUmOPjIHgxlYkUa6QguuPQllFdOcvjAQcJ+wPDadfTiWeZ7XZCCMMtwghjd6JAIhW60EWs3Qr+LyOfxlULokMg00AzSe9ximW6qIJH4uSJyQxGjGaIE9NOYXNGDbsBQKySVg+gl2TSwUoFKUrJOAFYOX3g0e10Kbo4gzUDAyPpNdJ86RtjtQbfH6tWrid52I8dmj3P52ARf/+g/oGtVlvpd6AVIJ0eQRAxbeTzhYPgrmGnXcAwTEWuUAiZH8SqjOF4JV5gcnz+OPVJiw/rVHHl6H0Omi6EVmZREhiI0JBddcAn7vraL3Ng4OUB3mkgG8zGpJEryjYgMBqmPoDGVwkgH114oTd7K0840VKswPMbrfvbneObL93M0XyBIYnSaQj9GmBGinaKjGCzNyg2r+P/+11+R1ucprV1Na2EBtIQogV6P61/5KuyRcf7u//4gZ7z8lWwdHuaxD38Ish4iy3jk6w8SJX2YHINql3KoSM2EwErpaklR2QNfrqBLFnVo6pgsUQTPPc+dH7+dZPY4FGwo5bn60ssJWh0e+Je7yft57Cwj6ycUpE0oHPJegYmJFaw59zxmHtuHdHLUFpYYf9lFGBNl5h66D8bGyBbqdLsBJdMgcXL0ghBch6hag0zSDqrsuOdLYAhCCxgp0OwHxHGK1W3CuWdjHjzEXHWJWhhj+h7Cdokci07UwXAMTENyyWWX8MBT+6DawW39/+y9eZBl51nm+fu+s9/93twza1+kUmmpkkpLyVosa7OFJBtvMhgvgGm7mZnuYYgmrJnonqGBGKze6Lbb0BbYuHEb2xgwlrBkWZIlWbtUJalKVaq9KrMyK9d7b9717Of75o9bGGYGmmaGDmE5fxFf5I3MjBtv5lnuOe953ucxsDREhBjCQ0YpUpjYJY+8U+R0EmK4No4LxNAPYhzbYcvmC3lh+RT7Zqa5Zd1G8rHAtBRag4gFZJooy/DNFKfkslTPKOVcCsOjvHDgNcxN2zFGikjP4IGHH2HD+s28bWuVwJQoKVGOgVkpMV5bz+K5aTAznDhgfGSYRdOCdo9zs/Nsuvxypvc/TzGKqQkHXXTpEGIoDeen+gytcDTIVKFQaAZKmMrwKL1On7xpo9p98pU87dRHSAfTFah6nU49xTINzGQQaCiFoFKuDRqNUQyxwsVEycG4KZFCxoN9O8GgcsE24oUOwf4eW6Y2Mhsvs+z7XDg8xcJsnTNhg1dfeo1/vmUvuSwmEgaG7ZGFPomlqdoFZmfOMNNuYSnYbI9jFKqcOnGC0R07UaaJcBxUmoG2KBaKdP020jHRnkMQJYhuSNIJcJWgODzC6XaHJJ/n7MIyFjY7101StSsYfkZuapJk14UkjsvKyRms911OcnaO3NQIdrVEvLSEpTSR30abkAiJAThq4N9lGhLSBNMyqHdaPPL9Jyg5BRApoWGhXRPZDtBCIrTESSXCgH6myfIWZpKS+iFnXzmC3+5hIzEcm87cIpPKQKCIjYHvmpmZZN0IwwFNiA4VUlkYMXjSpRMnUCmjkT8cuzb0X2ke/eWH7BprrPFjxo+LJmbLli08+uijbN26lfvvv58vfOELb1ota+Nsb0V+xMfZ9u/fz5YtW/jMZz7z39xh/eQnP8mnP/3ptZG2Nf7Bov/q6VYPOvgecPCPv8WhL/0BT/7abyA2rGO+57Na9lhJ+oiRYXqeTbfkspL5JJaFMCSO49Brdwj63cFNvAJDS6Q2MTILOpodKs/QakIlkeS0BUrhXbyTC6++nGZO0yAiaGRYw+tZWq4zncbMuArfCmDYoW4HOJdu5IZPfhBGDOolQeWiC+mWHNo6RZkm/X5ALVckkwmRFROZKYGl6FsgRyus9Jv0Czar0iLKFX547skkdA2Jb2oyy0CMjrAapQi7TCYgluDrlCSNWbfnStKzcyw9/zLEGbY0aPW6WIUc52bOkDkOyjAxLYdmvc5wqUTRssGUTE5OMn/6BLg5fu5jH8V0XEwhMQ2DKIpQcURt40Yu27QJ3AJ5TFI/PN8MG4yyZBLmajn8nTupqRH6x7vI0W00L7mYhdSmWNpEey6GyY0oU6Idk0xCp98jCUOyJCZXLhJLTS8OMZSBhwv1HjgVPvG+n8Ja7UOsYXaRk9/5HuPdjPT7LzAcSbIzcxi+onF8lppdZtTMYQcpphbsX53n9XyPRdsnnyuTdGP6fozbkCw/fYhoZYVzySrVi9Zz7R034Y6VMcsOkZkRmRmxkZIYCkTGqVdfwV9ZIlht0muunDdRV5gqxdIZlsoG39MAkgyTVBgD42BDEhugTOiaiuHrr4TdF2Js3sEDv/KbnLz/6yRDeeZKkqrKsdkZobQa4Nb72AEQZHzuf/lnpDqDWgV33QgYAsvPKLRTNlslXvjGn/H79/5zCHqko3keOrmfs3oRVfaIGw2i4ycZ2n4hlaFhYKBo+wvvMUMrHBXirywDBlQmUJTIuSPUSjXyzRbFWhE6ATXD5sCh13nx0GswNkSvWqJpCtqOTdfxyNkO/cUVvvIvfo2zL71KMQHd6ZO3HCra4NKJDdSuu5Ht77yR6hUX45UGvkjD2sWod7nrfR/i3f/jP8bYsg425xi+cw+bfv4u5I5x8DKikoUqmpw6eZQrb7iBlWSFuW0lbv/c/0F3RNIxulz7Tz/Gzg+/m2y8SOQojvZb7Lj8cgojw/RVglnOU6xW6PR7lMtl+nGI8Gzm0x4HFs/y1KHXiExIs5hx1yXX7jLWbrO17xMfOoISktiQ9C1J2xU0CxK/7BDlLZRSDAuLXLfBI08/xA3bdyHyQ/QqI0RumVxmcsWd1zFccohM6BVc/IrLipORjZa4+u7bWPeOvaTjZY7QJSza7N16EUhJsjDLUL6AIVyMxCDIBDMlh2DEpelJeuU8drVCFGqSSGEqiaEVghQlI041lqmLjJbQRJ5F11Sooksz7tHTAUbRwClZuJ5NmEUQReQShbHUpPH8AcRiwAVd2LSaMtWHXAJ9U9CzJZlrYS51OPXtJ5l+5Gn6KuTkuWX62sMemiBb6HGBPcSEWyFutHH6CbIfo/MWadbDK5eRhTKLQYZVnuSK627lkUe+R80xqJkJF26eolLNsbi6SGRmdD1Bq2RyJuuzUnJZLroc1QFvxC0KG9ejlYmjPYJzXUYLw1i5AlfefDPH6gu8eugA3bBHu9fG73a4fPuFbNi2nddOHObSqc2ATevMAuNeBelrPOVQNMuYmYWVWRjKxsgMnFQwKWyMVpeSa9NZWuDkM0/TDtv07YyP/sovgt8iMgeqP99K6dspPUfRdDULvTaLeZfjvRaHjh2hMSRZGBUsGX2mYkUtzNAiI7QUE12Y6EpkZYhGL0IaLpmSWI5HFEU4huCVp56AIDxv+L/GGmus8Zf8OIyz/QXVapU9e/a86SNtxq/+6q/+6ptawRp//zzwL/9yQPxvWnf/6ptW3t/G5OQkH/vYx/7OEr1bb72Vj33sY/+dqlpjjf8f/PDJqB68zARSgSHg137r89zy0Y/SzrmMjw3RODoH4xXsa64kXelxzQ3X88Ff/AWefe15VCvEsU2kMEEJLGFgG4N4e4EcmAsjCXsZiy+/Qeb36QtFMefSKliM79xG88w5ukmING1KFFgNu3ziX3+GPdfdwL7XX6V267Xc8rMf4fi+l7E9D2/bFItHD4LK6BvgVcv4nTa5Sg2dKIrSoSt9tBgooZTUhKaAUh5tW9zxiZ/n5NkZdBRgxjFog0xKMsegtvdKrnn3e5je/xq4FdI4w6t4JLGPdl3QGTe9590ce+MN0IJKvkx3fpF1W7fQ6He5/Jab2bhzB9MnzhCGEaPlKvOzc5w9fQrblLRXFihOTBBlKRvWb+TkgUMQRmk8ca8AACAASURBVHhSoHWC5dn47T5H973CmFeAIKTseqRphhaDUS4lBfHGEUb3Xo+xfwFplRjfewWLecH6ddtZOniCq3/yJ5m8ajdzL+4jOW/+jCl57099CMtxWF5cIk0StCGIUkVeufTzebSQHD5wiPxyB8+Q+Dpi9Y2jzL56BLTB0ceewPHyJI0GNbdI2uqhgoiimyPOFP5wGffDt5NmPbrHFtk8vokoUYT1PkmosK/ezXgtz/LRA8zMnmKluYAhNUaWDLxKzvvhaKGIVzuoToupagUV+lhCnDc41wOTc62Rmf5hSlhiGChpnE+tEmihQQqKV+zm0vfeQT1NCKeXYboJuQK3/PIvcObcDOrEHKXAwEViaXCkCUJgjQyTLC1w2Y03cPHuXRx/5WWU0Oy85krmThxHhQmJlqjhCS697DKa52YIF+foLNXJjwwzccnFXLR7F0ceeQIwcTONlufH7kRG1utw0U03cst738/kxVewsNBBKYmbxBRUHzvsMVGs0WquonM2qW2S5Wze+Qs/T23rduZ7AUSKaHER1zBxSiVUEJN1eoyUKziWxcy5s5w6fJjg+AmaLx8iXFohMDStvElLxOjxYY6/+DLRbBOv7tOdGqa7epbWi6+wfniM1tkZ3F7KUCRYWphj6fUTmPkqaqlFd7GHkXmEnZSZh56kkFj4sw1GcqMsn5ih3lwhjmOyNMXKu6zfuomZc7M0mnUKbo4oCslsl2S0xLEzp9jolcknGiUUo45DNUxZt2mUay+7BDPMSIhJXE1PCI7ML7HSC/DThJpj4/Z9RvNFRnZuIDnXYmJiC9bQKPsOHcUteqwafYrNFiOGgyNtik6Rbj/k5PQ0z3/7QVLbJZlbBMcjDGN2XbqLE49/DzybhQP7yAmXYleAYdG7bAvlD99FeOQomRZk0mT9yBh5z8NUAi0HKpbUUDA6jlescPjIUaYmxtEGBCqlOFLEdgyiXpc4CshLEyuBQmogTRPDNrGjhD1j65gyLArLHaw0w/dMekWXvmuSIsj8lB0bN3PZlu3EWYjhVfArFY6qiAtaNqIT8tjRV3n/3XexsyMwDMExp0tBaIJEMCdBemPkKhMcOHaSCy7YxAad8Pprz7JhdJig18FyLDp+j8Vuk0YSo0p55oI+Yc5DVXKcmp1lojKMlQosr0BiOUy3WjjVIRaWVlhdqbNuZIic7WAoOHjkCGcXz9F+5nm2X7qHg888ATPzpJmmcXyaXKSxhUUURGSGRSpswEJgIrTAzhLMVNHJCUTJJfMjxgsl+klIXHY4u7yIE6c/NLaODQhM6GQBW995K7tvvpmO7ZAuNdi49xI2X3UJ88eOsLEvcJOE0BqYcZcjAZjc+As/x9EjByjaFqQGQruEscYyDLKgRTVnI1M18EADfumXfgnD+H9pkdZYY40fM06dOoXW+r+6tm7d+maX+ffGZz/7WTzPe1Pve9eUSG9FfsSVSH8d3/zmN7nnnnu47bbb/tp17733vtklrrHG3w0FogcsLVGOErpn5zn+7H4Kw1OgLSrjUwRtn9cOHObB7zwMQUJOOqRxRuD7A+NpJCLLEBoyIYilRSQdsDLCYZd2yaZTdahLDe02c6emWThxknwpT6e9ylzHp3zV1Ty1bz8Hj50ALWieXeTF734f5ur4h0/z6pe/NpAGrfbImzl+/uf+EdbEJJlnE5uCQCoECktpTK1xUrAUaD8CNLlCHhp1EBJDmWgx8BrCMLGHhzg4PQ3bt4LlYBTyBO3OYLTEklAu8MD998NCHSeGcGWVkdoQ9WaDYrnEvv37OTE7x/DWzRRGxgiiiG5jBRH0IehRKRfx+13UapPZU6coWQ6elLimgVYpRpbhxhEVBXGzjaNNOs0eaBOFOfAEAvAsTj73fYw85ETK0a/8F0whmV04AZtqHDpzjJf/05fQtgmWgeU6lKtV8u7gKXrc72G4NqkhsMplOgIyFOQdjGIB23MHT8mkxjMtzExjxSl733kbEQpKJTpJSqlSwysU8XXMauZz+Y03cdf1t3PBRz6Cc/E2Tq0sUusKlJLkr93NRe+6mXOvv4ZTLoBQEEfIMMDJFFamsM+bqjuZIp8G5GRKs7E0aEZIgTp/hTBQIKVooQZKMUMSS4NYWiRCEguBkgbK0Oz58J18//Ofo/vYU3B6EUIfVMzj3/0ezC7i5mv4pqBvZiSmJswiRJJi9APQFgf/5EEe/Defg3IFbtiFettO/OEcKovJxTHMLvKDf/87tB55mprKUfFceq02M4eO8P0/+BrYg1StyGBgjsxghLRnw4HZk/zhn3+LR/a/Ql9pQiFJTEG326BkKWi1GMsVaC0tEq/M427fyCOPPcTLP/g+F+zZw9s/9NMwVKaf+cRZjCbDKeXoqhDfUlieDaHPuisuJ3/9ZTBWQmtFJTUZSQuMtTX0U2ZaS8zrFhw+ztumLmK0rgmfOkDRN9hkl/GiiC25KqW5OsWFgAl3Hb2DZ8kv+owlNhvGNzP7xikQFouNNnZlCDINWhFZgiRnURiqcOONN/Lwtx+kWCySSnBicP2Md117E0PlIbx8njANWGktYTkpfrCI0H2cVOClEicxMJTk4j1XoGybOE6pKZvxREJjgZ1eAeVaWPkyfl9zw+13cnR5kRFpc8lF2ymSR/YEqpOSz0yu3LyDn3jne/BfPw1GHmEVsMtVvvP5fwMjRUY2TVC6+EKUn1CxcrjaQbVjRLHCzf/rp9l44w2kpsVqlBBpG3V+kEkJBSJm8exZWvNLjObLEAzSKdOuj4xTessNXC2ZKlTxfE1mmjiGgzIl5C3iJCRnGZwTXayRArHISA3BOVtxRAa80K+TSoHXiggX65wMFlkuOjTyeZY7HXKVKjsvuogPfvD9fOex79IgYjrs0BvO0xIJWaVMM5M88MTzBJnNUr3L/hdfwksD7rz+KvJxjKqvYvghSbvFNXuupNlscubMLBs3b2NufolaLDFXujhungXP4JD2+d2Xn+R4e5X23AqTmcM7t+6i2azj5V2CKECmKSyswvAo1uYRTK8CgeYff/zj4HfYvfcqLr32auTIMG3HoeNYtB2Dji3ouNAwIqKyRdfNiMI2Fw2NU1DgWibPPPwwI71Bsh8Mms5Sg6kVWA4TY5OksWBsdD2e57G87zCFhTay1SF0UnpuRiYUsSGZKdvMlC3emJ6mv9qFzCYKFDEmmTToBH2cLMPo9gfvv8Yaa6zxV/hxUiLdf//97N+//031Q4K1JtJbk79NhfQjdhzde++93HPPPf9NcYdrrPEPmf/boadBulCoVnn2iccHkfO5KmmSwVKD3lIDkoTWzCxvPPUMhBkqSREYOKYDSpNlCVpndIM+oVIY+SLKzUPSoxO26JsJ+A16puDmn/4ZLrviClCK9uwsdrlAdXKcofFRTv7gB7zywksQK5ieZ+W5fRTcCutljmFl4wYpQlkUMHnyu48jMOgvLqEsk3qvjSEtDC3xTIecaWOlGisDtGQ4XwLDgDQhUhlZej7mPJ9n8fAbNE+f5p4P/wx0W2RBAI4DSoFlQBKB60EGIkopeXkyNI7j0FhehjTh+ptvpn76DKmUxGmGVilR6GNLTZIkCKUxikUO7H+FJAwwtSALIwzDQCXxeVVOhmkY6DTDcTwQBpZtY9oWUkr2XHoprMzT7C8Rpx3IEtInnmTbDXugt4zfWkQWSig0URQhhKDb7vDs089QX14Z/P2A5dgEWYJ2LDAFN73v3TQOHWCp10K4FiQRQadF2qgjtCLIEhgqQRKS2Ca9JCRKEzJDYHgOWbvP6995gr07dxHFPm61REmbGMUc/bzk2NkzSC+HlaQQhBQcF5kq8qaDJUxUrHCkjfIjdBzimha2bWPnPZRhEqYZiQaEQZwmBGlMJjTFahXd8/GqVTZcsAPTdojThHK5jDdcAmlCqw8rDYb37oaxMu+7+72AQ2LAQtqjbysCMyOzQEiN9kOcOMUybFxhQb3N+LYLcHI5VKdDEviUch5SZ5Al4Ln0+11c18UQkryXhzABJLbj4CcRWAZKKdJEIcomdFsQBVx1281ccutNGCM1Wt0WpeEyzW4fTUa/24E0g2KJj3z4Z9h06WXQ63P84e/y1GOPMbp5HRRs4riPNAV+FiIKNp3OCqkNkLJhcoIrL7uM2tQEAKlpnt83BbbloZNoIENUsO+RJxm2cphhSpoqVuOQxHIIbYHhWvRsWAja7HzHddS9jCUz5Gy2irhkiuLbL2fk7uvZ+7Pvx7Qc3HwB1eswOjlBPp/nxLHj3H7rbURRhJvzGLY9nEhREBZJmLDS6tJJE0QhRz3soAsmma3JOTnMVGOmgrQb0lhp0uv0GRkaKGCcFIbKJbwgIRAJq6ur1HJFvv71rxNKQVW7pInibH2F/OQYXRPkUJlDZ06w++orB4bpcYR2LG750AcpXHcV6IyVlRXGx8cJAp/lqIEpTOj6XLJ+G09+7zEajQbrtm4lUQIrl0O6LkoaSGliGAbj1SoVx2OyNowVK9KuTy1XJO0FiDijaHmofsxoeQQME6SBPVSilcY4wxVWgi6NvGA2adM3NcqShFKjywU2XXM5Wc5FaAU6wyl7PPPCs+w7/DqX3XA95xrLNP0OZ2enueEdNyJqRVZFQigFq0nGUrfH1p0XEcUpcRix44ILIU3xLJP56Wmqbp7xcg0z0xRsl6jTZ6RcZfuGzazOLbJ1dJLpFw+we2w9KgppJD79okPt0gtYzUImqlXcIKEaai7Yspk0jtBaU84XKFseNNtsuHQHRpQgTJunnnwMHJNQpVz99utZ7nVRUQDFPMoUBEEHVXTxPYu5bgtyDoyOsjq3TNwNESm4dp5CAFpYxCnkvTyZH+AowVilyqEXX+aVZ57n+Guv02q2qQZw9sl9lLVJUraxRqv0o4C+H7Ka9ginhnjl+WcpD43gt/uY0mG10+OSq67EyRcG5+w4Qv54WJ+sscYafwf+NhXSj5Jn0mOPPca99977164rr7yST33qU1SrVT796U+/qXWuGWu/Fcne7AL+/lhdXeW+++5jz549PProo2vJa2v8aHI+LUYj0SiEON9O0pIo7NM7cRxW6lCo8NO/+D/x+7/z2/gP/wDy+YGxcDxoAtieR5KlCH1eIyMUCgmezej2bbQRRM0mn/jSl/ji//brMDPN23/tX/DUr38OEUPOMCjjEBDiCUWzO8/myrUQRqSrSwylkkYQYdoW+SDF9CPKfkbVsVFOiXPTCyyvrJJGbWq7LqF59CSFShllKCK/g6MNko5PPp8n7fjQjfnKb/0Whm2R9X2M8VGylSb5UoV+owm9NowOM3PoVXCBdg90gDNWI3Js7vjQPTz8e18BbVKQFjrNiKVGxwl5N0/fdnnsqWdgbIKwF3LNNVcy/drLxEEXlWQgDQw98E6RSmErMBVIPVBPCTIMMgQCsMmERGOgDUkQRBiWpFgrsyGIORIFRDYgM8YmaizVVyinEcgQwhi13IFcAdu2kRqSOGHmxClUlmGaFoZhEMcx0rOwDAklj+nlBcwrLyV+6RhdQyGmphjfYLNwao641yE3WSMXbcSXkC6sksWDBlwmU1IjZebFV4lFyrEDL0CnTZqaWNLDmCiy7YY9HH3sOUqhxsk0rp2n2/IpmjlWV7tY0sKtVDnXW6VULmOHfYI0RTkumBbtfkhteAS/18dUKdKykLbALVZYWVogf+EOfuKud7PvhecJe32K+Tydep0//Y1fh/kOnl1iYssmNt92LU++/Dz7H/wu5nIXv2BijNfoqQ5GNjDvdVIw4wxPWJhCQipoJgbp63O8vO8Fhsw8Rr9P1G+z86q9XH7HLRx4/VUOPvTHNJMMz7JJ/RCExZ133sVwtca3vvEN+vVlHEOQsz1aUg+kSZ1VWu0VNo6V8TeNcWbOYtlvUirZoD36rTZOuUDUD/nD3/osfrsLrQ4kmtGJKa59+7UcGylw9NmXQWlG103wgY9+mCeef4ZDjz2BWa3y3Df+jHVjkyQqobxzG1fe9A4e/+o3aXd6lIp5zFaHrBMQOR5xq8GZdkakU1TOItowil2qsmSnZDoEQ0KScKg7x/prdnBy/0uQRWx8152cPH0Mb+dFzFoCI0gIFxe46J03oU2ToNtnojLE5soQQRKjLPCX60xuGiXBRBsWvmnRdSS1WpVWvEhSyXNuucWwOwxdTVl6kLOo92K2XnABw8UywclpZDciqFg4yx1Km6p0njvD/ldf54PvuYPf3fcQFVXg6KmTtHImJ1qzFGoVorTOoXCJxScfRO7YxNvefTfPPPwgD88dpjY5BE93MUqScq4AYxU68wFx6nPXbR/gzz/zeTh1jF4YsuvOdxOudji8sMDWiVGyRCCSBEcb5ESGk8TYCtxMk2rwgxiv6GLnLdJEIEJB6lr0CgWanYC2gDmRMm4YGJZkebJAUfvUhEOvHzK6YTNhweN0u8dU3qbWSTB1zPB4nls+/B5ee+MUqwePsK5iEOUzikrgd1d54I3DNJtNNm66hpdOzHDzlVt57fARhMwIV5fJuZJd27dBqkkSTRCmGIZN0g8pemXq84usLw0hFOQTIEnYtW0H6IyFVgez7EK1QF6OMjd9lrC+ypRVZFgYtKSBIwWpHigOjVZAWxicSFdRS010x+fV7z0MnsP+A/uIshhMGNq1G7foEfg9toyMs+/h7yBHquRKZa742Q/y9Ne+QSm1yZKMyBOYuTy51YTZahEddcgFGSYGtoK43qS32MSySjjYGHYBs9GjaBgoy2Y+DZg+N8uW0S0sdPoYd95EtryMXO1jdRIK0iXFwJwYJ/I8kryHXmngpW/ap/gaa6zxD5i3ktLoscce47777vtrf1atVn/oA/xm3xOvKZHeiryFxtn2798PwBe+8IU3/WBZY43/z6hBIhmc7/EaGYgMUGQ6BhsoF0AJfv+7fwRKIM087/2V/wFjQw2ymPWpxrei8ybag5tvUCipKI0Ps23vHnpk0O/yrf/8h7DUALfIKy/uB23z4uNP89KjT1PQknLOIfbbFPKC/Q/8MXS7jCtNIQxxTYOUlCUiejkHWXboZz7dNCS1LZRtwdAId9xyB7nyEFaU0Wt3CfIlWtJEu3mkaVDwcqAz/JU56K2CpfnIr/zSQEHS6uBKG/wIFuZ58U/+CHoroANqhRxRvcnE1BSj42Ng2YPGT5SikpSeyNBJjJ1piFKax09Ar8dFV18NroWf+JiuxLIE8ryfj6EVplaYavDV0AqpB004LVKU1KQSUilIpEmQapQ08ApFFmbO8q0v/QFuPyGHYPPui3nHh9+HGB1j/5e/Tc4bh37GzvfdQaVURkUJlhJ4WpLDICdMzAzSOBlsu24HN+jD3Fmmn3man3z3exif2kjU7rH90t2s23wBFa+AoQXPP/gAWy65mF13vBMQOBl4CTjZwOg6aDcwSOHUWXIRmJ0OnSFJNDfN6T96CB5/mXwqUNog1QYRkr5hYAyP0rVd0uFhLrj5Jjr2wLA9FgLftOhrCW6OZhARCkHiFYgsi66OWOm3YGqKfmOVb37lK5w5fIRCdRQVZ6h+QO7EMlaSYjgppxff4PHf+fdk+/cx89JLTI4MoYIeVpJgZBpTnU930wqJRtqS2FSsZgFRllJ/8SAkBnGnj1fyWOm3OT5/kq989UscfOrxgVpNCkwkrpa4SvDqS/v4z1/8PTqtJlbORWuNiiWF0Yu497e/yN2//Cuc+PYf8di//U1OP/oAJTRSuLRjg6U0QBY9CoZJUQu8+TqVfkjZsMibks4bB/j2F7/I0WeeIY+kmMHy2bP8p8/+Bw4feI1cpYodJdgKlnWPnpnRPnSM+RdeZ9S3KXQEdiKIxwqM3r6Hj/2734At62F4mEuuezu7P/oRVK9Np1Li9g/dA1Jy01138c/u+1f4s/PMPvM8RqNPQdmc/PyX4eAMeylx5v6vUdImheEx2p0OtZFhbGlgJgozSLGRSAVurcyjLz/HNx9/hGONBn4uz3efe5mvPfBdCtUJDh88wb5DR3jk9KHB2F4QYFkOY1NTPH/sMA+9+AzOujG6hiSQOWbigJWZGUaKMD5is3jyELYfsZpILrjgaia37ORkvUFTZSyFXZg/R/34CdTBI/TaPhvveg/X3f1+ms+/Rl5XKJwL2P/9Z6EiiSZM2uscSmUXjpyBXkjOsHn2we+wEvqM7NjO2Siiqw1S6aFDMHWMFAFCBGiRkkrQrsVSELIYJqwqg9gtc6Te5KlzMywowXQQMN8LOHriFENulWJtDC0tVoIeFcPFne0QHj3HudlzrIQ+OokpRprcSofumdOMBAHXZhZa9dD5jEKny7iyaRoppxvL1KI8rzV9QidPqDWXbF3HeE4z5sFFGzeSphKvOErbsmk6NvNxRMeESAqyKCDpdignKaNxSids0klaVF2TiRC8Myts6sPdu69huFagL/qc7S2CH5D1Q9LAR8YJ5VhDHHPkhUdJVupsGZ/EVgmTroXodpg/dgzCiMmRGjdcu5dOfYUTbxzAqQ3BaoYRmZw8u0jtsiuxtEdLmiSTY1SvupykWCV/5VVkI6MsmpB4Nr0kwkwSxgyDWpRS8SOKbol+uUR3qMJKliBjGFm/ha6Q3PHxnyPvjrDp0msokOLEIUVl4GSSxUabV05N004UVmUYbdqs3bqsscYa/0/eSuNsn/nMZ/5GNVWz2eQLX/gCW7ZsebPLXDsTvyV5i42zAWsNpDXeQgwOQK0VKRnCFExt3siOPZdDmoIKQWXkDZPUk2SmAjJcpQlFhtASqQenbiUGK1Ipx8/OQKsJ69fRPHIS/BgS6L56EKKUqNVFtbpIIciyjCgOcEQGsU/Fc/GyjKTvEyYx6AQmazQdTYOQzLNIHIOUbBDzrqC+soJMFEacQamMNzZKBIicN/Bn0glIhTQNsigDldLRGdg2ZIqy6eIiMbQGvw9i0BxL/AA7X2Dh9OnBCGsUI/TgAkGYBsI2sQwTMoV0XKZ2XwHFEkcOHebo8ZMI08B0Bh4noBD6vPLovF+H1Odz8oRGC4U6v7T4y/9nsVIh8n06nQ6W51Gs1cjlisSdiF6qOLqyiO770MkoRgYIm1s//CGEOi+Z1hqpwTUsHNM6b6auEELg6YFKAsuCMMISkka9jiiWWTq3xKE3jhF2AzK/D4bJhg0bsG0btMTKJFbGwMtIKWzbpJf0wQ8o+Sllw6JrZ5AExAdPYHZiLGmipKAbRch8jiAZbIfUcxjavJ7hLZtRto0wDaI0Q5sO5AtgO1AuU96wkcwwyEwTmXNxaxVA423eSO3CHeB69Ls9TCEpejnWxyZmlhAbKcgYpGR04xaE0nTDDiXLJi8kTjpQINnn1UhaQCIhFprIElDOYV24le1v20tPZvRJMTxJ3GnB9Bx0fYzEGPiCaY2pBYaC+VOnwDQh55JmGXEcYxs2xJKv/t5/4cHf/TIEAaZnU/A8zCxDZwJh2kQChGUOGn5xRjFTyEaLtL6C7ffJqRhhGOB4OFpiZ5CTFslSHd1oYilIWj3G8kWSKEKiwTQ58szzdNsdyAaS+zTsMrs4z8LKMiPbthGstGgsrvC2q98GkaL5gxeZe+MkRiQ5evAQq40VpkaGcOKUYqYYTjRFbcNCm+ZLhyEQZEGEiWD+jTeo1+uUC0U828HQYJsWBoJApkxdvI3xC7dwZmWRqa3bKQ+PYlgelnQZKQ5x0UUXc7bfhIJLpFL6UcjMwjm2X7KT2ropTi7O0ROK4vA4WTGPX28wNlxm2/b1eCbs2rSdx1/ez9zsCqKbsrEyyqbqKPlUQD+Fpg+xwWsP/4CF108jOxEkglIk2VYex1GC9TddB3YCbsYf/9mfQrvNuJOHXoDhOtieSyeOMUtlUmliWi6OdIEMJTO00AO1nlSEKsOtVKitW0dk2vQAZ2SE0sYNrAQ9lO2SzxdYWWiQSw1EonC1iRACM86QjR6FUHDphReTLxbIOzYVz6OUguj1GbFMCo0OadRDiZSaaeLEKaWhKrff/i6MngbTpdH3MR0bUye4ZIioj1AZYRijhE2Wz7EUBMy1mpxrN6mMDmPaFo7j4AiBmcYYBZPEE6RhSD5ImEhNthol1rlFYhURmQp7pEDBdvFMG4lAZhoVxuQLedi5HcfL0W408dCoToscGk9rTGly5thxDr/yKlng055fIPN9jF6Cq01qtWEmxtcjtEmj0yUueqy/ahfzfo/C5k2wdRNpIUdqSbQhUDrFMSSWyjDTlDTNyG/egHfhBnxz0Ewtu0VWmk0u3LOHaMVn8egMIo1xNZBkoDV2rkhhZJjC1DqUaSJM50fxEnaNNdb478xbaZztR4W1JtJbkbeQEukvOq3333//m1zJGmv8fSHJECjbILMkWRywfuM6rrrhbZjb1/H2f/ILSJ1g9Xo8eN99UF8Az6CpwkFKlgKpJCBRwiSVEu05LHSaMDbE3n/0cZhfpWQUGR+e4p3v/ymIE+hHA2+MTCEtSWV4iG63D5lAdXp02g0kMWQBjJa45hMfJCzZxEWXVVuxamVsfftebrznJyGJeOTrX8dv1hF+j4tvuo6LL98FaYy2DHqk+GTUKlVUL4EcYMC37vs/IYnBsQnTBKEyirGiqk2KjkFmg68EcTeEIMWfXwEEpmnTs13UyBjRxDpM2yHqtFBpzLtvvQ3OzUO/TdhpIvyYsBPQtRyWciU6OY+e46ExEVqSCYOuZRJJB6EcNDaJNPDNQaS5bxlc9bbr2LhlGypR5B2XNNOEQczODRdw8unnOXjyFNd84ENUVI5kvouTG+ar3/429XqdguthJgrChF6vRxBHYFvEliSQGpFkxL02k4UqRClf+4+fI/LbaFvQPnqUoNNj99v2DkYYl5qcefYFXv76NxAqwVIZTqZwU4mZGVArARG4edKgg6lgsbWAXaywua/Y4ebx4z6pbZFpxa5bbmb0+r3ktm0l9VzOzM7xzIvPw/IimRJgSC55+/Xc8fGPQ67E9ne8mfjq+AAAIABJREFUi9s+9vOk0iAt5FAyR2K7jF2ykzs/+D5u/ol3QpxQcjxMBWEYUYx7qCgk7rfBMfi5n/3H3Ln7WnS/y2rQolLwiOp1irHCycDKBil4fQ09U9BzBWKkQO3CDXzgn36CE9EqerRKve+TmgIZp1jaoBQZXJg4kAzMecMkxNSavOfioKHTxnEt3GKeVhxAuTRIcTIMLCRmu4vbj8jFkpKRJwsFqbToxTG2NKg4OWj0GFIGFSVwohgzSfB6AZVI40YpIkrxEolIJGYkcbsxo5aL2Yu4UJdZFzmQada99xaCDUV6U3l6YcCEPURpKeTR3/49Vr73JHaakizX+e1f/GVsp0alOM7rX3mAqbZmdXaGL/6732R2+iRaZ5Tzg7omY4stMs/8M/vZkCuh0hDiGOnmOfjcizz17HPsP3SIpdUGnVaTqO9zePY0J2bOEMchp0+fYuHcLO1zSyTNDvXZBdy+YvXUIk898C2enDlFWKyQ2Xm6UvNnzzzOQw99i5lek5P9VZZ7PV47eZzX/vRhTr1+kDNnjzOUc5iIYXLnFp545UX0mWUuVSWMw3Oc/NaT5J1hNpQnINBw4CTxnzzOa5//KpxbgbhB2lphvFSmVqvAxBDv+eV/QrwwDYZGhH0qErLlZXQcYkqFXc1zdG6ak/PnaKysooQkkZLIgMiQJAZI2yJNU7IsIxUZqWdxsttmbnqW+dUmQaPO7qmNJMeP05s7R/D6aex2iJNKPGWSDyKMhRVWXnyVzpkZTh8/QWOxjuqkVFFs8WzyjVXskQIPPPV9OmfrOF2TP3/hVV5ZbCDtKhsvu5pjZ87Qqq/QWJwjT4rldxm2bQzLw3HydGKFOVwlKeV45fQJnnrxOWbOTLO6XKfdbtOOEuaCLi0VYyEpdWPG+xm1Rh+13KAT9ljRIa/MTzN9eoazc7P0Gh1kqlm1IKwWMUYmEYUSbcPAndiAqwpUE5dcT1NTkuD0HHOHDqPrdawgYSyz2TW2jajhc3rfUQ4/+TRLIiU3MU7cbPLcA99keOMk517ej0gS6Ddp+j6WkyNJBK0kJQgCdBLQa9TZcdu1XPr+26GSJ9dPEZ0Q07L57L/610QHDhEeOYnRC3AMkzCJybIMQ8fccPUerrv6Ctp+j8rIKCAR+i/VvWusscYaP+pKpMceewwhBEIMEkH+4vV/bd12221vas1Cr7Xm3nrcLf7233nwR2ezf+pTn+L+++/nk5/8JHv27PlrJXzVavVNd6lfY42/GcVf7dlnQFcppJSUJ8eRtQpjuy6lv/tishdfpPjkAbJGnTo59OUbGb3+apa/8mVG+gLEIH0qlhLfNEgMCaMV/uff/HX+w29/dpBs9voimJL8tg1M7djI8e88QiVQ5BKNJKVvp/Qtm523fYCDzz7FeBjQT/pMtSMWzJjVcZfJ970Lcd+DxESkhRyrQrHhlrezYetmnvnGH0EU4CUxtTBhYfMQ6sQSFeEhpUmrZKIU1FZT8qUisyMmUxfv4NzJacyGT9rpwmgJWl1qvkPZsFg1M1rrq9SGJ2kefIMxwyJpt/Ckybksgy3bKO+9FuuyXWS/9S8xVxdYGR1moraZ5cNH0E7KhpxHXE/IikWWRmqUfuan6fQWueWyK9j3v/9b9NISxnABe+9FLB2doXRiFW1k+HmTyasvZ/fea3jwK19lfW2M3vQMrfoSY6NVdG+JgufRihR9ZSEtj1tuv4MH/+RPMGyBUBlCQKoH/kP5GDIJLRXibpzkohuv49UnfgBBBFFEOcjwkkEseb0A5rW7uPujP8O3vvwNSGx2X3Ulr/35w0wstIk7i0RlkzCnKLfAjgSWVWKplCdyBfkNm5jKFzj+7AsUXRsR9jF0CigEmtiBvFdjqdNj8z0f5IyK2CIrnH7we2wIY9pWDz8KSTshev0QXHIh47uuwprcweyxs1ik3HjBBI9/4T/CuZirPvIBXv7eH1O+9hra33kIMpdqECPQRKZiSFmsBH1kvkTfkExu2MzK7Cx5rTCMiNiIQWcUUwgNh1Sa+IZD6vtgCnBNCNqUxtbRwYVmC9O1MbpNzCxBZglePo82BIkUtIKA4VIFFUdEjRYjhTJRFOGnCT1DISwbNTHM5E/eyvzBU6jZJTi5BDEYtsN4rUS31wTXoOP3AcGwXUCF8UAlZRgs9lcpDg8RCIXdag72hSTBLdYQqcBWgoIhyXRMpEKUaZIEBp6W9HWKvHwz7nCFc4eOsaFnkLR7WOUCoe6QphGGZSGEIE4Gyil1/lyh/y/23jzKjqu+9/3svWs6c58+3WrNlmTJgzxblonwxCBjwGbGhBCmJBebhPBW3k3eMknIC2R4sXOTd28SkhtI8ohxIIkdJmPAgwwe8YAlWZItW/PQUs/dZ6557/3+OMIXuMmCZBkI0J+1aq3+o7pqr1NVu6p+9f1+f0IS5DkIQ8+TGCSeltT7Eh+XSQ/EWI0kbyPbLchBOkVEpcz5l7+UA0cP0tn/HL4WuHGKVh6u7+FIBbkmT2KK1SJRHBPbjCTVuMohLzR4+cf+b772/94KJ9qwfgkjm89m7uFHYXIOojZ4NUrNmJFMcJI+uacgz1laX4Jdu5Tp1hTMxajhUXQ/pO4Uabam4YzlXPHOt/Pwn36Cs8+/iOee3k5lbgLfgFcs0HYd+lkGRnH1a67lvru+DAUF1lCJNUUtSH2XyBPEoxWwBuY6jAajzEY9cBQkMaO1OiKOSMII35MoJUiymJZ0sWdehD1yGJmE1GSKXxR0+h2U6+Bbj5IIaHdiVLmA9TRSCggTCjKgGWsi18dZtZpkbh9Fral6NaY2rwUqFJ+coOCOMPb772fvIw+wevXZVKeneObuOykuG8ObmaI4M0+QafIwRDZqdLKYRBWJSg7VdWOcvuY0nr73AUZil/Zci9gNoBJAfwF0ytLhEXoz07gFl9hziBwHaQbNDfxcksqY1IUVbYeSLLD/7BKoBF7ySobHcxYmT3DOB36BZ3/1oywXHoEvmFg4yIrhBsdNSFaDtd5KxGwHIwX9kRqzScTLfuv/4IFPfAqePgIqpfL2y+DTDzIqK0ROyuRwh+F+maHUJ1q6gtKrN3P003dQFQYvFEwNK2rrVtN+ag9LvSI6kBSzgSJx/xIJEsaaDkYMYgStgChLqQ3X0daw0GriOwrfCAqug+M4HB0fxxqDkPJU7uCA7+MpeJFFFvkJ4gtf+ML3XOeNb3zjD2Ek/zEOHz78gmDi5ptv/r66jq9bt44bbrjhBz20f5PFItJPIq/5Pm6fX/3xOezNZpPTTz+dZrP5b66zdetW7rvvvh/iqBZZ5PvHYhDI73jC7aca5SnKS5ehrcVdsYxMJ3D8ME4rYW1pCRNegf6Ws7j0mpfz5F/+T1bN95nK+oBEWjA4WAFetYYoFenPTEGjQbGV4g9XcYerzLSnEFHKcC/D1wCG0DV0PY+VL7uG8W2PUGu3SWoO5V6falDkYG8GVtbY2KkxuzCP9j26AjIpQQqQgmKe4OucYp5xsqggKEOzS706jO97LMzPU/Y8+lkCjSKnn30uh/aNkyy0QRiuvfk3+eqdd2Hu3U6jUMUtFbj6198Po3V2f+Mxjtz/NfK5BUZxCTPLrF+AWp3qhRfTufefGRaGfjBEolNe8/5f4p5PfgoTtmhctYULr3oF9//Fp3jNtW/jmRPPs6RS5Pg999PpLyCWVLjk/W/jkb/7R7wFgQhTkmLA0ksuwKuWOL7tAShUqOY5voQ8jykUPfpRSIqDdQKSWFOpDdGZnMT3B53nPM8h1oPgbsdA4kA6VIR+j7f9xq9z+//4K0gHWViFTFNNBt7ijg/R2DAbLryQAw89hVNdRp41IUuphIqGyoiLlgUbUkkdAnzmU4iHSpAbNl92BW6SsefxxyGJcKxG2RwjBwm0br1CvpAjVcCsEnDZJoa9IgsPPE6j06dQd5hvt6gM1dFjZebLAcSaje/6ACYRuFnKUtPivo//T2gDvmDttS9n9aplPHj77aiZDtVUI60hU4ZOksPIMEQRaAOVBm6UM5wbPJGRiwQtDLkryYWLFg6pdLl0y0vp91o8u2c3pCE2GBSYbvzw7/K3f3wz5STCxCEFK4nCBKEcrPSQjiJKIxzHoVgskiQR1lo8L0ApRRzHxP0YDFi/QKFcpZvnEHdhaQPqATiat7ztrYTjc9x/xxchTAiEg9CGQrnEVHt+IHuQBlbUoR8iIgcnsmSVAOolCGchTvCVR6OjSVNIig5ppUDWiQi8gDBPoVxARoOW98amaGuwWiOlpOC7hL3ud8wdjs2wAkJXYJE4Bqqpi9CCdtlhxXlnsu7Cc3jkk/9AlmSUaiP0k5R3fuD9HD18hG/cfy+VOKNgIVaWNNMYY1BC4ng+mbCEvT4EHmqkju6G0E/gNZfA/XsYrq9hIetxxdtex5pGg3/8nd+nUanQ7fYp45AUJe3lHpgYuWot5uFnWVIdpaUT0mHFmz7+37nzk59G/PMjrKDAMSJWXrWZE4f3s+mvP8y+nTtJ/uhWPM8jTVOyXKOCwqD7ZJqBlJSGqkT9NtZaFIKh3MU3gizJiKoBXWV440f/L+65/fOcu2Y9e556irzTRcYpBc/FJAna5ijPJfE9Ln3XL/LIJ/4WtGZJ0QWTYYzBQeFHAnKLt6TBke4M1geLxrUw7FVRlTonpqb59T/7M77yJ5+i1+oxTocbfu+3uOu2f2Ti6WcZLddg/RizCydZdvkWel/ZTT9toRxLVVlkp4eyhkwpuiUHKhXKUyFhGhGrGFkrY2bmqQ+N0lzocMX1byNbOUKiQyYOH2L6rnupVofQvS5S5zhaUkod/FyirGC8kpI4sCR08VUR3vtqjomY11z5Wp75l/uZajXJkiaMNnjNy6/gq7d+CqbmKfZScgzpkiFe846f49junSx89U5krcFEpHE2n0u+6zh0JaxfycZfuZ7n/8enMfPjBEmEHYb6dIo1LtOrRpCvvxxz610M9yOGKHG4ZsGVVEPLSA6xYyhkUEkNBxsD9Vij77xgLQaQrkOr2wEhqFQq5Dod5KlJgZSSkydPvlBA+l/328Ui0iKL/LTxuc997nuu8+Y3v/mHMJKfHha7s/0k8p9bsffv5uqrr6bZbHLTTTexdevWf3WdxcykRf6z8x0PthYcBApwrUDHKflCG1rz4LhIElAMCjDNFtt37QZjSbQhc8zg/w0okyOMhG4PmyR4ToCXakrSkkc9RNdCGOEbEKcmhsHDuUQLwbED+yg6Lr7y6Jqc0FOMWIeKKNDNJP1T9jRtDYF0EblB60FbatcOMoysAILKIOtI9QiVIF9oEVhJaBJS32AX5pk+cAiRuoP5yfeYmJ/n4isv56lHn8P6AbG1TDfnwYcNF53HrrvuRAlDHIV4wqGiHbrNOTo7nqJQLuHoHD9TJCN1xjaegXVdENAeqXDC0xCH7Lz/PqbaJ4iXjeH4ILQgJWXf009Dv4+v/VP5KZap40dASqhXkbGhEPjIPCXXKdavkqY5QvlI6VKqKMJeF8eVuNZibI7INYrBGHIpSR0xsO5Zw7Z7tkGcodwC2oQvfGUXdpAJFJ2c44TZC70cX6TkKoelY2RHF+j1YjIjMD44bgErHGI0Ky44j4mnnuXo3n2oLMdFkp36JmS+7Yv8dHOeWlKkqBUFt0B08CgLeQi2T4+ceuzgJxocxeaLLuTuJx6F2LD3kYc5+9xL2PPNJ5lOFqDbxQ8aJN0mtt3meLcJU5NIGQDfUj4xOCnyEMoB1Edgch5QCGtQp64DLQS5UKe64QmkhXM2bGD3ju0QpxRcl8RAXvJptubQ7Xm065LEMY7ycF0f5XgItwB5Bk6AVoJQCmLfo1QqsTA5DVGKIx3GKkN4iSXxA5phDCUfChU2XLGF08/dwN2f/yfK1SFC5l54edUSBnFdHUStRG20QVenDJ27nvndexBhDv2EDZs3UjpjBU8f2gl7niXPJW6ckDsOibIYz2dISlSsCbOY0UvPI1no0Tt4Ak/6JFmKkgqpBDkSKwZWHfkdAYYGaSVGDH5jLXMsitxkjE+c4Oq3XMve4WGmp6bRDEKUH77/QdIohCgj7vcHWU6Bi1IDe6i1gtRCZC34PjRGKY6N0G0dwh0eJlMeyzdvJnp2HKKE5x59Arv6NArAkHEAiScEM1EI1Qq0Wlxy3at4ascxyrnFM4oTCyHRiRn05AxUHHrVOiQuJ44dg16bI7v20tt3BJCoSoVasUTcapNFCcVykWZrnqFSER32kRZyNTjTyBlYIUmwfYdu3SM4bYyInPM2XUAY93n20cdwPYdeGuNisVKSZympNTz/7NOQR6AtWS4GdXHlQS5QRmCMoRuF5BiCagXPc+icnCR0Da7JIQ6ZW5hmIs6pj62GmX18c8ceZscnIElwVIeFXScgEEx+7X5Guj7KtfR7fXQg0daQC0HqOqSVIivOPoOFo49TL5aYjELM1CwoQbPTRA0Nsf6ijbRrJebnZhkbHuHuL38NJV2E42F0jmTQKECeUrwqcpSVWCBVcOm55+A0p0h6bXTUZ6jgoc65iGZJEy6vwMoq9DuEYczSxlKm2i3E6qWMehtpPvBFikrjK0iOHYegADKA8Un23nk3l1z7WvY+fg/xc/spJBlKayJjoVFk1dkbWKiVCZJ8cOCEgCSlWhxCL/QGqlkG9zI/Ny9MWoPz/9SZn+VUCyWsAJ3nSGMRQgyKrxYynQ8yz76NxQLSIov89PHjrolpNpsvNJP6flm3bt2PNGB7sYj0k8iPUebR92L79u1s376dm2++mZtuuulHPZxFFvkP8Z1mNsCCLyQYCLQYCFRm29g4xxYSPF8QiwSEgzptNbVanYVkEMJK0Z5qWw+eNoOcnygC5VAMfHTYo+B75Lkh7s1TEhYlHIRQaCnRAowYZCqV16/BnXoGN5PkFuzqZXC4zWjiQuoym4TEDgghKWhDRYOyApnpQecjAV1PQU/D2mE2vPLlHPjcnTj9kABFx9NQK1CZjjAL85Q3XEyaGoyCnX/zD5TOPRc0NOMEayLu/eLtUKkwumIlxH2slIRpj+FCiaWFAqrdJlwIEYFgLowIhkaobNrE3//drdDtQWMJS5euYN9jT8KWSwmjDnSXMjszDf1Z1l95BQe/+Tizjz7DEl2jGqWYUsCCr2gtzEKjwQ2/9kE+8fu3kGcGoXOUzZls98AIGktGmT82TlAt40oDUqPyDE8KsiTF8QQGSexIcB0YqrDywis4cd+DVP0yZqFLXuCUimwg6nIMkFuqRhF5BbSE8pvewHkXX8Dzf/jXVISgS0zgePTiHKsEDBVZt2UTvd37mB0/hqscfE9hPYfIZFghseLU7f2qi7APn6QwF1FPNLPL1zLrz1B569V0b/0iTISMyBIHkzYlV8F8C+IEDu4nqS/hyvPP4aE/+yOGPIVKY/yCx8lHHyMzKdIPcJN0EFIOKGugMQxas2bLFjasWcd9f3crCDDSkkiIlUMiLZHnI81AUecaeOz+r3H04AECA3mS4BZ98jjl9v/2x3jKoRoE9JL0VAC2Sz/JUK5izPWZby2gPQ/qNei16SYhV/zCe+g8d4TDu5+h3e3QJ8HaItSK/OJHf5PHtz/N+JHDHPjSVwiCCrf+8m+D5wwUD6UyWZJiBVglufZ1r+O8TRfxhbu/zPkbN3PcDHPiazswdEmOzbNs+QrWVFZwUh9hiZaUkhBTdgmUJWq3KcYO5A4jxTKetdRWraAzOU8cSy7e8lJmJyeZnZkgMxlaqEHYPAbxLWOblQT5YOIQVuAoQSxSyDXmRIcv3voPKKFASGKdQ6HIse27UIUiRevil6tICf20h5AOYNDCI8aCV4CyDxpe9+7/gm62+OKf/inZswdYc+HlPLvjOYIwZu7oMR7ZvZtGfQlTzRkMGuWWKaxYzhUf/g3uvfdOTnRbGGvo9eapeTWqssLTv/ZnkHXZ9Knf5ejECfiHu+HQJOKKzSz8zVfg5BwUiqgNZ7Bh49ks7NzL0aeeopnO4wcBaaeFn2b4xYBcChCDAl+qYGXlNE7KBKIW//S7vw8np9m7exe9VhPHcbD9BBcHTwzmKouDtZa5Rx7E94v4gDGW2PHwgoC4l5B7HgVH0u+2qI7UOOOc8znrvLP5509/hiQchES7jTq3fuzPWXn1m9F+BZ7s8FxnmszNqXkBhbkevh9TsR6NKGK+2yF2UmqNGte+4Tpu/6c7KJbKOKVB8f28LZfxyP078AQsqwwzNTeF67mknT6yXOXh+7bREoq5x3ZwyZWvgDRALYQkvS6youj4lo6fIa3A0xZlNL62pE5O6hsevu8+Fo4d5pDyUalDrVyhfeIg8pXn8OAffRQmF/jtv7iVP/3Yx5g6PkOxtoRdkxOcfPBuCAT+ZBO3Nkwy14bc8KZffAeff/hevPPPYfsze1i2Zg1TB8cxWQSOwHUcWFggPjpOONdExDGJJzjj0pcw11qgu2+KYlCg7WsyYSinp4pI3/YFVJz6QGGyHNd10dZiswwU2FM5V2hDkqW43qCI9O0faRYrSYss8tPFf/bMo+/F9u3b/90ZRzfddBM333zzD2hE35vFYO2fRPLvY/kx4VsWtuuvv/5HPJJFFnkRsYCCXjsk7oeU/QKECaNWEYhBh6p2GuKUS2y97HJGiiVotyl4PsVI4PU1hUzi5BaRZShHIDwQgUCWFO20h85TTBixzC8j4wSUJHckidUIY3GE5LrrXktzdppitQ69lCuvfyuplKQmIQhzQp1gSi5aZPR0TGIStNRomZM4g5yWrufgFcus27iRzVt+Bhp1im6RwPMHhZQkJhCC3Gi2vu/teIFLoIEe9B/YQSmT2F7I2re+Gq7axNDoMmbvfQhPeLhxSqVWwfiW6e4MuZfglnNcYaiNjbHxzddwwdozYLoLhSJMzFF6/BiVwyGvfPVrKV1wNviFgT3nsiu56L2/CLUR8BvMtDVhUKaf5RQKBcg1fqnAs3ueIfBc2u02Ok2JogyilAuvfBkXbb4UdErc71IpF8jzlCjL6CYDxZaQhtxkOEEAtSHWX34FV73y6kEntiTBJ6cYa2SSk1pNgiFzBJXhOtPzMzBa5i0f/a/0jh3gsR3bafd7TLfn8H0fjcWvlkis5twrruThbffRj0MwGY3VY5x56QX0fYhLimyoRGpzUt/h9W9/D+lIg+NSMKFcznjJBbBiJS8561yI+hxruBwsGyj43PPlryA7feqNJdBpcc761RzYsxNch7TdJezOEbfnKPQjSkmGHycYYenplExqHMdB9A1kkpO7nucbd98LUpCFXUKRM+tZzOkrCCs+Z1x6GdoPcEoVPM/j6IFD+EJRKRQplSrk/ZRqaFjqVCn2c7zcErgeC3FE3zFQVtz4Rx+m4+TogmLFBRvZ8nNvg1oZqiWO6pRdu75JV0c4jQp2ZRXoggr5/+74NHu//CW6z+1HOVXGuoLTdI2gnzHmlVG9hLJV6E6Iygxfvf1z/NGHfofnHnqMr/7J3/HcXQ8SGsNJlbGQZTx+/6OceOBpCpGD65eZLDjMxSFDuUtxOqJYrREXHXKtiZ7cx8FtD0MW4VYrPH/gINV6nWK5guMMCn/fUkMJC54KEJlAhYZK7rKsWEcZicgNZdfHVx6zu59n6tgJglp9MLkIkMUqQ0GZRrlOZAyzvfYLhd9YZ+RYvKAIfgGnUuUtv/wBPvPf/pR//uTfUwgTmGnxjXu+Qpz1cF0LSRtWN5hfVaU3Nko0VmJC94imZnhm2+Ow+ygTn/hHhip1YuGQjxVIllUR/YRyAvu//jhm/wRLmgLV0rzvl98PUYyq1EF6rN36Mq5677s4Ob+AI3zwPRKlCbOMtfWleBoqMQxFgy5+MyVY+d7XMC66gEYc7QMFHv/SPZzYuQevG1HKYFj4FHOF08spi4BiqHHmQ5YZF6+TkGlJVqlwzbvfTVIuMOdY8kaZklckn22zf9de9jy5i4Is4OYC0+xRCnMKnT6qdYz2wcdgYi81EUPZo19U9Fcvp7/qdOYociwVqGGXJMhopi0e2/EYBd8l64dk8x04Ps/uux7izPM2Mnmq62NDuFQTw1ChgjPfZfqRncx98SFcWeKpu+6hJgsE1mHJ0DCO46AqPnKkSkJMlxid5ZSkS1On9APJwo7dsBBy3Vvfhh4/QjR1ErX3EPHntsHJHOIat3zwN4k9l6GLziE8cZxLNmzk7Nf/LNTX4FZWkqsSShWo65Qnn/gyHNvBllEXu+cxJp7Yi8okkRQ0ZYoVBr+dM/33X2EkVWSBYt7PuPTarWy8Ygth4JMuGSZc1mDWRsw4GbP9JrLoMtOcRwUeickH4dpY8jzH5ppKsYRSCsdzCWplyvUahVKZ7Nvl9z/eYoRFFlnkP8iPe7D2pk2buO+++15YvlUcqtfr3HTTTdx33318/OMff8GRc8MNN/xI85BgsYj0k4n+PpYXmQ996EPccsstL/6GT/Hvlfgtssh/ak69JObGkBlNNw4plctIqdCORHqnvpznGfMnJ6gHBSiXiaIIaSWVUhWrwVqBEOqF1vRaQi4tqeeQAlK5ZHGK7xVIdU6GwZyyUTnGsP2JJxFrVhDnmsKKVWgpyT2XBEMaxQTlImdu2QLVEiiL9QQZ+WBf38qtkAzCgOOUmWMnYG4ejUWLgeIGA9iBAurJZ3YQhz1UmlE1kmIOZSvwrWWh22T1utMoWYGSLkWrUFaQak1fa1TRBV8iXEl7rkU/7FJcMoSbWzh68pSsx6H1zAGi/ccZLpaZfG4/TLVg6TrOu/KVbD98FIIiq664Cgou4XCZ4VUr6HQ64CiSuQWOnxgnjmJ838fx/cGB8jw6rTaTJ06C5+I6DnmeEpSK4LngOWQChCOwaNIwpDoygqs8nt+7D/Icx5G40kFZUEJipUArQYbBOhIciRwZYiLrQbsFSYLp9/GFi3AUQknCMETHMWtWrYQsG/zARZ9lq1dSHKoiCz64ipdf86qBxUhrvnT4KPE1AAAgAElEQVTbZ4mTmHz5CK3lRXaPH4Ltz/HsF7ZBsUI2VoFlVXB9siTHMxYZZZAmPPD1+5nctxfH8yi4DqVqhXJQwBcCmWXkSTr43T2H1FjSJKfsBdCLyKZn6Y+fgDwHOzgfcl9RWTlG+YzT8evDg9wbIZASKuUixmjCMCTJM4rlMpVCiajZoeB4ZHFCFEWABiUgT3lq99OgBqqvTthnYm4W1q6FapXxp3dCfQikoDU/A90uztrTOf8113LxpouhUgGl0Bbmux36JqZRGsK1ApEbHCuolcoUpIPMDTI3OMLBsYYoimipnPJFZ7HyonMYWbeGoFSlg+HozDT94SoRCpk7rBlaSl8IusKQWEMphapTANchC/voNKHTbPLSn3kJ3YUF4NR1w2AO0EqRK5fAL6NQxP2YOEoxUtFr9lHa0gjKCOUNJhalWHb2RtatWYNONb1eD1kqQKmIdRXSdfB8HyEEWRojrSHvdpgaPz7w7+X5wCqbW7AaIzS9sANCgwkZfunFXPLaV5CHTSgN7KkT39wNsz3OfcPbSPsRBIqpqEXSXSCu+fTJ6G57kuaXH0HPtADNI1++FzyFzkKWX3ctzxw/wmfvv5deFNGPIjgVDl9oVDnRnEKZQQCzr08pkRxw1o4h162AoSHK7ZRSCoE2BPlgXU+DjhKEsUgkGItNDcPKRUcJOjNI1yPPc4LRERgdgoLD5PQkOkkpKJdeq8vkyUm6rc5ABWbANQZf58w/+g2yZ/dC1qP3/H44eozTNl9If3kdjYRimXjpMH2d4pYKOGWf6blpsBqRGwo5yBScdkQ/CsGVSKOReY5rBb6xuNpQMQrf5GT9Dixt0NYhqcmI05QoDLGxRqUatKAQlPE8jziMcao11ly2BcZWAg5L6g3U8jF0FOHHKTQTKrnLUCpQGaxct46hJUtg+VKe+cYThAtdOOtiMu2jhUJqQdrvMDd3AnTI4W8+ClkMuPjSH1xPjgAlCLoxpWaMl1ms5yBqJb65aycnZ2fJtGbk9DXQb0Gjiin5lIeHyPIcNxgUzF3Pw/N9pBqcs0ZAr9fDGEOcZ7T7PXJryNDIU0a+RRZZ5KcXa+33XF5Mms3mi/ruW6/X2bp16wvLHXfcQb1e56mnnuLmm29m69at3HDDDdx3333ccMMNfOITn+Dw4cMvyr7/oywWkX4S+SEXkX6QBaStW7eyadMmPvShD7Ft27YfyD4WWeQHzf820Q6yWyk3yrzqTa/DZjE919IMHFJliX0HLaAhXJ664/M8ceeXwKYYkdPLDC0t6BiLU63T1QaNc8qiBsIq7NgyOoUKDI8RppIozkmARAFSDNRLUcqBL32Fc99wNZP9HipT3Pvp2zlmM/J6g1QZTJZzzlnnDNQ8SmB8Se5oUmfQMUoAaAchDWZigme/eh8kmqTo0Hclfu5QjFxy6ZJJh8N33I5KY2zYpexJStJStJoRz6W9YyfLlMvcrt04nQ4qM7jSJQZaeUYkFVopep0265aPUcTy0D/extc/+1mqow1ot5B5yohwGLaSO/7g/4FDk/hNgRzvMfPMEaYXOpReex0jZ26As5Zxze/9Gue+4kr6cQrVOngFxidn8CtD4BaJUoNfKhJ4AZOHjrB3+xNUAp+CB1pndPsdsnIFNTpG4hex0uIHAY7j0jk2TW+qxfaHn4CgSCcNyX2BkRbhKlJfkbqCzOhBkcLx8IsFHtr5JBvf8XO85/rrKQ6ViG1Cs98kDJvUqyXKgcvDn78Tjk8MQnWtpdtusW/fPsz0FKSaWmUIegnkAvvEYchyOO80xj70Tja+4meQB9sU7tpJI1KsufHNXPXxP+CKd76LNBMMqRK61YM4ppclvOmDv0ze72GCgLm0S98OVAEFt4Dv+KTSJfMLaL8AwqPbi3jJ1mso1IdRrktVCjyd4WLBWpxyhSWnrePgzDznv+yVXP6KVxBnKa3OAtYVqLJP7Ara0nJ8ZhbZGEWWK8x2OtRqNcgyCr4LrsOTd91Fb2ESkh7dE8cJZ+Z5w/XvgKWruOatPwvtJk7RReU5jY4hGJ9nz533seueB3n5W66nfOYGGPLpNTzmAktLZC+8yGYY2r0uaZpS8QvUvAIiTOmYmLwRoJd49IagtbbBxre/nl7V48JfeBfn/cr7SMtFqK9gzvr0Kg1Oxn2SSoF4qEivF1LSFj/VyLSHZyJOHN7L3p1P0GhUUVa/kF9mkfQKRfqVKrOZJrQO80lGx5Hk5RKV+jBFt4TtxigkcZQQnL6Wyf37eN2b3kx1aJhemtKzGSObzyMTll7UJ9UGYTW+MQRZBDNT7PjKlyGLoLUAwlDKchApRuZUpYRahZVvvI4FR/PEzqdhtIZT8gdF4sMTIMqsG1pK2OlgfEnU7wCal/zqO7DrlrL0eMLojGY+bWEvXMeBL34dZhegWuSqq18BWYcDD949KDoKhw2vu46Vb3gtURJTUDVAok61ddcCUPBPt30SMzMFRlPCoZTllFNDMTP42uAYQxyGICSZo+gkCRGG4RXLyXwfUyqz+ZproNXkU5//LG9//42IkSpBtYiyhqJfwOIwM9vEugFGSKQ1KJsT6IyLT/S4dCaiIHLKT+1jaW0p7rkrednv/58wNAzDDa7+yz+kWh8iTTKSNCeJosH8m8YU04zhzBAdPsbR8aN4gYuT5cg0RVlD7lisKzAmZwgfVpS48levh+Vl4rJD18RU/AJ1fLyZhGrkUexIKsNLcFSRS171KrJlY2w460JIHT7zyc+gWy3SZpNGpUa1Z1i9Yg1x4JMoiE/MM777echiDt1+B8c+dxdrzziPYibRWuPmmkbJG3RYXFJh9smdlNwCldM3MLJ0Ba50SHROahOqnssSLSgiBxltecKKFSs4d+M50O5z3pbLYO1qOOcMOg4MjQ7T6neQlQKqXKCVhDjFAKMEuTV4hQC3EOAEPlqC8j2SPOP+B77+rz/SLiqSFlnkp4ofthLplltu4ZZbbvmBZBJ9e5TLv7b9m2++mXq9zh133PGi7/vfg/rIRz7ykR/pCBZ58fnrj/JCJue/tdzwkRdlV9u3b+c973kPW7du5eMf//iLss3v3v5dd93F3r17ue222/jzP/9ztm3bxm233fYdy969e//N0O1FFvnRYxHfkh+dyucIrWGq3eK2z93ByW4Law15YxjWjMDMDOQCWinGczEnjoOTkSYJ/kt/hl/4r7/GM4cO0e33cVwPmUPBSsq4+LlgIYtxVq6lu9Ch7JXIBOiSj3YEIs2oWktRenS0YWHjKuTBWUhyShecRdyeJZYGbRKq2mHnI49DNwQhkGh8VyG1wdGSIBcEuSJKe5jpOeLxCWrVGu24Q1rwqMWScqrouw65lBRxqWWGRMc0aRGWJF6cUHYV/U6HY8/vpRhlKAS5O8hwCo1BSAeTGzzrDbKFul1IEuLcwSYhw2tWcNqKpdi0x9GsRT8wnH71y2k+9yRnOBXEwgIzrVlWr1rO2cMNHv/rv4V+l/mwxfMPfRO3UCFNExgd45VXX8OBrz9CfXgUhMBgIbM4RlOQApP0QGekJsepN/jZ992IUx9m4uB+XF/T78UUnBJZN6cz3+TizZcy1ZzFZBFu0SXRmr4avCAaJahJD7+rGVIFOt0IfeIks1GXXQ89RHGqiUtMXybYkqI3OU9ZKAgTculSSXIcbZidniKPUtxiGU+6HNz1LE6uaJSHKZ17IasvvxIR+MzcfRcnJ6cJDs0wrAVuOaC9osrzX72bkeVnMfnAo4zIgCAo06oUYbjK2Lq1HNv5NHF7AWpFhHTQYUQhqJBKQaJTnJEGnlsga0cs27SJ8696KU8/swsb9VBhSJBbysIl1zA326R5ZJzsyASzxnJ4+3bIEjwJ3TQijPvoks9pmzZx1bt/nqe3P0E36VMZqtJqtag5HkE/pZgZmO9S95yBGiM1hPMhh3btwxyf5tBDj+LmKUESsXa0gUlTlOsjkKxffzb7Dx2lc/gIlTM2sOX11+IMV2g1F2i3F8h8RSwtqlQgzlOiJCZOEyzgDxVIuwssG13OdVe/nsf/5Yscnp2B0WGm9jxP6pRx8yLvuPGDBGdu4OnWFJQDRtav5ZxNFxO7ll67RQ2HwGZImyJ0gisss1OTOEoCg4wpi2DLL72X8695FfuefY44N2Q6Y90rr2QujbDGkGWa0WKd1GhSpXjJG19LK4Mntz3E/Pg4TilAjxXY+JqXQ5TSX2jjOA46TigqhcpSXAEy6uPlKSKLMUoMCjCuwbGGM90aU1az6WVXcvThx+F4h6UFSffYDE6hyub/8l42XHk59/zLv+D1YnydENTLxFYRLF/OzJHjVOYTpgs5rPY4/8O/wsQXvsbSvExvocNzuoc9rQqjDYI2yH5Kd3Wds67awviTO1Bti1GW2LH0PYFQCkcLCpEg7cSgXJKxKiQhjjEgLEYIciVIhSTxXbJSQGw1G7Zs5li0QEtnJBLOfOUrOaYEZm6eI/sPUmn1SY+O06hWmA675LUSuIKlZ51Ja2EBSYaRGmSGNgUmtaVZ9Lhw5UaOnDzB1NQxjh09hrvnKPnMLNOHDlA5Mo2xBl8opNF4qca1g3uCVpDkKZENqQhFIcmRQM/RdIYCYpESVkv0khhMiPEcOs88RynNcbQmx9CxllBIzr/ySg6eGCcOI5IoJjj3PI40Z1l4YAeU6px13tnMLExTFz6dNCSslTn9g+/g2Ooyl//s9Tz/l5/BTrfATbn8nddzfP+ztPbv46zZHvO0KKAp+QFNL4FE42ajhJHEufblqIk55MRxHBuDp5gVmlx5VHLoO5osjZntR+zdvgc39jh8cpralgvI0xR5ZJy0OYfWhtRx+dmffwdP794FjsINPDphH+W6JGlKYnNiqxFKkKQp73znO1mz8jQGKX/fxWIu0iKL/NSwa9eu76lEOv/881+UfW3bto0bb7yR66+/nh9EGeW2225j27ZtfOpTnxrELXwXhUKBbdu20Ww2efe73/2i7//7ZVGJ9JPID1GJdOONN1Kv17n99ttfvI1+F98u8du0adMPbD+LLPKDQnzXHwYQStKLI/Y8txc8BVZTXLaENRvPBiXR2qAwEMcQBEghwYHEZsySEdsc63mk1iKtxNWSQiYpphKGRzhn82YolYm0ZXjJMjSQm4EFreAHVEtFMLBq4wYK1RqucHnJJS+Bggc2w7oODmIQ1J+fssBhERaUGVhFXC0p5OAEHiUhqaHwtIFaERRIK/BzMbAsAStFQAA0ljTA1VCwaBd0ntLIJWqugzAa4ykSYUgVWKWo10cI8Ik7MW4qqVZKgxfguRb4inN/5mKWDg+TmxyWlmH1EGdfvBGKKbHpofM+ot/l0EOPcmDbg1Tmeiw3LtnBcTwr6HV7EBSh12dichoKRayQJFmOUC6ukihtUFqjAHnqQGoBqlBgrtOBUolca4QYOH9QDoVag1XLVmKTBJSl3W+ROQKDAauxEkquj28M5UxQzxW0Is7ecCZMTqKziKDggSMgTRgeKpP0exStREUJbqbxtKXmBDha41tLYCW6E0MvRvYzSutWcuDAAWZ37Qc1AtMtsmrAfGAJbc7C9ufhqX3s+OYOKJTQaYbnuuC6LFm/gQfv/AIoBX4AlQqqWEQjBgHNQkGlwunrNzAyOobWlvGFOb7y6APQa4KEarmCJxROoqnLAD8xEA7Cn6++5lUsWb8elEQoOfBxCYEsBlRXjOEsG4GVY+BI/GqVNE0pOh5OmFJJLLU4RXZDKkgqQsFCm/y5AzDbJLAuThiTNrsIa+gWBLNpl16W8OyOHbSefQ7ijDUjS7G9mEPP7CXJEghciiN1VLVIIjQoaKxczuiK5QOLaZZSKRYJdx/kob/6NOQu5eoIF13zamhHtB7diT7a4jOf/QLPN2dZ9dpXcM6rryHNDeWRBsH65fTIEXFCgEHqBFcafGfQke3bjTlWSPaeOE7PU4OntWIRPI/RNas574rLyNIE4zl0o5A0jkEIdu7aRWo1UbeLWy7jlwoQdnlqxzdJdI4xGiEESgiEzpFpQtlR+CbDiSNKriJT38plskhrcTNDVfg8eOdXYXoBMd+jf3KK0qlx7j16iLwUQKNGZjQ6jDDNDuR9nvnqVykrn77tg0kBy76J4xQvOgtlYWW1gc4TqJSh06JaH6LWaBAbzfG5WYhjjFRYMVBSJu4pF2cG1bmIQmQRuaF6/ulEjkHLby2D7KREGMI8wQQulAPWXXgOjNXBsWAz9h49zMo1a0Ep+vv3ozohw14wsOj6zqDLYLXM+Vs2YxRkCnIJubIcqxeYLDrg+Kx6ycXEJofYku/ez/JcsyrOKXzjWWQ/p2hdPA0i04BFKYUVBiMt1rO4ykEai0TgOA6J1eRkIDOWnncGpfWrIDHMPr6ToJdSSg1lqVCeT+YpWFJl2UsvgqEyw41RGtUxenEKY8sgyUAozjjjLMgyHMfBlArois/4sML4Ma2aiyN9lqiBRTfKQiCChQmKWYhjE4RO6McR4vQzYPkaVqw6E5wiI+dtIBgZomQkSkOUpDBWoRcYUp0PFGRG0tvzHObgUdxc0J+Zo14bIj05gavcwXVtBcr36PS6ZGmC9AeB2sp1MFjiLGXNurWsW386udG4rsuGDRv+9xvuogppkUV+6vhh2dmazeYL774/CPHEjxOLRaSfRH5Iwdof+tCH2L59O1u3buWWW275gdjNvjto7N9afpTp9Iss8j3J5AvXnT3VcalsQcyH1GwZJrrgDJFPNfEaS6G4Ai8JWCrr5MMFqEoqS1czFhZh1/N87ub/TrGXwWyTivTo6Rzn9JXMrKxzYNjBP2cD/pkroJTRXV/Hu3Yzxb5itRim7i3hUMOh/Du/DH6FiZv/idax/fgqZq55EKfdoRBl0GzTtzl+JYCii3UEVnlEsSYQPgIoVANaTkjuCNqeoFf2CPMUlWnQOQvFhOlKgmsjSlmKzjKO2zbrfuMdkEuWTjvEpSKztRJdLdBuhRWXXIb2R/DyEiZWMFTm6o/8Kv3VAXklpVQtsK9tCVefh3f5FbB0jG17x5k78wKadimXbH071/78B3j4c1+m0XcpzPYZrtRZMZsjewknd+0kqTi08jb65ARzE8e57i/+GOeDN8B73sGmV7+CZSt8mp19UOhgXZdcCbRjyRRo30e7HigHV2d8/m//iomdT0BzGtU3BNIhtSHC6ZO0xrn7n2/FT3JoGby8RGYSAgJEv0yxeBrL3v0LNLdcwvO+IFuYhtYkx+aPQVGSuR6zxkGLAsUl63jrh3+b/miR1vIasp0wrWMKS0cIsNR0QhC2cXULwQJFN8ajx8RdXyZ/7CHYv5M3/fwbIe+x8bpXMDdWZqrb51WXvRWKp8HenRA16QQ54/E8p60dY1kg4MQJiDU0lvO2P76FZP163MZqeu0+buICMZf+1vs4vvAcGRnB/iOIh/ZAO4ehgAUgdXxi12U0lThhH8IO3vI6z7SOMLNnDwVVJ8/LmMgnWHU6b/mtX2f3g9/gs3/yh1zxgffgler09k2xKhjDNvvUTZHJuE9UKxKNLeGMV1/De37nN2HIQQYpRRFS6UyzJHBpVIv0wohRZwSbSMp+EbXQG3TzCyTTQcxDzz4J7R4ol5Vnn8vb3/crXPqq68AvwWmn8fr33cD1v3QDK8dW4eaCXrOLV/GJ2xPU5idwHvg6O//g96CS0bhsBW/6g3eR7niYma/dw/jHPkb/+Didoyf4+l/9Da1njvP/s/fmUXZV55n3b+8z3fnWrVklCQ2ABBIIg8RkCIRBYDBgG0fgeIA4iXE7sZ100m7o1d+X9uo4HdNxf2ncnRAUZzKO7UAwNtjQgJgsS0JC8zxWaaq56s73zGfv749bIrbbjt3BCWlcv7XuWvfWOnXOuevuM+znPO/z2k1JLt1JELXDxWwkzXKVzmwGUymMmZNFImDym8+y+Q++ACMnmVtr0BPE7PzuC9TGhnD8AGN6msRULLn8akp3vwv36mUElgVxQiqVwp0cp9sF1r9OffcQmdjB8AXSTOFLAzdlUxGapmXgpQx8FdPhSMJOG0xJ0FHgiA4xax7pvadh2kNnNY3YpNU7h7N/56M0Xt7I5i9/i1/91KfRNy6jYRiEiYldtSFs8t7f/y2iuSW6XE26aeI//Ldc2NvBsDqJu7yIs3QpPPc67DhOs5ih//rLEFWPs8MUBIpqOqZpzwhbut2ZrWVDOSeRc0pot86dN7yLtJHGyRbIdHRSd1vkpKBLK4q+i12dhKTGs889ibzseqg6LLnrVzg1epDjLzwDUzVKEy7KqxGnFUFRYMiEzrLHYt9m/MWt4MYEholnGDiFbrShcTqKMF2j2pymWMiQrtVxpqapxWWcvhSJHVHL2OTNPAXXptCwMLVNKE1qaU3LCQhtn/luFjM0GM0FDOc8bOCsCZviaBYx6WNdsxRSJvFYhaJlE4ZNmm4T29EQ+FiuZnjTHoyqImwGjCY+wy9uZsXeSdLdNgxvZ2r3ZghMJt0WbqkEQcjIH62FLz/Lod/+D1jhBC1ZBSGhZyFEOTrcmD0dCm0XMSky3tKcc9m1fOh/PMSq//wbUIDql79MdfcelDNALT+PaOESVvzmxyCf4rht4c+/EK1Neood0Kyj/REyrQkm/vprpI8OE9WbBKTIpEuUPHjp609Qsh2SRpVas4zvaGq2Ji44zFt9Has/+TFiEeOaUOzqp0nc1o30mddsQtIss/y88S9Vzvbggw8yODj4zzr3PVNZ8+PK1QYHB1m3bt1bbqyYLWd7O/LFn6Kc7ZOffVObOGPlA9i/fz8bNmzg0UcfZcOGDdx+++0/0n730zI4OMiDDz5IqVRiYGDgp/6/xx9/nEcffXS2rG2Wf30kvNGaWs3c6TZrLsPDo/zVVx/jyjvfz/HtuzCnmkzELThdpiOwqOgmYdaFFYu47t4Pc2j968S5NGfNHcCtVIhaDbRjohzJL/2bj/LajtfAUiSDp+hcfj5LLl3FyVc2cuMttzC98zAn65Nk+vtwEVSrLtHpKZLjI/S+8zwmTx5m9MA2FoY5ZLlK3NONmNvHWWedxfT0NFgGGBY60SReSCqTYbxeJcrb6BknlNQCS7fdC4ZWJIZqZ4tEbfdSLYwITcmwjFEnR/BcRRCHhHFEKCSrPvdbiEuWMtloYk80sVoxqUBB4DN6egTbTJNqhSSOQ61R5TN/+J9Yv/55SvlOFiw9m+GN22jUJolaNYa3bsTTAWZkcKJoUe9Io7WAc+bS//Fb8Na9TrPDoCfXxc5DR7no4qtYWujm6X///2JWR3HSAh0KSn4RoRMQ7e8lERhakDZM3FqDsN6EwMPRElOJdiaVEO2wc9cjiUKMIEb7MYY2SdIaJxYYVoZ8bx89K1dw7LUNYEi6SgXytmTFnbcz/8KLOfH0q0ilMbIZkqaPZ5tMRD5RJCh6BoXLL2HkwGFSfb1UvSaRbeJZkshJ4QsDV0sCrwnLFnL5++9g3RNfh5PDfGDNh9j88itYy5dypFkGHcDEOGnTwrIsfBVTrlcYP3UK4oT3/Op9HNp/BFl3mdiyE6cSsFA7yMSnbqXZ9Z2ngBRLjE6qgF3K4auA+/70C2x/7lWIE6Kshdlw0VkboyPHlTdfz9DgIPnAojo2TNTfTT426cjm2Lx1A1YzRDUiAt+nvv0QOm0R5RyUsNBC43akiL2Qlh8gOjvYtnMHfr1MLpMlcX1K2Qw1z0Wk04w2GqQ6+2kGDcIgwtEWtmlz7nlLGalOooancI5PUWgFVGKfLSf34fV34mSLJPtHGHr5NXZs3MSUrhMmCcWuTsq1aWQ+gxFGZBJBQRk0m3Xc8TH2HNoHQmJ15LEH+rFSJucsOYdyEBBWG5gKEiFQKkLMuPug7daL4zOlrwKBpk+n8esNovmdNLwGpuPgTo5RPz7BHE9SSGcZkzET5Qbzb7uW8vatvGvVDRzdvhMr5xA0ymTCEBnFODqF1MbMuttOwXY2/sy4VjPvhaBpSrTrgZWGSJOONbZSQEJkJhCGYNq845brGXrtAOrwaQ6dHCQqSPoCi+ZUhX6Ro95pM6FDqocPkw8UXrVGYgmG9+8DNF61hp63mNLAAryRKaK9+1h9+23s/ta3OLF7P1Rq7W5zUs8Y1QRIg0QKFi0/n0YSEvkBJ06PkkzVaLV8mnGEUyrQbDSQhknWcdBC4QceJAny3AtIppvceucd7B7c3Q6oK9eZrwwaYZMgJbGkTcZMU2sFtHTC6ZETFFacj1+ewjBs9GiFnEzhKDC1YPhEu4wsm8qgtcYqFKkGAUHKopmSeK5LPpfFq9aRTjvXRxnt3CYn0URxhrho4do+sYqwWppClMFUBrUwwLNj9EQFO4oRWhEmitg2qbgustSNDhNGDh6lkM1RsZK2mCJtxkdOYgZ1iqUcB/dsp+OSiwnmzOOKSy7h9NbXydSa5IOQUpQQiAiRsQkzeS695gYsJNG+fVRSEjOROImByqQZ37uZ4WyK17/0FzAyjRgewXQTwkIH7/p/fodDpwbpstNMvrSFeVf/Iu/+2K9xePNGokqZOI5wClksx8Cr1TEThWkYCAWmlpgKJAlCtF15TiaNPxPOv2L1zWx88ltUy02SUGEGiv/wW79NFonZPoSYGdggZmvZZpnl54kdO3b8RCfSxRdf/Ka28c859/1+BgYG3lj3jTfe+ANz4Uqlwh133IHv+zzyyCOUSqWfyTb/KcyKSG9H/vtPISJ9+rNvahN33XUXo6OjfP7zn+exxx7j/vvvB9p1nNu2bXvTNZr33nsvGzZsYM2aNT/VQTk4OMgdd9xBpVJ5y1sezjLL/4YGJETijIgE6ZTDpq3bGW402T8+TGt0FNMxSWpj4Af09M+lHkVc9Hu/ybI738ULT/w98ZFTXPHum3jnNVez+YXnkKUiidcEW7Jz6yZu/OiHGTw+CFMhmXyOOfkOhjfv48D6rSgp8c/v4a4PfZCjX32O7EiNlogRBYfb/+297DQBfKAAACAASURBVN25DUpdLKk7SC9hzEhY/Vuf4JIVF7P1ueeh1IkKE5QfEEYJsSEhlSJSEUiLVCIwNZiqnX6rZ27i7QScRKCkpG5ospHAP3kSFs/jHauvZ+zIEGYqQ8+FSzlilhl/6SXu/Mivs+OxpylKk0yQ0Go2qE9O4RgWKcMkierkHMWWDS/ht8r4Qyc5ffIwPfUG0yOHqU+exvQ9UsrEyRRp+gH28iX88poPMDQyTOdAN8FzW8imTMxag7DpMvzSJk68uokeJD3nL+C0KQmbCVHVJG+CQYyhaHeu0iAU6FhhIjExEYlCIBFItGhP05NYIbXG1OAIA8sQ5IiIjQRXRbTcOqeOnQDfp3T5xUwMHiaJJDUpWdjRy/BL30PFPj2dJbJKcmzPTjBtMl19LO46i3f95id4ffsOXLdFdsF8dL6AOz6NVpKr7/oQNWHi9ee44LabmTO/nyOPPYEjUhxZv5HW1BQqrHDDp+9l6MQRGJygUOyiVa5SzObw4gDqVYgi6uUazeMnmRgZgqhBSICRzmE5ORpxiMqlOPuqX+Dojt2kb7+S+qkhUDGnGjUaO/djFHJ4WcibDolSNOKQY8cPER6fxPRiFn7gNvSiXlo7j9ItbSqtGmq6zqIwQ2tiGhElhNmYKAf+nA7q0xXitE13ZCGkxdT4KP7EOGTzZNIFoljhx9DQAt+00dkczUYDVi5n5XtuxfETvNFJKmNjBLUyPbWARWaaqaCGzDskSqDHKzSPnCLlhxB5xCog1gEYJkGsuOC6aymHAb4XIoRBJjHIxQYZXyK9mCBj0T93gJtuuZnXvva3nHvVlXihR61SJnJbuG6NlGkA7WNFCIEWkjhRCG1gKo2lwFIm5SiAy8+GxCMIPbAKdNWgQ6fxhEGjKw1IwkKKMJQc/fvn6Dl3Ppl5nTT8OqlIEaoIbaTax6UAMTMuLa2xkva2TKWR2qDshfzKJz/FzkNHYKqCIyxsBcyUXympyTkmotnkyM7dFMZa9EqH6dOnuP6u97P32VcpZUvksxnKoUdz737I27Rcj4xpEcYhpGxyviBt5fBPn+auO+9ERxHjhw+z54UXoVLDcD06bAfte1hSoBHtckdpgBB88t/+NgcPH6Zeb+AFEbrqoVIOsSGJEp+Fl65EWTbVah3fDSiVuoix+MDdd7HrlXXs3vAKNGp8+N98jMBrEp2awpAmbjFDVAtwQ036nLO489MfZ5df5bZPfJTjR4eIppp01zQpx8b3XBzbJtEaK5un6noESC644ipWXXsDuw8f5KoP3srg4cNUajWy2QxKtp+ISw3pGFKxYDTn4EUNlOeSTiQZM4UrU7QMCVKSjI5hBXVEEmLaGSj04PQvYMl1NzG2dx+ymMcyJJddvYpqf4kkgHfcdCOjIwex3QAnCHC781z/qU/QX5rD8Pc24k6PY6kQQYK0wc5lkJbEnapyZP9hxnftoTMKiAWYuv1AwBeKpK+DD3/wgxzccZBSI0ZNT5DNZpmOXVR3jvKG71J/fR/nqBxDx49xSPgEB/bh2CkiIaCUo0VMYptEcUTeTmN6ESYCLcVM04b2w5YwiMjnO/CmqvT2z2Pi+DDVwydJVV0WFLr4rU98Ahm2r69atJ/XhDMZhLOlFrPM8vPD9u3bf6KIdMkll7ypbaxevRqAz372s/8sc9/v5+qrr2bt2rV88YtfZHR0lA0bNrBu3TruvfdeBgcHeeihh95y08TsOfbtyE8SkN6ko+/xxx9n27Zt3H///dx///2USiVKpRKf//znuf/++1m3bt2bSow/s65t27axatUq1q5dy7p1637s68EHH2TVqlVUKpWf+/rUWf4VI9ta0pnDLwGOnTjO8MQYE3t2wbx+gqBG722rwVCcnBolXciwoKuHQqRh+z7QBmEY4jZbIGdO30KA6yK7e1g4bz5UaxSEzak9B9jw3IsQxoRhSHV6EiQEQUAmUnQIk84F89Cxz+jYMGQzEIW0ghBLZiBf5NipUwydHgXT4cIrr4RMGkwTTAttmJyzbBk4DghBIkDRngjrmXSXM+9h5rtLSKVSkC3Qvfhszj5/aduxYZj0zRsAaYNKses7L5KxU7QCn6SQIkjbkHEILANPQC6fImjWCatVCDwyUpBUpunMZ0g7FsqrU5Ci7WZRGlNadGRydM6fQ2NqisNf/w6lUgm75mNaIOIWxB6O38D1W/RdvAKCJpy7iL7zlpGImYfb3/dzaq2RwmyHNRsmiZ7xdIh2fpTUYBsmppBtl4dhYAiB6YckKEgZ7RVOTINtM2fxAugq4roBE+tfY+OLr1C0cqQNm9j3sASQy1OaN58VK1cx0Wywb+9ekAJSNldddx1Lly2DOIFiifmLFqMtE7pKaJ1w7PARkBIzjPGnpsmnHNARGUPBySHo7OGSlZdhShsVa7Trt7+oHzBxYpCOYhaSCHRA9pp34HY5nA6rxK6L1TfAZVdfBQM9XPW+W6GQA9Ni4sVXwU4RJDHokImgiTYl2WwWpssYTopGrUq+v4tll16MVUjjhwED2Q4yhklBGJiRwrRk28qWsbn8hl/ELuYxMmlUpDDCmI6OTqyOTrr6+3nfmrsItKYVhOS6elHCgFIXXHAe6bMX0HPuYlo6JtYxXquBk2gIfZqtOp6MMSSo4UncPUfIBTGWY2LmU6SyDkXTxhA2SJNzly+nZ8FZxJZBbDtEWiJiiRmB6SsYHmVk4yb2bt8JtsP6519g7Ogxll1wAee8YwVk0jO5Q+3so0TIdpdFTDQzGWQKklgjUmmyCxbB8gugUIR0Bh/wgVoUgdsE28Idn2Rl/wKYqpIpZoltA0KXUGlipQkNCGU700fPBPwL/Q/mDalpd3kUNoaZwpImKGa6xf3DjYPUipRj0lnI4jRcHO2TNw1MYWC5EUQJIu1Q81p0KBMwQSVgKLQpEV4Cto0MFakYaNR5+dtPcWLPLtAJRCGFbJacaSDCkLSQM46p9j6e4eDBg0xNTEKzBUmCYTvEftju8BZHXHztLzD//KWIlINGkpZprCChfOAApAXEPkyUCZsNgjCkFfrEscITEJomRjaDWcgTSgkk7DtyBC9JUHGM6aSQUiKlIIoiEiGpeS46DCidtRCdy1OOI8hmmXfWWUjHAEMT6phkxpXa/g3akdDn33At9PXiaJO0MgkiTVnENE1NQITVCrB1gpAJSho0E0k9gmWX/wJ0dpFEEWEScGLkJFZnnsjzWHL+EihkyaVTJJ4Hcczk1DSTY5OMHT9OWkgMQ6KEIhKKIA5QUUQq5UB5mlSiUDMCktTtMaBlBGMjvPqNp3D3HSGcrpCogDDyIPI5sm0beAHFGMyWi1kqsnjRfDBsvCDAzuUIk4h3XHMV+d4uMAVSCAzEzPibuazNjEdHmlgzsdnHDx1BChMRJoQtj5Rltxc2f/BSO1vMNsssP3/8c2cirV27lsHBwX907rtt27af0beBxYsXc+zYMdasWcPatWt/oBvcCy+88K/CMGH+5EVm+b+O6Ac/DsawtvVDyzzwwD+6isWLF//YAXrmIDmjwH4/999/Pw8++CDbtm1jzZo1P/Uu/zD33XcfpVKJBx544A3r4E/a38cee+wtrw+dZZYfidGORDpzc6uB3/vPn+PF9d/jyPbtsPRsbrj7Tl780kPMXbGEifUb0VMB1fFx/tcX/gx3coyUb9DbkGx/4im2pzN0dvZSPn2adKlErqPI5NHj7Fm3HkSKTjfCqLrUKnWUiihctZL61v0wWuVrf/BH5DOKVsbnpntu53t//Be8+qdfJutkaDmKISNGSsXN7/8gzz39TQ4rAcUiSy64gD0vrAPLBix81+WSy69g38HdkLLxgCABJ1EkUhK2E6jRtJ07iZA4XXmmmk1IZ5navIsJswsaPtJMs/vZFyBjw3RM/pwsbqOGU8oxlkzBomXc9pkHMNyQb/3+g5QrLh2FFLEXY/V0YbciXMfADSNKnT3UmlXsxEA6gmYYEvfnmBge5Yt//hCcPUDpkKZltkhJi7IVEogQJ4mRgUErk8W+7nJYMQ8mWgz97WsUHHCUasceS0BLhGVTjxroJAHDwEilEVEEWoJQSN0usVBKgYpBapSCHJLJKGyHqQvAS2DS5+DgEUhJOuefhX3uAsZ27cSWCiNr0wga1BseXcuWMj06yvbu08RJyMgff4HsksW0pqvYicu2Z5+GIIBTIxzcvIXy0SMQuOzbdxSadcjn0fUm+ZxFvVkjlynyzO9/AcYnYeEq5p1zHq73DYrZDHNK3fgipDI1RZcUBBPj9PeUGEs0+XPmMLZ9L1bKohDZ1AdHmDp2GrwWO7bthJOTEBuYdoZ8rKn4AWfd9S6SnccY3XcEU8R0DCwkXeqi/+or2PbyS1z4C9fgFQyGx8v01WyyCvyMoGbHqLoPhkOqZy5Lu+exeaKMnNcLqTQlQ1L3Y6JahWWrb+DLX/8qeD6i0MUH7/sNdhzYy7mXvIO/f/FZknyaY80qo4MHIfLomd/PZOU0RjqLSiJyhTxxGJDWmkw+j1+tky5kqbk1kJpiR5Y4MWm1Ap78i7+Geb1gC5oqJk4blGQGoUFHPtLKYKVT7HvuZbK93fgNn6RWI+guM7e3n0EpMZJ2J65ASJQQKGESRTGGFhgaDBWjLAvTErS27GbxhSsZzEzxif/0uzz8736PViMmO38e3avOYeqp51CvTbBz0wEuXriYX7z7Tg5On+bZrRtRtkVsZNEp+cYJKIjBiduTdgkzJXXgGxK6B/jSn/0l1Kt0dPSgWnUioy0oxNIkkTDpV9B1mJ/rICSkGTeIk4DnHvkbzMWLmB4ZgTigx03ICUUzHXHnf/xdXvjCl+jGYLLhkjGz+M0GpCGnAk6eGoKWhyUEsVfHMgS2aSEMhySO2g0JZnJvBPD1P30Y0d2N1dNDNDaBNtoCW9/ycxk/tB3XtqBUwHNbGAgsLUnKNfY/8yxkYpis0Wd38tgXHwYUZ3WXiFshsr+bOBxlwcqVGLbD1//yUaiOc/DYKXrOvwhxXpapfceJW1PkO7K4cYLOOGhp4iw8i8rYCD0f+TD7jxyCeo2dz72IGjrNnPkLGT1+kmxvF7FsC0lhAmYiue2OdzNy9AimK+mwLSYkmEsWElsm0aEDdNntoH8t21lZKkhQvubgRJXMxZfj7t4EXo2hQ/vAsaC7wK6dO2FomEYU0NdVohFpXn/0STg5TUfemSmLi8EwCFVM1naIPZ++dJbyWIVCqQNfm9hJhNYJiZEgTHAyBQ4/+RT9uXkEURlnTgc0Y0rKoXJwCGwHFTXIFTuIJ8YpBRGZjk78eoMPfezX+as/+QI33nEHYfIk+yem0IkmJQSJVuh2OwmMmeuGISSV0Ql6ip20Kk1saWDN7UEQc2DyNF9c+wgf+5VfJZ22EDP/ZzP7hHyWWX7e+FGZR+vXr2dycvKNz0ePHv2J6/lxGbuDg4PAj5773nfffTz44IM8/vjjP9N56Pc3rlq3bh2LFy9m8eLFP7P1v1lmRaS3Iz8UnF1ScKP1Q8v8BAvcW1ljeYY1a9awZs0atm3bRqVS+bHL/Ws7qGaZ5Udx5kk6tG90f+GdVzE0PMKWnTshDnjxySdhtMqOv/x7GK5iR4K041A/PgpC4QQRQkPGSKGDBHdknKy0odai1XDJWhkOv7yRIhpHJ4hWCyfj4HWn6bz9KqKjI0TTdYq1mOlFJvTCk9vX01f1WRDZGF5C/uO3seubL8F4lfUvvggjdUibEHk88djjEMVg2aSliadjnvzGN0AlLLn+Wg4//xLKkMTpNIuWLObm29/Nn6x9mGhsgtC0cCybhtti0W3XMvTyJvpVhkOPPU9XKk/D87EzOTpbkuyyATqWLYKJgwQyhHSGUraD/dt209vdA/k0dHZSnZjCFnkcOpDSZ/7Sc5nceRA3CpEiQ0XFeN02OrRwPnQzwZZDiI5ern33al75r5+nB8nJokZGJhml6RECpWOaSNb9z7+Bqy4BOwvlSUJDkRiQCEUy4646d/kSyq9tgVS6HWI8dy7x2BhBrY6QJiKJyNgOUui2iKhjtNC0tMI0IUwUIolJSwu3mKdkGCxfczff/YOHueo9N5FIReu7mwmkj7I0JVJMj49CR57lN/4iO15/mE5TEQ8fA+2z4Zt/Rz52ycm2u2HX889AyqSYFElqCU1l0n1WH1ON/WTzBYJmgy5f011WnE5yxFMT/PVf/SXFYif1ag0nBSERadPCrVYpJoLimMuYoRh78lmYisipkHlkmSzHbPzTr2CYkom/eYreMIuRhNSjEIVCaM28gbls/ParOB054pZPNDRM99KzcbvT8MIx9uw7Sd8vrmRc7iceb5E2BIfsOsvvfjfjT22gPl2D3Sf4xqaHmJvrZVJb1FIRohlQq7ewOnKsf/ZZMBzo7cRIDJ765hOMHT3C669tAj+kd8VCjry+GeYPkC8ElFsNyNq0coJWGFGqKXxLcN57b8ZKp9n5lW8xx5fMSfVQweW0k+CUfQrY1JXm3e97H4cHj3HklfX4mRQf+M1Pcez4IE898iX6rQzKjduiy3iVomUSKYuxPQepWoMUE0FOGvhKEUsDN0nonNOHe+QwsqtE3GrhKEEU+FjSIjo4wuD+MqB5ac926DUhCWjVJ1i14k42vryRyHfpchWTp4f449/9JIUrLgFf4UXtDmB0Zbj3k5/mO09+i6mtO1C5HL7rvWGx0wISQ3DVe9/DhieewMJERjFGysKXGi+MUEGMLHWi3QC6U0R1TVDMM+41wDZBGsStCsvu/WX2f+1RjNCnO5WnKUJ2792DTlngxmS7upmO6mRLnZAKWXXpRZyzaB6vPP88zXIVIQVKQ6RDZCQQwmi7U2iL8VID+QI6STCFZMXqm9jx7Hfp6Bng137lXv7LI2WeeeTPIAKRzpAxFdV6jUImz8TJ0zA/DUKTESZMNXDmDjBab9Hb3cPHPv0pJqKIJ//Hn7O00I81PIUjTShmWNTVg9E3h01jY5DOEEQ+1916C9sOHCQoVwnK4yy76z2s376JCy6+mONph6kte+jNlhDlOt3FEuUkwi7kWXHZJWzftBm8gIf/6/9HvuYxp9DD1MQYrVyGT/3+Z5nwGnzt3/8utakpHAFeC5KwgdE/hyQMmTunh0xmBRtefgpMgWlniZsxy25ZjbfjMPNliTBfJ7YV6WqEmgx47+f+gOe++CBxE0IhUEGAYVtEocYUJkGrTkfGwo8DpmyDnkhgqohABwjTIhWEdJd60c2YIJfCNep0C5vuRoIrIsyeNLUuh93TUziZAhv/4lHIFcG2OHLyFPTO5aH/9hBRpQxhgtYRQgjiKEI7xhuCZvtaKUg7KeIwxDLT1ESCn9RYdM0VDL30KltOHOKjGYuEmTJj3W6811ZG/6Wu7rPMMstbzY8SkebPn09XV9cbn9/q8q+fljOVNj+JM53L3ypmRaS3Iz/k2CuJ/3MR6R/jjMr6+OOP/29upbVr1/7AMj8LZt1Fs7wdkPyDiCSAa6+5ht0HD/H1Z57h7Guv4diXvwKexDg6geNqHCFRRtvYgoSmDaCwMUiUak+eTBMhBEophBLYSqG1JpNNIZOARMeQLzBeq+LVXQpKInSAHOiDi85B+RC2Ajpmckh7e3sg58BYhHvqFEJLtGlBMUPGsdtP9pVGqARTqbaLoJDn+uuv5/ArG0BposDHj0I8z0OVy5BO4TcCMqks6VyaFasu4cTWfdhjEbblMBWGkJIkom1HTpb0Mb0gDwUb/AhaCfrQGIM7DzHa2wX5Ds5bdj4Hn3+ZXK5EpRlQzHZw6aVX8fTuo1iZPGF1ClvauDUP0ZUnO+kilywl3HGcA0+/Cn6IckNEVwaj3KLgpLB8D1tJRDOiMtKErYe45u5fZpudAi8hMdoCkhLtSezSCy/kwNatkLIhiLjo8svY+NWvg2Ggk5hsLoeMY7SWKB2jdNvJ4UsJWmLE7QotLRSEPpk44fTeAyAg35Hnkssv5YWXvodSLYx0Fts0IUqg1ImXJJAoOgwDlXGo1xs0a2XSaJxEIQ0H4giUxGh5SNsE5XPZ5at4ZvwUtZqHNg2iGDLCIo49nAvOI3h9J2EYkrJt/qGdYDutNpYCnc2CnHFWpWyUL/CUwjNjQqNdckQoySUSiUPNDMimcnjaZfdrr0MQoR2JFIKstBg+cZIwbEEi6ezoYtVll/KdkZPISZcQBRmTsy+5gPKzm3GiBAOBEwsswyBONCqJ8KMYYUhM0yRKfAhdCGNiaTN2/BhYAqYmkdkOJl54EZYs5PxLV3Lyf60nabXIXryUjvndjLy+l5SrMW2Liy5YgRfF7JrTx4lTZXrsDLEpUVNlclY/OlTgBWzfuIlcR6HtzpuaYqw2jZVPgdkOYReATNqOE5EoRNK+yTXiBKEUBhB4Pun+Eq7ns2TFCl4bPEpsGFgpi1a9QdrMYzsObr1FXmsS0+TQzp2w6h3wwmaYP5+NG19rt45PQAqFNtvdEevHhrCFQ6hD6O8Ft4mWgs7OTqaSpG3xn5loq5nyNiScd9GFbHn6aTK2RTGbYbQyhp+y2mHa0kEJE1L59ngUJtWwBQ7Q3QX1BJaeg8ykwYSAGEcn0HQ5+sILEKdICxMzkbTyDlXtQZwwdPwYjXKVBI0SzIi17XOeRiJnOrPBTNmdBss0ieo1dCZHZ2cntm3hthrs2roVJqbA9UHaWEoBmkQAUqEwOOeKdxJWWvg7j+PYOQpGmkndZCJwmTg1iurthHqVkfE6tutTsGy8eovubIbh8nRbMItt8D3OOfdc9g4OtZsPhC79PV3s37mDc9/zbjahsaMEqRQW7XO6ShKy+RyXX3UV2zduBsuB4XEagSKx0wTCQFkWRwePM1IvgxREpqZgpWi4PtlUmpbbACeFEbY4tGdH+wSeyRJPVUCOcfTEEIstGyNKiKyEWIEKI5JGi6lKhabUGI6NChPwfIy0jdD/oLokQrXdpB1Fmqcn6cs4RAI8HSO0bL/SaQIURAlJpHCESXd/H6kFXRyrHkPGCuUZYKbBMCEK2bp9NyiIhk6ClEglkFIQ6vBMj7UfQAlIZrqtmbYFWoNjserqdzK0fz+/et/HUHzfbe/Ppov3LLPM8n8ZP6pcbf78+T/w+c0ILmfMCmvXrv2xc9+flaBzJqrlp+GtFJFmg7XfjvzhTxGsff9n/8mrX758Od/+9rffsO2dObAef/xxHnjgAZYvX85DDz30Jr/ELLO8jVDte3wpwKDdZcgyDE6cGuH5fXtYffcvsXvPXvo8hVlrkEOSEBM6BpGpQCq0VIQSrBiEaWI4NjGaeEackLKdLYSGwG2Q9OTQjsNZ51/ETTfdwu6vfYdURxYniWmEVbQhWXT9rdRe2I4jBLl0lo37NsFoGZmAThI60xm8wOX6d60mCVwqwyPgtijaNiIKMNGEQZMknWVs535SnT3E41PU6g22f28jGAZWBPlY4NWbeESYtk1z80FKmTxlGWOaFqEliAomrWqNquUzdmgXeAHnrbyMyqET6PEyee3gluv0LFzEe3/5TjZv20rKS4j9gDwWSU+WkRODZEs5golRurVN2oemSvB2HcfIlbD2jlLdsBO8iIyQ2JbD/MICqm6TQLUQloH2JPXIYfWHPsLhV79LceIUkVdvd2ej3X0NBCNjU/hND9wQa8FiVt94E9v37uLm972XY8cGMWXbM3EmeyY2FNoA1zGxEoNCYGAl4Noa7TZpTU5T3r6H/jlzmFQJ8/sHOLh+PciIfCGNM9nETQwWnn8BRyt1rrvxDgZffI7p0GfOqmWUWy5BpEjHFth5qikH+vrJCJNYR2hbYGfSjJ84TeIrssVOqrGiYkoY6OPu3/h19nx3PXGjStaxQSfEaNpSh0FoWIyaIVghZ39wDZUjg0SWSd1KcPMK5SRoFdEncuggoixjWgM2jXqFJG0TTpfpC0ySMMI0TQrSpjU2TdhqgqeJpmscLY+ijx6lT+Zw8xLfkVS9BmMv76C7o5MoSUilcpyqTpFdvpgrbr2Jwdd2kMnnCA2BEiFX3HozwhQEU1OkSDB1TN4w6AwkjajCyltuZnrPYYIDp5Gh4tKr3kkjiKgeOETTMHCDmD0vbuDghi3QkUOddxYNI6Lltug3OhCujxu0KPX3MD40RPngUZiq0N3Rxd6tr7Nv1060ASkFSmj0TP2VTpIZc0T7PVoRVKcxnBQ6X8LzXK774AfYPTpMuqOI59YIwgZdiUWjOU3S20GkYkIVAgGrVt/MyIZtXH/3BzAzNu5rO9E6xiIhtBLCUhbdcDnbSxOkU5z/kTuJLZvXvvo4bt0lrrXQTZ+0aId4C9r7i2lwIolpHTyIbNRJApeGjqCYg3SG63/tEwztOMB1v/oxxmo+xnATb+kcBt57I+e883ImDo7wwc/8Dvv2HaA5eBBHaxKhsKRDYJqAxkxMbGFRuvMawv4iydGTDA+dYnTwOGkrTexHSN12pAhtIpAYMx3lEKIt1ApBJpcjtizC8Ummmi3iag0VBYycGmqPq1iRiTXpJEGLGN9OiAyJj83qj3yYeeedz7EDR0hNuIR1l6Anw8LL3sGmrzzBoU2vgxuTb3oUTUng1qn6Na654TqmRscZOXAMI4pJOWnCls/E8Aih5+Ok0gzt2Y2u1qgeb4fmy0YZmWikkCgpsQo5ypNTFIolTh4YojOV5x233E7NbTA8epK4u4hC0LX4HI7vP4h7YgjpVrF0CieVIvF8srbEr09yaO/ruEMH+cwffYFzFi9h17YdZK69lnyhyMmnnyWdMnFkQBQGhKkUUXcfQV8/zdY4ulFlzT2/xumJMjJQWLGB0JJECmIJ1YxJ/pab6HU1zdEJyFi4KsYKBY1ai3v/3WfYeGAbac+HhmZKafLvvICov0ipv5P6yQniRgDz50EUcstHf4WB/jkMbd5Bb2cvthuRFyYqCEikxnQsFBKBQswcO14coy0LbZo0kgQdBpDN4NZqNEYmeOj3PodWirQ4WPWaTQAAIABJREFUMz6YCfqatSHNMsvPE1u2bPmJmUiXXXbZP3n9ixcv5vHHH+fb3/72D8x9z+QVXX311fysJJUzHdnObOuhhx7iscce45577iGdTrNhwwbuu+++t3yuPetEejsS/+RF3iyPPPIIH//4x1m9evUbpW+VSoWVK1fOhlvPMssP8305HsAb4UhnL1pEc3KKrzz8MHMuv4TRyndIGwX8Sgs7kyXQAalQYWqFnUAsFZ4lUSpECEmmmMEyDGq1GkoIpKkQSpPJOUxFTbSfcPTb36VxcBwj1tRMn2ZR0DPcBKNK+dg4ST7PqF/F1wFIm4UKRMtjJAPlpE4um+XAjm2Mjpwkm0q3w6E9rx2um83RarbY8fg3ITZIuQnFYj/1Zg0rkyYMAtKhohAbaKfASXwOPPYcy5M8R5jG70uTqWiUEFz5G/ew6b9/ifTRGiaahiVpTkyTdGVJmiFmxiZphtROjvI/v/CHUBsjcW36Cj0E4yNsfeZJkJLadBVyJnEY0ijmcOwszq1XUf/G9yDVwfwbr+bU9vVMy5DLPvh+zrbO5mt/9jnoz1Buudh2DlI2QegyfGgnRKfpQpOJ2m6pWLQzSeYWOqkePgFWimjwFF/6gwehO8NEvY5I2SRRTBgkCKGRhkJaRvshuW0hAkkuTohQVAyFkc3Q4Uf0ZEocGzlF1KgwvGU7WWlByka0fObaWQhMhl7ZgnXn+9jw6kZ0toQ90EXvpVcyPDKJklnKicb3gbkDdF1+CdPf+DvMOb3EoyMc3L6LPpmjZYY0vJie1dcyqVucd9NqvvrVv4LGJMViHr/exHYkSpskUhMjMbWFZdpEMs07i4uYbgjiVhMrZVMxYkwFi2uasmxSyViEeZuLP/ub7Pjjv4DRMk5s0dPSWI5BRUX4tmCxK5h2DcajgGxvidrJUdJGDlVrUumOyZYFtU37KJkOTZFQN2P8vMRI92D0lzg6NoKZz+HGEbEEOosMzOll80vrMNw6WdNGKUXeSKGqHpgx257+NgxNc3ZsoSPBxq98h7hg01maTzw1TV17dK65Fau3k/HnX+C299+Nu+8oOzdtpFWvUUiZOA2FXy9T1GB5CXML/ZRPT5BLZ4hNjewpMUGtHcZ+JiA7jN9wDkZRDIakr1gkkBYjzToIyaNf/zuWX3kF+3a8Do4k1d1B6pRHXzrH0ZJgxbtXI1ohu3bsZet/+TNsO89L/+2LcPVF9MQgHBNPegQyRE24zOnsJuu6NN2EXS88Aw0NtYDYLWO2QgYyHUSBTyIgauc+45rgKR+MdoB2HMfgCIhClq/5ZZp2GjKdHNw3jD/SokNmIY7Inb2Aeq2FqtT51t99g+Zrr2OmbEIR4VWazNdF3CAiShvU/RaZVsDSG9+JOXqSE0++QjpvE+HgTtawDRtDw5maJKE1hkiIxQ9mInktl3PPW8pRhvA8j0LGwfM8GqNjpNMOXXaKxPWRWtG09UxOmwS7g7979DHocBhYuIDiyYAoDqhlLJyzeskHEjuIyElJGEUkNkSdBv1zF/DoX/85YdnnLKebSuiTK6U58vpOkiikaNuomkdXIUcY+lQ2v442oW4rnERhC4mUJo4woe6y8RvPMMfIY4x7lKs1nKVn0aif5oZ77uW5P/kremUWnC6mJur059LIVAnPj5EyIZu4FEtpjjfGQAq+9+orHD00CLkicy++gMbeQXAsRvIwd9zDjBSteSYMZDH6OmG0Ayp56rFCCRtiG6ETtFDEMiIwFaQEYvECmhsPYTsZ3CRCKYUUJqZtsWvkFEQhPa7JVBLgd6ZY8Es3c/j4IYbXvcwcq8jY4hzv/cynefLhteS6u6hXqjh2Dv/kJKWURZJE7W56ZoJPgonxhmNXzQSQC9vEjWLsjiJXX3kVu1/bQnPLQbJui7QbY6XaAfBati+tMe1cpFkZaZZZfn74UeVsP0vO5BP9S8x9K5UKDzzwACtXrmTr1q1v/H3x4sV8/vOffyMzeOXKlW9pwPasE+ntyO//FE6k//jZN7WJgYEB7rvvPpYvX87AwAArV67knnvu4ZFHHmFgYODN7f8ss7zdOOO31wBtS1IiFNIx+ePPfZaFc/pYsXABR/YeonNaU+uQBCkPLSWxb2LINA0/JGNnCVVE7NioUoHSBRfSv/Q8xgeH2zf2Sbv72mSriaEsDB86IkVQmSIwQyBEt1rYhSK5efO48j3vZt+3niAJXVphC1o+BhE6LTGzBpYjSUnJdLPJHLNEy7CQqQJ5M89Yh4mwbTw7obdzDi1HkOkpYjRcLJWQWIKk5dMlHE6mIoK8iT1ZAa2wOzL4jiSqNIncCIViyblLOTF4nF5fUfMbmIkgaHrEgWJ+PaHerNBvpal40+hQkXFKOH5MJkmIwyZaxOSyGUSosCKDtE5j1hTpCxcx5yPX03p2C32Xnc0Nn7yLXS8+izOtaXV1Mp3KUNm5ly4l8KoeybwC83/3U5w4MUyw7wBmq45RFSSBQSVRBBmDsJTm5nt+id2bXsFOmSS1aSwVgOHRPHaMXKRppA1UVx7V308SGyQXXkRSykMtZEBYeCokMBXClNhatr1ncUjKFOjIQFRdCk6GatYiqIeY6RKnvRrdC+bhHzhMElXJtVxCv8nwwb0Q+RD7iNBD6ggVtfBGTjH3httZfuFlnBo8TVJv4OuIwEqgmOLCW9/F8HSTZR09jH7970mSmICAKCWJiLGUwtQCQ2hsHZOq1RHSYGjjTiruNIWMTcHzsCxNOpAM21lMEooG2HFMY98h3IlJQJEkEVEcYfz/7L13uFzVfe/9WWv3PeWcOUU6RwVViuhFgATY2AZsikscVxyEEzuG2Phex+QG8SbOde6137xAcu2QxIlRmh2EHQNxpxmBEU2iiCokkJCOuk6fPruute4fIylxXHhicPya6PM8648zM3vNnjkze9b+7u/v+0tz7FyjlCKVDokyaGMTNyP8WGPqDWZ4Plae0Uo62InC5JKmEDDQR++5Z9Det5tk44v0j8bUJycpeUWCTCKnU3ZsHkFFCq9YIk0TbFt2BQnbJc01VrVDGZs0i0ltheNKXGPQnRihLcTMfpacfCx7N28i276L+sNPM/LQI/RmDhPjk3hJhIMhkuBom0IiacUZ0VAfHc8mjXLyiUm0o5A6R+icNI2I0w6OZ5GoGCuw0SIn7Bj8UoV2T0hea9Aviuwc24ITg6g1MULSq10m23XisMjY4AwWqkFmfvjX2b/2WYKzTyY9YQ6L3nQm8ZMv4XshWbXJ4vIgQ36J6ugYdliiLhSm1gLToYjAFzkdN8dWimlP0LQ0KvFIUgf8EjPe92sko/twRsfocTzKpQEaSrLishXc/tW/hdoeWhteoF9IJuQ0uC5Tz2yllDrUR14mfWEb2DluvQ3tBJA0pSJzuypQYEmKEnbeeV83L+id7yZ9bi9R2UM7mjmtnKqboUseBSXQcYoKLGQnZmblCJrvOYc4tFFVwXv+xzX0z51PODDE+P595LUGR/TOJKs2sP2AsWaDyLPwjGSoDcSS2NK85//7n2x++Ic4AxXiHTtpVvdTqNaZ3v4S2nTwk4i4ABPxFNJ1CMdatMfqtIWBPKVf+sSNMfqKRfZX95P3uhzzlrORnotpJzSjDlbRo9GZQsiM/lIvWZRQ8YuIOKUc+ASeRHgpKlDobSPsT/ZhD86gr1Bi78gILz3yCHt274Ywx4gSp/yv/41/5pm8fM/91L0WqRXRkxjSuobN00yPNlGLZjOv3MfLDz0EjQlsnZPYRaa15D0fvYLNjz9M87n1sH0E4oxtTzyFSDskjSqhZ5FGbXpCj6haA0eQ51O0d4/S6KScs/LTbL97A/GSPtK8RuHpXYyrBo2OYqDQR6tos+u+h7Ce305PWzHeaWBG99E7p489TzzASw/cw9TGpwmaU9i+phlIpgNJM2ojjj6OZr3FkO2zpxXRtkOC/iGoNvDznELRo1aw+PXf/QQjm56lMTZK4DhcffWnsSwBQiDEQeFIHI5EOsxh/ouxfv36V3QiLVu27FU9x0869/3Upz7FjTfe+JpmCT/yyCOsWrWKG2+8keOOO+7H7j/nnHO4+eabieP4VTWxerUcdiK9HvlP7G96MPz6MId5LVm+fPlPvW/x4sXcfPPNP3P7kZERrrrqKu68885XvS9r167lO9/5Dl/4whde3USGH13VColSGRhFdft2thgDnQwrNlgnHYF/5tG0v3sfTLWJck3vsUcTb9uN59hkOdBoMmPOXJYcdTQb730QkyqyPEEKC1EoI5IcNzO4UqJMjgBMAhhJZAQiimmOjUHoQJaALZHGkEkwNkg0thb4jkSojDxVxFZGbBlELtEFmyjLcLwQ04mxLcH0/r2UjUMlDBFSY/pKxGGIGdtFLFwqQALUbEWWG4gzhHQxccrWdU+h943RSEH1ehTCMvOOOZpqmtJ68AnswCdLYvA0rnaxE7Ash1QrYl+AJUhUhid8pDS4xsP3JCPbtjG29mEK1Sp79mzn0XVrodZEJZKpLVuZamYEgzOx9ryEawTpjEEWnnQs09MZzztFTCvFoQjSBZmCyiFLeOK5DWBSil6JvODhC0lT5YS5xFay+78eHuKsc97Mo1+5DTk0m4FTzqf2hS+Txk1kycPkGbZ1IPlFQG6BrcCzBZ7n4igDwsVxS0zrnNJJRzFv/kK4dz2JB45WkIPKcozo5lRZOgVsTAqyLaiOTqKmm1BvYyFRSROcbtv1nZs3wQtb2N7JqCSKhieJnO6HVeRdB40wGnXAGuBZNiIISGsJcqCHRtKiB9BSkOY5eqhMOjVNkERIlROMWjhpRuZKkBA54Kmu4yUTNm1XkhuBEQLHDyhIyFVOI+sgsgzLEVjKYEsLXB9cn/LwIJNzZ3ZD3vdN41oWWZaRxhG9YYV2ojHSpt3p4Hs2ea7QAjKhCbFQcU4uFcrufhml4YDrRVOpDLJ9zy4e/9a3odWgUK7gVBNmBL0opfFKZWQedYPRTbfjXtlyiI1m2u7m/tjGMIBDO46QUmLZNp7n4TjdYMKDuQ0WgsgY6lGLKG9A4POON57HV3Y+hNkxjZcJpC1JHKhUhqi1UrxKH1R9vNmzIImZuexktNVh23e+jyc1Sa3OzGIJkUPcagDQECk9fSWqUYwxGYHtYgM1pchENwgfmeN4FaQVYB81j/FqlXxykoIjsaSkXm3iDc3g0R8+DFNj0GniSJekNsrsSy9i7z0PgGoTLoDeY4/CPLaJetTGNhKhJZmk6wJCYymBOLBImdGGUcAdmEEnl5AlWMUApjpoW6JMwnSmqfgB1bRNPwGtJKPniHlEQkBrgm37R4miHLevj1a7QU+xRK4NrvSoRRFefw+5J4gnmgxmDpXAp2Y5tFoNmDWb2bOGeFnFCDKGrRJ7mi06gUTkKakGCj6W6+OSIPFoOg7G9ahONihYPiqJu93QAo89tSnOfcNyHv7a99BCkLsOlROOJd+2FX0gr04pdSgg3KDJrK77p7eeQS5x907TyLdCrc7wWy+gNj6Jc+obadzyA1rSpqY0SB/8DrnWWAZcCSQpYWUAzjqDXU8+D40ani2RqYZiAWLFnm27cZVBpU1UCl5QICgHpHFM0N9DFsfYnk272aISFml0UtpbtkJDQHmA8tAQGA8WzIaSg1k7ilfOMUGBTCkKpQKdrZM40qGdxpiyC9Jiw5OPgVEQR/huSE8pZCyKyEoVdLMFc2az9Ly38uA3v01zbD9HLl/O1q0v0xE2vuWiozoKjZhRYfXt30CmMe24jRMWsRz5I6Vrgv+4eLRixYqf2bVp3bp1rzjH1Vdfzbve9S7OPffc/+Cz/zgXX3wxX/rSl1iwYMGrnuswh/mvwk/KRPpF8Ys+9z0Yqv2znmPhwoU/s+nUfwaHRaTXI/8J5WyHOcwvkvXr1//U+7Zs2fIzt129ejWXX375a/aD8thjj/HFL36Rm266iY0bN/58C7t/22/4wCpX0g1WLodF6hNT1Keq2H4fyjccPfsIjj/6VG7trMGdPwsTuHzg9z7Oqk+uZEYKXhgwFdUZ3TpCMROQakhzlMqxLAswWBoCx4VY4TkWiVKkUTePxmnENDq7uP/LfwedCHyPC9/1Tu6+7ZukloUREs/YuLnCbqaEBZemnTPjwrNYeNSRvPi9H/Kh91zCw39/C7LaYM/EKD0zB2gJm7jXI28aCrFg/NgBBj/xAVj5VzAVoYIS2tY0AGOBFfgULRekZPfTTxBWKvgTLdqBS9NP2THsUjzlRKrT+6BVJ62mlP0STiLIoxhTtJnQCWlfCDoDYZFPJ5QyC6MzRisuTLfhX9ZhdVLYN8nWv72NwUZItWQRnHQU0bPb+OhHP8Lf/MHVmIIFYw1Gv/4DKnta9E3FdLSDMTlSaUIJnXYGUcpLt94BQYm8rfG9MkZluErjHRCRZC7oD3uwGjE4IXrTNuw5w+Q6o0lKwQvIdYbtHxDHkAeCf6EaaGTRp39/Rt94So8bMCLbzH3DiQwtPprtdz5EcUIjrG7asJcf+DwZEAm40qIWKfK4Tfb0Y3SaHTCambZCmZSxyRS/L2f0u98G5bFnZAcFlZPnEqEMVm7oMTZe3s1z6jjdcqea7xA3G91Q5aEisxeeTu3etUz5FqQ5vWefSW3NGrwURCqJ2zGh5xHnqisiGLoiJRBZhoysGx5vSTA5cbMOlqHlWXjSxjcCp90Nqfa1Idc5aXUCRAput9zSHRigGiUsWHQ0xncZ37ENXBg68WRGn30GOzdYWUZmO1iWhcBCK4XQBmH+tcW9raC6bztzKzOYzBLysEi7WqPdzPF7KsQ6ITh6EePPPoWFg7INedmmHWvC3l6QDcgiZGWAqXqTgtcLQG40eaaxbZckSXD9Ip1GB8uySPqKpCqGxYugmdFUMQhJPj7JLOFgyNgVt5jVO8QR+3LKM4eJTIdnbv8GR16xgq0TI1SGZ9F5oYY9f4DEUkynMcakJCKB0KNpErK8+/4WCoPol0cRjotdCNESPvL7V7NNR6xddTsEAbNOPIqRLdthuga2RT1LSPsGSdpN1j/4YNdZJGzsSoAnHE5ddip7H3wQtOTFjU9xwtKT2B12BaHE8ZAHBCNXyW62kTAII8ksaAlAaPbccx89eYugI4hUTFQooGwDtkDPLVAdj3CdMl6hzJ4s49g9TZq5T3bhUtbc9A9Qa8LsEsyZSX3LdupGEBZsOiSgI4hy6AmpNlJsk0JDc881fwy+YNPWnVRCn+q0YD85LTTnXvYhGpt38fxjT0OUkhpN3NtDqg26GVOq9FM1Y6ggoDbZYE7vIHsmGkz544wNTaEzsAsl2r5D3FNg0C7geiGm7CGKvbQbze6XQeTYOSAExihm1DJmTxnSl17A6fF57299kI2jO5nqkzz317fw6Bf+AqZbzMg04y2LHEPiWHQk7Gq2EP2DLFw8k23/cicgEanCtxx0Zsgsj8fuvo+ZAyFTk02sYj/JxDS/8yf/m0ajxj9++a9BgO+5yCynzytRnxynMO4xQxYY2TPKo3/9d1i+5uyL387QjEF++OxnyF2PWZHFVKfO8ssu576//2fiqQQvzdCJS1Qpk/X1QryIQr8DmWH3/v1Q7uWyqz5N08Btq77KaDWCVNHu9fm9P1zJH/zJdUTNBl7cQ2+5yER1Gns6Y2ZWQJb7qLounuchpSRLUhzX/Tl+3bvceeedTE9P/1zbjoyMsHTpUqanpxkaGnpNRKS77rqLRYsW8U//9E9cdtllr3q+wxzmvwL/mSLSL5qDeUsbNmz4qc2lqtXqL70zuXzlhxzmV422cl9x/Krx79sdrlq1ive///1ce+21bNiw4Ze4Z4f5RfCTbKgXXXQRAGeeeeZP3W5kZITLL78cgE9/+tOvyb5cc801LFu2jE6nw9KlS3++SeS/GQcukwqgFIRE9SYBFmU7QGQZk0XDpvXrufvGvyOo56StOtnoDm7/wffoLffgKFCtCByf8Rde5NHv3wm5QhlNIjQdcoTngGMhfZcmEcKxcRwHx7aRmcLLwWsnsH0Htm0jXYfJsTGwIRd2NyPDuFjaRWvAlnRUhDNUpP+Y2dQaY6x75CFUo0Mlt+hdMJPmMQOc+OGL8frKhJZP5Nm8/Y9/n+2T41A39JsCDcvCVCqYchksC9uRRM0GebuBbUPWqmF7NroTw1SL1g8fozgdw8heKPWQx3G3M93CIeSSI6iRExiHYstgdwS+WyAlp3jcIna5KXnJoRQWKU8ojjzmeBA+5C6zdEiuYpaddRrELV5+4XlEqYAd9sBYg23/+C+Mff9+nKkase/StBIi08JSCWVsirkkNCGDThksn+koRxdLaBwMDhzoXjTx6HrW3/9DKsLmN979HoZUN88qnNnHeH2avtlDKEuQS0km7UNDeD6usFhy+ikkoU0WOnh+wO4fPsyDd9yDbdt0UGgkRgikkVhaYGuJowSWkUgjMEZApw0mZTBwyJOIUEGfhmInJWgrhqVDT57TDiSZLXCNJDCSMOu6hmwNuYSObePNngPlHhiYyamXf5SBM5bRnDEE/RU4cjFLLjgf+gvUdEzkCrAkRCnOgXmMgMSCxIZEGhQaQw6u5EOf+CgsHIb+IrmJaQuBsn2M6ZappM0q+fgo48+/AFtehn17KfV6aMdg93osWX4SjUDArF7c04/n5PPOhSjCCIssU3R0QupbiIJPYhTqQN6KFt3XZ4ShL+ghrU+jaw1kJwWVgWOISx4UbY5/23nMPe+N0N8Lg31QFBhfsm98L7/9l/+HvqWnk9oWJ77rYlrSoW4krRw6xqKNjXILNCOFW+oHr0SKoviOC3jfVVdx7iUX8607vgObX8K2Lew4wc40Tn8v+1pVSv0VNt58O898+07Oftc72fris5x5wlLcbRP0OQXe+/GP8N7f/ThZaBEVHbKSR8vSaN+BNIFKD2ef9SZcWcQSIbZboJUqXtq7lye3bcU5djFnfOQ32Dk9Bk9txMEQq5imVHTaVaj08Fuf+zyzlr0Rt9RP1JhkqjnO975xC2e+793gAJNjPL9mDcWSBw5kVn7gvQVHQZiBn0ksbZNYNjXfJpcQ7N2DZWXMSBS+lIw5CloJ9M1k+e98jMq8+QjHYbRZhazDpm//gPa9azGDAdTboDXolA9cdmlXme8v0yGG3gKf/Nwfw0AfmVA0PUjJOSJTVLSgzy2gXthCq1rH9QParguOR9Vy2ZnF5Kmm3+8lzwQTvSFVYbByh6wes+zS99Oo9NDpHWBfpvHDfsq5y2P3PMhkp0XTluhymdOWvYGK04MyDk1lYKCfZuDT8j1yy0XkFk5i4VRKjNsRW2fbbB/Q0Grz9cuuZt3v/RnPferzCCyYGIHmLrKiwO4bQvsDxKYCLRtPSMyuHWz7/HXQbEASgxRI2yKNYgLPp+D45FMNitqCBAaOOYGbv/lt7n1qAxRDGOgjti38nn6mJhsM9s4hMAOYpmHWQC/R85vw7Q4bvnYra/7uFiZUjDI2Ou4gLUNNJuAJ2nGHod75aO1BpHnrb14Js47k0v/2h7zvE7+H6J9NXq6we7LKRL3BCRddyJZ7fgBSojyXa//4M2g0NBvUTMrePKYpJKYDzd2T7N6+iyzLDp00SvnqTmWmpqZ+bL1x0O3c19f3M7c9KCAtW7bsNXMmHFy7XH755axdu/Y1mfMwh3m9o7V+xfGrwsGOawe7vv171qxZ8zMFpv8sDotIr0MmKLzi+FXiYIjZQRHp2muv5corr+S2227j+uuvZ+nSpT8iMB3m9cfIyAh33303YRj+zBK1q666CmMM11133aHys7Vr17J8+XLWrl3LihUrWL58OcuXL+fqq68+tN3q1asP3X7xxRf/2MJt3bp1LFu2jOnpaVavXv0f3n/z78ZBJAJLSISBLE3JdIIuO5x8xlJEo01JAZ0WqIypx59EdzooYUiN6rZ6k7J7olAqdFtOmxxCjzlHLiRRKY0sxmCTCI1yLYTnkGmFsC18y6Lkh/gGdBLz/MZnAdDd3jhgBEpY6NClJRSW77B34yYeufsH0IkZef558jwj0jmTzWmKpx7J4OnHUrI9GtNVmqFkdGoKvv8ogfFI0hQch4G5cxiaNw8CHyklBc/FxlB0XXSWktsG13KgmsLeFjtuXYPdhnJHU3ZDiuUS8qhZOCfOJ/NsenHomUyZFbu4rRQGK8w/5zQYCHAOnGQ0RMa8pSdCqpC2y6RIIc159r4HodVi09NPISybNEnBdinlGqM75CiYN4us4JB7glxkSGGQQnTbZStD0NNDnmdMNVtkUpJKSWbJbgmY51AoF2i3GhRdl2MWzQffQVld+8vCxYu6QhASjUQJSSYlpdzGjxV9C+bQLgimHIWrBeytko2M4QUBdc+Q2JBKSK2usyMXAm0JcgzKEhjHgnIR4XlkUpIBkQK/ZKN013WgkhSluq4Pq1REeh7aCDDd/cqlJLEk2CBwICwxdOKpvLBlO8+99DImKFI5aSnDx5/IuieewJozDAJirUFYSGkjTVdB1aI7DBJLc+DkX2EZhVA5QnSzTXAdFp29nLaExLEgcLFsCSrHNBpYng+2haUMeRKD0mzbto3p6jQUQ4476URefPFFEA6OEbjCgYLP0OxZBOUieZYe+l5q0R2ZBY08wSqFFMvl7jch8CkvnA/tNkQJT6x/jCTJUK0OJy1dCkcuJE9TbDRbNm3GKI1XKHHkKSfhDfRhQr/b1a9cYuCIuYSD/aAyZi6cT2XOLJA28486hueeepq42cYLXMBgB91yIO07ZJ0EhKFWcWGyxmztUTECtryMs2OKaNcY03mTdhQxMTUJliTXijhJcBwHFccQBNCJGa3WiG0L5XnEqULYPo+sfZD27n1kjTblchmRZYhOp+tCtG2M74CUeMcey77JSdqtiLzTDd5GKxidoK9QQBYKEIQQpXRaTSyl4aBQx8GyQYl14LOQS4myu595aRKaIiY3HZRSEAaATeCEDAwOU/DLxHF9HqGAAAAgAElEQVQMSQ5RyuyjFsPAAEv6hgAolMvQaLBjy8vgOAfaYErIc3oKRSxpQ6bIlUJY4AiFozOsKMZyfXSa4bseeabADcgjRSq7Yc1CC4SwqMybA2lM6IXEnYThoxbTf/xxsGAuumhx9JlLoZnQa4cQ+gyfeiJoxdSOURzpoHKDRrLw2CWkdvcYoemKzUILmnkCvk1LRERWjlQ51niNSpzDdIeSJcFVIDpUaTP72KOZuXAxaSYJjMsM4VNMc6jHhIsWQm+Z1OoKpG4pRElwPJc4SfA8D5Acs+Q4pjdvZs/4OOQpJ51zNkcvXUqqNUmeoaWNKfaSFwtoW9Lu1DCWov3CS0xv3Iy1YAFoaOsEP3DZ9MTT0IrAtpnKOmShB07A1o1bcYq91JsN6s0WlmOj05RnNzzBA2t+wPGL54PJQChEpmBkF4uPP6F7pUXlHHX6qbiDfeRGsf3Fl6jX6z8iHIlfQCe2T33qUwB885vf/KmPWb169SEBad26dYdcysuXL2fFihXccMMNh9YVK1asYGRkBOiuZy6++OJD9/37NcUXvvAFrrvuOowxXHvtta/5azvMYV6PvFIe0q+SU2nhwoWsXLmSVatW/dgxYM2aNbz//e9n4cKFv9RQbTgsIr0u2UL/K45fFTZs2MCqVau44ooruOKKK6hWq6xatYrTTjuN6elptm3bRqVS+alq7WFeH1xyySUYY/jsZz/7Mx/32GOPEYYh11xzzY/ctn79ei6++GJWr1596O8vfvGLHHvssaxYsYIVK1awfv16HnvsMe666y7e/OY3/4jIBHDdddcB8KUvfenneg3//hpInueUymUKQYAtJV4hhMEQhnxOOP1kCkZg8gSvUAbhQTWlkBqqMsf0hsw/4xSIm9BT4A+v+zxa5jCzF0TKuz9yGcgca7CHjp1TcxQdkRIHFqV5w7TIiVAk7RadRhOiDlmUgLAwSuFIC6UMiStpDJXpO2ExAZLSaI3a3Q8z3MyxU40ymn2epjR7LtNPvMijN99B/PIYLd+mbWc8+8Cj8NRO0oJDMliGJGZyusobzz0Xck2a5KA0NgaiBNdxaGYxJsvpRTBESL5lD30iQOU5GkOj0aDpW5z7oV+HVoNmrUGfFZI3W7jSBddC95fBAbFrjGZjGuvipWwoK0ShBy1h7yKP2T0D1O9fRzlTTL6wGaEtkB7Yksy00J5gykkZ/o23Q6hIfE1W8WmRktqC3LVJXZsPfvxjMNwHZZ84juj0lkj6SlAp8parruC9H/4QaX2Sm770BW79yj9AntJoN6jMnIkRAstyyJQhRRBlCntgAAtB0upwz8MPwFCFaHqcdrMJlk8yVSdNUyj5ZEO9NG3FqReeh+jvoZ7HTKmMTuCQkUM54Mx3/RrGWNSkQ9Uu0pkxzL4Y9PACqtohdkrETgA9BT74iSuIdEYcOFTJ2U+ENbOfPLDA5OTTNXoGhnnbueeT7J/kXe98H1ktZsn8xRwzNB+27OS//7ffBSmxS0WUZaFtm6CnhyxOyBAIxyXLFH4ORS0o5gav2eGWG/6sG/7cbMPsBXzgox9DW5qm6HDGr12ACGzIUgr1mGJDsbgyh0CEuEmGHcWMPPscTNZg7xi7nt/CjgcepVjuJ6l2mNE7gFMu8r4PfoB2u83sOXNJDpxMdzptlCNpqA4Tdpt9aZWppIl2XU4//XTeccnb6Z19BDgBPL2V8We2gVXg2SefZsGceWRxkx5cHvyrv6f63IsknYTHn3+R4VOOZ/E5y8ARfPJzn2X4+CWc9c5LYKCP91/x25xw9lkgfIbLfbz0jW+z4Y57SOMmRBH0h4RHHsHOdBpsA5US8y85i6C3BzE1yR0f/yP8KcP6r32Hxrp1zL/qg9z+Vzfx0J334js+0eQ0obCxUkUoXdxYwXST555/iqov2WfnBHOHcTwX9o4RBEXYuIU1f/A5rNEqM7DJmi3Ccg86TaHSy/s+/Jvcc9991De/hBMlzHALWLaD6OTcddNX0FMNCjmEucEShj4nQOrukU+iD3RVkyS5oRbFZBrc4VlgclI3JeuRFGcOkrUT5p95BqLUR7R7ku9/+WY6Y1OYTLGgOMCAKnLBxz5I5eSjee7qG0DHCJ1AqnlxzUP4fgnGpwEBieJPP/O/cKc7hLnEyjWtpE3Di4lVh7hdJZRQ8nxkpuj3ijARcUJlNkfOX0yh2EOn2SHqdLjik59g6MylNNttiuUevr/mHpb9xqUM/9qFsLDM2z59BbOsAsV2BjPLDCw9DooFJn/4DFG7Q5pmWI5NrdVCODZaCrIDwqklbNppTqVqsyjuZbjusjAYYKxPsuhT74NiRmppnKgBBQl9Lu//0G/wkd+5ilJpkFmV2eRSYiEIlcPHrv7vnPuOi9A6oZ61OOsdb2PRaSdSS9tQ8MgsUMJQ6inD8BCXfugyaEUsW34WJ518MrnWZMBUltE5dj7H/c6ljDbGyPuLdPIIxpsEHfjYlVdCmlArKNI0JnrwGURT40qHMdHi/E9+GNoxI/98BwsDj3/+7LV87U8/B+0xZHuc8RfWw97N/PDmv6Ek2oixXbhTDfp7ZhBv3Q2lCgwPcMKF5zL3Dacy57yzwBUI38e27UNuJGlZP9dv8k9jxYoVh8Shn1We9rWvfQ3417XBQdavX88tt9zCypUrD60rVq9ezfHHH88NN9zAokWLuOuuuw6tRQ5e3Pq3XHPNNYRh+Irl+4c5zGG6vJ6cSAArV67k/PPP5/rrr6evr48LLriARYsWccEFFwBw6623vqZh3j8Ph0Wk1yEv0f+K41eFg6FhV1xxBQsXLuS2226jWq2ycuVKKpUKCxcu5Pzzz/+lh4sd5hfHDTfcwObNm1myZMmPiEM/Dd/3f+LtnU6HT3/602it2b59O0uWLGHz5s2sXr2aJUuWsH37drTWh2zsf/7nf/4j27+arANB98L9vw39NKbbp1pLQZxntNKY0y88H6qTrP7qVxmdHKPhQjIxCdWIuS1BlqbEZERZxIIlR3Wv2Ndr3P2De6Bc7oY+5ym33XYbAEmeQeBB0uHy3/9dPvmH11Dbt5ugr4dIK455w1lo2wLp4+QCJwcvNzjagFAktqFen2DJ0pOZ31sh3DfJUDNlqJUS5jmgaXiCeHud+Y/WKX53M6kWdI4YgByyxzci3nIq7/3T/0FWTLvWjx07+N7tt8PUFJbRSCMR2gYshJG4lktmcprFgPANx3P+l/+I8aMLqGWLackOOstJHnqO2/6f6ykdsZh0Zi/PBwljwz0sOm855IKHbvgrrLbFLD+EooeqSHbqGmbfGPQPcMwfXklzaj/DicJvV+nzbHQzhwRmH3ssrbJiv9uCksX+RhOUxpozmxxB7rvEriFXEZFM2fDck908pqTDsiuv4PwPfoDxRp0T33IuDz+5jiefebIrBNRr5OP7kdpQdnyq+8dYv/Yh2rUmCBe04Zx3vINGtUa11yWSHWjGFEc79HoV3MFeht96JosuOgeTZIRNTas6ATP7OOGNy2lHbegpQTGgnaWERy3mpLeexzGnngozh8AOoNhLQwneefVK6vUmuB5NI7oxel7Izj17uk6pgkdUdLH6KoxnHXAtfu3KjzEoNPXnnuGrN1wPU1Xu+MZtMDXNo7fcxkO3fB327OO7/3QLBEWksGiiaAUWY9UxKscshjjCEhae023h7ilNmGkKWc7MUh9M1MAtw45Rrr/hzyHsinEDi44gzSLswKc+3qRQnMHLO8fZZwUoYRPkmkKqCSMNEUzdvw5Ga7T2TjBr1hxGp6bJag2+/tWbSRotOrUGnmVjshynEJKojCUXncc7r/8cDJShWMZIh6fXPcktN/4FrZ27CZKcQjPGnk6QmY2/4AhGvv4tZg3N6oqgoxHMncN7PnUV21/YzFRjmmVvWA6By9/+/SqeeegBHn98Pfgu3/qX23nkwbUQJdz7l38J9Q7hZI1QgjtzFu/5rQ/TLASw9FSOff+7Ef19bH38KeKiYKLXcNxExtypiNx04MhhdmzeDPUIvWWEub2DlMMSSSeiHBTQcYqdqK7AqmKOPP8cqBQ4ddkZqHYHJyjwqUtXQDNCeAHphmepNer09Q0wOVWDQgWaHdbc8wPYvRtUQo8liRsdlDZ4bQMpkGuyTk6vW2YiTWikKa7SXfOM6YbGR7Ygci1wbcKhWfzWb13J4NHHkDuApdidtBicPY8lp5yCCRywLJwdY0xO7kcUQ+oTU5QSzVf++gtUN26gPKVwSiGtyTEKwuLcY07GjnLINbguQoHbzii2FcVM4FsO0nOYDiCxNUqAZTToHMe2yJpNKm6RtV/5BtsffhSjEryiS1gIuOvrtzH67HNga9yBAtn27fzg0YfZ/+Imjvif13LDZ1ZiRNYt5bMySo7F0fOOpKeaoqTuNhrIUp568CFkK8KKElwpQBoSHZMViigrYAcZ430h26IGzBjkiT07ILdwjcW8Kc2iMbCVxXf//G+44+//kfr0KONWxv4ThqnPLNDpKfAPq/6WtT98AAohSMEpZ57O7MULwOQIp1u+jGfxwEMPQLXGpvXrwS+w6ro/5dYvr6LgubiegylI3GPm8ISpwfz50FcGp0wgC3jtjO9+5R/At6Dg4FqS3o6hv5USJimULV6e3kHgeTCyh5e+/20QHcpehtscZ07R4MVVRGOK5tbnKdTGGBIZPWTI/aOMPfQY4uXdsHM3N//F/2HL/Xdw9rveCoMl0qTVdawBWZbBa+gwGBkZ4ZZbbsFxnFcM1D647vxJawNjDEuWLMEYg9aaiy66iE6nw8qVK7Ftm5tvvvnQWqSvr4/169f/mCPpp61lDnOYw/w4rzcRqVKpcO+993LTTTcdKm876FDatm3bL72UDQ6LSK9LXk8i0kGV9frrrz9k61u4cOGh2vMNGzawZs2aX7oae5hfHJ/5zGcQQnDHHXe8qnmWLFlyqMRtwYIFbNq06ZAN/o477jhkRb/sssu48MILMcZwww03vLqdP4j+N+PAetcIUHTLDXJHYtmCp797D4w2YKKGXfJJwhhsQ8X1yZIq006GGxaQrs/LGzeDcMDyeeLO+2CqCbFBFvvZ9+RGLCtETLWwcwGWy9Prn+CpdY9DoYSNgDDgzR/7KPT1Q24QcU4phUKW46kURIokpVCo8OBX/5mxHTvxAwclM5SlEEZj627OyRHhMEedfhZHvvMiWqcs5E1vv5ii8mBfHbP1eR5bdz+0a/hGAYZozx7Quhu2ayQYB4VHLlwSpcG2UNLQsTTVgqT01rM5f8X7YO5MAtdj3uBcTlt0Is19Y2SlAGaUUXaO21/B84ugHNREk6ad41kebBklPPpo6B3CnoiQ+2sI26GpI6pC007bOFrSXx7irZdcBAVNZjqQ55zdezSEw5yw+CRksQ+SGFEuQ2+IatV5+Hvfg6kpcDzqjZjJ6Ral4dk89/iTpM9t5JmH1zMYFKkoQdBO6JMOWa1FnxPi55Ki6xMEBexyL4XBGTBrFit+/3dhzkwcyyKvtbAyTdxucsYFb+K0c8+mmTTxFDA4yJEnncwd372z21Chk0Gq6ento7NjNxuf28hX/+iPYHK8WxaZRpClDPSVIIlAZHg6YsD18Pa1efif/gVyAdJGCYEdhqRRAtU2oh2R1PaCjCBrQE9A0Tb4lkG0pgmb0zA1xrb7HsZXNmm1SebaKB3DYJnzL30vFAuknQRhBMmBUhslNYKcWm0Su1gErRg4czlq515opTDZ4h//+iawXfJU0zNnLm+74uOweDHNgkcjkGjRLcIMc42fQFDqJzhiHudddil7G1XUYJmCE7DvxW0UsEmmG4S22xU3MIBi1lGLeWTjC1Ce0a1tizWekdhFH607iLTFoKWZGfagkZx12a+DX2Zv3iLyJMeFgzC+l29ufAqckOr6J/nWqq+Atok2PA+NhOkXtuA2Inase5Lo5d1YOuf8S99DUedY7Sp5s4lVa7Fr1x5aTcUxb7iQTc9sxuzYQ2vrbkynSeIl7BctxgoaVMJbVvw2PL4Vz/Wh3MuMgQGEa6NtSSw0sTSY0CVFQeBz4uIjYd8+Hrn9VmYVC2Rj+7jhs59B2AbTrnPhig+Q+D6RkHhuCWlsmLWA885YxsDCBZB3aLXrKLcAxQJxO4VKH6QpqRRMGQ0DJZLAwdYSL+8GvieWpOlBEtjge3R27+U7t36HiZd2Ymo5iJDYcZjYNcpdX/objv3AhWAnhHEMfTZGtckrRRoFG/ZNQTvlxHefRzY2iuVatHWLrVte7IoLrk1xxgDGKPI8x841km55p/JclJBY2sLW3ayuOIuRBZeOSTCkROP7SEd2kauEyNXYHmy/by22NtDrUJjTD1HMBWe9CX9gLru++A3Y32LCjRix6/R4HqWtYwy3cmTJIbISLJHR69oM2Q4D2tCT5Zi4TS5SdAg1I1n47ksY+tyVzL3hv5EuGGawPIPksZeYIYag1mYAH88Y8jhj5zNPMfLME5SK0Kzt54P/7x/wxj/7HDhFmi9sh71TFJSN0BZ/svIPuPvrt2J7BQIs7ESBioiaU9i2xXNr7sePc5yJaXo0tKoT9MwoE9XGqD/0ALLgw/4Y+mcj6ce3e5A47Nv4HMR1aMaYOCUzOdIyuEJBFrP9tluZoTsMB4Ki1Pgqx47ahBjSZpPQdukPixSMh68cfNuh4XVwSZkNzEoVfV7YFYnKvXzjS3/FkqWn0zMwiOM4JEnS/TF9DcvZPvShD2GM4fOf//yrmsdxHDZt2nTo7zvvvJMlS5YA8MlPfvJQYPaCBQu48cYbgZ/f5XyYwxzm9SUirVmzhmuvvZbt27dzxRVXcOutt3Lvvfdy7733ct111/3/5pz3sIj0OmSS8BXHrwqnnXYaK1eu5LbbbuPKK68E/tU6fO211x4KOl65cuUvbR8P84tj+fLlZFnGhRde+Krb3f4k1b5SqRCG4Y/N/aY3velVPdePYfhXAenAEJbV7VKVJug0IUtS8n1ToF1EO0EZDbP6QGjyvNtyUXmSLE7Q9SZlx8fxi1Bt4mPhZgZaEU6cY2WGQAnsVOHmBstyeP6JDTz56Hp826VTayCE4O71D3dzTWwXqSW21thGd6/OoxBo7GZM0SshhaCpU3TRI7Y1RoCtNWEGrVZE8JbTCN55NiwY4KQlJxAai7KwYc8EOx5YD4lCxBEWAqk1lusfKHERGCFRwkZhoW0J0oJGRO2lnWz41t3osRpTu/dBnBHHMf3Dwxx53BLIMjwjIc7ADXjskce6Di+t6Jk1g8iXhMaCfQ3mzzqCQNqYyRa7H3oK5VrUlSFzwAodQjsg7UQ8+uijgCbwXGinvHTPo0gT0pluo1MFxTLz5i+AJMHxAkrCouw4yFbMUP8Mliw+muZEFdoRWC60WhSxKGhw0xxfSixlMFmOpaFda5FlOXk7Zt0TT4JtYaIUsGimMUloU1Mxlhew9vt389Bd9+Lg0DE5ZDlSi25JYjOm3FOBOENkBjKF2jMKGPzAgyyCuAOW4PEH7wedQhJRtDRlDIVYd4UoaXc79uU5cbtDN9jG8MgP7idXOeQJZBFLzzyFt1/yNvIsJrChaFvYWYJIFDLXCMtm1oJ5EHqgEnZPjYNtIxE40ulmOElNbnUdIaVyibzTBpXzhvPeDEERWgmhX8I0O3iOC1mKclx2dtqwYD6c+wZwBFp0P4/CHBAs2h3mzDuCZeedC70l2lEbF0nB83GMwBGSdrOF0bqbD2M06x5/gup0g1knnw65RDUTTKbJswzXd/ACG21SjFLQadN2JeSKSMdQcIgbdegtUJg/DM02TqFEOlWFah0UlG0PL8nw4owgyQmNQLXqBOUAoxJcDAJNVG3w5LoniEenKQVl2D0Oloclgbh7HJjqgcIZR4LjMKgcMG73GJFl7J8YJ84zcG0ilYFnkxgFgQthyNOPPAqZAcshaTaxbAudRoTFANp15iyYi9tXIckNea7QSQ61Ottf3EJzchJMhgAio8F1kJVeTn/Lm2Dh/G4G2MwZlJaeDLNnIkxXpBGmKxhiSRCa4sIFYCSjm14ELfBSoJV2XVPSAWXoWTgHenzyNIGyB0ITuzZZbwjGgXZCa8ADrXBtB1zJyN7daAl4LsecciJeXy9IgaabzZQJQ47BMgJLSxzVzaNDCpRQ5K4mISEMfbxco3SCkjl5nuIlCk9pCGyWnLyEoFhibPsO/HYG9z9LebINFY+oKMinppl8eiNjm15iOu+AI1BZhkpi7DTDU91ugx4gHYGxQQY+jXqbY04+hXknnABRm+UXX8hZv3kZ9TSl7PaQ49LBBRUhbYMlMlyRg8mxLRfPLULuQTPG6mSIdkLZ8rpZUlp0M8TaUTd3yCjotLBzhWl36JEOZSQlyyZLIpCme5ElyxBpDsph6Py34VBA5YJcaUJHgIpxlcRBkjqC1NJATj8Sshwni8nzFgKNynKyJCf0QqRwUDloJQCbPDN0UkVd5GQ6wbcgVAonSij+X/bePMyyqjz0/q21573PWHP13E0PQDM32I3IJK0gqICCSZxNjEluYiImV43m3mhuvnxKvnA18TokTgzqjcYYRAEFlWYUaJq5567qoebhzGfPe6/vj9PwqNEYEhKV9O951lP1nDpn1aqnztl7r3e/7++Veu88NT3LRee8BF3I/xAP0k033cQPfvADli1b9q/Kev6XKBaL/+yxcrkMwOWXX/4jjx/rwHaMY/z7eSE5ker1Oh/5yEd+4X2/x4JIL0D2MvAzxy8TH/7whzlw4AB33HEH27dvfzYLaevWrbz3ve9l+/btvxBpfcd4ftm2bduzjqN/Sab9r+Xkk0/+iY//p6SM/4hZOweRE4ucCMjLZZy1G1i2YSMlldMf6Kg4Y2TDWi7/0P+A/iqJLggAsi4lp4w0bZ6+9z6SThvDK7Gs2Mfo8hXolofl5xhRCH4XTymcJMOLQetE6EGCluSUHI/jNhzPnnvuezZ7xVQCPQepckRPqYyVKop+ippYRDcMaiYsipAFR8fMJHYqKYUSzTK5ef/d3Np8Au2iTXzyz/+CxbiF2+ywJPLo2zdDXzOkqAsGTJM8CalaRRQamdDJkb2sFB0SwM4Fo0iGp9rwj/fifu9JHrj209COCbOYHeNP8f2nH8ZbuZKTl6ynGOmYhxtYjS7x5BFWv/JiLn3/79GM2wxYDuVDbebufggZdlkidArbxzBdHSpACRbCmFSlRN0ue75/N9R9KsJguVvGemQPzlyHvXc/DNN1Tjt9C5dcfjl4ZZxcJyYHqbPcKPL966/n83/7KaqVPjYefyquOwB1HxlE2CrBSULiRosllkcepFiGjWlbpGQYK4Zpzc/CYo2b/uQvoBnRMGOMs08kG60iuhGN7z3K1Hd+gKp6RCMVKFdB02ls38HyoaV0xydZu2I9XU1n1fnnsXbLi/HykAHl4yYdKoZC1Od56vbvUCm4eCLHUBGLrVnMOKKozJ6MeukyXvt7v0+aCGgn9BeHUN0OaRG0Pg/SDtH8LHff+k0MQxD7PlHcwdUSHE3Dj3y0isPxm06GTgsMgx98+YtAjiNMsiAhExpdQ6dj6IS6pBv4mI6FUyxy73duh/l5+swibqhTkC5RO0R4ZdqtBg+P7eWit72RJRdfCJok1p4RjEMmFbnfZt8993Ddxz8K7fmer6q2iCEVvt/BLXvYjolt24S1GlTK+FPT5LOLnH3OhdAKUUlGGicIQxKGbVpBi0zFZJqCagFHN6HVZd3mzdgjgz3JfeSzeskQSMU5W84lEQLXcBk0HbRGCztIsIXAzxNMpShXS9xy/WeJtBy9r0yickbcKvFkHSFMVCPC1j1OWX8ibTKKPkjDg1GHU3//16CbcOuf/iWFpk8WhBQG+iifsp5otEBm2kSZxHCr5EmGtXo15172asa270DTDWi08QyHrBOgK0m3NgfDZf7htm8QZzGRgNgPGegb4vSzX8wDn/oE0Z5dEGW9pErbAtMgLzpceMnLGVi9EmRGbW6KjZs3s+ZFZ5EKk0zoKHSU0Hqd08oFrnztFVAoQDOkhImVw6juQZxgWzpokgc++znwfeylw7z0Xb/NwHnnkp+4nHWXX4gZ6tDJeKIzydDwAHFjDroNEi0nCnzwW2w5ezPRwgypIUlMnVgIEiXJcolUEjPrdR80M3Ask7bfBlsjtgSBChFJRpZmJI6OH3VxpWRQM2FxntnxcYLGIo/87adpfPkfOCW1WC1sarPTvPSqKxCNkMXH9rJ44CBpUSPLJcI2yMjQ44CsUYM0whnqQyuUyZSJFuYs3Lmd7/7+R9j29vdTevn5zG1awp6VFlExwxztZwZBs+CBleFrGQ0zZrHRYLAyzJf/7Dru+KM/pRDEeFrOcmni+CkF3cSxCwg0VKgY0Mo4RonXf+D9sHYFWaaw0GjVFvGQiHqT0b4KtelphmwHMVfHbHUgSDl9+VosaZBK6ARdTJUhTY3B8ihWdYDUNQhkTJzFDKSCaieiGzTI9Jx20MXzipi2Qy1LaHYSpFYkSHRE5iK1MpnmYJU8ci2nk3VIzYxirhhOdTg0D37Gx3/796gfPkKexBRcD3JFmiQ/cqr9t/IHf/AHCCH+Tc0zngv/ntL4YxzjGD+ZF1Im0tVXX82mTZt43/ve9wsdSDoWRHoB8kIqZ6vX69x5552MjY0BMDY2xp133vnsh2rr1q2MjY09+/NjvHB44xvfiFKKT3/60z/vpfz7kfSkSDIFmZARsRi1aQG5VeR1f/4xXvXf/ydawQFAlYtMLi7w2J0PgeYRosgKNkib0HDIi0XO/N23gS1IunUOd2qs/a3XkjoKpzRAaCV0Sil1LcR0LfQULEz8xSbdbpvpuIHVV6Bv9fEQK0pOkU4cE+gaHcMk0jSMzOiVTFUtXNMgLrhc/Po3Q2mQmjBZklUxlEOr4pLrPkvv3In7yW+zanySrFMjK/tUUdTSNpEryAo6ecEgabZBQl5L6JgGdVNhLx/CKmqQ+kgsohJYF8oAACAASURBVFgxU5RMFHwKTkbSnKHYSkCBs+k09CBg9t776M41GF/o0N6wFFyPuN0CbMZ37ef2/XtxUslBf56kKln4uy9jRotEZgt/7hB6x8fuSGTTA7dExw5Qlo/bSXA7Nu2FDi1/gbi7C1sG6GT020Xmp2b4xqMPQqpIEhP5iotYd83vsBBmkNZIDJ9QRKxx+/DH5yi7VSaNmIN0oKKTSIHdlSjDpK0rAqFgiUffhadAfZ4+JSEVaK4Hp6zlpa+5AgcTw7Kh1sWyPTpGm+UnHA/FEkm5hCgWyWcXGC328ZI3vZnENuDE9aw4exOJilgM6qiyoCtCKo7JEBbGYoRmVZj2PJqDZfwRnbbwYfUy0s1n8LX9u8ijjIJRwGo2aEVNaoZD1g4YXLWCJ//2Jsa/tQ0MD0u4RIZJlkekFrCigP3itXzv5huwminu4TooCZUKzTBk0OlHb6TIJcuwTjqJqFihkJo4rSZy8jC1e+6gJFL8OKGj2aTKxNActDjDQbK622b6K19j6kN/gd3MMDOdTEqadk5o5azachqyr0w6fgiZg1erU9BSIi0gLObMiTa5q9PyG5TKfbDYxl6+ghVXvKKX3VIxKKxeilF0KTgupIqiV0AaOrPhDERtdv/ZZ0F6bF63CdsqcsAOKLYVsx/8KGLqCAMXvYKXfPhD+KlC5jq2a4OrEayosvqaX6WxtIIz36I63iS1cyZLOXLpEmq1Nks6AkXE7kfvJ3RCVm7dBNUSmVvhpPNfBnM2t3/404ioTZYsYOVNjE6Ci8aBlR6jf/o7oJUYbBfoi4fwXnYFURsOqwxsjWz5KKxcxZyfMFxYRnqozqAzAEFCY+wApCHKDykMDNJq1Dj02AOQdCHwGdAKIApc9P4/5or//n5ozfCpP/+fLGy7CzsIII7Ydf0tjN39OIFbpr1kFb5VYqA8AgsdqDW47+Z/QnbaDFoWUWOeoAhETQZFSseqQ7PB0M4ulTmLhSVLuX++w8Jsk1Pf8Br2HZ5iQNi4zZz8uw9Tb0wxbEBBQqXiQhpjmA5f+ND/g65paFnSK+kTJsW4gJM5JCIgdiWpIYnjAOVHyDDCUSDShBSDpDrCqS9/NQyNwvrVHLJz8maXdV2D2du+D1aI3TpMWS6wr7jALiOibKyidNhAc4ZpDRRRAx59AbhyhLo00Qb7iZMuTtliJmlx0DYYOvl8RL6KSjtmhZaxfGoB5hfYfNUF/ODzn2Hxb26EqXnGDu1HMxO0Tg0iYNiG4QGWv/oq5pWBtfMAxswRcneMbrmNFsziFYtMq4zAybnij3+X4vFryESVI33LuCvKkOefi9O/FN2qEFQcaiLGkSZBO2KVNYDVzDA1nfUFD4YV3/vA+2mpcfxkhuGCQVUrkA8uYeWVV1A9/1z0RobdyZDAbNomKjg0S2WSzAJLoeIueR5TLxgUrDJGrINuU4o1cinQpMvIXBmnK5gayBkfiOjIjHzOZ4k9QClRrJEuS4WGk+bIOETTBbqpgch/5HT7XPOUnpFpb968+ViQ5xjH+CXkhRREeqZZVL1e/xGh9o+Pn3f3xmNBpBcgPu7PHL8sPPLIIz/xg/Pj41h3thcW1157LRMTE2zZsuUFmeotgYpVRQcwTQ7u3k1tYhIrF0SmgCSDRsihW++Cjg+6JMgS+qQFYYw70Mdp606ABR9CULqkOTEDQUY3jUGAJXQMBXGcInWbHAmpQjNd6CRMHjjMOee+BCS04i6pbeIbHC0zgkyAQpCmObFtkhYchpcuBakjikXmRErHM1jotpkxEvKqi99oMH3Powx0FLQUGoLMkHR1hV92WEgiXGyk8DCFDnlK/3lnsPS8M/FbAUaqPyviFT90S1kpRZakECesWraCLIggTCkEkBmSNb92CXEpIc9jRnwF+w5Rnz5E4EYkJZskSxmQHnnHx5U2gTDolB1Cpyd4dhKFlfWGRKEsncwzyTyXjmMQuBqpCcrUWH3KCYyOjkKWE+owumSYZSuW0rUEbDwe6nVEN+TQ0zvRyzZN5RNWbFIF7VhSzyLSkk0rj1GG1pOhBxFVw4FYoaNRamdUFiOYapJNL1KKBRIBEvpWLgHP4pRzt0A3YGzbgyy1y0xrEZNlwQPjT4PSOXjnNrZ/5w5krNCVQZ5INMumE8YoofUuqOIUW+oQpUR+CEKw7tRTUdPTMDHV24k5OrFQRN0QWa5CdYBXXPYqQJJGCZrQ0ZSGlku0VFDSi5BYrKgsg1gjAhLDgkwwtHEjqVehofW2eRvOexFnvXIradfHcVzyah9dzyAruQhAzzOsPMLKEpwsws4SrCxketfTTO16CjotzDzHOJpRYmZABqeuPwFXGhg5OJqBTHP0XKJnPOvBMTLQMoWW5gg00tkayc6D5IdnwfPoJBGapuHmEplAkmUcIUSM9OMM9DMzPQmmzu7du5mZmUHXdYIgoNlsognF4w8/zN4nn4ZigVQXpEKR5Kon1/djHGGgmSZYFuQpDA0yunI50rVpJSHkKZ2oC2HM7u2PQhrTN9zPmg3HoSsF+8coWCampZNoOXmcYMWKeP8Ux+kFbMA2dDRTsfa4FUDE8v4ByDKkUhQGByiWq73jhakTpwm6JkEIRtetBaXQdZ08zajNzIIATRMkKiUXGYOFIssHhyBXtCYmIIoQuULXNJoTR2B6Aio6p132UhgoY+UKM4NCBDOHJ8izkGRlP5Et0HWTxLIJdAlKYNoemWOSFGw2bj6L8Lvfh4lpavvG6c7O0263kYaEKMKUOlquIzJY9EOMgQEyw6TTaNFfrqA9W56bo2RGLnJQklxqxFKSmTapZRBpEmlapEGCrpmEEup5BmkMlRIUPbqm1nN5ac+EKAT50W+lUgiV8+AD96PSEJEnqCRCSqhHPiYSW+rEaUaj08bQdESimJqYpBEHZEIRGBCqDPyI9r07YecRSARYBlgWmmUTAY5lQyMEw2Xjug3YxRK6riM0iUhBzvm4WCRZTn60NK1UrWAMlJgvC1Zf+mKmHngQe6ZJoZvi+DGOMDE0k0zX8Q1JA4W0LcxOyNTOvThRRrLQQEQZJgaeZhO3Aggzpg4fZnZyAts0gZ4P6JnthVRHDyOJxIt62atW2vssPkMm814WmZ4TG6LXJTROIe8lrwl1tMef7JUlKiQgycUPb2Hk0f/Ic+e5yLSPcYxj/GLyQipng55uY+vWrWzdupU1a9b8vJfzE9F/3gs4xn8EvzyZRj+LTZs2cccdd/zEnz3yyCN85CMfAXi2xO0YLwyekWk/00L3l51nfC0oCSiEgCzsotkeV7/6Kr567f8Hnsegn9CpaohIUllM8GqK6QpkjkkW52j1ECwdf36Gb3/uy6zwdUzhsD+J2X7jVyGEblWD0MLJTDTbJIygq3JOPPVMdj5wH1k3ZVAr40/VeXT7w4iNx6FaLc678ELu/tpXIAddk9gZgCTqxFhrlzNn52y7+35ohiiryMywge44sKg4+WXn8NTt36VUKqHtmMDLJNXcYc5OSXINckiaARSqRKmGSFJmzBxsh9GXnctI/yDZDf+E5RYgS9HznEwDqSSoHIlER2AKjcl9+zFSxYs2nc2TP9hDWyhyUihIxESL5bKKnigGlizhsSUD0DVJZmdoDyxj2alnc2DXLl7+23/Adz72f6hoBfQoQs97Tp1M9IJoHalAl72uawUXhopgQ21yATFQoN9yQOioss7Yd++iNjULJ63iDe97N198959g7psjEROkeR1MOOFtb2PX1++iO++z/qqtPPH17yCGS/hpRJ/l0E01zhpdRXtoKdNzc6x1S8S+z+JEmzs+92X651ooA7y+Ac4593z+4f4uux56HA7NYpkOUuXkVR3slPL6EbhljsqcwpnWMX2D2NLIyMg8G+Vq+LmGbVgQx+jtADtNUTpQNjj+5OPZ97WvAS76ylE6iwskmcTGIcwEWqFMqX8YqgPoSLrtNjYCHYkhLOymBq2IPd95HLIKRtUmCUPwSgyecgZzT02xMFsDx6ZeazG0QgNNYp64gfbYrt4usVqhudDCkzlmmqKR9IJtIseOoTFRJ0VStj3cJEUqSSJ6pSxCwRM/eBjNj3EySewnmEqiK4n+zOZf9bxUViwwVEbB0OkemKI5fifbvLshb0GekKXAfJsllQF816I76vFbb38nTz/8GPfc9m3cSh/bH3oApIYhBJZtI4UiSnL23fMAnLiMlWefwaHb70DTe6Wz7elZ2p/9EnrHwKi4+CKGwQFOOvUUovk21kCJdq2BGKxw5dVXcs+1/5vJbQ/CSIWJxjSNB+7CjRMS06OYw2LQYdOVr+D+v/8+7bkayffa7Ng5DrMzFPqWsrMxxtS9t0Ntgvu+9FWqQys4++wXsz9cYO/2pygND/Dyyy5n+5duJq23oFri7e97H5//X9cy8cBD2I5LlqZorkGWxvgyRrdcvn399fiRD4bRK9FVOXEa49oF0oJDEPlw6nrCigUyYnJ+gaUDQ8zVF0k6Cesvu5C9d22D4T6SWpMFEjB0bOFAN2fR6LD0nPNQfQXoXwZPHmTfF2+GRhdVqNCJM8DAUAJUjBFLGCrznv/3Wr7wyU9Q372b5uwcnm4iVEoqIdYUqQbHnXkOB7Y/hm7qGJ5DkIaQKJJU4VllIl+RGorNV/0KhdYhOp0Wh5PbWPRj4laM1CQyU0jVO0YCSJViqgjlx5QMha4yNKAZNRg562zmdzxGsz6L47p45RKeEjRrMVONgzBQQp+LaYscgQ1RzsRnbkW6Hm//4/fyt5+8Dp4Yp5alSEsnDkLQdJius+fBx1kxupy9D+3F6yvQbdZxKRLbRSZpwnErYG6Rf/j8F+hOzIIh2LBxEL71bfxsD4MTLUpkOJ5FV1csxDHpcSuYPbxARRgk9Xn2PPUonpZjmJIoy4g1xeF2G88rMHDccRy8+/sQJgzYLmgmlmURZBEgkaoXCDIyi0KWk0caYaJjZjmpDplQhEZO18p6watYMGIY2Jkg9lPsROsdmyX4BjgGSNkrS9SRzwaUfpjnGki67LLLnheZ9jGOcYyfH79MmUY/i3e84x284x3v+Hkv42dyLBPpBcnAv2L8cvDDkdgfH+9973u54447qNfrz7Y0P8YvP9deey1JkqDrOmeeeSb9/f3/bPw01q9fT61WY3x8/Hlf17vf/W6gJ/t+zogfHgKUpKCZeBlMP/kkpCk06zRdE8jxhKQgwFEZZpRAnIImCUsekQ4owZFHnwYyMpWBHwIaFCxU1KA8tIxGJ6Ye53Q9DwoWSzafDktGQGpUvDIiTJm45TbUgf0MbVzHSeec2butoCRaLtEzHSPV6dNdzjrvXJCSQw8/hSYLDFaHeNMH/oiBTSejjY4yKl2KicBoBHipYHLIpO4qrIvOgDBlXVJmpKNR7tjM6wnZ0jLH/8nbIdd56u++xDc/+3/xikP4RkoiwczzZzdoOT2niiU0bCFp7d9PjiKpeDQrKf7BMRb/8h+pTkpGTJs9coE5p8NjN34Rds/BVB3MAsXj1zG+tIz7hldycKCAs/YkRGSSSI3A6EmelehlLNiGCV4RnCJLX3QOr3/n70ISUBzo556vfJnv/O9PYPkpp2+9ABbaNB58jDNe9lJu/vzXIRRUBkrUFifp6y+DY3Jgz0GY82FoLcUVa8AzUaoXGDE6EdH4JDd+5K+YnJ8lr9ise/3LOViIYKkLtoKCiTQNVDdmx+3bYKzOzC33QTdm43kv4nDexogkWiPnoY9+EkqCMKgzVKtRMsoEooA2sAQVxbgnbyQcqLCY+MiSS6qg7JbIYgHLRrjlhs+BEvSX+3nr294Ink7k2qjchEKBvnVr+PgNn4eCSxqHqEqF1C2QWA6R1EiTgEHTQV9oYZkeSbcLtsGrfv3tPH3r7ZAEbPy1V0Ofy8xXtrHjo38P/UU2/eFv4FZGsM1hmGuz7C2vpetptE1J2xQEuiTSJPPtNtI0MS2HLFMoIJGQy567PhMwvnsXnTAgISdWGcIyCDWDSOpEmk6s6QRpjDD0nqZM5ZhAWeXYrTYEMWYuUF2fgl2k24noNEM4OMen/vRD3LPte6ASSn0l9KIDKkOpHNIElcSIOOaSC7dyzqmnc6g+A0Ubo1CiG0YYukN/aZi1XpnQD8iiGIKEp7bdy7577qNZn6dQdCFLeGLb3cgjswxFQKsBBZ3OvqfxckV/qPAXFrFci+HNJ1K44AwaJQu37uM9fYRllRKz7UkwQ5geh7CDt9CkPXaI7/3jzez93p2Yw1VaUbMXzAo6OJoBac61n/oEE4cOMrR0BZoS6AhUnqPSGFEwifKQxt79RAcOgtGTx2OblCtV/LBDsDALwEhms+vvroeFRbZcfSmTeotkdQX6LM4/80WQWFgLCa43iFy/Hqp9xN0UzyzA6qWolQPsvO2bsGs/JDFmM6Ba7uekSy+A5f2wbJRASQKpk5oudFp89Is3MNVu4Tea9Nsl7BTMXIFISLWQTKasXr0WdIPUtrHXrATboHDqRigU0DEgVmAX+eqnPsPOex/i8NN7uOy3fgdcg1BqCKFRSTSE0snRkSrHUAlmHkHURk998rCDKTKEJRg88TgczaJkeuSWzWyzRWu+QbHWQcQhp1+8hbQgiII2WZZhuS4TtTnyxQbfu/8hWGyz4aJL6EhIDI0sgKpThXrA+OM72XvwIHgO3TQFz8Av2OxxItb84a+z/rKLEMJG7djPulpGpeGz/a//lnKjjey28DwDxzTp1psI26EpctZuvRD6h2mkGVFV56p3voVuxSDygLJg5WsuIV5WoV4xWPXSLaByLMeBOEEzTNp+TH7UhfVMIKltmtR1i6Zp0TUMIk30OpNqOZnMyWRKruc4J6yllWY4uUkh0zFzSKUk1CE3INQhkT2X3rO+LX7chfTcNpO7du0Cel2Af9L1xk9zJD1zLfCmN73pOf2+fw3j4+PUajWGh4ef97mPcYwXIi+kcrZfFo4FkV6Q9P8rxguDTZs2sXXrVh555JGf91KO8TyxefNmtmzZwqZNm1i/fv1PHD+NK6+8EoDzzjvv2UDSM/Nt3rz5nz3/0ksv5dJLL/2pa3jmNdu2bePjH/84Qgje+c53Pue/Sfx4Fq0SGJqOiiL2P/4olgRETLyqHxJB3G3TsjNmrQxT5QyaLgQRI5efBzKEho8UkomCzmzVgCSHOOTEN18Jy4b47fe9FyyLfKgfiiYMV1hwJfrGNaArxluzFD2PweIwJBlF3eAT110HnZBiquGEIGKBpZkY3Yx7vnkbBDFFX9HXTrFqHb7z9ZuZefAHqChm2223k3YCXM2kUashykUY6GfkpOPRhkdoBS0cHH79zb8JmgZrVnAwaSEsi0te/+usP+4EQsMCVychwzI1kjQnyXMSqRPnijzO0fMcA0HWDXjwztth5TCbfvs3GWlrDOUu3SAkqJrEZtLrDGfYLNcrlFoRA4d98vv3Yk902fuNWznjrVfjn308I1ddQrJxNYueQV1XpCpFj2LcbgqtlMWnxvnuTV/BrQzQnV8AZVJJTbwwZWr3XkZkCWMxZGrHU1T31mAxZDr3iUoG2tQig42c06MCjK5CP/1UHvnSP1KIJFoCJgIPRb/nAQpUDCeuwh8twpADrTlefNWroeySVl0q61YwEbQASZZkcOpxTKkuCI3+mYTTkn7MjgGGSWhDTWT4piAh4xVvej3YOie+7DyyPg8GijRETCgSZsMuw8vWsGHzFjhwAAyTdGqSb9/yDTA10DSiLEeODvK6X38r1BcY3nQK2JLX/u5vkIRNQpmRFV3aZgeV1XBoI7I2FAAn58F//AcYOwBhk8M77oNKgSVo9M91Icz4+/f8If5ck2ihRWnkOF5y0cXQP0CIoKvbNHPBaVdchb5mLTXNplms0FE6cdEjMCApWnRFTFq0oK9IZfVSGn4DMVBiLujSdE3i/jJRnjFw/Dp8Wycp2CSuQUfFRGWD6apG4GgUwgy91qCs29S0lNQ2sJSg0nEgFdBqMrpyJa98xSWYQiJFr/EYR4OQhi65/St/z32f+Rxv+bP3g6Fz0imnQ64B4PgJ9c4ceg6FRMPq5BjzXaxMo0830cMQz48Yv+s+3Ezi2g743Z5XbaCPZqfLYH8/rlvA9By+/r1v01nbByMmgavjIgi1mFqeUqm4WPMNypaB3mpTxWTQK3LyJRcTJyFo8K0v3YhjWVhCABnR1BSbz7uAKAroBh0MyyKXAul5xH6MNHRUq0Nf/yCvfs3rQBpgWDSzjAwYHBiiqElmtv0AYoHTP8qeRx+HMICgC0nK9X/5MUZiSSWRtDLJ1W/5DUZOPAVTt4iSBPwGU489wsaLXwZxAllIEoQkSvGoPw+nr2PNlrOIJLQtg1Ya4Jx3Lt16HVVrYHolOs0WeZ6jaYI4TcmkQjc1vn/7d9G8ItRqXHLlq6Ho8oZ3vJ2la9eiaQaWNKHR5qzzXgaP7eXyl1/Bt/7607DYQqU5A8U+vERDO3pcF73WAOgqpuzZCBTdIKITJiRI7r3tVhJNI9AgKbgYtkfB9iikgg2rlxMmHaLMZ0WhihGnvOUP/xts3QhrCpRWjtK/5hQ6iy3SJMUPIsqOiwgzNNMDy+L4F21C6+8DBQOlKrglqJTYcOrpLIxNsDSzGPQz9NYCqtmg1AgxTEFuBxz0Eg5pXZSrszgzibd6JXtnphGxhploWJpkcuIwzM3gDA9DqcoZZ2yiumolBAHbr78eR4CZxb0ufEKSmRadXGEUi8RJghCC1a+8kPllZeYLijhq0DBgMWhjug5JkqCyHLKMoGBjFkrU5moM9430jjtljzZRz+clodbx6cY5A8PLEDosNNo/dHJ97hvFLVu2sGXLlp96vbF8+fKf+Lp3vvOdCCH44he/yLZt235kvp90XXHllVeyZcuWn7qGZ65fxsfHueyyywB461vf+pz/nmMc478ix4JI//kcK2d7QfLL4zx6PqhWq9Tr9Z/3Mo7xPHH++ef/m70E73nPe/jCF77Arl272LBhA3Ec/4vz3XjjjT9zDTfddBNvfvObUUpxzTXXsHr16ue+MMHRWhv57C3TPE1Jkog8jjBkRqRJhk46nvlD96NpGrEpUZrE6sQoPwKvyMnnn8O+B3bARKtX4+0I/DxC1w2s41aweuPx7Ny9k4VOCwpeb8O2cjmrLngxR+ZnqC4ZZt6SpEGvfCupNaDkcOoJGyEMOTA+Td6JkKZEsw3CLMNUKTKMEHqOHicYcUZ9chq/oCBOyfMOkcixDEkiFYVCgcW5BhQMDu/cTxYldHUXP817zpO+Pmh1CB95DJKYZrdJ//Ag+YZ17D/URNdTkiSGo13PdMchjTooKdCFRENQdGzaQpIIk6bM6Xg2qixpT2VowiFRMXG9iynAdnWUVmJhagaKOrUdT0JQw09jjj9/M0uWDrPnu7dCuUjeauMqQdwJkVGGkUG00KCdNYk6TTQhsTNJMYd6HtA6OElfLUXzQxoHDlGdkFhIUseg3c7pCzKMbsTiU/vBdugfKDGbgZ1IYj1DU/mzzhA0CaUCZAnje/dAow39Q3jSwDIMFlvzbLziVdzxlf8LJRtpWBSOW8rMwYPQjfF0m0atgWPYxLN1zIKBMAQz03WqJ5/ChpNOhHKZvWMHYPJIL9vCsaFSoq9/hMldhymMD4GQPRlx0CCZnITI7wUJCh75kQluv/1WqJZYv/F4/KDL4MgwLB2FOCRs1LCtXlcrctX7KhS0febmFyFVyHKB9vgB0Gx0qSN1DYIApIFe9FCJojU7z4GHnmDjeVt5+uabIejA0BDFkSXExtOAJIsSTnjpVvbfdSuInKRRo2/DemqHjoCuceKm03jEb+JPHEGrFohNA+IYloxw2jmbmXh6N36eoGcgbQu7v8JJ557PQ9f/PZ7SGCiNsNhaICpZKBRWCtVQ0ZARVAt4tsX0wUP4tUUMw0Qe9e70UBCGUHB5eOcT9J29hXiuC0KShAFkJoJeQMk46oZ55pW6nh8te80gBcNzaKUJ6JKLLn8NbUdnYuzrzDQaKF2j3mhxwqmnsevQBNgSrVwkbLZA1xAuREGIowQiV9SbdVY5I0zNT3LBKW/iqe/e1fNEqF7OX3bUF2Q6HonfxdA0IMfvtsHTUUGAUS6RLLYBmzAMOXnTJm6/9y7iyWmUrlEo9s7HUkooOtAKCRYbaJpCpBIZ5CgheyWrUpAKwDKpzy0QtQMMqSF1iRgdYcNLNvP0rbdBGrPqVRdT/+4OhGUTFhywJPPz85iO0yt1zCQvedEW7vjaP4EUxKGPZ+hkeQ65JOfo+5EUXUvRhU6mYG5iChBMHD7EwsIcJUOShzkUCuTNJiQ5/vgktHyQOlkWE8VpT3QfhyByhHomcxL8bgfH9TDTnEwIckxQgnrQoVzwWOy0GJQ2mhRImbMwP4u/L6dQqZBMtRgdXYHhWFDWwF3CkSOHWHzscQrlCla5TLToEwchhYqHNAVZHHDGBeew+86vgWfQnF6ENIMVFb7/lZsJ94whak0KvXcxTa2NmafkQodVS/D3TZBZOlXTBT+n26yjWwZ6BmVp0W7H7HvoCehmCMOHtMu+B3fQOjABoQItQlMpmuqVlT37P5WSVqeNpUuiJOHkl5zFnh2P9xxPXpm8qUDTGBweYWrvJJZXAV2HdoduFOG6HpkCZZp0STlty4t4bPIQ+VwTy3SwPY/ZhUVyoFopksPRT9Rz5996vbF69Wre9a538dGPfpQLL7yQG264gTe+8Y0/db73vOc9vOc97/mZa9iwYQNJknDCCSf81Ocf4xjH+FF+2ZxHLwSOZSK9IPmvk4n0TPe2arX6817KMX5B2LlzJ9dcc81Ruee/n6mpKZYuXcqNN97Idddd92+b5IfPbUKCkEjTIE4TgrCFaWQU+zw2rN8IOWSaIjYyQuUjDYkuNeiE3HfP/b27+XGGazss23oOp73hSlJbo3tkit0P7oCd+/jsdX8JngkVj9e84Q2ccvzxLO7fyxmnfgR2mQAAIABJREFUnAQFA1kyCHIflXQhzXjyoYepGA4VHJxUokuDBTJmPUXbydE7Hby5BmYcImXKimoZ9/AcVWUCERe+5Uqiok7oaYiSy+h8RmEuoXPX01B0GXnbK2kPa3zqli/C9BzsOQAP7oEs4IGbv8qug3sQ1QL66vWkfpdEpVAsgCYJOh1iIRGGga7rGCJHLdaptCJYCDHXreCUD/0BJ133x8ROgbie4eYlRqhwRj7AfLvN4rBD88Qhrnrf70EawFyNR6+/icVDR7h/7CCceAqXvO0tkES0Om2MLMGKQkpC4YYx+sFZCvUAzTOx59tkURejVMRodKnmkiWWhzg4g9FYxCEjC0Myt4BhFhmpjJJPzcKRPcz+4DYIMtxEAjmpzMll1gtutNqQKpaeuZnuw7voW0jw5kL23L6NfLZG9dQTWRhyoU9j6W9eTbCywmnnvQgOHma4maMNDzHpmTR1SbmwnLiVcLgTI/pt6vue5FN/81fQaXLlBS+FwSVQKkMcM7r5DN78R++Cvj46924HaaJlEQN9JVhsoMUKhMnmKy+HhRoHvv5NmFtg/+OPcdyyJXz64x+F2iwEbchTYisjTCLIc5ACRvqhXKDQN4CpcnSZo5FRSOFwIWSMRfpCjdXuUtw1Q2TLbdAyHr7285RjDUwHHA+6AQ888CDBzBwUStDxufCSS8h0iVMsgKlz0ctfBiNDYJkcOnyYk04/FXvpMJkQaJUK+AEs1miGMXgOmmGSC8jzFD8MmYoCTrj8cqzhIRp5RuZYRHpOLnteJk/F9GsWTpiy/54H+NZNX2Kkrx8978mbBTmIo2WRWQjVMju/8BncSoUDT+1HSzW0UgllCvI+j1Dv+WLcpDes7GggSqToKqWQpCxYkglLwJKVOMJl99NjTPk+tWqRmTjBKfUx++Q47J/EetFm1mw6mcwymQ18ZLlA1k3pKw2Q2S7VlUvpJgGuafPwPffipiDTHNL82SCYkafEOx7l8e9/lyjuIFwTijbX/K8/Y9kZZ5H4ir7SEFaxgi8lN99zD+vOOQ+GR1H9A3T8kIJTJosyLnj7G2D5ICQhxXqbEzuS9bWckU7vd9UcRb2QQ3uB73/lFuo7dqNURrOzwOsuupCzh5bA3jHo1nnF772dvuWracw1MAf6GTl+He0Hd+ClCsuUULFp7dnXK32bq2FIiVlyUK5JahsYdhGBC6lED0N0PwApefSOO2Fykm997gtEB/YRqxhlJNCc4ZEvfR4OTfHgZ66Hw3MINJRjMx0HHAx9MsnRAFKOQCFQICSzzYDcrhIYFUxrACvRKG9cy4KnMbB2LXmkEDmIokMYtPD3HyBoNun3SswfPsL/+fCHobkIpMzfdxcszhBMHEDEMZpuY1kOjSgkCbtQtfnGjgdgsB/DcRhRFiuVhZsZhF/fRnmig130iEsFdtsBbBgidiSJofPaP/5DtJPW4a4cod3u4pQr0Gly1llnYrUCnHaX4dBmcfsBjisvZ7QNej1j7Gu3039okVWBBu0EXSUIElItJ9AkvqFz/mteA46LdGyCLOGhRx+CuSNoS4dZfvYWNM1g+YrjeNUVVzO8bBXSLoHSOOO1V2O5JcximQMTh+k4Oosy4fwrLkWXEieXuIUyr/u1N2E6DikQZj9+vs1/vL7tP4zrrruOG264gaVLlzI1NfW8zGkYBtdccw07d+58XuY7xjH+K3AsE+k/H+2DH/zgB3/eizjG88uHPiTpZSP99PHBD9o/vwU+B+r1Ovfddx9jY2P/bNx55528613vYmxsjI997GO/sPb6Y/znc/HFF/OBD3zgeZnrnHPO4d3vfjennHLKv28ixbNepExAnKeMHRrjrz/+McI0JAkTFo/UiMM2WejjAIVc0vB9YkNDaQ6dvUcgiOgfHEH6CYUlg/SPDnN4/x7cRs7cE3sB8E46geTIJLgea5ev5paPfwKOHObAkcNw+BAqjbA0HZlphK6gNjPB9PhhjEgh0py8YNEctDn1Vy9lbHw35STDy3ISGzJTkAYBQ9IibrcwNizhsnMv5OFv3olPRmfUoxrozPeZ9NUzOsv7OfnSrRx64glodFhx8kmMvvpcgp3jJPUW1LqE801qB/eSr1uCVa8TdVu9WxzlMhf/yq9yYPdeTKFAKlQe4yFBN+j0lZgfHiZ+apIjMzOEu/ay+hVbGTn5ZBpPHcHNFQeHBOkJIxgXnIadKKYe3oFRjyh0ujTigHUXXMzs4SlG+wc5PH4QJ/Ap6hp+GtLNYhJDsiyVGFKy6KVUfRCmxZwZUDYL5O2ATGUocmIrJZAJWbGA5pVptQM6piRzcvy0gUxbGKHEzARNLyPXM9w4paBZGK5LWktoJoJsz15KuUI3DBqNJqVuzkx7gXXnvYTDe/dx5ksu5OBX76AxM000X0OkKdOdJmlflU1vfDPjDz2MOdSPpmvIZhvdskjaTfJmi72PPIlshWTdGHN0lGboMza3QPfQNHQCNBLSoEsqc7wgxwgFSf8gF/zKFez62jdQfoJbLFN/ehczjz8JYYxFjuj62GFCbOgUEhtHFuhaBVZcfinLtpzNxINPcd7LX8mBQztRWk4cdsAVCNek0ImZnJvid/7qg/hlm9mHH2MwsdjzxCPQblJwTGQcEc5O45o6cbtNqb/KvTffzICpkXR8DNNm/9g4casLStCcnWNyzz60NEXFipHla3n1W9/MkUaLvQ88DI0OMkopSgMtV8Rtn9ZTB1mYnKHbWsRXIXnZxo5i7CxHiYy2kWMYBjLKcC0HW9Np1etYujxaytbbuWZSsuSszbzsylfTvewlHPnSLVRaAoFCDbnUJw6RDnpEeYag18GKo1L3xBLEmiKXCo2MhaLNH33yb7j/lts4PL5AZBqcdMJpTI0/xcazz2Hy6b3QTNAbisFSibGHtjMkDBpRG6NSgUZCy0/xRUxoWQzYBaI8Y+LIOIPKhiQmkopSnBNpvQOV44cUNB1h6ciCRSJymrlkbPcBShTo1trIoX7yUpHZ6UlOeuWrOHjoCK+7+g3sefxpVDfA1DSq69Yw+ehjEIQUTYtO2v3/2XvzaMuqu973M+fqd3f23qetKqoFCooeiqboIUAgJGAawRgN0TRwjVd9xiZo7vDF+O57MrzD+8y4UUGNmhiiaRRNQ0IqCU3oKagqqqDaU+2p0+9+7dXOOd8fu+BirlHzrDQ3OZ8x5h/77DPW2nt158zv/P2+X5Rr03dBCYllJLltMXTDtXh7j1KJFbmrEBNldjz6GAeefAY/zIhFxnNbvkVrxzz0FZy5ls6BA4h9DUoL04hME6Vtpp7dwcjQMDLLschpdtrIwKWT5ihsLOkhETgmQfb6lI2F6oUoz0WnEfguSbtJqlOC8Tp5t82Y7WF1uhSlwCoHJHaOrgQUNpxMsjCHYzRCGCwpcT2fzEj62uHyN7wNd2iM/fuO4vbarH3r65hpHOH2t7+Tg48+g60NHZmiHU1BC8q2y3yny2h9FNPt47Yykskj0FzELXn43SZSC1zbIer3yFwHVkzAFZey7pILWXjqKXSrzbi2COsVWnaP11/9erLFFodac3RtDacs4/SfupXoYBP/cI+Fmk/rqS1krZjxWIJnE5EwV/UZ3jFLNbM5GOSI9SsJvADHD1iIGggpqRYLtKJ5EicjEBqJIBcOfccBW3LNW3+CQ9NH6TebuI7D4p5d0IpZHgzRa3UoLkQ02l0OLs4zc2iGfKTOsisu43Cjhdl1lMTEUCkQJl2MlfLckQOol/dSzQL6RlCuDXPk6BQf+JVfwJa8xl77uEOSgP9/WW3fPeeccw4f+MAHuPzyy0/I9j70oQ9x4403npBtLbHEjwsPPfTQv5nO9vrXv/4H/TF/pFiqRPqRpPjvGCeez372s9x9991MTk6esG1u2bKFG2644V8cd911F5OTk9x7771cf/31J2yfSyxxwjH/fAXEAJlWhHGEcC2ELZF5DovdQU2+IwhyQSUBYwtSobGRjOsCuAUSlSO1oXVgil1bX4Q8omb7DKUZXqXGxvPPgzyDdpdnv/kINFqQZLBrz8DYO9MIo9CuHOzPGiSRrV+/HiUkvSyDss/IaWtQTg7H7a0zqYlkTl8nBFKi45hWc45tDz3KcqeEbVkUL9rAYRkxdtk5pFpBZtj//A5oR6AsvHqZ+nmngGsxJCQrVMBoM4XhCisuO5/EMgjbGhwlYRhbvhwcm1xr8jzHGEMY9YlsDRtPw61UkM8dofn1rVAfZ9nrL2fimkvolwIO1ywYDmDNOKeuWcfLX/4m1lzIaKKQNmQlm9Hly6DR5YnHnoAkJ03TQQuMLfFLRSg6CDRGZWAbXClJLQ3BIDUIT2IVXbTQhK4isw2e5bF2zSlYy8aIKwFJyQIV4fXbSGPILAbN5PYg3lpmCjtRDIsAvfcwiW2ICoLUlWiOR2ZLF9kMoafY8+DjDHck/ZcPgDb4p64YnENpsez0U+Hc9aS5Qs10KWmBnSZkCwsExTLFREG7j5VqTl93KiQ5c88+R/H003HdEjJT4FvIwKboeHjGoHohX3jwywQqpaLBDRMKhTKkChHFFI1ARhlDtoVUFo4sIo1Lngoq4ydx3pXXwsQKTr/sMnBtWD4G1QCynBKSdt4HX/DCc1voTM8CAuOCo1I8rShEfUZsyRCKIZNTyBOssANhBzdTeEbiGUnc6oIWkBtcOTCJznoR1UKJ1kKLxdlF0l4fkFhY2BpkqvCQuMKFWLLq/Ivg9HVQ8cgcgaPBVYOJaTPQuJ6HpQxRp03ajyh6/qsx5K+ghWb1yeuwbZs4z8ByEUrjOS6nn30muDaJlZNaAw+ZXHJ8aFILMmsQeZ5LwLM5sDgHmSZudTnt5A1krg3DVdaffQ6yXKOGy3hL0XhxH4QxURiDtDFaIIVLbtlQLDK0diW5UHR6bfB9VJTgaLAG+ixGDKqpikbg6Jxut02qcjCKl597FpptTG4QWMTGsOmqK6Ef8s2HH4V9+0mFRW4EuTYkScbuJ7dALwEpWbRzFko2syVoe4PjVEnAyWDd+pPxcnAyjdY52lKobojdiwiSdNCae8UVuLURaoU6p65aA/0c0+geXxYTIKHgFQZiJgaVJQwvH0X6PlpIhLQJ/BLFoIQ4ngBZkBIT9pFpBr0QkghcC6/kY2SKtDQmjrCShCTssX7DehAKbMPKC85GieMR9q+0KAuJ0qCljeUVUNLF90pYcc7Wl14EFFtf3I4+/iyLhcYYg5NqSq5PagviLMUOU4pHjzERWxDnpDrEkwYbgYWFMWJQ5aczCstHCUaqIMAuFMkszWxFwzlraVs53aiHAWSxCFlOONPEme8zlFocfvxZ6CaYXkqARa/VBtshfXEbWRrT0xHJcMCqay4mXVZDrxqGskUaGBbcDFUpwPI6YNCvVOAdXyh5+FuP0Wq10VoNWlaVRVk7iLkWvUNTuInGwWb66DReeQhtWZx8xhnEjRZRv482gjPPPxd3pAaujZqegqCAKyzyVLHtxe2kafq9+Gu9xBJL/G/IvyUgfa/a3e67774TPvf99u3fdddd3HDDDcAgAOCHxcJlyRPpRxHrxLTxfDds2bKF22+/HYDrr7/+hFUFbdy4ka997Wv/6vtLrWxL/LBj5EAMGDQxDQgjzUIn5daffS9ffOgr5I1FrKRBWSq6wzbtVNMOM6gXQdsUezZ9lbCsG5GZJgtjHk4/Idu6i2ptmDjP8fsu7aNz1OsV6PSZqPnMbH0MKgXoxODZnPcbv8jWP/k07W4X3C7F/hBhz8DYKLsu2UC8dT/FbgpzffK/eojibMhCGFNwXNrdFN8vEHf6LPqg4i4rDjg8/+JDtNMEVfS5ob6WB83XGCu4TK714cjLHJ3ag5Vqqn3F3iM72Pu5WXyp8XJFVvWYVxHiwnM5ebTOlOpTKVYwMbgdyfbPPchosUKSdun1etRLBRLG8Vau5q73/Wce+ZP7mT68HboLUNbsfPQhSpZLf24vScmFI0Czg5v49F7aDkrTImdtcSW1w312/vYfgJOgFg+AbTPkVujmKV1PsuHWN/DyQ09ywOkzXh/G6XQ46AN2yoXveC/P/eGnAAuMgqrEPraIsF0Sy1BZeyVXXHUhj3z0o5xx+0+z7e8eIFJgi5xF1YbphJJfRnQVU6T0qyVw2px005VMf30LnSgmFzmIiIN2TLkHL/73P6YONI8u4DmSWjtjIe5RufJCFlwHegm7nn2cdW+5gsn/dwtqfIRkZhFPaUpugaTRpLLMZUH0IfCYdxX1SzbSiPqsvfwqdhzahd0pUMhzvHaGN1QjcANyA+HT2ygVq6S2RbsgQOQEaycQjRA709SLdQQaLQo0rtiA2reHaizp/sUnOLr5EcbbMzy290noKc5dfzHrbricf/jg79BNNdXxUdLmIo/c+1eDMj0TsBCF4KYgFXNhTC0oYjJNGvXBgn6ni/Ali73e4B5LYywknrKwpEfueaSqQvGCc2ns3ILb3sE37tuNwgbpoFyHvoC+NEilQCcwrOk3DnDbJVeyd8coOx5/BsetEUeLCHJOUWVm82PYgUfJdQnTGIYrNMMu5BpSTVE6+Jlmyz/ez3MPGCKtCLwyc0mHkVPWcunlm9j2yKODihq7R09rnNzG1gJXScK0ixYKJCQCgobP5+/6LSgUcK0GOz/9CTA5jBTZv/1xnGLE9OIMTpgTNIeh0YSRcVjoknlgfMmyd/4k0195gImrrubA7FfRrRa028wVPapRxorIw5MFjsVNGK7SH64ioggzM8VJVpXGfIdyQdGL+ggZoyseZ73xAoJRGxrT8Ng3oB/zwH/7PYgUJden4BSZOrQIjg/CkJoUshzLsnC0QChJjIXMNNMPfAl/fpqw6BHmKU5Lsn7FKSRTC+i8B3mfK8dXsr28HfyAOOxBqwHlDC2W0W8tgOXSF21E6lItjbAgbH7ut3+bo0cP88U/+wSZV2PV295K2Jxn5u/+inG3QBSGDLlFer2U2ppTaKqBJ9TaKy7h5a/cT8GyqTgBkVaEtRLRuevBtKEZMnS4w6qohJ2mtOmTFxRpGpMmCfVA8vQ/3U8/Vzg5VBV0H3oaRkuc+ea1bKVJqV6GMKI31WCoFDBrBNb5Z9N0HKJ4GxN5DZVrnKBEhqKubNKiy9F2g9rYKB0EaTsk/9LXeOFvPw+NRUSe0xUGpo9SqRR45qXdmPESw296E34vYurzX+bI1GdZgUtUymD/HEysRUeKY40Qu9tlhQqY3LKPrlenmaW4fZ+TT1nFQ88+zHxxmIquMNyKaRPCpWdRPf8kmg98CZFLCqnBNTmpFhz61mMQBNSdMn6UYjJDd8imGy1w0sgqumlEvdVmrLCW6WYDdIep7S/ib36cerHEsUqfc9/7k2QfS9j1yGOISgGTh9iuQznT5DMHqBYCZJTjBa+dysjjBUhLa+RLLPHjxA+iXW3z5s3cddddwImd+77C7bff/r+kj99999189rOf5d5772Xjxo0ndH/fLUvtbD+C/O7/zf+s7f0O48P/5cTu89Zbb2V6ehqAO+6444TdSEEQsG7duu84giA4IftZYonvJa+x2331te05fOrz/8g3nnmaTpqikz6JnVGPNEIbJnowrjxaxqC1RBtBNAS9sSHibkzB91jeVVSaKZ7nM+NqpHRJZc6uvTsZ6mqCKCcPBFkS46QGq15DjVYJd0wOvJl0RCm0sCmSeg6n/+q7mH10C7aS9GnS2ncE4gSTGbTlkEsHLI/cdWjnGfnIKK0wJHJcxFARk/SZm1sgaTWY27mbbH4Wx3IpZAorSTGeRdpuw4E5youKTNo0awJGC7zxZ+5g893/FSkd3H4GkSJNUmYXG3TjHollMBhMFNOzJGFjmi2Hd7Pw1c0kaRNkTCFN6R7aR2f3HkZisF2XJFWQK6Z37ADPBk/CxBgz01NEmSaeXSQ3IWe98TrmJvdRjjTKCJKyR3nVKlrHGuikg+tKdDsiCySsW8nrrr+R7V96BFyH8cs38bbf/U1e/rvPI6RAoZg+uI+O1sQHD7H6wk1MHTgCXhE9dRTKwFiVtNthVWEFIjG4hSLW2adx0y03s+3pZ9n4ppuZPXQUs7DIsmqdLOmhpUJLhaUFqQWd4QJ+bDF/8BDOTVfgnbaWua98A2uhR7/VhU4fE3hkErpxxFCtTLvbxvJd8iyjN3kQtzTE8qERpnbtJdu5l7KSFLCxbIcGivmkT2V8grzXx7EEXZVwyoXnMLFmFcdefBHb9vBygUCghSQvlfiJX3svCzoh3XeUVmOBmWNTOFpxYN92SKBxdJrZXkL/4BSB42PFCalQYDSXvumNLCYxYqjIyGmrCKePYpXKxL0+ea6xpY2WAi1BSbC1xAiDEaCFwTJQCgL6Sc6qTZu45NprmVUpHN6Lq8DREoWNqZY5+7JNGN8mnJ/HzTIqWpLNLfLCE8/SanZwyiXaOicveuQln7an8SeGEa6L18moFodoJBF5HOPjMaxtHGUQliTNM9zc4PcHlWZ50SNsLPDS7t1k7ZBAeOSqj58LvNxGaguDhZISIS2k0bixIUoyrFodx7dJW4tUR+uk/RAzN8/cgQPkjQ4FyyIxkvh4S5ZXKiOMRdbuQX2EMzZeyNTu/YyuPpnZp59naHSUXBq06iNzsCNFnBvCeglcizf/6m+w61vfgjyj22zhGwiEQBhBZhviPGV+zwGOPbcdGWpcaZFnCdbyEUzYYP1N17HvwG7QOSs3bqRz5BB+wScw4Obi+DmTZJZFbkFXhYQYukkE9SG0MtiRoRX2MBNjREJxePtOkv1HyDPFYm+B17/zZzg4PYM5NIWvDbnIyG2Na2yy2JD4BY4Rs+/gJMnho7zxXe/h6X176B05CJ0OLhY61TiehywXafVC1l9xJYvaZmH3Pqw4odyMCbSPJRzaWU6r10Mt9mCuQ/L8y8w7hsWiRR64KEuQmxxlWUQqI0qSwXXh2MyqHpR9sEA4LrOTRzCtkGIjYV15BCtU9BPJ1W++hYOHDqIOHsbKBbltiDwDliHIIEcjXJtWmqI0yHKFTRdezOGnnybwPaxc4UmbPIwJcothq0xnRY1Tb7qWxalp5N6DZHlIN0vwZI5xCuStGNwCaa9DzbURSUJQCmhGXZZdfC7NuWn2P7cdJucwxzr4/RxR9Ehcm0hrwl0HGGtl1GLBUCwBgRICZWf8/D0f4ckv/yPdksdYJHBtF8fxSOKY0IJ6YYQDaYer73wHk6tKNPe9hL37IDmGtCrZ/vhjLDz3MsOFGnmWIsou2UILx3dIVYplCz7wa/8HlvXtltrfnza2JZZY4oeHBx988N+sRLrppptO2P6azSa33nrrq1VBJ3LuCwOx6L777uODH/wgH/7wh/nkJz/Jhz/8Yc4880w++clP8sUvfpE77rjjBzoPXpLqfxRx/h3jBHL33XezZcsWPvjBD56Q7b22he1fa2d77bj77rtPyL6XWOJ7wWs1XBiISb/467/B9t07OTB1mDzqQBojtIuXOwzFNvVUUssEY7JIRfhoDcM3vo6Jt/8Ees0aRGjjd2wq9hCHW4tgp3Q7C4Oo8UZMlkGmweoLSngMCQe302P2ga8iOzETuAwbH2kUkUyh4NCYOYbpzxMWMrjsbJpWTOYWcNwKibYxlkdm4Kr3vg82nk+Ghg2n8pO/95vopAH1Ip39+3BlgK9tSrLIUGbjZgKJRV/YSFmialcZMgVSLN70m78JacaX/vrTkHr4nQw7haA8hFerkVYCqBYgiTCOQ9KPwe1Rv/E82P0CiAiqBoqaGjbDpkiQOnjFErXqKCbTjK5YDatWw/pTeMt/uZssXMC95mISJ0HVXeyyz0WnrQdt6MZtnMCCfsiBr2/GajUp2JKkH1KpFEArmJzkM3/8MTxvkF41v2cX3/ibT5NJQ24ybGmgE9J86OtQqfLMn/4xl1x3Je/8zz9PYNkgFG/76Ec4/0O/wEvdGRw05WZC79ldfO6P7oOLzyBcU0P1Q4YSFzXTIRc2HX8wMmvQ/nTpXe/D23AanLSO7PBRnFodFju0n3yR4mLCSCbIVcLKKy6Bkstc2EdLm2IumHACaiIgevQ5jv7tPxH+w9dYbRUZsT10ljFnUnrk5CvGOet119CN+wPfF9tBJRlrV66iuGwF1nGF1Bz3+iJe5MUvfhF3pkk30dRufQPh8lHmOgl0Yywi8uYcjcefxe72KLVDTK+L0Rk4hmOtacZWjjJ20gi/8v5fxBkdR/UjtNYEfjAQi47fR2IwvwYkSkDuaPpuzmLWRqkurYO72f7Ql4kPHxh8NiRSg6M1zM0xtWcPp61cA0nGWFBlpG/hpMCqEWI3Ij6pghnykAWPrOCQ0qfpRDRWjzDlOOzPczbe8VNseu+7yMsBXQ8aRcFiQZMW66RBFSuokRsXqWwcv0z/yBwlJXC6EUN9h2LiILWLEg6R7ZAISS5sXONR1w4UbFRJ8dZfeBc4ml4ao8Me9aDCsPI4yS1h9WOGJ0bBsbAnRnnDHT9NHw22R6HR59k//Dgc7rHrE59G5CntA/tQjQWc0RFMUCDCogMwPgFRxrcef5Kxc84Dv8DQipWI0hCLytAWglDauF6JcjvDbnYZER5ZJwTL5tobb4CJYc689jJYMw7DBTbdeA32mpNIogQ3l3i5xFWDJ2EuNcoC6kUq73wDp/3ETSBtMILZVotwtMbJd94OuQVHZikhGXUd2HuAxrNbUZOHqdkeZduhmAIpuLZDmqZIBMf27qX97FMgDeV6Gbl6OYXLLoEspWu7ZIUiqW3Rai7gBg63XH81zB+FbodKbOFXx9hHwqRMMY6DtecYlQOz1BtdiiWbG/7gN6i+62ZSmWA5BXLjEALZaJ3b7rwLu1onV2CEGrSfJYbtmx9nVJfwQgvPr7OoHaLKMCPS5uE//nPS51/E94uIPMbIDMjBymkGmk4/wbWKGOGA66BVRjYyBIFPlCjiDMglQ/4QaRST92POvvwKOr02q05ejSl6ULGP+JjFAAAgAElEQVRh1MPOoawtrMow7/r5d4OQKMcmtqEtFEzUufqtbwLfoTzd50ImmGj2kY7NTMHQLdk48x2GjnQIHYvQsYhsiRZgGQ1Rxhf/8n4oDkOsyeMU2Y7xhUNYK5BnffY7bXTB8LXnH+OiSy5i9caLKNdH6cYR2AXoK86/8SaacYSWEhXnFKsVIqHp6pTEZiDe8W0+2kshTUss8WPH97ud7Z577mFycvKEzX1fS7PZ5J577uHOO+/k93//9//Ze7fddhuf+cxnmJyc5L777jvh+/5uWBKRfhT5N6qQTuRZ37JlC/fccw+33Xbbki/REkt8B/6lddHFRoMwDDl/4wXg2FAqUcgklpakUhAJSYQglgJjS5zcUJY+9foYVlCEoMg8OdM6p3rOmeAPDIKDWEGmMY5LH4PShsD2UUbhCguUpqBzsk4T93iDnRIKVM6py5cNPJKqRa66/rpBOppSREKgtAEpwRhktcZZb3zTQJhZvQ6vXj3+rQYTV18JnFRjpYYsyzCWjeMNVvR1EtHKEjLPISiUmBgeh35KbfXJAAOvGmkT5Tm9NAFyrOXLqGw4jfMu3IglLKj4rFyzfJAAFiUgcnAtVC5AO0SpYiHNmWk08eujjC5bjlUoUh0b56STT4FimXM2XQLlAGVp8sU5tj7xJHS7lMoVcqEojIwAFm6eMVQqYowmyWJsywLXJ52dx7YMpBF6Zpqjz29BugNvFh3HkOSIQhm6IaicxuIc2mToPIVcIT2H6tgIOAKFwFgSR1ioVo8rr7uG8XWrQaWUhqp084hXH9zHxZpMSs66+BKuevObYWIUvCKdbzwGGjJbkOkMXwOlCidv2ADlwTlSGlSek/dj/DynJgRDWjOMhZ1maAw9lWEPD0EpoL76JNadcQbkCkda2LbNgf37ef65LYQLi//s2jYCSoHFnmeeY2bvfoQfsPbqy2HtKhAWGAuTQtEDL01x0ZBnKJ2CziGJOLRzB8cOTXLswH6e/tZj5HGCsAftKnGaoL/tZpJ6cFyUZBB1ZmmUrXA8i15jkSN7XiZeWEALCUYiGYhIbqlEY+9enn/qKYrFEkmUEhRLJJ4FSRPshOvfdgsXXXABfjrwkcIts+FXf5Vz3/1ugmUrqdfGuerq6zDCQvUzZAZoA76DjmLiMKKT52RIsl4fIW0QAhsJmcJVEmkkSggyKYlsGzwHpETpgW8TWkGesmrNSqjXyHs9bM8njzJSFZMmGYHwWZidgzSlMj7CUztfHFTd6QxP2kz4RZbZBRCSim2B1lRGxzhv44XEShOhSDAMr1wJ5SIL27Zx2umnQ5zSzRSxlMTKkCExGlKt6AtFjiA2CiPAsiw2nHYaSJvN//QlODYPYYedu3eS97qY3Ayqzox81UPIiMH5cs85gw1XX8ppF10IwsUqVsGywJWsOe8syAxgYUtBGoeQpmx99DFoNMAafB5b2rguqDQjVxmlUokrX38DlMuQK5588nGWr5hg1do1UBlCuQ6ZbZFLMfBNyjMe/+bXIU8RSuEHRZqWhEBAANrR2JZE5Am5jmlbMQfiFq2kCwZc6UJmkLaH8lyKE6MYz8WSDoGxcWONq23sSCMUGMvBGR9hJu4QnTRKmETULQdfGVS7g+c7wPHUPKNRUuN5HkppkBbYNkR9nt78DajVwPXw/QJpmiN8hwyQrsPExDi16hAT46PkWTZ4fnvBwMhdGfxiActxwbYIkxQtJWmag+PR6fQg7ONZNibNkRgsy8IohTEGoRWe7RI6NqFj03cG/l6DPwUW81t3ECiJb2wyzyWzJKJcZHzDyVAMIAvBL8DMLJMPP8ORZ7YTa01xZBR6fXAD1qw7BS2Pe0DlBuG4JMYAGmNJcmE4nmk40I5emScuCUlLLPFjxfdTRNq8efP3dO67efNmAO68885/8f3rr7+ejRs3vvp7PyiWPJF+FPk+ntW77rqLWq3Gvffey5YtW07INr/dB+lf80RaYon/LTADP2v4nxru33z8L6hWK9z8vvfwwuw0DI1QjgWpFMxVJIsFTcEP6Pbb4FSopHDwq09QPtxBHVzAvnQD8/t3Qxzxk++5g8/9wT2MIahaHi/bkivedDNPfP2bWFGfVtrHLReIsxgrylleHSbsdMgyRYyBkoTZOR5+/69BnMN8g/TADARlsCArVQbpU7UaZBkPP/wIZ77hTXDBpVAs8qk/+TOQLsy1GCkPkza7SGMwvkVoG5QjEFpQtwIWT1sBvR5TR7sUrCp/+Yd/gn3uxQNfmaJDv9lnyCuwmGfkBhgZ5uaffTvtw4c4fXQZh558jjS3OLrjAPQkY/WVLHvfm9n2+QcIe9DVGgKb8U0Xc/iJxzFhl6nZBd7ylrfwufs/xd987M9hdCWrimM818/RQlEsFNj58ONUgwq9LKavFH7Yx48yVpWqTDdmibKc0mgdWk0CCmgBYdTBLRbxSgW6R2fIfYPtSOxIU7IsOgsNtGWTlTz2PvgAk/t3IlCgLT77vg8MZj6FAosVn75KwPMImn22PvhNlp97OpQ8Nr3ldr7wqfsJooRKX5Fbmr4DuHDfe3+ZietuADvnpne8h5ltL7P16GcRa0qkk/swCwpaIcNuCcIUtEWKoOA6OJYcJFOpHCkthF+kJWKs4Rpx2oAs4raP/C5Fr8j9f/43FEfGCRdmsIseJs04tv8A9eFR9FwbMbjEB+LW4iIrVy6n241papsnn32KM3/hTnZu/x3EYg+pQSnQMsGgMZ4kjsHyC6g8gk5IdqyF5zj8071/Dp4HUYrneWRJynE9aVCFdNzHF3Pcbcwa/FCniijJKBUsoqiPXyoSSw9HSCwNtjF0my1KtSHiThvdTwi8IkeSLuG4z5V3/wqV8RG+9N/vxX9xhpN6ghVOwEyny8sPbIbiEBzr4CP5f97/m2Bb1ELDqFvkWKdJb7jKxA1X0280iA5Pk83O4C1bzsj4MFMvvIDyHRId4xGgsAgdl8QW4EsYKkMYksw26SHAK0Cc8lcf/WNYaIIySMsj1CnlYoVmGOJaHm6W4S+boDEzw8iF58N2D3ybdi+j25ylHpQI0oS422P98lWMnHEqW/ftx/gF0naOG5R469tv55mXzmDblzfz2GOPwYqVqKkpVKGIqPlUaxX6SUzSbZBXbfLckBnQ2sZEff7+rz4FB+doHIsYskqUrj2Xlx76CoQJrl8k6sW4WK86UWthQGpOO/8Ctu/YRbTzIFXj0zpyjJU3X82RcJHP/I+/IPBKqCxDeRatsIU3UiWZnYHAYzoLSbI+w7U6aRZTtR1sz6dx+CgV34dCAFHOoUceZuys9ex6+gmWX3UN009tIQ0jfNtCpz3css1TX/h7sAqMVMdY6ITI809l5RsvRwYehz7xeTrbD3NSvUjmGmZ1g0vOWE/qF5ncvAO1f46hoSKzYR8OH+G+z34aPXeMXFY4lQLHFtsENZ8Ym3aSYo/VWHf7Gzm05REuvvvX2fnr/yfNrTuYWL6MTp7j+Q5JP6WQDfRVy0CxWGa+0YThGkPnnkW71YI84Zpb38zDH/szHNcncHwaFUHabBK7kue3PcuiSLDmO1QyQdNI9HSLyBZ0XUDFfPzj90HgEXcblCwfL4dous0X/vSvoVilHxmmkozi6HK6WRdLaXzHJkfRERook0qNsHNcpbCMploocfFVV/PQP36Z6uo1NJKjoFKwFZsuOZ9jL7zE6DVXs/DVZ3CLAe4Xn2OV53HEtXjP++/kvr/8c2il7D1wkPqqk2hMH6Vo+cy1m+S2AKERnkOKxuHb1kZfSUJdYoklfmz4fnkiNZvN78nc97W8ss1/zfPoh8EPeKkS6UeR71M72yttbPfee+8PxcW8xBI/tIjja6XHk3xsBrfhhz7yEbY88QS4Hrg2M0MeR317kEZjO3TjBOfsDdTOWE84HHDm1ZvoHpiEos3yTecAOUibz/3uH8HhBqkleDlfBBOiRgJCX9GNQjJLEAYSZeVICYdbi0SuILcsQstAoAmEgI7BVRI/0rzw8X+ASMKZG3jLf/0dWDnBT//cO6Hfhxe2sfMLX4Et2zl7eDXsOEC5l1PRDrrZQQhBaaROWimghgLKF56B8RVyzRjvvvNO8H2ckTr9tIlaUcY+ZdkgwS7OUJbFsX4XUSlBvcrP/vIvs/mRR3j0q1/l/s9/HssvwIIm3DaDaNukfYuX9kxx2fs/QNcvcu4dd3DrH/4RZ9z8BkzBgkKB9v69LB46CscWaT6+FbYdYPNHPz5wLtY5pClD2kWHOaU1a8ARlIaqJFFEozFL4BfxA59OkmFLDycxyCQHV5NmId3FeaxcYrRAZwbbCHSSUUISGI1MBglVavLAYKVe2TCV4BxLkZ2IaP0Y/i2XwooyY5Ua3c3PsfuvH4B6kcX146SnriBNDMt6NhNdCyzJOe+4FcYmmPn6w7DY5uFvboZAQneBi6+7EkqGKatDIOFrH/8bytID6WIVijSNpuMI5nRGXLBZ9BTNlUUW/YTFqgcrRqEY8PAjj/HEw4/SeXEXcrGF0IYsTrCUwdaCqNHGfs3/bUrCaKlAa26OLAzxA5+rbr+NnX/6JwTlMgaJZYPlQiIj0pLPoqXRtSoKcCqjeMKnlkM5iglwQRkc2xmkWDkOudZojq8q6kG6lUYBZlAFlAIKkDCydjXOcJ1YK5AWfTR9kyCNYqQYYKsMW2sC18MIQb06SiFzeex3fp8v/cpvwdQsli3QRZvUthgeXcaqq67m0rt+DlZXaNadQVlV0qVZERxe5tNbU+eSt93ChovP5qa33UKWdWGsyi996Dc478pNMDxElxyrXCJ2bTpCk1gGTM4FP3UbpXPP5JJ3vxMChwY5bi/GChWtHXvxjY0vPUqlEsp3aPmCbMglqhfwMHSm50BKjkYhWDkrb7kRXbEJ1q9gzjTBUqweW8bizBzbX3qZ/sw8RBHSD3A9m6984QG2PfgF1qw+Cfo96HRYc/EmCENwHX723e+mVhuCKIYUrEzgxQorNyBtpvbugUqB2poVmErADVdefVwoLZJqTey6dIUgtSUKhWMZsC1e/LvP0fnEA2S795PPNCljcfVP3sLVb74ZXthPNLeAtl26roECnHXBeUjfBZWRjA3BeI1GUMD2PZIoxaQKr1jkS/ffD80WdLsgJKeNjDCyajXHtmzjhuuuAwSdVhOnEJAlEZbn4GNIFxpUtUtyeJ4juyaxj3eVlaSHaPXRzR5IeOJj92M9s5+glVJ1ArJ2h5odQLmKbjZhpMbZN1/FAdknHiux4brLcMaHSGROmKcEgQftNpsf+Humm8dwa0W63TZKambzmMxAkNlUYxs7lfSjGNt2Icu4/tIrOef8jTDX5OXnnsfyBpF3qSOwTl3F5f/p5wmlYvHxx2DLC6gtWxlOBTXlc5JbJ/FckDlv/61f58Zf+k8Q+AxVa7i41IxHWfmQGli3DO37FEsVppsNummL+qYzCGsWpiAZcwIKi1ALPcp45P0YG4l0JBtvupbgpktolVPwfYLCMBxr8tTffgG6CRMjwxiT4wnBeFCiNz+PintMzs8icxs6OfPNJo25acgyAhwKQ0OAoLJsOVmS4koH8+1lR0sC0hJL/Nihtf43x4nglTa27+Xc9xXx6NtNtV/L5OTkCTfy/m5ZEpF+FBH/jvEf5LWlfLfddtt/fIPftm0hxHc1ljyRlvjh57iQJDSSQdfYqStX05tfgExhVcpsuOOtUCkOqoEihR/B+hWrueyyy1Cu4bTXXQJODuEih/bugXaElzk40x0wDos6hQKgY57d+gz0m1D0BwJNvQyWjZA2OZA7cuBpJHKYGEapiHJqCAwECNwoxzIWOA7Kttlw/vkcO3gQohDSDI4ehSgmn5nFyhSe0rh6EPOcWZpEaGKTQ6nEuRddBOWAedMnnJ7Ga8UE7RgKNmtuupxYd/Ar5YEAYPQgncqSICWe6xPt2AnK0Nu1B+k6OH2NXgwxmSbPNdm2HZh+AiYnGK0Ri4wDe/dh29ZAJFKKF554EiwHoSGwXTrHpnGFBEfiOS6kGt/1WXfeuTBUphPFVKpVpOeC5ZJmBlyXLNfoRGFLB2wLxmogwZUWGIE0AiMGJtNaDPqHLcNA2FAanEE7UQ2XsgJfCYwwxCJn1bVXDsSSboyTCQiKvDw3xfLzz8EqlLCMoGgHkOecfMZ6OLSPopHQill38ip0xYY8ZubFXZApqHjYFuSdNiJLIEuxfQ/juYQGKLlQ9NCeTe5JIOPqN9zM6ssuhVWrmX/+Bfbv3Akqp/hKKZ02CMOgqkfIVyPOtRgUADiWR6YNiVFYOqO7Zz/MLxJNTxMsX46xLHp9wJhBsJ3nMrpuLQhBlmdI2wEUBaxXutNeZeCHNGipsSxr0FIjJQoDuYJiiWVnbsAbrUOxjF2pMnHqqYPqHjVohfG8IpocKQxGZYDGSEOeZszMHkXMdfDlEPQt6ISEKmYynGd/NM8UCYe/+ghP/Y+/hkPTuGGOMxdRlkPQiUkWOnidnB3/8DV2bHuOZ554FJI+GMXTTz/Nzp07IeqDFEjLRrg2eRaBLcHkrFy5glNOOYULL7wAhisgwTYaP9d4SuPowcjzfHD84gixcgXaMkgE5XIFWh36Dz4E0uLmN98K9SGUD1iaOM8I+zGhTkk1EEVgWeg8RccRR7Y8A0cPcfD55+DwYexKmU2XXARCYMKQLc88y9z0DCioh1CPoJKBp44XF2UJOAaWVYnHSkzu2wNJMrgWhSBUGbk/aLOVnoPJM4hjnPEJ6OXQ6ZPnCb4f8MKOrex8/nlo9igNVQfVZq4Lo3XOOPssisUyBB4nX34Zo5degimVyQ2I49dpnqbQ6kKS4SCwjaHuBaxffhL0IxaOHaPguaDyV6/hVzy2XDX4XkFfwaPPM/2trTDVoJxAUUMpBT+C7tPbOPr0VhwhiGSOHbhIo5GJgn4MBZ8LX3cl/WGfqO5z2jWX4IxWcX0Puj0OPfEsHJ6Fbz41uA6P+3YZJIklsYIAhIVKDMIvoKTBSI1jW9CP8JIMcsPstu04ArI0xthw7gUbWblmLWmaguPC2BhICw8LSxlMqsn14B4Unjd4jklJmudkSh2/zzVozfjGc4jDPkVjMeQVoBJw6U/dAmsnsFwLk2Ss3rSR0vrVdH2LyNE4gYOVZhza/hLRzCJEGeQWXjenkEhGlA/C4sUXXoDREp24yYKT0i0IqA/xzItb0d0YT3jM7t8/+Dy2OxCJxcBEW2oGLbZILMSSbrTEEj/mfD/a2V6Z+37wgx884XPf13L99ddTq9W+o+fRK0LWD9pGZimd7UeQ3/0ogxnqK8NMQv8eyDa/OuL2ZjZv/s5jcnLyO5bRveJID4NWs1ec4ScnJ/nkJz/5H3aobzabryqsr4zJyUkA1q1bx5133kkQBP/sZ7fccssPPOpwiSW+E2bgevPqK6HBFgKSjPs+9qcUiiWCkWHO/bk7CJDMHpuiIAKGlCQu+py0chW7d+/lMCHZ/p0D35tdu6nICkEnolyv0sta2CUP7RkwknRmCoTG0S6l8RVc9p6f4eDLu9CLffxSQCYgD2NU0eL6D7yX+a8/R1VJQk+QOYIwjgjGJ8hsh90PbeZnb7udv/u/PoIjBEKlmE4Xei0WDu7H67WwTE5mGUJHkHiCftQdeD3ZLpdeuImdL2yF6UPs2bIDd6bFKqfEwnBA7epzSHyH+CtPUp6LSEuC82+9iamdL0GvzwvPbBn4wrTboBRhu8OYdvDQ9GsudpqQmZSjzzwDnRZHp/ewf9sWFr7wFXTcRSqD4/lkvRDVCykUAzKTYWyJIoKiTVn7uF1DZrm4m85hvj2Pml0k1+C4Lt1+ilUoE+cZBadEUbgI3yNaN8Ztv/QLvLR3D5W2QmmDNIMHr5KSXL7iESJAC6QSmHIA9mBe7UoHqTRJYwH6fX7i9new5TMPUsosaoUKK664iK4QXHDO+bz0xLNEnS7aEXQJmWpMky60WJVKevPzzM4fZHb6GByZp73tZUgTvKE6yew85SGfXhphjdRIcs1Jp51OZ3qGoFRBpzl5lvG2u3+Nl/cfQ6QWzWPzvP0tP8W2b34T0wkZty2CNEUJMJYAezBxsxHYuUEwEJESG+xeTqvoIcpF3E7IoSefAMujJGze8kvvY+vXnqRcrJLqnMGB0Jx86eWcfv31HHr6KfJCEd2JkBiUkBhxXKB4pR3UtsjSDKUUju2QZRluMSDLEwqVId7xtp+m5JWZnFqgkecUzziDNVdfwylnnMHhZ57FCAiEwbIlcRYhXIccgQk8+paF6/iUmyF2FBGUAuLxAu/+b7/HqVdcyraHvwVxSs21uPVD76fZXiA+OE2SRvjXnoNcNUaysECxldFsz9HaupVKUCSZnubwgX20pqbAcQmUg45SwrBFsVLGxkJ6Pi9teZ5Wr83sgQM0t20Fx0ZqjREKy4AwgxQ8IyWmWKS+4TR+/s47efYLX8RkmtT3ueLOOzncj8AtcvjgEapa09i2FQoO5aCGig2OW/z/2HvzaM2uus77s/c+4zPdueZUUpXKQCojlRlIJBRgkARCEgWRqChG2wGQ1qSds9p+3+Ttt5c2dutKbHGRuJQ3ICJEwTYQhlRSqVRVap7vreHO4zOfee/9/vFURUAQWoMg3s9aZ61b9956zln3OWc/5/c739/3S9cU3Pi+n0QUlmhqljKGWHShGiAbHfpXrGT1ipX4nsvYwYOgHGamJtD1BZSxDFgHF1AIMgSFAis19/zmr7HYbLK4fx+nv7S91/wREqoVNrz6ahYWZtHSoIsMJ0/xqmWG15xHcXgcLy4QoYPeNMzkzueJJmYYyl267SYoH7N6GJIONrZMHBmDtOCm9/0kay+5jM5cQufUQUIt8YSPUS65zEAIVmpBWXicmJvn+PYXIEqYfmkPvjWQJzieAgFWSFytCLQkNIqhWj/z8/OYRhfZLSjlGmF7SYAWcDKPtNEmlh2iIUVMTigFtUgjHJes02YiadHttGF+ltIF69i/4wUquSFdXERMzzPkl2GxRSEt1UTi54JCKJKSIs0NUSvFrfTTXjMAeYzOYvIsI15qMrbvACI3lJQiWlrAc6CddGlGGbuf+Qpych5b8bji5hvoLDToq6fMiJxcSqROMQMj7N99iE2XX0mapDQnz1DYHO25tF2nd/943ipuWHUhk0eO00gjipIhGghp7X6JINII63DZr3+QYPP5nBw/AlmXqBuxUitOvHiQ9sQ8ojQAUpHkOdffeCOLJ06R1Dzswixb7nkr0wf30xIaHTgwMkg6PgGLBZXCIe1zuO+B/0gaxXRPjhOTM9w/wOLpcdatXMMv/+IvkSUxvuP2lohX8GHpMsss82+Hz3zmM/+oaXTo0CHGxsaYmJhgYmKCU6dO/ZO179NPP/1NGzPnat+BgQEef/zxV7z2/WrCMGRgYIAPf/jDbNu2jTAMefrpp7njjjv48Ic/zEMPPcS9997Ld7uFs9xE+j7koT/gG5hph+BufHn7nf+48WuaNN9oW7NmzTd+/Yce4qmnnuL973//y82csbExdu3axdNPP83mzZtZs2bNP1vmt2bNGu67776Xt0OHDrFt2zYefvhhnnzySbZu3fryz7Zt28b09DSPPvrodzXmcJll/mn02Xvas9WHFaAtA2GF//fhhxGFpdnocGz7Hq664tWMnjlELqBTxAxfcTE7n9vOyJKhcegwtJZY2crJc4sflml7cN0H38NJJ6b/4CS1rqWaFHQkUAkZTn20dLAXrGBxx27KiYNbCknSjKqWJEMlxkSbVYs5RavLYgmKqgeBy2U/cAtuZYTWkTFeeuYZhnSBabepOYbcNRhlUSMDFK1FMkeTuBbjS/AEr9q6lYWxU9CIGXvpCMXUIiHgBh55kVN0YqJGk/qxExRzTTh0Cq3BlgpWXnsVs3uPwMhKaHa44/6f4djhw2Dh0uuvxZwcIzNtoiEDrQblIsPLIjynIGvNwMwUl2S9IsjJdS9ZrVomc0FVAt7+k+/i4PG9EALrVuDOxAxRZSrpMDt+BPmmH2Drza/nxO59WAfKfj/tbsxFN99IvNAkb0UUvkdeKphQkB4fw2ua3pN961BIReoICimwQiIAzwg8I8hMzA0/9x7GD+8l0SleLnEKD6VCdn35eYacEiYzaKsJKn2M79jFid37YHGBy7a+jqlOHR9LfGqcUpziYGiIGBaa1JYyyvNt5GAfJitYP5chS5olmbLyogtodDvgevz0/T/Hnr0H8XNDuZAIx2f/6QnsVJP63lGyesTc2GniThviiBoaVaTgBkilyLEIbXrm0D35BFpC5kB/EVIPNMZkDBWGFVJRi1Lm5+cIr7uCyYNTZI2IUlEgZAmNw+zMHLNlj6IcwMwU2vcJ3IBc58izl8u5otBi8YMA13HReYERFiPBOoq82ebFZ3cwdvA4FAKsoW0s6978Bnb84R+Bcqj4PmmniesqMpujKiFxlFK54mKu+8+/xIn5SaKxM4yEVeZadfALXho/w8Fd+2F0kcH6EtHpSfadeonWydNsygJkUXDZe+7g5ImjMNtgaLFFu1FnheejFpusKFdJkwxhBDYt8DNBRfpIt8DJDX4OgQaMJW42qe8/2FMroSkcQ+HwcrocQhC4IZ1mE8cP2L5tOyZJ0dbgjQyTlkq055uQCKLndtKZmGaFkvQBi60Y8OkkGX2XXYrtr3B61x7CNMePO6R+jm3EDHoO1mhm5xY4OTaGdX1Iupiog6cEfsllMRS0XEiEIFOil7KmXA69sIfGriPQ0gwqDz8MSDoR4QXrueDqK5BDNVqnx1CupGwsrucyNz/DQGxZmximvIit//cHOP63X4R2glAwSEihHbbe905OHDlAfXQG0c3wV67h8IsvcPzYSa579Q9was+zhLlAGIkRDqlnIY3YGJQJtMP4/Bw0mzhpTp9yCY0mkIJCnlW5CYUyDiCZz1vM5h3WX3MFraQLlZC2TWj4lkYgiF2Ll0uMK5g4r80AACAASURBVNBrXF71s/cwf+QgbmFZ1dIEymOpvkj3zBnWNF3azQ6tiVmSeouKsATCUvMUreYClYqL1oKRriTIFbmUdMsOV9z+g8ydOkPiKi5/771M7HkR3e1SdjzopujFJipOCa1BSI08a1UQjS3Qr0pcqvqYsQlzi9Pkk7N4RtFcVUbXQla2c9JWQSE81px/IQdeeA7bXKDIE9LhGvL8tciBAdJD42y57XW8eHQXRahQOGS7jyOWIoQxNBzBiZmIydGTXH/jNUweOUpf4NGeW6JhDXZ1P303byFd4bHph3+Qza+9kb1ffI7cy7n0ossI146wcOgklXaKtfCOX/1lji0tEZ5pUhUe7SrovhJnjhwjrEdknsV0EjasWUen2eRDH/wgntcb5fuHNWK5h7TMMv/e+PSnP/0NlUdhGFKtVqlWq7z73e/+lrXvN2sEnat9v1rI8ErWvl/Pli1bCMOQj3/84zz11FMAPPbYY2zbto0HHniAhx9++Lte9y4ba38/8vVDinIAnK/trP5LFHDnDL8eeeQRHnnkkX/08wcffJB6vf6PYgn/OXx1zOHXxyhu3LiRJ598kgsvvJBHHnnkFdnfMst8xzlbENuswCuViaSD9fzeNxda/P1ffxrWruS89ecz/uIOLrzqCk4dOobQmoryyIQg0wWDg4PUHUtRq1KsGKC8ejVdbRhCkAMU4BuJ73nUm03G9x2GXON4vQ8day0EChHn2GdexJhhcl/15jmEBlMgpaS/v5+JsEw6dwbHNXhAkhjywIAfsmJkiOnTJ9GcfXKtesqDzVdczuFnX8BRLnQSVg8OkXZnWWq18P0SUrmsL4WcnpiGiSmwZVR/DZ3Oc+r0BOizhqlhCTdNAQ3CcNvWN/HZnXsxmYFKgB6EvJWjYoPnuPhrV5E2WjSinDjOGR4cRHUjHKnQRUbcbbDpqsvgoykMD7Dh2itpjG4jSXI0BTg+fpzjr65ANSCZWcStlkHn3HTTTfz9+CzT84s4VsN8h9bnvwL1GK3PpmopyB0DwuIVBqcXG0auQAsJQnPNNVt44WMfhyhDuQqdx1SLGlI7LLTr1JRPIQwLcRNmF8BIGB7k0huuZWzyJJ1jcwRaUsQpul9DFuP1DSK6HVwMxhFIqyhZh9gv4VZdNt9wPZNf2gYdTWd2kXypxXBfH1GekxQFZuw0nteHWy7jeQFTx0/Qt7KPxBZkTi8lMHVCrM2xRY6TZSgjsUJSSEEmIVOatsl6Me1YhDXobkyUJGAtO/7iSYRxCd0QYSAzGTgupBlCWq564+vZe3IUUkU3inoKFsCIXoKZEaA8F2egBhg6rToVoeg0WiAg7OsjrnfBC8GVUBQwPcWAtsj16zG79pD5IQqHXICRDkr0fLFqQcDkiTFe+/rXse3ZvURC09ffT1NYOHAcKDFS62eoHdH1LOPzS+CETLencPCJT0zC3uMQ9BO6Hm4+S7fVJUAgpcQVEPgenl8iqXdJspjcsVgMVd9nsd0grKwgIgVpkZUA0+4lfwkjEMYhcRyQgm7UYXB4JUujp0EYgpEBVBjSjbtMHtzPrXfdzaFtLzJvcspKEGpBu5NSGRwkW0oJvIDb77mTj/3Bf4NM4rkulhxZrqDpEPkV4igFBGH/IPFiA1c5eI6i7CqaaQSl3liRLsAxFrTAK4dEs4sMlgYQVhPnESb0QUky4MDRo9x84w1MbHsOKSzdtEWRptBXQeeGGKisHGZ09BgUBX1hH7kuyNspxoWLzt/AZ50afaWMKNFES/NQBrTh+M4XcVAYNBmGzBZQaIQWSCeg2Wn3xgZrVZxOgScMs0mTlSv68ZtdXAltr6em63oSyjUQgqErL2Vxokw1KDHzxWd7a5wAUUgcKYnR0GmiBqtgRW+0EkhN1pPQ1apETSj5NbxcMeSX0WkHx5Wosk9cLxhQHn6eAopMGQopQBRUBqogNVTK3P7mt7DvTz6CdCSO42CyDENOtdpHI+nQP1yjE3dQonftVWp9zM+dxBmUFAuLYDSqXML2VdDashTneI5DsrjEwS9+Hg9N5gBOQG39WgY2X07ZuMx94UVGx45Dpw2VKjrJUNIlcBVWp8RSYE+OYTpLjJsWJceheXqSwHcxRkNfhbUXrKN5Jqe/v5/J+QmSxjzYEk7hMHliklxL+lWAMZoNK9eAMNgiQ5VL0FjkwNOfh0YLwhI+Cmu7xHGM7/sIx8FojVTqO//Zvcwyy3zP8o3G1YaGhr7m3/+S8a9/zdr3HOfG5s5NCG3cuJGtW7d+172QzrGsRPo+5KE/5Bsokb52+51f+Oe//ubNm7n33nu/Ri103333sXnzZp5++mkefvhh7rvvvlekG7tt2zaeeOIJHn744W940QwMDLysRrrvvvv+xftbZpnvBMKKs9HsFiFACIdUKvacPMNTJ0a5+D3vYnrXi4T1OjkFW9/+DsKhYSb27KZ8wQbmDh5EdzuUsgRT8il8n9g6DF59Fa+55y6e3rmTH9p6Bwc+/zzaBL1RCyERiaGbxQhyzMQUylg0OTrPKByIw5yBpmVVV5HFObOhYOC1Wxi+ZBOt0VMEqsTFr7uJY3t3w9ISOotQAtIAdFCGzOCEQ2zceBHz8wvgBiBdiDNm2jFxo4PqZIRIsiwmDXKEU8JaF01G2q4z4GhIDZlbQddGoFD0r1xF9/Qp3CTGr89z+PAedNYCKTDS59CZE8SepHrl5Qxdey31w6fR/jBVO4BfO5+BS65hmgQ/idFpjrLQLRLyQILv8vyBA5iZJbCWfCREnJ5E64TctRid4ta7ZCsqLBVtKnMF1hHk5FglOTU3idUpJnChayibMibqlY5uf0BsI6gYPKlYnUoCnVKyVerKwZ6/BtKYual5WpPzKGMxNiYtDGHZI45T8jjG9wKysmLDfT/I7I79hPUCigK9uo+J/fuw1ifPBR4CrRRe1cc4Od20SVoBkfQUTh1rSLRP1/FZceWVTJwahWbE1I5DyGaLZpzQHg4xpJQdRdFsEEhD1m3gBR7tIkcbzds+9CFeHD3Ga371QdKyR2PsCEGnjQ9E0iHuq7H5dTcyeeYwuS8pZ4awAIvAoDDKQRiDrTcReYvMZOSDa6j9/D288Z13c+xTn6OIpum/cB2LjRZrxzNUJujoFH94hCTWWMcH4WCVZPCmLdz2I2/n4PG9ZI06jrRIB3SRIx2JQOM6Ct1pQdQl3neI9olTkBicHIwVFMohyQ0Yi5PkBAstij3HGNu2nVxaYgW+9OnvStwuuEYQVx26OicVmjRLwWR4YQBJhjg0Q71tAI+lkRJBkYHnUXguXVNgpUDrgiyLMVJjXUvm+b30Pl0gXEnXRpiiDY7GFglgCdoWP7fowufNv/IryBuvYbExT3x6hosEDNiMuNsl7ab4GopWnaGKz+j+HT1/ojxG5QWhcKinKZu8fqzQzF5SpXHgICqxFGnKah0wP+jT/7Y76Jzq8toPvp+GNHRHjxK6DqpZx80LfBkQW4t2XUgtq/0yOuoQCoWjBJnJMTrDc6DlWgoKcBxsrY/Xv/6NzJyaYu7gIbQjsKagr1ZlrVsmyVPs5rXUD59kYfceaPVS9lJfEGUxRZBz6KUDZKOLJGlB4Rls0AEb48QdzJlxSrmkY3JiDwq3gCSn7AR0k4LYURTKYrWhqK4kb7TRG6pw/kpWnKxTKyxzOsEEDm/47V9BX3wZzRNTrP6xuzhTtFh96YXkX9xPVm8yuH4dTDeoZZLAcemajLljJxic0ljHYaHbZmkAcHOcoEb5jW+iOXYGmxSUkxTtFGQKmrqgpsrILgQGIr+gUTE0nRSnv8SZY8cgT6BU5vTOI7Qmx3GVwtEgMeArWgHkpkvXVeRxgrUhxihabkKaxYRVSZGmlHCpx5p177mXlRdezuyRcXylKKVtgqVpws4CuWPRwnLHL/4Sz+98kfm5OfTUBNKV2Nmod66sCLj4njs5fXyU9VmNINOUigV8HZNNTKI7KSiPwg+wSkFuaJ48Q+l4k6mdLzH2/Db6PJfz8xqn5mOWTk1jN5xHVG/Q51UYPXyUxeMvMYwDYUEqc3zpkgce6++8nc6Xj+CXFIlJkY7igx/8YK+B9FXSo2UV0jLL/PvjU5/61Lf0RHrb2972z379f83a97HHHmPXrl0vTwVt2bKFrVu3smXLlu+pIKtlJdL3I69Q+to341t5D23ZsuUV75L+U/v8as+kZZb5XscAShi67S5T4+O06kusjCIIfFJVgK+Zb0zR7sYwtcCB//UxaDQZGBhAEzNYKLpZRu76TD+3nbnTZ6DT5a+e+hJ0O0RIfMecS9H+Gs59zwqQFnQhMQIiJLEjYajGTa97LcPDwzz+2Wc5tXM3p04chywDV2JSkF7Ph0aUBDYMaBw/QaOIQRqGL7uU615zE5998kmWjh6BQhCEIbabkRcpICl0T30hpMQvKbqxxi95dDpdrnrrdax93TX87S/+BjW/hC5JWoMSFtrUKoO0KNj17BdwM4srJO1dBzjv7RuYqpYw7YT5QHHnfXdQ2bSOvWMXc/S//h5kPSNoKRx84ZFrSbF/lP7SIDIVLD31PCNdlzXVYUTcZjFwiadmuem6G3j1TTfw5N7fwW90qfkuR559Dhu64CkwCeq8QX765/4D//2//Bd0YiDNca59FTrq0ndkjjNBik1hSBucUoXyTVdx5Yo385X/8RhIi+MHuJ4i0ymJFWSmYODSS3APT9FuNYiPjuPhENiEWKc00w6IHIb68c5fQXzqDENDgyyOn6I2VEWWJBJBtxtBpUYcpfRpCZ2U5z/2SegPQQgW8gjpu6RlxX2/9as8/sjDdOeWEBKkUpRqVZqtDrUVK2hFbfZtfx605OSXt2Pr8+huhCgHaOWRGIdLL3sV1197HYf278AstV8WwxqgUFBYSyotBD5aAmGZ4bffyuotl/LUJ/4WrIZWytE/+zh0MtqJQ40yK2uDzNTnufyddxNVKwyvXsmOx/6Y6f2H+cTzu3BmF/C8nol5z6emp1aSQpLnOU65DMDMxASeCHDDElmWkYtekpvyffpdH89RqEjTyjqYQOI4vQ9RnWtanS6VWo0cQ5LHyE0riVotaBhqsSaMEmqlPsajJlvecSeXvOYmtu95kdlPfvpbrwVSI6zB9oRrBDkUuvfX87TC14b5Ph8EqOowU1mLpmO48sffxb7ffITj3bh3F1eGtc0qnSSm5IecfG53L0VRCbJAMR9asBZP9TOdFDTzGD7xCRx/BW69RSwts8oyfPlm3nTrbTyX9DE3epTWV77Sa4R1E9asOp96s8G0a0B5BEKjpWYh75B5gnCwRFyvQ7VK0k5I4oTzX7OF0/v2QyXk5+9/H//zgV/vmfyXQ2TSIZSSRhzRGAzwL7mUzVuuZf5UgvYc8OFVb3kj+575DJt+/Mc48dE/ob00B0KgAhdET+kmrUGdNfZO0xS37FGgccMAqTRkGmsthbUIJaEkWfnOW5h9/C/hko1sWLeWqW1HqTo+KvSgnhN/bgdJowmT07z0+38ErTmOZxkr3TLxYI03vetuPva//pR14wkjWcD5lUEmR1us7jocymLYtIbX3vVmnvu7L9B3pousz+I6htBYTJaeffd73kqpAiwUyiE3oHKLl2XI6SZKKoT0SOfrTMzvwhUaZXrBDFo4GCEpooT7HvpdHv/9D8NwjUIE4JW44u23Mfrkp8h1B11oLAo/dIg7iwyMrIXNF9A6OQaVPmg1KBWGvJOiPI9n/uAjkBnodlh1zVX0rRphce8YvlDEScH5fQMcDQOai00SXyCswuLguA6hFPhWUFiDE4YkWUYxu0A7VVz9jq2cmRmjcWwUG3f4md/6v9jXnMNWJF/8vd+nIwq6k5MQVJHTbZyuYv1wH+ONCPpLNKdnCcsBuW4jVE/hJ6XsGeyL5dbRMsv8e+aVSl/7Zvxr1r5jY2M88sgjPPjgg9x777088MAD3zPqo69mWYn0fchDf8y3ViL97Hdm32EYvuwq/0pQr9d57LHH2LJlC5s3b/6Gv/OBD3yAjRs3fked8pdZ5l+E7UX/nOvrSCQ6t/z1U39D7rrsOLAfuzBLpYjJ4iazjUXqx0apRYL1kWBY+SwUHdIQBtOCJE8xFY8s15TygovCIWpOQJ0Uygpt8rP7/IdD+OpbbHvOO8JalJUkjiTyJOQdjo+eYO+hI4iu4bx1G3j9T7+Xo/v3QNyl4py9aXcE2oqziWhOr6miM6TvsWLFCKf27oEg7HURshxPSlzXIRUp2g1BeWhrETYHY5CeQyJ8Lr7m1ewePUhltkPe7/NTv/vrvPD5p1ihayx1F2HAg0Iy3LWYNMKt9TP54s6e+slxIPRZ8jVj9SmiIqK77yBWgxUK63okuWbF6rXYRDOQSZxY0wk8nCTHN4pO0SbwyyQ6Y98LzzLebJNOTLMCB9tpUvF8up0mNi/Ad7Fpl8wRzBw9ANJBt1O8qzey9YbX0Hj+IE26MNxH0kpYt2oNrdUllk6cIZmYAemi04LMQG1omHY3Ac/npq230Z9IbG4ZO7CbAXxG/BLNEvzwf/hJTraaxEnEve//OQ68tJdrb72VoYEBJo+epOqGtJc6+ANDxFmG7atiOgn9I8PEpuCcwdDtP3QHhw/sAzJOypz1F1/M0kv7GRgeob6wSBCGhEGJKO4y0N/P6X37EI5LY+9xWqfOMFILqKdddCnEVgeZHjvJoUOH6I6dJPSC3sTm2dPPCHACj27SwUgLNgfpEM1FFPU68Z5DrNMurXYdKoKBt91O7ZJNTIwdoSMKgpFBNt54DQdmTjKxdyc333034599BttMuEj095QvQiDt2cxDIfAcnywvMEZjrAUl0FWXfOMI/pUbCbds4k0//S5KG9cyeng/LVcRY8mNwQjRU1AgkNpS9gLaSURcpFz3hlu4/KorITfk00uEymHOMSyZDsXqGtNT0+zfvoP69r1438Z0jRA5CHP2+rQ936xMERSKwDg4uLR1THnVCtLxOWb37Oe8DZs4+Mw2ODXLYBiSKYMtCdQ119DsNIhdh6zRYlB4lAuFl4HMJTKXZHlOqnLUVZcQbroIsfMkI2GNtidIypKoPs/+L36JV110MXs//jGcWh9moU5ZuCy2uySm4K2/9ssc27kdudCiyDVyoMTAxRt55/t+il27d4PwwQhKK1dx+51vZt+O7dDtsGvnLgYGh4iTCBXHlABfCuICqI7wnv/0a3z6Ix/DDoUwspYf/n8eotlXIh5ey9Txw9BcgGab8trzePe738WePS/i2ATH2l4iovXQRuPXeqomo3N0lOA5HhSGQlhE4KIDF7tiAH90gWxhibkDhyisJO0rkZYsVilmDx6mOznJ6sCn6DQp4gyRW5xWQlb22PDqzRwdO0YcZyypnDG3y8AtVzN1epLucIlCKi58zQ2c3H+QoBAsjI9R1RqVp/ieIBcWIxSFlBipyKWg5flkRY6nPHyt6MtBtDu4UcJApUKcdPCkxbEGZQRGOD0vqr4+yhddzHicc+Utt5F7ZS64+XoWkojGvv0UaUrFSmSmUY5DXXeoN5f4kd/+LQ60Wtxw/fVMnjiO0JZKIQhyQbHQopYKUq2pEzPbaqAWO3iFIXEKjj/3HKbTxVEOzQCSQpFagXUdummCFQJRaGwSUbKC0FjyWj+33vsWRidHiZYWUAR0yyWONuaYaM6Q7d3DO9/3Xna+tBukYJ0JEUlC3k2Qg4NEtiDKElS9Q2FTXFfi+z4f+MAHKIoCtTzOtswy/6755Cc/+S2VSHfdddd3ZN+vdO27detWNm/eTJIkPPHEEy8bbCdJ8j0VIvX17jnLfD+gvo3tO8DGjRu/6djZP5dznd1zs6Zfz7mYw+UG0jLf23yDpdZaaqUQoQtu3HI1+D5lIXuV98ICzC9SKyDUFgVkniQWGsdxsErQyWNsFkESE01NUzTbqP4q1asuBdUzOtZnm0Xn4qu/Xp2kTC9BLFUSlIDhEagNsHLVWmySEwYBw4MDvWNSDgbZG70RApPloC2OKXrR3tbSaTQYPXoUgqCnXjIaaw36bIy6lBIvCJFhCZRDJgRWQZZrsJrm7Bz1sTPk1tCpSA7UpwAXp53DmhHKW2+m7IYEBhQW3whwfEhSUAryhPnDR5nbvY/ZF3bhIDAINILccbjiltdy0TVXkfkuzSwmEhojJE0ktq+MxiXXea8hlRtW1wYhLGOtxROKIkvwpSBUCk8b6Ca89JVtvdjpPEcgSF7az0vPvkA7jnrJVEmG73uYIke0OzTGTvZ+P9MgFI7rc9Elm3HLFXAdxqcmKQKHxAEqFdIkIssSlBLseX47ptWFeotdBw4Ahqn6IgNDIygjkUZitKVAMLT5Mi686QaKss/AmpWsv/iiXkR6qcT5Gy6AwIcgpHXoGFdfdjmEFaxQveYjFqxGGg1FQVCtEuSGspUMuh5FkoLvkSQJw+ethbygOzGNMGcttb7uPMuK3kgTVsPKES686ko4Nc7Scy9CM6LoxKCBconq2hWsv2ULrKiBTknmZ3numWew9SbUO8huApUqOIoZ26WQX/eExEqyLDtbVNqeaY/VUPKpnL+GDVuuYPWVl2D7KoQrhmFwEHyHTFq0EGhr0dqgTU/d0I0jyuUQN/R4cftz/P2f/yXHv7QDopS5TgsuXgtXbYCagjSGmSVWy/K3tSo4xuIaixWmd73KnimwRpDi0BEefX2DMNdiRJRwC5eJL+6APcfot4JaIqnkCkpVNt16M6wYBGkwWuMbgVdYvFzg4hA4IfghrF3J+is3k7RjHGMpMo0tNIwMQDuCpRbP/9VfQZYhkwTXcQkdD20KCHycwUFYtYKalIQScl0Q9FWx7tlzpxtDuUbU6vCVZ74IjsIfHsE06iRLC/jGIHWBEhad5VQcHxoJY4cP99aRC4ZYccVGvrBnO7v27KDxhWdhx57etaQEKQZV8rCORFh59lzrrWOu7xEnCRQF1eHhs4lr/+CVYUUv2CDac5ThZo4/2YBmAoFP12Q4V18GIUjPw1EadEwlz+g3lv7coouMIuqyf/tuaCcUZY9W1YUVDpU3X0er5ECmEZMt9n72yzBTpxMnBEJjTQYYjBSAPNvUl2gBuYJw00aolGllOd00hcJQxqGkXKTJ8VyBtAZhLdKezWdAQlji+V278AYGWXHBBpxajeuuv5Ebt9wACOim+NbByQ0uFuaXyMYnOHLsKBboZgWkOdoIyqUqCkEoFDrq4mhgw4UwOIhQksBROEjIC4R0KJQATyAH+qAckgUBqy7cSGJyjN8bPXWUQEkoeS4vbHuWxfEJwIAw7N33Ekv1BdrHj4OE9evX41aD3tiy75FjMdDznXIl5120ia5JMZxtvJ5VH32nFQjLLLPM9z7fqoH0jTyTXgm+E7UvwL333suTTz7J6OgoDzzwALt27eL+++9ncHCQBx988HtiAme5ifT9iPNtbP+GePTRRxkbG+ONb3wjH//4xwFevpgefPBBtm7dutxEWuZ7m7OFjj33JYZK4HLNFZvZ9eyXaI1PcsM1r8ZrxtSsB40YL8kJdc6EXiTp88lljHPtFSzkGannYFyBqvoIZSh0Su5YVl99KXf9wvsgcBG+i85TwmqlJ/uHrxkzsgL8co20yLEVHyS846fex8UXb+ZH3nYPpBknx8/wZ3/yx2cbABZtAcchMwYlBZ4rCNE4UoDrQpoyfugwZAWu60GRE5Z80jwh1wVSuKzbuIm3v/PdkGkKx0O7DlqCLxX7nv0SnDhFs7HIBa+/mS984s8gKFFRAWp4kB940234uSY1GRpJEUe9ZkyuCdodyq0E5/Q0HDwJB09TQYKxFEDheax7zfUMXX81xcoqzWGXJdUFH1hb4U2/8Uu0PIPTV4ZAcuPr3sB9b3wrSJe6TYgci1MK8FEMBSUGC0FfKginlwiaGYP52Tni+Yz5gydpIKiWV0G9IE0TJibHiHcdgPnF3kiP6hW0RW7ZdPElvf/bajJ6+CAvnD7CnIihr0wUtRC+RcqMF//6b8gPn4Sm5vjHPwVFyui2bTz//As4KFQOtbBM0Whx3Wtu4ra33I6xXcxIFdFf5u6f+HHIcz760Y/2TsRI43bhr//HRxgYHKSxsEC5r4/c5KRZhK8URdTCLzL8OGIwL6gUOTpLewqfIOCW298C1QFQLuf1DaLs1xZ0VkAUReA6IGDdeedx2Q3XMPCWGyCuQ1mwmLUItaAycj5ntu9h+1OfZ9OGK3rnnaMwh0YxX94LJ2Z49vcfZWDdGm78sbsxW6+lJS3WC0ikItEaxw+wykFnGVgISmWIcoJTS4zMxzR2HuHYH/05f/Obv8dz//UjcHiB8ryhasooGTK8bj3v+NEf5eLNr8LxPXzfxRRZb0rcZOSNDmv7h4mylNVXbOaOX/gZuPJVXPDed0MYoKxmJPv2itoBGWCTglQXJI6l5UtaJUWn7LJUhma/oJkmVJWH0B3KaUJnbAyZ5oRYcpsxMrKaG7bewei2/dAw0MhZUxmmlUXEjmTOL/BvvZaN770H8oQtP/IOVl2yCXNwFAMspR1Ic668fSuVzVdDLhBpgnQkstsmMBp0gVMqQbXKp373d1l/w834xsUaCYVlcsdO/vgP/id0ChwVQjeBVHNq126wlnRpkZKEbGmBqhQMVCtEWY4OK+RpwUia8uU//ANozMFAwMLYARY++QRvv/UGOHYMXA8aDXBdvOE+Hnv8T9FGk3QL8kKiyjUSXdDOc9I4AsfhfT97P16tSpJnCEfh+h6F0RCnVCcWGEhzVqMRucRKH4Iy73jbO2BkmNWDg7ghtNwY8pgwjgnjlGp/jSCHpd1HYSZmvaxiZxtQSMbHJqhmLqvp48bS+ZRHO/TLlWwMV5AstvArAbK/zFSziXV8fK9KVm+R65zcE9z1/p/h6ve+G2yKHBkgkxbhOlgHOnmXXGnM13VnrQBmZ+gfHiZLMw4fP87c3AJ/9xcf5/DTX+m9D14F3c6pBRWq0oOxUcFmqwAAIABJREFUacJGl92/8RDMNzjwzFfAuphckOQFIvAwvsCWBIWnufbaGyCNqfWVcZVEdLt4fkioXLpxFzZfyqorN0M5wASC1/7w2xh59WZiRxMHkqUsom0y9FKL0a9sh7k6opviJhlXX3QJd77+DTA9R9+a8/j/nnicXObQmONoa5pw1Rqo9NHxNRQdXnfbLZTWDeOUQ7Iso9vtUhQFvu//n3waL7PMMt+HGGO+5fZvkXNNqqWlJR599FG2bNnCI488woUXXsj999//XT225XG270Me+lO+9TjbT333ju//lI0bN7J582aeeOIJnnjiCR566KGXTcfuvfdeHn/88e96zOEyy/yTWED2mhmWswE/uqCxVOfRj3yEqRPHmNy7j5LjILOcYb9ExfVYylOa/VXqxHhbX8+P/sR72fuZz5ErgRYCZXutKa9aY7pIacUdDszNY8fP4Pg+BpCFJVAOOi9A9IK+CglGStZfegmRAt1oAJKLLr+a5574c3bsOwgWTNRCLy5As4kqDJ4jQUlSLFYalDV4uhexjrDIsyoWYS06SXBcB1sUaGsIAheEpI1HZWQV480mJBGYHGl7vhqFkBAIyl3LzXf+IIuDNaKiS+vEHMwscvTzXyJuLuFVSxhHkOUZvnIpKQdHa4LCUs0MtdRQzTSGnMwITBBC4HGitcSkydl8603MfOWLlK+/ltsf+m2OduZYddGFHDt4gKLTQVVDzjy/m5MHRml022hZkOqUVApK5TKO8sk6CaHwMKaghIexgjhQDNQGiDsJuA4yMzgoXEdS6JhqrrGmAMzL414WmJoYp1tfBKEpBS63/OSPsfF1N3Pyy19iUCikyWiqjEpsGbIecSvFee2rWbV2Le3pGYpWi5IQSFvQjtqUV63g0L59nDh5klRn1MfHac7NsXr1Ok5ufxGhPHSrDUgqwiVrtIhbLTzpEDgOOs8RwqIESGGQWJQxOBpyk1B4hjT0Qbocm17EJJqBSpVkZhwZeBgpzoUQAlCplIlaTfA8WpMTHDt0mGR2AdIMuhFCW6pGcuUP3cZt97ydlz76UZaOjINjQWuGIs2KQtNXaFy/wlJjhglH49x8NflLB8j9Ui/hME25650/wuTMDHG3QxD6pFHEUKWPmg04M3mK9tQkaAidCqKjkVmBNzhE26RonRClMbYckhvDzNGjhI6HshqEppCGoc2XMNNewiqXznyDY7v3c15lBDHfoHnkMFZnJI7GfBseLSq1iEqVRBVQKjG4YQNxN0EbzdD1l3PVT9zNxLYvEZVcOp2UYqiGcVLsmkE6jS5tCUs2onrbzUx87llI0563Wh5jpMD4LrmjuO6OO8EvMXH6DKuuuIQj+w6Sjc6QG4l2HCrDw4xcshFVj2jOLFJJc0Sv1QzCkqc5RkpM1IUNG7jjLXfywt8+DQMD6L4yr3rdD7Bw7CRO1xDkkGUR/ReuY2TdaloTU0gEMjNUPB9PeWTSoSt643W6VkEWTRxlKUUx6eFjBONzFBaGM8OZo4dAR2AsBBXe9f4Psffzz8DQEK615AbSAlh/IXRaCFfilkOiImPy1BlC14dCE+sc4wgQhszJcRyPtBB0Kg5GC0rapXNiguZCndL0FFopWiVwjEQZQa4US1UXEecM5C4iy2h26qzoG6LdbJO9dJQyFebjOls++D52zBwlsQmddkH/YInE90k9D7c6SLeVIlEox8V4Chu3OZAnpFlGksQUM9O4voNBUyhLpiSZEigrkAiEFVihMAIue+NWJhfmMe0O7b37YHKG7tgZFo+dgPNXUKmUEFlBISWxNfTlCtf1iITk53/6fl7887+AOKG/VEaj0dKSuIbIM2gpmDozx7W3XsfxZ76MaTeRZYc0M4DCrlrHW3/pfi4cGiGS0Di4j+Nxl/boCYYuvYTu9CxhdYACSTVRGFEAmtBoSrlHaWQ1C90282Oj+N2YhalJTNbkbe//ALM6Z35yjiLwSV+9ES7dyMzeQ9T37MEPfSgKHMfhQx/6EFIuPw9fZpl/73ziE5/4lkqke+6557t9mP8itmzZQhiGjI2NMT09zcDAwHc1VGp55f1+5Ls0zvad5N5772V0dJRHH32UBx54gIcffpidO3fy5JNPfk851S+zzDfFfvVya9BZRjnwCZXqqXhqFRouFAhcK8AIWo7B9oewcphsYobFM3No4SCsg5/LXny8lcSuhMAFXPT4HAwNkUdd0AVW9MaL5NePGQm4bMvVOKUAymVQDif2HQQNdnIKfAfKIbgOwvXwHRddWNKsOGti3PO7AdMbGjv7+sr0tpIf4gmFlBIhBHGW4vs+0Zlxtu/c1TsAKTFno9slvaYUSqGLnP07X6Kz1GLlba8nl5o1XhWWEnAEsS3AkT2jXKspl0O0AC0LEAWKAtcUKNehQPQmtFatgiihc+Agl19+JdT6iFpdxk9PwKs285nPfQ4WFuivVLFFDlYwNzEF1XKvOFcKVamy2I3o6pzCVTSKBOVViIQkDRxwDJESoHNEqURSpFAJyKXpiUCLAmkLRO+oesbAGKJWk8DzcF2FTLtIpVixehVYi2staRKh4zblwMfmOX2DA6RpwkipiiiXwVqs1ZizDSplLdQbtE6ehqgXHc5iky//7f+GSo0sTcCRrNu0kSiK8JSDKAwOolesn5N9C3P2/dVYYejqmMRkSEcBEgz0V/theppuFOE47tlz4h98t4Sl18A0oJTbO2m6KSx0cCML3RRH9aLRdx/cz/MH9sDmS2GgD841r3oZbygMRZZCXw3m54i+8IXeWN65hkcYcPEVV3DXPXeDNSghqZbKpEWOGKpy/d13MvyaG8CTxK0WuSm45fa3cN9/+mW4YBW4EgYHOPLCC4wdPkL/mjXAWfNma1EW5qdOgyoQQzUoCmgkjP/vZzn9+eehk4Db8xf6dmjlKZRKYAzhpg3csnUrtiggjrh004VYqyFwMDoHX1IkDQgsr37rGyBUUAlhZIiLr70WrngVrF0BJZfMJBSuJMoSkB6n9x5j5989y+Da9bz0l39F+++foRJWIRCgU7Io5sS+/5+9Nw+yq7zvvD/nOevd7+1VUmsXCJAQQmIHse8GbMAsxsFbHMux44QszuAkk5lx4uTFIX4zZSeZ2K+T8TLGW5whGMcEBMYYgQAJtC8tdatb3er97stZn+d5/2jZmcxkgpOaDDbuT9Wp7qrTXfXcuueec8/vfJcDNGfKKD/GkmDo+dB9ZUCkY1zTnD82puf420e+RpJy5yvhm3XOv+wyLrz6akSi8AQYeY+lpy2jf/EACBvbdFCJxBQ2YRwRGcy/7lIXGJpQzLcPWrZJl3DJa0G2HXNi116QMShN2s2AMjFTKXA8iBJiqUgVulm5+QKyp50OwkRLSRyF7N+/H5RCSgmmwHFdhG3Pn2sNSd2Dpgd0ZzE8DzPWNEemkH6AjYOhTTBMEsNEGvOW38RK0K6La1sIFJaTJnQMulefBrkCTRNYM8BIHrjxUthwOrm1q2iFkivecitX3vY2Op0A28sgJajwlGU0CtCv7aaUzkCz9SM7ciJAGvPHknnq/fiHU7hCaGiWZ0le28U5G86muHolBG1ytkXRshlYu4rlZ59JPeyQXraYFhJDC0zDAsPgteeemT9/FvPUamVAcerSgxSnPlNTs1TGJyAJyeXnrb1CmHjpDFpYfO/5Hbz6/PMc37ULPI/o4CEGzr+IpUuXg5MmlBqlBaYGS4Gpf1j6oDh06BAHX3kFervRUpG2bTBN1q5eg9ddItQKX2tO23Qup599FrO7XsPt6kH827hSFlhggZ9i3ig72/8NhoeH+djHPsaaNWu45557qFarPPjgg3z2s599Q9e1MER6M/ImsrNVq1W2bdvGtm3bflR3+MOaw/9x30+CN3SBBf63/BPXLtM0WdTbQ7s8B4FPYeUS/DMX0c54tNoh7SQht/FMxMUbuP33fxfmEh7/oy+CssmENn0ti3woMJVFrTY9b/2ZaeM1PN7x9necqntyEUJQb9Z/NEiCUzf4Ar69/XsYuQwIC/yEg08+B3jz4biNCv0XbYI4xI0kbqLm1SWG+SNFoxQaZcr516P/8dZpNAla83YDx3NRShEmEtIZVKy44va7wDDRp5q1DK3IxJL0ZJ3M0h6Gx4cJwpCze1fiDiwm9mP6hYeh5rMwYimxECRJwkRtmpabUMkkVNIJdS+h5UoCU6JUBDJhxWnr2HDDbVDu8OX/8EmoJbijFV7706/CZBMqHUgVkFNlktky+XyepBOw+uLzufGXPgR9iwgMA53LUo1jaqamkzLprFuBvvBMOk5EYfM67vjDj0J/Ad2JyV11Pktuv4rEVGSBWEi0UAgSBAHCiLGUJGrV6MulKRkKt9Xkqf/8aR77wiMI38BqNUgLA9IWCQnTjRk2XHMZG266gv3bnsaq1XFJEKbETBmUunJ0KjPk8wXcMMKoBBQa0Od0U6hGGM0AkpDi+rXc8v6fI1EdfMegx81gSk0cBacSWxTakGjjh5k9Epm30AWbVuxDuwOh5Norr0csWUbUbKMsa37wcOoYF4CtQLUDPGEj621QgpSyWRnZ9EcRGWmgTE1ESPvgPo489jec/677oFyHGCyl8E1FVSjKpqLpxBAErLvoKq69Zyv3/97vUzhnPWRdsAw+8fAfsefwYVJdJTqdDo16HdMxGa+MkfTlOOOKC0En4HrgOjzz7N/zZ9/+Eng+4oJNvPdXPsKyyy/FXdJPq9PGVGBrjSPBSxLSZhqEi1YRV/7qVk7ftBlEit62oCddIu+mCaP2j3Va8LoXUYtC3CsuZ+2ll/Lol7+C0QjIGS4vPvI3vPRHD4NIQy0kb6fm191dQngWKImTyUO5yWN//jmuf/DXyN56I6zq59oHPoi0JXgCTJvjz71MMjLL3XffC5EAq0BnbJb1998JfQV0IGns2Mvs8EnyVgpHmhhaEJmCwAYz6xK1G6TRpFsBzVf3Qt6FrAVvvZnpOODo2DieZZLoCJ2RjCaz7B8chAjC9rzyB9um4gd0TJMVW7aw8ra34m7YSBIZeKks1VyKehAz15WFWBBM1UkX+rDbJlZLQ6D4ztPPcdadd5E/awMEGr/cJL1sFWFvH6Q9sObzyeLZGeyUh0SDYaC1Rvk+NBqk2hFNR9LJCJbfeSPahGarw2y1AgNZqqkUhnJAeSjtkhguLddk2X23EFkh00ETYTi0bM0cERe++w64ajNJd5q7/uNvs+epbZxxySVw3kYuf/d96FI/Y4Gine3CWLkW7WQII4GHTU++iMjnwU5z0ZJlMDlFpqtn3vpsABjYiU0mtEBbxGL+fGlqhaUlIy+/hNFd5OyeIoWwhSU0sjKNaNawlxQ52J6GtQOc9757SPqK+FrQUQaGbPHCY18nl7FR7Rr9+SymVj/abKXIxgldlRbDTzxBqSuL5YLwLKQyCJXNFTe9jfZLe6m8tg9myhBrsDOUhMuBnfsgsYhbkPgmaONH2V+JUIQWxMSQtnjfAx8mNhSohKKV5Uuf+gxTL+8A1yKOYspBh6NHBkkbKdLtCOun05WywAIL/BvyZrSzffOb3+See+5hzZo1fPKTn2T16tV89rOfZWho6N8kh+lfyk/ROGGBHxv7jV7A/zl27drF9ddf/7p/90N10gIL/EQi/tEPYP6Cl+3tQcYRlvLo7e1FLV9Da3IHrcocpf5+rnn/e/jm//NxnhRpqIeIegdcC1MluIkkNgXKEFDo5p5/9+/4xm/+IcGBYZqXrAdfIrqLJLMN+uwsvozxTYhMsKQgESbIhNb4LGLxEgqb+6g+vQvDTyj091MbSLPphqt5YvsuTBkQ6RBbayxtEKp5W5s2TlmcLIUU80/GbSkQGqxMisXr1nLswAFECAUnQ73agPwiMtognSjAAuGQ6AQX8BJYkulmd1jj/DvuZMnAMh574HegqaiZIGUEwsZw0vjlCoViD5dcdwFP7t8BYRMkhGikUEhD0HPBZjh4AhKb0e8/ixH5nHfPO9j1539KITZo1+ZIeX1csHYDz339GzhOZj5MOO9gejayEzG8fTuNxUtgssyHf/u3+eIXv0C7OQbLF3PGtZfTMTW333UXn3n/B6gfOMjjLzwLjgbL4OJbribXV2L4W9/CwqDmacSpOneURvwwPyiXYdGm9RzZswsx5VNYspj24AmWeQWSeo1UroCwA5qdmNLixTzznW+Bv4lUHGNrjaE0gSVpJxHZUFPSNjP1MjqW9BaWYXRiHKWp+FXcQo6guwAph+de3g6FFDqRiHYHI2cTYWBLjYkgNOcHPBYGVqyQnkCYglg4nLX5EvoHVvO1L/wVjJ8g099FfWIGw+7GVAaW0rgqQWiFbUEnjvHSLoYGP2oz4kAOl7atQEakcEBkIfLY+cB/YlES05GalivmFRlCz6toLQ2RwcG/fYqDT70Iho+7Yvm8fMJ0wA/ZuXMnBAGW55DJZ2mXK+TdAq9+4WugY9ZcfCUX9a/h6N5DvLJ3NxvXn8eeyRHU7kG+8PD/CzIAxwbXphkrUhJAkRgGuUpC5Aek3nIx3x87CIOvQVeGqNLC8udVWyU3j0xigFMKuVMhyP8T7Y7Pxnveiu7LsufLj2B5edKyjpMEZIwUs14Wa7LCErdIu1XDKpaoTNXZ+ZdfoXvxCq66YAsHjh3j8OAUT239KJRn2HTT1Tz9V/8V8i6XvPVWRudqTBwcgpkKX/zqX8LcLESC/oElXHD5Fg789WN4wsIUKYJWHZw0aGd+YGUIEIogDsC1yOSL1GarDJy9gdnzzmLp6pUM73qRJ//0z6EVkXMs/LAOIkXz8AGYdbELPSQyIjKh02ri5ApElQb9uTwvv/gcTiZHIUlT9yUqpUltPpu1d1zPnj/5Eq0QjHrMaXYPdTnfdDiz7Ul6772HUi5Lw0uT2ngGE6pD2slST9o4PSUipSnmu/HHJ3AwSaI2SSFH/oyz6TNd1HM7GLcSojBh8zkXcOKZvZRWZKmeHOHS3/01Xnjg97Ba5nzYO+pUpJ2i3qyDEdLKFwhCTS5lU2/V+e43v85Zd97Koaf38K0H/xB3rMH41F9Au8F/NwVMjLHvuZjuczeRyufpGGX6li1loOhxZHQvIGFygq/+3ifoXrSE2uwMyzI5KrHElfPPICwFiQmxAIVAMB8qnslkaZ8Y52+/8Hna1Rppw8ZEo4Vm5NBuKFcRXYvZt38/VMsk/d207QRiHwwJhsK1HVSksAyFNtQpxZPAUtCTcah0yoRJTLsZEaVM3Gwvod9mzdIBnpsYp1Fr0J3LoxOIwoT9f/s4WDZrr7gGL3EYGxplojELQgImngyRhkKkBGpslGf++2MYtk2n2SLXjihXfMhZZPJZOsrnPTfewjce+QqhFihhEJrz6lvDFP/wufrhg5rXd5EusMACb0J+GodE/zu++c1v/ig8u1Qq8eCDD7J169Y3fGj0P7OQifQm5ONf4/UzkX7ujVvfv4RSqUSpVGLbtm0AbN26la1bt7J+/XomJyepVqts3bqVBx54YMHWtsBPLqcCYua/+puAheG4SK35xB98Aun7NCZnCcarMF3DljnKzQ6DTowamyQfavTgPuJSPF+rnURUZJN6XhALoLiMupPBdxRqeoyjh8fASaENi3SQUIzaKMuk5irIpSiFHr42uOrzf8HIoy+huzMEb78EXhpiacfAakuaaU1y4Rlctuo8jg0fI7aapP2InDDRRpowMnAyPaTaHdr2/IAByyQfm9iJgcpl2PCL72Bo6BiLmml0s4GBZklik621mTp6nIbvQyoNqTxWCJZUTHoJRqeNOTbG+Cs7aLamKDku2Y7EsfK0168izuWhldCux3Qch96rzqc2MgSxyaJqQikW1FI2+uffR3ffGq697Ebmrj+Xzne/Q1wq0BkfxEw5XPmRd+JYmld2PA3taaRrUAzBiCJqGY3yoOdEnbm5ChRKRDMVoskZ/DhCe4r8aSsYfepZXnlpLxwvQ6JZbOXILeqmUR5jatcehr/7NFG7TdCVRmds0jGElolhu7hWCstOkVy6ge57bmRUJtjjii4M6jPjRJ5N0NXDtBKoxCaJFLbnIGtljIMj2Lk0gQVeM6FVSKNyadJGisXpEtPpCBxBJ+VgrljB7PRJ0osXE1rzUyx/dpalZor2dJlSGGNHTWbdALV8EfFcjSQwyZx1BoUz11KZmMSLbcJOEz+KwXDwuhcxsGSAmSOHMXSAoXwiM8Y5ezPX3vw2tDSYHR7CD9ooVxJkDBILTEMg0yZ0gVtNSCKFTuVx7SxCKZJWh5ShsPw2VVuiF/WSSw0gOpokiCBtssHowalLTn/4PzJ57ADZIGHVwHLmRiYhirnp/ndi9xaYOXaAMPDJeg52lOAbERgx1bDByNgIs9UptIyYO3kCufcwaaeLGJt3//vf4qLbbmXPyTGkl+Lyt70Nb/kKTgwP025Cce0Z9F21GRl0CF89CpUmelEXhUvOZ7bZAbdEZ24S4Th0koiuNStolGeQnoXMZTnzgvMJTJOg0mB6rsr0c98HbeD6Pm4UobSiLWO06RKpgHoc4GIigwQZaZQJy99yDbUo4uCru3AbHezmOMJvMHdwPzIMsVf2U/ebzO57FcpljMDHq0wRBR0opmm1Kux77RgFI0PodyhYMcJoIFWA8kq0YombLiJDA1yLc97/Xi56260c2HuADeduYvTFlwn3HSE/OI2cruIKi7ZqobMpuuoaay5gSXoxlXYL8h6bfun9TO7ajdQuixOTuT07MVSD4OQwTiaPcGxiaZHokK5zzmGu3eSKd97L6KEjtI0YSUApaNPQLTqzE8zu3ombS3Pzxz/CYGsc48ntRGoa6Tjc+v6PMDPqY5ebxI1pBDFBf5YNP/+LBLkiM3sPYEQOppln//Z9XH3vO9l40/XsP7iPse17IFb0XryJ9twMSXkOW0dkZULtwCBYDsQd7DNPx15VIIjr5I7OUf3BK8RhDRoVlhgWnBynU5vilt/5AEdPDsFMGX90nHh6FmSbC++8gRcPvETcrqMbHTBDilLT6rRxYoXXiJj1DLxY07BDLBVgGoo4jNCpNC0lCGNN7CsKmRx+q4pCEqsEyzMI7AQ9VcYr+5RGK1R27SFb6qdRFHzgs59iz/Zt6GaCGeWxyWFhgfJRIqEdhyg7QyeJqXo+jmEjpIklHGxlomMfQ3Y4uvcHhK05OH01nUqFYjPGajUQGER9aXquvox6JkXX2tMofuwDtCc7OBMB3eUmLSMgTmpkAgmHTtKSFgibvJSYaZsgjomrFUh8Rp/ZzuRzO/CtiGD1Is667komR4cJheB3fuM3MZJ//IBGGwpjYZq0wAI/U3zta197XTvbvffe+0Yv88fiy1/+MkEQ8OCDD/KNb3yD66677ifyHnfBzvZm5HUGSD9N7/oPB0ilUomdO3fy2c9+lq1bt/LQQw8xNDTE1q1b+dznPrdgZ1vgpx6hgUYN0tCxAxCQvPgq5FOsf8tVxF05UpFJVjssjR0yGrBNkDG9y5ZTtWI23n0TdKWh5IFtgFY045AKioYFKAWGQQcJJkwNH4fOqYazmVlI2TQIsNIOzJVZ2dfPussuJqw3cJVJy4aqJwhTHqTyaGAOUJYFUiP9GBMTC4tWtcmRvQfm82+UgcBBZjzajiBOucx0GtBXAs+Crjy+ToiVxJEGee1QH52iMjoFpofAwEQQyYjS4l423nETnHsaOJKpk+PU9g2BbyBCja8VlTjCNlz8F3dj2Zoka7BsST9UfOaeeQl8gzhMqCM5KX0YG4b+Pqx8AU8LXASGaYKhaTpAXzcYCXv2vYayQEUd8EOOv/QytEP0vkOgJKQNzP48a85ZB35Ap9zCn2nSnaQoNDTZOUkqMUlh4oQSM0hIYaImpjg5coKl69fRjAPqHujFRTbfeBVtIpTfoHfZACQxrVaLtO2SNyyiukKtWkFQ7KJHFqBp0LlwHeaNl4JIARmc1Su55tqrIJsmTkIS20BFLWg2GDx6BNIWgSUwckWwHNaddxnkehB2lnyuG2G45NesJRYmptQ4ygAtmDh6nL07XkZ3QmxtYCkwEo2sNHGxWLJ0gI5MsDwbtEUqFnincrxsaUAbHMejd9lS6CnRSGJCrRGei29qRDpNNpvF6++nMTNJJpMjmy9BK2TOb1KhzcmhIVZefTH1k8c4fHg3mCH0lxicHufciy+Yz93xTNrtiEhJMM15dc1sBSOMsRRk02mi2VlwDDpJFXochsZGGT48SPLCa6ixWZ78xt+w6++fBAcoZqkcP87RP/0r6t9+Dsd1wYg575ZrSS/rp3TBRoLER3sZ/FQaTIfe09ex6Y57oW8Zt7/3F/Bth2q5wqJrrpjPNlrcBQUPH0mgEkIShDDn83wM0K4gFjamcHBMCxRMD49ycO9rEIeEfgdLZIiwCUtFyNpsuuFGaqGExMVqWpR8j66KJJ3Y0IxgzSrEaQO0+zKEKWhrRc7JkbJcGlEdFmfwHAv8AHqKdPd2EdXqOKHkhVdeQJcn6bRrRLUGXWaKKAxhVT9KdhCZNDFQ6bTmlWMDfeS6C7C4DxyD0BEEpsbXErIerZSJ6GgyygbLpBK0WbF2PXltQ61BKCSxUohsBvwQmj4EEs91GT9wmM7OvUSzVWhK6CjGDh1lamyYmp3Qti1CE0QI0zv2MPS97cTEaEuT6AhqFaq1OV55ZQfOmpVwYgR6exlYsghhO8D/IG6JEohi0HD6ilUMLF2Omy8hwpDu4JRyybaYsROSQgaEoD9TIGd60GhBrQG+D0nC8N79MD6BIfX8/0UQJBLLcjC9FC3LAmEiUy7KMIilxrE9TNtCpmwKqwZAJBjpFDguSaLnWzkHSigEjhTkQ4N0JBDZDB1hUm1UoNHGa8Q4bYlIFFJqEhR+HKPFfCaapcCTBq6wMdU/fGGUQqGFRgiB1pp2swOGw+lnng1uCl3I0ULhZLOgBMd2vEx9bJS4UcVv1gnrc/h+E41AmfPpkG9mAAAgAElEQVTNAompSIRGGfOKLyVMOlEMcYydy5JyPSZHRgANfsg1l1/J2WvPhFhinsplM03+Scv4Agss8LPDmykT6aGHHuKpp55i69atb/RS/ll+isYJC/zYvIkykXbt2sW2bdvYunUr55133v+y/6GHHqJUKvHNb37zDVjdAgv8n8NAsfmG6+DyDXDxaWy++zZoGuAY7M1EyKImU/dptZrMqDop24JWGyyT2UN7kEJz+NB+KLpsef9d0JuHdhOEpOpBx5GQz0GtTfa0pVx2/90c/uOHcdptrj3nPK5efx6oJlHapqKa0Ax49o//jIf/9GEwLWQjJuwu0hQJ7rrTML0MsWHD2n50Kg2hAdIkxCJGsKhvKaPffRYiiJIEKVK0XYsZ2WEyA2Hc4OKbr6Vv0zruf/+7oGATegILh1TokA08cpEH0kLK+RsX14bq6DH2HNrBDR+5B87qQTeqZA6cpLtioVoJ9UKOZj6HGwCPPc3Jr32Bv/uvn2H3Zz4H1QRjeALbyZCEMa888zyXv/026M5z94d+iWR8Etu0cLHQQQxJjDHQxTs/9gBbfvF9UPCYnZsg01XACEM4Okqq2iEfSHqVAXHC8Muv8PL3XwRlIiKTtMiRtUokgcCM07QiiSVNColNLtBQb0ArYO7zX6K7UITTFlPNKpSq03XhOvAUrOjnjvf+HH2nrUYJAxMD00kTS4+lyzay5eo7mFMOLF7OOb/8YXYvycItb4HsMqJjg0yPj5BGE/oNLr7resiaoGI8qWm2KtR1wFgErLuA1WdeyNvu/zCJSnNi+24aU3U2nHsRnSDEUSZOMj/kE7UW04eP0ZybQ/sRZpCQlRbJvlEe/Yu/5Jm/eRTOWEEr7RILl4LvUvJdTOXgxh7d7RzlUDNdm+Pmjz1AZtUyVChRhgnLFjGjAlqNNudfeimr33ojnSiCdkwqnWNStYhyaaa+9SgjX/8qnHsGl773PjIbz4ZqleGntvHVP/4MVAOshmRloYQvFEg9n/elHKLJCuFclTiMQM+nwaduuYJz3ncX27/4X9j2538CpSJ2y6fb8cAQrLhsCxv+4EMUf/0e8DK4tYSoUoNSnhcf+w76yBiZ0Spojwv+8JO85eH/zLkPPEg91ctrR8YhMnn0819geHAY69yNLLl0IywvcutHP0L3+Rsgl6YjQAqHQBgoU0BfP6QzNIUgNq15b1wgqR8ZRI4OASF20aOVzUM2B2euhcXLmBlvw0gTq+LihR5ps4d+o4el6X5M5bL2kstYsWkDN77/XVhnr6Wddqhn0pSTCG/LetZ/5B504NOjBL/+8B/wvc//BY/+yWdY1FHQnptPz88qmmaLqqwjMg53/savQCpHx3QICnnUQIn+Ky7g1vvvZXhsBDIuZ1y9haolCfMumggcjXvBudCRpJoKpEFhySJSjZDHP/1XUOxh4Pab0IUuRgXgZSg0oRg71MfHeeXP/j84MEZfmLCqYWNONtnznadgSZGkz4ZlOeLeHGq6Qevx7Tj7honNAEkbhA8pye7/9pcMPfp13nrrTdDfx7XXX8v+V15FVarkvTQZJ00niDBtF2wX3DT1iSkO7NxJODNLHzZLlYlHGoQg7PWoGQF0Ffni73+K5qv76bIzFBKDbNPH6viMvfQyYOC2fTwJ3SJFkAj8VkDT96l6CgyTuqHQRgrcLCqShO2ISPtc9r676LphC9fdfQf1WgeyBVbcdjtn3nMnQpukI5vejoMX20y1atzy4ANwzhmgXT7zwd/GHKnRbWeJLJOOa9FwDNqGRguLgp3FChWeFLiJwNQCacwHfYeGmm9fNE10kJAvLmZssgnZbqbCNnFPL3UlydYDcoMnaH3/aYZ+8ASpdhXCBugWbSMiDCIwFIkpCe0EjBAlImaCNmEUguMQa4XfbpPP5ukp9YDU+NOzvLbtWaj75LVF0g7+IYTtFKciwRdYYIGfIX7ah0jbtm3DMAyMU82uP/z9n9t+nLiXf0sW7GxvQj7+N7xuO9t/uvuNW9+/hIMHD/LlL3+ZL33pS/+klC+VSrFr1y4mJyff0JrDBRb416C15hOf+ARaa0zXYS4OWHTxZuL+Li4+ZxODj38f1WURrV6K3v0q+bqF3rKR6ILVVIeOs9hI05EC523XEj6xA/W9XdjC4PjccRxpIevz1djGuaeBVFDvkLZymF15igP9nNy5i2JHozodFi3pY/DFZ0lsiygO6MvkaU/NkFp/NknLJ5krgzCh1Ms7f+GXeXX3AQbWr2X5TRczu30Xl739Hs686CIO7NyN1Ca1dgvOXsuKTZsoHx7BymXwHUnx7LO5733v4bXD+xkfH0HJGBV0qFXKhJ02vmkhlQnCJBAQiQTb81DNJpYwaDVmoFVnZmqS6Mh+zHQRUa4Sy4j8+efQqc2CZRNXO2Rli0honHZMerRC1jCJ0iY3fPQXOLZzD7mpNsdn54iaLdacdgZKwtGDh9GOhRICYTi4sWDm1KBh5pWdOBmPvlwG3axjBTFmGLGomMVoRxTNLLLaQUcJSawxs3nIZiknAflLLqTeVyTOCKJ6nYLhkXc8zFgSmQaxgulDR7CKPbz3A+/ltaGjHPn7pwAT6k12bX+e9sQkOvDno2oW9xF056nvHSQYqWBev5kLf+E+XvjMZ6EW4qxajnzxVcgbzBw6hlGpkU2ncc5ayuzICCYOcraCLOTAcyBb5NI73872J7+P6ESUjx8n35XH0ZIjh3YjMhZWrBGWhUgUljAwDY2dcedVcyhMJTATmzhtw0AXl/zqzzO+azcyMSh2TExl0nQF0rCIfUgWd8OaRXDxBqaffxVmG6SLJe584EMcOTJElxQcnhhl6WWXUDk4Qliv0VfIccZVF7Hpyi0M7jkKrSaMzxCcrLDcLjI9WwfDhqbP6nwP6SAmDFu00g7EGhEmuJHCRpOx01SDNpe+/W1cc+99VA8Mc/jx73Lrg7/OZfe+nSMnjhGeGCHo+OSFTdGXhFevZ/GmdUw+9ixezSdOCZAxi6wCU/uOoNsRgfKZcEyOPv4dprFo7N0Pw8OgFNe9+10MDx1CDR5m8qUdDFxwPvWJCaoTk8SDx0hnC8RS0n/W6Sy7aDOzQ0OQznLtO+5naN9BkjigO5WlU6vQtaibOAkxu3OsfvstVGpz3LX1gxz83k7i5w+wuCHIYTFrhTSW5JC9WU60GmgdU+5IKnuHGNz2A9RUmf5NZ1EteUBErq+bE3t2YhyboBuTbXtfRs1M42bzBJVZYhJKrZhANmFRGpnOI3XC9NAE4niDtkzg/FVEtRoDK5ejkBz89rc5/9obuHTjuRx69VXCOICMi7FyJda6swleO042lSV9zlo6ccDYt55AZAr0bV7PpBmjhidgTR/Lzjyb1v6jZO0UzaUFqFSgEpCVmpSZwi4UCU3N7R96N4cqJzF6itDwoRJghiGWjFGZGDOWmFIikwRkAo5Fpdmgdew4ixctYWTfXqwgQrR9dKJIpdK00fOKw0TRmJgEvwkKsr5DTExNKqRlctcvfZiDL7wCrQDdiUBG5A2bJG6SNyxMWxOGLfJZD+XHpC3QQUJgOWCnsU5bzYr7b6c2OAHLF2E2QoJ2h1yiWdzfQzlro5b1MVepMvHqIDQlqq+HejHH3OARsicamFqQGIK5tIXYuJZVF23Gt2yauw6Cl6NHRkw3W6TXr6Nn3Vqak8PEnoUfRyAFpp0mk+8iCkM0GmXMq4WwDOIgwjItdGwg7AwdIw21KrmbrsYfOopKJJlOm/5A0VYBSdJi2VlnMn3oKNSqWElIOmcjVYKpDUwNthIIbZBoxX2//CGkYzM3PkYxnSes10FK3GyKodf2Mjs2hSkccsLmt371NzAM8SPLOAZoQ2MsGNoWWOBnikceeeR1h0j33XffG73Mf5ZUKsWWLVu47rrrCIKALVu2vO72Twks/m/xU6RJWeDH5k2oL6tWq/+qfQss8NNEMDxE59hyfL/O8VQ/iYzJr9zMDZdew19/4RHaSNZcuBF/ZY6jTz1HTjtMNuvcfPutPPqVbSzDphzGhKPDWPmVRH6AEIJ1G85hf3MHTDRxXIPKiTH2mgpMi4QO9elJ9mz7PjgmdAJAE3R8yGRZP7CSnXsO4pbyhM0WpDSuMkFLTtZmWe6thWKJzVsuxU15PPXF/0YYSIxCngu3XEaxu4vRR7+HbWhQBo7jzNt0Qh+CFn6nye6jx8BxwHXAtYgch6jRJkZD2kNZLhEJZiLAtWG8SrO8EyyQzTLpTA9WNs+ii89jrjwGoYFtJmTchJYfEEcBRTK0hEIaiiVnnYZWimxsMfHKAVjWxbc/81/w+npxl/bSqtZJaQtH2uhmyNizzzOmJOQLGK0mYyNjdKVtomTeidJKIpQpKYQKK5aYWhBlcySdgEQlkLJZe+UlTDcbjA++Rlgu4zfnrWwRIUbbINVVwJcmSbXK3h/sgIk5EB7kuyAsI3p7EW6GpFomjgOy+RQrbr2V0WdeovnKCTJRBLU6jE6AmcFZNkC0bhWcOIAjNa6wMZTmwDPPQqNJMbMInzqetglqDRjoZt3KFbww9lX2HT5CxhGoZo25uRbkFMpIiOwUDgIZJ8gkJtISJeabHAwtydk26dChk05BKYfv2eCaYCoSITC0IhGQCAGmAUEbKh2Wn3U6x8plMqks7Yk5dj6/A9d08FttKLrsO7AfOm0sYTMzNcmmpTdxxQ1X8+1vPQ2dGMMwqB4bwbfL2KZJHMeAwUR1mjSagkijjJiU4yAiiYdJpCK8VAriDvVKlcrISYwTM3CyTOvkNEYcYTkm5FNklUvcaDM1OET4/GsMzz2J1ZHkUx46C34c05iaxnTT1Dplln7k3Yy3EzjrLD7wjnfwuf/wCay+Pq66cgu9jgnTk6AlFPs5+f0XWbR6GZ3xmfkcs0Rj2S6r168j7i3NH++L+zl/y2U888jX0b6g1WlQsBxa5TJJInnXr9/Hyx0fypMc3PECnBhnCTlcrRiLqpAzEStL9C5ezvSzz0ErhPIcjlcimizjDPSxcvkqpkf2gRB0ZiowcoL+VAnD7xCPT4PURFE0r/AwLRZhUjV86CnQ7SyivO8wtaMn6Ekk5sAi+q++msltP2Dwib8HU0BvL1ltsOuFF2jPlrEyAkOBazm0jh4DQ+JbGrPcoDp3Enp6sByX6ZlJGJ6bP16WLqGrdxllNLabAmJIeXQ5aZJ6mxnpo+00ceCjgw6cnCC9cjltpaGYJ6qGuJ6JlJqs7WJpgacsqhZQrzFzbAg8jxcemQ9gt900KdtFxglRLDFTJonWIBXCclDG/NRikoAiLpZngetitkIQNsh4fkB1yq5lIoh1jGk6KAWdIEAIwBKkY5eqAWhF0qhTVTF2vkB+6QDxRINGvYEvO5SUgFaToR0vw4lpopMxOadEPFODQ8fAn8VWIA2DliuIPcFpZ53Jjh07qDc60F1i3QWXMv34X2Nk06y7/GKKy5YxceBlsAxIEhLDIJXLkSqVqLQrKATKmE/4toSJlAHKNpBa0/FD1pyziaH9EZdcfy1PPvkEFAqY7TaGiiimBFWh2PPUMzA9DSpGa0lQj3Ay1qlmToEt50PoAw3LVq1k7+GD4Af4liDjeniOzWyzgZPNYOJiYWBIhWGZECtw/+GLr2AhX3uBBX7W+ElXGr0eq1ev/lFB1A9zgH/SC6MWlEhvQj7+t7y+EunON259/1I+/elPUyqVuO666/6XfdVqlY997GNs2bKF22677Q1Y3QIL/OuI4xjLsvjUpz6FlBJlGWjXJtwzivY7TDTKoE30iQr5esjY8XEiDKbbdcIkJFVr0p4sY2dzTNsGViyIpiao04acizxZpU94RGHM0g3rmdi9D7SNaMXEWpFUKji2h+pE2J7L3MgJ5Jkrufnm2zi27zBRLPHSGerHTtK/agmVE8foMou4DcXuQ8cpXbYRryvF4HefgEbAnsoUR6ZP0p6cBNMGHXPxnTczPjdFe2aWVqUMqTSlXJbq7Cwzx4/juSmMWKOqTXBcznzbW1j7jlvYeNF5HPrBduguQtrkoutvYGTnPlwsunq7yFdbFANNHQGOS9OCetZi83vu5PRLLuPokeM4J8s4+PgpgU45ZCKbmmWAKXn1wD6YmaLTDEmlS4hGPF89PT2BLLlo1yZVk5QiEy/WpL08pmEjOj6u0BRSDq6wiA2Fn3Vp6oi2Y6AzaapCklqxiJ7Vyzj7vPMZm5oCLZmVMW7G5bzbb2B4eJjg5BShiigWCoggwm5FGL4mrtWoHRgm3YhQrYS8nca0Uqw/4wwuOG8TJ8ZGERZ0Ep9K0mLT/TczuuMl2q/sId43SHPkJBuSFOMTQ5x2xbkUUhlmdh/CFiaG4+C3m4CN5aQJai0yZgZpWaj2LJOjx2k1atAqgyUpqYSsjskWHTbedCWzQUK7UiVjO0glMdIWxqIiSofg+wg3Q6fTpv+iddzy/vt5+tMPs/j6m7n66msZ23OIWtgiThvgCAauv4FrPvIBjrgK35S0nj9AodIh7bicHD+BqjbxtCJMEih2wcwcyvOwghYHj+7nqeeexSz72DIkbQpUovBljOrNQ9SGVYtJLI2vEpJijijysSONNV9IRRuFjyLJOMyOjTO85xDh2BgZPE4MHuH4K6/S3ncIW5uIKAQTQheil4bJHa2xpK3xCh7TtWkspXGkgTx7BalbLkJfeRb+Xz8FkyfY9cTfwdRJ1NQY1ZEhhl55gajZxJQxqabG6yiiyVnMagurHSIkBEHIieocJ/fvAmVBOsf2p7dBswVC4CQSR0m0pYml5tjJYU5+7znwY2Z3HyBn2kSyjchaTCVNsptWk+8rMjI4CInkmo/8Isf37OG2u+/m6OFBknqTk0ePwVwVGiFqqsoSUSRptWgRE8egMx7EPnc9+AB+tUV7YoqmY3HDffcxvv8owcQMTiQwlaIehvQOLGJy1y6MBFAaOgkjew4xOzRK2jCxVYIZJrSqLW77+CcY/P6zhCQEx45jRxKzlCauTHHPg7/JgW3f44yrrqQ9UOTk9u3Ek01ExuPtv/Mr7P3B9/D6+ml3OrSKacK0CUmLwy+9AIZFXO2w9cHfZdehvSgn4Jp33MHRl18j9jV2DG6iMOIIwxAk9SZGw8fEQJsGZhwjEgNtmITCoHv5UlpRCDImb3to20O226hzVtFpl1HagUaAPzZHZWYOtDE/QBvoQqn5gYc2EpoqQDsG0tRIYZAog6xM0TAV5NPc9GsfYf93HuXy86/izHVncvjZFzAcg0xi0Ww1CVwL6k3AIk8KI0gISyVoNrnlV3+DqSefoWWD321AX5YrbriZ4/uPELz4Kr/15S+QXtHPS49+C3vZMhrLBzg0MghdOU5fs4bK6Ch2oUS90+beX/0V9h44gN9sUMimidptbDRxIjHcFPpUPtdN776fwurlHDh2hM7oKHRCMiqFKWM6OiHSYLViZK0BnkvWS2H6AXGkKBa6CDoh+UigYonfVWL7008xOz4GtoWlDBwpkUmEsOYPJUsa6FjiWhYfffA35odfBj96gGoYmoUx0gIL/Gzxla985XWVSD/3cz8drVKf+9zn+OQnP8lP+ohmYYj0JuTjj/H67Wy3v3Hr+5dQKpXYvn07jz/+ONdddx1Lliz50b5qtcoHP/hBdu3axUMPPfQTV324wAKvhxCChx9+mCiKMIRAdTqsIk/VMuk9fyPnXn8N43/3PMHhMXzTQPd5MFRmyXCdeHyStmcQaEn7wAgXvOsOjtQGoVGHdkTJsEmiGMNxGRkahTiGdIY46NCdLxLV23iOQ0cEtGVCOrGISik2LDuDw6/th94iScoiHJ+jPnUCSh5+pUkqV6RRr3HNe+5m85lr2fPIV3GcHOHsSfxSDj15EkKJYQoOHtnL1L5dRNUGQkmWZApoIcllPaZGjpE0OthWGumlMVafRvfmdQSeZPbQUcqHhiFJoLvIkrPWM31kBMMwUYYgHRqY2sQyU3TQkBJgSgZ3vkaXk6c8eBzKdVLEND0bchZtw4FSAS+VwxqaJckI8hvO4oz1GykPj+NZJkkmxS9/6g946bHH6TLzxH5ETRho38eKI4RjkJAQxxKVQFsJVE8XOA6XfvRXGNz1A8iZ3P97/55n//LzNBoB4fFR+jJF6nv20zgyxHDUglf20LVoMZZnMVGfxjYMMtrE0CaLr7oMxmfIRgrLdmn5PkGzxdTRQVq+T61WQciIpNNBn5hgqjYNSpJpRRRizWrtMRiXSUSF+kSF/sCmYSjyp69mtjIHZgYyWaJahc133MXEriMUhENH1TEqLaRnoR2NsjRp5dBp1wmThIpr4HUtpl2ukQ4STJ0Q6BBZ9Lj1XfczWW9itRSKiNr4MYYnTmIuXkrtie8xV2vjApEMiYMmpF2anTZHDh6GQwdpzZUZmA0x6nWypTzVdh07kijXIGklXP6en4d1a6jPnMSutbFMgyQMcSODULWJHI3MpyFtc8NvfpiLfv4+vDOXs/qCc2lmHBrHBiHWeMm8xSUyDaJShsQBIp9czyKCmTKprgLNxEfW65j1FgNGioKfkJgS//9n783D5CjPe+273tp7nZ6eTRqNltG+skgChNgMCGNjjI0NdoxwvGDwGm85FnZyjr/4OFck4sTOgmOIEye2Qmx0vNssQiwSEhKSBu0SSMOMNBqNZu29a1/OHw0kGPIR5zi2Q+a+rrpG0/Wouqeruut9n/f3ex41wk9HaIGJqWgMKw4TXpFsOk3Ci9BDgdKUZnpXFycfeQyOn4RaDcWpE9kVstkEceQRWxZ53SArVGJXEIchoVXHQCIpKXiBTywpRKYOU9ppXXQOl666hOef2g4JDTIpsG1MIah7HpIpcMtVkkYLCcnAr7u4CYHdplEyPVBD8FWqu49AyWfJ6otpzufoLQ+hTs0xvGsHBA4ZYZBxJbKKgaIZ1IplZCNFnEzjZkxi36J55UpUM8nhnTuoZjQouUzsf57S2DjoGkZThopwwXPw9/chexZS6KOEYEQKCdRGEo8QJQItCnGEQjGVpb63B4hIBi5JHWrVAjRniP2IC69cw4KF89i74wkYGoFQxvZ9SJqMVItc+6EPcnjXPtSli7ni+mvoP3YIRZGI3IjLrnkLT/YcwTq8j+TCabR0TWHg6BmMfBtEAkPIhL6DRIQgRIsjlCgmFj4iBhHLhJLAUWQ+/oV19PYepzY2Ruw5+E4Ahs477vwEx7ZuI65FSLHEeKVMamYXnuOAbrD4TVdx9sBBQk0j8F0CmYaKSZIhViDWkMMQO6XRce3lqC1ZhvYf5tTO/Rzf2UNcqSCbCq4uEyYM5FDCcCLiUgUReEiGSkhMXK+TjmDs+aNEWQNfbzRSkBwYfHofiZYOHt+1jUM9e9BsB79Q4MKPf5QJBB3tU+j/yQNIQscvVaG5ib2n+/CHBiCbRiqXwfEQfogPjSLcrc0se8fbePQH93F6++NYZ4e54b0f4Ln+k1jFcUoiwo5D9GwKacJF62zHr5ZwfI+skafu+TiKiuO66JGKriapaqKReEuloFxBFQpqHCAREb2QdAsDUDUdRVf56Mc+RoyErL6sPxtIk0mkSSb578TGjRtfM4m0du3a3/TL/DcpFovs2LGDvr4+enp66Onp4ZJLLqGvr+/f3IrF4svmxb9uJu1sr0deZ2f1nnvuYcWKFaxYsYLbb7+d7u5uisUimzZtoq+vj3Xr1r2qSmmSSf4rEAQBYRii+jFqABU9hLLD2KOPMzYyBHKIFbhEVsTyr3yOnk9uoFAYoUnWKPoeetbALQRs/85GSIXopkFLwaUoe1gKqEYSKZCQps8kSgqY0Ur96GlyegLLD1n+sQ/Q8+MH8I6X4eRZnhh5GOoRLGnlg3f9T/7uxtuQJmxSuQzVZoG1qB0qPj/9oy+jNaXRCAjGx5hy6UW89W3v5J5n9pORZJxSkUgNCKwy+WyeyniJQNUYKZYZOv0siSmtqK5CpGdZtHwF6srz2H3fN8EfgxNjyJZKqJi0rp7ProOHwbJwzRRYJYIL51I+eQptqE5ONyk6AQQCpVZl79f/CS2pY6suE4pJuq5SFQJClRt/7yOkQsHjn/8Kp72AOKGgXDgPa8eTmHUfzQrZ9NV7IVCYsC08LcS8/hLKj/eQsFxqfhVUCUVXkWwZU8tQtRTIZDg9XIFYB0njmx//FFKulXJfH21NGfyzg+RNBfDQ5QyX3f4/+O6GL6E0maBBRYDmQ8m1SExtZiItyOoGriTwXI/stE4kGc48/zzZbBq/WCFrJimGOtLhMmGhirtoOsZ5S3lm82OIuYshqBPu7GNItfCWdTB/7Q34T+6huOUg7/n0Z9hRPsOC1Zdz5Mc7kT2PrJlCdRWqikFyxXnUTw8ysn+AXNMsKuVROFuFE2MQymQ8iSiO0YTK6KmzjSLEVZtwtIKrVNFTBuK5fuydhzBz7VQO92IZMq5TIy0E1SBk7V1f4Yef+gMUkaO8eTeakqasBVTDEiQFXsWDpI5WkejZvA37gm6ojuGJmGTVxpEgEDFm0sD2HBQ/IHACNv/Z3Q0RglOHWIW6h4oCUghAJIGtw5QVi+leupDTvScZ+Ok2OppbqRgRoWM3ugVKUHIiNCtCIkYPwHcjvJxKoVIG1QcjiTrh4PsediaJO3SWwt//gC49Qz0pY0cRnQvnsnjV+fz4nnsABSOTxxovY6BQlW1ImRDKyJqBN1GkNdkGhs6pap0bfv8DPHLvP/Dw5icgKXPl+26le2oX3/z053BlE11LY+NDUuH8T3yY/T/Zgrq/D9dyWfrpD9GxbB6P/PN38X7eQ2dqFq5X4/ADD3Nszx6oT3Co5yDp9mlYhQrV2Ca/cB63f+TDfP5jH+MNX/gIO77zQ7yRCUhJtL7lrUxRTXb9w/chA1233sTEd7ZQKhRZ/dFbqReLPP/Tx6G5ocbJl2POBg6BKqGhoIQBUewRqzK+ADUGEQoiCZoyKfTWLuzTA1RUj3pkkQ417N7TnGIQCNYAACAASURBVBjfTN/CXkQUwaEjkE6jpZKEVYfDD2xn7u03crRWgarH1csu48Fv/R2UKgS+x5s+8mE6Zi9l2wN/Da1d1Hce5MneQdo/8FFGvv8jkl3NnDl6AF1rtIUPRYwUR8gxvFia2RcQI4hlwdf+5m+wT52AVJKgUEYSCrlcC3t+vAVqAhEqhCLGvH41mY42mosWAz/ZzsxFyzgifkYUq8hx472IJQgjBSVUUUKBLwcQBUxd0g26BKcnIFJpqXrEps6YUwddQsxbQLTnMO2yRj0ICJp1ynEBWcmhanB482bUJo2EAsFonQCHE2PbIQyxRga59vJ309vbS+9wEbFoPoXBUWpnJ1g8pYuBUoxq1/ESGsQS565Zw34dOPQsqUQSHJcWM8mxWgV0HebOot8rQrG/kQwbdDm9/zBMFGHedKgUYaKCJ2fJp0NGNAEJhcyq1Yw+vp+mWXNYdsXFbHviUawRC8sNoR6x5MpVKLrg4N69xOVK40y8UJMpFICqU/FsPBEip3TEC2dLetHNEjHpaZtkkv9mRFH02kG/xfT09LyiUPZrFc6++uqreeSRR/4zX9b/L6+zdMMkQMOy9jqiu7ubvXv3cscdd3Dvvfe+9Hgul+Oee+75rW+BOMkkr0YQBMiyTFtbG1EU4dTrJIWgLDxABtuDwQG0rk6s/kGQBXprE7Rlqbp1PN9DotGK2SWGsSqaBXknQg9jfDmEhI4f+qhCR00ncfIG8+Z28+z+XlJCQ9dMPF2AoaEbBm5aR7ZBlTR8VeaBnl2gRRgyCNuFfJJgaga1M41/4iRerYIug0JMYWCQfTuegrqDsGQMIuqlKghwi2WUGKLQRUnqBHaNhUsX0fPgdpSOFKnWFoZ8F0pFqI6TU1OAixV4LJjRzfS0Qc/2HhAS6vTpzHjjJRzcreGdPUDOlxqrzmFEBwr1OET4EbYm4WsyHXWFsCYRIzhZHKc1m21MYoVGVLE4XhoGJUDEgqZUmtKps+BG+HHD+tZ2+Xmcenw7rgIimyGKfAI3RsgqsjAaWYn8VKhFKMUIM6tSrfjIko2hq+iqRBkPTZexI4vgqV2MR2kMzQRJEMgQyhFW0FCKnep7FrUlQ2lkjNkLl3Di6d2Ua2UQUqPYeN0ihYwRyhi+il0JmBU3MaSlGM8l4KpFpOVWGKtQFqfxAQKb3ad6wVSJwoi+oWHk2a1s2vEYkm7g2y6hE6EKDSXTTOvsOdQTafJxO3bfIJi5RnFiRSERyShB49oL/QhMmZPP7AdPkEch2ZJj/OwEbc0GaiThTpRA03AsF3ybXLYJLxb07NxJS6zhFAtUvAhDiXDSJsXYhqYmsAMgREHQle+g2j2DIUNGNRNobr2RhFAkRN0hHUmI0CdQU9QrLxZKTqJW6iQRTNGT9MUu0DhdCCCpk25ppt12GVBUcHxst95I6mQVsG3KUoQEZFzQwwitDp4sY6WbkZMCaWCEvJlk0LexEhFICmCQ9TWqUUAQhMxZuhhLUSGRgFDCUTUkxSCSNJhiggGMjOCpEoamU6gXSMZ5cAM2//Cn2H0DoCmQy1K2amx7+ilQZWwvQJFkIt+H+TMY6cpTzZhkjSbcWonZHbM58NwAHedewPDmo5wp18jlFKhEJJCo2iGm0JGHi6QVlZJkY83IsrswAKrAn92B59kgBLzxcsxpHZzaexTZFYTTppJtbeW044Ip0Xnp+Zw5eBSl4pDonoplFfHUmCCOiYQgjiAkJoh8JEkmkIEIRNw4F8ePHqZjaAzVqiPaVJAD5HGPVgR+LBjvfRaEjGqm0bM5/LpP5AWkdJ1p07o4ZZXBzDD+3CkYLSOZKnHscbY4zs7ND4GsQN1FcSH2ZVoWLCC6dDViZJT6wAm8sEYsASKCWEDYcKLFLxRqDiVAkrBHhiGbQYQRiiIhqzrF8SKFvTVwQEXCNRTmvulSDj6zn6nZJJJp8vBDjwCCyAvImGnqVrlRCwiBEgqUSKZOlUyug5nzupEkmT1xo9tjkpCKF6GnVdzWNJ3nLOL0M0dR4xgFqMYOqDFhbJPSEpjJJEXdIvI9Whzw8SGjMVYdJzVrFlt/8gD26ARTm5oZKldJCJ2ls+czuPcQmhMieS5NzTlKiSTnnHcuR8/245WrBL2nUcOYwHIauRldI458quNnwVQwJAO37HBo715wXdRF8/ArJdhziPyUqdB/lq4lizjdF5PobKeiykydM5tZ5y5l2xOb8XQFKYwgCJg1cyYnB/uJ6vWX7pex9C8/A8emtbMLx7GwPR9TU5F43Q19J5lkkl+C/+o1kZYvX/5SQmjTpk3ce++9r5kgerWGU79OJu1sr0P+6CFe28523W/u9f0yvCjv6+7u5vbbb+eTn/wkV199NZ/85Cf5i7/4i99oVfpJJvl3E0a8MGsglsAFbEWhRsSJ0WF2Hz1K7LqkJI2aImB6O6y+CGbP5J2338ahfbugNMH443sxJgI8RSJc2ArViEBKgySRikKEFhFWHAQ5ytOmkl9+LnZhgkh4+E0hOVlmxrjPQGkcS/aQIofRYydI+AqSF+A6LpYUk5gxha5zlmCPlrFGywSuihtG4MjEY1VyXS3YgwOQ1QjDgCZXRXdDzhx5lvCFVXs5kYBYollL0xSbSL4PqqDm1sHQuPK22zj0dA9x3WHg0AEKe7aDFNB9+RVYsklpvEqYyTAwcIKzB3aAXwavSiqSSV2+kly2jWlPDlGMa9iJEKo+rV6dcnuGsl2k2Q6x9QSrP/p+jh3dTZA2OLt7Pyef3E1T4OOrdWqlQaJ5bVx84UWM79iLYtfxdAkvZ5DSNQIBXdOnMrr/GFFTnsUfeD/T11zD0JkhsBz00iiRHJBMqXR3T2P0wEHswCERq0wphliOR9iUoZaN8UKZXJQmDE1OHHsW2Q9Iqjp2uU4CBTWWQVbwi0UixyF1yQq8S5ahBCbeQBFkGX1mO25lgqamDKnlcxjKCsREFdtzsLpNrIREdvYiyk/tRZ05E290lDnvX8v43gOI5na6Zk+jcOQIp48coLBnN+GWg6R9gSO5qK0yFbtK6LuUnj+ONquT7LI5FAqDLLvpRkZ6B5j61t9h6hsu49l9O2jKZaiViqhKjKtLIAS5WkwdkA0VLwjQFBlZA8erQcqATIKyabD85hs50HuM8qlj1Kc0gSthVz0UJUfdjsj+zg1c+unb6Nv2FGrdY7j3ONWe/VB1CQ0d23JQFIOkZ1ORwGvNklu2GG/GdPxyGRQB7S1ElQKBLrCiGnbsI4KQgJAopVI7OUzvg9uJ9g5QS5mo11yIrRi0tM1l+eJVDJwpQtKEjIxLiK1oTAtSBC0drH7Pu0hfdRGDB44hj9kIPYvdFjdUOBJkxm1qzgTC8zl5vJcTew4R16Ap045TdBvnubmZK7+0jv6RMThdhLJFh5rA9utEfogcB3QWY0y3ghE4WF6Zs0f3MHH8KNQD1MCnOd9CzbIQXVMZHzwJhw/gjg+Sajc42LubUlbFNhSWzZxDbWiAsDpCIKJGC3UzRRBJzLz4MjxVo15zqB94jmf37IW0wtCPtjW6cTXJkMpT/ueHcE+NEocujBcZ3bYP04shkeDQrl2cfvYETkLhkhvfwckd+0hOnUUk+SSKFk2BihAJKi1JAlWiNdZJVB1qRkhoqhAmUU/2Mi+V52SpAM0tZNwcbYlOgrJNRZVIvuUGVnzgNopJk+qRQ5DS8CKHfEJnvGcf9tApRgv9zMrlcIbH6Ep1cuzwMeTZXeQvW0Ztfw/5mk8u0BlzXN6y9iae2vcM+BpIBgQRXHQujBXpipI4dRsvlSBOZgh9r2Gxata4/rbbee6xXah6giCTJLLLYNdJp0x0DTx8phgJhg/0Ut2+FwIXdaSXMKyD79BpC0bMgCAp0yRSxE6VXC6LcCxKocPYgQGOfu9RglQKls8m1kzcqo0exKx++3uY372II089SSWXpGrbpH2d1jhLvWiTSrcwqqu0XHoF5RMF0pGKq4YolkVC1ymlNYJkAiohsyKZpG9z+JEfM/r0E9TPHKc9qeC7FknTpHZ2hPLIKBdcdjGm7XDq8BG8lMFY5EBLmtXvvpHTJ3qR3RCOnoaaSxQ2auxhJnj7299KwS5TL4xw1RfW8cxjW3nPR34PX+gM7NlHVC6xYtkinnpkM7EEzugISkeaUCpQeWo//eNDNKcyxPUQxcxRrHp4nkHuQ+/GLlf4+J/8CU9s3coXP/0pcH20F4qcIzWsdpNutkkm+e/FP/7jP76mne23uYu3aZp0d3fT3d3Njh072LFjB9/+9rdfeuzVtt+klQ1el328JkH9d2z/RXhR3vdipfoXC2xPJo8m+VWyatUq8vk8W7dufcW+/v5+3vzmN5PP58nn8yxatIi77rrrl4/7hUUSGRAI9h08BHULNJW6HEAYkps2h6sWroSfbOd7d/0FjI4jJTSioSGakiZEIdp113LFZz5FGLrEaR3X96irAjutUtBkrnjH23nbjTfCaBFtrAB9Zyls20vvrv0g+Y3Va89FTFSIi2WcwIY4BrtKbfg0pcGzjD28hfNvWwudOW5c/0dQc5CtgImtO2jyJMR4nYVSjpgYy3eI4phIEXhpnYoc46gyRdvGliWMdBNWtU6qbRoEMg/c9yNwBRk3Iuf4ZOo2ODZ923eyePXFkMvQvnI52WwWKiUUL0B2Q/xyhaP/dD9FCQ4kbHwtAZ3NsGgKxXSWulWCKTmibDPJlnbi9izS5RfTdvkqqDvIVYtI8htdkdIm3vcf48kfPYynKDimSe6i8yARUCtWaC4LDv3Fd0FPcd6aq+g7fpLjzxzjnIuvxLVKJJICE5dK/3M8/fd/jxr5IPmEomGdyhhpysUai95+E0rnDCbsCM+tsfgNF+PiUg1cTEnF8AVKJEgEEU21CEouMxMtSFWHat/zaIkkiVye1W+7DpbM4WxKgVyGC668FMPUiDI6cy9axcUrL6X8jftYdf3bqP38AVIz5rB48WLwDbwfPE7v1++jfayONlqEUgVkh+jtS7nkT+7ArVZJ5ZJQLKCgcPWsBZz5+cNQLHDwZ9/n/PfeQnv3dGqBC/Pm0leuQkseXzEgEmA7KEqM4UvogYIcKcRSBFJEW3OWuFIFLyadbCbpy+RbOjBuegtX/a/PMOv9b8ebP4tRu4wxpxtVUtjyjb8hPa0TKxFCXof2Ji788O/CBQugXcPLBBSbzYb4p+YzNjDC6tWXQr6FBWvXcs0t7+atn7iD5gUzqEUeUiChIlAjFaIkBEC+meGuPJwzF3HxebBqCeOSy5ObfkKiBlPkNq674XdJz18EQcSZ0EaJZTb/4/d45m++DaWg8Tl2PfJzl3Pdez/KzDlLiYBK1qCeUbFljygBTMkhTW3hE3dvgNmt0JXGjyMYGsfUE7Rm8kzYFlFzM0UlQOqcwonaKMEL3xVaEIEDOGAGDQFTaaIEQuOqcy+GZ4ZgwkORQPVq0DsO393KgiNl+h7fSX10FI2IZkPHVF4QoXe0MmfJImJVRpcUhB+T8GIYLdJUrbP0wot500c/Tma4jsoLiRYVWtJ5zCBCRD5UKjA4DoOjTFt+DsIPwYfhkRFqxSqqmsVHoW4ojdplCcFErYJEhB/7EHpcduuNBE0p9tUGifMKaIKV772ZgbTMSFIiuXQeb3/rDRw9fISJ3Xshk+Hy97yHqYvm07PpR4zu6iFNhFIpUw89vGyWPlNAeyttRoLhhx4Hx8WWJfyEQnnrY3z7f30edu/kvHPPh1KNWW++npa58yAWFGpV2lqnEU9pIyyVG53WVAXmzeXQrh6QZZxalaayS8KOSXuChOMRRR6R77Dv4S1wpp/VX/g95AsXoNa8hrUqoVHGY9kHbkW58hJKgY8PVF0bWU3BzKmMP9tHNhDg1Vl62UXIHVkCPUaSYOt3f8D9f/o10DVC12okShMJhmpVzNndjGGRuWY1tpnGTzZRUgVVQ8bMpLAsCzybq977LtqWLWAYl3HfAuEjSR5RpYhdKWEIgVesYoQyJ7c+xYN/9y0OPfQYsqyhRCpksiA02lPNMDBKeKQXM6cTqA213Pw3X0v70kV8/2tfZeTHPyU5vZvDj24DReYbX/oyB759H37vSUxZ8OCmTQwdPkatb5B5b7gSyUgiPNDDmHQpwBkYIbYiCrUq5LJwznQmcipMn8JdX78bI51sqHH1Fwa1ccPOEv7C7ba/v/+le/KrsXXr1pfGAPl8nje/+c309/e/Iu6uu+76d8VNMskkv36iKHrN7b8Kt99++0sqpJ6enpft6+vr+028pFdlMon0euQ1VEi/yrN+7733cuedd3LnnXeyadOmX92BX2D58uXkcjk2bNjwKz/2JJNAY2C4a9cuEokEl19++cv2bd26lfnz5/Pggw9SrVYBePbZZ1m3bt3LBqQbN25k9uzZPPjggziO87K4VatWNYKkf/kheDGJBEOnToMXNCwXmmjUrnh+gJHd+xuTxudPgxuiEOOJmNAQoMpg2ZS9OkxrRUxtJZHKQc3BIyZIa+zfv5cdjz6KHstkgIQrkAJBzfMgnYTmhgw2DEPCMGwMuj0PuaMVdI2JnmegKYOU0kAEOFLYKOxLDJpO3siQjGVMVyISEr4mGjGEzF6ysNExJ/JRskksQiqejQIobghOQPFoLwkf9AC0kEYdkgiwLJ7a+jgoMlEU8e6bbkYKGrlvWYIwiGm/+DKmTJsGM/JIug5CZcrVqymn5IZfyQsoSS71QpHjR4/Rks1x6SWXgGmgqCqSLPA8r5H8yLWRcAROCMXAo3nxfFiwBCQZkclAqICmYQgJpVyl8uAW+nueQVZVrNgjkmIMTUXPNKGHAUoUNdQecowsy6ixRFYYtHZMQ27OQsZk2cUrIJPEl0ExTKBh7VFCgRKCHAhGDz/H+PY9UJjAk0OswVP0DQ401DGhw+m+AepDYziOgxuHDOw7wtHHtkMgOG/xUlBNpEKF/uPPQbXcuPCKFZJuhO43bCPogopw8OSYJj1BFAHJBJHj0b97P7IwoeZDx1T6Bvs5+dxhTm55FAaG6VqyjPOuWoMdgiKppPQEfmyjRI3uSUokkGKBiCHwfVRFJYFC9bl+DjzyBBNbd+KcHKC/7wR+k8HVH3gXZDSc4gjvuOJKqHlUjx1vnCPLAVmQyWRYuvI8ctdcDZkkKDHCgyY1QTg0wua/vgcmipzYf5gTR47yk2//Q+NzKwFqEklkMI08F62+inM++AGWfeQ2mD8NZs+iOdeKvqAbjBipsx3P8zh75BiPbvox1b4zoJvEqsrwqT5QJfSOqRD65Fo6UdJpJg4e5ud338PJ4ycYo9a4mJWGBRFJhuIEkRzjRz6MDIMsExdLUKtjVytU6jUqcUDNt0GXqAV1SAjqQsZHQCwQoUALJBQgKSdRjAREMY/89AEYLIAdocogezG5MEEuSvHsA9upnp0Aw8B1PaQwRA5DiEOSCZOJs4PUiwVEFCKI0CUJ3JCUkSWZSGAEUHl+AKEqQIjZ1Um9UiUQ4Etxw4LkB+AFBONFevfvb7TQqldBCMpEFAix8CFp0LnqAkJdxpclBBL4HkKXqTpVbICkSXrxAqKMRjm28ROC1tZmeh7bTOGJJ6BcBt1g4ZSpGH6IoRlk9ASapCJZEROuSxBYTL1iJUyM0v/UHjh6krxiUJN9ipLV+P4cG4WmLCsWzwcZ5NAnl0yD7yPkBKPVKmve/c5GAqnu0bpoEe1dXZzcuQuhNfx4qqwAAgkZw0wS0rDV4nmQTNGeyxP7IWEEkmaCZhCQYPW1b+ScCy4kjCN8BF4Q4BsK3asvAkVuqJ4SJv1HjlIYHMDzLYQaIjwbajVwHNoXzEdPJagENmE2xfQLz4NcgopVoXLwAHh1anYdFLnRtVARYBqkkylCYkqaRCVyQdOIw7CReXFD8GPqrkU6k21ct+NF8CNSsoYWxxgBUChzbNeehsVVNrDCAIiYetFKVl1zJZdfuwY8BySF+oFj9D24pZFsHB6CIESRBIHjARKiKQdCJZFrZf68JZg1iRIxvqpiIbCkCJqzkNZhxVIoVWFwiM62DuxSGYD6v7K9vRqXXXYZhUKB973vfa/Yd+utt3LFFVewa9cuABzH4cEHH2T27Nls3LjxZXHr1q17zbhJJpnkN8NrqZB+lXa3fz33fVHk8Kuku7ubq6++mjvvvJMVK1a84rlXrFjxW5FMkuL/6ibCSV6B9LnXjolfKaT4pejp6XmpM1oul6NYLAKNIl/333//r8yn2dfXx80330xPTw/d3d3cdNNNrxr3ot1tkkl+Gfr7+5k/fz4Azz33HLNmzXrZ/q6uLgYHB1m7di3f+c53Xvo/1113HceOHePTn/40f/7nf04+n6dYLLJ+/Xo+97nPvSJuw/r1fO5z6/7lwFJjzF4o1WibNg2CEJQYwjqmlETYAhUVXdKoxmWSZoKqX0JrSVEpVUFN8q6//DLf+9M/B9vhjZ/4NA9/Zj3yebPIzuygsPkJ6MjB8ChGPWKu0kxJhYJtYadSXPD5O1i8YDbffd+HiSKIJRkklUBV6V6ymKaWVnY/9DBkU5BPNZQGIkAXGdziBB1XnMfEE88g0jotVsRYHOKlGwkmKZPks59fx8GDB9m88T5QDQyhIhyXpiik6AQohommJFDtADWKiKUQS/Oo6I1aUcQaGE0gqySaTKSzfWihh+9LuCTwO9phbic3fvajPHjth1HOncEFn7qFRz/7v+msCcbcEl5KQJxm/lvXECU1SuMlxh7bBXWbFkOlHFfRlnRzzs2/w1O/fzdmSx7b8GBhO/PMGQB0nruQJ7/5PQK1AuOjSHoHqdDAqZdQkzaxbKFLOnEoE5d88lLEREJQMSV0V8OsC5KZHGeUCNqaIAyhMMy5N9/I/h/+BKpV0pqJVLdRURCSShTLJJNJBifGiFpSTL/2DQwcPMq5sxezvzbAnEsvoPdHP4AhF0lVies27XNmM/LcCZAUhKwR5VXAgONDsLgDxsssXLGcWr1A/Yl9RFJMyYjJSQmKwoF0kqbhCpWcSeS7oKVoqkuIUCByGbwVs9GWzGD8Bz8DKQ2nS8y+bg3t3dPoeeoJ3N3P0KzIKFgoYTMRCqEUESg+gQgaq4BuTJORwau5pIw0lgpjegWaNLhqNVQc2LwTcnmo1hGqTrJQIxlIOFFESZMhdGB2J+esOJezz/cxuv8oHYFMybUx0s2UJKmRHFMbsVI2RTw2Cul0o8i2mYRCBfQUzGqDhTOgI4vmJfGO9MP8Zt711hv4wR9uwD872pgIhxYkTKhZNNkxpXmdpJYtpNZ3mulNrVx/41vpGxzgwW9/q1FsuFxF0hMYY0VkWSZwI3QjRaRr+BI4NQtpSjtxuQxuBWSZrKrjWDauISF1d3LBmqt5+v98n87rrufM33+vMbmXAswgRA2hRU8z4dQoyzKkUxCFkG4Gu4pRGSERQB2TSE4xf/UlHN79OMgx+cjClAT1MKDo+0jZLLHtNKySSKh+gC4LcCMCWaPS2Yqum4iTJawUYMTMuPB8ig/soKJ5EEmkA4EsiUbdoLROtTyBoRhEToBn6OBGmB0dJOZ00r5yIecvW8bGz3+JbKVOFLtUhQTJHC2+j7CrjMYOtLeDozTqwuGBBsQqsqSiSAJ3dJRUrhmrWKI5laJWLpNOJIhdnfFpCWbc/CZOqTap46NYWw8yf6yKp0Q8n6lBIkm6LKj6Llq6mbldczgycAq8Gu//yz/hO1/5K7SzZawoZNH/dwfPfuGbNNvQdfNV7Bs6hnjyAFGzijRRIzYVUksWc80ll/KDu7+BpBrEjousmoReiJxMEToeGdmnIsWNlQPfgCvmQVcn/PNmiGU0DzxhcfWf3smOP/4WTFTxu5oJ/AKSGxMHdZKuT2xD65QuKiLkg7//e9zzd9+kOngGmvPMv+XdnKmXqQ2PwLYDXHrNW3jyuxshqpIz01iOjSsimNEN/cOQN8GzaFs0n9E9e9FCnZyvoikGpVhQleJG8sYtofkxerVGjI9QNUJdw3I9TJHAcR2iDg3MFB/9s7v5+UMPc7r3WaKnt5FRdTRbhlDG1WOCyCVhmFi1GkY6Q02o+EEAHV20LVqM23sG7eBuxlpUOtZcyfDEGOdfehknDxyjsGsnc9/9Lsae2Mec1SvZu2sHGdfm9J49pBW5kcyUAASh+Je62p/5zGf46le/ykUXXcTOnTtfdn/funUrV1xxBYlEggceeOClRaSNGze+ZHuJouhlcYcPH35pnPBinKIojUWJSSaZ5DfGLy4Cvxqv5jb4ZXjRHVMsFv9T574AGzZs4M4773xF8exNmzZx8803s3z5cvbu3fsre77/CJNKpNcjvwY72x133EFfXx/3338/hUKBOI5Zv349W7Zs4c477/x/f4IXeLHV4Yv/3rBhw6tu/xkqqEle/1x33XX4vs+Xv/zlVySQAAYHB1m4cOFLCSSAWbNm8fOf/xxofJn39/dTKBS48MILX0og/WLcD3/0w8aD8QtbBLIP9WIZNZbQEklwfJKRwLfrOJJLTXKoah4ePom0QZOmY4+WQVPJh4LvffoLcHYcTJMjzx1HQSOMk7zh+nejT2mHSkMNoczu5JDuUsyY1E2dSJM4unMvmzd+nyiIEUIQRCFe5BE4Ngu6u3nXDdc31Eoh0DtEq9IEvopWtkgkklz37nfiawFuVxNn5DpKNgm2h4gk4qFR/varf8XxZw6C7WPKGpHjEUtQV2IS6RTNmSxepU4goKZBVQdLbdSLUow0qTnz+fCG9ZBNYRXLyJEgcsD1Y3who475sPsEex/aSnuqhXigwKP/449pDpPgOkyRs6TUJlRD5blt2zjx0wcZ23cQEgYYGq6m4HshsdB43rNpfdNVeJkmULLcdvsXOP7Ybo7vPshwxSbICcAl2d7C1EhBL4+yYsoM0rqOHcbUXIfQD0ihIGKQ4wiEwNXBikJMTSfjSlCu0v2GS0kvO5f9/3gfRBFKMkXVquIogqomcMsUwAAAIABJREFUKJiCiZRgoDJBvmsaVCzWvPN62lcuov/YEZioIlUdGCqQL0E8PAYphcXXXkZLSztT1BSK54GhQ72CLkuoI1VS9ZD+XXtY+ZarKbQZlFp1yGmEVolpoUZb2SPd1koUO6jzZkLkEjs1sr5H2vKo7NpO6/Q8RDbS6DC4Ib5ukJozB3esgJluJmmmqMtQ0RTKmkrZUCjrMlVNUA8cMDUkScKUZLTAJ1GtQt0DEnC6wIfeeQvkW2F4FMnzkKoV1HyGYb9KaKoIKQRZYnpLKwc2/ZjRvQeh7jMiBzjNKUpeke7lS2hfvhSkCFSduFBGVxOoXoSxdA7v+bs/ZtVXPguKBc/30x1prJl9Dt4PHmLagZMYD/Ww7a6/wS+OQ1jllj+5k4s+/j7wLSAmq5gwUaL26HamPV9kYvsz3P2l/82DX/1L2uwEzScqZOsq8dgE511+Gd3zFyJCCTWWqJaKqKYOkUc8chZZM+hoa0NyLCzfQW/Jcs7qS7nqDW9EdmHhdW8jJVQwFEiqoGoEkkokqRR9n4pqgK5B5xS48mJWf+1zdL1rDY4qUyPEmz2FlZ99L6WLZ8HKuZx3x1pqQYRlWYgopiWTIhE4iMAhIUXEdp3mphSW3VDqlJWA2Ldwzg41lEUZjQs+8X5OlYeoxD4YMqgCL4rB9pAtF2tklJyZQvUDmjQVIg0SKZatXo2eTHDqwBE2/tXXoVrCFRKSHTFVbUYuBSSKFkbVYUZkoo2HCHSQNVQ3oNVymUpES+TgnT1DZ3uOoFYkCl0CKURJJXAVQSWXAkUwdeECzj9/BU2ahi5CVGh0XUuloVonDGzaFJVsuczpAz1QGoPYZ/N3v08wNo5Vq4Blc3THVjShIyLY97OfwuFj5GUVCGlvSaLPnomjCPb190G+hdgPQU+gKjpTW6YgVWskYglXS4AvQ0sH6ZXnQVOOi9/0ZujuBjkmiEJIm2z55rdQ6xZy6BKMjUHJI1msIcU+KQH5pgSV0giRVeErf/A/qQ4NQyoHskLx5Bnecv5q5GoEocwFS5ag6AYEMkokCG2frvZZpCsueD54IUrXTN50+TUQaqiRTDrbTMH1qGY0WDqT93/580yZP4eQgEhERESohornOyQ0FTUImZJuIi2ZcLbE1z/6ScbHx8m35iFtghTiuRWmZNOYcYBBhOTaqECtWkWSVT74qc+CE7Bw2UrKxQnG2pvh/C5Wv/0Grn7bjQwfOkFh+36QEhR6T6KcGGLvd+6HgUEq/SdRFJmQ+GWd2OQXfu3v7+drX/saqqpy3333veL+/qLC/Ytf/OLLJqBr167llltuIY5j7rrrrpfGtPfcc8/Lxglr167l2muvxff9V7W4TzLJJL8+fh12tptvvhmARx555KW577p169iyZcuv1DFTLBbZsGHDy4ptv8hNN93E+vXr6enpeVmzqd8Ek0qk1yHSF187Jv6j//jxe3p6WLFiBevWrWP9+vUv2/diB7XJy2qS33ZeXKFUVZX29namTZvGxz72MdauXQs0VhlvvfXWV13BBMjn8wCsW7eOdevWvUyt9K9JJpPous7Y2BiyJL+USIqDmKO9J1hyzjKQBbKmkqpXqBs6gRI3akBUSmCkoFonH2nUnRp+OkW2GlA0lcbnzFAgkaDFbmVcthHnLyN6/Ge0NaUYDV06334VC5av5NGv/i2MTHD+jTfyzE8fhmqVjCGw/QChq4RhjFAVgiCivb2dkZERJFXlje+8kcc2fp8oa9JUCagGNpw7E/vI8yBHEAlSbmM9IpJe+PNeGNALJIQkocQSgRxh6z56qCPFAj+SCQyFqFYAQ0VKKGRkHT1QGJdUms5dQWHPbohDzEoRVYJKGEL3bDg5Abks2TetovzANghsMAz00QpuVkJLJRAnR4mzCVzXRps5g1RLC4X+ASiX0RIGXqkEpg7N7cy4fS3FbQeo7DtG1xUXMf89b2LLB/+QVGTQ9ZXbOfaFz0LFp0OaglqHSApxcx7jUREpkMGRaFYySLJD1fdxTYHU0kaqEiGqHkZsMJKMkJbM5txkjn0PPUymKY1TryF0GUeROO+SSxkOAs4+vQtmLyaXylA8cQxMH4SCPh6zYNV59JdGqZwepftklb42DWXpTILjx5jXsZCBQ8/iJ1RCxQUEhtCIhossy0zjbL3EmRYFai40KSjzupjuC/rO9jUsIlUJpjbxkS/+IQP7jvH01/8ZLYhwFIVCzqflXW+k8rMn8E4WaWmawfiMVlpWnEcceUxs+jFYVdIdKaphCup1aGvmHWvfwff//E/BTCL5kPAEeiAjxxF1v4SjmSSb81SjFwyehVEwVbCr5BZ3U1Qg091NZctj0NIG5SLTL7uUFUvOYc/WnZx+ci9MTZBZNI/K889DxeGSt9zI+JmzPLvlCTJGgqBmkRIKo5ENM/RGcvRMFa0kQRyS6u6iUKmS9QVhKCEUhYpngRwz44JzKYUu5UMHGx3fhI7UkScuVemoKQxbZZiagJZW5GcGaEKlgE/uraux/Tp232kYrWHkclz7/luITY0f3/sNZpx/AcsXL+Oxr3+D0sQEcy5cydxFi9n9zEEmDh5rvBeKAnFE5/VXMmv2TLb/wz8hV2zUWMKJQlAlLrr9Q5x70UV846//GlIyPH8cTg2gySqe0QzZZqhVWfnh38Wulzly70ZMywUpwgtdkqZOGDbqd0mxhIgaKo56HBFLkL3iUuZPn8Pef3qAaTdcQiEjUes7Bj2nya1azjvXvJm//cKXSAuVarUEUkginUR2HbQQKnIWP20CAUgBuB44jVo+SiwRDE6Qy7UQpxOUhk7Qns1QLdSwmttYcfM72Lv1ETrSJsFzR/F9n1iKiBBEkkIEhKLRdTF+YT00lHRYeQ6cPgVpA/oH0SJBouoSygF+UsOTIXI9pjoKegjlKKCgxaCqIGsNW7GsQj1g9cb17H7vl8nbMLykBa3VRHpkJ25eJVWyIdNKLQQ0DWrVhiqsXmP6hSsZePopGv5cQM2i6BnmXv8GyjWbITNgaudUsv3jHNu9HeXkOFqrgSVC0mcqpEWaITMmHUNklak3QWstwlPAk4FYIZBUQkkhesFCp3VMI/YisGz8mkVuRgfFgZO0yBpxGIAUoQeCSBJYKlSISbe3EVoV/GoN04vREkmqcYQrArj+atrzeYpbtuKdHsIIfaLQJ9RkQqlhVTU9lYQPYWRRkQzCbBO3fOkPODt0isfu/TOo+aR0AxGr1CWJ0GtYvXUhCJAIJY2bP3gb93/rO9DcBrHHij/8EHu3PUTqYJVk0SUYHKFODPOmcvFXP8tjn/1yozPF6BiJzjYKzx3Fd2xSut54r2NBrWaTypgvKYmnTZsGwNKlS7n77rtfSgStWrWKXbt2vep49a677nrpvt7b2/uacRs2bHjZItIkk0zy62X16tWvGbNjx47/8PG3bNnCmjVrWL9+PevWrXvZvjVr1tDT00OhUPgPH//Vnuv+++//Nx04s2fPZvny5dx///2/kuf8jzCpRHo98p9cE+lfy/d+kRelfL9YCGySSX6beHGFEv4ve28ebldV3/+/1trjme+5Q+7NzURCQgwQCIQpTAEFZHBCpe2DQFttsWrrQFuJ/bXUqq1i+0VUrBVbrRbUgvwQUUEIQ0IgCRnJACSEzLk3dzj3zHvea33/OAl+qWitD4r1ua/n2U/OPXdlnfvcrOy913u/P+9Pp3zK8zzWrFnDtddey+WXXw7A0NAQAFdeeeUvNOfChQtf8X3XdRFCYBhHGhDHMUG9iTBF5wm02fHep0IgsBBWxy1TOG42zJ0FJJDP0khjkDY6FQgMdJgghQ1+QmnRyYx7NejrYdqUQYgBL4GGx6FKhb3NKgQdN8jrTpgPgY+BwPMCtNZHcpFiLFOiAp/h/ftQvo+0BMXZ/QTdDpH2CUlI0wT/4BCyFWPiUGgkOAmYCqz0J3/+v68N3dGbpGGgBKRKEQmF6Mox99I3gCPRgU+7WsdVGh3GTJ85oxNmi0ZaNkp2BLju+fOgnIeiw+uveivM7u4EL8uUuOjCyccw7eIlBCjSOAQp6S+VueKNl3XyRlRKpDS2beNg4kQwtmkLPX1FKEDc7+CbIUQt4sYE8Z79kO/CdjMEUhNlHXxLECcKUwmEtLCLJeacvphxA0QuD6nkrDPOILEkgVAInUAYoHfvYtfmrRSsDEaQYGmB0EAUEquURWecBoMDUCpy3NlndzqatXwYqyKjgP3P76Cx7xBUGmQwEabVuXHSUKlVCZKIVEWdLBOlyQx0Ew0WGS0YDKU+hpujR+QpUmBeeRqLTzq1E0brGOC60Grz3DNbGT50kNSWKNPAyFqgNePP7iInHWzbRhgahg8xvuIxTj1xATPPOh0sBzNbhq4izJkBlmDqrGM67iI64mIiO5tg34TytKkY0sQxHBhrdMQty8Fxshi5LL7vQ6q45PwLO7k0iYZ2wP7HnmDlD36MNzrRmTBNecNlb2TJO66EOGDVQz/m+a1bwDRIg6izflTKsWRg3IfhGmQLdLkuRcMmbreAJnVVoSV8lE4oChOrHVFdt536+u0dR17/AK//0/cwY+FxkLOpmjFMyXHun/0RZ1xxCW5fD5QK6GKWiT078fcegFaASE1oRgzv3sfTq56CiSr7Vq1m+V33EtY9sGx2D4/wwIqVVLY/B2YGJ5sHP6RcLHHi/OOwbRv8kDSOCQK/4wIyBXv27Ob7934PDo7CU9vh4BhYoIwUZ6yOvesQVBLW3fN9ti1fjk5TZKmIVewiV+yi0QoRuiMgoTsCQyokspABBWedcSYnn7EYZUlc06I7m+fs3/09yNhMO2Yews1CktA0BKKrC4p5vDgiUpoEgWNanfObY0GcQtOnq9ADseKcyy5Hdk+h2mhSixsw0IU/rQfPkfQtPJF0Zj8MlBk4YyFJ1iWWkIrOz6joCNUdwboT3q6EAldy/IknwugEHBhDCgspJS1L41sWKjVR2gLDQgsLrQw0YGUyEIRYpotRKlOefxwyl8Ootogjn9QSnHf++QweewypZUOQIIWkFQdA3HHdWBIsG1yXCy64oKMfmS6dk3uAEAKlFLZpwbMvMLRhK72lImRt8vksOgyh1iSLS7aQh2yGMNFksmUoljDsLKnoLHkQGEpiKAGmBYZJtP8A8aFDDGgTI4mpjo+BTsm6mY6oryV2qnAThaEVWduheWiYpNXGNQ0MS6KFIpPPgNScv/Q8Mq5NNDGBtAwSrYiUQgnNkYgulASExiTB1jEkimefXs8zq9d0zkEGtFWMJyEtFskdM4fjzjyL0LRINUDC89u2QBJBbRyiiPqTG+DZffgHh2hNVMiXygS2JAhbrFy/Dnqy4No4s+dQzOVpRxGum6HVanYaQwD5QoYbbriBgwcPAjAyMsLIyAgPPPAA8+fP/x9lGO3atesXHjvJJJO8dvy6MpFeqbHT4sWLX9obvxoczVn6WQISdGJcXs3P/GWYFJF+G/kVl7NddNFFaK1fUUQ6mpE02T1tkt9krrjiCrTWnHXWWSilqFQq7N69m+7ubh544IFfiTW95bXRcQxS4mRc/CRh16H9IBWnvvMtfOiTf0sNEztXgnaMrIVc/wd/0skFyReJB/oIbAsVScKuMjiCEhaEitcvPZ/SkgXMfdOFXHHFZRT6p0IoKOencMEZF/DiF77WyRiJJFvWrSZrKXIyxbZdMpkMSRCg0bQnJnBdC0dCybaIx8f5zldu62TRiBSdRmiVQKqxtMIOFWUcBD/phiP1yw+OfE8AuRiy2sCWBqKUI3UU8846BbpyECtyzQjv8BB4AZmcS/+FS6HcRWJIWpEPpRzN7jzn//F7YGKCe1evoHjZUnjdXKg3MYo5+s9axAmXLCVbKJD6PqY0ObB5C1vWroeJCbpPOxX8NrabxfAiotFRjHtXcmj1GgjGOPzkj3jyXe/DiGMyA1l23fpl3FaKZdjUciYjbsIEAam0yEUuKjIIhUXh7NPBEgSxwmgZzOybjh9UCc0AJSPyRzaJzbFhhNQkaUQu66KiGCfXxbZHHqMxUsEZmEkmP8Dehs/gH1yLc8JpENgUTZPq8H6coE1XGuO7KTaSneu3cOzJS6gcGsYouKBjpniajB+Slm2u+/at7Hc8dH+OEy+/lEo7oj3S5rn7H6e6dS+ioSF1MM1O+dHjt9/JpuVP0JYxo7pNI2phx4LsloPIlkDYLmOtwwgdQG2UJ+6/B2b0kDn3LKoHmtDTzYXv+2OOfePF3PbJTyN9hRlKsnFnDYSmwrc1h1o1uucew3Uf/hDFUxaROeF1UMoT+m20MAj2jVJomKz55//k2Mwg+T2jzMz2UhQutRf2U3luNxIDqm0e/vf/ZP33HgIvwfB8GKtgCQhVgsxmGCNlP1A2ppL1u2CojedkqDsWoWFx+h/+Pmfe+KfI3gLtdh2pYgqGScFPmBIIrMSG8TqP/su/cPAHKym/OE5fDDltMv7IOg7f/wT22BjFRkxfYMJoCOMejPock7i4Y1XWfuv/Z/jBx8gOzqYQGGR2j+J4KdLMosKI2actZv5b3gJowmoVWyiqh/fy4//zTzz6hdug5VEQElOkEHtc/8mbKAJDTzwFB2vMmIjoCU1QkEaKubkisxFMj9sM1kIYqWDNnkPL86kbknqrRbm/B93piY7GRGMRSZM0aFNKXZ6854d89bYvgVDsvO8h9v9wJbufWA9RwP6RCfZUGjA4FXSMthWFMxdhzpmFzuUJlKAVt3n92y/lD//y/RC2mSYzxJUKFIpMDPahChnO/OCfgmtzyruv4bw/vBaKXTSEzaYNG6Gvl83bn6VWqaNw0NoBbSC1wFACO+0E8zuJIpMo5l14IeH+IciXoNIk0/KRgU9iWySuS+RkoXcAd8nZqEwZT0ki00KbEoSARouLl17IlIFeTN9j5d98CnKSsbDC4eooDVuipk2BQGIaOehxOe+TNzDw5qWcc9MyjOOPg2KJnVt2UDLz9LQ1ZgyceQJxZYwdT6/l4nPOhh17YN0z7N64EYb2ItMQGXh0Gw6RUOxqjMDcqURTpzBeLMEpp1B3yyTCAmQngF8ZCG1CGLDkyivAha6cSbu2D2koiOuIWVPwpKbhSFpHjDoGCaGZkPhNCq6J7UgSEeGnbXy/hpmEICTVzdvY+9Bj0A7JpRoZxFgaBApeOjRaJHiANiMgYdO991NZvQER0hGwtEWSaAhCLvrgh3jDn7yvcyKwTTJZix2bnsZ1JbQrFNoN0v/4AeWtw6S6TtuocMaya6GkQSUkn/8OH7jp0xyzYCGXLL2Q8bExABQK27aJgoDID9n5/AvceuutCCG4+eabiaKIKIq4+eabSZKEd7/73a/69X2SSSZ5bflVl7P9vL3v3Xff/armIc2ZMwf4+YaMo7lMryWTItJvI8YvcPwKuPnmm1m+fPlkwPUkv/E899xzdHd3v6xMbfbs2axfvx4hBF/84hdf9c+UUr70JCRKEzZt3cKW55+FgT6GvTrr9+3CmnsMx8yei5vm8Tfs4asf/DswSzAywTv/6i9gRh8YNv2LT8VacipxHJPD4t7vf5fj33Yhu+77Nv/y8b+mmfrYTg47lDz+pTuhbjFvTDGtmrLtoQfxvBbaSpEImrUG/TOm09vXg1sqQBJjGxIRx/RlclijPoMtDcN1isogb9icfumF6Kk9eKbH/hI0HAjNzhEZnfiP2Oi8jozO+6mAnJdieTG6FaDTlHPfeSUPfOdOAErCZbrIMY0uunNF1j74ICNjI0xdMB/pulAqMvPcJeRmTWPlzf9M/4yFXHbOBTTueYBFPXPAKJEemGDkWz/iB5+4lWw7Aa3JSBPLtnlm1RMwOJVzLjgfBgcQQmLbNnZeUhQxvPACGU9jjkScLHs5xvNQhw/Rd/ZCgmYDpQ3mXHg2U998MXS5eJFC+hrLyYGU7DFTuPQNYNn0miXu/ua3IedAySVSPqU4ZEoYYeYcGiIisqEeepiGQHgR5Z5BnvzG3YRPPYO/aRexZzK0f4jZbjen9M3Gr9exMgYqCbBNxQHRJByrMbxhOy8uX005m8N1XXAdCs0W2XZI48Xn+eb7b8KpCvAtZp9+GhzTy7SrL4eLzmL5xvWACbFG+gmlRkJ/6pJrhUjLxCxlEKZgSitl6niMX4lITBerL08xatEdBwT7XqA0fxbv/Mj7YfA43vKRP+ex7/+AFx99HGo+060CpQDyUacLHxwp8snYjOzbzS3f+Cre8TMwl57C666/luLFS5HSoAub5v5DTIxVGB0fwyjn2V8bpRFNULxwEVff/mlmvfstCLIY2w5SPthkilHAqNQoShMdR5B1aIuUdKBI/KYzqAaC0DNA52lJSTxtJlFdse7ux1h754NMDW0KQlCzUibchENFTVJyMVoebsWnWHGYYWQpdRc4GI3TNgKef3Y7+59/Dm1lGdIBY1ETcg4Db72Iwtknsy9p0bQsrNfNZNY7LmXuRUtoxjVGgglydh6RCJy587DLZXZs2QD93WRm9hPhQUmAtMiRIRvH2IGHnUQQBdz+95/ihSdWY9UDnKBJVXj4UZN8BHkJ2/1RDpY0rZ4SQwd2YwxXiPcd4M1/9THe8ad/ipg6wESlQiokWnTKCVNMlOj0jZylMoS7h6HeQubzZAMDdhzm8L0P0XPKaXT3TWe87kPL4/SPfgTmzebkN11G0qwSJYpQAZZm5/ge/v17d4ItIA2YVZoK42M0pk+BE+axXyhoCbyDE6x/6CmoScIt+7nksquYf/J5sH4ng7qEE9sIZSOVi5XaWKmJm0gyMeRiTT7S7H/iaV589DFk4FHI2uQMQUnYOLGAVsjUc8/h4g+8j3jKdBraQMkssWGS+C2wDWwFKx99hB0PPYAV+lAPwKvBlAJzjpvHxHNbUY1xhJVDSAfGfDZ+9yEO/2gFwy/uJx0aBlOwZtVD1O2QSsaneOZ8Zp2+sNNaMgj46rJl4BQ5deFiDq1fBzpEJx6RH5PEAUZvEQa7uOgvPoBcMAdcg+Pf+XZ8wwVtYyUGZmoilEkqJEzvx5pWAjugRp1sMQM5E2b3c+7vvLnTrMCF0IXAgtBQeLbC6nJJ7IRW2sSXIblyDpkoklqNfAhb77wPsXuUUmrgthNKSEqYOAkYaeewVEdMajsgpmQ6IfRBwMmLFlOKJUYjJiczCO0y+wMf5sEXdvHlmz9LZskSICH2PFSrTi5o0CtTtD9BsxDhJm3otiAveWbzBmgGcNin3+vin//us+x//gXu/7evk7NdNm/ezMonV5EqRaw6J5hP/v0n0Frzrne962UlZh/96EdfyjC64YYbXvVr/CSTTPLa8evIRHolli1bxu7du1/Vve9RoepnZR4tX76cDRs2vOaGDfM1/fRJfjW8BtLg0XaHixcv/qmcpEkm+U3iqMvozDPP/KnvzZ49m3K5zKFDh156b+vWra/K56587FEe+uEDVKt1xmt1ClMH2DMyhJnLM/zCboZf2I1pwtj4KKaWSMNmSl8f42ZCEAQcHjrUsf3bBgODAxhmgYPZXRgqxfUTtj/0OAgTkgCEYjQKyGeyUGtTyOYxW21yWRfppCivgZPNkPoOmCHHLDqZKArYtPJJjFiTy9qEUQupQgq2SS4RuMIk1lCLAiKliWwJAoxClrTaBi2QHV/DTxxIL4WddkoonEgQGClNYhARqx5+BLQLE01ErsSBdo0e0elOVjlwEEZHGe7vxjQUNJoEXouZ+Sz1bIaRnTt46N/vID9zDscPTGVzs4aVpIRjHhyeIFAK05GoIKKYz1Npt2B4mB07d8F4nbYXUM5mCJtVUiNLDtD1FroS0cKlSULfjLnMu+gSHtz0LCpJUKFPb28Pw4bEydgk7TZxuwmhwZ7t2zo5LPkSjYkKqhF2cm1UShLFWJaDQiF8D0MaCGyCIIRikbDVRuQKmKU8SZzC2BATW9bBOXN5/uk1uCM1FDFJaqN9H890SLUGlTLv7DN4Yc1qpJOjfXAfRimDjWCKm6cSR7BziCi2IOPy0PfuB5nSe9ZJuN5sdq7e0ikBSRJMKcg4Ns12DcNwCBpNzLyLoTVHG0uZCrxmi1RC2o4wbROabbb+6D7GDo/B4X1sXvEor1uwgOc3bCKXKdCqVDF0pwwnkZ2sHY6U19A/lcFjj6N71hy23fNtwgvORbRqJM0aZrYLYZqdfBYrRRgK0ZtHZyQTWzfy3dCnp3eQjGEgvZgwbhITk83maYcBiW12yvS8EDIlzv7Da9FyBS8+tpaGEXPmNVcyOHMaO1ZvYOMTT8FonXaUkqYabItOvY2m3m4xNV9GJIooCBgNEnyloVQCkUJlHKPYhfY0MufS29fLSW+5CLrzbNk3iuouEkRt4soQ+9aMQLOBKPXiEBOEGum6hJu2sOOFFyGb59I3X8HI7hd4PmqgVYuornAtSJD0dpeptKoYXTmabQ+0IvZTssU8SVTDiAUZofEMYFoX7VoDLJdcLkMuiBjNZThx4QI2r12NroyD6xIIA6kkRmojtYFGgYYxWxDbEpKERYvPYvjpLXhDLbAdLr/kUv7jK99ir0jhlBM5rqefdRMNVj3ww45SOLULdg2D63Dw8Scha4NKKBSmcLg+AtOmU7RcmBhheMUohC0a+/cx8vwLdHUXqHk+xugYB55eA0lMK/Kx7AKJlPimQAkDQ0vcROGkCUIrJJpweAjZ043yWsRCYWsIwzZurkgYK1AR2VSRvrgfv90EQ2AYFsgsRAGeSNHDB2BqH6pdI2dmaEctLMvkx9/4JvijYDoYOqUR+FjFIu1ndsK8YxlvR4DRKRsWCcQ+KCgVe2ns3Qtx0HE7mQY9M6dx3Mknsenpp9AZTRyEaNfCL5VoZC2oVdixeStq914IPcaHhqDV+MnFRKhOPpQEvAYrH38EenrIxVAfqhCXTMi7lPIFosNVKLsgDDwTsolEKGg3W5iIzjlLQqXVZmqpTJpq6lpBHEGuiBeHxJagKASBERPNZf8fAAAgAElEQVSaCjPtdIdIZMcBBiBNAY6BUSwz74TjaQ4fZPzwQUAjiLlw6RK+9rVvwNgYp7/zrax8YhWmkgjTRkQJVt6lFfvE+QyNxtGSXMnOB5cjenvRVY++comxWhU1Mg6uTX1inE/87U30dZf5QrvF4MBU5s59Hc899xzAK2YUfulLX2LOnDmvmHM4ySST/O/ltcjiXbZsGTfffDPXX3/9q7r3nTNnzktZa0dfH2X58uX8zu/8zm9EV/JJEem3kf9arlbZDatfrmYuq/z8Kf4ni/NomPbRFoeTTPKbzODgIMDPrSU2TZOrrrqKG2+88WdmIgRBgOu6L833+OOPv2KwZrVaZdq0aVx66UVc+saLQUMkLPaOVVi3bSvrd77Arbd+DlrjJNE4Tt88KlJh5op0n3EaQ4deBNdg1ef+GZnNomyDtT/6PlPnzsTLh5DEFDbuZqaosq3XpHjxiSw6/kRWfu0OJtoeZ5x6Ns8+9RQHnDakYDcTItek3gpRbQl93YSzZ1AqFmD1BuzIJPU0hp3pbMTihLZMyNoFRiwB5V5CL+WSyy9j9Y8fRhwcJjVzIASG7ggNptZonaKVJhaaSMfoWCMwOpskS8I5C2DDHowX27iY1KZmWPAPf8xzN38RRg5AEOF2FXj/de/iln/8JLiC0XVrqW/cjOklKCTpg8tpGZqHdu8CJ8IUCjPsCBWtnALToNxQUA0QMwY46c0X88wDD+Aqm5ItGa1X6Sv20vJbCFeStQXZWFJTgorRxWi1zdCmw+BmCauj7H3ohxTLZaTvkUqJ7yQYdoY0jpl9aJx6sZeJVhs/J8kGAmesjSsdGjplTAj8VNGfprSJCLNZrO5BwnbI4HmvZ3zkIMn+nRh2ipkrEG57mDdfdw6PnTaH1op1GHEeU5jEroEvY3QzhFyeQ1Pz9H/8jyiv30vlB3Vyow0qKKygxcCwxiBDbWYv7VYD75EnmXX1lWx88hGIFGTKmEFEqauHxugeqhpwLFKtyBkOyotJkoSKYWKbFqFWnfyXJCYjyjS9JnJqD+rAfsbqLXKFBvv/9Ta6B2ZRSiAdPYxVyNPEJ3IFGAqpUgw0kRdjmz1UNr3A0MrN5OM6jTvuwCQhn5XUjQAjljiGReIoNDGOlvjjIYYy4fAmqmorllKELmghCU0Hz9RQLHHTzZ/h3h/+kK2bNsLIGE99eBnmuA9+jNFVYMVdt4OtAUkmtsh7AUa+RC0Moa8bwzRJd+zGTgxCQjKlPBOFlHhwFmcuvYAFc2fy75+8icHefhqHhilmiqh8gUp9jMfv+T5yIsAUmqIrSdMGhKAicBKTrjEPJzbY12NCu0b37EVoTKqex6q1m2jXx9H1FvnAp5wpo4KEOGsxRpPYjAnHqnQN9FILPDh9PnPOOJU9X/4GEoNY5QiL3bzrUx9lvFXjxzfdBInASiMYH+bzf/FhglYT0ggsAy0FvG4+l7/hbXzvn26HYpEz3/8+1n7tK5z9wT+jO5Nn39rNDJsh9GTJzp7Bjk2bMQ4dIi1q2LKXBx5fx7Qo5VCryilf+ks2feTjuHlJFCSUAzAqLUbzCbujBn3k6TmU0rfjAMIG/eIzWARUNq5GJtCSLfA8fvypj6JUgtSdcqlS1KadQPn1S4iKJdqbNtNqp7hWFh341CqHcfM50qCFJUBqhS81kanRaRPDcRl76kkeW/EkAxNtxqcU8VNF3rfItxUtbaP7bWi3KO4booFF3ixAFMLBfTgaso5NKlJSLVGuw9S2oi4k+oTFRAMDGD0HSScOQ3sCozQFK8ow8uCzhHqIHsOhsmsvTB+g7w1L2BFFaMMh2whpJSFkBjnjzz/I0zs2Mm1gGgc+901kIc/8c5dg7dzHaNQiMn0MAbapSESClcvjzp+NVShS2dMgDjRZXQDRguooP7jt3+hTgrRiEBQdGvmIOLSwa00MISk6eQ4HHj1Lz6TZCBle+Szkc0y77k0MjY+jn1hPbJc57T1XsfVf/o2W1QJXYdcThIBmRtEfaqb1uIzU29DdT2ra+OUSu8eqHftpWsdyTb72F38M+6vQVcI0YggMDMPBz1uooEloWOBmCEY8li77ECv+9es4sgsZtPHtMZjby7aRF8gdlLSzJrgW03O9fPWWW5k5czqRpbHtHALJPd/tdOvds2fPT3Vd3b9//09do19p3FGWLFnycwWnw4cP/8zvTTLJJL8+XslpND4+ThiGL339i3QP/0XFoKN73+uvv56vfOUrv/gP+gty4403smHDBpYtW8btt9/+UgbS0diYu+666zUvZ5sUkX4b+a//qoUyLHh5DecrlHS+jF90Yf6q/xNNMsmrzTXXXMN1113Hhg0bfurm8Y477mBiYoIFCxYwe/ZshBBs2bLlp+ZYsWIFnudx0kknvTTf2rVrf2rcZz/7WbTWLFx4IhoTQce9Y2rBlFKJgVyB//jCF2BiAkjAynLg4ARvf9vv8sjT69iy5znkvGn83lv/gO987G/pqYUEWiJRHNj8DLN+9xL2rXiMdtml2dYwUaexaTur/DbkTag2OPMNS9m4aiUuEoE6EngtMBXknSwHq002f/teUAnESacts6EIrM6T7rJZoN7wiYUAYYEf8PzDD7NnzjGEnkfOcoCkExAtQEtJoiVJCkpKlCmRVoZYCg56bUSiIEzp8qHn5JMZPbgWVxu0wzYzXAf5jrewfeUqqDYIVMrTW7fjlgaIx6vYCpxmhJ2aKCmotGK0C9XxCiAJDUglaKnAkJ1AZGEQCzBLGU499wy2btlIsGcLJdulr7uPuheRdBVI/TbNrARhI+oJOSGI/AT/nocRjo9pumitaVWbSCmPdNoTpL4PSlEbGaHQVWYi50DokaqICEWhVMSrxmjLBKUYNgJExkY7AsIm9PXx9je/md3PP8sDd+zGqIaEBQ+A+z/1RTBNek5fTDA+gbd1B2XTJrJT2kUHuyHwvvJ9vGMc+q68krMvvZjdX7+XwyUJOQWeoCewaI+MQiHLwBvPww8CpmYHGX7yceYvOonmxDhDmzbg/D8tsrWAVGhwLDKFHGEc0dApPa9fwqzrLmP9X/wdvRMl3NTgTf/fX3Pn39+C/cwBeswy3tR+DtRGIWPCFIvW+ARdRoZpNYUyoWZLYkMhbafjBskIKFi0WgqRdBxPUpnkY5uuQGA0FCmC1DAI0oCcaZJi0fGeWCRm2AlZFnTWYAqECZ947/s7XbO6y/zuDX/Of95zN0k1hGwW2VvmnGvfhtWbp5jN8/2P30p3tsyhsRGY0ccVf/5HKAkPfPxm0qZBbJpUjYikKODAPtZ+/ZusNRKklPgTTbpz3YRNn0C3cfJZ3FIXNTVB4keIaoNubSBDTSogMCU1F7SrQfucfeUV5EqDrFy9DmoTtHbvA6Eon7KQ6sZNFFJJPpuj0mqTOJDt7UVFETXPo3DKKZxw5mmsefDHTDFsYg0tqUgCnzv//G8gaENXN55fQ+Qc+kIH54UqBhphFxgVCm9GL8edtoDvfefznPKpP+OYgWnc+/F/oHDiIg5t2cr2kRHqm54FL0BYNt6OHTy9bRv9ixbTO28W29dvQDUm8NIEah5bbvk2HArpDmxCMyQ1/Y5jJQUhWjStBOHabPr+99AHtoEpmdI0iTQ4Th4/0kizi7DtoQEbieVmmJAKTJN3nH8ZP1rxBG0fXn/ddWx8/DFqO3eSK3VjRiEyObqKJUqALWySVKOVIo0CEiDuy5KEbchkaUURPfOm0zpwANoa4UkMkaM/m2d0vEbPrBlMtOto7RO2IohTMsIlF8EYNXxMkgcepXf+ibTWb4BizIKP/j6HDo5jjCcEK3eRDW38Rkq+1EsrCHh+y1YWHn8iSBNfxlDuAk9zaN16Fp88j9rBwxCE5Eyb5378KARtymaGBhoz6+BNNClks7RqAY31z0ISUir1kwZNyk6GeKKOGGuQTOllvFigry0w/QTsAH9KjpzTja418IImlAqcc/qZPPnU01QzDnYhx1VXXsmtH/trsE3o72KkNoQftjvCo5YUEwchBHEiiVVKGrtYQpC0OkHjK39wF8QtkBJkhjhOseopcZLA0BCP/uOt0F+k3W6BighndXPMGy/kwrPO5usfvoGucg5MQTh+GCORYHTzB+/4ff7j1n8mbPhMXXwSwxs30haSea97HaAwhSKlc/5YsmQJa9au4eqrr/4pAejoJvIDH/gAGzduZM2aNdx0000/5Vq69957ATj11FMZGxt7qfHGfx13dP5XcjZPMskkvz5eSURyXRfL+omz4pXyjH4Zfh1733K5zMMPP8ztt9/O3XffzfLly19yJd14442vuYAEkyLSbyf/tZwt/z8XkX4RJgWkSf638uEPf5jPfe5znHbaaXz+85/nmmuu4YYbbuC2225DCMGXv/xloHNjuGbNGmbMmMGnP/3pl8YdXe9Hn1gcHXf88cfz5S9/maVLl740H8ANN36UVEgMOt24pISSazGtp5fKgf0I10a4LsqLMbt7mH7WafRGLeobV6NqWTJK0l0soGoernaQhqRu2Jy8aBHVdp3Go8+g7BykNjTbqOoEZ77tLay9407WbdlMohKU6JSZGRrUkQ23KRUyTVBtDzwP27IR+kiphKFAHukuZlpEsULki+h6Jxg33H8APB+cPEQBR9O1lQCQYBnECmIl0EqiDaDkkPdAKait30Z27jy8sIFpZKAR8cT9P8R2czgzphOObwZhsGr5oxClmH6n7KMkHGxAaQNTxcSpwhSSVPOSmICQIBW2kcNreZhmlrgyzqYtm1A6RTgWMlZMtFqE0qBnwfFUnhmFTAYqdcxEkHcEKQbjvo9OfWIRg2liSIM0VogkwhDySEh2SnV0lGq11nEuALZtEoYxjdBDC0mmuwd/fAwU6DTCmtKDlcnhDY3z7LPbaI4cJmfaKNpEUkK2BIdrUMwyMG2Q4rxj2bB1B3ltMOrFMLWI27I6JTXNCs9tfIZC3cOGI0pM5/BJMRyXVGuOP+d0nly1huLeEHxBua+XOQuOZejQHsToyE9+f4C0TII4AmESqgRcl7GJUbrCFvRNYWzvCCY2T6/fRO+Uaag9HmGiGBuZYNrpJzBl3kw23X8PsrcLqiFZQCWStqFRUiEMk7BQYPDY+QQqYXz7KIkGjnadQhDaNlHgY5sW+UKBuN0gVilCmxhaoDFJdAziSEmNBqVBhzGZvn78sXGotzhm2gxOPHUx23bdB0lKFEfsGT5ElzmAlclCfYJDqQUDRaiMsuLLd3ZuPKttIsfh2PPOZMmSJaxb+zRb710OhoVdtNBxCEoTRAG5XJEAQbPlo+q7oLcEKqbYVcIcnSCTGCSGOlLWB4kBRCHD+/ZxqP480d79cOxsmDEf4ZjMLBSprt/MeMEgFh6UDHAEXtACXKSVp7VtL2ueHQK/iUhBGB3RlrbXKVMUNqaXkNgGQcZGjyqcI0sjjXxsIfH27OG5dh0yFgOz+lm9YiWMVjjlTccyMjFG/cABpBSYhsSRgraSKEtw3GknceJJC9m+fAWNOECkMYSa9Jnd9BpF8qaEtE3DVqSysyQViqYMceyE+OABUODmXGhItBZ4sUaZNo04JGflsC2BTkKqsU/kCCj2snvDNg5v3wXaZufe3dTaNdApnjApK4mhFUqAPiLYg0QedUbqztqrC43jOGgh0YM9TD/pBCqtBvkIWq0QykUm/AAjl6XZ9tHNJuRcMBXSdFDapK019pQpJJVxMBXjW7eC40LUJj/Qh9sK0Y0GWdNEiBxRK0ZpCaS8bvHpzJwywPZiHjVShf5+phe7OLT9WartKt62ZzvdBRstEClWNoMbS2rCxE9BYqJi0HGC7eRIHRvdbmOkCV5YJYsgi814I0RrwQQGiQ2csRABWJsPEGqNJoW2x7onV1PZuZuM4+CPjXY6A42Pc8rb38Gm9evYvW41GdskMSUOClcdEetTTSQkOjKQOJDEoEOaQ02yuSye54MyoLuHeO8hrJ4SsUpAG+BKyHdBqwUZg+KsY9h5YB+YgtVPrIRWGwwDMzFIg5io7pHWPQQGb7z0cv79xV1HwtUArZGis76Ektzy2Vv4xje/wZo1a1iyZMlL1+lly5axZs0apk+fzjXXXMM111zDbbfdxp133kmlUuFLX/oS0BGY1qxZQ3d3N9dccw3nnHMOd955J3fe2cnv+8QnPgHA1Vdf/dK4pUuXvhq3JpNMMsmrSDabfdnXr4aI9Ove+15//fWvednaz0Lo16KIcJJfKeKr//0Y/ce//PzVavUle92kgDTJ/1Yuv/xyHnzwwZfVUVuWxac+9amXlaUtWbKENWvWvOzvCiF417ve9bKnkj9r3Ic//GE+ecstnYY0+ohyr8FvthkeHuaU008jUhGJF9Odmcqcj1zDmvGDUOqC+1fAnmEKXUWatb1QcukSU2iPjWMXM8x/07kEKuLZh5+mUIemK+C4QUhjFpy4kOdWPAGpIG8YeBMTnQ+mIxJJDW6sUYBtSgwFIk5RQpEY0LZAWUBqk7WLeA2f3/vQB3l6+1Z2r11J76mLqB48iDg8hhm3MLTq7Nm0gcZGGhYtBVobkHEhK8BtYr3oM4BLmrcYSltYYUIGA9e1GbWAci9Xf+xjfOtjHwMpGTjpVA4/tZ6idGg365SdPCaCibCB6C6Q7S9T3bWr0x4+0WihSKUiNSVYOdwJH2Hb+LNLkJNw4BBW22EglBzKCtTJcznnXVfx5Cc+Awr6x9rkVUxgZhmXmrDsYpk2Mog62UWGwMRERSGmITCExJQSP42hWMSWgrheQ8Qx2WKZRhCgi2Wu/eAHaUcp3/3iZyAOOfENl/L6Sy7lC8s+1mlfrxS2ayP9JomQqFjR7RQZdyQUM8w7+UQOP7iKopBUVI3AEeBM5Zi3LGXv0ysRDQN9aBTTMkmMFPvIU7koTJHZPEqHzP7rP2PPI2spP7oHgGrBg4XHwvbtZL24U31yREgyMg5REpHpKuE36gjTRTcjmDudU09YxI7vPoJpO9SdGDIKeqfBnjGMrjy6ZHHhm95IPWmw/qtfB5GhPzCwkURCkEpFklHUhMvA6acz95TjWfUfX4XQJ5OAGzk0rBzprB7yx8+l9fRaCKOOUy4EGZsYysBQJspoAR37iQQUkly+SLUyjigUMR2bOIohjuiaNZcLzj+fzEAP3773TvAasGABV114GZvv+SEvPPEUWcdB2QZRmiDjFDOVWJksiSXxiZnp5PBqNcajFnZvF4SK1AtxrRxmV5kTFi/mne+5ji/e9jn2bN0KLY9uZVBIBaDwTahlIDKhIDTNehsGpjFr0UnMvvB8Hn/qCZxcjnD9VnhubydMvznO/GuuYuDYGQStgFwl5NFb/pUZxWkYqcBv1oh0jcCR+FkLmUCmGVDEpkFEu0uDmVA6+0LqT24CP6YvSrGFIsxZtIQmiEOwXJAmTHgUj51GY/ggpArXzmK3O+vdT2P8ogtdBaj6UI9wBnsI0xgqEwwYRSSCStCiIG3GSx4YCVkfQilJDYWcfQL2s/sIij74KTjdkMuTnTodr+1BdRzCsJNp1a53TppZG2qabMMgQWP39NCiwqzrrmLfqtVk6ynWgYOYqiMiRdIkkeLI02mNQYKlNZGhCGXEVKPEhBfRffH5DLdb8PweGIuQXXkUNejv4nf+4D3ctewTFKVFbyLxdciw0GAbMG8m1A6ASvn9f/gi3/zLz+BO1EkLgmjQwCxOwRkLyLx4mGZO0C1LDDfrHPee32Nv0OL4Wcey+WvfAh3xhmuv4vCT69m+aT1kDejrhf3jdEsHrTVNr0lemNRci4WXX8bWR1bgBilx0EaQYBiaNE0wDchhULLz1E0ImgHdZg8H8h6Df/J7RL0ZxPfWED79PMqMKKaSZneWZrsGxRIMtRE9ZY5/11vZ/uPHOPOc81i3YRXqxT3kEgtXmjiRwogSfBQT5QxZt0Ay1kLagkQ2sIyQNNJYWuLZRdKB6Vz9oY+w6m/+loPhKCpJIJKcsuy9HHfqYoKhKvd971ssuejtrL7181AfhZyDSCGnLGRq0lAgikV0rY07OJ3T3nYhq+76DjNK3ezfthVUijY0CAOhDUhgz4E9nH/B+Rw8ePBl1+Tp06ezcuXKlxzId9xxB+9973vxPO9l47q7u1m/fv3/eNwkk0zy2nDyySf/t2OeeeaZX3r+arXKxRdfzIYNG/jMZz7zspyiXyXLly9n+fLl7N69m7vuuuulvfdvApMi0m8h4uv//Rj9h7/8/EeDxMrl8s9Mhn/44Yd/+Q+YZJJfE3v27OGLX/wiq1ev5sorr3zFTKOj4+6++27uvfderrzySq666qpXvGlcsWIF9913H88//zwXXHDBS/Mdve106DiBOHLURkdZtPhUGn4TJ5QkvqL+tvOJywb0DcD9a8gOtei1DUbEGGGfDaMBkKGvlaKzBu3II0sGJW2q0/IMXP0mWj9YRWvdFnDtTpirVODITjB3xoRinuMWLmDn8kcgEXQLl7zp0J6oUSx34/k+idAo16IahSAtLKfICUvOojzYz2PLH+CDH1tGbegQ3/zEP5AvmsRBAIBluKTYWLaLryVxonjru9/DfSt/xBV//R4efPsNHEuOUCj2GU26e3tpVar0ZnIMeT5WaRpycIDwwAtQ7uIjf/NxPveRGzGFxHYtvOoo5IugEpxjBpk7fy4nz5rDf97+dcxqnS4jQ5QmRHmHtiWhGnDssXN40W3z3k/+FV+54S9hb51eDMbzWeZeexWNJGb0h49AvcmUdotuTCo5i7GkTfGtSzl/ygJ+8I3/xHFcLAGtyhhuNouIQ1QSIREYlomHxtAKeSTo1080IuuilaBv8RmUevvZ9YP7ME2LBAGFQqdrlevA2DjZmVPxXnyBsmeQFQ5DRbPjDFKSUrZAvXIYu5AhatVwDJuw3A8Lp3HCKYt47nN30iVsaq5CtZqUcAlUQpIzO86p/h4uvuVveOh9y5g7XiZUMQcKDZg9BYZHydb9l4lIaRxCqcB5Fy7l8Ngouzc/x8woT8uWjNVrdFtF6nGb9KS5XPKPy9i5Zz/TEpsn/+n/QNOHNOmEvJct8OowMAXGPHKqRFqv42Y1tVIPZ77xYrqPGeSBf/oUdj5PdLhJOTeFqrDIv+VcZp1+Inu3bGGq63LWqadxx0c/xqzzL2LqwHTW3PN9ROKjJyaQhomhIZcrEEcpgUpJter8bqWFUBKRKlzXpXf2DPbv29lRnQSdEjhf0+OFmFoRGhINSC1Ikhgn300gNS0Hcq0Gsd9C95aIwyYU+0BJLNMl9kIIPOjqZjAEzxbUdBuKGRipYRoWjhfgGhZhHGAkAZaboWaY6EKBVEeUzjuXwalTee679+O2FL3NEMuy2GMHFM88kfK0qezbdwA2bue8q6/hwIED7N2yjeLEBIEJka1hrMFcXUQQ8X/Ze/Moua7y7Pe395lPTT13a5YsW5Ity/Ikz7OFscGYMBhCwEAghMywLjdfsnKTBc4iA4EkGEhuICG5YIfJzBiMDZ4n2ZIsa55b6kE9d9d85rP3/aNkSL4vibO+JPgL9G+ts6q611lVu2pX1Tn7Oc/7vA0pmF7fx/m338L+sE36ze9DtQ2tnMFMEGQROVAs9dBotnANh0xl6J4i7aAGQuIrSTHtfK6V1FQdg7To4MQOulZjyY1XsPmay/n2n3+CcuTQcBWYCVdd92aeGd1NXp+lK0ip1ZrI6y5j6ytv46E/+HPy+BQ9Wy5g6RVXExsWvYNDHJ+cYPYrX+Ta3/sdFqanqJjw5BfugYUqxWUbcbcdpWwXmCWG687hrGsuQbcjph7bzfzO53Bci1aWoQvF0+W5nQn2HJu01SCLIxwFS5RPYFjMDLjQU4TVZ8Kjz/Puj/8ZL+gFpqbHOfW9h2HbIbpyyVp8IhT7jRC6fH7h0x/jC7/26zA0yIZXXs+hL3+PvomIJEtoeW6nZLXWZI1XZkJG6GaIVejmrDt+jqZnURAGL3z2yx2Llq2g2QApcVcu4a3vegefvetTMDmPYbjkadYJwO7u5dXv/RW++5d3QbMJUiLTDIsEYUOcxlRcF1GLqPYUwPZgJsG78VKueOMtPPQ3n6YwFhDPzZH7ir4wo2mZRI4E08DKPVJLgpkABQgiehzNwnyVYrFC1mwzaFYITYmuFJltT3Hlu9/J03d9CU1ModvAliFkGXGkCMwCmD5ccDHu9meIjDZuochA5HHGr/88ZqWbgz98hlMnj8FEhp3E2HoWJ1edcjmtEOUu2oZNKgzo7oP6AizrhaPHKbk+jbExMCUYCpCgZEdTNjt/PvbYY/zd3/0d8/Pz/M7v/M6/6hi65557eOCBBwB45Stfydve9rb/0H6LLLLIT5ZNmza95D7/kUY5L8fa90XX04torRFCcNFFF/GDH/zgZS9pWxSRfgoR97z0Pvo/cNx7URX9t1js0LbIIj8mOX1rcTq3RUMUpQghWLF2DanICeptKoUSs3kM68/CXbuGqN7ggmXLeeHRR5FjI+RpSOVNryXafQxvzwgGCuGY+KVuploBy9/xWoqXnkP9r++ltmMvGAahVKS+xRve/XZmW3Ueu/cLLNl6A2+8/XV88vd/F2ohzIfYlkWSZFimg9SwxO9mtj5N2zMwCh55O++4FGwb0hb2iqX40qB25CjSBMswkdKAvFPV4PgFQtXJDNry6luZzBv4m5Yw87Gv0pNATeQ0lhTJZucxbA+pNNq08SObRp7C2kEwNMtWraJ28Djt07lRZ912I6fGpwj27IPBbtCKVavXMfLYNrq0jZkkgKbhe9zw/3yAka8/wMGdO6FXIM9cijp8FKcp8XJBVCjQ3b2M4rIhju55FoouhG3I8o7bII0x1yzjmktewVOPPkU8Pw9xiFUskUdtiCN810QoTRBGSNtFoDB0BqIjIjlFhzgF3AIojd/OybOQ1HJQJh0RSSUg4J0f+gPuueceVuyaQOmUkS4Blg2NHCeBuMcEM4ewRXcEibAAACAASURBVFdDYRcHmWnVwJe4VhErVTSDFpd/4J3EMuf5r9wPp6YwiyUyQ8Hm9YjUxn32JEW/wGwp5uo3v5btDz2E3H/sRwKSApQhUHEEtsmNt97KQ/c9gCMKxP0G1DNWVyHDYnxJDmefAU2FP9jPG3/vA9zzP+5EPb+PwVQzbVSh3+Lmf/g43//sV+HhozA3z0DFZqYdQk8PhWUDRNUJaNQpOiWSpEhYT0HnGJUCeVinZ+UQwpbMpxE0a/Rcdx2J69L64lcg1fi2Sx4neI6P6xWYmpuGnm5QKUibUi1FGJIMTZAlCNdCw+mSJ8DMwE4hUgw1TKSWzPqCnluu5Oa3/wK7t+3khb//IszPI3SGHugGS3D1295Jb6HENz/5aTAtXNclGptgTV7iRNakcNsV9F+0kaV4DEmHPV/4Bs2RcXSeIhwDU1o0gs773HJtXvGm1zNfrbHzq9+mx+tmoNHEAI4bCVHFBRTksOGWm+nu7eK5HdvJR0cxtEmeBAhT4jUi+jMTneU0Cxa1Vb0w2I07tIzw8WegEUKU4wqI8hSKBc695AoOHz5GOjFFbw7zhFBxQQjcOKOQqB+VirUtSVQoUGpmWFqw5Lar8Yd6ee5L36DL6qHWa7P2jtdw/IFD3HjVlRzYsY357c+TOD6sXQHFLpzj48T1MVZtWMfITBWiEM5YyyXXXUd1YY5wdpKkVsVqNTi1fw9XvvtdzO06zOwPnkFkEZllUl9aAEtAlINycepz4Jikpo3KclbduJXZ2VnWr1rOrm9+HcPUuFqwzKwwNTOLdCvUel3e+f/exdjYKR764B9y5i++lSXrVnH0kWeZeuhRiHNsU5JVG525tS2UNBjatJHpR5+n4DpUrlzDqWe20Z2UEZlLa9kAq6/azJEnfgjVeUpuGaMakklJa3Vvp3NbuQcOjGOViqQ6BhscDIzuMkvPPpNjzzwOvUvg5DR4PsUtG2mdmOTW9/wq9z14Hwwfh0KBJY7P7JFDKJWgyCgaDiviIge9CK4+g64Lr8b98g7SE5PMxw3ot6n09FGfPMJQIyeWBm1bktgmtDLo72bw6i1Mf/sxynYBtzUNXpkZM8cXPt2JyYyISaVCrOrh+ne8mW0f/FuCJAQ7wespEDZquG6ZyPJxz1pH18pVTD16P+iEglUgOzlD3Fvq5NY1E3BLrIwL1IM5YithIM3IiAltg6rOOkfOngHWv+ZWzr/1Fczt3sdDf/kplvgFJkZOdoTboo1GdnIHUzoi0j/JeVtkkUV+utm4ceNL7rN///7/7cf/Sa99/2nnt61bt/KmN70JrTUf+chHftQNfceOHf9pz/e/w2Im0k8j/3Mm0n8yW7du/U8LJ1tkkZ8FXjQ8/OicVkCmFa7nMFuv4VRKyK4Cs80FUBZ9ucmQ9Ngnqqy74gLcosEzf/FXCODC8y9gIZBMH5mhHtXxPI/A6IT2Dha7qBS6GD41hSbFyAVSCgwEg7192AUPXJ/JI8d44oePnHZEGSAkqZTg2J0AbdOmHsWdXJEkxfAdfNcjRpAZApUbJKfGSAyLgmOTCo2U1ulYJI1j2ag0w5AmuVbsfOYplJHCQi+FNEVLl9iBLGiB5ZBrOOu88zm0axd5KjA8m8qyAQZWLefQN74FmdnJGjI1pmdx00038c2Dh+k651yUyhh56jkAIq1xpYlpSRILnj20n/NXrmJhYpLp+kinZbblYKgY6XjYtk1rfIy5yQkoWgxs3MDM7h2d8rtMQ67JTs3x8Be/AuVuKBQgCrE8H6FTkjTqOFZM43SWUMfBooREkiMU6DRFGDbSNMg15FmMxEBKicozsH2wPGjUObzvAJvO2cjk8yc7j+QVIcvAc0jTCAwDdA7SQKFwtKQfh5ppYTk2rfocFoI9I8eonLEco7uMudAgzmKIMxiZ4Prb7+Dx4zPMJwk0Glx+wQVY9SZP7z/2zz6vWRghPRcVRzz3xFNIIVh58bmMrikSf/0R+uxBJpNqJxR4735oQjA9yfa9L7Bq3ToWFtpEB/ZQGeynHswyeuQ4GzdfyPSoZm6+SprEmIUSWZTS3n8QHEVvd4XqQpNLr7mBk8OzTO0/QF+gWGhHxKOTeF0lCGpAysKOHRgXbMYcGiI7MUaYh3iWjVKKqekp1m+5kFe95U0cOHaEB/7hcxjawTBtpBAgJDrrlMDp0+6r1NAdN4MJoaWQClLLoKlz5vKQyaQFA93IMIQoRCsFYcpT25+DoJOD5QqBajWxDUkjbmOVi1yx9UaOxw2yAKI0Y2puFqliEIooB1d3stLINX6mePzb3+m41FTeEatKNrFKyYTZcRYaJkibw0/vQBqavN0AkSP7+6jYAywcPYrQOQtZiGM6VJMURiKYX+CNb3wHX9ozTLowghBGRzTNQjAlQxecx+F6g8HBpUTbd3bEDakgTUmlJJOdvKnTP194umMAieOUfdu2Q9gAsxPC7i9bxeaLLuT4t3bQqtapTUwjMoVwNHrXPja/5z1MBiEzw3sY2X+oU9JmmRCm5PU21FuMP/gomAInTaCZsHB4mOMHD+KKFMcEyxOIMERXI8gU+H2UCh7zQRutAM/nquuuZ2RklFX9vex68Ps4KkFHKaFSKK/M0Pp11E4e4Yn7H2J4fBQMzbEfPsj4iTOI9o2AtiGaJ9GK8qolNOYXOnlrOUztOsQSq5tGVOXU/iOgQHoeyqqQ9PWy7vqrOTJxDE4q0vkWDjlKa2jWII1BCQytKAmDBSUgy8mTjFg0OLb3IBiSdRdezJHGsyAlm66+kmdOfp2CYSKkRK9cykD/APnoBHmmsQyTTBhkGSRZ3vlMXn0Z519xHXvuehAzbmEiyJKQehKC0ZlHUytMBYlWYEClr48lQ4NMY2BpQYYiiRNYs5wCHo0DYxjdLqlK8FPFs48/ShA1kZ6NQoNXhnZCpAysQonrr7+W4kA/9z78dQhTQsdCYkA767TyHBrATS2MUKHRRNIgR6BJydEIz0S3NUaacc76dYyNjdE4NQlBhFMod45honPSq1481v4XnwMvssgi/+fxX+2J+UmufavVKp/5zGe4/fbb+fSnP/3PxKsXQ7X/aTbTy4XxoQ996EMv27Mv8l/CnQf5Uajqv7Z96KUF20UWWeQ/CUmK1J1sDgAtBKEwyA3BAzt2Mn74CJmRgWix3C/RPDnN7MgYS9ev4emdz1ByXRpHhumRNrlXxJlvMzUxQdtNCAdcNr3mZsb2HmL8ub0c23WAZHoKz3HANYnylFwpdj+/ixeeea5z8l4LmdqxD5oRhdTEcn0oFFAigq4ClS0XUTsxhmE5yBKINEYECSLLEXmKts3OWjaO8eOUUEmUYZMnmjRMcR0Hx7Zp1+uUusrE7VrHgjU1jZdJtO9Q8wVYBvg9EMNrfvW9vDAyjJMoEiMldHMuvfFqjm5/jkImKNHpsjYzfJBD+4ZB23jlEpdcfjnDL+zuvLflIkHaIiDpuHOuvYpD//g12tUqpmOhVE7BtOgSFrU8JRAZBW3hlFxCFdG/4Syu/rnXceTJZ7Ezg4J0cRNBYd3ZhNMzXPGqVyMKPnPDxzulUiojTWLiNEWaJkq4gEQAkhzfOh3qG2fIJMZMU2IFouiTqQinu0xeq0GuQcH4/uNM7TmKbTtkhiRMEiiXOO+mG8k8k2BsEifVWElCJDWxNKinIcoxsJoJFctDFj2ak8dpnphAH5+imCliS3cEsABSQ9J348Udp8mpOZ76/oNMnBrvBNnyY7Gzu6ubsNmiUqqQtAJsx8fcsIalWzbRqrcJh49TMn0uveO1TEVtknodRwqmkpDM9smDAHN6HtFsIAybyYeeZHa8xrozzqZQKtOaOIltePimgyNN+lybmckqlusQdw2w7LzzmG3M0qhN0z/YS9yo06rNY+YCpSTMt+gyfC4/92xGh0+gkhTbsonimKUrV3Li2GFemBwjNDT+QD/p2CjNtE2QBwid4WmFk+fYKgeRk4kcneWgIDYlkd3JWElHJjn6xDbaY6fYcMebWRpqRJDSQrPlne/kqiuvYfTwMeLRCSpxRDGOcFVO2t9PYKQMz44TYjHy+W9w9IWDEESkPTahGZOvXkXcaOGYHrYWEIXYUiPSGOkY5FnMVFxlwYpQXR40mpBoZD1lMIJSGCGaAVZPmUvueCP1hSrZ+BR2nmIOVFhwVCd0vGuQob7l2AmM7j+EagWIcgFr5VJu++0PcLC6wKlYc+FlN5CGKfHwSdoqBtfAXb6ctN1GaUkuBbmUaAEyzUmzhNQ1MEwblWi6Mw8dZgS25OCu3VjnbmDhiecI9uxjqOgQtVt4ThHHNhnb8RCDvSWi2XmK519CUirCkaNMxhFDlQqze/bgOS7G9BzFTDN+6CiqWUd2m+Ap2kGbcpZSEg624ZDlGUaziWe5mK5PImy0W2Dvrj0MHzhIfOIEvtbEzZBqprn6fb/E+a+5mee/9wOq+49S6umh//ILae58nmzPMNTb3PT6NzI+O0OeJsTtoONQjFXnGxJmvPP3P8hkFlOdOgKGIsREbNpEtn41R06NIE0HvXM3niMpJDmmULScjlhjSUmlFeHGijiJkIZJIVQYuUHabMGW89h47oWMHBpm8+Yt7HjmERiZY+LwScLhg/z87/82uco4+tjTUE/otQoYmSBPcqp5hFo6wBvuuIO9X3uI6ef2kzk+XVds5MxbbmB65y7QEaWw0zM0RxMbBoVSBburxESjRqEaEzeqWMUCdVNzzZ3vZ3DJMib2HCHJE0Q7oKvWojozTME08LrLxFpz7dvejb90NbMnTqF8j+7eAjOTJzGvvIDm8Cy6GqKEgZFodNHkmvfeQSWDwwf3dL5zm84iWWgiLUXNSMGC9b3LaE7PMDI2yfFd25nZuRspbHoNi996//sABZYgRZAjOn0VFl1IiyzyM8UnP/lJtNb/5vYbv/EbL/cw/13cd9993H333Xz+859n6dKlDA8Pc/fdd/OiZHPRRRdx9913E0URt99++8s2zkUn0k8ji7O6yCL/Z6HhR9dJhUIhsS1BW3dyFZ5/+ikwBEvwmWnUcHv60OSMff27VNas5uBDz4EJs47F7De+S0HaxI6GZWVIAlauX8ezKsMyDLKjJzAKCiElSRxheg7llcupjp2CTCMiRdFzUUoh0zaGoQhFp436Jb/7f/HcY09x8U1beWjvIbJAYWYRZprTaSYVotAYuUQaGksKtAEqF5SGlmCaJtHsPDJMqFerWAWPxFSYAoqGQa2aoiyLhsjYfMur2Dc+jppo8Pq3vJMvfes+qC7QymNQMYQe3/3YXyCLPbSjBdJWm0wohOWgaw1IUlatWsUPPnZXx8XQXeGiG25g166dJHPTrH3Hm1i6+VyeME16LJ9Waw7PNVFZxMU338q3v38/JCmtokMqI4giTj7yOCfve5gep0wexqQ6IDAVDB8E22LXc09x642vYOzwQXRrnuKaFWStJkmzjaEkSXraCKpBaEGWKLQG2+q4A9I0RxR8UhWy8tItXHvjVu75whfR45MYfgU1N8eKUhfz7RqpVlQqXdSTkD0Tx7n0sguY27aLLsOjkWvyXp9QathyDq+78hX88I/vwrXKzKoAGhprvs2KFWcxOTcOVg5xjq89po6P0HfBKuj2MEoF8qkpfN+n8U+u3gsNcRhR9guoJCXPc6JGnfZjzzH+5HZIAvzuEiPVacb//vOE3RK8iCyM2bzpAvbuO4iaHiUoGXjzilIk8GWJ9miNF04+BEJR1hZCa/I0QOiU+akWywb7mG1FTJ04wdSBvWCHvPWbn+IfP/kp7GqB/PAwKhI4UYZjuWQHjvLYnl3YhsSrlInaAaZpMD5yAmuwj+joEUZnJqHewFU5pmchDYHUkMf5i6/2dLdCiZE7FGNJIRUooOaaREXBzW9/O/1dfex9cgeHn3wemWVQMNj+uXvYHsdQ6aZkW8h6gyQJqXT3MJ0HYAmWrTuLrNoiUgK7GZJLTd7j03/1VWw4ZwtP/M09tKYbOFKSZFGn25wB+A6kOU7sY6aKeCGivHwlV1xxFdWj4zz71ON0DfURCoEg4/HP/T1UWwxoj5k4BRcYWsHaDRs5/p0nCcZmeTR4FGPFIAiFDgLO23IRX//852C2RrznFNu+/Sz+kgGCNISBAgMXbmJZdw+7xqbIpUJpia0UUknajoC+HroNi+r0PL2FMtZ8SKJTzJmYdL5KiiIdPUbBd5mdncR2PWSzzYknamAERPNtHNvgqtuu4/4vfxWW+SBTDjz9QxAxYTvBVDEl26aUaCLLIqq2MFd1k7YjjMwkiBJMFIZndQQRndOu1cH22feFr0G5TEwIhSKEEdIvw+AgDx07Ao88AqYBWc6tl1zG177/LTA8Sv0VmqZmYGkf8cgEBWGgdIwCYhQ4Jixz+W5jmBPpXCd3ayGEks2l127h0QfuZ+Ott7L/Y5+gN4N2O0KZJgiw2wmJ1hgOaGFgSINCLoiDFBcf0y8SKIu+3uU8/oVvQGpx8dZbOL5wBq2/uYfq8GHoc/nKX/4VKkshzChrhyDRxKmmUC5TSxZAx3ztLb+FCE3oLRDTYNlNF/HCPV+HZgscRXa6SydIhFa0Gw3azQWwJWno0FMsU7ViKPoc2rufmcefx7AUVjuir1jArNdwXQ9TZWRJC3p6qFdr7H/gQdy1Z3HO2hVs//Y3od3ilk/9EdPpD8haMbg2dsEhTGs8/p2vwt5T0F+hsGk95YsvYHL/ERJDgGUiix6t2QUqGASnpsBNITcwFczOTHeOq0KhT7tAF1lkkZ9NlFIvvdN/E3bu3Anwr2YvAZxxxhlUq9Wf1JD+RRZNnz+NvIQLaXHWF1nkJ4wwQFidW2Tna5jldAv4wRe/wFC5hNWOaQYu2irTihKyIKJiuqSjU1heBXr7oGAjKzaulSHsBIIQYoudf3YP3eVe0lKLwmBGFjfxanWWZxZJvc26V14LV54HvT5mfw/NuIHV44MrabuaVCpUGCC6PDgyxuFHtoEOyaOcgvLwzQKR0rilAqVSEU9LbGWQK2g5Bmalh5WXXMxN730HYdhE5RJb+iSeSRw3yKRF0o4p2EDBINIpKHj9q1+Hrtc4NjnGtZdd0mlLLlOWhmCPNRFtBzUbsOrnbyPxLfAkViMGGcOgQ/+WDVAuQyogShibnOQ1N98K0mT1pvU8+b2vsRZJX5pSwsBIJZmwOfO1N4M0qCQ2fj3BbkWdMiGlMGxJFrdApJ0psyVYCVgp4YljPHvv1xgQEgb6cNcuY+i881BJTl/3ALaVIlSbPIlwTBPbt5GupG1A2mWj+x0IAohjRo+NsmN8jk1vvINlt72ZPDfQSKLmNGWVsGX1euphHWTCytUreP7xJzENm8y0yPHAKJ/OTJnlzCWraAFzeQBJBoZB2uNSPmcVV/7fv9lpsy1clLDIxsbprQUst1zyuUkGShVapybJtSL3HXLRaUOf5gqkSZwrsoINtoFbC3FbCUQhbTNAlQ3ysIk/38arJRSClN1//knUD36IrJQhaROWPOYcG6NUQUQxRcvEx6AdaZQv0F2SumphlUqEdUkxL1GcDzp1ZpU+Th48BI7Jez/2R9z4ex9AWxC7mnZJ0fRa6CSlR5oYQUi353eew3Gg2QZpQysG6WAZLjLTyDRH5SmtLCNxJMp3SbSJDGzclkUsupnoKzO1rEJUsSCF2rN7qe3az5G920mTCENDWUhoLICOMNtzpHmTwLNIK2UWMuhp59hBxqnvfZ/ppx7ByZtkyTyiYkHJZxYYD+uYq5eRa0XSXSHr74GCDUWLNe94G9g2Z7z6dbSLPWTC5pybr6PaZfH84d34po3MJX5ocFbNgrkqKIUfi07ejm1w+Xt/iYlMgW/TqNXhrCWsuvwSSBRdyuLZe78Cs9OwUEXOzeLKlODkEeivwNnLWX/Zheze8TyFQCPjlDxo0+t42JGGy85j4y+8HlMboCPm4yqFZb14skzZ6OZNf/kpGFwOXWWczWeTFLtoRYrcNLGSBDKTOIdAaE4e2gX1Give/nqYme04FKUC26HPAJIEX9gIFAPKoNWIoNjFXOKy9KZbCIplSj1lYltQszN0WeLqnOW5ZKAeIHvKYGnqiSY2PCgUWb18IyQ2lBww2nz3i38Pe/bjJznNcB7aNR65+4ssw6JbGITkeN1lTBJIAyhpTjz8KBydgrgIkUVXnLPv//scnBpl/599GCqSmpVRwCDvrTCVZvTmPktkD2busjDQxZjKURj0U6BKzHxYB1OyacNmqKfQjBl3bZyzz4EuDb0KzBxz3zGcsRn8BIROaBmQVgrUs9OhdFNzYGn0gA2NJnZi8cKffgJmR0GFmAlEhkHbksSGROrThyfTBCFRVk4zaeJbBQibzPzjA3B0jFw3saQiT0NmOy+bkl+AIMCenmb3974B7RluvuFimq05aOdYpUEO3fsN+sM2g0LSZ7qEXscByOER7NzA7eqnq3uQyV278ZetwCr1QCpRjYRqlqEtmyhsQNiEsEGStlm+eikYOUFYJyUHOh1Cf9S8YpFFFvmZ4aVcSP+dIqBfFI9eFJP+JYaHhznjjDN+UkP6F1ksZ/sp5M5jvHQ527qXb3yLLPKzh/hnW6fcCQwh+O33v4/m/DwF00Yri8xQGDrHyTWy3abkV2jECZyxgt/8849y4Mtfx1KKxEzJlYFMDAp1QZCEJKpGEqXYKWilqaoIt9LLiePDXPHaWzmVhoBCz9cxkwxTZyA6XaiUEIyfOAbNHKUl7/qjD7PjK9/FsSXVNIK+CoHKidIE37BxlIGhJFpLcm3Q8kwSqak22+iJGoVCkcA3OP/2NzC1fR/dXT2kUYNYgpIG0ydGOTY6Tt6oM713F6fGRslqNbxMk0lJaFuAhcwcLvuVt3JsYpjStVfiHZohLJeg7JH6LsHhcdRCE6SmeeoUh57fD9U6J/ZshyMHUNNVYjKavkPsWuQi50C3QUyKG9sd8UzkZKcTzy2lMZUGodFCk5gaXAlhQEFa6CyjGYdkKiOQguVLVzIzt4Df202jOY6WGlkuErdC3MzAziReKjDDDDPIKZV8CkuXs+SSy8hdl0OPPs6Nb/t5ymtXcurYfiJSRLmXo9Pj0NsFRqfddW+5i9rYKCE5RdtDJZrS5o3E1SZPP/IIthQIoZHkSM9HBS2m5ueYLxW44LU/x3itSjY9hujqYm7HXtTxCcw4Q2YJtpQUTIew0cR1PFxtUsxMRJjiGTbtOAFpMGhVUFphdPmEzRrSMbFyhZVIDGkTGyZCOijX4dxzNzITB6xYvwEQLIydolIuEyYBhjAwdZFUBKQqxrIE5C5au2TSILZSIKLUyjn25E4YHufwoZOMbt+PtxBTCTPsMEaqjFKhiNImhucTJinaNDvOIjRSaQylsXKB1ALdsV0g6ASeJ2lGnCpct0icCbTTQ9JfhOvP58xXb6WWp+ixOaoHjnHi4CGC6gxGfy+hmRPHTYq+C2GEJ8FQEoGBwiQXBplUWAq6gpS+IMFphxSVxIggnU4ojDSwXYfaQ4/iD62kt7+Pm97+C6hz11G84EJOnhjjrIsupz91mDg0Sr9RYCFtc3DPLrKpWURPmXrJJHYEs415GPDwDZt2rY1tl0nbKeMHjpL39rJh8wXMJ23Ove1WTu0+QHL4OIVU4RmS0MiBFO275I0WJdNGSIlcPciJHc+jj45jphm6v4Kq+ARxRI7JujveTCIk8w8/S5YFIHPqcUy5fwkz9Rb7vQQee5Tf+uM/o6vcxaHHn0JKEykEls6xlEJJgcJg9oVjrD/rQpaft5mRB7fz1o9+lL2PPQv1ANuycJAkCAJTUUoVraIDhsMtt72VVp/P1OFjZEkNN1XEhgFonFzjp1BVAZe85y2MGTlEmlt+7dc5Vu7ilpUbUKemmD26BxxFPFtjXe9SJuvzeFuvIJscI55p4CtFoFPo6yIOQwYyg4Jh0Upb/MKHP4yz4Uwmnn4cPI84aJI3G1TSHNfy0K2Aol8hDtrU4pjC4ABeJEhNk1oWcssH38+x/XuJg5R+DKq6jXJzcCSu7TI3OQsiY16ERH7OCkNQ270fu57SUyhRD2uIKKWAg//m6wmWVBAnpnBkTLfhE1QK9F68iWR0Dtlu4Vg2qZFSkTYi7fzOKiHQ8nSWkO58Z4TSyNOCTBgEnPWLbyJ5/AXsTJGUTCrVECdNyTybKEtor15NvFCjuGotweQ0DA1xaO8+FqbnO+J1oKkNH0AFMQqDSBpkxJDG2JmmYLq0GiHNapX+886i/vxectPghre/jRPVOexEEQYhypFc+/Y3s/mSKzh55Cg6jvi197wbv6dCDujTF2gMLf6nEMJFFlnkp5277rrrJUWk973vfS/3MP9dLF26lM985jNMTk5y++23/y/lbB/5yEe49957+eVf/uV/0630X82iiPRTyJ0n6Njh/43tQ2e+fONbZJFFII5jTNPkox/9KGmaopXClgpJhqUznDzHlTZ1BaljQ18Pw8Oj+AdGSQwNQmHmBgKDlucRtpoUpEbpHFdKWn0lsv5uknqTUmxz/LltaJ3xqrfeTnXHQWSzjY3CTTs5J5kU6Ok6GCnJ7BTjO46S65xW2EA7EjVQgd4KpDFRrDATgZWbeLlFO24R12eZPXQQ1QjotnzqrQbK97jihps4cXSU+tQ0pq0xbBctDXSaks/PgVK4BY9oaoKKEPiJpNp9ugscBjI1ODo9DZuWc/7Nr2b8O9uxWgFZo8m5521i5MkdgACdQJqxzKqQBAm5UtDSlGKLyDSJLI0OUxAm8fBRXv8nf8gL995LjkBqRWZ0HkYosE67orWATIKZ5MgMYkMSqoDMMTtpzJNzzExOQ7vJlltfibFkCdWpWXSs0ZHG0gaGNjGwAImDy7znE7SbNIRiw9pVjG17nEOH9lBLm/zi732AHS/sIJYhLOnH8bpxGxnN4TEarRrYnQWm3Yop5HDjr7+LV7/2Np7+6lcxDEEcBUiVo/Xpa/JhTDzbICl77znWEAAAIABJREFULDv7TM65+TpG7v8hXUFMOYooK5MaGXbBRUQRfrlEo9kkV5osyzDdAvNxwDWvvQ1VKjG3ME87brL0rDXUq3V0lOMbBVra6GR8SYnSElot6kEb6dlcefEWzly+kpGjx0nIibOQtFLivDe8genWDOn0BN2VHmRLIZUBQpGZCbZKsWp1KrFF75KVzOw7Sldq4NVDegwbJweVpSTdgyyEMa0kJ1IZdqVClHdK1QSdxTACMmF2FsxCo4E0TkFrCl6JVqOFv3SI/MwlrHrd9bjLuhkdOcHmgeXM7NiHG8ekWYQoFchKQH8JdEbSamEj8LAxlUBoE4GgbUFagUQoSpHqiLTL+lnwDFpJiKMcukLB+PHjnL/lcrZeeRXDx47x7K6dZAK8HGrfeYCFk3OMPv0MwnVJ5+aoN6tgGPhKErbq0ONAXxEUDE41sWptSlsvxz5nDa1GDUQGxSJzX3kY5heYefAZktFRsCQ6SzESRUQAA2XOf++7qO4fp1ubiOYUIk5JJqaxHY+eoSXU27MgNcp3yZOMc17xKoIwYOrh55DdRbQA7Xu0wjrnXHMlG2+/kZOPbeO5R57k0LZnMbXASBJMNAKNkgotNFJZ2M4gU6emGNlzhOKmCzietVkzsIK5kyOEdkojTFCWJDViTBSRa4CUmE6Zgw/dj5AmeXOB/sxE6tPlitKgaUvkqkG6rtrMVG0OpqqIUpGFR59m3zfvo3riEI4jsARkUUaY5ay4+jI2XHU5o9u3k4cZwrRpo0hkhqEkXpbj5ibSLnBYR5zYvxNr3Zn09HeTJglJlhImKUMbz2e+GRBFIWrNSrRUpK5FJgzqSRv6u7D6i8xt30FXbx9BY4rMUuR9BcgC5vbuY4lloBamaR7djUFA9PxxkrkAy/awLIeABNHXS6vV4rc++WFSlTD+yFNUCt0EjZCe8zey+dWv4PjTz6OFSWpKiGLM1EKh0fLHWovUP94sDebp1oXOsqVsue1G9n33UfxykajdYrXZhZkpAp0TFopc/ad/iL3hHAaXrGFqdBpmqyBMbn3L2/Asj4XZecgCEq2IhwbI2iHEKQ45mYLcAZ0Z6Czlll9+KwcffgrylMtv2crew/sQ1RZJECJKLq951x1Mz1Y5/NQzqFzxoTs/iDotSHa6s4lFEWmRRX4G+fjHP/6SItL73//+l3uY/y48zwPgE5/4BAcOHKC7u5v77ruP973vfdx5553ceeedbN26lbvuuutlHafQ/538XYv8uxAPvfQ++sb/+nEsssgi/zpZlmGaJkuXLqXZbCKFxtBpxyyoOs4GTJepXEOlgnXRZipuCXHfD5ktptg6xEkN2pbNlb/6Hp6555t40xM0VYviiiW0ZmfBcVi+fD2zuw5idHcRlm10EtCHT2NykpIp8DOoupKWbVJsKYKbL+DMM86i+XcPMukkyCxH2Ypz3nAz5aF+tv3D3YCP29JYiUKmOZYTMZe1IAPHLVKWRVKgFoWdNus5EAc4ukGaKZRWSNPGMQ3CepOSZ5OGCWXTxMkMxoZsSAxIJVZqMbRhPfNvvZTg/qfg4aMMGYLISKn1ORQiCNOYno1rqU1MMzQd04jrZKbDYJbQQFK1TJRrsdSsEFRr1IjZ8pZb2ffCTpKTpxBakVmdeTEy8NPOYiqTEFhQjDSW47LgpPRdeC712SpqeJpKIljIQ7CBgR7EXIYOIxzbxUQS5ynKMlCWBltAuUjpoi2cuXwFuz77acgSKLidXJZ2G7ZcCtOznPOBX+XACy9wy8A67v/jv8D3fIJgHmwFSlEJc7Jc0h7som/Tecw9/QwkEY5tY6YZiRJo0wHDIItzKLngWyAFZluxItCYSU4jD6j6gkTFGBbkWcaqqy4jDGNmjo5AKjudpDas5dzLLmXfl74GYYsLrrsWN8zZ8cTTmLlB6LpQLrH8Na8k+sHDzI0MdzJ9PBPqLVDguAWUJaHik3Z3wSu2cunyPia2P8fYl77DoOzBymy0UORGSG7E+F6FaprSyHOQslNyGAWgNaYtQaRkmQddfVCvQU8X1KogNULlWHnWEZGASJZO+1lyDJ1QcBza7TZCOqSJ5ozLL+XGX30Xn/6buzrlQEh44TjFWNJfKBJLxbQRccsH3ktuSrZ950FqB47ghSmuYaGFJDRMMtlpJggKJ4VyDJEJzR4bZM6l73oHC8cnObpjDxwcpbtUpipSUDn0FFl7zVXU5xaY23sMWY255s7foGugj2/+wZ9CfQYcm67ZEK+7i9v/5Pc4cnKY7//px+lC4Zg2/m3XMzYyw3J/kPO3XMT9TzxC/PxeuOBMKjuOISVEhibSOdg2F7/753HXLuOJ7z+EuXMCPTHFClImaaOdAsIwifMIzj0Lb8kgS/uXcHz3IRgYgpFDyDmNECF+X5Hm9AT2GWvwmpp6twFHTuGbRUSek9YaFE1JliadOZZZp2xSmmgcNv/mL7FmYCVznsUpL+fEn/w1JCGv+svf53u/8j8QQYSVtfEU1P2OEwnZC0kbB43TnKVbO4SGSWxC2zLJXAN0Br0+XVdeT23HETavP4fdDz5InxLYOmOhOUcGFAoujVChlw52yhQLPrIZoaIQ2dOFSgKwXKxaStn1mW/WOmFnhsHVt76KQ/v3MDt6HFwXXIfb7ryTnQcPcGp2mi3XXsL2D96JPO9itvQu49n7vgtRBHnCoN9NoZ3TsnJmjKiTByfAziRD2MRhhFGymBApXQ2LwPBY9q5Xcepvv4Hf1U2tuw1mF3KqgRI5+DZMJRQtj/ziM1l581Uc/uhnMcu9ZK0GZ198PocffgbbzlEyO52J1CkBe/G+PH1fC0nTd8EMKIoeQjMnzxKG6hBmAfmaAVoLVcQ734oeneLs0gAHv/ZtZKULlUes3rCWk0cOQ6OFjyAo2VzxS+/m6Xu/hXtiCi+tEfia2AA/LhMbknx5EWMqIM/ijppFTiH38LXBbNyCZV0QZp0sKM/nnr/9a15z260kdMRhgYGtT2c2LIpIiyzyM8OqVatecp+RkZGfwEj+8/jd3/1dPvKRj/wv/3+xa1t3d/fLMKofs5iO89PIS7iQMF6+oS2yyCIdpOz8/IZhSJZliNNttEEhT5/Mxy+mMkuBV+ziimuuJTQNsAwSKdAClISGJchEjvB88CTO0CCYFmiD6669lmJXF0F1AT3XQCqDuZkprK4yidEx1OQCkArXsrn8mis4/+LzSKImwjJQ7TamtDm0ex9hGINjQ9En92wiz6RpSmKVURAGnmXS4/ssNOdRWiP8QiebptkGwyTLO1eDHNOmaFlE9SYmYEuJAYRZRi5yyBOsOMVPU4SIUbPTFGstGJsAUsK8yfKhpWAYtBt1lIRzLzqfpatXkqMpGkWMPMfBpG2ZHfHCNGk0Q1IyziwPsf3b3yccGT29WPrxvKh/YeGhlEbnCjyX9edtZOmK5UilsXM6fc9tB6o1PG1SLnahkhwlBBk5SuqOgDPUDauHaJ4ap7RkECR0r1yOmG/hhTHksHHVmbBkDWGtzdbrt3L/V77AJa95JUG7QdEvYQY5sp1gOTZtmUIUM7d3b+c3XQhMU2IYBpYAshyZZki/gDBcCBU0E7KFKvNxmzkR07Q00rUBTaW/Dwy4+pU3cen113XODlQCpQLMTrNm/VlADo7DrocfZnp6GsdyME0b4hTSjGJvHzfccAOO7UAYdfKZ/AIISaVcJo0iXN+HSgln/Vqe/eu/ZuyhRyj39XfeZwm57MyHFjAfNWjpuCNG9ZRA5rBmORQ7AkFmaM5//esor10LpsE5F17EL77/ffzzU5tOkD1SoIREiU5Nd5pmJInGc2y0zjl57Cif/vO/6Iz5+CicmgdhYQO1Zp2FRp08jrjvE3/F/Z/9HNW9B7AwiRNFLkwSKYlMfiRG9regEnXuJ4aETEAzwlMmqcpBJfiegyEBlUJPGeKA49ueYW7bNmi18B2b0JXsnxuH+SmwDTANXMMi///Ze+8oua7rTvc756a6t1LnbjQyQAIgAGaRBHNOYrCyLFOiTEmWhgq2Rg6k5Jk3lKNk2Z5nW09jyxrakq1nmUoWLYpRzKREAgQJgsgZaHTurnzzOWf+KIj2jMem17xny6b6W+uuru51umpX3bqn6uyz9+/XCnnwW/fywD3fojo4TCQ0sybh0Oat5PsPcfiFbfzN732e5OAYlXPP4KwrLiEWGULnWEpj+R5GJxweP84Pv/8U7DlG3mpTLJdJfIErLALPJdcKa8li3nDBhZx35tlUPB+mZzn7misZvOWd6KhbudY6dASqVc4672wax47D2CS0I/Jmk87sLGXPQ2BOJCr+TgDVCA1DRTact4GeosP41GEO/e5vd5/vkhHmJo6DzpGm6whvRLdSUCiwLAvaMUm7Q29QJBMSJQEkBgFSsvLqq6EWcv0bLoaDY2z73gOgU2ZbM0y3ZrFENwdsaYnRGqZqoGyoddBZDhL6Fo9QXnMSBB6ZlTPnKCgVEcbGVRZ7n/whM7v2doPTBrSmYzSmWGTxGacTDPZDpZdzzjyHTjsEJKJYwg+qRLV52mmd6TACvwzlXihWcR2fPNMowFGSPtvFRqJsm3VXX4JGYmtgdJBSXw9uq8OoU4FWi6BnAOn6RAcO0okTAApBEfyAk9ZtwAsq/6zPKGGgIGyQLu00QnUa4FrMq5iGAHf1UigXMY8+Dk8/y64HHsKxLUR9ngI5h7e/ALVJcE98ppUrLF63BqoV4jRFGIMlu+VQqc5RWQZz8/TaDgPFCkQZYKHDBBOn2EZArd7VbRoeJlWa+757P1r93V645PUjrrvAAgv883k9aSL9iM985jMcOHCAO+6449Vjy5Yt3HPPPT/2BBIstLO9Lvn0GK+tibTsxxffAgssAEoppJR87nOfI89zMlsS+jYml9jGohEldBBQLnH+re/hwAtbyAeGmNrzCqOXb6J1cA8aifY9puYn+akPfpiXv3c/9FW47kM/x+4HnqLaP0qWJByaOoQrLPpjTamd0664ZHZOJhTSSCIHjCUwcUpzUZHZmWnmNr9MnoaMCA87zwmjNlN794KR3HL7R9h75CjJ9DhmzQqy5jSVVOErQRbnpAUX49roOMdImzNvuo7JA7uxNTgSLA0iT/ClxLEl7SjF8mwio8k8gUYx3E6p6Jy6iegJO4xv3UKlk5OkHYq41FoNEpl0K1Sk5kjcYGR4iPEdu0AKOi7M5in56UtY/e63Uju0n1RIyqtOYvbYQaquSyRjHNcjy9NuIkblFPwiVq6xEBgp0JbAlR5hnqNFTmFokJLnM7f7EJ7SKAvyPIXhPrJORIJCF33ec/uHeGn3TroLZs0b3voWLrz8ciaLRXY/8SiMT5C3OwzHOVac42XQnA1ZtmQNB776VQ7u2AmLhhhetYRUQr73KD1Zgm9gTucwUuGnP/4rrFyzlr2bn8OyLZJWhGMJbAS2kFgIcqWothJ6w5yBOMNIi+ZwQOylZNUCeb1BUO5Ftg1xkrLv8DFmxybpjM8DHpZ0McowOrIYVS3RnJsDAypVtOsNUBIlLYI1J7H2gvN4+stfIa7P4xZ9VJ5R9AqITEGeY5UKGN9h/Xnncfx4C17aCWFGOTXktks22s9sVKNThTCQaAGOsDDCxhgNrsN17/pplO+R25J0fJLJuTanveENRLbNsZe20gpDjNDE8/MEgU/BLxBrw7Xvfh+bzj+POE6ZPnIEW0o8S6JzjWW7qCzD1FowW8eNwGunVDONbSDxIHclypPQybATg1QWWTPGKZZJhCAJXN52+22cf+O1vPjAg6xpCwpOkbmqSxh2KMsqhdjl6CPPMbvvCGSaIMtppR10yQJPcOW734VWhkarA2nOqWeezq6sxeTuPRDDx+/8FZYuW8b+J5+jlSVMWSkrzjyVqV37sDoxuWtAO2A0o+dvYmjpUmoHxuh5w1qsZsjUzBiqHZJlGRuvupTiNRcytmM3Q4lHe+v+rruib2jlc9iOT6sdQdnntOsuY+szP+TwSzuYfHYbaMmEE9N/xloqMTT3HaS8eClnX3w+rxw+gNg9hmom+I6NqxW+lBiVYoxGSDAWGCkRAqTQqE6d7bu28NJff5PaoV3QSWC2BVOzHH/qaXpbGlc66CihOlylNdNh2eKVnHPVtcwemwFh6HMlR3RMlCtAkiUpN//8R9h00UU89+0HeeWRzdi5Q+AXyYIEZI72JEY4mNzguEUyy8bSFv3Ko2wEHR0jFg1y6wfex5Zt21DNBktvfRti9SgnXXg+My+8TJCmpJ0WrmOB5aAQ4AYcevqHhLGi8dBjHHn0GThQY+LFPcwfn0S3GpAm2IFPJARt1wYv4Mp330ajGRGNz5Jrh65knUOiukWLoeWS93occCL0njHCuM2b//MvMfv8TsKJGRxpEyYZmfBIcgVVl54Nq2jsOEDaaDG4bCkHpyZpT8xikSH+p2QeFCtlWmEHxy/g+AWiOMYXNrHjIIMCp7/lBtyBPuYnpqG3xLmf+jBHvnMfcj7CjxWL4oxip0FFKvK8TUKIUxDYImPY76PeqHNAZaipaegk9DiCVpKiCzY6qHYF1dOUaiOGKEW7NrnSlDKFZTIKbkBYDqDawxmXXM7Yyzv4/c9+lpGRYSy7uzsqEEjRvbVQibTAAj85/N7v/d5rJpE+8YlP/LjD/Ed55JFHWL16NXfddRd33nknV199NXfddRe9vb1cddVVrx6jo6M/7lBfZSGJ9Drk0+O8dhJpyY8vvgUWWKBrRyql5Hd+53fI85zUdTnphhuYfnkvVtCDW+0lcSWcvJzCqpXM9/RQe+6HsHKUdRtPRU3P0pqcAcuBeodjRpKFHWi22H14EiJFMjXDZG0cZISVCaopeAjqnuz2Lxjz6g4/xqAKFu39+6nv2I3vF/EtiZckCBSJUGilIVNsf/IZsqkpWDzC2z78AXY++ThBLHCVRAlBuwC5NPS6PiqOOP9NV7PklJM48sI2LK2xDFhGk+Y5mVdA+wFJUMR4AXmxjMlygr4BZjotKgUH33aIWwm2BYlUOEiUFGQeWOkJI575aeaOHKNsBShhiH0DAwG8+XLq5QL0D4Kr2PDBn8HWiol9O6DHQuWacl8fl7zxOs44fxPbN7+Ap+Wr1WC5hDBPsQb60Lli/vAxpnbsRbgWYRphew55lnLhNVcxtX4xqj4NSUhpaJijO/dAJ4Jc0NhzmNq2fdgFSXN6CiZnIDUIpfBwKHhl6s0200cOQrkCR8egGtBo1Gnu34/sZPQ7FZSRZD1FVJZgW0UcpTl+7Ah5o8nQUA9ZHAMCI7qLKCGgmAt8wEcQSUGkWuBKbv3VT3Lk8BitY5NYEeTKJWtGZLWQQSvAabQodzLcdsTY7v3Mjo9Bbx9YkmRqGuG4FG2X3LVIJ8eZDtu0d++kUvJJ8hQsiQ4jXANF1yUzijBuM3V4HHbPMpTBolySNpt0+qu0R6osf8v1BKevoT1+BLsZMxBqyrFE5hKTC/Y8/Qz1YxOkR6cYcnrQluTI1heI5+fA5NTGjxHPzeIGPlGzThRH2D297Nm2k5dfepG5iQk8x8XWGmG660xDN4fo55pyqihlGj/vWofHjia2DbnV/RI6RAGrFSGFg/JL5GmMCQrge+x89BFefORhqFZIBsocdTuk55zEyjfdyNS+g6S2S49xKLseeZrgmhwTSPLAAr/Akr5B9jz9HGq+jut5RChWLF2NU09xDk3x2Le/wc4tm6lUqrRcuPzn34873MfxLVuxwxjVGyDrCmvNatZccRHj9TmiffvpHD3M3NbdYEKoVNG2Q9N1mN61g9ve91GCqSbtXfuJVQclIkpXXcBw4tJqNNEFyeTe7ZDkUO9Q6ORIS6JkRrMxRXPLLvxMEnVCju3ajjh9HcUDdRYPLiIJawjUq/pHRhg0ultpBmAEXg7lTCHm2yyOBLk2VKZajPYO48UZy9oOkUqp5ZqBwUHG67NUeoYZWb2GZyfGSI5Po1xNLDIyJ0MEFRxhIVyfXQf38NxzPwTjQzNBV4qkabs79y3qY+P11zG5fR+WU6YTR4jFw6gowUk7CJ0Sl7rtlVu2bEXNdCCJGb35Wo7PzjK8eCnTW35IamlSO0dbCsd0XezK2iKfDXGOTaNbOV6Usz4v09vJqcchF773HdQdi87EBKZsU7jmQjZsuhgrVux/eRdGCSwstJTkjoWyLJAWsR1CYMFLe8Fxocdh90M/xJ0IaS2vEi7ppzcPsFcsYXRomP71K5iZnSDbvh8nVbTaDZLABW0QSQfLdPXCjOhWYCpbkqUxulig026gXJeRcj/1xjz9J69k/VUXs+elnSS1sJu4txOYCBmZnKWSKwIMuaVILU3LVjiBj0xyerwic1Nz5MOLeNNb38GuvXsZXrqYuYMH8S2HNDOceest5CUfdWg/5SxHo0lRaMuiolx8PGIJcUGy6uabmZ2rI8KEL3zuN3FtG4M+0c4mkD+a+BZYYIGfGH73d3/3NZNIv/iLv/jjDvMfpVar8cUvfpGLLrqIgwcP8swzz/BvPUWz0M72euQ1EkgLZ32BBf7toYVgzbmbwPFpxxkdBQjJ0k2bKI+OwNHDUCmz4Ybr2fzUs/QXKziOi0g1JJI1S1dAtQqpgR2HwEjoLUM1AM/HMppMaFLAyYEMhO5OBp6CUgo5qtv21ExJLU0ZiXEhdw22NFhaYeUKmh0oVSDNidstEBLz9ycYCzA5SRySpR2efuZRJqfGusKt8GqCxg2KpNIi17r7f8tXAQVYdQq9l11MWvJxCGgqQyyh3VMEr9AdK7r6QJ7SFDINWJBleJYEc0JDx/a59PxLueLs88EKYOkoY0mb6azT1SHyCiAEUZKwdMVy1pyyDtL0H54c1yYTBjKFlQswEoVBWRrbtbClIJqYJhCye5+54vnHn8RTILSm13JJZmaZ2XeIse8/DgcOgRa4no9wizSQzGQxTl8RdAjtRleX5/AY4f4jkGTkBZtOxaPuCiyvAInmpSef4PEHH0RqA7rb3qOFfnVRqAGEJrE1HalpoEltjQiq0MnY+vgz9PT1Qm8PiSxiLBvQ6MAjzFMcYWNbEldIChLwSqxYvoqfevvbwRYYC9IsQrVboHPC/XvwfZ9M5eRZhi0tVJp1k35pdiJOA2EE9XmisH1Cl0gSJwlrL7qQZhiybuUaiNSJ1iCD1ApLGWxloFTGqVSxCgFF6eArBUnYPbIUaQksz0PrHDwPbIdrrr+eZRddDGE3wWbbDuLvCQn/CCNytNBoqcktTWppErvbYicMuDkUHQ/f9UhUjspiSuvWdls8pYSgArKAJ2xqqgUDRdZdchGyr8qym69m6OKzmDFNplSI8F2yPCGNI8hzmJvnqW/fi9UIsdsJphPSidpse+EFxl58ibmJcfAcKLgoDDoMefQb3+a5r30DHJukBwhDhrwS9itjbP7S15l/6EkKG9fBymVQAMpVVLOFSRPCI2OgXZ5/6DGefuZJTGCR6wiCApdecx2DPUPYSnaT1GduRA70gmdRsAV5u8npa9aDBt9YFLSFboSwaiWnXnYR81Gb+TBECU68H//uUEZ3r3etQXV/CC1xM4ntFGg3O5Rkmf3NeSbyhBiLlhdgDQ0wPjcHw700GnW2Pf8cPevXdtt9ly8mjNow0IPJUrTW5HkOWczIaRtPnOQM+gJOuu5KhLIZ2XA651x0GQib1LbBczn7usvB1hgkThCgPdE9NzNz9BsXcovdX/06zNV55dGnu/OQ/NH8bUAovIKFySMCW5AnTYSOiW1NPWmQEmP5Hhdefjknn7IehA19IwwtXk7Bs9j6g6dR48fwjEIaRUZKZnIycpTR3cfqtCmYrrA8aQ5zLRzpsP4db2LkojdQ0znX/tSNnHvRJpJOh85Tz0CWMVKpgmVxzhWXQOBhxP/8VVBJiOIQPIdcZ+BKsATHpyfAsin3VHn+hS1ULA9qEbQy1q45DeY6KEuSWoIGOXXbYl4KMgOJFpB75K0TjzVX47kHHoQ4YsOF50LRxxY2SI8lZ52BtWgIY3fnLYUml6B0gvZsMlsQmhx/zWrO2rSJMM9xCx5xqsnz/7WFbaGlbYEFftL4997OdvbZZ3PVVVdx9dVX8/Wvfx2Aq6+++p887rzzzh9rzAuVSK9DPj3Fa1ciLfrxxbfAAgv8w0qk3POZXLKcxaOrqB8+jhaCn/rVX+L5+/+G+kA/zoqV5ELgjQ7R/MZ3aR88ynClimil2LHLolNP5fgzj0MIy5wRGiZk41uvI6xapAfGKCaKxIbQEZQTiyDtqqe6WtCbGcpaM+fDypaiR0vmPEWlEdEJNHVPo43CSwyFJGfYq9Ku15Aa9mze3F08RRau7rq8RYEB36UQ5gxXqxwf283Ugf04mYNlTuhjCGhlCl0odnfVV5zEz95xF9umOqx95zvg0tOZq9Wxto8R9/eSLxlgyTtvYnH/Slo792KZriBrfwxFBe00QwibYtK988y26JtMmZtvM/PkDjovHmLNW28gy3Pm732A5YlFY65GwfdJW032T41zYP8BGrM1XC26hVon3NlUTwlndJQNIyuoHzrCULmXloqg4iIQFDKFOjxN4/gMspbQL4vo2Vm8XFOwLDp5TO4KMpNQwlCWHnGsyBUkBsTyxaQyJzMtvA1LsHKFarQYEj7WTJORvgFqMuP0d9xAXA6ojc3gpTbastBpSt6qU+kpMjfTwLG7VtcG2dVJktAqGDqBoVUWaCQjuU2v9jm29wCzk2MgBZVrrmHtO67HO3MNNd2B/jJt3aGpOnTsDqFOoSOojx9nePVyjuzdCRaYOGT50BCNVgNLCkwaoVCUe6uEYYeBoISlNDLv/q0Rt6AYsOnXP8nk0T3UGtMEfVVCJNqqsKZvCU//4VfoDw0RIYmtyYVFy7FIXAEjVXSrhujtoT41BWGTkm/jCoWLIYlCPNsijeNuIs5oJqOE0K2QdpqQ5Yhc4apuJRLCdPWrLEPiKFJbd2/bho7bFck2GBwlqCTyA0imAAAgAElEQVTQihpd97feKvlwP7d/8lMMr17NnkefpJJCbybx59u0Gx2Y6jD3/H7mXzlIad1JLDp1DcFJy6gfOgrNDsO+R04OUlBwCvQkgr62ZtgrE5SKzDZnoOTA2RvxggJqpAyWJjwyxbpFK2lM1Sl3BO50i7TfohhZtNoR1WIfoWNgWT8X3X4r0ePb6cw0oBFRPHsjV3zgvTQdj/D5PcwcGiNzNJ0gRSYhxhHsO3yMbPtxMpXgjAxy9Qd+mr1PPgO1GjrP6S0HhHuO0J6fpjQRYqI2Unosvu5SdukaQ5SYna+D6oDMuxVIJ15n6VhYlo0tHGzLwtguuqefSAlalSL5YImOstHXns0pP/ce9m07gLp4IzfcegvHDh0m1w0YXMJ1H/4wY6N9xJ2Ym37lo+zdvpmb7/gF9jz4NFW3hAJu+f3f4lBjjtbYOBd9+IMcXeRyzvVXMXvvD8iGexmbnqO59wikGaxZwSlvvYpDTz1OhiTWCasvPZf5sXHIJdVWjCcriPVrOPPsTRy//1nsZkgQZzh5hiMMxtJ0soyEjGzQR8mYcz7wNmZO6ac1OUfu2rSqDjvGj3LwlT1wrIWILRqHJji++QlMu4aXZ/gmp2BpElKMpUBqLDRVy6GgBW6U0BcZlHBItaEdJ/TecClJX5n2sWP0LF5E2mjy8gN/C67FQCjpkRbeogH0siHmjh6DZhPH/L2EswW4Fm++9d3s3rsTSgXwbKSxkLbN/LHDdKImzRf2s8bpB+lx7JXtVKYSWn02LcehZQuSxUPoSom1113P3Lb9lJwhknaGb2vSLCduhTgnr2LfK1soKNBzbQr9IxxeMcJ82kIf2EUhE8SOJCoICDziOCdUGZmtWXz5BRyut5gfnyY+eJhP3/Hx7rxzohJJIk4kxxZ2SxdY4CeJz33uc6+ZRPrlX/7lH3eY/yQ33XQTtVqNgwcPUqvVWLVq1T85fnR0lKuuuupfKbp/yII72+sQsf21x5hT/+XjWGCBBU7wj8yycadDb28vUkpCp8Cld/wqmcl49g//BKTNsvM3cnTfLpirdR3OemxI5gCBPZGySlUAn72ljOpdH6Zxx58iRvox0TTUGvStXklpw8kcfegHYElKq5dSTnImDu7F6q1QmG9S7u+lNjmJh8CtVMmbHbyCS92kLHcrtMOQjlR0HEnu2N3+H9WtfMGAMAJXOCQihLIP0x0qPRWaJqYQKQZjw7GyAkviiwpRSbH2uuvZ89Xv4aaStKC6/XRK4cYWsjLKsqvOY+/up6DVonhwFg+olwbRvQUW/dJHmPj9P8U6NkGgU5YODrFzfhxsGNAFiplLKgQTjga7ACevgIMTcOoiKGSw7wjVGYNyE+JWRJ9dJrEs2p5BiW6bXb/wyOpNDAbpO8xXAlh3Cr/wzlv5g//4i+DbnHzzlex78D7soA93PqSsYKpP4iWSoU63+KFWgMTWaAH9EfipxNgtEkvSsX1SaRHbHjfd8i5e3LaVsZe34I70c+ONN/Ode75JabKN1QyxfZ9pQtZcexGnbtjI3/zpV6ikFjXXARNjG0kwO48jXeYKmgHZS5A6tCoeoUpJdAdRLWDmxlncO0w+G+P3DHC4XePiz3+Opz7/31i55kyODRjyvTsZPfkU8sPHOXXjSWzbvIXw+R0MNhVHKk63dAS7WwEShlD0od1CWjZ9RtB0DemaxZxz0/VsfvhhmFQwEyLqLS78wFs5tK7E8W9/C8YyaCXYaU4pMUgnoIaNcZ1uhYVJIW3QVyiShYosKBKnMdd+4kPsPLaX9Sev5ol7/xa56yiO1igJiSXJpOzGaLtIaVFwfcJ6gyDwCekgTz+Fd9x6Kw99+a+Y37WHQrODTGKykiTzCtDK8YyLsCRxHmEVAnpiiySL6AhwRgdJa/MMbHoDb779/dz9l19B/XAz+BUYn4fcUPEckE1c6ZAl0FECVSpQGeqjMTcBeQyWxKoV0bgYz8Eq2KikBTZggT1QJm/M4W+6EF300Y7mTVdczviW7Wy+57uk7QaU+6De4cP/8VN84fA2eOAZNvziB6nE8IOv/CUUJBQ8qjtmaJFSKDmEeR3KFUYiwVxUJyvHMDIIe2YYNdAR0OgLKMUGK9MkQhOrDIwDxsbvHcLDwpk7TuRaRGmIJbuFj26xgvIDkskWYDEqfaSV08madGTG4mX9ZEnK9EQL5XiMbDyVsYO74cKzcb6/i8yEXHnfH/H9u/+CRTMZK3uGePaRR3nDbe9i7midQ995jEt+7aN0jk7wwt/eB4FD/8Z1dGamiU2Ly888g8e+9FdQ7gEF1/xf/5mXdmxn+m/v4/qfvYX7v/VXMFOnGBWIrO6k7OQCYQviuAMDRcjSrrC2FXDb536DP/u134JGzPJ6xgRtrv7U7Rij2HL315men6PoBshOQsvxuq1muQLPgB1DHDKwch2zScYpP/U2dv3Jn+MXBpDtDp12HXwLooQSNtWCphY3kcIjqFSZbjcJqmV8v0BtapylQwNErQgALTW2NmSymyxPjEPp5NWs3rCR5x9+HC+KECon0xHKRPipwTJdx8bISFzhEHQiOiIn67XQ7ZgBHEqpxU1vfQd/tPkx2DDC6nMv5sCnv4SzcpgsnuVnfu8z/NXv/yHmxQP4lo9MFaO2T7S4zOzxGtZtb8GMDhAePsTlV1zCE5/6XWQ9Z1kHxqghPEmepFQqJRJHYQvQcU6CTVYsQdSgLEMqCQhjk1iCsFigk+Z4xSJJq8mNH/0YI+dcwJc+/dv4sw3qO17GDSyQmr8zZVtIIC2wwE8ag4ODrzlmZmbmXyGS/+/8yJXt33qKZiGJ9DpE7HrtMeaUf/k4FlhggRP8I7Nsq15nZGQEYwyJ46GHR2HpAGzZgSxV0fEsqBzbcnGbLUIXelV317ixqJfKEUjQJFecyvkXX8nub3+f83/+3Xzvzk8w3JTU0pi0FGBRxVR8Pvirv8Qf//InkYMBemYShI2VKErVCnbBZ35+nortYbIUA0RxQlV6GGOIXIHybIwlyNIUobsuSY6CJM+pXn0ObqXIxL2PUnaLtOwML1UsigyHg24SichQecvVnHfpJTz8Xz6PPx8TeQlYCiuPGYgNNWxUXw8q61poy1bGcGmQiU4MS4cRb7se8+W/gJk6/blF6AuiQReilGLT4CeGFEGzx2fFeRdz+Q3X8We/8VlYO8K7P/4xHvzSl5FPbGU6mWOkt4e8mZFYNi23uxAWGqwwxbEliTZomUHQD26ArSDvNKBS5MO/cSdf+MIfwEyTHm1RinLmrZxC3rV1B2h4kNjd26UU/AwyOyKxIZY+ubRILJe33vIzNBp1HvnLu6FSQgQBZnKailOBZoRT8GhXLJKoAQUXaiGL/SH8vhGsN6xiz6P3U/X6aExOY5WKLKWXCaFJ1gzC3iOcctll9A2UeeabX8OLEtxUkNsFouXLCK6/ghUnr2bnb/82J3/oNqZe2E7zxZ1Qb4KTgUrAcggaMbnnUHB9oo7mpLPOZsPZZ/CN73wTog52nlNut+mgUCuWoNAUVpxM/PROrFzSj8d0JYNzRmF6Ao6FuJnuiq3nhmYWM3jKBqanptnwtjdx7jnn8NRX/5IDz2wGLOyefjJyKFldG/Q47VqHGwvLaJSAXHYr4bTSLFq1msXLlnP0+BjTe/czqFJmnBTKAYwshqPTkCgqWY5j5QgkVlxganGZa/7Lz1NwHO77tT9CTc4jz1jFhqsuxizq4ZU/uwecAuzaA9U+mJ3v/q4U686/gI0bN/CNv/gKtGYhN9DX09UTqlSg0waloB0ic41evpRVb/tp1ixaxAP3/DUcPMKlV17B6mXLuPeerzE/N41uCxAWlBR4FiLSmDSDsoBqGYRD0Rmmc+g4OA4M94FleM/7b6PVafI3X/mzrlNffz/64BiUC5Dn9Mc2c2GNaz/zCY7sO8CBex4kS2PIYiq2jW3AaI3WGq9SZbodIau9FEaX0Wv52Fu3E5GT9znMh7Pdwo8M8HyQXY2n60+5lvuffxQqEsIZ+jOBYwT1/irx8AjMxpz9lhsZE206//VbWEO9hLdtYlmxhwO//t9ZUeljzHTIqy44ZegYgpsvJnx6C0zOQ6MJjqAvFcxbKeQRbn8vmedjsLnttz/D97//fY4+8Th0GjA7i1dwwPgIfcIpzhiiJKbQUyEOm/SvX8tcrQ6tDEZHYXIaYSz8RoesapMNB9Bp4023ScpAdZDivpiPfvmLfPahbxBoi5Nz2Pb4vScyyS3k5Tey7KQVBKli593fxPdcIh0zctMFTD7+NNRisGKwBEiH4vAilJbEjQY2hj5pI+MOmSVfbVGVKABSrZFeiVBZSMslaXYYsLrun1pmhCoE1yaMkq4Np3TBdijGgtxRZGUJOqcSGUqxwC5VOSxCln/ywwz19vPSH/wF2ZGD9Gxcx5mnnc5jX/t/wfKgHVHCpa0i6DVYZ53Puz72KR75r19m8sUtsDqArbuhUoUoZc31l7H3wYcJSlXs+Tr9A1WOd5po10HbBXQnpW+gF9Ucw8/A1l2HvYYURJ6L0jkgWLRmPRNz83jlXqq1JlMHdkKmwBd0R0isH33eLsgiLbDATwz9/f2vOWZubu5fIZL/M1544QXuvPNOHn744X83SaSFdP3rkQVNpAUW+HdBnucIIbofFFJgr1gK48cA0I1ad5HoeQgju9+HLYEwknLmQgqJ76H7+jnpuiuZeHkPhd4S7kAZOilVOyDAAcfB9mx0HLHlxS1IJMQKHA+Mpr86QKPWZC4JMSUPgyCPc5AOuhwQWYZcdtdDrgI/F7h5V0fpR3oyjuWyfMlSLr3gIigVaXXaQFdHRv3oyZ4Y2xyfYNtzm0FlCKN/ZF6GPFHc5Ls2Jg27lQ/KQtsurUrXuWfZ+Rdy6shyBtadjFUp0CGFQgBxDmlOR2ls38fYBtI2E7t3sP2Zp7pW9WPTTD/3MunxGVJX4jkuYRiSS01q5RjZFVI2AuyijwkCdMmDSgBhjBul5NPT+FrC9DwvPvUMQhnKQUBQ8DCZohpDkHWfpxLdAqtC3k20KQGRA5m00FgYIV99Xe7/zr08++ijXZ2pWh1Tq4N0yNMMhaGjUpI8gYIH0qZQqRA2W4xWB7nyksth1UqaQnUrWKRFajLs0R56Nm2EnhKRhLMvOB8qJfoG+ikFpa7WSxQSPvkktaPH4LQN7Pvrb9A5dBTm6vR5PkQpSAdsQdpTQGU5WZh2dYn7+9lw8lqWLVsGYUTgeEgkQ7KMOjIFEzWuuOgShjadhfItsv6gKzL+0iE4UsfNNJZWYBSZlWOXA6YnDkPW5ND4EZ74wVNM12cxMsd4FlncgE4T5udA2pAqXGwsc6KN5YRAvK1AYpHnOZdecxUXXn5pV7rGaHCLkAIHj0KscXEQqqvFEycKBwssC290CNFfQc1MQZqjs5wwzykvGuba29/POz9wKwwPwVwDyy4iU4Pj+qxds5qBRYNQ9bt9kJbDpe9+D2ve+zMUzjoDRheB6PbIudigI6LVfbzUHsc/bTVUbZ549gnuvvtPmT02RkUWGMKh3zggfKiFeGGOyHIIipz1nls45aY30jl2kL5lw5x0wWkwcRxmx/n6d77Gk099H8ImqBr+ykEo+DC8iNNueCNhoYAzMMyKpWuIO5rMK0F/PwQ+bi6xtcA6IS0TpQkYhW7Xecf7342p+ISWi9s/SAfZvbb9oHutuICbI89ay0nnnNm1YjQJFAMs7eHgE1uSlZddhFi0hP0Hx5jatZdAFqi6RdxmRjbdwMoFSZh09W68AouuvgySBoOLB7H6esC1CAoBhdzQm0tGLJ+S75FGMabZgkKBR+67DxXG+EMj2I7bvdzyE1o7oqsDlEvAc4jzFATccNON3YvSs+DQQaS0sIUmLVpknoCxcYgzcsuCZYN4Z6/H8Tzue/h+6PPpXbWYsNF1LbRPSLX1ScHhFzdT9RzQKZFKYHSQU6+8BEQO/UXoq4ClKK47iYtufiOxNOAXyBF4hQJJkqGR3XnDyG6vrRFILHSucG2bPMsIymVAIgzYxsLRFnEnAyPxViyHlUvBFmRFH2XZ6ByMcGjqnLASMG/prrD/VIsdm7eSjZRBQH3LTh77ytexZdDVjXMt2o4GT0B/kdNuvpKDL2yj/eIeghDYd5RSUICoBaMByzedBQWbUBq0a6OMheMWMJaFti1Efy+1JMYASnQNGrSQqCzDMQLSHNfxmBkbg1YTJ42JW7Xu91nPQvFqcew/ummzwAILvH75966JVKvVeOSRRzh48OCPO5R/NguVSK9DxIHXHmNW/8vHscACC5zgfzPLmjxnYmKC9evXE0URqljigo9/jKeefgiO1+DIOJtufSuz+w+x/9kt9CWa+aoF2mVx4jOeRvhrTqL33I1MnDmC/ovvwp4xKIKbQn+zTYigMVCG1Om2tgQ2bl2hbMF7f/kj3P1XX6H88iSLTl1DuKyfsX2vIPY1qSpDQyjMsjJ0YmSscFNNUUlsBEopMtnV0kgtKJQqtIaLbLrkIp79znfxlSBKQwqJohIbZgsKbUkQPrf/37/Ftu2v8Ox/+wqlzEXJHCU1ggxPZyTSoBVoAhQS75zz0KuXkM1O0zu6hNpzL0J0CCbmKMuAlrY56yMfoNVqse+vv40btlAiQVUt7FlFbgEjgwy2XeJGk8SWpP2CoJWiTYpxJKlF180MiZ3bSOGRCs3Zb7sZ++SlvPBrX2BRZhGlbaTt0iGnQwwDFZwkw84Ni+0ibtsQ2dAonLDMTruJDSOgXoDQ6SY7hBEnhMhPbJarrkC5JRW+a2FSG0c6tDotnFIR47uoHp98ehpyjWMKBJmkkYGzbgnBQJHGjj0QR7hDA9g4hFkb+7pL6CkMMvv4E5ClCKEwB4+wpm8R9VqTrLeXWp7CUB+IHDkbYaNIXQNRC7edUgCaKodeD+Y0jrApOT61JMGtlsk8C5OE2ErjtWPKZBSHl3MobaELMbzvHZxz5RXMvbiH/MHN1B96Gg/VPe+W6bahOZDlOetvuIEVp6zje1/6c7BdaDbAsiGosPHqK2imKVESMvPYUxApFkWa0DVkJ8wGrRPVC3geDZXAQAWiDrgO5fFpRKlMJgRZpCkJH5MrEhMhix6FJSOoYoXG+PFu0tGxIc7x84BCI6JFSr60D1YVcYsF0qe24sUOQZZStStM5k3SwSo6akJQhCgAFPQXcd54Ff39g0xu2w7PbsOZjxn1iiz9zf/AXt3GNgqpFWOf/wLdLIyEUMNck0X0kaKZr0hk2KKUa4q2z+zyXoqrl1Pb9gp0cja+9xrMYJkdf/g1KDjgF3DdImkr4ppPfxxmmjx01+e55Jc+wmynyc67v06hMkScNEEZ7JGlXHDX7Tz5x3/E4BMvI6RBmYzMaJpav3qfrDsFMg37j0GxwOC5Z3LSokEK2vDY3X8ONlgb1tCzZIS5Z6dg7QCcuop1hRJzn/sqPU7AvrU9cNl5XDy8nqcee5TzLjyD3b/+xxjp0dzYC/WQRU2JMYpJ2eLM976d3v5BHv3TP2fJjZcy9tDTcGyasrEQJmMgU3R8m0YaUejtp50rciOgr5933fY+Hv7Ot5ndsZ2KNORGEzt+16HMgMZgtMIuBgjP4ZyLLuDZ794Lvo+spYwEVcZb87B6kDe+8+08dPfXyJsdgkqZq//6M4wdOsYrt/8RiavYePdneOVb98M3H6XYW6IzOwnVAldd9xYeeeC70D8A+8ZheIDe09ZSuW4TR17azod+5v38ySd/AXyPm99+Cw/cdz/p7kNQ6oX5eSoa9FwNUSmiJDhaYZscYcD3febbIXaxl0wbUqUoWwKhNFaSoPOMyLGIbMk7P/krbJmZZP/37ofxWU5efyr7Xn4Rq6fC+nPPYvtzP+iK2YsC68+5mE5RsOQtF/DMx36T4VmNziNCadPpt8CTUJ+DviqLb7ycRetOZcsdfwKWTwWF355iJgjRObCknxU/+z4O/z//HZRFr1clqc3jDPTSyFN6167hlDPO5NnvfItCbRrLgK26FUVZnGG7BdI8I+ipEmUpxpbYSc5IT4nN218gqJQIkUgsHCRuzsKG6QIL/ITR29v7mmNqtdq/QiT/56xe3V2cr1q1ikceeYQ77rjjnxy/atUqPvjBD/5rhPa/ZUFY+3XIp9t03ZH+ieOu6v9/j/cjAbB/zgW8wAI/kYj/5baANM+o1+v8yRe/SJwkUHA5cmg3P/3JT/DKvQ9QrPRyaMsPWH/GGcwePk6gBG1bQm7TsoGgj+zMldgnLyP64pd5+2d/k51/8xDC9fGSjD6rzNqzzuRwCUgTKqet47QbruLYD7ZiqmV2TB1DlQoERxqsOvM0RjadynnvfjsTj2/FaqVkgcfl/+mjHHx5CwZNnimsTGO0RiJILYgdyNxuO5vBcGzrVnAleRQBAic3XdFWYdAIsD22PPwwx/bsZXBwEWm9iacN0ggySxI5GuFqyoDIbTJT4LKf+w/sdxX9p53C/H33w97jVMqGpB3R71Vp5w79a9Zz9pnnsv2RpyiKHOlCpnNKBqr9VTrtefqbUMVmVidw/slkY7MY2+4mT1BYWuIqKOQWgRMQZikTx8c4To4zM0uzMUWxr5fEMbhlD+k7ECUUtEBkGVEUkwc+84GgWRHErsDLBK4SeErQcQSRI8gtDyWsbtLDGFyl0VGH3mIR0gQpJXYno+r6GNehnbZRjsWvfvazPPn8FsgFBpcYBcv60M0O+uA05SinUPDxlg1xwZuu48APXkTvPoqzbAmXve3NDC1bxrGnn6EgXdJWG0y3lcwy4HQiVpf6EEcnaBUlK649j3rjKCpSEOYscwPqUYzo70MZRRwneJUiKRmIDLIIbUsoFGjKjIYrKQhJNpfA7oOMP/AItT07ET39NA5PATa2DlEWGKnJ7G41URplrOwbwbMrTO/YT8FysDXkSjFy6jr27tvFwEnLaGx7GQoBMmyibedVpylHdS8uYwSJzkDFXYFgcggKhK0OKOixC+g0J0dhV3vopBFv/NiHWP/m69i+dQfubM5Zp5zNLZ/4OD8c2097dga8AGbb0G6gxsehk+Jqg+94tLMQx3WIwzZuwUc12/jGBSHRuUHv3k/75Vfg0DFI2mipaJiIc1edwv6vfo/6PY9QfHovznzEQFrEjg1pxUWuXUKz1STqC0B2MK6FKzzsJKcZhsRTc93qnmbExNZtzDz5MouzIpWGotKwKdUUnXrI6WvO4InvfB+v1mDfi08wc2gnRAmDlk+nFWLFipGRYV7Z8iCcvJxk7xEyGzKhyQW4QYAKfKxSGdPu8N7/9Cm27d/K0v/4YZafuo65oxM0puvEh2cop5Lk6DidvUcgKHDhz70LlYREe/dTPD5HEnUIXcHA0lGOH9yP5cD4kSP0HA/RjsUV730X+57ZgtCC0pIR7LPWMXF0jH3f+Fv6aglTk2MwPknRtknzhKRk4bouU6KD63jEjQ6uZZMJCQiO7t1LbfdufNshkDY2EpTEOvHelwbKpTLhfB2dZBzbsRu/t5f/wd6bh9tV1nffn3vNa+3x7DMlORnIxBCGAAmDhEEU0Cog1gJVK9hW0bbWTraCtm9pbRXf96mt9nls5WqfpzWvrYK1SgWBBBKEMIcAIQnJyZyTM+55WPO67/ePHW1t7cv7Uqp98Hyua/2z977Wb62z115n39/9+35/adBhUSgpxBkCiX76UsYWLuLgg4+z1KtQrdfY++IOpu7+J4zUQixfyvRjj8O+oyw/fz32qgW0W3WYbTE3dYTEM2C2ysKBEbrVKmESse7qt3LokaeYHJ+k++x2li5bxYE9++nu2geux1vedjX5UonJiWOEYZfMK5JqOoh+8L8Aus0OxcIArV4X03JIbAN/0CEQEj/wMdDIeSV6zQ4vHZ3g0rdfw+ILLuLgzp3cdtsn2XTvA6g44qbbP8Hjj2zu2y81m/oTu+jNVYlGHbpPvcRIboSGH+DnTX7h05+gFvdoHZ+E6SadnQeZ3PwMmC4b/vzXWHTJqUTPPEtdhhDBsMwhzjqVTqfLhTfcQC5IaDda9DSJkhnlNSdTTVP83btQKCLjhC1V6JQMGy1IcYROJ/QplvLYUUzYqpFFPp/81O/SIyTFQKFjIDAy+jeEeTvbPPP8xPCZz3zmFTuRbrvtttes3vbt2wnD8DVd+1588cXceeed7N69G4Bt27b9v25hGHLTTTe9ZvX//zKv078e+RHZ2W699VYqlQorV65k5cqVVCqVH/u4wXnm+S/LCfFI0d8s2+bg4UMYlolm6Ni2CY0mlXwemg2iXhcsm8fuf4AoOmHryBTEAhaW4aLVjF3xBhovPA9qgCe+8o+gCVS9jp+l+KZGYdEC1l26ASyNXLnA+osvAjKIesR798LLL5NkCQcPHuTpp59mYmIC27YJCXFdl/LwIJf+4s1gCsg7OANFlGkQaQqz4OGUCyeEaQ1qTUglyAw8+/unnZwYj65L+haqpJ8JMzc5gePZKCS2bpCkgOeiTIgiKAoHF5Pnnn0aDu2nNjsNQcDShYvxm/2Z0b12B0uYvHTX13ng69/AkII0SPC7MaTQSaEddKDg0CMgRmCUC5xy+cVQKSNMgyxKMTPQ44yCYWNmIHshRBlYLueuXUekpaQmzGQdxHCe0tKFJEqi9WeYY5sOVrlEbzCH72kU1p0J3SaZ6+BLSScKKBfKqDDlXTf+LKreQNd1NAQGMDxQptdpkaEolMvkHBdNCJRB/34d+mzZ8giW6YAfopSEcgnCDgNnn0kSRYBGr92isfcAWtPH8YoMiTwXnX02aRgyeeQwuDmiKMJPYrpphOc5uEphpZLqseMUDIdlY4tYc/IpMDICUYJj2QRJAqaGCvz+e52ziLIQSFly7hnkTz8ZZEpi6aCB6ScY1TarM4uhhoLpEJoZzUefIae72JqBtAzcYh7NMlEp6JqBf3yOzV/7Jse2v0Qeh3wkscMMEsWL374Pjk9wdHy8fzHpGd499YAAACAASURBVKZXQGkCTdMIoxDDtvDTkCCNsQYrMDbGm266CZYuJQ4DrOFB0iylUCkTiYzM1ujEHXAt/uHvvsp9f/llmJsm9qCW9mjOzBC1j8M5FeTpeVQ+Q+sF2O0IS9NIDUVDRCR5k24WYSmweiEFZWAkPmWV4foRVNsw00KzHHBM/uRrf8X7fu8jVIcNGrpPQkYQBThoZIZGPW5z5s9fh/GuC8FKwdFZft3VYAg6QZeIrJ+NFYdkWYwmbKzMpJRZtJOEcmEhDZnQyeeQZ56MvnIpndOW0PEbkHfB7wKSeG6aUcdk1Daxex1Ofec7II7IVETsWoRKgmUQ+D6q45PVmgzkKzz94ENw8ik0pqZ48mt3s3/vfhzDJgliiFPySmfQcsCS7H7oYSa/+yjTTz9LvVMlIqDYC5l9bBvtRx/C37eT+OABgixi4Yol1GpzoAk6kc+7bn4vtb27CGZn0V0HTzcgCNBzOfxejzRLyMKQbrd7wjer4bouAjCVQgQRnelZTLf/eUrTFJVBQbfQ4wziFEczyIIIXQkG3Dy2ZhHM1CBMickoGC6SlM4LL/HgV+/CBLJeiG07cKwFvo4hIJ04BscbaG3J6evPoTtgQ97Esz1Cv4PqNkGHbr2O5xVgepaH/8/Pw+79TN2/FT0zOPrUDmovvgxSgyhhdGgQTSjS2Cc3OkQWh8gkYf2GDQRJSpIpLMshkRm2baMAr1yEBRWwJHgmiVD4vo+mm+QyiKbmGH/iWQhjNj+0BSwLdJ0Htm7FOf88CmeegUDHVin5NGPqr78CmeLqn38P2uJRKDnUgh5HDx9BywSLrBxOqChZOfB7tGSPPTOHOFBvwKjbz86L4cJzzoORUcqFIlNTU7S7HbJ2G1yHarXK8qXLwHUpDFRASjLLIDU0/CAiZ7vkvRzFYpFas0GcpZTzBYrFIgqFjv6j+i8+zzzz/BflR2FnazQa31/7rl+//jVf+65bt456vf79DqRXOp9Nmza9JnVfLfOdSK9D/iDglTuR8v+xGjfccAN33nkn11xzDbfffjvXX389YRhy5513MjU1xTXXXPMfKzDPPK8jFP+c1/Avtz379vK3GzdSKJXo1BsnxpF36E1WEZ0AafQzg/Ssn63jm6JvlVk8zGk3X4dX7XH6whUc3rSN9u69sHoQa7pJNlCkm4bsmzzKhddewctbHqXrd9kxvhd1eAqGBhm46HzCvXspixzTM8eJGnMcfexRwlkfT2o0gw679+zgyNQE6y69jEquyJH9B0iURLdNOkGHOI1Zcs5Z/NZvf5yt99yHPTzMoovOoX3oIGQCO1MEJliZQihBphvYscLIFJmWEWYhrtTJlMbpb30TUxPjqCjFVoKC5oGA+tED0Jjgre+5gcHKMHsfeJBMA3STIZUnTnokpolfncMLQhSKxBCwtAI9nzRWEKdEqUHTM5HLhln9pjegVTs0do9TtGw01e9e0dDJgoSSXSBIMjLfZ2r/fkj8flfL6AD66BCXXnUFM0emUH5CECfgunRzNs7aVZxy+Qb0Up6Fp57Osb0H6PW62IUiARLb8zj7/POZrFXpVWexBWhJhJIp3dDHKJeoJwlRu4thGtT8NvqShSgJR3e8QNbssfCcdeRXLGPVmy9l+qXdLFl7Lm+44lJ2PrMN07QZ8QMmtu8llhm2ghf27ODQzhdpvbQHM0ox0TFLebScR6PZouB6NIIOHS0G3aAxU6V6aIJlg4upHjqOZto0iTnv/e9m0eo1dMKQuNXui6Jxj8C1eOs730F5xQomDhxCGx4mnZzDRFBApycTEguUjEAKEj8jlCFi0MZPIjTDxBI6Fa8MkUCFGZo0KNgeZhJiZpJMQaL3f/143298lP3Tx0kmp8iUREskKIVtO7SiEOnZlMcW0Jmbhm6XQ0ePMbJqNfGypSQHDvfDsKUkcTUiLQMZ9IOg/YRwz0FQErSUxuwEz23dAprB2265hfMuuYydL+wgP9ehmCoy+t1m0hYkMkHP5TCDDF1KbCVJVIpIQpwsIUf/8azbhkGPB17Ywotbv83hZ3ZBqwciJTAiOhWPTtQEU2BbOWp/fy/4JmvOOhelQf3AQXKmRyYzkuUj3PjZ38eveFQP7iE7ZQnmKafRHdKZ01KSoku0bjW87Tx2bd0Cq0cZmK4STk6BpihHUBY67bRH6Leh2+LIS8/CvpdZuOESzj7nbI7u2YWiL7A6GGipojtVo7pzL8sKI4x0YuYeexqCiNnxg0i/izmQp520CSwJUY9wfBymq+D7eKUcSkmsMKRg2nSNpB+SLkHrBdSSDkcmDmCjM7ZiKeZwiX2dKhyZQKVduqYgd85qKm6eoN7BScESJuVMkWU6hmEiFAhU3xKlFJaUGEqiIwGBpiANElzXxTQMer6PUgrHtAh7XWypYXkecc7GNHK0Qx8vN0DoeGjCxJU6UZqAobGwA6VYEeiQBD7LfJOc32J78zghTbSVp+BtP4wyI1KhIaSiFGroGQRxDIMDUAvJdxULwggvSdARGBKk0Jg4dpjjxw6RyQQhYrJCGQaHOHv9Oex+4gkGhoeRMsN0HOq9Lkkc8jO/9AF2NmdgZhpvbIxgroouFZ5l0JmtceSlXdT37IVOlwMvPNcXIxeOMPvE47z93e/hvFWn8NxX7mLYyxE057DsArmxMaKTFnCwNgkyZO/WrTA1SylU2JFPKkzaOR0Mi9nHnsR/8jnQ+zl1uijTHR2iQUb3wS3s372P3v5D5Io5krALns25F23gme/cD0FMOD3Dez95KztfeA7leXgJ6EFMlknaZkrgGARxim66OJbFr/3Wx/r3bTR0NHT6XVrf+9Fmnnnm+cngj//4j19RdPnEJz7xH6px7bXXsnHjxh9Y+05NTbFx40bCMOSKK654jc4GFi1a9Jru7z+D+Uyk1yHi/0P4vHrlEPt/l+3bt7N+/Xquv/567rrrrh947kMf+hB33nknzz77LOvWrXv1ReaZ53XE90Skf4lUki984QvcfvvtFAoFpicnMXIuiQwwQgMjTQmLLkiwkv50r3qBfth2tQNLlvYnFHkuRAkDg2XO/JV3Mf6Zv2UqboLl9DNlKg7GXIAs5JBpCNYQ+bVreM/N7+Guz/wR4niDht8B1wDHwmpGmIkkNTTU2ABxq4a7aBEjbpGpA4dRcYomBFITuDmPdr1K8aTl6PUejUaV837zJp75x2/CrE8uyujZinwvQyiNjm0zFPQjUKueRPcc9GpAhsHVv/s7fGv7w/DE8+RSA73bwsQkKlp0RYS7chWnLF7B8/dsgaESuC7GsRkWWBazWodYKowYUruAvXol1/7OLdz9yd9GzMQUcGiLBFYMQrvBSVe9ncP3bWKJkadZnQPPpBMFkGVUyiNk9Q5KQaoL4pxJ2bJotJpkeRuiHoyMsmr4JI7vO4wxMoDIebQP7sI6+yyuuOQy7vu7u9E1nSwMIIpYufZsDjz7PK6bI+g2MByLggJXg9bsLAMLFzJRnQPDhIULyLU7+I0aqngiAFtpkBiACYMDLLhyA/6ARy41mfrOI9CchrCJ4xRYNZdyWPPp2ikoCwY9tCDCCCQV3aMe+8Qli8rixRQdj8NPPkd+aJCo4pFMzeGaObJWD6Egco1+9knJw6gMoZo+2Vwdvd3BszUSkRG6Rn/yWJCw8PSzuPiWG7n7U5+CuTb2TIchy6MRh/g5HefyDay+ZANmlPDcZ/8M0/UwlSDpdkliCbkC1kAFVa6QHDuCrRLcMCKWGoFponT6Qb6mwEJDTs1RMlxS00A4Fm0hkQWXYmWQD97yYf78c18gnpjgpCuuZOU738HDd/5P1EwVapO8+5abOD47yXe3PgIzbYxUJ7U0zKCfjJ7ZJrLiolV9Ts/ySJlxzIhJSdCUJNEg0ftNI7pukfV88l4exzKRCHxLJwoiVCcBJwdJ2O8qsxIYzkO7AWkOYp+R91/Lhe94K/c8+TBXbbic6osHeO6Tf8ZSBqgi8JMeDDvQ8zHbCY6mE609iViLQcI7P/ir/OM/3cVlb7maRx55mMvWXsBjX7+HrNuFOISaD8UcNKq86UM3cezIUQ5++2FKhRJ10QY0FuhlakQkrkVl8TK6M5Ok1SojpRLdWo0sFaQIEjREljFERoxNe2wQFXSgUAA3B5MTkPn9bsRaP4AZA1a98TImnt6JHmf0ooDC0oV0Wg10Q0drtBg1C7QsQceSWG2JUyjTTnr9aXpTDRi0Ya7Olb/362z76j2kx6vYfkqYpixKLRo5jYwEXfXvtEJ9747bFx/VvxAULCdPrdlACSgMVeg0GhiOg54ptFQSZAmsWwPdLjnNo/fy/n4OlJGijQ0jW3VMYVMKMmSU0FYpVqnEYCvBAcbLivP+5BOM4PLkB/6QzGrRtjV0KRjsGZj5Isc6dT76pT/hC7d9GrveYVhPSTRJaNmkhkFiW8RRACg8S8dII9reIBs+8CG2/eUXGR5dxNz+cQZyOTIpSV0Hv9vlip97Dw+9uBO18wU+fPvv8Ze//3vQ8bFMHS0FXbPRNANLWNRUQv7ic3nLO6/jH/77F+F4HXoBo5U8M9VpFpVKxM0e1bEFQMDwDe9GHqtS+9Z9DFYqdGcOowGq4BJmKcKqMNhsM1AYYNypQQjaqeciVy2H+x6AWGKbNnrk48c+9vKFLFy6lJPXrOXBb9yLZVqkImP5pesQts7+R5+gVI+wq10wdWa1HuaZJ7Nq9Vr2PLiVlYND7N/zIipJkCfCtTVOBJrPi0jzzPMThed5r/ga3/df9f6/t/b9+Mc/zh133PEDz91www3cfffdHDhwgBUrVrzqGj+MRqPB9u3b2bx5M3fccQcHDx58zWu8WuY7kV6H/EHCK9rZbnde/f43btzI5s2b+fznP/9vLmTXddm4cSMrVqzg4osvfvVF5pnndcT3p8b8C+I05ot/8RcsXLSIHdufxTVsrCgh9kxKIbjKwDcB1c94MCWEBlTqXQqmhTU9S3hqP7R24PkjJPUW4wMZXdli8KI3ELw4DqaFbTmMtRLy0qQtBLRi4lab/UePEO3eRaZJTB3ymoXeDdEF6LaGpjKyepPBwjCtI5OEjTaZH0HWt5+pXoiLjgwifAFJvY1XLnM4qvKmd76TQ088h50qYhvsSKErQahrVNJ+V0DHlKg4YKi8EMN2eX7XDs751Q/Trcb0xo/gCQUqwo5ivDQjalSZ2DeOVipjv/lKzn37tRx7ZBueFRKKiCyRSCWhWCYrF+metITWw1sYNIap+CmNSp5zPv3bTOsmzb+7F5IMq95D81xaImPxBedgjAxSP3aY1NAwyPrLzzgk3/IZSW0SCUmuBN2I+qHjZE6OSCWsuPKNnHrd2zn0lW9R33OUwmQPrRMREcHiUc677qc4MH6AtOuzcOkY7clj2KRkYcDw0BCBUPSUgpERrvrABzm0Zydp1ANH41f/4A85Z90FbH/kKbRcCZXFdBdXiMbKjC5ZRrDnKNmBKYrDFXy/S9VIKP70G8hOGiU7NIkdBpTjlLIUmEFK4ljEiU9gabzlxhs5fGSCoN5hMNAIVy8mWzBAWp0lGxqEk8dYdP46OjtexpzokcQJXqYxEEvMJMZKFH4YQgaaW6Bz8Di7/+FBmG5BEKPyJqGWICwdmWnoHUk01aa65yBRp41sdTEsF1O3oZAnkzHZoiFO/dD7GHrjOqZfeJJQJqhMYKT9UX/FXIFoepay1CgkMTY2Phkdv4sxNoxsV4nqNZ54/gWylo/j5Gk3A/bv2s+aM87GVtA+fICXdj/HkUMHsDJJpZVSUilIRd40WSBNCqmkE/WQo4LZ0Yw5O0CmENkasaORKY1CpFFONPKxhqHbtLMAX4YEowOkCWDZLHnvDZzxczdy7MgBWDDM5Td/kIo9yNSRJtRqlPNF2tv3cehbW0g3P8ex+55g4v4nsJwc9cDHOe80TnrbpZx17ZUc3rED2Q4YVAatarOvYjUTjv3TozhBzL5Nmxishex58F5UcwrCAKfWwHBiBlpt4tPPhhWrma53iSa7BIbGmtt+mcve9x52PvwkZk/ipDrNI8fJZxpOkpD6AUmSEAqJtA20ShFMnYKM6DmKVLZZ8d7rufm3f4MnH9qK1g5wOyH5QDKoBuisWsyin72OlW+4iPF/2IqyS8hlw/zcf/s0Lz34FOnRWVbqGiLwCVREpElGlEWrXkcmEQQJ5xpDxM0uI0aB5559imSmjma5BJrgwvf+NOUVSxmf2EOi6ZiZ7OsHIkNXEg3Vn7yIRib6WTttv83itWvIj41QmzzCmVdeTiPsEXXbpCjsU1fyxo9+mKPLhomyFGaquIlNqhLe/blPEgznqb68F1/5BEN5Cph0kx49lRKpDCoVjr24i/EHtlCRLmbQI9YFutSwM8Fs1EQfLvPEkV1Qr6I7DoHRo2tnhJYgNhVKF5hCYQlJKZM4QcjC696JGKgwvXMn/vQU2A7nrTuH2XqVbqcNBY/hkTEmHtpOZfEKOnPTTB87iJk3EIbCtgWWJiELyIeKtko494ZraEQdJh98hJWFUcY0h1rtGFEBQhWxTAwyZ2es+siHWbtmLS/8xVcZ7mZYPZ+WHpLkIe2mjIkC7dinUhxktj1DkiQ4lcWc8zu/wcDAMmYf2kYh6GFHEQOeizuYozU7iY9i/46XMJohepySdDoYyxfj65Jg1x6SUKLFMQmKeMjlZz/5MczhMQ488Tw5t8hvfviDCHQ0IdCEQkP0taN5AWmeeX6i+NSnPvWKnUi/+7u/+6r3/4UvfIFt27bx5S9/+d/kIA0MDLBx40YuvvhiTj/99P/oqXyfO++8k2uvvZY777yTbdu2cfvtt1OpVF7zrqdXy3wm0uuR/+RMpO+l2/+wC/h7j/1XT8CfZ54fNeJfbZZhkkQxK5evAKmwLAtDM6GXIg2D/MAgoIEQpJog1gVCAjJBi2Q/AuTs03jjDddiWC46Ana9DH4Hr+SRH1tA3naxeymuV6KRpSAECAndHq2X9pCGIQXXgSxFxDE5y0IzNZQO4kTMRBD5WLaNqfoLmqJrIbIY29TRlURH4WaKwkARzRbgp7RfPoImNYzMANOgY1kEhoGmFD2RkpICEi0/wEwW0yrnwHFZ6ZW58Iyz+qqbzNDpz6oKM3BcC8d1UUnIsgULWLNmDQyWmNaNfsfMkAO22e+8qNfoHZuG0gir151DYcEyEIqFVpENp53dn+udSLRyiVjTQKYsP2U1y884FfIWmaWReQ7CsdA0gxSB7rhkYYDodqHTxSoVsGQKOZc9TzxOvVWHhYvodSMGvCJZGOO4RWh0CdpdFp16MiDQlwwhvBx5t0QsNKb0jFDT+yc526BbbfDGiy6mNDAEUca+fftAE5h5l763UYcw5A1rz+GU0RHWnnYKQ6UifrOLijKk0LCdPMuXroRiGSHBEAZC1wlU2u/I0E1otvnGxq/Qm6tSsF2WL1vB2OqVXPSWq2DVauhFrD7tTN79s+/FWLQUz7AwwowsCEk1DSwHYdtYpkM+X0K2OxBFFCLFqFvE00xkmhGnKVGaoGeKbK5G66W9tJ9/CaEZYHusXnsWb3rfDcTdFixfwkkXrkOoiD1f+DNQGUJJDClPdJZIYpGCIQlJsAwbKSMszQZdZ8mF58LF6/uTCNMIXWlE9XbfMhbHRHHIxN7dUCxAL4J2D1nvkJH0A5dVhp8EtFRISIZmmZz9/vew+pduhnWnkMQB/ZnoEjSBrnRsBJIISyjIFNboQt7y/ptZ+9PvgMVjdCamePnJp2F0lKVXXcmuI0d57pEnoZvhFSs0my1klhHWWyxxBlnUVoz4CjOMwFV0Du5h4sDLbHngPmiHOLZHMlACocilGl4rZFBq+EcmoBtQO368n2dlu+S8HB6gNEVPQVqd4cDdd9F98mlQGWiKvCZoTE0R1OcoWgZ+uwYypqAZqChFSIO0UECV86iSh9RA+S1aShJmKWg6c3v2cu/fbIRDB0BmCBTGieBnGnWqE8d5+G++glcawMm5YBqMv/AiSaPBokVLMIRBLBUSMC2TVqtBlsXkCjmIQ2a6NaQh+pPDELilYZJaBzybpRvOYclpK0HFoKVITSKFPBGcLRBKQ2HgGwY9Sye0TTBNVp69lpPPWgu6xbnnn8/CZUvB1AHJSKmEPzmJmq3CwYN9u2TeASEZLJRQSQp+r28FGx1EjA5BmmJ4FrptYbR6MFcHzaQW9Wg4FqHjEDg2oW5Tsgf6x9/qQBoQq4jI6P/QYEiJnSnsTKKypL/4EQKlwJptsONvNsLgINgutpvjkne9gyhvMTAwwEmVIZ6651uQJXSOT/L8A1sY9AbIgpQ4TAmSlE6cECio6ikUXQ6Nj/Ps/9oIicSvNphrTFB2cpD0bzdazoCgBZ0G2zc9ALU6ZUwUCV6x1I9IEP0MKgBzbAF+rgCmzeU/8y6efWIbL/39V9EsjYys35WrYuLABwnKD5DtLroQFGwXpzzM3O6d1B94EEwXGYQYjoPh9jMDq+MHObTjBQgDyvlc/4+WAuqfdSM1LyDNM89PHD+KTCTgh3YBfe+x7du3vyY1AO6++24+9KEPsWLFih+Y0nb99dfz2c9+lhtuuOE1q/VqmbezvQ4RwSu/Rrmvfv+33norn/3sZ//dD6QQ4oe2+80zzzz/TK/X4/777+e2226jVqvRaXXRlUNm6SRpCIVc/wu6UgwuXkLt5b3oXo6yn+FHEXJsAdH6k2CgAM+8gHmoji0jfFshl42y0F3A1NMvMSRK1PMGQ1eey5p1Z7H1f/wVy7oafqtOz4zRDYNEZv2AVqHQdJ1EJSAEcRL3bXGZIh/GeJkkTSWBBlgGWayouANovSaTJQkGeJHLgq7OESIGyFN91zq0HsjHnoK4BUXQa2AVTWTLJrr8fC754M08+mufJKcEum3gH59kFJOMjMA0aLkpaBJSKAWSePmpBKYBc9O84Xc+xhOb7uOKd13P5r/6axjfDxIMdFKh+MiXvsDDjz7G7n/8Np5ewJNQnZwkd/bJ9A7t7o+QlwnFU1cyvGwxB55+HJw873//L7Ht/i1MvriPnlmDNGRh5KEBgW3QjPrdSUo38D2dztIBrvzl3+HYN7cw9+wOajNHOcUpEkvFITemfNXlNJ/eiXvtetZOpBzf9jyTWYdsiY1nDuE/s4cyDu2KTSlJ6DTrpBYwNsK6Cy5gfOfLtA8c6at7KmXp+nXMHj6CYZp0p2cQuRIqSih4RTrVGoOnrqZWrZKLeoTtFsrQMHMuUa+L7ebQFVgZmBkkuiBZtggWDjE6NEZvosrM8y+DmcJQGWyFqHfITXVITMgqOdI0hE4XU7OwhU6mMgKRYUmFccJKpMt+qLphGMRC0ssSTM8h9kNc3UMqnWjJIJyzCrY81w9m12LQA6gmeHmNuCNxdQO7Moi0DeqdKlgadAJyls6KcAEvi4jkpEEq11+GUc4z+9Je+OYjWBQp6jbVeg1KFquveRukEePf2YTtx4g4xCYlAKzBHN1mDySY5QGUbZEmIRCCZUOri51qFOKUCOgMFrFDB6vXAkNiy4REGrSEDmefDHNHoatY0IyQKGYdE5aPcfFHfoU9j++m9vIRxMR+VAmuv/WXODC+n+f+/pssqQWYfkSop8yVBYNK4vspbUPDa+WQpsvJn/hFpC3Yc8cXyXcjpErpYqFyJhf8xgfZN36Ixv2PQpBSiENEUZE4IH2FfWIyGUBgSkKRgJIUdJtSCN0spmlmDAcehrJoazq90xdw9nuvwdEFT376c4hGhHDATaCcaX37HhndokeWJhBl6MrEdgQ+EaCzwJfY3gATZkrlpCXEx+aIczbB3CwLhEPP6lsElQArk2gKlJD4JqSGBrYDUx1W/9YvMP5nX2ckgM6QSXD+Qob3zzC3fwIKAl3q6LEkFxnYmkOIoCky3IvXUVp7MtO7dsPRKmsv2MD4zt34M9Ocf/kGdu3dTW98HDJFSTcJkw5KKDJMMqGB6IvNueEBeo1ZNNtAnrmeq3/hF/n2X/457vYDZDIgZ5l43ZCp0QGkUH0b6rrT0daeitx3GLZPMTzdw3Y0JsQcWAG0+lbHwXKJcK7FwuFhEqXoyoxYZXQCn0qpwlA9IzUMDnoZA/YAjVaboZuvoLplE5WDLdwwIiy7tLAp6w56rUvBdKgmPtI1aRsSTB1daGQVB4KIy668jhcefZJsuoHsdjB1MMyMTIsJk/6ky55F/76T6gylebRA4qsMtXiUXnsSQp9ioUC7qbjx9j9k+5FD7L//G6x6z40cuOde1NFJ0P3+5ztWjDk5PMdhVia0lUJh4A2PYbRjKlgs/8Ob2fK5LzIUavjVKnigpSlmL0DmPETqoGWCgutw+NhR+N4AghPXT4LERJtvRppnnp8gTNN8xdckSfKq9/+jXvtWKhVWrFjBpk2b2L59O1deeeX3a3/vWL70pS9xyy23vCb1Xg3Gj63yPP95vPLnaJ555vkxYxgGQ0NDtFotsixD2CapY+OUCpx/4Xk8uf0ZsuocYmSEWz76S3zm//h9sm5AYAjKdoXp2QbvvOgDHK7PsGNyCyVpoFSCYVk055pMOQKWj1E9VoVEI2l2aR44Cr0Ok36MYesEpoMw+i1HYRSBYeDYDnGtB6bJte97P7UwZNvX7iKIoVQs0G21cIcHqDf7k3WaSEzS/rf3VOEbKVMGuLkStVIepMa69WfzzNwsHNtDvljC9KsUfJ2ekyfafZBHf/8OKBn02nP9/J+FeabbCZ4y6fodsMzvB4wDxAf29tWJgRLVpx5lcTHH/oe+wyJXY9JvUvY8/FYPrDz//WMfh04LvAJJp0G9F6LbOldcuoHdiwcZf/hRcpqO//JRDrywFxwbwjme/PYmurUWYRyBaUMQIoOYQGUkdg5Jv5vMykALUjozLTb92Z9Dq4sXhBRzHrOORqPVhNIwl55/Ecma8/jO5z/Pk45JJYRFwqU1DVf95juYOeMMnvmru5BhQCPQ8LwyqatDtc32JRYV2QAAIABJREFUrdtYWB4mkhqWqSMNk+M7XqBoWcRJBpaBsiKQXVbd9C52fOsBWlOTFBMIoh66ayMMncjvMbxkCc16HSRkor827liKrHGERcc7TLVeILBNWFqCRgBBG6oBKurQXTDIyKKFdOIe6XgVp1xBzbbQdRC6QJh6v1PnBPJE212qUmIl0XMOsd8Fw0JmEkMzUUcaaIe3U0wTDBQdArTFZVrWHD7AiENnoEQnsfECSaUlGcaig0FbwU6r1q851aP+v74JVR+ijFKpQqugU11S4e2/+jEeu+8hxr/6DdxEsBSNGRJCXScsCBgcIJ6aBcdECzLSXogKI9768zeTFUw2/e2X+509miCOuzimSacZEY15REsqUGvSqSUwYKIZHvJwDcjAK9EI+jYbig5MTfH8li2sv+BSnot6tPc+DqHGN277vxAKqNeYzhewB4t063VyPZsk6WAZ4NkeflEDLePFL/51v5Mo6NGzDGylY+CQBBEv/dMj9A7t5/Rrr6Y5O8vxF7ZD3IVUYqP165x4b1Jh9DOLFHRSgS8lpp3H9sAHdMMhVBJTmNhzHZ78zn0QZ+gDHmnHJzYFcwYkcYbl9HOhyOXAs8gCH3/Yg4mQomVStVKEnWJlGo25KmnaxE6HKDgF0rSHpsCUGpoCK9WwMg0pwE5AKA03iNHWnMrChQsZLwtmXYuTqm2s7xwidhRzIwYEYEkLyzEJyOh5NnEUg6Fxyps28OLsMd78/vfx0B99jhe+9Q2wXOh1ePq+b0OWgutAo3895xKNVIOeYYAmQDcYW30yM0ePMFAYpTE1BY/t4t7DfwrVY3iJIKoUadTqFEsVZNCDvAcyZWhwBGE5bPjYR/nmR36DuQGHD//KR/nLj/46Y2aBWKYoZdKVgnDYYb+bIBKD4Y5gULl4tstMmlBfYEC7xurrrmf87q3QjVgo81RTh3ZZUA96UDKh7lMzNEolh24QoldytHtdDGVitmNEmmHXOqTYPPbVe8iysD+Bc9UgJBHUZzE9hzQANxMMdUDLdGJNo1YQqAEHPI9L334N3/2/v4yV+sg4xnA8nn/8MfaP7+bSj3yE737nHpiZgrAHuk5Bc3CEoiAN6p0uLRsYKIJtc91vfYit336Qw5sf5/C9D8J0DXvVaVSjHk6cYKYCbJ1WwUTzwYwVui6RmkLTxA9kIM1bLOaZ5ycPKf918uj/vmzevJlGo8HHP/7xf2OdA7jjjju4++672bx5849VRJq/174e+U+2s80zzzz/cYQQFAoFoijqj54WkBLjDhY4c/1aFi0bgyRE1efYtXsnGBrEPr6MSXRQScKux5+hdej4iV/+QZMKIQT0Ymg1odtCP3012AaN8f08v/VRCCKwNAIthbyLCgNUHPUtOoZBpFTfMiUEowsWcvJpawCDTIEwbJRpIA0LEGCYhGFEiuiHB2tAziAQcX/kdF6DF3cyefgw5RUnwSlnEM128ENJkKXoy0f7lo7js1CvQxLA4lEou2QqJrV1DN3od7Sc6GpRAhwVsyDvYSYR4/fdS+3gOIcf3szkvj3kPRtin7JzQk2Pov6xJjFCpsg0RAjJ1NHDLBsZxdF0HCmoGC454ZBTFrrucXD3XqaOHwdDhyiGTJD3CqSahjQM0PvHYiqBmSq0MIVmA5IIywAlU1qugKWjUCzw3LZnCZOUnF6EboQQOo5hkQ8k2zY9zN5D44RaDEohLAs/TPoj4S0H2j2mDh2BOMKIEpwkI68JZKeHESdoSdbvWiu7dHICCgZpr4fRDXEsG2VoWJ5DZWwRc8eO9jO6BGTaP2/YBnYQMopOQTf71p6KC0UXeq0TNroW7kiJ6274GVAQNlsY9C1DumGh0qwvHJ1Aif7mFQukWcLo4kVQLkCWojJJ6hjojoUnDGIUpuVRckq0JubQHJNFoQPVBJKU9Tddz42f+ST6qlX4QieHx+LIoSj0/oUhMzQ/xBWCnKEjhIJmDY4doVWrE04cx7QdBr0ClukQAZRcyHuce+UVMDiEaZoYmo4mFaQZMk5o1xqQSUgy0igmBUw3h+YUOPNXPoB72fngGOACcYDsNsEP4KxTWf/+G1l29WUEpoQsgxRyk3W6L+zGrtZgqAII1GwLsxkANomh081S8Ar0epIk7l/7QbsHhP1wtAzoRH3RI2ciUslyp4yXGfQOHoY1J+FecCrFN65FO2MlJIJ8YGBnoCl5QkjqZwQhFRgmC85cS5bLE4YxUS/CNwW+o5GJlLPXrCGcmIOgLxCmaYqhCRIBsaWjTEFqGuiGA4mCXhccg1UbzsfQTGSUkdomiamRxilpL4RlSyCDLIiQIkNDYcjv2dD6x6cpHSMzQelUdciyjOmvb4XMBhRzCKRtEmsC2hlFvYBMFVLphJogThPIO3DqavYePYT0QxzThG4XLAtbiL4AaWigCUSa4BgGKkowJOjSQKKDMEDTuOjNV6CEIOyG2AryOHC8BlIjzRK6SX9qW09JtMWLOO3SS0BCdcfLzD2xg73bngYPuPA0egs90DKUodGRKUGlQNjzwSigWSV0L0c4XGLSkfRURiUz+xPPVi1iYPGCfuC+YXBo516otXEWLQaZsezSS2CgjCIjcXRCUxCZAjwLwzLJ6RZlzWEYFwcQutYPXXd1Tr38ElZdclHfXi0MDKGj0HFTg5wysDIdpSlGrrgYccYq7NEhEBoyhSSOECpl79NPwOwMZy5fRh4BYUwhl8NesoCOiJiTPj0LzJyLhoarmRAJjKkW3akqjA1BN4CBYc676GLI50AYCKmRoIMO0jKIVEovjUl/yHfa+Q6keeb5yeNHZWf7UbB582agb13791ixYsWPPTpmvhPpdYj6V/9Qt2/fzq233voDj135CvtYt27dK7bkNRqNf6OQ/rgv6Hnm+d8FIQSjo6PfF5FSo69KzM3NsmXTJkScQKEEzRb3/M+/AdPqL8Btg2q1y/DAEPvufwhsHWyXuJuQqowkS7j06p/hu48/Ad0mZ7z5EiZfGmTu4W0YuoGtWZieQbPX5m03v49NDzxAcmwCY8EYl75hAw9/7S4oliBJueub91BeuBh0CzvvMt1so9k2zU6XwbVnccH5G7jvr/6Wgl4CCYFb4uz3vIvnv/R3dGZrDNxwHY2vP8Txh7aSP20Nl668gB2PvkhaKTGnxVz5J7/Cpnd/Aj3WkfUGQ4sGyK06hcrIAp77m7v64axSoMUQn5iE1bFgEBMzSdGzlMSxCfbth1IR2i0iy6SbKUbzLqVQo1Vr9AUQItx8gfxAgVQont70AChF2XJJOgGZH1LQbLIgwnJsWnEMKLKSR7EwRvvwBC0p8XMW0gAsQSfOsJQApRhIFf5MlaBgkKY6RTdHJ/PR1p/Bu6+6nq985DYmnn0OzJThbIBeu8lB0UEWTbxdB+gFbVgxDJNVVL7IgrNWMH3wZUhCxNLFWDNVSrqGyFJkFpBlGZ7nYqfg+DEz0oe8icgSGC7hljsUWnA87ZBGEZpj8esf/VU+97nPEXZ6fdFS60eKWJkkrgfUdEkenZwf0TnYZfUH3sEbNlzId/7b/yB68QBtkXJk26MoP8CpDJA0u+iWSWQZjKw+ieLiCkcf/m5/OtIJlIBqow6mjjNQ5Ia3X8Xz332K2vMHqFUEaCZBO8S85AKaT+2AuRbD+QJzQYdmKhjzhpk8EvLsn27k2YINUQdOrcBMDdopQ52IUVMjFil+3EWaDkEcsmTZan75N/+IY405Nt7+aZb5FpOeYsKK+ovx1OmLPTWN7r4ZVi9dzYHt2zHShIKbQ5kGD/7tV/qiTSGHYWvIbpsA8Dtt8MocOTxBcO+D0A5wTJ1QCDDz2B0bsT+kZx1i34vPQJpAmEAmmdm3h5nGBCuveiNvumgNX/vsn2I5eYIgRFQqKMNAjIxw4/U3cnjXOHu/czeWjBl0cwy8+6cYXLKUib++j9aevXTMjDQI8HWTA62ZvuXIdWDiEM9uvacvUi0oIxILLwxRlugvuoVEYaA0nbELLuTCy9/Izp17mX5+LyxdAbVp3vRzN7LlyW1w9BjPbH4Ymm1wLVCC0y+7hNmtTzPndyBvgQSp6ThRhulatCslzvupN5MfzLFfQpRlEIMoFLA8m6FFC7j6lvfz97f/CY5u8v+w957hdp31mffvWX3tfqp6l2XZkpskywVXMNjgCqYXh4QwGUKHTOzAJHFCCk57A4RJQgpgJ6QYyBgMuMjdlmRLVrF6OZKOpNPP2X2v/jzPfNgHZ3hfZuaaBN5Mrjm/61ofztnnWruttfd67nP/7xs6WFl3JkkKCCyLTNgo0W00S01I5xcJjg6TO3KW/nWrmD55nGCgSL0RoyUwOEAaKJRwCLUBrsOG297Erv37oN4i/P5TLHn9Tez8u4dgehzH9EmCDjnHJep0UEKiQ4kjLFxhgjbJhIl2LLAEuAaTZMhORChMeo0CtlSEqoMzfx7taByKDszvYXpojIs2vJ6Vq8/h6D89T/HIJOZ4h0Nbv4T4+RvROXjgDz4HPUVGmzOwZpA7P/JpHvrrb5CdGkHFEfl1q7j0hqt59qlnCfadZLCqqfbnMAYWcGrHK7ilErawWDR/AUfzLpe/7nVsuf/rbLr+jTRePEC91iawYnTeRgZVmD+faKKKkYGFxaiR0TY1/opBstMnobfCpRdtYGjPPoZEgWy8Rc7xCW2L0NAYyiSwDNCaK666mgNHj/H8i9sgCLGMrkZqF2zSOICeCl/+1C/BzBTEKYmO+Nj9f8Lv3/f7cOAINc9CdQKKfo6sHWMHku/83pdppiHrPv+fOPB33wTD49DJYcg7RNMCKzVQRQcKdP/hUfaxPJ/MFhh03yLoCkgGc0LSHHP838aPcyLdc889P5JT9PrX/69Wv/D444//b9/3TzILCX40Y+l/1HReq9X+zVva5kSk/wvYuHHjv+ik+J/tD7pK6f9bJf3hifQ/OujnmGOOf6ZYLCKlREqJ49jd0aSZOkee295d3ScJwrTQnQRIwIbLfuUXOfTQszT2DEPeZ9llGxgZOU395GnQoGVE7fgpbn3DzXz3O/+VvU8+jacMesv9OEECScb0VBPyNjt37WbJshWcGDqFYZm4syHb4EOS0Tg7RiOIQWrsvI+MIwzThryN7XgsXrEMc/ESjOPDRNMR1pIBauPT4Oewmx2iep233nYn3/zGP9Dec5BndxyjF49WqwPzczz+N38JA73o42P0ojFHZzj14GOcsh08bSLCGI9uO500IBWgXQjtPDONDtoy2Hzz7bz04nbo6wF9mlRo8ItMJhInmKFseQjTINGSZquKm88RxREIQc7zqXda9JRKmIFEKo1SUAtb4BqYq5YjHcGHPvNZ/svv/QHTrxxj4aYLKZ2/lMP791A/cJqS6xGlEss2GTQEkygsDOI4ZuW7bmf5ZZfwt5/8JezFK7juXW9my8gBpr7+JIN+gSCtceOvfpxHf+cLUG3jmw6h0qACJizJBe96C/t2vci1my/n6T/9C1pSY5KhTUFHSdphGy+F89w+jKhOrEyGvvF9yGLCRpNRO09mmCByxFnKH/3+H9CZmMQqFLptgRoyAW6mqXRg0g3JFs/H7WisRsqxbz/Ksb/5OyiXsdII3yuRaMnpbTvximUM26KdKZSOGJ4cpv+y1WAK0MariSRSKyzbJrNgaN8+hg7sg8TADSWLb7yT9RdczIvbXqLWb3PlJe9n6JGnaT6/A3o9YpFjpN7GN/OEhgONAM5dwNvv/Syy1uRbv/LrdJrgRQmOsHFThes4jKmIkTPD/M4nPtoVPlyHtB6RmiFccB4bb72Rl//pcZhswNEJzjyzC2lkOEJgWy4qScmyrDvGqEJotslmXXC5SplOGMBAgeb93+2eK2GK0Bn5XB6zXOGTX/8zvvg7X+TQS1uh14WOSSGS5DVY03Wmp2ucOPZ3jBkKo5TrOtB8hdYBRHn08BhPvvAik61J0BlBO8Zzi6QoRkbPMH38BAMIWgJwXVQOFvzKL3LnJVfx4h99jR2PPAnbR6mscek/ZwXHPcHkwBLs6lm8bDZvCAXSZGT4DE8/8xza8sC2IAzAz7P16BHUqSEoVmCqTW+xTLVWZcPtb2DJqhVMbHmRvnIv1TRFxxpXGN0mtERBO2HHo091HT9o0pzHgPCZGq3TsQ3SoMj9n7mPuNWmsKCHtD5DGkpswyLzLZo6hAWlrtvGr0C1yiXvvZPO1x/naH2Uy6+7nCfOHENHTVbeejNDP9gK5yxmnnY4tfsVhGOxcPVKlg0uYNeZx0AamInJzD8+ASLBci3cJCFv2wglSXRGvlig1WxjmAYZkBpQWbWMtq24+rY38ewPvse2o/uhkodE0TvYSz2KkLU27/zsR/nqpz6LvekSli5ezNDwg+x97Cn2/tfvU7CLRL6NX68zWMwzef8/gW93nZsTHVixEM5dyEtPbic7dRZ6PNa+++0cfuhhnvjLf4R6m37Lo1HKGGiZTD+yn6xUJtaStK/IlTddz9HvPcyW+78KrYhvfe6PmdcOqQiPVGk6ScK8Ky/jhptu5G9/7w8IbJOg3oGKzcAlG9iwbgOPfqsFkcXf/+6fYpsCnaTM37SRVr2BVWszbcWQ98D1MBLNQ//5j7pCjsrAtUkDA2kZZEKBIyDudN1EkaTkO+Qdlwc+90XYP0zP4BJoNWkkikDWqJx/Pp2jx6gLYH6JyeYU3rz5RCcPcuSJJ1n9H9/B8a9+k9zgIKFOWH3HjRz/yv3cdtcHeP6xx9HAeLXGot6eV4WjOQFpjjnmAH6i2bw/NE38OGHnxIkTwI8vnPqX8MP9PPjggz92Pb1lyxZefvnl/6lT6f8PzHvvvffef9NHMMe/OxYuXMh9991HrVbjrrvu+pHb7rnnHg4ePMjnP//5HzvHOcccc3QRQiCl5POf/zxKKVzbQUiFnWlcqfGkpidXIA465B0XtEIWPMK+AnYtxq1GBEmHsOhxzuaLmNqzB9O10FHC5PAYU6dHiTodiBOyOCOcnqatJHEWs3RgIfV6i870OLVjx6FYRFYbnDg2hNYCwxTooMP1t9/K62+9lV07dqBaLRytkDLBzeeonRji5T370WMT9OkcsWeRZDGNo0ewtI8XStqnhzh46DgFwyIJO3DxWsKRM1Tm9RON1TAqCzEnOyiZEqgAyzMxYiibRYKojWe5SJVgYqCERhkgbU2azTY1VSq0bJfCytW85Z3vYd+Onax/483c9eGPsPWb38QSFjpTkGlM2yZ1LfBcVBJTypURYYbhObSjAIVAmoLMMZE5F11wWbL+fC685jV848/+C8nYGGiDwQvOxe4pg+sQHDqBlSm0Z9MRGQUp0IaBrW2UcBmtT3Hy5DDkCqhqjaVLFjLhhvTncySnRpFosrULqAV1aKYsns7I1q8iWTAIR/YT9hbpKZXQcULS6aDCGCUEsSXQpsTq7cFyHFqtJn2ihCMFVkeiHZ/UBrVwEKJwNhRYkbYDiqUKKk4RatbijQYNvcUK9XaHNddfw/qbruPI6WE4W6VklogbNdRggfJMEztRWKUiQZrilAqkSQwDPbBgHgEpTFUx0oxMSrRUmIaBmLWR/1C4Qgl8J8f00AmOP7+LUi2j8/ROzjy+lWh4lIFCkVbYwfXynHfza1n5gTtIN65m8wfexcmntnPgbx/iyA+eQ0/U0bHEdnJ0kgx3oJ+RsI7sLaHjNuSL0Iq6mT/FELBhKmTs0R2UQk3WDNBpgmUYmGmCthQIgaENNILUMEBnYBogQKQZKQm64HDOm25itRgkPjmEa7kkMkZpjyBTPHN4D8kLh9FxhpMoCCOETpGmSZUMZ+E8UsegHKV0jARKBlx0Ph/9zK+x/4ntpDNtOmNnYF4eMNFpRpSm1Pe9QvPIEGaYYUpNbEq0VmCZlN97GztefJGTDz1OIdTIeptwZIZOlPDzv/k5dKXMyL7dWEoi6DaXpQZolRKeGGLNxRu44vrrOLx/H0vfchuXXHwRJ17YDsUyG89fx8TkGPneMieHTnBk23acQoFWs0VF+Mg4gUwTAqK/p/tzJ8ZpRcicA46N3ewwv28hjZ4ckgx3KsbuLVNXMYaQ5E0fUzhkvktIyKUf+w9svvM2Dj//DB/47d9mz8njjD69G++Gixg5e4ak2uSit7+VYHE/Z/YcYdVdd9IYPkE4MQGmIGjUOfjks1jCohgpeiJJT5bhypTQiXAysHR3MjBQikRmYNvITGO5Di2Z0khavPUXPoBXLjLvvDUsGZzP8NZtIFNc02SyMUnuwtUcnBpl8zWvhYE+crkKU4eGIY7A80mEQe97X8vMyaN0OjXKToHemZSeRsAyXWS60UKPTNAcHgHfZtltt7Bm2UrODJ1Cjc9QMCxkEpAZimJkM0COfCDJBnJEss2e3TvhyAE+8ZW/oNA/j5NbXsSMO5haUHA8WkGbpeeeQ73ZYGz/vm5IvFKQRpyzdDV7H9+KEyiSWgdl0HUSXXkBGz/0Dg4++ziqnqJXDLD57bcwMjWGPjVJfz0m10kIkgTI0H4e0gRUysXXXcf4gYO4yiSnDTAgRlMNEpyFi+mMnCVWCjyb4vLFvOm2W9m/d383oM31CMIOG9acy8hzL+EPDnDLB9/D7mefppPEXL7hUkKhmD5xhvUXXcQrO3byK5/8FEXf75bEdcv7Zj9k5qSkOeaY4yfHwoUL+eIXv0itVvv/iDef+MQnOHHiBF/4whfw/X9Fc9UsPT09RFHEfffdh+/7LFy4kAceeIB7772XLVu28Pa3v51169Zx//33/6vv61/DnBNpjv9tenp6uPvuu7nvvvtYtWrVqyfTgw8+yIkTJ7j77rv/zS12c8zxfzpCCEzT/JGfDTUbW6a7F8RJFL96e5Kl4Jao7toLYwk9LQm2JpmeptZsgICc6dDKQkqlHCruUPE86olk9bo1HO+0IQxIpUUQpziGTWy53byPIALDRLWaWLNillKaZnWGnO/glwqoVhtTK6TKEFnaFXE6HZAaw7EJCcGxIDPxhAW2DZmGkkVQC8G2WP/G69m/awf16jSuUsRbD6AMs+uA8CwiutE+KpNkQtCUMb35IlkQdscUui3vCMtACwVK0jx5HMKAVnUGeiocP3iQl3Ie5DziRgvfEKBNlGGydPVyQlImDtdRaYapNI4wiZQG1yRVikxlKMuDKOL0qVOsOH8tRDG4LgQJItGIWDG1dz8kkkKphLIM6ml31MlITLTWJKaGmQ6M7oNSAXTGtqe2EFc0lihgphE2cOLpF6BTBdclpkHvwkVcsXkjT2pN6+gxWp2AiekZcqUB0ijFNAXCdsAyyToRWQaFhYs4MzpOn1vGyBR2KqB/gNWXbuD49x6BTGJbDpiQRTG26M48S9ENWFYWzKgEtMHxo8eJKwWWX7aRU8PfJ+4EmD0lZBLhABGKMA7oXbaUtevXs/WZrRBG5Itlbn37+/j7nb+CEl0Hkpg9joXu5twoBVrTzVPSGYgitraYPHYSWwuKIofrQq1dxezzESUPZ1EvYc5gbN8Jzpu/GDoar57hmwaJ42BYDqmCSCVE1SoMFLoHijKgFSBaIRsvv5idxjgcb5CPLUqRJp7pYIoEaWkyIbu5UkIwq6m9ijt/PnESwPQMlmNjGpKwFXLskUfwmyVKeLTTEMsvEFl+N18njNFkmGjKyiTUgrZQWDkLrSBoNcD3u+2Hntl9UapVXnruOeJWi3wxR6evyJs/9hG+8/k/RE4Zs/M6AoRDZqQEtsJSCktBbBmEB4ZpDp2FqE2b7p/2LBikd94itj+3jb279oAQs8+tG7BtK42MQygV8HTG8489As0aRn8PO3ftBiW4euNlDOQ9Xn7uaaAIwsAZmEdbhmQ6w8k0LiYRgAvzLjqX0y/uASUougVm0jaG52MJj/FmrTui63sEuo5h5NC2TWx6hGGGSDO078LAPCq9ZV7cvg1KZf7qvj+AqWlKvRWajQk4MQJKE4xNc+zwQUhThibHYXIcZIYwBDqKQWW4MsOa1RSkBmnIV99b3X27u/ttt8F2SNOMKJMonVLsn89jDz9Ms93mNW+8iaP7D3aj4PwcnaAFQhNMz8DwSdrXD3BqbJjB5Sug2oI1S7oCbr3JigvWMvnQ9yBQ+FJTQqJJsIWBa3uEjgmLB8GyMKdatPVJ4lMjICSRIbANjZ1JJqI2C8oD6JmQNItBRzDSgAULkK0mtZER5pdLjI1PYAkTy7ER2uDQ9h2Q87qKGQKUwsyV2Pv08zgij+8VQCsuuf5aZlTE6dYZnt69A5KInFegtHABA8VSN18ui9F0v6e8DCK7+yI6y1fi91dYumo1e9xnMGKBZZgkSGKpwNLMv2AtYsVihp98CidfZtHChcwr9yK0hZlpRCtBTtXZ03wRw3fIG4KnHvkBkEKaUJ2a4vDxUZCSJ7ZsQadZty0ziHFy7k/mi3mOOeaY48ewcuXK/+Xa9ydpnrj77rtfjaP54X43bdr0qhPqz//8z39i9/UvZc6JNMe/iBtuuIF169ZRq9X4yle+wgsvvMDKlSu59957ufvuu/+tH94cc/wfjxACIQSf+9zn0Frj+h6Jml3gzAYSJ0Ijci5BFkNfEZoNCCE/k7IAh1bOQ8YBK67YwOSRIfK1DgUlaHsZyIS40UIksOHWNzDU68E5i9l0w+s5+uxOTGHjZwGuVDiZxM4UnjCImg0MmeD6LqePH+XFl3eS1Wu4aUwOjW+bRHGIFgIz0xRtl1rYQs4vMHj1Zi6/+lqOPLOd2NHkhIPYsILs9Bnwclz3tjs4sHcr1FqYCgZUmc66lWDEkGYYUUbBKTOTBRjnL0EXLMKoiULgZhpbgdKavAxxlELICBkGMDXJke3bodkgGx1leNtWUBJsC6UNwCQ1BG/+4PtZsGo5Bw4ewkkNSpmFMZtpZNkOYRThVUpkjQZmXz96Yobhg8e48VOfoLTmXMaf3U312Emmjg5BoliKT1atE8UBnZyB6fiUpItluISehxUq+ir9dBwgZYFNAAAgAElEQVQFqgXNBrkwwxyZoaINestlajJDZ4K+Veey4tyLObh1G6V8Dq/Ton7wIAgbUo3dSXFTQc7J0W53KFR6oZkgewp0Bh38qy9l6vQJlF1AZILCOcu48tabKQiDkcPHUHFCTlj4mLNipeiKJkKQWgaxSsDKITuK6vGTFM9fy4ILzyP2XcJTZylZOZw4Quc8OmZGWMphFvNsvvxqhvYcIj0+wv5tezHiAK26NbqmBlcbGEpjKWbDisHQAmVbbLxoI5fdciPm+UsZP3KcKGzTkiFUXLIoIlNN1PJFHPu7h2H7Cc5862l6q01ymEQiplMxSFJBWuwBPwdac/svfZylGzdwYt8reCksMBzCs9Msv+3N1I6cJZpuMM8pEiYNhFRIB6SZIu0M+eoonoESgsw0eONbbqPVadKu1cj5HkYc4doQY5HlTFizmP6Vi5keO4v2bLjmai57511Y+ZTa9CgibKNIyPpclAxhwSA58jAVYJmQZEl3pnC6zciOPegkJk1CaDc4u/8w8fDpbhObbVGsJZRbGe1cRupJCiHkUzBTk/rTB+HIMCztJ79pLXd//reITdj93UeYGB7tijfNaYTshvB7UiO0IpEput1iZN9eRBSSzuvDft01VL/1A2hLTh84yOGzQ1B2QGSY2iGrNim+7iLi8Wl6AwvLdGgYEvNNl3HZu+9g8tQYRjuh1aljGA5mqmnrhDt++aMsv2Adx597muI1mwED2W6iRIbplSj5ZZI05fxrrmDrtq20du6GoQnmNcDL8tR7PS76zAeZ2PI0GDnq+8+g8wXOu+WNDF51GVMPfpOCMHCyFBGG9BfzkMVkpqTtptT9jLYruyKIEghMMsOkjQApGTh3LUG9RSYzevpKdJo1wjNj2FJw6pkXCIZHKAobOw6RzTa9Xp7O5Az4JSZ2HAPTp3NwCGEV+MXfuIe2oZg+dJTxE6fRzWno6UGPT9KPSwfJYU9SfM3FnHv55Vz+s+/gyO69NF8+RHTsNBVtEMmQNAvAUuQFRDdsJn/lhdRPj9BJWzjFHOeIPLLW5JmtTzK2by+qE5L2G+RXL6c2PkmfX8CIJUaQ4tg51EwbX1moOMYs5jEH+3nD+97B4eoYb/rAXUy2GvT0DjK95QUINXaQ0DhxhlPbXkaeGQfXIrEUqanxhcLEJB2YzwfvvpudQ4c5+NzzgInZyXCUIDQgMwwY7OG2j3+M4bFRGpPjSCRRJ+Tk4aM0T4yy3OvFaQSkE+PEWZsew6EzPsb02CmcazYim3VaJycph5oYQdhsUrRd7vnUJ/Ft69XWQQRoNGLOiTTHHHP8hPnh2vfEiRM88MADP9W1r+/73HXXXSxcuBDoOqEWLlzIXXfdxf333//q7/8tEfrfU1z5HHPMMce/RzTdiqUf+d3siIzrAQpKRYhaCAWG7tZba8fuZhQJzds+/jEe/Nr9cGaGJaKApRPq+TI1MwEngVbCCjuHoSRDqknv6mVUR6epqDJ1JCwpQtHnwkuv4ZUHHqIQxZSSJoZlEmUJyjDIUFieTxzHaGGC4xCbBlKkGHFCTyTRUiIBo1Ki1Q4omXmqjg1WCI7J4mXnUjt6ko6bUazCOb/0Hg6/sJtg3zFIIqhIXGUSK0mu5fHur/0RW3ft4MxXvw0TYyROidiRXPSz7+Ca117Llz7yCUQ1oS/KAEViKqxMMr9oM9xK0TbkSj0Iy6ShMpJWnVyhgOPmKV5xOWdffAU93ejmq4gUa/4g2cQ4OTOPE6cIUyCTkBSDEMm6N13PgSNHYXgSN1cmbrbpe8NruOyqq/j+r/8hNuCXCygd4TaaWCRow2LSyDDcHMXYAG3SKNgsqCxg4/r1rLrmIr7w139MrpagJqvMxyRyc4zHHcgXIJTgW1zz8Q/x7F//I0UzoVWbwbIssiwhlytRbmSgLTLfZUp3uPrWWzj01PNM18dh/Xx+5k+/xIvffYKjf/ZtaAcoEUI5j4gzdLVBvlQgi2J80yaOYww1e4wJiCy46cMfhEjyyF/9PWgbfAFXX8Cma6+m+djzVB9/nDhn0krTrqDg5qHeALeHQlugkpC8U2LKamAYAltrXAlWqtBa8N8f/ZkJoeWhCj7WhSvILl4O//AwSzdeRXV6nPae3fQZRaoiwkoFdpiRdytU4w6yNw9ZAEpRsmyaV17G5s3XsvvhxzEPnISwTkpGfrBMszWJYZkM2D1kNRtjYYVa2iFrzYAQ2IClJSFJt41OaixpYKquQzAxDLROIe9iWgayUUWUCuhUAS5cu4kFi+cz9tgzCNvDX38h8xetpHb4NLXtP4AwpTeWtHVMsqSIWLWUn7nnbr72n34TRqYh7tBnuRitBKkyjHyBtJQjFZq0E5PPBPVzF7P+utew2PR46fe/zAB5jhRDcBTFpsLNoOU4vO9DdxO4mm985Y/Bz3UzvjoBLFvMNR/6OcxKhafu/mX8Towju4JeYkLLlBi2gUoTvFgR9few6S//lJ3v+ji9pk8jbSOXFbnubXfw9Ff+CifK8+53v5uh5TbP/db/QyXKUent51R1FJYWuPqeT/LcZ38XWpL1113D/u8/gWHbqKLRbSqcasC8QX7+d36Vv/z0r0KtzpUf+nm2/sn9UOvg+C6JLbufheVeSuMtCmaO6tL5XPML7+HRX/st5pfmMT41xjmffj/9V19G9dQER/7iexinXsFMWqhMUvQ9kiRB2BaxpchsZm2O4AcmsRB4GRjSoF2yob+Xj/7Hj/KlT/8GiBg/J0habeZVeqjWa/SVBmh0WkQywgCKfo6ZKGHeipW0Rmv0RCZjPSVU3oKcDQXZdUZNpiyVNqfNKuQccvWIHivHeBYgB33W/OfPUChV2PU7fwyJ4uN/+Lt89xt/z8x3nqRPapRrcEbF6DWLWfWJu4jaEWc++8cQJ1T6e/HHJjHzPZzNd9vaMDyszat43y1v4au/9JssM4vErQ5SSizXwlbgCpMpX1K3NfPWrWNg2XL2f/8RMB0o9sKxEQb8Svf8MVMWmHmEVGS2wWmjg3YAqcl3NI4yqRXLULDBCLrh7lYBe7hGQWc0HY30BWiHwQs2MHnoCKgABvMMzp/H5NApyCSYFkzWGMwkk5U8BRyiehPnivWUr7iAsYcfgZMhuVShygWiTpWlS5dz7MABHNeeFY/+mTkJaY455pjjp8tc2fscc8wxx08brbobsrspRbvW7F70GjZL3vJmkAmoDMPzkJlEmxZXvOUt4PqQq1DIL4S6xHVN6mZIQ2jCtI6ZBhBLTNtgQoWMkeAmHvOvuZrbf/fXqbfbLGmYcLoBw1MsrzXpzUuEHWJoo5tdY4E2oZlmVFstUkyCSEEg6GkBiUIt6KMtFRWrwAAFau0Qb3CQhkwgZ4E3gJgWtF7aR6c1Dc0mTqnI6ScO4C4+F4oV+uOEfAhmnEASEVQ0tSMHuGH1alozY9i9/Wjfg3yF41v3MvzCfoh8ctrBLRWQnkHTlBgIxlspHQHzlywnqLaYmpwmkQEsGSBwTOphwhs//IvoNIZiAVIoiyLeaBMRa5QhqbspzYpDhqZi+oAgd+FK+i5bB4BoBxSxmNn2Et//wz/CtjSukKTtGu1GHVnK00SgLZt8BqUgoyEiGjqCnGasdZqjskFjpEFl0bkEtQTLyDFjWYxbCRRMUAF+3sQTiq1f+hPKUZ2OCkGFWLYBPgRGRJKGhFlCXPJgWT9n+vK86dMfpLJoOcwIdn3l26S7hqi0UpQOwdcYrSaVVoijFWaaEich9aRDqBMiHeMZBnmpcOKYk7v3sMizKPhA0oB8CZ57hb3fepSzJ49DX4HQNcGDgd75uCM1ejKHJUUfP6mx2nBIkjFM08AVNo40cCONrU0cyyVSGX6hiFIKS5qYqcCMJItil/OqJrQ0/eVePvbhT7HpznczE0foTCB1RuwaNHQby9ZU4pSiNvFNm46hYNcBXvryV0iHhrCNlLzvsnBwgM7UJAXbpeL5TFYnMWyFmpkh147BL0BvkbTkEhoGltlLvunhdkw84WLaFvliAR2F2JnGSTIsKSFnY974Zjb93peZ9+6fgdPjjP3Nt6EZkZ/pcHFg0X/4NOG2l+lTgoplUiXGKLtQ7ZCfivjab38J1q5l3mc+zbIrLmOm2cbsyZF6JqFOaLcaRO0WKRl1EcGCEnpemX1HDqEtn8wy6UssrMyiXTCZ7jGJe6F5bh9HVBOUZl5oUY4k5XIJaqc4suVhhr7+dcpJRlmDkWV0dFd8Wn7FFWy8+WZEvgfbK7BwwWJGHn0M2iGuEEhXcNkH38fZah28Hny7wMFXjiBfHoHEpe7bnKpPg3Aotnx2fP6r3Xyccxdy4403ggMqb4CK4dTp7kzZ0RNs++sHQLa58cM/x9jZKegtg2ciB3oozl8IVgFda6NzHtNWxlU3vIbnnt0CWnRbYHMW/iUr2L/9eaaf2wYTpxGmSYqB2dNLXSno76eDQONhtEzyUR5/xqBH5lC2SSpcKkYRPJPiVZt4+sltFJUJdp4wM/Bsn6TRpihM2p0qHTMhK/gktk3DLrLsno/QeP0VBGYOgUTVZiCXwcU9VK6+AMo+bpZQ002wgSwG20CYDjY2ZD1MHJtk15M7uuebVIxlMbqniEoD6qrFTA6ksLjtZz7N0APfZeJvv40pDEpWnvZYDX9wNWddD4QDS5bB8vkscsscev4l3ESjowjbMlA6w3AMYpERmRIVtKmEGcFL+zj2D9+BIO2ONo+epTDYw3Rrkv5KL2XDQImUQEY0ojp+qLE7YEcCIUxMTBbbDjRqsOkCuP0WmDdIId+Hh6a/XIS0DW7M5N6XIGwAEf6qRaw/51x6U4NCI4SkBmUTizxeLGhLSVYpsuSCC5g+W4OWhsEFlBevJIoDHNOirBWODaQhkowESOGfXUlzzDHHHHP81JgbZ5tjjjnm+GmjdTfo6IcogS0shGXyG3/1Vd75iY+zcN06hrY8iaMMMtOhMDiP3JJFTFar0AnY89IOcHzcsNWtZzc1htZYSuP8cDzJMEAIHKvMzPmLqBd9msfOkGtp2p6ETpsTR4/QacyQ+AZN26bjaFJTIIWgXCxgZDYFp0jBLWMqE5mGRCUXZIhMDaQ2iB2L0FUkcYhj+Cz+5Ptp7DzMIu3QtmIu+sJHyTauZvrZnUQtizU/+w4KF62h9eILmInCSDV+YiE6ESd3H2DPsy+QOAahTCn0DRJ3ItKJaY7seBmEia2h06kjkbhFm5LXSzPKyEo5Gu2Q/nIfqe1wzh03Uc0y9OkRLJ1nx649XH77bZydGqW4fiXN6ghJzsS3TYxWA1dYxN2gHwq2SyAk0z1uN1/pbJWcshBaEpsZqAxbKSyt0YBdytMKWt1K+Syl3yqQyJC46IPULLhiI21DMHPoMHue20GURRAplEqJrVkryGwkli1BxAl526JDgo4SCk6OoNbEWL+MwQvOYer4GSgW6RiS9/7h7/Psn/01e598njQ00FIwOXSI2soVhKdPdUcfo4wlaY4wTYkciyiLcJcuQEZt8D20aZFlCktYmLbL6NnT7N72AomMIJ9j/vLVtCemUeOTZDoiaNXpX7aWRZdu4sxL+1joD2K7Oc42JnGKvXTSlJon0HkXUwksYWJKCFVGU0aoYo5W3EGYFqnW3UyuMKBxZpTpo0PgeowdO85zTzzJ6OGj3QDgNEEAyuyeQ5bWFLSJOZtbFFkCOxW4qcJRGabOQCg6QYtUK7Bt2mGAVy6hhMLQGgNFZMPFt93Ia9/zDiayjNbQaXyvQOAaJFZGaqSEYRuvVMLX4ApBp93G7e9h1Wvv4PCpMZqP/AAcG8IODoKkE3D69BlGR8fQpibLOoS2hoKDaoQskQWciSb2mQ62ypGcnWLq+H6wIZQZUoNIJTlt4aYaL9UULY9geISpF3bQmm4SmdCwFaGtEULhSY2fKUQq2PvKK4wdOgDNhEpTUvAcElMTWimdY6dgtIYO292RWddBl4qkOYdL3nQjmWlw9qWdGKZLY2SM1o5XEHmX9rr5VK66kKHnd9L+1rMMNiym4xoj+ZAzrxyCpQvg3PmwrJ87fvljGLbJ2e0vwYIF5MsVnvnag1AoQBpy40c/zNChY1BrY2eC8aMnQGhGzo7iuSWae/eA7/K2n3kve7ZuhyAENKYlyNKE43v3k52dZqADRWkQyYx6u07fdId09zGK9YC2rnHjL3yAQrFE8+Q4Xj0ml5q4hkOgUzbcfhOhazEeNijecBnSFNSqM1zwGx/jLBET33mYt7zvg+yvnYVOgJ0pbCURaFJTExfc7ghoTz/KdFj+tlsZGT0L9YDmdAPsDLKARZs2MPXyPjg2jG86pMTIbiUelgZLCjKtoNDHTe99D2HO4bKrNjO05UUObN9G/fBBEq0plXyq7QbIIvX162k99j3k1CQ6URiGhWW5TLaa/Nyv/xq7zw6z8qbX07d6JSe/8Y+cPXAUJwXbtEhMTUslZI4gThIyJbE8CyNRuInGR+DaNmGnBY6DzDIqfpFas44o+ASmQWQaxBjYtoOF2S070CC0JgobxL7HyrffQbHSz+DAEkae20VOS2IrIpYJGz7yQaKZkGiqDhmsvWITxw8eoj0+RTGBjs5AWFiZgdAmiWmAaTIzM8Ot73kfo5mmUKgwdegglD1IQwq2xcc++XEQisww0JizofGz37NzdqQ55phjjp8acyLSHHPMMcdPGyGQ/DCrAQQCYXQt+L/x2V/j+PQ0x3btIndmgpyyiJKEuNXBnNfH1e96K63eMrq3l/TkSewk/u/2y6v7s7XA0gJbQkMaZIv7aD72KDg+7VaT/msvJcjbqJkq5B1IIZ/4+JmBKw1sZVJttUn7yySL+2jJFuHCClGnDb6DmD+PW26/g31DhwlzmoHXX02AxptqUcn1cP6yVRw4sJfMTOnojJUDixk7fAIdKSae201t136kTjFsD9PO4To5kigj5xcIOzGum8OyXNqjk9z5gZ/ljEhJquPQ042hLdgWKImZSepBhiiVyEzZDSoOYpTrMtmc5sLNV1BvR/gzCXEQsGDlQjZcczmLL1rN8bEhSFpktQYlCZ6w6PgGuYFBqjMzKK3Jkggma3iJgSUVmZakTtqtBlddIUIJCNMQyiV0lKIdn3YcYxqCFImRaBAmV7/uDZwcOgW2jbNhHTKTqLAKKpmtyNbY2kLGCr9Upk6GKvr0ZR52o00lX6JZhqWXX8J5563jxKGDkIS8svcASxatoXl2DI1D3+uvJ1w6D0yDNbffzsD6dUxve5lGOyMumGgjgWKeD977q7wyNoacmgatUcIgFoJEKrAdcEXXMaEka669juve+laOjZ4lGz9NyXaotizy8xZwwYWbOTl0lplOCxb1EwUBgRCseP87qO96GRlExHGC43oknknqmGgZgqGRvotUKXnTQhsKYYEig6jTbUFrtzER6GYLFwMx28pnzeqwnrAQdMfwpNENh7aQmFqB0ChDEwO5/h6CNAGlyFybzOiKAd1zRjNy8AD7nnicTnUad/48gqAO/T5Lr7+CjTffwKRKCCcm0UmGi8AyTbIsZWL3QeTefZx/yQWszuc4e2AvMgww+yooA/BttGsjZjrIWJKzPHLCpuLkaSQttGnRUAHJ9CiMzVAOFCKKKWgH23KQJsSmpuNAUnK46ufezxV3vpmo1qK6/yiFCPpSQS5TKKGRhkALgVGLkUGE73mYYcR00kHlfK58z7toVwOC0Rpm0aRNRmabxEEAvsupA/sY2bUT+gbIJqsUHA9PaeyePNfd8UZsAePfeYq1Rh9KhrSW9PHOL/8W+48c5zW33ky7FRC9so/Dp08zvmsbWOD09rOo0k/zbA2tBfT0MDQ9CbU6uDkMaVIwPVSQkcw0aR49Cr4PhsGBJx6HJEKQYQuwUGQyQcsEI0mRnqDhSZRnkA6P0jhxnDCs4a9ZQmBKLtx0KScPH6Vx/EzXseZ6xKam58I1lNet5Mjel1h/+xvoHexjdO8eKOag7NE5dpzFV17BRH2S2sG9oCVCSgTd1zm2BJQKlJYu5XU3voGTx04xduAgeB49G87h8nfcgpFKakeGYcch3JE6tuPRSdqYwkDPflZbGrIspeDlaXaqHDrwMvWDr1ANW0Q7Ds2OLysQKdiCNIwhs2lnTYprVpNMToPrkNk2ac6FvI20BBNHDyOjiLE9+2CyDnGGKQwaaURga8RgL5HK0EIQdmISFzIFtmMjDagGHQZWLOXCjZdwZmiIYj5PK0uI5/WS9FVI61Vk3idJYhKdkaKx0BhCkOvtpx10qA2P0Jis0RwZQ42eIfNMYtlBCc3mm2/m8KMvYDXaLDGLHN23m7A+jZQaF4dyYlDApm3q2REJA6kFtBuYSxbR7LS59KorOXH8CDSmMft7KPgen/j4x4iTFGFZgInJbAHDbA79HHPMMcccPx3mxtnmmGOOOX7KaEBi0F2S8M8XtxowTRoHDhIeOoJCYZomvmFjWDYyChnoqTBQLrN82WIwuo1aP9wyo7vJ2QU1dBfXSMmV174O5i9hwW23wEAPazdtYtGqNd2Vg7AgA0eaOJmFLQ0MZWB5OQharL58E6xbyeb/8F4oehBGOErQv2QxzrKl4Jlc/rprWbRyBTpKOPbwk4xPTnSv3oWguf0g+//+B9DssGTdWpioYp2pY+PQs2AR+QULmDQkoW9TkxLDcdGNiFyg8d0cQ8ePsXb9WhjoY8Xll6KyiFhmGIYBmcSwbWIB5LoLT21ayFaTeWvXsnfLFuJqA5lmFCtFXn5hKzuffZZD21+kp9zbHQ80QRsGARKKBV53+81oAV5vBcanoZMgpEJrjTIE0M1jAoUS3Q1TdF0WZvcxadMl0hIMk6KXo3XiNE9885+gWoWgzYZNG7n05psQtoEwZncnNYYUaC1o1BusuHQz3kUXkBkCiaboFeDsGIeeeJJTp06B70F/P5w5wzkrVmFfsRGygHkD/Sy/cBMEKUf37sPxPVi0ADwDLBMMC9KEwydOoC0Lenqhd6Cby6WN2VDq7vMgy8C32HfkEHv37UFKiTAszExBq83pHTs5cuQIYZpg9w90G/ocG3p6Kc+bj1i6FDOfx3JdtIBYZt1g6MH+7hVHFOAUi2RJiFYptqERKgPLxMxShFLYaYpndfNbxGyb22wx348gAAOFqTOM2Vs13fOhVatBpULh3PMgTbrvGQpBhqMkCAMKZWh3eNs77+T8a68EJTn9zFM8+eQTdE4PQ84nVRKtNY5lk0YxQkuQKQeff5Ztj/6AhYsWUB7oIYsDrnn7W3jvpz/Jio2XIGwHw80RZYp6GDAtEhpAp2RCMg0FmL9mJYllogyHxASFRs7GVApApxnHDx9h7849HD8+hFMsYRdyaAyENjCVwNTgSKikGifNUEqiHAsnV2DN+vUsXbmSdpRgOj5RJrufD0bXtVhespTNt92Ou/Z8mK7iFwoEUZtAxjhK89w3H2LPP30PNLRUQI0Ar+Dw1KOPwfgYL3zzIWrfeQrGQzhwBuw8aMXb7noPm666ApnE3WdSbYBUrL/5TYi+XjKZEQQReRz6nDx2qQRhANUZ3FwOge7mVSFRKkOYQN5BCU1kK5Sr0D4UhMl/Y++9giy77zu/z/9/8o0dpydHDAYZIMIgDQIBIhJgAEgQoiiKVKIkai1KS2ltrbyiqNXWmtaq1nLVlv1kl3Ytr1dFSiQoigQJIs0MMJgcenLoNN09HW888R/8cIdclcuv2Kf7qeo6Xfc+dN0+5/y7/7/zDQgNW8ao3rABlOa1v/lbJg4dZXD9GMvkLJmUVZ3S6rQ58Nf/CTodpicmOfHjd2BuGVodFv7La3B1kafuuY9LRw5DGIE1aAkWiRESLSS62WDPo4+we/duVHMVJqYZdSN23LSToR0bmFuYA6XZToWaBdNJwJNY0TtfwvYWflcI4qwDaGgsw9wUq/vfA2EYfuBe2LIVlKXbbEEtgqEq3H47m7ZtBy+AWh2yTm8iVaSc2PcOFBo9v4Tf7OBYied4vZsk8iHyqK4fhTzBegF4LtpCZhXWkTiBjx8GbNmyhRt27qQyNNRrq9MKecN2bnzooV5mmO/1mjQdiZWi18IoDbnba3xj5hqcPIM6cRJcw8C2dSAE9bDE9/7vv6XIcgIRkOY5TmUASlWoVDGOpHdbGQoJRlhcY3CMAT9g3cgI9957Dz/Z9w40lsAVVMdGsb6PsRbh/deW0z59+vTp89+GvhKpT58+ff4b0FMi9b5cACtR3YS/+A//AaULkIJCWuIs7Q0uHEnn6izHjx1l4d39LB4bhyRHe6BdgfZE7+gKlCvJHYlyJEoK/JENDK3bxLa77+PM1CTbHnkQ00moILl29CRBEKE1pEGJXIqfq5mM56LWjeLVa4w9eB9pp8OYdFm+MI261mDWarx1a0hmLuOv3UQ1MeRnpwh2bOHq7CUYrVMXEaOLGSy1SAeqfOXrX+P4W/spSYkULp/+na+w65nHmV0bse7x+1g6fAhRH2JdR+DHbRKVMr04x+zKPNRKvPwrX2b85DjZygr1coWk3UWXy+g05Uvf+GMmZ2ZJFhuUx8Z47ouvcvLQUZhdwqY5abKILRSdyRlaJy/gzSyTX12mGoS0VUExXMZ2O2x68CGm5+fIF5aoDoxgWzEUBcZqjAvayZH0VC/QG9gZ3+PmR/bwxKdfZvzSFRAWIQtsphBFQcmrkAkBRnHPL/8ipy9fJNeaZPI8TpFjst5F4WrJ4NAYolJjwTHs+dKrnH1nH0mikLlGjQ5irEt67iq6E0Oecfsv/QKnT57k7md3M9NeYfH1t2kcOQuTC7z87HOcPnWEWx+9h6uqA3Pz3PjcczSly+Uf/QTT6nLzfQ/xymdfxfMips9fANcH6ffsOKGAUsirv/EVDux7n+zsGWpBgG23qa5dQ6zapN0ObpIyNFLn1f/x6xz94RvQaDM/cZkhPLK5pd7vwPGRoU+uCzbdsovf+YM/5NCho2SLi4RS4PoOushQRVWvXK4AACAASURBVEHJcxFpxkBUgm5MSTqg6Q3Ufqa2sYJAegh6rykpcG1xXYVkeuokIcmTFKo1bnv4IT7xymdIpKBx+QK+7lk/QwVuphHtGCUEJ04cZfHsOMgSJDk33HQzldoQzbMXkFbiCYEWkEmDLzS+zbHdBqFrCRzJ8kKTqFbn0oGDnDh0iMbEFcyaOtbV2NEBPve1r3Kps0ScNdAygQ2DbHv8AXY98iDnjx1CDVbIHUHhuEhl8IBSIfDijGK5YObEeRAFWnZIAkWn4pACpcISKRjIwLOG1LEkniH3PdI8Y76xyIkjB9CZxigHKVJcKfFxKFLNI48/wbnxs7ROn6VeH6FYXKIelRnaNMLi1WusdULUQhNHa2IH8sgnjVfojJ9i6OGPkuw7xuYUbtI+G2KX5U6KWj/M5cYiR9/8MfhVGBrk1qefYstdtzF+5RJ6YY5gbIxiaZXRUp1WcxHVbTAUhVQCn7zdpuR7OE5vtTSmNzRWGMKkQA344GSAw9hKQcs13Papp5lZmsM9u0zYUZRqdZYa8+i1VYoIvK3rSa8tQWpBBmRTVxm9ljNgQrxmypCNsFNLfPC9f0TGGWKphXUtVvSUo1oKCscBLBcmpnjrH35wPcXZI56aYfanP+LMj/4RNbVA1bq4tk2tOkLiQuoZhBJIeoUJ0gpwJYkyWN+CJ8AqWOjijozw8T/6Z6wmXeTxywzUyzz9tV+jWDPM4LqtXB0/Q3HpMq98/fcYP34YiqSnapSSMFfYxUWiZpfQShwF1pWYgTIPf+4lHnvxeY689Q42rEJh2HDXrbTjmCLNMLb3kGPn7bew0lzl4qGDVOp1hm++iR0vf4qgVmHuwAGQDgwN4joujiMRRU6uFXEW45aq3LrjNhbm5iEKKN92A5/87Cc48vobuJlCJFC0O2SBpDtUwnQavVbCRJHmClUpEfsCLQs8bfF1b0Ca5xkrLpx9/UeAZtdnX2Z5ZZmdd95Fa+4av/tbv4UjHSwCB3AQvQ6LvhKpT58+fT5U+kOkPn369PmQERYQPR2EAFzRk1ZIIfjjP/kGRAFDN24jXppC1AcxeYHn+WgBdDMwkiAHzwhUSYJRfPG//wOOnzwClYjaDdvI5mcxUdjblOcwd/oy0++8zx3PP8W5736HhYMnWLw0TaChJiVPfOZTnI9ibnrhKWYuniXttAgMiIUWxcQ8nVNXuPbjvSyduUhZWbyBYRrLiyRRBGvWs/CDnzJ/dJysSEheeZg7HnmYxYtTpFMLtEqWtBpAp8uhM6dInSXSckGGx+GTBzl8fpyOKdhz//2cO3ICnSToNEVqEEKQ2BxcAcPDHH13P/rSFaq1OqvLq4wOD1DgUAjD+PRl1g0M0pqZJes0OXn6aE9Jk2Ss1SGu6+GlCr/QlByPNE6pRBG+45OlKUL6GAVXVEY4OEDRbhMmmiAuUK7FOCCExg0EShkix0Fri5Uuxmpansfc7DXiSxfB7Vm2StrBsy7WQG57qp65rMWa+hpmL17GzM/iao2+LqsplWp04ozCkVibsRi6OJtHUe0VytrBLDQIVxNGuurnn3vTkw/Rmpzi/GvfhsUFwk5GPUnxbcG5uUu4RZsLf/ddaPY2znse/ihPP/IYBw4fg5UWSxcuc/DHbzJ9eQoKjQhL/P63vsX4uRNkC9cgTTl56BieE1J0E3yVUbIFOBmx7hChqWUpqC57f/BdqtpnPT6NpUVENyEsDBXhX29dkqRpQqvT5d1/fB211ERYi+MYtNFYCY4r0EZRKZXI4hgPgdYK1wvpaAVo8H2s6+BYQblcoVvkiMBnoF4lTRKUNiRpQW1gACUE2hoW5uc4dPgoC6fPUMkUnvAIfR/dzTA6QxiLNQ5a5zAwQq2poZ2zeOESzYlp/HIV34BwZS+I2eZooVDkSM/iCNBpQSWKyDoZ2nqQ5DA0wPZf+gQPf+ZTnN9/gEsT07QnZyBT0I5Zo3xW3znG+dMXITG9NGADv/zbX4HBiIlrM6ROTFb3yLopbN3Cmsfu4+U//jr5mmGWjp1CFGCFIHMFiQdZoWj5hqe+/pts2L6NyQvnoVrmyd/4VUbG1rO8uIhorRAVFldBIEMunrtIe2UVpINqtBl2I1TaBUfgrBng2rVrOEgq1iNzJbnOIBDc+PlXmXEUWENrOaGjCq7RC323rRbFxSlYTaFW4Ykvvopx4NCP/hEjDB956ilGx0aZP3uebqtFyXEJPYNRBabIcaSkKHKUNfhBRGEMkR8x6JWoxxplBDaqMCgChjsFo+s3ELdiFvcfxdMujuNisWRZzkNPP82jTz7FsXf39jKWfJ/hjRvx/RJ5o0voBqgs7WX7uA6ZLhgrVdBZgg5BCotrPRAuynWgVIJWC7ICxwvx0hwny9HG9hoWDYAhFg7ztkssFdATaPZUYwIjJFQiKHnoNCdywHY1ngEKw8njR2kfOUq1PsTi4lXOzl5h9b2j3PrCi1z6/mvgOrj1KqU1ozz/ymc5uf89SHP8LCVUBl8blO5lFVnHIfdcypvWMb2wyOLxk1AdYNutd7D7iT2cPXcG0S1wkKRJwszcDFMzU1hjCVyX2GqmpifZ/fAezv30pyAlf/6Xf8nEmXGWry1ArtCmgKEBdu28iY/ecz/HThxDd9sUoeDY/r2QFpSFS6Wj6YYGPrKdu7/6i3h+RPP4ZVAWXMmapx/mqV94ickTx/FzBanGaE3uCLJrs+A4DN1zL0mScP/Tz3D+5CnMSpt/8dtfRRUK1xEIRC8bsD9E6tOnT58Pnf4QqU+fPn0+bHTPQWJET/HjYEBrkB5/+md/ijMyxH0PPcBq6JAurUI3Y6hWJ09TpLF42lIuehuNRFpwXbxaldmlReTIEF/8lS9zbmGBvNHs/TzpUNUBeStGj1QIbttBuv84UScFndDurHJtcZG0mXLLlm1Mj5/BJjGh7+H6EoMmiTu4rsOwHyAQtAMPxgaQO3ZgD55hQEWUw4huKcdOTtCeamFnlhk1HnE3hjQjDEs4RUFRCgi2b0fvWMumu+9h27rNXPvO65z/4V5YXIZOm3wkpOMrXGDd+vU0lxbYuutmbr/ldqYnZ8mWlokG66x2moisIPQ80s4qKxcuMeyFlMoRcXcFrMHBYbib4xYFCI8M6JgEPVghlRB3YwIZYVOLEw4yeusuqpvX0lxaJJtZIEKQeBrlagKtKYzFWgs5aG1R2kKlRH3tGI/seYhWltJevAamoJIKCqe3WVTDdQgFX/733+Kdb/4VLDUgTnEcDxOG4Pr8whe/SK4U1xYXIAwoum2qt+5gePsO5t85xKaBEWySU7UGG5boujB35ADJ+atsbac4WhE4Lh1d0CWhKBfElyapFh55O2HNhs0c+embHNy3H7vaoDIwSJ5leFGAFBajMtCa997ZS1Yk+ELh4uBbn2R+Bc918IVBZykSRexAJfBI2xnaKMzaUbzUYNMEt1qnUDnVqIxSCum6rKSdnhUmS0E4jHhldJFiXYmWAi0clJQYYymswMhefpgy4IQlcs/Blnwwqtf6FYS0u128UoRTjrDSpZtmuFEJ3wtIOl3KQdS7v6zFyTNMkjLkRKyqgkYcYyoVbOFgrYv2PGq7dpLOzCLigki65CUX6zroOMb3fOK4S17kUA561jxhEVbgWAdpXTw3ROWK0A/wXIehqEJx6gqTr72LmVqE+Q7WgBuWka5LvrxKVUi2fulzrHnqMRaPHID16+g025x+7xBOphmQIW47p/rII2x/9AEmW8vMXJlgEI9rH5xhKLGkniUJBFlJkqYGqh6X01Um3zsIXQ3NDldOHmf2yBFUs4WLwjXXM9msS+FIdOBCnmKlwBqN9VxWXE3aaLFmYB0l47FgFXpQwrZ1rN1+G5N//xO8TzzC2O47aVdzssduJxdNvvw//xlHf/ATtoajhJ2MzliV5bTLlSNH4MoMtDvMj59m/vgxCHtDmDBwKMgwUmBkT3lmpANOiLKQZ5pUKzo6I9q5nY88+SiXTh4lsQVDTz/C2TPHaSwtIEoDFEFvEGSMpVY4NE9dZvrwKZJ2jBmscMOTD/PMKy/z/vGT5KZLO0vR9QHaTofa0w/SnbuKUYKs6mNt3su+Ny4gUcLlG//uL3jrxz8GIbDdlEiAaxWlXOPluhfw7EAeaKxje08PjEWiewMuK8kdn7xIGbrxJkToE883CDSoMoxlAe1MwYYNfO2bf8S7b70Bqx2qRYmLh94Fz4Mk49rRY9TrddLFZWYvXsbRFtdyPRMMcqdnV/SsxLouK92YleVV9MAwLDVoLC4xGa+SX76CyaHshwilwREIDFZpbByTpglEJa6OnyZfWIRSicNvvc3cqXHICyrlCllRgHSQYcibr7+OtjkDa4ZJr81DluMbgTGaEROwMhRCTTIXWe7fcQeX3vwAr1zDuIrB3XezvLzMyrFjEGcIK7CegzM8gMoSwp07aZ+/QnLoGBPT06TnLlEt1/nD3/wKrpFIp6f2woqeSkzSHyL16dOnz4dIPxOpT58+fT5sDL1B0j99TQCqZ2PT7QYTE5cZrdRhpYlUhpWFhZ5NB4MVBiV7R6kkrvU59PZ7MLeIiQuOHT7OxnUbGdi0FdwA6hGqyBmu11h6523uu+duyoODmDShUqtgMMTNBlxpcOEf3qaaagYqVRQ5hQ+pryG0UHHJbUFsDUQO3HsXg5s3sv7WuwhSjS4UlA2IKsWZKapdjdCGLVu2MDC2hjRJCJOCDSuKwWsd1t1+B5tGx3jh8SegsESdhKGoTOAHCJ1DnuIIS9aNQcHk+DnUcgvbSaAwpEpD5CJ1Tmg0WIPnuTgqJ201evkfRmHzhIQuMZJcSmQYQqnS22C4HuHmzSTlkMJz0Z2MO26+lYefeJyHX/4UXN+DaKd3jhzTi/twZEAYliiFFQI/AsdlZXqKvN2kHHoQd4Be4drPsqrotiD02P/BAQY3bIHcUg8GyDOLLTQUOR+cOMHAyFBvv5MVbN2whYGwzNjwCOCQWU3mQJOCHENYqYBfZU00gEEQG4vwI4KgCn6ZNR/7GEi3txl1PBbm5sBzkdbghAGdlSW80EM6oNIOwUidkdtu7FlVhCRvJASpwqw0kbkisJDnOV7k4QoP1wtICrCuy8jW7ajGKm0pSMIarSwhQxGjKXxJ7onrDXQaOTqMdB0acYvQK/eyZujlxSAktbVrUUWBjCISaykch6Qo0BZIUxgaAiHJ0pSwVifThrvuvY8XX34Jv1Sh0+xQKEO1XEMYjWsNFQuh0tRcn0QpvJFB6jffQBK5dISi40B1bA1f+d3/jg17HiQYHqZBjnGBSgiDNWTgUa1W8RwX4gypBY6WuNpBGAeQaAOFBa8UgCtZmZ9lk3IYixVr8XB1jhGSIu2isjZy7SANH07/7fcZ/z+/A4mExTYX9x3EaI31HFbiJu1QsHzqIud++C52pcGdT+6hvHMjhJA5UCqgnIJIJLguDA5SuWEX1IYRuYbcQHE9NP16ho2S/PxYOEDSAVcwtHUjXaFwh6r4pTJEEQurK3TyHFwJN+/ktpc+yc27bobUoXh9H3P/+dvseuE5rFNQefFp3tz3LqQJ1zoNEtfhxc9/Dl8VMDMLqca3Liw3e4HyGIzOKIoMJSVKiJ6CTEjcsIxCkGmDE0W9pr6SDzduoLp1I7gS5747KT9xNwyFUI6wQkBRgLEYY6hVqhQ2p9ttUS2Vodnmypnz/MN3vgsT07B1E9Fdt5FbkB99kLX33wmlCFEYjPuzaOd/iuT0qTOQ5UgvQKpeG6C0vYw0fX19BvNfA7wMcD0QvlfOKbFIhm+9g/seexyCEq7nUfUjTAbGZiAlwvOZmZyBRguU7uWRlSvsvO9eCDwIPCZPnubY2/vwFHiG3tBaSDJHol2LFgYB+IUln1sgHz/Lx557oZf3pDUP7NkDYYlKpUKRZQSOi9AGaSy+I/Ecl9ACSyt0Ll3u5ao1GjSnp8HzccKItFC9iylTLCwt9qywvkNjeRFyjZ9p8jQjKRQxKTguzM4xvHYjF0+exqvVKbIEKmWmf/I2F378FkU7xhUS4UgMlqTbgaFhnnz4EYIggpF1MDkNpQoqycFA0U2u2wv/yd/WPn369OnzodJXIvXp06fPh42i1wrl/CwMmOtye8GffuvfgipoXr3K6oVJfO2ysTrEQFSiU2TkrkFLS+4YhJWUcqgRkmU5RmmIM64eP0EnN+zavJ1OK2bjxx/DTszTXlpGD/lMuQUcO08pUyynS1AF7blUvQEajSUKE/daslSGk+VEuaZWCMJuAVjM8ADFjnXs+dpvc+7sedbMJWQXLrKcddjwb36V9r4j7GxGeEWbmVBQ/ctfY+tXPsnVH77NmqUOsW9ZzhPakytMv/EOp46dQMUd0BkkMSGWcpIz6pWo+AHLzQbh4BBZK2Hm1HlGqgNQCjC+JNq2Hn9uiYq1tLopdVdQ14Iiz0hKEuKEQAjKNmLhzm2khaJotBnWEZHycaxHTMFL/8s3OXPiCHY549L8DKcmTrLQ7eAtNCFNyH0NAsq5wSkN4AQRSauLVAIrQTsWioQLBw+xMjWBrJSxSjNQCFqeQDu9SrHqU49ArcLi370DRuArTQ5QLkM5Yml+nqnz5ylVK3jA4rmzdKXD1bfep5IImjIlq/tY16MrNUXcgUbOcGaZGqug1o1iW1DuAEXI6O67YWiMoZ034u75COm5M5CkmCLF6ozb7r2L+enLaJXBcA1dxGQDdbZ+/CUa7+1lQ+hjkpQRIiqlGlZpMlLyoiCiRssIFAHh4FrW3n0Xd/7OV7i0/31yL2LdFz5HN14lW5hHlUPSpENpx2bufPJRrl44i40THMcnKTKk4/VquYUEKcmspbp2LXGr3duk+iHagg18GKzx+d/4de585BEuX5mks7QCgc/ExBVOXrxC1onxa3VCxydeWSEQEpkXRPQUFZHvs6osmx6+j7ueexKxbpSVqUkQgiRJ2Xt+nPb0ZTI0DPig2mAyCH0c4ZCvNgmkS+R6hJkkVE5PWWJcrHBQgA5dYpNQ2JzqznVcWZlgSXXohhGZFAS338DuTz7HQpGRXZ7EQ6LDOtGGjazfsIXmzBw7tmwnuTpPlBvWlmo47YSkWmPolpuI0w5X/v4fmD5ylvrVhHWpRQOJJ1Alwdo77+WWF55lOe2SvX2IG9xBBo1Lt9PAZhlVI0h9QyF7SrnccbGeZPuzT/DAJ59jKWnRmZkgbSWsazi07t7AY9/6I4INa1jYf4pRfxA11+LE3ndB+HBhCZYy8maHu7bu4sobB2h876dQH0DtWkPp6Xs4/r3vEF+chXbKDllFdFYo41NYRdFosa5SQwhL2zVoKVHSwQiHvJMwsnETOD55O+4NwdyQTrPBpX0nESZkzeZNXJAtuNqAZcHQasJgHhB5PlkcU9RDWkWXtFYiLTKqfgV/tkl8YQ5VH+MLf/FNyl2YevMD1n3iES7OTcKhS9ya15nPmniO7SmRrItAUkiX8RPHQTj4UuKmMZ7TWwfagaHwDQbwNNSyXqaPtKCkwbEGz7gIK8ncgDV33Mpip8vi0WOEbhmZWIZMTuH5xGXAak5+900cozBSocsV7nj0Y5iVBeKFBZy0wG0nVLTAUz2vdOYKcleiXImWFmkFkXJwjaQ8NEJsBFtvv50r46dhaIRwuMrSqTPoOMfRUAtClFFYrfGFwAc8LJVcEeU56fIKIkkJpIstDCbLMUC5WqPwA4hbMFTGr5bR3S4jhaSkwQl9RCnEzSRxIKFeY8+Dj3H4/3oNE3pQdfnYV7/K5X/cj29dSnTxpYcSlkIItCcJhkYYGxji0lvvw2qX7Z9+idWLE+Srbf7V138fx/NAiOuTuusTpL6drU+fPn0+VPpDpD59+vT5sJGAc/3/XAAr6DTb+F7AX/3lX2KVJZQeRRKjXcGTr77C/S9+nL373u09ec5ihAMBBUOlCBlCo90GXLAeGBeVJMxdukje7lDzqtx83x3MLk8TNVdILp2GbotkKMR+/AE400UUFTK7CNIwEgXYLANrwXFxvIg81QxGI1SjQaxw6U7PMfWDH1NZ7XLt2DGUVGhfU46q3Lr5Fo6Pn0DVKuT1gNbrb7A63aC4OAu5w9joBhZnF8EU4BSk7SVcnVItFFFYRlQqLDmatS88w9TMVdJ2BxWWsdYwfMvNvPjrv8rBDw7i33onz/zil5j/6X7yJCEeCKi0JVlQpqjUyTo53HwDqhHTzjwGXtjNp558hlPHjuMORDTtCptfehy1qc6x//Q3ML8MtgOdZZicQZ+/gNQG7Ui0cMBAGgbkd9/Dy//qTzh55iI6SVBpjmfBWAvCA+FjcwcKl9rue2itqcHyKjgueaNFe3WpV29uDb6J8UqWImtR8SVitUXdKMK4gy1SdNVFzU7Caps88xh58jle+uM/5uCp49iJq4wWgrLVtNdUyG0CWzfzpa9/lb3jh8iTRVbOjZOMn0YlTdZGAQNRldX5VXACGFjH0O27uf3jLzExt8j6h/dg1q4lm5micXgfkJPlKQiBdgMW0xjrBqS5i9I+NXpqlsKBXORcO3uGS++9D50EkhYbNqyB5jJFO0G3M0K3RpLD6Not7Hr8CSavXO6pPFyBm8ZoKcBxwHPZePvt/PKv/jJjWzdx9tRRDAprM1A5JDEn336PU+/sw8mv2wuxEIaEjRyjBdL3iPOYqFSh5AeYNGOVgm7JoVMV2CJGzq9w/ifvsXD2MmzdwPpPP8dDn32JS3//NltKo9zx/GOo0RrtlTasWc8rX/4K0itxdWqKPArIHKgnEGhB1zd0IkXuaLQ0vcymoUG2PfUED730ElcOj6M6KSIKsJ7gxnXrWLxwntVzF3G0xZMuhYQnnn6Ws6+/yaCB1uwEkecjPJeG1thKlac+9TKbR0Y5v/c9vFbCUKZRrVU6okCsHyaPXHSjQWdunpVzF+i+f4yqG+G7Lm2VIryAXFvwfGqVIeJGjCt9tElh6yD3/OarXFqeZepvvssONUg1VzSCkNyJmTx8kvb4NKNLDWRbMTt5mY+8/Czzp45QVSk1K2jMX+bq7DS0EmhIyAq+/Htfo9TVtE5f7ClJ7ryN1YfuZf0DD7KiU6LFJUo6R5YdUpPhiYBMaYJEUjFl0ps28Jl/+ycspSmN8SswMgjdBApB5JXQKqM1eYVHX3ye8th6brnrTs4eOsVmUyPW0N40yIP/5d8w+b3XoJszTMjWVDBpl1ElgbvS5NjrP2Vq7z5EuUR7/yG4vEhNQWraKE/hCouMLQNykCJ3SIXFv/929LUJtC7Y4UYspwnG9ygHVbJuxvZf+wXSZkFrpUNmXFS1xo1/8KssXpkkb8bU/ZAgy1i6cpnuzAy602GNdXB0h3ZYY3UwhG4OqwlDhcKp+RhrqHS6TF89z+LiRYq4S+g4lGODozXCuLhRDRu6FHmO60hsM0ZLRagk2VidoeUCr9nh1JWTyG4Lmy6xeu4cJWXwMFgKcmlRbi+wPrGGREq0dem0cu7/Z1/iyrmz4LmMxJrEl9hAg6spBh1QbT71z/+QqUuL5EttbJLghBD6Ep1klDMHhUPywn2s/djDnPjz/w3iLmwbgMYyG+/fw+T+M8hOiuN0SKTBMS4lJRkWFfJOzqWLk1jHMPzwbp586jGuLs5TKfl86UtfxA9dpFSAAlEAea+BtD9F6tOnT58Pjb6drU+fPn0+ZOz/Tz6D53ngOugsx1GKtNPqveFKYkdQGhvtWVSsgKBMVfoUKSzHLRZbK4jAAymhFHHLI3sIh0ahUsEbrDN/7jIHPniPuLVCZAws57iuxAQOG59+AkY3IkWAGBxAGI2KUzwkcarRrksj7lIbW8dykjCxukRcGLCwYe0GOsdO4giF9gUIy/w7h5g6MQ5C03F0T1k0uJn46EVIDbnvowuoygj/Z3XvVuFYTSgl1hiSvICREW57/DE23ngjSInJM8gzludn6RgNa0bJmk1On72EQmA8DxwHKX2W44RWWuCv28rOx56EjZt77dknxhk/eASKgizLYM0Ai0mb7TfcANcaEOc9a40xVD2Pmhti0xRrNT+f/BkNS4t8//332HzLrZgsw/cDpDXI63YVAGkkOBEDmzfz9CuvQBBCbrjlzruh0QYygnIAAz7dIgUFyXKHkXKld9rdACXBSkF9ZAR0ASPDLDS6HLowwdAttzBcqVOTHhJF4upeTdzMLG+9/zZWJhCBVApXGJKZaS7s3Utj+mrPjuR5EHeZT2KmVleQ27ajpMvDDz/KjvsegCTByRWO6TWcLeddtANpNeBzf/DPISojHEnJCyBPAYM/MoSbKvxeIT3nvv8anZVraJXjOeBgIdMcf3s/e19/A1pdSAvIFD93ugkBQjBz9iw/+fGPOfD+fkiSXoYSGonC0wbfGFxryJKYUiXCK0VgDLJWwfgWu6bGo194hU7cYDlLsa5HabCOWylD3CYoe4h2zDq3RNmrEG3eAq7LpfkZEJbm/DX2vf4TiDNYasLlaU4fGefChUu9ayFX0E16NjAJmWvANSAN9WoFN9Ow0ubqpWn2vrmXYrEDqepZkdKEC8eOsXhpkrJw8F0Xg4XNG3j9239LnsboLCXEAQcyDCmGjjb8w1//R177P/4aEkXRjlmam4d6iaQWsrw4R7ayDMOjeLZANpq4SU4AzK4ukEuLcSXlwSGU67OyvMzg2vW4YQhRhXDjZhamrrJydR4cD6nAYEh9B/KcXXse5YbtO7B4pGXJjofuZsu2zSAFrucgpAJhqO95gJH770HK3nr17b/5z+z73g9pT05Tv/02nvjC52HnFjY9/hBxFJLnOWXPITE57Vj17Ei+h3U9pB9Su+cu3j91kokL55GlCEbqvPjnfwYbN9NdWkBlXaiWeefb3+PBe+5DlEMohzRCl1XXgtXsO30CRsegXKedtHsD38iFwOKiiIwFz8XalKA6CMsdsm6XtiwIQh/hSCS92nkhHBhbw/D2zTAyTLhxHWnSpRyVkNIlaXbBysBRuAAAIABJREFUDRm7cQc777kb/LDXdhhF3Pv8MyBdhCOx1mJIkCrH0wo/9OnmbSyGdq7Y9czTUFgCBQ6SXFgix6MqHDypek1uEaAKfBESUCEoDbDUaRHHXdCGSLiUBBCGGNel42iMUVQcFy9PCZotiDuUujmi1SWwAp0VCGMR2uBqiYeLa12kdbCeT7B+LVRqEAS4WLSkV3wAUGjYuJE0L4i7GUYJZG0QW3JZzXMU4IkAj4Cxe25l+MYtOK4LhYKVJqSawx8cQG4YQQ2WMPSsllr2mgc8ZQmEg2m3Gb1/N40iZt/et1ieukIn7SAjH/XzZfi6h1DY69/36dOnT58Pi74SqU+fPn0+ZP6/z0OtAMf3MAL+9V/8TyS6IKyUUUIhyhUuHDnCvgMf9FQujQ6RlXhxzGAY0QhccgG2VoXhOnSbrL/3TrZsXsf0oQ8wSYxuN6mmlrzdpS1zWDfGiDtEZ2GVtVu3sHzkKGt2bqUzNYdjPFwjSZUmWjNIN25CJaLdahBu28S2xx9hZuI03Lydz3z5l5hvN2hfvYqb5ZSCAFdC2uwggwAtLOU1w/zJN7/BpYsXSIuctNthZXUZ3/OoKYFFI7B4BookI/LLCOEQZwWudFnrRUxNTuIFAfgBVilOnzgOM1PQ6bBy9gzJ6hIEAuVYCuEw4FdI8gJdlmy/806KRGEXW728nmMX2CBKZK0WhfHIzl5m/uhpNqy/CbGSEpR9sjzHZJoiU0R4+Fbgao2jNZ7jU9p9D+1Dh2kePgxKEwqLsKpXAW4NroFAWwIv4OrpE8x3ViiuzIAUrB8eZv32TcwfG8ftxCRjVVCW0cFNlGTEfLdLsmGE7vaN5J0uQlZJ5+ZgsM7n/4d/yck3f8riu++QXLxIsrqEHzq4nocoQGY+Ni5YOncREgWJwlUWqzWyXsE6IBdXqXqSQmjMoM8nv/IF3v3Bd7DjR+mOn+LygYOsHjvFhkxQVr0MKGkhK/lQj7COYjzQbNp9F6uHj5EIjfYEu5/4KL/0i1/g2pUplucXCPygl2sTN7GOwnoKISxapUCBnZ9no1+m1lmlqhWFcEG6GAXW9oY01y5coTMzz0CphlMohAGD7CnDXIF2IdqwFh165O02227exZ2vPM/l7hxmZYapqgdKod1eNXghoT42zB1PPsH0yjIYj0Y7pkgV+dwi7dMXWLlwAdyCtOjiF4bGiYsQ1Qgqg8xNXMW0upjVDn5u2RTUaQhFKxQY34I0eDmo5TZDuUdkI7jWYPXkWYRV+EGIKwRoiy97w6M8z8jTnCgq4TxwB3c++zGunjqJLAV0um2UK1ACgrCEyQ3Wj2Dbdrbt3k1j8go4Ll/+l3/ETDems7ACt93O7/7+HzJx6ADN1SalMEJby+at27i2vIgoBSTtJtHoCL/3v/97FrKYq1fnINWoM5Nc23eU9PAZ8FxWooJWJeILv/s7nChZbOAycWacTrxKesMIq6rF2Td+CiIijTuk2rDzMy9gRgdZ2P8ethBQcsjiJdTyEjK3xK0OV44cY9enXubQt/4drDYQ3Zi8yMnCkHK5xIBXph1kaKlIfIcs7rJ8+DRcnMI6kod+6/Nc6K5w94O7mXjrHZxyGbuyAlZw4sBhrvzwDZygTvOu9Zjto2x7cDf++BydA6dBSPRAiWtFg/o9d5DFGfVgiFa8irxpJ7bk8+RnP0PiQGN5ASsFSRpD0JtFZNqSOjB4804agUWfO41aaZBlBRmQZimDlTojN90AlRIn3t4LuQTXgfUjnDywD05eJlQCz3GIBeRVh8Ik6JpPqgze4AhZtcaLv/Iljr3xFr5fQhhDR2ZkeYGPQysvEKswpDwc5ZGXQlY8aNYcNj54O4ODVZJWE7HaxJUuWeSR5hncso3WwjJOGFJYxY2iQlUEFKkgcKt41qXiVxBJQakQlIykph0qeW8diDcMs9RYIT1yASE8RqmyWuq9ubETUG93aTUUF09fhjgGMmzF46499zM5eYm8XKEVSVSiae4aYnHiPPbgWTbqEH81p575rDSX+PT/+g1K24aZ3/9uL1z/uu1yOe+SBS5WJ7z6m7/Gke9/j9VTJ6DTosgLvvkHf4jQCldef1Jje9lu0Fci9enTp8+HSX+I1KdPnz4fNj8L/fxZaDOwmrTREibmr3Li8EGUsL3QJK3BD7FJCu0ufhgiTK+2uKVy5Jq16FIVSgHPfeXLDN9xE4df+zumz53Ds1AWgsJkjHZjrLFUvvASyfQial5RKw2ycvoMZscAT77yCSQjXJuYwVwPsc08ePzVl5lrN9CFxhsZ4f7PfpozMuepz3+Gb//Hv6YzexWZFQwIsFmMSGOUMgjHwXElaRpzfPwkQeCzeOFcr84aQykKGegqjLRYIcgdIPBJMo22Fs+JmDtzkYXJKSgUKsswcYwvBbq5CkWOK8EmXWTJoShSBjZupJu28ToGHBe9rsTse0eIZ5fwPB/VXcY3krxI8euDjH3kDu78+PP4W7Yxsf8gmReSJQnWkZTKAxS5ouKHOEohdIZrDMOlEo+88AIfff55Dn7vNaqOQ551kBKs1HjG4BmLry1SQ+pZisYidFNKSnNteoKrl04jC0PdGCqf+TjPffFLHPp/fkCcFVCvQd1j83NP8tDTz3HhR3sJfQ/lwLhveeqrv82WW+/kyvsfIEiIbYYxhmFToqQ9fCDNMgLpEggXTxkcKdCuwBQZUWHJrSYzCnTC+PmTPTVYkUOrQ82AVhnNyKfrQOoacrcXJv71b/wpE4srtE+eozV7jaK1inYFlHyunjnD3v3vszQxTc2PCH0fLQU1m1LT4BaQKYWp+qBiCAS+VpQLxVh1mGtGYRwXpU1v01doPDfEFxK6MY5W+MbBCIl26akwPHjg+WfZvGUzSVEwe2WC1uFzxGemIZWIySXWumWS2UVKQUSqc5TvsfbmnWTrhthy7z3s2H0vzZUOfkchuhmq3YWyC45CZgbjuOAY9Eid+158hpnpK1AUhFEJJ81wNHhaIAxIbQm1ZaBUo5V16FpIVIY7WKdyPZcm7XQJXI8izbDa4DguXhgSRCWcu3ex3G6RXbhE0VxleHSMbhZjHIciL3pKkF27WLdnD5XBGkuXL4DvcXZxgZXpWVg7RmV4lHdff53O5QsYZfA9D8fzmL12Des5aJ3D8CCFhH2vv8nC+NmeksyBocoA9WbGiBuSoygCBQMBxxdmYP9Rkvcv4c82Cf06xXCNR176NFPnz0OcQJFRLlWZu3SWTtzC27GTOzdtZ/7yaXZ+6lkyY/CXu2RRBcbWs6zg8Rdf5Nabb+bsW29QHh6may1ZO0ElMWrjMO49d3DPs0/z0IOPcnHvIXQnBaGYPnGApiuYeO01dj36OIvHT1MfWYOOU2RWsH7zVprTU9zwV/+ClSvnaOw7iPv+LF6pykPPP8PE5AXKH3+Eh26/m0v7DpK0UtZ+7HFe+q1f4/iBd5GbN1FgaJ89TzmqkCddhLR4joNwAlKtSVTGnuefYaFQqKUGshA4kQ/WoNKC5eYii0fGe9ZjUQab8eSv/zJzU7NULs4gEWRWk3oanILtn3iWjzzxOFcOHiK1Gvwqx374fRAeGgfPdcld3Qu8zyXFUJlRr4ZIBF1l6QiLif5f9t4zSLLrPNN8zjnXpqss19W+Gw3TQDdMAyDQsIQhHAmCIiBKJARaiZQoSiIpDaWZ4a60nNFIGmlmtIrV7E6MtDE7mtBqpZVEA5KgBwjbQHcDaO9NdXd5m+76e87ZH9mj1UZsxEZsBDh/8qm4ERkVVZlRlTfPzfPm9z2fAyrl6vt2M3vyFNHMHMOOj5YOmatgeIgHn/kw5w6fIMlyAsBLCoo0Q+7cwVyS0FPQkRZdDTCe6req2gIrDVIKbArdmXnW6pDcFCznXbh6DBoBLKSswaK1wm+Mkl63lVt+/TPMvvEKT37qk+x94w3Yson1T32AzlvHsKePwKlJsAHKWIyQ9ExCaUtm2sucf/HHyM4KnqY/udG1MORjdQG1Kt2lJVamLvQF6Bi8ouQr/+zL/cl0yMsBkhq0sg0YMGDAT4BBiDRgwIABPynEPwxqQ7k+7Szijbf2c/TiJGWrRTNokqYFKvCxpebW9z7CbNajiFYZuvNWuo6Lbudcf8MurrvjNt4+fIBea5XexQuQFYTtGD8v0D5sKFwCd5SpW7fxK7/3x+z5j3/DmmqTRqvFipnlxMG9LDprYGUJE3qoqo+NWrzrnrtRuWb+/BRlN+XYnr2Q5kzNTDPmB0RHjlNTPnlnFWM0jifw/QpGWzCG0mjilSVWp6YYufoqdt9zF9OL88S9DsOlIPYgcyD3BYWnMNUqhRCIXoqba6qhj84LhDGESuJZjU1jlNEMOQ466iJHKugk5iOf+CTVnVcz+/oRvEqV8affi0kF+cwiX/79f8GL+36EPzZEt0hIQgVXbmTrbTdxfGmeGx9/guqm9Vxz+y6mDh8hx2KloJCCXGe4vosB2knC4WNH2Pf1r+M5HoGBkeFhunlMKQWOtX1xrrW0bY5tBpB3GKo3MHFEbgxUwaaW0MLywjTLrRbR5IV+mFOmkMa0Dx/l3MnTqCxnpB7Sa7XZ8cmnef3b3+P8G2/iXpwmqFusKzDaYpKMOaOJVIkz1iBPY6yjCK2gyBOKLEcISTYUUjiqvxk1Ll4q0IsdaCcMbd5Cp7MKzWGCXr86TGBB9Metv3byMN004qP/6rfpCU108RIaDVkM9QaUmqYTkPV65GmO47l4nYR6WUHh01YO1ELWPPog0UiVOG6zqgumyxTRHKIMfayjwPNASUxRYkQ/nPFQ+CikURQSrJJgBRfPnefCiTPQiwkSTTxeZeyGq+klHUgzyDWBcFBJzrAMqPRKpvYcIb4wz8yRY1w8epRUWsp6haKzytodV/Lwxz7AiTdfxfgVnvrMz5NsW0dLJMysTPPQ5z6NqoXMLc+R5CnNVFA3iqC0uMZSKMNyFlMMV3jP5z5OcO0m5s8eI0g10pq+jFt5OEpRGk2SZRjfpxCQuz7jBLTfPkpzaITu0jKlMFgBOC4PPvIYNzxwL6eOHGD61R/35cXdFYqZS3j1CnpqinxxEZaXaHguIyOjrLZWqdbq5BJskfH4pz7OT3/8o/TKgsW9p7BeABRsf+aDTJ09RViCTTNEqRGNKsVqD2cqYrznUDUG3wloEbHu1puoW4ep7+5jODGknsRNLEWtyns+/gmu3XgFJ154lRsfuY9LF87SOT3JsPXoCf9yG2PO5JHDnH79dTAFabdNsOkKdt1xF9PnzjK6eQvXX7mdI28d5uD3foReXsFxHRpKkba7sLjEk1/8TbxOzPnDx8mTHNOLMRiiIuP2993P4YMHuP3Tn2Z6dpng6Ax3/9wTOCM1zryxn0IWnP3OS/jawfErtGcucnRlETMyyt237ebSyTNEpyZxopSxsIr0BEVWUvWrWAFlUdJa7dDbdwDcChNejW7cploJQVsKX+KKGg9/8XPces0NHF2a4vxLz1NemKWeZKSOJhEa6iFD117DNVu28eO//FsoHEg0uAFcsRGyou9D04ZdH3gv1+y8kXMHjmPrIbEtiV3BHU9+gF6akKwsQZ4xe+EC6eIStUaNNI7JhUIoFxNnzJ6dwUs0RTeiOtJgJltB7NzCU3/0u7x56E02v/8R2guXeODnn+H4ueNkSpOWKXEgkEKxJfJZdEp6QqNlCkHIY1/5Eo0d1zH54z2kpUACrSxl0698jJP/+3+CSsDeb34HEs2G++9n+513cf6b34GuhtyBNOfGD7+fs9E05XgN16vg7D/LhHbo6JiRRACK3IXw2isQUYlZ7ZJcmqcyVCewJU6WM1qp8xu/9sV+aS/iH2TaVgwipAEDBgx4pxk4kQYMGDDgvwGZzaiGVZ577rm+H6lSpeim+Ch0moKw1MabjFyzBYZCGrdcBxMjNPwaR/YfxMk1y6++zuzLr0JSoNKSkaBBQ9VxfJ8I3d+cDw3x4p49hJU6q6urGK0hLkEpvA3jsGYE0GglwA/43te/ydSps3hRgd/JoJvD9CL53gPM73kLHB+dJISui++6FBKMMUjRd5EIowFLdWINcdTlzjt3U0QdvDAgVf3HsbL/Lt/bsgl3vImNOzihS71aocgyPEcRej6u4+AISaNSZe3YKIHv4tIfOY/jsHfvXubn5ykpkUoxNT3FI4+/FwKf+fl5rrxyG73ZOQgC6PVoHTjIKz98ge6R4+x//ocE9ZB7H34YPAFCAyVFkWCqfYlyoiwmEJDEYMFmOUbAUqtNbkH4Pqk2CCGp1esEw/W+d0VCJ44wqq9GwVjw++Ehq10WXn0VPA2+BqVRGjwtELNzCJuitQbHYXF2FioVWF3FsSV5HFEU6eWQIWT97Tew8c5dFL1lvA1rUPUKuS4JhUdd+YRWEl53Hc61OwCHRm2cSgfCWDHSWEt7Zh7WrsFkMYnISUOHTBgKXeLVatCNoRfzd3/+F5z73vPkumTdVVey9Y47oBcReD6mKPGkSzUIAYjxWXVC5rSEsAZrN7BiFU9/8TegUge/Co0meRHz8V/5JX72Vz8LRQy6xJ0YxWnU+yEPghKDQvRH1ceXZbm5wckLbC9G5SWp7vG+T32YT/7Ol2DIo+db2jXJqm9YrjlEwxUiz5AHEgIL2ybY+Zmn0SaGqs/c28f57u/+zwQ9D9op+15/gwvnz3P1zbew49HHkFISxzEkCcJRxEAXQy4E2pEUwkIg2fXAvWy+ehu9PAVr0bpA6wJTFuRZgrUWKRROpYpWCuH5lJMzXPzWDxlvrqFc7lBTHpWwggoCcCT7Dr7Ns3/xv9E9fgTaK5BGoCzSseiFGZQtUUkPZUuKoqDVahEEAVEUoZMEHIcoitizZw+nTp2i4gdIR3Hr+x9n/fgE9CJc16XWaFAKS5ynoAuUNYRCUMUjrFUhcJk9coTX/+pvUG5AicBxXZqVGrR6/Ogv/opv/cmfIrOSPd//ASunz+BGMaurS9BpQxxz16OPQZ7D8lJfhlWp8fDDj3LDzTej0fTOTnP02z8m3n8EehEEirJIKDsdxsoAOpqTL7/OmaPHUUGIzTMIfNZv28qnP/9ZzixM8Z7bH+T8C3vh4BG6dYe3p87y3ed/QMWpwplpZCmplgKVa0avvo6nHn4fzM7zzd//IxZe34tyfWrSxaQppJrQC4jjmKF6A5Kc9okzoHxUlJO0u/0Ksyzve70Q2Dgj60Q8+4PvsvWu3ax9/+OQa0qh0cL0q+nyjPaBo7z011+DniYsHLxSQbvLe5/8YH8SXeijPI+77rkbpVTf7mMFuAZuvJobHriXpBtBqiGxMLfK8PA4cZqRWEGJpexGCC/EWeyiUgNFSXVkBKqG1pqAVw7sJ9h1IygJV2zFCMD3Icv6a05ZIqUkVRrnug3gp9D08BpDrA+HyeZagEQHNZRXAcdww+23wpaNhA/eT2XdBujETJ84zwt/8X9ANWTIryEyDa7kut27oRfD0grF/CKB7zK3NI82BmNKNo2shSjjnnffh0JQEQ5hack6Eb1WG0cprDb0P5kZ+I8GDBgw4CeNsNba/+8fGzBgwIAB/7/5f2ln05e/HY7U+iJhLRkuA0ppiT2DVuBdvYX1d95G15EsHz7AujsfJPvzb7OyOIdqeOisg1OrUMYpXmFpujVEaVgYcWgsGrpKYH7qFriwQOVsRN7t4aqEdMLF5ilrnvwY75pYz3N/8K/BaJxaSJkmuFYwqgO8QpAiiF1InL601LWGsLAgSkoJsWuoWBdlocRSCEshLcZo8F1qw016SQy9HlXTvz+tXGiEsHEtjz32ON/7+6/hTS3TyCxFmWEEWNHfGBgkypX0ej2sgGq1inEVcdbf8CIlw4ywWhQ0n3mE1st7wTiw0GKtjsmNxQpJJiRxUeI3h8k6HQiq4IK3fQv51Hluuv8BTh05RnLpInR7fRl1GEKZQSdFSQdPBmSFwfhOfwrQcB0WV1nTHCZbbdFuhjS3b8WEis6P38I3kCuwVSCDagoVA5GC2OufEkEOE7YflrV0TqcuqQTDdIXk0S//Jt/5+rfh+Fkq7VVcIrSEXDgUosK699/Hrbvfxfd/9D2yA8fwqk3E5DzVvP+/09LQvmkHjz79MSbfeIuTf/cc1zh1MluypFPkjdv4wG98ltcOvkmWdFg6c5b8rQPgeLDYZbQ6SpkV5AUUUlK6PRhp8sGP/CzPf+M5OhenGBIhrlR0sphwYpRy5zVEx072hbt+jfd8+Z+S25KXn3sOXt6Drx1KU6D9Hs7V26k1R2nNLfDw+z+IXxTsfellFg4fglwz5FdJ0gS/UiHKYqy11GsVHGOQtu+1npMFY6NrkKWhs9rCNmtk7VXWPfRudt93Hy+99BIrL+/j6hXL6SrgWSY++hTalWxdu479f/l/wvQSflrgxgXa90koCa/ahmgOEZ86BblB5ZogjolqCpToV44UKZgcfAlFATKAzBAoH1n2UBaUUWAd3GqNxfYqstnEpFE/eDAujdoo5dI0w25It+iSVV0Kz0GGFcrUUMciTE6ZRSj6QnKh+74eeXld0Ugi10VYibBghSSoN4iLjKzM+3J4z+/L1YscUa9jWz2GEpBFRhhUmalouGkLt73n3ez7+jfZuKxYOD9N7irYPAbtDmzdxm333su+va/A3jepFJJgaIyVrNsPrDsp1ACnZKxnscplGZ/mlit57MM/x1//ye+DB3SXGd10JSocY2F6EugxumrQCNKRYdI8At+AlIy1Yzblho7T5GwZQa3Sn+hX9EMkfKg0q8Rz52nmW2g1XbAJwfXXon1Lse8QI3M5qdsX+btW4AZ1ZlxLY8t6WqfP9JPe0tBMCiomoxQG3WyQWojabbxKDYlAFH0JvzT9PCf3SrQ0pFJQCkElcYjXNcEVPPDFz3H0rQMsfP15Kr25/utd9l09gaigo4SqrJAYTY7BSstjX/os3/33f4brViEvKdZVoZswGkuWiw47//ifc/T8WfjhXpyTs1TSEkWObNRZTto4Y+OUKysEro9nFT3PYyLzWbA5YxsnmL94mh3/w89zZvYi+Tf2QTCC67mQ59y6fTsn9u4j7rQZDnx0L0J6Pguu4db/9XcoehnXb9/BX933CRhpQnuVihwijtv9RawaMPzxp2m1WqxzA2a++g2qhSTKDezaBWUbcXwGJ/Qprh3Hd6oEb0+isBRuSVcvcMtnf563/sN/4ZZ4lEvpPN01Izz8m5/hm7/z73ATzbBTYynUWJ0zVq+jtGV2arZ/PsBlU/+gEmnAgAEDfhIM2tkGDBgw4J3mcpn9P74psUgE/+4P/wjP9QmdAFP8109ULVhDsbpK68RpRq+8FufKHbRml4j270NUXGSa4FuDjRKUEah6nTYQhT7gsPGhB1gxCTffdxetpIuZX6CIV1j7xAMkh2agB72jbzF1/CQ1ITB5RpFGSN9Fa40WEoFFkoPIMdKgMEgrcAyAwghFITyUNShjEEKg6B+edFBWkMUJItdUajVKCpxSEFgH6dX52Wc+xssvv0S8soIbZ9SNwdoSKy1WSowS5I5DkqTYxhB4PnleQicjFIJiqIaXO0RRDJWAZz73Wd7uLMKFSSomIOy2yXUBQCAdgqKkXpSIIsXJMgoK9PwUBB4/9f4nePje+3np2W/1P4mvVHnXfe9h4urtLJ+7gG8F1iqKIOzX8HoeP/2Fz3Py1Cl680s40qfIU1JT8rFP/yKnXz+EExdIISgdwAiqpUBYAUKhrMSxEislPQktYWCoBlYRdXtYJBeOTmLmFiDqgkwZTg3VAnKpyEOX7plznDpwgIcef5zZ2QXSM+dRVqFsf4JS7ljK0uHsK6+zfOECPgWdbJHI9nBrHt25Sxzet4/2qfNsiBxuWbOZMweOoVKNlZAIQ+Zayokhttx+I625eYgjThw6TBYlDA+PErdbVCpVVOiTeZLrn/4Aa++6g91PPEErzTn8989y8fW9cOQ4FRlQi1dwdEnWqGJ6KensApRw7rW9nDp9hujCRfyhIbTOyKRF10LyLMVVDhXHxUdghcVIQ+ZYTCOEOEFFOUOJwElKKkGdlck5RtqaDZEkOj/LlF1m/dp1aCNoXbhELGDm0jScmYRU4PdSRit1yrRAOQHlao9sZhlKgYozZJ5z+427+MC/+Qrmmq3MvHkAshJpNTbOcKsVqrFljAARdch92xevX/5aiSJkWMEYzd0fe5rHPvExjizME6cxHoJOHhE2ahTKYi3YTCMTjVtYKHR/vZACpMBgsQK06E/SM0JSKNl/JAsCQZkV2FKjjYGwCijQXTCGSpwRdnPqYZ0FqemKAtaNMHL9DYikZOXlN+gsLqFv2oz33tvwd++k0VjLlWs3cuCtg9BdpLp5PTXrs7S0CvUKZDmOqzCehiinWpq+Z8l1SFqrHHnpRWTDx/ZWGBqpszqziC0V1aEmaXuZNcEwcTUkLtvURteQryyDzcmEZpMOMRoSR5GrnNF7d3P9ffcwc/ostLvoTocwDAlWM3SaI4brPPFrH+PI8y/AwgoBhqbRtJ2MRBQ41pLbgrwXYfICLy8JygLf5OQqo+tBr4AbH3+c2elL6MCjTGI8a3BNiaCgkCXKGDSWzBWEhUIKRdFL4c6drKYxK8/9AHoZrkgp3P5zh5UMi5CiyDF+SOpr5M4rqRWaY6+9gBNUaAqFzRIKVUIvJowLgvFRbr3rDrqT03Rf3EsoJY4A1aixbHI++hu/xSM/9RSvvrafoBdTpDlFQ5HW6tz1madpXrWJS0dOsmPXDVza8zZmrs1QYYnPn2dEKM4deIuwMHi5pmZdVAGltcRjPrOXzrF8apaDf/sstRVLPj7ElnffxdKpSRAlqB4qrBK/dgi50KPz6uv41pBEHerXXsf1O25ibm2IPbeISTOu+Z3Ps7D3MPmpeWpuhdXWEpt/+UNsePAOzs/MkxyfJqTKauhwau+PQdXAuvTyjO3vfw82tyzNL7BmYgNf+MKvgi77AdKdHwF1AAAgAElEQVTlaYFQ0m+yG0RJAwYMGPBOMWhnGzBgwICfMALA2Mvvew06yYh6vX5rmOAfqiwwCnKYOnACsRzzxH0PQehgXUFZpIiyJJD9ZbxwPfBcWDsOw+Ncec9dbNh9K3MnT3PFmhGytA2eYcvdNxPYgNEiAA1mboF8aRE3z3A9iUljMAVl4GHqAZlTUqj+oaXBXK4QklZePhyE6ZdECNMPxlwrUNoiCk1FeZhef4S51gVOaXFzgxsXvPSdHxJKD+IU11riXhtMCdqgraE0UFjbb7nIc9AGHBdfOjgaiCNC3R8RjzW89vyLbNl5Ldy0gyRLKX2H2IXUE0SyILEJSRnjO4KSFKUMCFCuy4+++W1ee/75/oZbuNCKaLV7DI+MI4WDRFEai/R91PhasKBqda7ZeSOi2STJczASltt89xvfQhYGzyhco8AqHNu/nbg+pfLxtY+nfbT0ySoBxVCFntGkcYnTaFJtNCgWVmGlC75HKcEz/Y4sZelfvTMDmUHGORtG16BGxoD+OVTI/qjs0AhEluPkGVneInUNqbR04jZBoGB6Dnt+mlN73ubt51+hKlxkqUFrRD0AT4IsuO/9j7H16qsRjaF+e6BSxN0eAkGe56RFTrKyzN4//VPe/PZzXHzrbdYKBXEKs3MgBdIkCDSeBKIESgHShXbUf1X0UpCKPMvA9WGkCiYBX+H6PlGaYIyhoCQVhkiVlFEbKwXKUwjR3zQut9toJXht7xvse+tNMquxIWTdNk4nxulqODsNF6eZeOQRvvjbv80VW7ezmPaIhcavV7FKEg41oMipjDZxG3VWdEoZJaheAVrRlD6+EeCIfvB6uY3NRWEuu43s5eejf545ICyJ1iRaM7HzKt7/6Y8SlRGFY+manCxNkFJSdwOGvQrWKrRw0dInFw4ZkkxCqiSZcsmkSy7d/8f6Ii3Uwwqh5yMMBEL1K8OMoVpqKqXGB6aTVWi4cP02rn/iCVbOznLmr7/FUCqoVaqs3X4V23ftJG61aJ2+yKW3jsNql1s+8QnGrtzMQtLBqVcgTWBsqN8SiwG/X3DkemCyqF86Ffr9nzOa9moHz/OIV9q0LlyC0tDSKd1kFXbfyLr1EygnAOWhlaHnWtq0cAMHFNz20H3cfv+9ICC0/Ra1ZiGJSWm4PuXCIt/55rMws4g0kDmG0mpSqcmdfnuZVCBMgRD28iTGEmsLMtUPX3EFu+6/H3wHPAWe6LelUaDRFLIAY7HWgupXJlkpGHICtt5wHZ7nwfAoruujHJBKgFK4QvXDQAQxJcFtN3HLhx5HU0AlwLGaqLPKxom1ICTK9/GQZN0Ob331e7TeOAJl311WOpblpE24dSMXV5d5bd/bUPSvHa708Xfv4rpH72Ni9/VEdRe6Ea/9/bcpDl1EJSm6TBCuJM4jkJLMakoJPVuQKttfewsJ+09R7j8NRy/iK5/RW65j87tvhfVDMBQiDQRpBlGJN7MEqUYaDcqQFTknTx5ny407WbtpK1RHqE1MEL77TmyzQbD9ChCS3oUFfvSN76BuvYkSjx5lf5HzfYJNmzBlDq5gx9272X7zLrCKOC/6F1PHuRwe9Q/BoL1twIABA95pBpVIAwYMGPBOY/sl9pr+21xBPzwCyZ/8wR8ijEA6HqnoC3uV7YcxXqVCc2QD0YU5koOnSdKc1oUjYA2OEchaiDMxQiwNNpcwPMTow3dz3R33cuj4EbZv28yx//yXLB060H/kRpV8/RqKV04xCmRliyYwWqngSkFkSozvwvq13Prwg5w9eQQtCrQqKR2JEQ5aSoRVCOsAEisEXqnREgoliX1J6UiyosBTLr1ODwKfMkkhtXilRuiSLM1JooyV0ydBW3SrjYch0ZpMl+RlSakLMIbtDz3E9ocfYuOdu3G3X83CqVMw0t+0Vto51nNwagFzZ86y8ebrePDe+zj93I/pFD30SJXSg8ImlHWfVBfYisRKQ5mXyKqHWWzRnV7m7KFjSFysBryQlXOTnD94Ap1F5IGPMQI7OsHOhx9i54ef4tv/8vdZOncGyoKK76FqFcp6jc6ps0jjIwqLlpJCCjxt8I2hXalR4BIWCoskCQXBPTdz7yeeZmR8I/MHLiIrHunqMk8+9WEWoi7J4jxKauq5QQKJA6l0aeoqRWY5PXmJqMgpkhhdZoDF4mBRTMQGmbQJXEtSs/3NVg38po9dzrjSD1Ha0qv6GCxx0sMLQ2q1OulKB0oD2nDg1VdoLS73ZeDGQC/CaE3N9SlMSVz0W1roJHBxjtm9b2OOn2O4hG7WgcBSOjnpqE/PpFTXbuOf/uvfo7phPbNlzhM/87Mcf/FFnPoQbl6gdc57v/R5rn/4IU7sP0DR69EcHqZbRKSOplQG61iwCttJ0UlG6QiWQ4ttOgw/cgdP/vNfY3ksZO7U2xCXbNYhYZZSK0M2PXAXt3zgMQ7uf43Xn/8hi70OZc2nccV6dj36ABt37eCZz32Gc4tzLC7PUFQkCzZm//NvsHzwDCOFpFoaKpUA60iyIscPQrI8oxJUiESJFQItFJkjqIyNknZW8TduZOqNNzj0yst0Qsup11/sy5SFwPghn/385xkfH+f42wdpGENpHKx0MVKRCiiFpHR9SsehlC6lVBgBgS77S42wSCsRVqKUIraW0V072HjrjfSOnCAwlk6Z0xuSsLWJ+9QjmKEKXsfQ+c5ePOPhpKuMOhWmTp9n4fWDcHaR2skFmqmm3VtmVsW0T50CIzBZlzt/4aM89dMf4tTeN0nzLsL3qZeCyBiCsSbGgJeXuHmGLjXWB61LQlWj1hxi4vrtzF+agdEK9/zSxzj7ypuU0zN4SEqvJHEESvssSQN1h974KC989e9gcob1QZU8alOzliVPkcZdpBTkM+dhsYdXlqSyQOeG0gcUlN0CpKWIIhq1IXSagbDk0pI6FhwHb+sOLq22iXzJR371sxz58ffRjiC73K6rhUBaSyktWgmamSJzHapehemm4r4H3sOZA8cYrzUxnRW042GVQkoXKR0ywDRrbL5zFwxViA4coSIdTJRwxebNnLp4nqG1Y3hpybqwwaooEHPLDEcFQ35AUfHIhkI2PfxuNt56E2989ZtcfGM/Q0GdIE9IKJh47A6W0w5v/vV/Yv6VV6hRw1lYZSwp6bgJj33y5zh56DD4DmUgyANB5lhiU5J4LoUxTKQudadBc3GFCWecpTJGf/B2poYV7sRaysVVhpcXKHoZVQK0Tql4AVHeheE6enGJwhr01euJvn8YvdRiNltk0wcf5aYH72bjPTcx9dJeuvsPw/wi7/m9f8aJ//B3hMojtV12/davsGVojEuHj8HmjWy4fRdn9x2iMzVHsznMr/3yL6PUf3Xa2ctXWIDBhLYBAwYMeCcZhEgDBgwY8E5j+h/oJkAOCAyOLgDJH//hv6Wb5SSOi7dmLWErBcehXXHI14RESy3opVQ8n8XlWZAG4pIRVSO54Qqu/PhTLIxXqb0+iatc2tubNIsO03/7NeZf3sNIrvBKl7DeRJTQenE/oWPoih5l0xDbkkwJSuVgnQpFacENWbPtSuaOHUXqkoYTkpYKcgF+FTW6hqizQuk7eDanUrisCEnZCLniM0+TDTXILs1QmICtN91MK+mAtYwXlsRaSmUxoSDPupAXyLI/ja2QLrmSeM1hbBKjLBirWZ69gLpqE0cOv0W3EmKrJZt/+zdpT61QzswRZh3GlaK9ukx7/9ucfPZ7NDQ0bY0kykD6WGsg8MB3cDPLeKYIjKanSpRUNHKXCh6lcNChC0kPcs1GEdCZGOWxL32B866PVSHipu0cOXqIIDGU3TlwCxquRlcFxeIyuB4f+vwXefPEMQrPAVuAb0m9EpNLqAZkfkKqu9TWB8QXzjD52h5m9x1jeGQzUXcZtm3ixPJFdt95K2WSUC53WJIFUc3BQTORWJIsB1mjrNV45J98nlbVJ547h45TJsQ4XurSMovkoaCnMygcNt72bjoXltAxqEaDbpFS1kOKIsEJQ8qipPRc0jjvp55Coa7fxqNf/gJnjp3ri5JDH6KI0WaVIulhsQjlYLVgbb1Jr+iChLUipFv0CK/aTBK3CNdvI984zs5nnqaxZRtffeG7nLlwgmL+Iqu2oHd+EpNEBEiKNOPMa29yYv9xmF+hVg3RypK5Bdc8/ABybJx4cg5KhRSgXUicot9eY0qS6QWOvnWU1R/vgcoYQyZkWmesSkN7vc9COseZuQsQpYj5Nt58m831CRZ7PWZEyrlLZzh4+gSd6VnKKAE/4PafeZJdN9xEnGfMzF8iWzvKSrdDnmvG/CZhN6emBXmekcoAtzpE1qzxyKc/wVQRkXdb6ELDcsKQDBFzZ7BLLZqyQR5Zqs21HDx7jmPnzmKiRYzKGHFcAgt+GFB4AboUUAn77TvdNpDjxAWjxiCEpiM1pZEMV0eJMk0+OoT+0APMb6qhzy+Q1lzMnddz/7/975nc+xpmJoK3z9I5eAp0jpElRqdIo2laiROn5GmHfFjQpkNFaOqTi+SZj9WGG778y7x5/Ahv/P2z2AtLhJs3k6+0SFKBqob0khiTpKzxfIbdOo4XEgkDoc/Y6Bquu/cOzm8YJz90CacrmXz7CHl7liBs4EQ5DUJaRhMJF8IKauNG5MoK2dQsAYJWZ5lEQMvX4GiUFJDneLHBrfiUgYMtNSUwLKp4kcHH9qe0CZdunFAKSSEEpjaMNRXIfGqRpbe0zE0338zevXvJVuZx3/sAleowRVcjOyVZmCFCgdcpcZFoP2DV0bjj6zh57iKMjxO5DunZ8zz5mV+iUxpWo5gUiykLJrwa+WvH0C8cpHDAdFK0kMybjI0P38nC5BReN8dKwXJYkg0b8mrJYhSjxjZw/T0PUjRHOfbaS3DxPBsbAWOdFVoNB6qKlSPHiA4cIViI8XsamSekbkk7MHDbtRRthTo2j58qkhGfaz/1EbqlxV3J8Y0DgU+7Ar2shc4NAZbVULPp7l0snjxDeWYRXj7GSKhYUZDtXMN1H/9pOsM+OjOoxR6uKfDzmGZzmNVjJ8HR3P7U+zm/bz9nXn2Vcy++hjh+Fl13oOhx7mvfwm918W1M4mmWF6eYPX4avbpCcNVVTC0vs/zCG4z4NVyd8aXf/A3Is3/wTWE9wL0sOx8wYMCAAe8UgxBpwIABA95p/tHYYReDj+lPnFIu//J//BNiR8J4g5/5099l3w++T2p6sKnJjp95nDseeoBTkycpbAw1l0YiEZ6HsYZ0ZYmF85MEVmLOXkRpS95ZZNgJWZmZRruCuOJiApcsTRGArvpkVUXuS7xYo4SLwCUvSopCU6k3yNs95g4fA6kwriIJK1x5++00t19D6/w5Pv5b/4S3jx3GCkOedCjXraEMAU+wOj1LfuISlC6jYZ13ffARsluuoj07SbSa9KsoNBgjoLA4jkJJRak1ta0buPuzn+L0a3uoqypOaXCFokDTOj8JKxH2wDne95Uvk7RWWHjjTczCHMFQg/lui2DjGjKt0WFIZAq614zy0M99hMXVFYqliFpX4/csUgtiT9JzBdJCpVAoqyilJA4U937iI0RjNZKlGToVCasdps5fxKwfxkZzVIbWEJ+fY92Du+icOIEqFY1SsZrlIJ1+y52n6HVW0WWOTVKMBsercO9X/jmTCwv4Z+e4tjKKO7eMn7loAsorN5FsX8d7fvGTTJ6bRJxfZnLfm3TyHkVV4eeCSiaIM83KkKWgxG06FItLnHllD9GBQ3hRF89TrLqW9XfdwuLiNGWWX5aEW66+8SZuvH03C8tLJK02nhWYvECHNX7hT/4Fbx8/ip1dYYMOKAKH0hXYuUXm95/ifR/5CFffuItTb+ylUQlJOl0EfZGzFWCEoisSqFah0KyiSWqSREc88+f/C44WTD/7KosnL7B05jgcugBnl5noOswfPYXbqCOVQvUiRr0mSb2OjTL8oqQqBEobkl6PoeYI1264gjgxRO1VDP3Xl7IGR/d9QjbSeKnAWAXdiOyKNdz8r36d5J7rKbdvxEvAmevQOLNELdeMjY2SrLQIPIde3MXRUC6toudXaIYVpDFMvrGHxXNTLJ07j1+rcOX2bdzz3odxmnUmTx0l2TBGyzXEnoc1DkWuCcbXYoM6199xN9c+8AinL0yx7pGHePAzn2E2W6XX7lCWBikt0hbEi3PQa+MoDy8TLHg5naqmt3UNujUP4zWe+OynaY42mT52BKoBJi/7k9MtVLyAigppRwlhvU6yusrtu+7gusYGZn60h3JqBS4sMfk3P6A5pWlOtqh2SqI85YoH72THQ3cy2VkgTjOirKRAUAlqyFgzTEjYTalnQGYQ2jA9dRpOnAQ8fFUhqsLOTz3N8MgaZs8cZUj61K0iljDnZURFyqiuMESFOdvmolswes01qNWIXBdYJ+Oj/91vsTR5kYXZOdzQI3P71XB14WAvzFDOrqLbPUpbYGseTqOOjApsIZGZoeFWcJVPryiwWCZuugGnOURrdZXMgdSTGM9HKhcfRbVaI80LrDJsffBOWqsXyO7bwXuf/hAv/ul/JJtehMjwCx9+mtf/5m+wec5YdQjSHJ1pdOATeRI7MoTJMiyC0A+4/+67uXj+FBUFN7xrF28dOUhhctZs28K2nddx7vhRvHqNns6IioSa8sBzGN+8gQd/+gmOvXkAmRQIKcnWD6MLS74Ss3Z4Hfn8Cu1LU0yfOAqdLo36MNI6FKnBReIYgSqBVONpgbL/9+EYQbHSYfXIOdb7dWKbkw47XHXtdlrnLhJNTTF683bu/Jn3cjZaQnUTaklGorsUsmT5wJtw6CScm2c9iuWshXYko9u2EaqApvBYOHYGkWaUNqcwmu78HOJd1/PAUz/Fq//Tf6E4cAwWI+y5eXRdQhHhD6/BvRixBY+MnLgokY5LsdTDaQ5z3y8+w8mlSzhGES0uMTw6xBe/8Kv9IQjC8g/GwX/kIBwwYMCAAe8MAyfSgAEDBvyEcDA4mH7Vve0vv5GQ/Wk3V2wg8oCa3xewCsGxt99maWW57wnatI5bPvwhqnhIR2FDD5ICZpZIT5zDERLKFKZmuXTgKGgNpoBmQF4mANiihCKHsTrVbZuxhcIahZUKlIPGYvMSz1pUaVFW4Q2N9u+rXmPLddfC2gmqY8OMbdmAqAc4YyPc8uj9falpmXLvo4/Bcouq7cu6J2cuIpoh3HAdNIcACcoFDQKJMhJTapAQjDW5YvctMDZClMRURIAwBoIKJBlBaRmLNdN79rFzdBxmZsBVtOMeNCukK0vg9ysk/Ku2ge0yceO17H7gfmoiZI3boI5HvTpEXBboahVlFI4Bi6CUEhScuHSeoY1rYP0IFD3wJen0JfTsDFy1kcUXvg/zs3gTY9DL0T1NKy0Z23w15Bqkw6G9e8g6q/2x7FKB8hlfu4XEddh5/z1kruBEt4WsjqLdkLQbw3wPDk+iooId1+6kElShVkNt2gzGUhkbJ1MOuRBgLMaBzHbxQpdGO2IkLqhFhpHmEAwHrLl9Bztuf1d/Q3W5y+Po4UOcPH6UbrsNRX+Mt+u62KjHK6/vYcOVWyH06BKj8wLf8aGURBdmmTx6nHSlBUlGkeTkeb8501wOScFy9a9/nODWndCo4VQaUCpIBD/+/vOc6a30N3zdGFo91JoxgpEm7TxiQ9hkJBXUEkOuXOacEp3FIPobclEaVGkRwmH65Fl+9NVnmT96CqeAoAS/BL+UuAaUtjhSYNEEYQjNEeToZiZfOET7G6+g/+w5xg/Os/Zcj6FcsGJTLokYFSiqQiJ7MaIbkS8u4xtL0e7glRqv1qBorRCiqUnB0T2v8bWvf5UjLz4Po3V03gPPgs2wxhIOj5BOzXLqtTc4f26ak+cuweIys1Kxb2mBXljr+6VcgeMKTNIGk/YnJUoXqSpQCfBvuYEnP/FMv12wtcz3v/Ut9r74CpRAK8VzIFNgXXCtQGc59dEhVlYWoTnMa3/+l3z/D/49YrnHmD/EhNekkmqqhSFAoDAMrRnj2ltv5NqbbwShQCgMCotCKI9UW1IDvt9E4DIkJG6awaVpxLU7aW69grjb5sr3PUKwcT2zRQF+BRyXSEJX2b6wvlaHLCfu9WBsFH/dBI1GjXbcRXdWaG7cxOjwCIuryxB4aGFxcRjWDk6a9asJAwfleZBaqqaCTQ2llDQn1mNxKAuB1rb/d0jFPQ8+gFuvwlC9f/75Lrm1pKbEWkuepP0QwhXc/8SjMF6hctcO9pw+BNLFS1K2VUf45p/958tVYJZ6s05VO9QI0UqBU1LGbchT7MwC2aVpjrz4EuWhgzQaNZ599utErWVII5760JPcdvducCGRJZEs+t436LuUhODw0SPkvQ5RltLLU7Ztv5qd77oLZ2QtOjfIKKKeZ/i9Ho42WCvo5poOAnXZqefpvqvpH+cp0tL3yXUyxl2fKO8hPSBJOfzSq7QvXAIHIt/gbxjB5jG617v8iw5+6EI3Q+VQj3uURUQhAClZPnOe41/7Fsf2voXpRDhKIRx1eZSgZOf9d1LdPAGdGKlqDBWCaq5h/TAIyOaXqQIphg4aXImXGNxujtvKOLX/IBNXbOG6m6+HIkWEHmmRDQKjAQMGDPhvwKASacCAAQPeYawwSPTl6WZAIfoSZlfylX/zR3D7Lm75v9h77yi5rvvO83Pvy5U7AmgARCYIgiAJESBBkQRzFKMoUYGWLFmWbEuyd2RZ9lpnZtaeWe9obJ91Og5jr732enbG3rXXkkzJkqzECCIRGWh0N7rR6Jwq18vv3v2jII/nnNn/lrv/1KdP/dGnqk91ve737nu/9w1PPcKr/+7fY63GbDQLtJeq6OlZZt88Db4Cw+HuAwe58t03acYNkuEcNHwqZo602UYVTYSh8CwHa7lNWsqjTM0TP/cZJs5ewKvH5DJJ5FnsfelJnnz+OS5+7wSB0MSmJBUCmfeIOx2k0pSFRGeCMFMMHDzE3IlTzHbaqJVljh19G39+DtptlMq497FHOX/0KOTyHDp0DxeOnEDFKb7fZnlplvrCDIO79nDzPQ8xP7sA7QjHKWAlGWgFQpMJTadocSoJwS4gx+dx0SQkJDICS5BGKZtTuHJplDN/+3cQp5D3oFzgpZ/4CVZiRacVQMPn1gcOIx67hzd/43e5cnGctJUQRQFYLsthh8L+vcRL8xhaYGeCwLQITQGWxK+tcddDh9m0fTtXj70NKgKl2FgY5PCnP8743BT05emvDJKcmSOut0j7inzms19gcNMNjB19C8+VxK0mKkrIFyokqUmuMMBUHLH43bcYDl22miVCfw3lFYn6S8j7bmf7pz/I8X/9G6ycHuWX//T3efXE2+jxa4DNjY8e5pYnH2Ti/BlQYJUVaUcjQ4FMsm6WlilY8ttQKTIzPU2hfx31+QVIUjAEab1GfXkZKQWeaRKHHYI4gnXDLB85SWNmGlzB4Y+/zNzZy0i/g60NYkuwODrB5OkzlPv70XFCqVwijBK0ENfVdoq1sTPcf8djVFKP+bVlKEsouLRu2sbN++9g+etHuKW4iWV/lds/8CQPfOz9zIuQhfHLkMvRyhJUARguQqUfVmtopXBNA9M2aQVtsjAi5xbwDJdCoMln4GUSU2Uo0c2pSR2DTEekA3me+Y1/zWWxhu5fj+5o9NlJoqT7mhXdJl8pEq6tUjBM0jTB9RxMFH25HJbQ5PIucRTRaTbY1F8h9ZskWURiCnSrSWXPTex/7DFmz1+gcMdBXvzUp5g6cRx/ZQG3XCbLoDpxldrCMrd/9CN0TIOlU++QLK7BSg3VbOLqFE/EYCi0ZZBEkJaG0UmMESXMnxklnFmE1CRbWMVaabEp348VJuRtl7YnyRkuuuljWA7ezdu596XnmbhwllziMBwb+HFAk5hOEpAUPVpmRr0gaTmaKG0zcfksp77xHVgOsZVL3sqhhIlvC9g2Qhw2aXiCmsyQQR3HsdnwwN088+xz1BeXWau1qUVV5NZtyGaCc3qMumqRDruYB/eiLlzDaSX02xWaJZe0sUY2M8Pa5dHuvmyahAuLHH3rTZKFJSzHxdYCqx2xLpWEJLSKmiz10VnGYOYRRZCYNvu/+FmUENQmZ4ilJBMmwnXRmcbXioWTp7t1dlEMhgNhhNaafF8/Lb+J1VdGSc3U4jyRCik+cJDg1BjW2Wl25gdZaS2w2myAk0AlT2N6nqKGTAvCvMX+L/0MkWkSLq3hVjs4YUB1fBSKLq2FZaJqDdNxUHFCtd7gB9/9Hvg+KeDlc0gErhK0o4BGEjI3cQEKZfq9PIVcnr59O1hqawynQnV+lmFLEtVX6LclcaZoJ4okX6KyfRdUV4BuCF+SZUSm6FqWZbcpUGpBOcuwpcGCauHbGYQByewKbgIU8oTNFYr79tAeGiG6MEfshwRljyRqQQC5VGFjERYdoush46SCSnkd8VoTVxoYhkQ5oG0L4eRZzRtMzF5DTy2g2yG2a9FO2nzs13+Js997A+nH+AY0vITshiFwLPRii+3aoRjD1IVR7nvfE1w6e56w1cQquHzh859Hoq/PkXpKpB49evT4/4reEKlHjx493mUEGQLdHZho3R0gYYAp+NXf+m0o2lS1Jhu9Qn6+zlaRIwzr2MKmktoUUkESppw/cZy84+DnBPf/3CeZfu0IQlrcse92pleukNjgmjn6O5pIaxIJor9EdfwaI6FJRdg0Qp+FmXHe+fa3iaULloSoA47JoScfZ2FlidRvEaQZVrFAkq/w3DMvsNpp01yYh5UViCJotSBKsKTN/KnL+GGMMG1Gr4yhYx/RX6JYLBAtrcFSA//aItnIBraMbGSl2iBbqWKhEajul6khDtj+2OPU3rlEf0dhJFk3RNnNIC8hTXErQ8haEyPNcJ08UeCDNPD9iIK2WBubAmmyeH6U9slzXXlGo4UerhCX8gRhE1yD933ykzSTlPqVafIDA7SiAFyrW6WVweL5UZbOXCQLYpTs2iX8TglEWwwAACAASURBVMDlb34bWit4jx7msLee00eOg9P9ubePvM3YyZPgGCTtFlbBRUtBHCksp0iz1iDbu4WnfvITnP7a11ixJZadp6FSkmYT1epQbCREM1XSTsCrR74PjTo4eWi2MbaNQCnP4uRVZCvD8GOy1EaV1hM7Bdi0kWanARtGeOnf/BYb736Ek//n33SVbZ7X/bulqivQSFPIYgwhwbRQ7QDTzKFsuq1oOzaxc90mllerdJQPm/thrQ1aI4WBH/hkQhKplCxLMUyzG+ptF1h5/Tz+7AwPfOTD7PnUR5iOEga33sD4t/6RvtkE3W7TEB0Wp2c5+/ffoF1fhB1D3P3Ln2P/C08w+oO3ufPAfXzw0z/JhWvT+POzKFPQinxEwUEbkiSKEaZDM41oO5J2FiFKLpFOEJZJZpld1UoSM/bD19j94qdoT82x88ZdrFw+Snb7BvJP3s0LLz5H+4fvsKktqFsZccVFC41pWdT8NpEtiW1J5kicvIfSMcISRHHE0MAgfpAQrNSYPXMJUpN4ZrGrQIlXkCjssEMhiLmhb4BbN2/h2He/T3TkKHQCnn7xo0TVJs3JSfJaYzsGdZ2hLcHDn/5pDj7xFGPf+yH5agfWWnha4ilJ2XaxbJuVdh0fQeq4pEmE8BPKwiPKOaRbhzm/NgdBC7NYQmUJ7WGPf/HHv0O1YLA2dg5MxXNf/FkGd97AzIWLECZge6AkuUo/7TgiUymf+41fY0EmNNcWOfS5z9CSKVmjSupaLExPcObUGdZGJ6Huw8Fbac0t45+6yuZqwOan7uXOj32QubBFNDpPP3kirWmlbTY/eJg7HniIqxcnoBPiphrZ6mB0YgZG1pNlGUnDJ285zImASCrWF8u06z5I8Es2qSvg5t3IwiCzb78GN+7gmZc/zOiRIwjHRUchjeVVTG3QlxrIOKYv8+ikKZt27eT5z/w4J99+HWVoiGLEfI2CV6HRbJF87Qgbcv0sRk38dSWU9qk89xDv+6lPcumr32eT7gcsmm6GsW876wolWnMrFNeaFBAYhiRMQ4oxeJaNnSp0klFbXEIEERYGpgaRpBiGifYjYhRJHLDn+SdZPXeJqBlgaLg6Pc6+p55n064buXrpLM3lGdZt38zi0gpWuYS1dTvWpo046wZpTF8hEwLDMKklIVl/HmUoMkuQKE2qNDmlqFsJaUmCpUFZFDOLLO5acpWG+YU6DO/AWwqJUgVZxIO/+AWujs+QxILAkKx7/H6a45ch1RTcIs2VGo4wKfaV2bhzC/VmlbTTgUbMQw8/xp7bbqG5dYD2xTFiWrDeYXJuDmNigaI0iQbzaCfi6a/8Cuu3bWPqhycZFmV8UpomTJx7h/DqVe588QXmp67ws5/+SRzDQv6ovQKBlr0ZUo8ePXq82/TsbD169OjxbqMl1zvZ/snGBt2SK4Rm70MP8/GPfgQaNTI0sU4wschkV90BGnndj+SnMcQRIzu2wrp+QkuybvMm5P7bwJA0Oj4CQeJ3wI8YP3oS6i3iMKITtjETBdoEDA4+dD/m8CCUK1AqkaF5+IknoX8A2VcilAI6AeePHae1sIQRRgBIQyJMB8v2MBOFEUTkMHEzQRaEjBy4nUOPPEBzbRkwMBOwA8XSW29x8eQ7sLoKhkCj0P+0jeiqazox9z34MGuNKm0VE10PSL3x6afJvWcfc3Ed23UpGR6ddhu8PCSaqeOnmbs8BXGGnSlyjgONGBLAsum/YQOHnnkU9mwHx+D82bNsGlyHWy7TTCLE+mFQGdgWBDGsNGGlideOMJohpIpMJN3q+UQTvPIdzrx+BFwBOsFx8xCFYBrguGCZxGGCygR2vkDSqHUrzo+dYmnsClSK6JyB3LOZwQN7GD5wKyyu0D55HiNNkZ4Dje7QhizqWngyTRETWehDKUVeFiGxIJNgGgzdvJf+e+6FRoe5yTnSegRrdR549ll+/Kd/BrIMu5DvZgcp1Y0RAQwNpcogaeRDXwWkxeRXX+Gt179P26/Sd9dtUF3FkAYAYRyB7ZAZEsNxAUESh9iGhFbIoFfGxWbqnfMc/b/+gfD8OFvyFfY++ijtgqRhaBxp43bSbhCum4fVZS7PXuXr3/omdGJOfvs1fvt/+BX8OEL2VzAcm/JgP1mWdO0x+Rxh6MNwHnZsgBuGaMctZM5BC5CZgkhDpKAFV37v/2CXWWTvlm1wxz5wTKqL87z12ut0mh2EbRK5BvVGnWqjayOKUXz+l77IrvfcSqfVpN1us7qyQjMI8UoFGqtV+mwXN1U4icKKFVakMJMMsq5TLWdCTiiWp8aZPHEcNTMDjotIMt7+1rchiBks9WNZDquNGG+gHwYGefOd43zvrVfRdJ1EEgVCoUXKaqdKU6RkeRs9VCHMAhxhYwuLDEGYptQvX4Iw4PF/8Xn6t22irgLyd+zhh+dPMl+tgpVn5933s6t/A16QgR9AoiBLsW7dxb0vPIWWitymDQRRyOyly2B73Lv/II0rU7TigGa92rV3NTtgWmA7PHTPYUqmRz5MqWUtTr99jLe+832aF0YhDaiJhFSC2TfA/rsOcusd+6HRhDCEKCKPpIhkeXaWIInIFwu04g6UCshykUa1hiEgV/DAFrD/Vh798EvMX7gIic+NB29n8007EUMDqHYTNJhCoIMAIh8HDWnKzu03ctPNt3BxYqxrE7REt4mw08Efn0Udv0DOLDLbrtImxrtlO1xX9Mw2qxiFHE1ahMQgBUac4BqSoFEn73mQpeRdh4JlYyvRtZWFCSKIr1svr9vNsq71LMsytNZ4nse+Q4e4de8tgMA1LEwFlCv47SZXZ65CFMBQH0tJBAWXRqPNe997LwcOHmTpyhix0RVdZYJuAHungdwyAusHIEuQtkViQGhdf15IDAUKiVMokigNqQVX5ti3fQ/asLvHtFyBrTv3YJT6wLIh5zG4exdeXxksC5l1DyhawI69N7F5xzYi34cMNo1s5MQ/fJdX/vKv2LT/ZhjIwboKVFzax05hpimWUph+BEODLC0sMjs1w8C6DVzTLWqGgILVbZcs57nrrrtIkqS7Hv1o/fjRuvpff9ujR48ePd4FekqkHj169Hi3ya4PkKTonvEKQEiEIfjVr/w6K2OXOXP5Inp1niTR1OImzZwmzgsCCamEyJRggVYZSsL56QkIAghigsxB7d6Ouukmhoe2kM0tYZompucRraxRLPdhpBpE93fQSpBpgTcyxMjwEMvnLkAnZG5skuWWT7y4jL5hE9rvIE2TpQvnIWqR1pawbUnabJI3bGwMsjAlTlMyAwzXIqmtUNm1jd179zA1N0u6vMZGt0ynXSMjhaWVblaTitEoQKGERgsNWrJ28izXzl8EmZDIDE0GCu548GHW3XAD05cv0e6EJEohhge6eR1WDpFKBjFRUQdLpOiwzTol0FlGHAcYG/oZ2bOD99x9kNHX3qA6s8TcO+dIgxBzoMzLX/g8xsgwC2fOIpWB43cwkwgXMLRgaMMWhp+8h+qRM9BOwIfqxBWe+Te/wK0P3cf5v/4q0orQYYcHX/oQi9rkvudeIrduI4tXruCaAsfIePDAw7zxZ38FpKAigr2bGLnrJm6+9wBTY5dhYZmO8tFpSM7PuOvB+3nw5fdzZn6C5pHTLJy5jGz5ZJ6FbkTkyuv4V//hT/nBO8dpTI6z+96DLE5MMXNtmalzYxx4+jHeeusNkjjCkILG7Ayu6A6OBBolumG7m4Y28qnf+zXefPUHcG2VnCiSZB3Y2M8Tn/5xZqZmsVoBds4hTmIoFVFxjI4jpGvj2CY6SMgsi3YcERuwuDBLcHUBz8+4+sZRVi6cJ0tbZEMVdq2G1JImTqHA57/8ZYzyOi790X9CzzUgM9FRAI7FvY88Qr8wuDY+RpqlKKkRhTy0Ouzadzu7f/7j7HjiMHc8/iCXXn+NtOHjaklfICiHmmIIxUCiF+tMT41z8c3vwcoSrLTh4gzRpWlUxWXKjojLNi//7M9iYdBsdkiF5I2332Tx2lVwPZ589v0cOHQXYRyztlrFlTZWopBhgpeBl2a4KsNWEbabQQIq1N0qeJUilMIyDVTgoxt1/CygUVvFkiaJvr6v2w7YLunqKv7EBEooIkMTmRmRlRKZCpU3UXYG+3Zz4EMvsPXgAVrHz4MG3xBEIgPbgZk5roxP0Jq4jLNnB3d+8sMc/bXfIJ6YwagqrLF5jnzj77n6zhk808HRmjj1UTsqXctkFJOkKae+8Q8QpFD3eesv/xY7giwn2XXHndz92OOMv3miq/hLFM2iQf2tY5izDQJL4SJpTszCcpVbP/sJVknw51YoeAUW8nDk6NuU5laIUag4oqAyTC1IRvpJdUwQhfTbZdpxhspi7v/Eh1iuL9FZqSOkgyFcpmcXUMsLsL6MUyrz/a9+DaZn8XIeaZYgVYxLRk4KpDBoOjmWqytMTk1ybfRSN/PNj3GFTVlJLNMiaEfYoYnxnt3c+IkXaWwoEa9EPPvxl/nua99HXZpBRAJhS4LEp3HpEvMnz0GqEWmGFoI4TYijCMeyMIXoPgBL6a71lO7D0JpAKcpenjBN6N+4ntdOHkU0IyqpgREktA2NQjB/4jjs3AwFD2vDRpS20KnB4NAQs1enaMxfgyTB1AJXSTpJxJYnH+SxDzzPXL1KuFSjYLpEaUjqdNchUokTmwQ6Jd66EYRmY3kTrTWfMAhpjl2EqAlpzJWJK4Tjk2BbyPfcRt7zWDt1Ah2kCC1JTYssZ+FtWcfpy+cx4hgjUdTrTYbMPM3lFcp33MTqa6/y0C9+gXjdIK1jl7DDCKVSylFMO0qZP3aW2ukrBO2AZMc69n/8OeayKqysQb7I5bEr+Fen+Xdf/tddBZm4vrDKbkbbj5bZHj169Ojx7iC01r2BfY8ePXq8m8SAhNTs3iU1SDEyQJpYpQq5TSMM79qKT0L69kWq1QXSAQ9EgvQluURiZBZNR2LGIQXbpVYx2Pr+Z7n6zR/AbAyP3g0jw+wf3MKpX/+3OLZB5AfkS0U6nWZ3gGVaeMrAjRSi4FJ1A1AO+URCrDCsHE1DQBrzC//xT/jNn/kpWKvhWQLPtWg0W+RyEpVJ4kSSJgLDzJNWVDdAWtGthc/nuu+nM0ShjJ5fQnp5ZL2ONC0yrchUBlJ252n6erkOkkwLGCxCVO9eCYSCcuLSsSzS/iLDTz/ETbkCr33jGxR2bOM9d9zFa3/w5xAkDCYZygyJrISYDK8DVrlENWgj+8tkjVZXuRRkEGg2Dg3TabWpKx92b+KmB+9j9JXvwFIDL1MIUnwdYJSGyBptHv7Qi0ydvsDC+XHQKUHRw908wo6du7jwxusMiDZrfkz/wQfYfvdjnHjzLYY2jrB66k3smVH6LEH8kecwchWcK0vMvn0cwri77USG65qkjZBSX5lGrcGGgfXMNpZhuEJ58yYaZy4jlIErTUKRUfJKNMIY0T+C1ikkHajPg+uw9+En2XPbQSZrK7RWlxh/602Yn6WSs1HtNgCZMMgwSaUktSwYKECkMOsB/YmB0V+kmgZEWQfiuHt7P82gb4D3ffijjIyM8B//7E8Jrk4gpcCNMzaYRa4YHXCve0pkHsIQqXJYQUw0UoYkgFoLuWEQVa93X9MIGdm6g9KWDXR2rWPfA+9l6gcnuPSXf4snBI5KQGoaKgTXwZA2nnDJP3CAxbfe6F4M1xoUhYGtFIaCRJqkEloFCx65nQc/+FE6C0sc+5X/mYpZIZd0FT5tD+oFA8I2SA/qCQXbIjYFcV6CKcBPIDWo5Cz8dpui5ZDUmwyXy6wtL4FQZFL/KL8cEhMhJcJxaLabUC5DmiCKRfRardtgt86F2QVk3w2oQGGWKjz5wrOUynn+93//P5J3LPwoBsBUMZbKADDyHq3rmTds3AjX5iiGmpCMxDURQiIaIWWvQCTAL0qIWlAusv+5l2lPzTL+yj9i5W0SESA9B1WvM5RKWq5B30eeZOXYBdILV7FND1Ma+KGP6zrIsDsodG/Zzo7+9ZwfvUi8VqNSqNBot9DbPIgU6+sWvkjw2x2kht13H2T47tv43ms/hOl5cpu34q+tQb2OsbJCVnYgSBmKLUI0rUoGNmy772Gmvvo6KJv8vu1svHmEsa+/gm07uPWIyB4kKub4zNf/mj/+xZ/D6IRkV2eRnQhDpZiuJIhDsIAIsOCGT32Sa3/3DejE0IgYNF3C1AfHpJ11sHfv5O4PvMyRP/8mcb4Bt2yieOBOKn/8A2Ya01CI2f2+D3H5j/8EtMY1LIQw8MpFwjTDb7co5orEbZ+C69HMOgBYhtkdbvw3zrp13kO0uk1moS1gqIBdDRlsa4ZzJS5bPiEK7Vj81G9+hT/52tfYtmUnV/7+VZhZoWIqlE5IHY1KFLlUUE4kM1GDdIPHyOFD5FyPif/t67ipxLCg4yqMVOImEkNZ3PzZj1K8ex//+NWv8cLwAf7u9/8ARBv6DBw3Tza/ShFJTUgo5EGY4EcYpo8tHKSw6Ui60qrdm+HqVWiEFBMJA320lpvdD+uYMJTnwKOPce3oKVrj4wQqppz3GA4l40YCVpFSatMMIm748MNsvmUHb/4vf4rnGwSdFmjByJYbmDt3oXtMQnfDyaUkEtDV2vbo0aNHj3eLnhKpR48ePd5tUrpDJHm9mA1I4wjTMPjD3/4t6ksrtBeWSebq9Kdda9LOm25ieXmVfGiQjw0KmYGZAmnIeq/MWq3D/mef4+rp86Acdj10P1Y5z8Qf/jmUbbJOg+LAIH61yca799Mc8qBTxzXy2IEiiAMSU1Jw88SNAGJ9XVmiMXMFTrzzDqlWYCnsOCJu+JRLJmGcYRU8giiluG076w8doL44yaF/+UVKe28ibCfE11aw7RyZbXL4peeZNkP04hzFUKGUQmiNlpIf3S8WCLTsbpn1A0O0Vci9H3k/s80aeqVJOQOZacpeheVL52jkXEIpiEfPI7dspj4xCWGIkbbA1MQmxEWDOFMYpiTyE/qVhZMalLBJ/Q5DpQprtRXyxRxB3kbXVjGHhti7fz9zo6OkKiExFRRMtEygXGL57THW1tbwkAjTIrYldtVn/uIYlCFodCCDoNlhfnySD/7yL3LpymXic6fIWi2MSFEfv4Y/fpWHH3+CmeVFkqV5KHs4pTw6TTClwlE2MVC3E/DyFDILPV8jzluQt0nTDE9atPN0VRSGBdU6RhTiEePZBrOj57j41mssnD5HdW4GalVy+SJeJyZTGbEhCU0TkKSGBJlAW5MLNVEYUMjnMGorFIKIJNKkJQeSCCwL0ozxd07wzplTpCtL4Lm4jkMURlRlykf/4nfY+tRDjJ28iDNTxUkEG1KDmATjsQPc9fM/QWv7IMHJU5Aa2HaJLOfRUiusbi6RjPRz6S/+M6tnx8CPKDsOUVDHkQaOMFAppGGMMCzqZycZEkWsWkhfJjCVJpOCmmcQ5CSx2w1LZ7XJ1a/9gLkfnIRqgFcpEklNJBXFFGiF7HvqfRx65Ak6fkgzSoh1BjmXz/78F9l3661cOnqcsvDwtEOn2aJcKbO4NI82BZGp8T2IPYg9i1gPAR5+Boc/+ym2HriD6bk5GOjjx3/917jx4Qe4+Oo3Ofzxj3HPQ4+x5Hdozc4zduQY546d6LYRJglGJrEyg0ICxVhRSMGLwE0EfieF5Ra2ssmJjLYJOAISg0rs4KQGfhJS3LSJ2x94CEojlK0cV65Nk8RV1IDik//5D5GbB1h4+yhGmGImKWujVxFzqwzjUkZSMC2SNCYTGlVyiG1NtFZnYXqBoS030K7WCFstCpUSn/i1f8nJb3+b9kqdKE3Y88QjWP1lxo+f4urpS9Dx2fJjz9C/4wbWvvUmOSNHHLdgwAMUpNBRCjYNsPvF5ymV+1hYWIWt60naIdXXTzOibHQQEEqD2NBgW5z8i7+GuTn04hJDlQHSRhWluypJ8t2BW9+2fjYdvpPcQ/ey8q3vQa5AvhkwpASSDN80SD1F+eF7mO60iVotdn3ig1QXrhFfnEaenCYs5snfc4htGzczc/YIiJRcrHEw8Asu9Be575n3cfn4CexSmaaOMW7cjFfM0+60rhcJSFLZdaEiEiQpmQAr0YRJhJv3SJZXWedUcC2b1bDdVdrolLRa5+TJ05S37UDG0Do3Rr6YQy3MM2iaEHQQwsFSEmVImjqGNKLVaFA9eoqB3ABDMkeQRCgk+UTgZoJYwtT0GSaDVfY9/gSv/k+/i5cvkIVVsDUi61CIYBBNhkIlESpK2W4W8WWEzDRhmKBLLuQcfu4PfpOj//gdaMdsypdZaqyCLdlQGaTSSmmmMfOnL9G31KCmIhjOEaUBVUODaXeHtlGEQUZ1eY6ZI0dx6poN9YhnP/vTXFxdIFhb41996UvE7RaG7V5X2nZnqz9aXXr06NGjx7tDb4jUo0ePHu8213O0fySxNxGYhkWzXucrX/kKlmGiwhgzMVhKQ0p7d7H9wB1Mjk0St2OsfJEozkBDSQrWwoC8u45LqzU23HMf7WCNan2R23ZvZubMqW6Id84lXq0yPLie7c8+zMymEoxNUmx7eIUSsWEilcXhp9/H2OXzpINllIZByyFpVskFCaiUNOzgaYfBWBCHMaViGSNXotOJifsqbPnpD7H0ypvsfOl5jl+5xME776F5agJ/rQ4Fj2W/zd4H7mbp5DsIX2F7ZYIUyt4gnnLIsoRMg86DLli0ow5kCV/40i+yoW+I02+8SaA12jQJUh9FRliPuvYav0l9chTPsrCDNuVMkEqDREoyLbHjDFdYlO0CUSei4hWJghBpGawFNdzhIvWkhfY74Hjoah2nEbI6t4BZrKDitJv1YggwBAlgphKSGO163PTSE8yNngPDhEBBBUzbRjXakBOMrowRdRZgaR5blSknHqlTIhUw+tarJH4b4hAnlXihxg9S0lKJvR94lnkT9NIaiDxxJ8WQNqlpQZzAjs2kns2e+x9ltVqHWo3+fTcTSkWcZUSdEMPK4Vh5slYTwzK6TVSdmHwc01KSMO+BzHC8flASVS5Co4Fh2ziOQ6fdwDBNlGGibUGUxmA6/JOUQgBxt44eJJk00cICt49CaRi3rRl//RhemCG0IhOCZLBIENZJM5PBtETxqUcoHLoTUawQLC5C0Ya1VdJTlzGn6pipJrMVgYy6aiA0bipQqSAVkkQqyDnYmYYkxsWkSYouFokMoJOAsgCbwuF7eOqnP0O8fpDa7DShljiOi5MmtNMmQcGiFsGyyugMljj44jN42zayOn4RU2rmr04wc/kM5orCig3ylSKN0EdqhWu5+DpDl13YspEXf+83aeJSvzqHKOXY8tw9BK0WjmlTvzjOwIP3MNVqsPLtH7LY9JlbmmV5eRbWliAOII6gVCTWkGBgGjaONMnSmBQIREpmCGzTJudY5JOUwZxJ4koioSC0CKVNWyqyzcPc9vgj7BjZxvEjJ5iZvMLOA/upryujKjnKff1MX7hM68wYJaeE1hCSokVGZhtooXEihYXGs2waMoWiA6U81u17uWHfTSyfPwuD/ey7aS9JrcWVi2PdI92eLRz6wEtcm5olW6qSxhGELcq7tjL5d69AapIEbWQ+RicpaIGQEtwc2s6xdfgGrly4QqQFj/7UTzJ5/DQbMwsV1Og3yjRViCjkUUG7u4/qFAOI/A6GFAjDwLKM7v93qlBBxspijdApEU8vwEqdQa9IK26isWkbJrpYIRidIB29zENPPk7t3EVqFybh4gRhkkDik4QpweQ8fmeGrodQ0y44pIMWh3/+swRtn9nRcWTBJcva3PvF/56xI29Ds4UdQ6nQR2OtQbFURIQN7CjDb0f02RbaAKkyNrt9+NVVVH+ZJdmkmHr45TxKGhTMPPe89xDR1DVWFqZJjA5FITFVCqaBki5J3mQtWYUbN0CzAX6IEZs4nZgkDolcm0RrTEugTEFbtcBMuenAAZaOnSGYXyNtN2BoCLsJCZrQs7AjQWIaxI6Ftm0KYULbTDGUwBE2sQEIhbhxE7NnT2EGGi9WtNIYz7XIooAo8VEKhvoHSIGOCaQJWCbccgv5pYgkaCJyULYEvk6AjCxIKagch3/sGd6+cJLIb/NLX/wi0jQxTPO/Kmfr2dl69OjR492lN0Tq0aNHj3cZ/c9ah//5yW2j2eR3fvd3u7kYWYYtBIER00k71NsN8raD6gRIFH4WkLmCyLEwhEXdVNCKaI9fwbv/du5/6B5e++K/BZVi5lye/+TLbL91H6feeIuOKdBCk043qFQT5ocM4iGXVMfsPHwvV5pVWFtE97t84Jd/lppMmJ+ZRPsRprIYST3izKfRl6cWtehkmoJRIa3FJPWIYLnNVX8RNg4z82d/RbTQYsO2rciBIp3LV1h66xgMriNNMyIZQ17yvl/9Mu+8+gMyZTLg5rH9DiLIuuonoTl37iKn3j5OHIRoNEgwhMbKFGkzYmjLdh780AuMnz9NurxCTguctFtjnYmuRStvCFAGUZLgukUafodEakIVYRcsgmYHA4UrDdwwhVqL1dlZTNshCZowMswTn/w4u++6h/U7d3Pt2HG81MRV0Baayn230lhfQVXXcNugowQvFpRTCDsNVNhG5Dw23XaA2qVrtFOJYdmIssejP/YinSyhPb9AKZF4CtJMk7g2I/cexNswjCz24Y9dQQ70k7SabNp/K1ExT7Y0w6f/6PeZjiJue+Jh5pMQL+fy1LPPoAWszs+jSUgTn5FNIzQTH0xFmIU0hCQddFn/zCMceumDjJ04h0pS8Lstd6lKSG1JloQEKqGjEgSKonSwA3BigZ1kmCpBqozMNME0IYoZ3P8eyjfu4tI3vsH40WMQ+Hi2Q5ZE9FcGaEvYdsdBpo+cY/Ufz2CvG2Th4hhCWQzt2srQfXfw9Od+krnpacKxSTxDkEmNNmOEVhhaU8AgzjShVlB0cYYrdJaXsW2TTGVEjkSXC6QkUCxBFFEw87QXFhidmKC2vMR9H/kwt2zehZ1qu/khvAAAIABJREFUopUVDKmI0oxwpUU4ucpIW5JNLnL+1Tcgn2P2+Enq47McFGXGVUJr+zBN1SD2NHlpITsRxUCTxpJ0pc2la7OIvTt5z4P3MjN/lekjrxKFKWqxijvZ5NJrx1h+9U3wY7I45vFnn+LJxx/lyGuvQjsAx+GZj/04G+8+xNVL50nNlMJHH6G6e4C2ahA2OhClZKZF24bOoIdfXaXth1Dsgw3rcfbuZt/Tj1PZvo0zX/t7zp0/R7Y4z87D76V/XT/X5q7BO2eYPnaG1uQ8RbNEWKtTccskSYiyDBKdEtqCuOiSmQYhCltIkiBl54G7OHDzPo6+/jq63oRWm+riCpfPnO3aKk0F7z3I2F99jc7lKUaUR0UJgsCnfnmavZWtGAuLbBBF6lYbKzWwFEhlYmIiY5g5O0o0s8h9jz/J9Ow0tatjtLKUYidC6oyagCyXkL9zPwe238LSxATyehPm9aIu4jhBaoHQAs/ykJZH34bNtM5dhCRFJwmOadPKQrSXQ8cht//YR+n0e1x+9VVqRy9ir7bIJRZxzgQzpXDbbt77kecY/+a3KLdgEyAiE9+UTE3OsfzGWQarMbLawN25i8u1GoyOQpzgujlqtSbmyAb8ZouCa+NKxQ1emWoS0XIEqWOxmkUM3n8X6+69nYVLk1h1BY6DFjZRo8nE+BlWzl2gJG1SnTIUpBgKGq5EYlJXERsev4fbH7iXa5cmoBnhpYIkS+mQEJkmUgsIA3QaY+dsEgGroxME41eRSDQp7NmFMVvFcmzSJKOS0i1/MATKljgRCFIsJdDCIDK6K9zsiZOw1sKMFGaakVqQakWqUmQGZdul1qjRSkJkIYc10M+DH/0x1MAmVt44Tm44T6RDSlFCO0m6odqmxHbLfPvo90nnp8Gy+fIv/BKmNJE/WlT/2Vrbo0ePHj3ePXpDpB49evR4l/lvndBmKmOtusYf/tEfkWmFYQo0PpmtUEmHsF4lW1tFhAGCiMzJiHVEUuknunEDLC0ynKb4jSWS+cvULk7hrsQUBoZphw2yooPpWsxNX8MfHcedrVNcrFLAhBfuwLl3L9bGTVz8X/8TdiTJ2gE4mvTmLbQsRfvSJbyRESIrptZpIh2PjiUglycnPKi1MFPYsvdGli+dh5u28OJT7+PS905QiBTVtMVPfOm/48RXv8Ng4hGv1VFWxOATD+DnbVYcQW79MP7EFEGWUjZyJCoiAXAdWosrJEkKiUIojYXERHRFXcUKzdlp9h86yIW334Isw8LA0JJMSDIputlTWUagFZFp0iElsQzSnI1WGQ5QMS3sOMVLBY4C1zCwbItIZGQyhU6Tug1nXvku+UDRbAc47QhPC1okrNWm2fjegzT9DunkIutjB5EqUtNCOg5JLYLZNfbuPUC2fj3tLCDz66jM5+Zb9zJUKnL1wnm8OEPoDC0gE4LZy6NUJ66w+7bb2HLrLezdfytXLp1l4+23cOd7D3F5fo53/ubrrH7nCFMnL5BduIg/eZWLr73O6twiTpQxKBz6cQnW6hT8jCFdoBUm6KINhkV7ucXkX32bDaFFxXRoZhHv//jLyIESy401yDng2kjbREYZKomwsLpZI1phaIXUoBKFbeVIY0UaKQ7eeiuTU1cg9MGxSTsBnulQj2NCodnz9FPsuH0fVy+cpJMT7L37LrY5RS7+w/epvfYaZ7/1fYJ3LrDVcNFKg8hAK2ylsFVGlmRkpoFZKXLnC0+zacMwM1OTIDV+HGBUckSdJpv27+PwPfegRMbi+BVkK0InCdSqXLs0xtrCCrNXJjH8CDeBITPHUCyJVcK8qrO0eg25eQS3k1EWDiqFOSLEA/vZ98Jj7HngEKiMaHoOw48pxDHFxMKNFHq6SvvYBWaPvw2tBixWCSanaC+vsS5MMW2PHR97mjvvupOxV1/j0umTHPnhq9DqYNl5UJLLx49zdXISEoeiUebwtr0svHmKcL4Oltu9IB/qB88BzybJQoaKQ/grdUp33YJeX2b2jddZPTcGOsO+ZQd77tjH6CtfZ/bkCZid4+5nPsCnXv4UbmZx8dgZKvkh1jpNTNdAKIku5NCmJhVt4t03EEvFQCNjY5DRubrC9NFTBItLFFwXzzCJ2w2cnEVqpozceRvvGdnH3PlpXCxWm8s0Rjz2vfgEC9fOsew3Gdixl7lWFaEUprIwlImdGbgYEMWoJGSgUubS20epjU6A6UPFRK21MAC1YZDktk3033MX+uIKjdlr3fauf4aUEtM0UUqRpilxmtGaGAPHxLEsEr9JkiXYnksY+4wcfA97tm/l3N+8AqtNsG0ykRB7GTd+/HmKh24jMgRTExMko2OYKbgY+FxX91k2ZcNCNdrk8nnWWi0OPfo4tcVFkpUVjOEBnvrc57jv+Rc4efIdgnqDXHGAybRNMJRHN1L6jAIRkoOf+hCRnzB/aoJoxwBmqBgybFq25vEvf47Z+SVKKy2KMfSFEi1gOSeJ/BAck1Rl3LZjN6NHT4ES2G4OPwlQOQd0hmHalJXA1RkiTsgVygSNNhQr5CoDPP6JjxH1u9RPX6CQZLhxRB+KWGsiEzJHQKrJpRolJIFloLSBSCVGLaZPu6gwJMxSIgOUsFCieyQP44Cim8cSAiFS0tAnXmtx7eQ4WAGJm0IzpBhD2zNBpBj3v5fO+YluMYNhUTAcvvRzX8AxzP9Sxyb+n9fcHj169Ojx/x69IVKPHj16/P9AkqXUqlX+6I//A5lSSEOS0rWpaMPA0GDEChOBNiShLUEpWHcDNz7zAEzO4ays4LgGftGk1NTozOjmejiwNj31f7P33sFyXfed5+ecGzu9/JADARCZAAGCYDApikmiSJESFSiJtCw5yZatcZBkBY/tscfesTW7NTvrnV3nME4rWy7PSJYlW5EUxQASIBGIDDzg4eXQr9/rdOMJ+8eFZGlna71VM9Jf/Xl1q6uruqv79b3n3Ht+9/v7fpmcm8estMFYVgVVSlGGwjC/rkSaR2xZtYWVa3XcehtlLPiSxaUFOjNzsLTC1kOHGHrgdhqnThEOjqA8iV1ZRgZlTFeRoPmBH3oH0wt1sqkrNJOU/sWI5cUFrJNxOWuTXJxk0LqU/JCOE/P4j/4ofWvWcOGv/5ao0S6ixX2fruqSOxSG3MaCdHAdB5OkSASelEgEArBugMpSLk+No42COMWRLtKCFQ5GFOovqzK072MdrzD7TiLIc7wwwFUameb4rodRhQLKGI3F0skyqJUBRTQ/DW1NtxWRNpboL/chUoWpBuT9Lne/7a30l2vMvHyaqpKkQFNqjOtAaghlifHTFxg8sA+5bSPJudMgNBcvXWB87BKiExFqENZipCAXYHwPWm3mmk127NzBzQcO8uJzz1G/cIFLszPYhUVYboMsM7hhPdlwH+6m1RjXwsoSOs+ppBZXKeLAJbAONld00diNo9BuQzMhyA1lt8Ri1EA7sGHXDjbv3UkjjelcuQRJhs0ypBEE0iN2JVqCEQYrTLFQsyCtg1WCvBNTn5wiXWmANjgWjFI4rosul9FDA0yePsb4yeOF8in0KVUHuLFvlPPPPYffXyN0JP2Og+q2QRb7EmHxrEZa8L2QttakWcLk1SssNJZQi/WipUVKMqMIhwZoXLrIxRMnaEzPMNQ/hBMlZHkKaQbWEMcZwpGMlKq4WtFtrGDSFDNUJQpMkR64fh0/8oM/xOXLl2k0FtEjNczEVebHrzE+fo015SqtsavINEfmBis9rOciHZeK9IiiNr51GBA+cX+IUw6p5h59G1dR3rsRW29y7dQpnOFBbJogKQp2vuejbJE0RSMia0ekUwusTE9iM4Ulh61rWH/7rQxu2cytd9zJ+KVLZCsRpVKNB973Hk5//vPQ7UK9w8EH7uWuN95Ha26G2bNnwffAClYNryZabnH61BmiNKcTRfhDA8TdBkYZhCOL1MRb9/Lmd70DiWDx+Gm2MUBkMnzXx68EZElE4LiEnkuuM5ROaTcWuXbsKnalTZ50CTeO8PqfeZLFKjSyFiDoW7ORxpUrSOkU5WErcWzhF1cpl9BZhs4zSmFAX1Ah8jN2v/1R5NgiUbdNO3TAy+lmmqVnTuAI9d8UkYQQSCnRWmNMoXLEccCCTmNcY9DW4pcDUpWR+g5nv/kCTjulbF1yq8AHDu5k+OBuxp59lvTEGfKlLrRXMFKAkkTSQa8a4A1vfZSk02VmfBwRuCR5RiNOic6+BsKg+qrc+vCbGa8vMf7ci1CpIq0low17dyImWow4FbTrcb65yMyLx2CxiffgYdZ7ZZauTrFp743Udm3m8rHjlJspICjlYISgUYZAOjh+QJIk7Ni8hQuvnkAKSaZyEKqIZrQWk6aUrCREYlB0jUU5DvT3k7daVDdt4Py512CmTk1KrM7wgUgKEtdiXIGTCwINuZREXmFn7RsY1A6B0qTSkPmyqPFYAdIlcH1cI6iUS1gMucnJ4ozWQh0SB3asprJ7C/nULIOpoYWB9aM8+mM/ysV/eBpciWMMgXD41x//BFJ8h/tRr4jUo0ePHt8XekWkHj169PheY/muq1oNJFnK4nKDP/zjPyY1GhH4JI6DtYAbYq0L2kVJj9Rx8Tatx6xaA1fm6a7q42BQQVy9SjfPURVLMreC6hskCQSQQlfhdnJMmsBwiVRasm5CWPJpdZpw+gpiUbN33WY6c4v4qaZfe4j5FtnEIvTV6FY81GgfcX2JtNvlA//h3+Hs3MLEsSOYkWFwNecb46wt99GcXaB97gre7ArdsoQhh0QksBwR5xldnSMHaiQTCxwY2cBrT7+Mv5ygtYINI+z8ufeh92wkuToBrQS0waQ5pSAErXGExEEgLSirUdISSEG+3CQcHCJToKWDvW7U7RlLmmf4g4Moo7nhztu4951vZ7bbIZqZwdEW33VYyjPyQOIEPrguFnAcgS8EeSejUukj7yQoYWGgRHd5mdzmpFkKruXS0WPMvHaBYCVH9Q2QrxtB1wQ2SxnIQ6oa+qqjTHcXCQ7sZM+BfcwdexmswUZdKsLFmBwlBMZxUNbg6OJuvWk0GL96hRe//GXQCoSD7URQb4JxAUPSV+Kmh19HecdalufGecsnP8yFkycoSYfB/gGyRw7R8R0ai4tYR3DPz/wocvUqVmYXkG7A3h98hPvf+wRnjhzn0rWrnDnyTToLcxx8zxMoxyWzArXcxjiSvCZRPmSOIZMGI8BzfFSeIxFUZQUvahPaIh3J9SRGWFJAS8vDv/RxFnZuxawahdMT1JTHwrGzzJ65iCtAmRi35NLMluk6Bn29MOgZWwwfIYikJXVF0UKHRXUTSr5PnqZIV6LzDNWNCrPxNAfHJWu3qaCJr7dFuls289RP/Dg79+3i2NGjVISLtRoz6BHnMRCwZssO7n7Lw/zNVz/P1gfuZvPBA0yfOA9tA+2cYLFF99I4w5WQRmuZtOJT9xXtwBK5ebFAd1w2GBcdJXSSJra/RNNLWWossnDxMlPHz+AGPqq5jBBFup1MFcJArjR3v+fdhAf30RmssHT5IpWRYVToY5yEDe98jKbRLJ45Q6ZcWsdfw4YVsk6XC+fPw1wdopTKyAgTrx7jzItHmD1zkqrnoeOE0PGZHLvC2Owsy7OTDP7AYfpv28dKXGft625j28BqVsYmsLmgf8tGTk9epv7Ci/i2RJY1kH0D5D7MdZYI+8vkKi/GY5qgPIHwPcpNxWCpj66KUOtLXO1O0Zi7ylO/+Vu89sxRWq9eIawNkdkcJRyUFAgsYblEt7uCcAzCBaE1bqLwt2xk/837eeUrXynapgKPQx/4AG997N0c+/QXr5tU6++aerMsQ4hi8pVS4kiJ7/nouPDzsp6L8RzSNAZXoDsdKrUafisBDJm0MNLPT/7mr/DlP/kjuDYPsoKcbmMdsL5PbEB7DgPr1zAw0M+pZ76GOzJMnOfUwiq2lZBnEeVaDTVQoTs8wvGxMYYO3Ep8eZys2YFtwzz22JOsHDlH4AY0Kw4qyaDeoTQ8yq7H7uP8N75GXvbwleX0S89DKyGTklbNIozACEHuCKIkQmCRUcr5Y8exSY51HVAZG+57PXr1CP6mteSNRaQG3/PIVEocBlijQFqoVZm9fBHqy5BnpDpChQ5LviEOJEZKRO5QzguT8LYvoeSCkBgtWGdKCHKivoC0LBi+8SbiKIdUkWuDkAIhDEmWFO2H1jLSN0hXOXg/+iDl4QHiI6cZzSXLfsjQ7h1cvHwFOd/CT3NkklINSnz8Yx8Deb2I9B3n2F4RqUePHj2+t/SKSD169Ojx/UL8czqb9Dyeef5Z/vErX6Y60M/BO+4iqo0SLa2w/o7XseeWO5i8NIkRAVgXu3ot9z74COPfeAV7dZ7x2csMl8qYJKWRaHR/iLIOHNjBhz/1P3Hh775OpWtJ+kJqD99BPlwmbiyQW1i3lFHuChbmG0w3rhGHGWl/QL7UZKc/RJpHbLjnVhauXiT+5ln86QjtlXll5gLTjRke+eTHuPSlb0CjiYhSoisTiDjF7WaUckO0qkTpDbdz+Im3M/XcMeSuLeh2HdlKqM/NcerlY3jGgMnRxoFMQV8fu2/Yzo7qCBOnz307BttodX3x5yCkxEpBqmOkNAhl8Ws17nnjG7k8NYF2JCrLkAh8C07oE6cp5IoVC1evTdBtLEO7hcoVW27aw4JN0WjyWoXMkVgrCYQDUUJoBV6UkTgCQsGWN97DyvQkOsmpSo/MkxDnsBIzLMusjJZY/cBt7HjnG5mdmsRdinCUwtWSdtoknZ/kje99DydPnYGlZXy/RNzqkgqgr0KUxpigTC21lLOicGazHJTGJhlebvCSjIqWhJUa6aY1cG2C1tgMi5/7BnKyycKXXsRZ6dCMWtQ7K3QHJFv23YovfTqTi0xfnaRx6jwkBpPHTDoJbaNYPHkBdA6jQ5S3bmNuappNq9ais4xovs5AbZCkmyJyEMaAMBgJmdTo1UNox5AGGrt5A51oiczT5KHEpArH9bDa4/KpC6STc9x3653cdc8dnDzyCrrVJvV9rGsZwCWaW0BYA9USNqyQdBPyXFHrq5E7kk6WQqXCpjvu5MEnnuLqS8fxpENf/yB4Hlk7pr/cTzkvUtxCv0RlcIBOFqFdF9nXj27UOXX2FGdeO442OXkWMxoEDFuX9tIyBCWanQ6Xr05gZxaZvzDO9MkzsNhgw8ZN2G5MXl+iajS5SsiFJfZtkQLnCpASpROy/gDz+G3c97EfZ/q/PMfaJYWXWCJfYxorlGUA1uA6As9aAgM+Eqstme8xFbdZ7gtx1wxx//vfwdkv/wPGFdDI8F4Zx75yBTHbpnl+gvLgajIUVDxq9S79qcEz0DYdEIJaJ8eLI4JcUxISK+R1XxsLfSX82/axNHEe7jxAxzfMPX+ctWmIrw0rC3VMfQGQ5FaTC4+6btEuSRgqkWUxuWMxShMi8BA4qkir2/3UWyivH6Zx6iycm6Eyozj7u39L5WqH0TxExSnBTZv5iQ/9FIOrhjl//DiZBOtZtCtQjkVJUFpSkyGvPvcckIHrQKpYX17N0//XZ8kAmzVx7HcrkRzHQQjx7U1acPIMGQT0j44QdTpF0aQUFm9QmtwqMpmSuRKUhU7KmS8/i5qsgyzDSozIFFYJyCAYGkY325S7GROvnUc5MFAbRK10WO/0kyQRvk7ReUxt/VoqW2+EoERjagbOXWBk+w7ufPvjfPVf/zYSyZyIefBXP8Tl51+CNEdZTfTyGSr37ue2Rx5An73G0sISYSbI8mXWf/i9NKfrhHhE9WWCfp8AKOUWkRtyV0Dgw+Z13PXQg0xOTfG2p97FqaMvk0cxqVYYPyAnBd/j7Z/6Lca15QMf+jmu/cPXiZIWJpBoR0MJBm47RJLC2qRMlqRkfQGq5AKam9/8KLX+AcbHr5Bi6coYVg/xIz/8AV49+ipuuYTJc3SeICohcRKRew7WE8S5obJzN/a+PXT+8jPQyBkwNeJaQGduHjXbIOhk+FqBVpRKJT76sV8oiki9AlKPHj16fF/pFZF69OjR4/vF9atbQ6FG+k+/838wMTtNJ44Zn5llx97DzEZdRrZtY9fNBzj73BGQPmgBS00mr0xS7cSUhCArByyKmJYrQJZYd+AA7W2jcOIVjjz9HMlMRFmW6Pb7mEPbqAVl4kyhllYYzDyMgfaqPvx33oe5Zz/r77qFUb/CxXOn8fr6cG/ezPaH7iV+bZLBdkQQQxQpmFpi7OhpbuhA3lwGleEphSslngVpDXFZovqrLJy4gJ5p8L7f/nXa/RWWXziO9TTW12jfoC1gPZxc0j0zxeSzJ5i7fJE8TwiDEGstYblMmmfgSIwoTF2dQOK4FpVmOH6ZQw/cT23TeibHxyDJCKtVAmWIVI4blrFemf37D3Ljpi20llskSQQqY3TPTt7/8x/h2LVJ1GIDCyggUYZytYbBIVcKVQlBCnY/cDfrN2xiemwckSTF9zcQKEjjLrrkMLB3O/XmEtHUBHa5gzSG3BiSisvo/pt58aUXoZvASoxOc8KBfpRJ0FZz63vew8yZswgrcKxCWIO0Bk9bqp6PSRJqgU+UtllzeB9rfv5JnK3raT79HEM2ZBQfR+U0Kga7SsIan0NPfYC1/gAnjxzFMy5qsYGoVEBnxRbnNM5dhlIJrIVmm6DSx4+9+7188e8+S9RYhjxHaMHG1NCnBYG2KGnRjoDBCjuffJy3/dJHubK6xsihvWx7+D5mZUa4fg1qYhoHlxvcGuFSRDa7yOXjr3Hq/BF0DpTL+Lu3kkswsw2GCahllqTkX2+xLBGU+2h2YlIpYe0qSBKac4t0/BrR7AKJhK5VjOy4kbBcw/UCsk6KcVxktULLMejQgnGw3YQtN9/KfY++mVaa0G4vURUa0+3SanewG1azUtKYNTUOv+sdLEYxemoSsphdTzzKjbfuRZdclhZmKTlgdEpOkZxYSi3VGAYiSY5BCodocYqzR4+TzkQYx2NlywD4MSDxlAQMVmgca/CVLYoYRpOXAmxzCTt9DdXqMPZnn2NfaRXlRoSs+TRUk7wUUPIC/NzS6auy5sBN7L/9EJ1zlynlMcIqOp7FNVDNLVXXJ7eKVGm6wkLJZd/DD3H44Tdw8eoYdmSY2w7diuP6NJ9+iW6cA4aKKJK8jBEgDcqXsGYtd7zjbdzy8Bu48M1noVqFHHwrcZBIHIK3vx5vqMyloy9RrkdsyiRBElEuD7CwqR//vQ9Svn0n9dPnOX7sZS4ePQZOUeyxojDHLtonXaoDq2jkOdakRSJgEOIKn6mTZ8kaS6y5dT+dqYn/poj0/zYFG5VDpUKnuUxl335qW7bwwGOPc/HCBdzUUDGAFZS9EMf3sb5DTsbb/9UHOXfkGE4Og0px5/vfz1WRcvjJx8mkpj55DVsrcfi9b2N03w6uzUzRXWrjWEFITsV3qa80WHr1JHGS8vb3vo9zR19iy+Z1vHTiKG47Jeq2oOQycfES4dwKWIWpwGAG9cUxri3MoY6P0+eF+MrQd9/trGwcILk4Q3tijhtWrSEzHVxtcTJNrDW6GoDvgi+5fO4S2elLnHrhOagvEZQqGEFRMFu3GjyXmUyzce0NPPvFL7Ny7iKsGUBoAZGCm3fx4FvfwdTVWdoTTcxAH1neBiuRa9dz+I4f4Nr8LM3ZKfL+oPDsynJeee5FzFIdE3WK7+IIbjiwj0ZjCSplVm3fTqfVZvOhw2S1gOTYGLLrsKJz1HAFsoyaV6XbXCEMPIzRuJUSP/fxooj0LbHvt24+fOf5tkePHj16/I9H/ssv6dGjR48e/yMxQLPbZGGpzo07dhB1O6iFBa5dOAvSIKRioT4DpMD19oIsQ9frpKqDDBzWbdwK+2+Cg/sgcVk3tI4Db7oHvBKMroawTF2lMDTALTcfpnHmGixE4HpMu5pF10K1zP69N+EimJ2d5YZ9u4uWkkrI5JGjXDpxGoZrpLKMJIRGB5SDuTRJe2kZB0lmMnLHoGWxZRjIc7h0lezZY7DY5dOf/jRTC3OFx4v4jvicwAdr0Vbj9g8AhjhOcD0PK0AZTTfqghRF2pIsfGKkJ7DC4HkOcRzzpWeeYaHVZNXhQ4Cm2+2Q5hme5yG1xXRjrr12nmixiYoSiFJwYGx6ii/941dwlYRSjXDtxkIVJSVtR9B2IfIlJDkkOS9+6UvMzE4BmoFyrdiTOsUGEiEk+CUmXz7B1uogzNXJVUwic2KZgSPYNDjIvW95HGbnIayAG5JkCsolqJS55b57CfbtI3E1saNJHY21xSZM8Vj8xoUayLk4x3BLQwr90qeMQwWXsJNBx0Az59Wnn6PhWdg8Qr5rlPCBW7Dbh+GWzVA1IDVioI9NBw9AkoAX0Dl7ga999h9gcQmabaj1kUqLotg0FmHsde8qj8mzF7l25gIrpy8yfu4KnlticN0m3vTQI9z/rneh8pxcpWQ2RqCpBSEspdCyUI/ZdOONvO+XfoF0pMpyxWXazeg7uIe3/vIn2fL6e0jiFFyf0W3bIVew8QZYu5HJZ54j6XQxshhVqq/Co+99iv133oktldDlElsP3My/+je/grtpI4QVSn1DOJ2UdLFBurQM7TZS57j9JZpr+6ibDKwPzYyX/+SPueFNd3LgYz+B+7oDnH/+BZ595hkuXjiN0TlKKXzfx1qLtRpH22LxrjX+0ACu9GAygysJjFRRr7+Jw7/+03h79uBkEkcXbTzCXH+0BmstruMWY76vBq+/nbt/7AdZu2EjSaNO27ZpBB143Q2Ye7fS2lGmNejSv30buw4cIPB8VnRMVyhSxxSx7xhiz9CxOUpITOAiQx88l6TZJK+vkB59FXPkJFe/foSJr74IQqBH+okrIam0+MoSZBYnt6AtWIfOUpPnn32hqPR0UrSVKCtROCgcmt94iYuf/yeYr1Puq7JIQiw9JvMVKnfspfa6fUybFszOkE/NAALP8XAMOEbiGIk0EmFdlhvLPPrjPwzbNoB0oBUjugmce4ryAAAgAElEQVTUAjbfcYCbbtrFP7sr/0vzryTLcxAub3nXuxlYtQ5RKkOiKLkhbmyoJBrbbpMkEdqk4Cs2HdoLMkebBAfJjQf3s+eNDzK0dysLE5cIVg+jpaHpaV68fAayNun1tk9XSESuqVgBo6tYu2ETzdkpWJzhysUzcPki2doa1Hx8z0FdvEbFc6kOVoGMlBiaHZhdwtMaKSVKKebOXGBdOICvJa4XUG+1ENbiYHEQ4EhAQ9Lh4BsfAiXAKUE7Bb9CIJxiLCcJzC3gbdyMTDTn/vbv6c4uQkmCNciOomRL7Nq8m2sXrxEtraCEYd1tB4o5M04JIsXLz73AzNnzEAiolaDThU6KaRdJlQQeKAUS7nzgfqhVQWn23HEn7oaNZFGEHpvDiT36jY+teOy8+w7WHDxAe2kJXINxJdaVWEegZVH4/64mxv9/h0GPHj169PjvoKdE6tGjR4/vF9+hRJK+R6O5zKkzp5mengLXxel2ydoLrN2zhempK3QmruIpRUXn9CuNT4YqO6ztOnTuv4XovsPccNf9yKMzjM1fod6tw5VZ7P4D3HrgLpaTFLU8yXSeU352DDnfQJddzE0buOH1d7D8/ClCL2TpzEXsi8e58upJMJDHKd5KSnT2CkmzSVT1eeTXPszZZBxuv5HVjz3I4vMvUK5VUVGMkRYVOijHYHODRsBSm81JwC47yLXZs+iFWdyOLtp2FFQT8DPLbY88wkR7EfPIHex+/+PUX3wBm2YYa/DCkHK1Sm40MvCQjoNwJMbNSDNTxMdLj25rmcbcFPe+90mujI1jk5TRoEw3Syh5ZQLHJ2+lXDt/gSAIyBzLwcfewNQrr7IwtULeSMENOHDLYZ744E/w0slj2Cyiun8X/du3EFytU9WSKO3SGrtK4JWxUcqmA3toLM2idYbKgZWU1UGV6ROnyOfnwCq0UdhaiO20mL12jXGtwatw7+13E7ghS4szEDqwZoRXLl9COwEsTaOlKnyYrMViyLIU40FkMmwAjXYHcbHB+NGTIFJWaor6+pAlWiit6E8EtbbBv9Tl6tnzkHZh0yruefwx2DTC7jfcQ5ZC+YUL3GBq7Hr3m5leXCafXsTxSyyOTVAZ6Mf6AYYcd+0oyzqlXXLIAoF0Bb5wCBJILsww9qUj+BNt9JU6U197keT0Zc4/f4Srr75CMDQINZ9GaNE1w43vfJihB+5naWGZPfffS7x1Dc9+5tMwNoefQ1VJGnGLC0eOsHJ1AtwylbXr2H3rLQzfdph1txzirU+9n1eOnYHmEvueegf3/9gPMdZp8MKn/5orY9fI4hyjMhaiFV6+eo6RzZu4afUW8vkmi2NjnH3lVdJmk0ogiWabVKMIs5xSlf1EK01IFGSWpRdOMvdPz2JOXcRpx+QLdVhu05cCnRbtKEWHFu0JUiEwCAIlWE4i8vUBu3/5Z8mnO6TX5sinFph/+Szq6DnIFNJz0cIiMAhrcY2lFJbRApI8hZF+1t68l/OvHqd98iSlWoXcKmKpuPWNDzA/NYe9cBkGB3AOH6S1sMTpv/uv6EGHyElIHEN/YlEOJGWwYUgqCvN267ngezQuX2P+whhyvsvq2MGbXqY102DHow9x8NEHmEhbJIvzeElOkCnCTIMSqLZh4bWLxI1lbn/L44igTGtyDqMtGYUP1kZdQTQ66EzRSVrY1YO0ky7lvmGiU1dZ+fvn4eULVMohZAoRp5SMwNfgGYFjZWHabj1Kg2vJfmA3S/Ux+p1+KssJfVbSGXWQuzZy6cQJzNIyjv3/riAU3louxnHBdRGbt3DhxRe5eOYcLHeo4eEJYLiCEoJ+x6MqPBIlOXH2DCptw44NdAdD5mc6jD39Epe++mVIJZWpOUpdzfRrpyDKCWSN2nxC7An8LEamCTZXJN2Uzthlrk5PgopQ87MMphWSNVXwUnRnGRu6bPuxh4lXlegeP8e6RoYyLqWuQsZdWr4LyoCWHLrlVi585guYbk6iu0iVQqqwGjoOMFSGviq3PPAAlz77ZYgMpDlenKCjCKEsulpm7cGDvOHBN/Hql54viryZgvtu4sZDhygdu8agybl0eoyFcxehkxLcfhu73vEQ9a8+i5sI7EqHZqNVmJsfuJH7nngb488epT+RqKyLMWmxA1zB7W97Ky+dO0s8P8/2tzxGHoTMXbhEPt+GiTr9kwsEytIe9dj31FtZbjYpGUE3tGAMRmucSsjPfOQjgERQ3BWX3z7B0lMi9ejRo8f3EGHtv3DG7dGjR48e/318R/zw9Q4oLHD6wlnuet3dZHmOI69H0qcJNrdIz0UKAVZej36XCAyBAiskqe+B64GUbLrv9UyOjWHHp3HKJXRnCToSjAeO5V2/+gk+/zt/Sjw7BzUP9q3lnkcf5dm/+UeINIeffJij3/gKHB8rVESy8LypxtBZNwCNlM037MK7ax+XTx1FjKzCfv0VnCgmrAbUOpZ5MugvYfMOJBnXY9QIZIWKrBDlMYkXM2Cg6nk0VURnTR/v/jefZLq5wjd/+/8k3H8b8tw46dRlAgeMKm6Ex6lHHvRRXj1MuzFJ6JZxU00qDKIckCcpvuMUMfBaIShaWpSUuFoibLG8aOYpweAA7WSF/e96lKS+wuwXnidzIK0W+4cURlOXdt6lsmY1q994O+c/80UGtAtIslwhQo+2r9j/nrew+YZNfOEz/wVzYZIwKRRTStrrCWbXd76yIGShwrIhDI8yenAPi3ETxi/A7hvp376LR2++jb/6xV+DpA3kgAKj8TVU/BLLcQSBz7annmDs85+HSILKIXRx1q3l/nvvI2l3+eZf/w3hwDDJ8kqhEvF9WL+G7fccolWyzDfn4cRJmE3YutQipMREeS2dagcHF7GwSChchkpVtDZMj5S4+zc/SnipgS8EX/xP/ytuxUO1W4QIHOOAlWB9ujcM8+6PfIySlfznX/tUoTTQKawe5IP/9lf5vZ/7MKicrdu2M336PGmrC3kCnks507jWAIZW1WfwPU+wb/tNPPvvf5tqEtFZXoI+ed00W0PkIKoBNrve4lSpQNmDOIJqCDft5e5HH2PipRM0/vLzKJOjrMH33SLVD4MVCuUYjOey9XUPsWf/LSxNTrJqYIjP/fHvg9BgFQOlgLTVRhCClbg2A6FIXKDkkXlusTh3AjAOmAQ2D+G/7gDZ00dxJlqsD/tImiu0fIe0rwQdQ6ANntFIFBKFkuBVqzQkPPnTP81nXnoBffEyLCc4kcHkCZ7nkpGB4xC6HrKvQrR1A1waA78E9XnQhsHBIUS9jUTQ1jF2cJSs04HhAd7xix/i5ddeZfKvvsSqWLGZfsbDnMWkTRD6WMdFOWCMhTQBN4QkYzTsI4oj8r51ZLZN6W2vx8XQPnka/8wMo0rRFprYA1d/Sz0H2pUI10FKibTFmLTXxfBGgG8MjgFPF+t/fX385I7B4BL6VZwb17P3obt55j//JbRj3BTUdT19oKCWK9q+IfUpEtVSCBPDsPFIQ4e6r0Ab8KrQF7L17Y+zamg1R37njwpfnUadsM8hSdo45TJuR1PNAiQOkRR0dcy7PvnzXBq7yPHPfY5SXsL3fZr9QFexpiXoGxrmYlXwif/l3/P0Z/+RY3/xd+CllPOMAIlwPPJamWbcAVcSaEHZcVgeHuXOj3+IY6+8SP7KK4DHusF+2vU63UsThEaQa4UrHYQMSFcNIqebGD8gzFKqYY3lZAWXjLIwLFmNXTUKtX427NjD1IULMDsFjgKd4ieQCa9Qrjo+RDHrPZ/lvE1UCbn7d/4D1xYXmDx/Dq5eIXhhnDWxZSqM0Y7GMYXylH5Y1R1godlg7cgqZmvw4E++j1fSZZb/9IuwEMPuG2D8EjRjBtesZbkMj3/ql/nsr//PcGmGQafEsuhAOSRoC1xjCPPivNcYqUAasfXhN7Nq8zaO/MWfQmuZkjX09fVx/vx5quUqAnC+81x7/Xzbo0ePHj2+N/SUSD169Ojx/eA7ooe/dW3bbrf4vd//fYQQ6DzHpikDYYWa51MSHjZX2OutXNYpcutLShMFEOSWcmzIrKJ6YCuHd+/j6rPHsHkG6wZhqY1rDWG5ymIa0ZiegCSnJCSKnKVumywow9Q8tz72AGnJY+Xoa0htsY4GxxCmljSLAR8/s5TKNVpJjjl+CrQkcHziqMtAaagwtnVE4VniymKx5gso11gV9tON2piKg4xTtMpRLuRlQT0QzC8uEl+bQy11yefqBGUHN88xGZR9gdO3mshIsk6HwdsPESwn6MzQv3cbrYUphr0qYZLjoNDSYIVF2uuJ0oBjDQJLUKngupIoajPfbrH02lkqmcHKjNwzYDVOLljjVEjzhHacMh8tY6MYiaScC7AaBeSBZCkAT1sWp6ZwogyZ6u9YuAis0kjXp9bfT57nOI7DcHmAqNuhsmsrtz/0IOOXLkCnSxqnjJ8fI7s09s/u60LD9aW2gyRFQrXKzY+8mfHAh4X5wgw7N9jMsHhtGtWJWVleQeUpwZrVeDs3oerz0GqyvLBMZ+wqrKwUqUuZJkwsQTjITG5g9wh2cR6TKvxSgJ8Wxrwta5gY9tlcXsPBm2/m4tXLdOZnAYODuf4vC4wApZo4a9YiM83l02OQKMKb9xNu24JKM6YvXqVUqrB08hSq1cTJMvqkpJzlSKEwwpA7BuU6JPUmJpG0XnyFapIzWPLp5jFWGFCaUHgYx2LThPLAIHm7zba77+KtH/op5vrLdJaWkdKlceYSzvgk2nfJPchVgpQCpwhrI5cSfJflUo1MOpz+2tNcOHmK0PNQcQeR5+RRRiApih+CQinmFCoflRgohTz6Uz/Dgz/4FO7qtYTVGo1WB33pIizWCVOFibsMB1XyWolYZwjl4huK39CCFZqu0sQmhzzj0vQ0+dUrRfvP0CqcKKPshd9uAfWtwAd84ZDEbfA8WKrTv3kraaOJFi7dOGVweIQ80Ui3THl4mNQYrrbrNM68hp87rHNrNNIFFqyiNNqHk3YpGUOoQBiLcl0IfdCaNFU4OCTlKpgUtXMdWasBZ87hx1CzilwocsfgGlt41Fyfv6wjwRHXj2mDZzVCWLQsUue5PlYRtjBuFxYji+eehcb8At1Oi+7sNAgwVlDJoKTAtRAYQ+JatEsRD6ghdDzcTNHKU3TJLby/0pxbfvyH2bl/H1/9whdhcRmhLWWbY0KD9i1WGXwlCYSPkC656+GuXsX+A/uYvDzO4mKDoTzDE5qupyHJyeKcpW6H7a/7AU6NjXHmyMt4RuB7hlpQwREu3Tylm6dYrfDLZfJORCg8kqEa8aoROrPTOKOrcLsp0aVrmMUWKknJPcmqbZtYWV5mZM8uWL+KpNHBmJx+WWYxb6J9WLNmDTbqYkpl8qEaux98E53ZJbpzS9Bpg0jBgqeAwWGMkDDQD52YPp3ikBFVQnb+0NtZTiPCrsIM9JMcPUcFh65TvKaSK0Kdk3qamq4SZQlBJSBSHZxVg0yPj8FkE3fnXm774aeYeu0UcinCky5pf4lg1xbmj7wKyzGjuaUlY6QrCFOLYy3KKeaBPE2hOgBhhZZw6U5MAgaTdPEcl09+/BMIAY4Q310z6hWQevTo0eN7Sk+J1KNHjx7fa77l+vkdTw0wMz/Lth3b8QKfqNFklRvSTiPwXKy1IN1vv0dS+ISAoR1COXXxtKAVgB31oTQEMy3CdSN88N9+lN/+6K9gF1ZgaARWD8J8g1oi8JortDyFEhocF2JgTQCOwVvM8Mz1i3dpWB1LlssBWV8IrRjCQWh32f3mBzh34ggsNrihMsJ4tgS5A92MNZUKc2mdsNaHXE6JkIy+8wEWF+fhpeME1qGkBZlKiDygWioMLSLJ4z/84ywNhHzz936HwTiiFoRMZDls3swtH/xpXv3CP3H3/lu4+rm/Z3rmClt/4yfxmxGXfutPGA1qzA0rCA3khtG6JHG/tTgtlA95XChRwnIZZaBcLbHSriNQCOMWiVVSYhEwNFgsZrtdMDEYQzl3cDJLLixJfwBppzDkMODnBiGLhCd93RC4OtBPu90qvJzyDIRArF6LXVqBdRvxh4d5z/vex59/6jeh24Zd21izdpTFz3+dsrIknkJLhWPAt4JYFTHelf378EcGuWvvXob6+vnz3/1daHfwwjIqTbEmB2kp1/q589d+lq/91d/B+UlGlhQeGStodOCSVQEUDI+y9mc/yOzKBAdElSv/+CytMxcII8GA9VE41CsKCAqlmk1xXItnLa7Jrh+XhWqu21dGtVLQLp4skZdLDG7fyuqtGzj/5a/CchdMTtDvEV73Y1FJjCcFWhqMMChpSZyALTffTefyHMNLy8ikyTJNEkfQ8orPGir1se2JR9i8ZStf/+KXWHz1DPg+q27cysLkJNTbCFl4sNiSgqpfJKi1uqAlvoJAGbSExJUYWYZc4YwOoeOEapIh4zYSgxQuDZtCqQwCHK1wbV4UeD2XHAGDI8hN6zGTC4yogFa7iTAxnk5x0oxKqUR5cIjLczOF8sUL8LXBtcVBZIQlwRQeWUFYTBQj/Wy/915Gupaj//WLiDxHCFsokbTCFeAKlySsQBLz0BPvxK1W+MKf/RmsX8uHf/WX+Y8f+UhhTOyM0F5ZRGxai+00oZNCGhcVmNFBaHYhigg8l5JxMUKSArq/gmq2QDiQikI6tHqQ1YcOcPCBu/inf/cbEJSRjS6VXJF6isyBoagomWdAGki0XyQsugYCXaiHlITlssEt6tZ4pjDnh+JjjCjGr299ImvIPBC+j41Twszi6WKspQ4E2qAc8+3xByAyjSMEbhiQ2Bykx2hlhMXWIuzazlueeIK//99/D6KMESlYac8jSg7GGCpOCYyHspLIvz6ZeECUIjX0CUuWJehKiMZFJQoZVgrzaMeF0TUwNwNlCSsdhHAJSyVMLSRtLCJGR7GNFtIITKlE+eY9hJWQ3du38/zv/yHS+oRW4EiIhEbLGNau4fVPPck3nv4nOD/NwV/6BY7/b38A+7ew657DnP/Tv6J8bp44DLBCsuuxd3LxG8cwi0tU0y4OERmaAMGKW+H2T3yELbt38Nc/+zP0ZQrVaRMJF/bshOlZdr3hTVyan8B98RwjWrLoxUibU1IGzxgWqpINDJEkMcsVi066EJRB+LB5FeHNt7Clsppzv/8HDFuQeCyP1lCmDcKn3NFUdcZCuQvlMsNLAiOL40dLSBwPnIA1+/ax++CdPP2HfwC2y46bdjI7McXizAJpnlDxwp4SqUePHj2+j/SUSD169Ojx/eD/cUFrgUtjl/nzv/gLtNGYXOMriVup0rZpYWIcOFiKAlJJga8tmXTJnWIB7GmBdkDftBUmpqGTorpNztWnSC5exhkZwZqM9/zGL3H6s58j60SspUSuO5SdgLLnEGYJVhRtK6U4LzxFBEgr8LUkzhOe/MTP89rRlxAixBEuew7tZ+iOm5itz5FfnWXbTz+JGO0nmryGm1j6taSSCBIUeQm2Pvko++48TOPiON35eRzpEFhLyQ1IOxm+8gi1x0orJl47SjfJcGbrJHlOOjAEB/ewsm4dOw8e4JU/+kv6HUHuOyyePkr94jVGYhc/t3SlxFoBuaCWFvHgWkqUkEVrWxAgpYOvJCKNUVFMFBSrjpJycEzRJvgj//FTnDh6BHLF/R/6KFdPvgQ2J9easifxHUHc7lIplzDdjLIV+Ehy6RRFhetbGnXBGgg8dt55mLbV6MY8P/iLv8hrL72CHruGiXIO3X4HYwuLUJ/iTT/yJFe+8AxlXSyMlWsxUpArTV9QpeyXaU3Nk0zOMD49wdz4BKGQRPU6Vd+lLE3RHpYZsijiyle+iVxJCJFkIqdblqSeRqsUP7UMdixRM6UTWHZt2s7lv/kK3RPnAAO1GplWeKkmlx7G88BzQAgcazBK4yKKP1us2kMMKskwKsXUSpC3SFxN/cJZiBOGHJ/+IEDlOTrNscr83+y9eZBlR2Hm+8vMs9216tbW+y6ptXRrQ0LdkpCEkBCS2CyEELIERoARNgYzGMML27M4/GyDPV7G9jxjbMYIGWzGYIMByYBQa+lWq1trd6v3pXqt6lpu3fWseTLfH6ckrBn7eV7E2H+M64u4EVU3siJuZZ7l5ne+hcD1ybGYfzB32le0xsqM3XAFh3c9w2xZETkuqQKRW2SWo5Kcw3v38/L2FwgnZiG2VDyf1ukzkCY4JsfREQYDi0pc/4kH2HjDNRw8eAg6IcpAWdsiyNlaSGPyoTK24cCgR9psUgsaJLmgQw4Nr7AlakFFQ11LqrliWFQII00eJ9ipGRhqEPa75P0+FQ1lz6NTd2lXoJm0uPnDH2Jo1QrOHNqHIgFRqOeMtJj5Niu5fDmjGy5lw+bXcXTXixzd8iQmDLFJDMpgZU7BvlpUZnAjgysk+3fv4tCul8B3kBsv5OmXnmf4bbdy2Qfez3g4yznvvIGb73kXex7eworIpZNFEAgYqrNq2rDEqTGtNJJCcaUFaJ1w8/t+ktqiEc4eOcIl11/LbT//YUSW8qPP/xcG6sOknR5W5KRuTi4KKV1UVkSqMGYuTgXLUslIInA0NEvQG4C4XKjKBBaEfTXT6JX8/eLSKckSjRSKPNOUNfhxTpAX6rfEgTyAzLWI3BLkUEsKAkqjGbx0PcNLFtE6OUkltah2m0gbmJvjwLPPFuHxSpGHGVXhMeBVELlGOQ7tNCPDwECZq9/7bk4ePFAQTl6VzDVoqxkxPnGaINYs4X0f/yjKDZg4PQn9Dqvf+WbWn7OG0/sPgDVoT5H326y+djPvvve9PP/oo1iTU0PSP3aM6OhRTj77LE5lACfSmDQlTmOMkgz7Q6SnZpncO44+Mw1Og3PWruPE959kbMUKWidPkby4h9yAdV0uvO6NlJyAMy/sAq1xLQhyFJZI+OSlgKGbrudHj/0QZk6TtOcoC0nDgG0muNZhYtce7PQMJonJbUbmCgQKZRWOlWgcstySa00sUqpuhYFezjIT0Fw3gq4FzDy2E9nq4FGsRxZqVHkApxtT0wJNRlwtVrrRlxg5/yBDWfAVVghGqzV2PbW1ULMFgjvuvpMTp07xsQd+FqkkCvHjpqBXq9r+Re7kC1jAAhawAArB7wIWsIAFLOBfGb1+j2azieM4JFGIcj1yx6Vv80IBU69CnpHz46fyAPYf7K4kEmHh0g0befGFveCXYLBM+7kXwUjyfgSeYnziBKxeAXuPE+kYC2RpjEw1AI5VoCmUIFbySkl2KiCo1nCRiKUrsAdPk3s+zzz/LCMbV6FKJVJyesdOMbp6OdNLhmgdnuZ8SghgAqAk2fPwDzhWqWN7IUI5SEdhdArG4CsXx/MwmeTk0YPQmYA8Q1Fk43iDA6RBhYvXruPZh/8ekg6nTjVBaGAAoi7CukgrWNyDJP5x6ai0RRNTLiVaCmJjcBxJmmoG3DqZSRA2+vFGFFE0s4URnHse9BMWn38uVOpIwPY7hcVMWDwLeT8EIHm1Vtx9zRovXrOas7MzWE/xnvt+khdeeom/e+RhvvblL7Nhw0WMHz3OqcnT1EcbDDcGmGme5K//4I8oW4ulUDThzP8/xiFMUiqBwhOC1EI61+bMqUmwFgX4SkJaWH+gOEwyIRFxSoYhjyNsDNITWENhN8IlyCXx9kPsf2wvIxGIVBFJgbYWLS1+4GCyFMqqyBvKNbJSJk1iMs9B2R9Xa/c7PUpjDZTnk9RroAMqG87FhBHRUztoW41KcgYrA+gswRhDojOE+jGBBLJgHl46zPjzR5E2oIGiH3WwjsAKh1wJ+sLiVIcwPU3VcQjzOZJuH6/mk3oGnUQgAnAUBCXOnjpDP/ALRY0plC/FOVUc++VSCWe0zjs++zFa3Q4P/+rvMDPbAS+AwWGoauhHkBl6qSRMigyfWs0jsT0Y8GC4wVt/4aPsfGoHZ7c9S2d8gk5/Pmx4uMHG99/JRVdcxZPf/QFgkPbHVi4ATzkknuT1V25iaPU6Th3dg261IE2oSolRgkRnhRoKgTQWZQ2eowoVY7kMlQAkmPHj0GlTe+Ob6PZi8kOHyEplTs4+S6WTo3JZHLI+bHzL9XR/+ALHj53ASImxRVixtbD5zTdx/oXn0+m0QRj2HNzL7gfbmKOnqZcHiM9MMFYb5KzOCsbbFgR3Jigy3SR0pCRDgioUgrmgUPFhcHNT5CDbwi6orEC+Ym+jUG26vk9qLGXHw80MZb+EjmKyV86T+VRlm0qUAd9CbAAhuOwN12B6EeNPv0huLBVKRCVFaFLwJNRKlIfGCI+doiRc4jBDqYIcxZGFTbBRZ8Pll7Ltoa8UTZk6IQkytIWqdAkdS23tSgYWD3Hs0GHodFm++fU0lo6x5+EfFE2GQhavWp3GwCDN6Zl5wkNCt82AUtiRBp1mE93p4Agf5bgoqTC+Im02GcFlcXURL3VhKFFs++q38BJobd9NGrZBg1f2iJOYs8ePM9veX1yzfEVf52AESnnkQQUGB8mspbJoMf1+DEhcU6yFzfs4tsJguULoC9IkI0aQK4nJQUrzqgKxl8c4TvGzawyuVMRZwrWbruGp08chbGFUTisHRyi0KE4lJ5eIPC9sz0JBlgMFEV8QyhajEzzXYfbMafKpWbx6jRTDy3v30gv7aHKcQoO0gAUsYAEL+FfEgp1tAQtYwAL+pfFP2Nnef/9P8cTWpzh59AiN5SuYm5yBsgcVl5vuey/Pbnua1s5nwSsTRBobp+SlAXSthJiaY01lhOP9GS750J2UY82Ob3+f1BXQbjFsK6AUszKDN2zk7be9g4OPPMHpx7bSzXoMDNeRnQ5dY9CvcCCBQpbKOFaQdnvFexUXkXt4xichLT5fFkOtjpPl6GYT3ABUUuSdpC4r0hJhFjNblUCIIyt4OaR5hrIaYUGhscqhPDrGzOQkb/v4x/m7P/5TSCEQOdb2SXLLjffczY+e2An9sGCFOlMETg1XOhjHJUsS/H7GqF9FJCl9NE65zFTYplYKiMtOSSgAACAASURBVJVFu4rEEay97FKOHj0CE1N4i5eTzs2hmjPkrmXo8otpzjYhnJcACQvDdVg1Ak/uRCQ5o4M1Os1Z/Pl9Zc9ADOC5xSYxnX/8bSzlcpkw6s8rdwzuyqVkJoeTs5BpnJUr0dNnufqDP8W2Lz8IxhTyiyQlSCwagx6uQWn+gOmnkBT2HccYtJRkqkhq93KLZzQCjec6xHGKE7yixKiQacPAQI1mc4qBikfSS1FKotwKiRZYbVleXUTSnSKgxDR9utUSpm4hL4gToUoMrV/Lm990E1qn/Pc//CMqq1bRn5jArQQYnZOHPSpS0FcSAhdWLOHOT3yCpx5/ihX1YZJjx9n17UeQbkDJ+BijkY7C9R3iLMHaIohZymKC4zADr0QQ+ORZRtZpgxJ4tTJpHEMeQ2UM5kKEldR9j3bShoEAnBR0XFjDOiH4w1ALinVt9agkBt8I8iSmK3OCehknjOkEAgINSkEsIHQYOe8CNr/1LRzxM/Z+9RswfpqSV6XUyyjYLkNjeAlH5k4XBM55KwoL01QHjs8ircVUDQyUIOxC5kPmQLfN2FAVmyR0exl+2aEd68IKNbYEEgu2DXHIQCpwsxyNxa9VmY76VEtl4m6foVKVfpaQS0kiHXLHBceBxiA//+u/yZ9//b/T2rET1BwkLkz1uSAY5kA0hVnkw2CVoDFAPH6iOI4TS9WvEbY6GGzRHkhaWPCshDgr3stdxmIPoXtkGJJSmb5IkWmGZwTxWB2iCKo1mG4CEgIfWStjoh40aoyOjcK+I8y1CkK2MVgj6SckWUrgBHiOj3I90iwjzBKqA3V6zVkWV4dp9+awlQotE0OQg+egUp9RfPTcDGJwiOmwCeuXwVwXNZdRRpHHKaFHQew5Of/pwS9z6MBhvv7FBzETbUY9H0OfSMd0clOEwwsNi8ag1YXIsLijaZY1UliWdSQzjqY9aCHNIPVZs+ocll18PnvjKZo/eAYnA8cUp3Li8mp7mMjAy2GVzhhZuYxtx49BtQxRjh9UcAVIaelELfyx5SQzTfAVP/lHv0vrxSN89wffZeBEk3Y8C8qiwgjfUeQIEuEV5QvDg9Ca5V2//H/xjd//z8U5YFLe9V//jG0/eoaJJ7fBsXEarbM0pMusycjqDcJeCAbcepUs7c17qh1wvPnjJEUohVVpEd4/EzHs+yQ2o+cpqouX0WtOwobzIEnhyDhv/bmf4ztf+hpjiU9/8hSjlQa6YjjVncBTPqP+GF3dx5Ys3WYTVXFwcoWTS3ztkAtJr1xkkvlBmamTZ/BweCUGa8HOtoAFLGAB/zpYsLMtYAELWMC/Bv6HL7Tdfo+///7fc9769Rw9cYLW9DSL3347tXNW0zuwj9OpZnFjiLnxk2BytM5wyhUybQsip59RzosesuMn9nPi5YP4oSYjZ1B5+GmIynP6woM84uxcm+nDxyCNyWRE4ljixGLKCmRhUbrlw/dxpjlDPDmJX66S+xZKHt5sTC2DaNEgLB3mhrvuYvyRLXhhhhZJkSMTCxztYLBkV6yn4wuYbrNcDUCvh81SfKMKtZMELQ2ZtfStBgfW3nk7hw/txZnqEmR90jqYoIhgufayazi8/XlGygHCdMniHDNQo3zb6+idOc6YahD3I04uCuitrNORCbl1cRyBCHyy3GI8j3Mv3sjiNau5+O23cnD74+AovK4h9xyWXvc63vKT72Hvi3upNiPSdheEZuNH7ubqFRs4e+A4SZ4SpRFBoKhXqnSSjNx1oRzA2Ai0e4Ulx/XIohglFI7rYrTGdLvQ7VGOU2pehX7YAmVZ9PpLGVy7munxcVScMxxpQjTadcAk3PyhD3LzO97Fc48+BnnR+mZUSq40ykgca5GFhgorJFGWEgwOkipF31i0DVC1Mr1OE3yBzXJ86WFzRVcLdFAirwTMVS2dTNNcFJA4KZac6957F3f99IcYb05hZmZpT51iz76XOXLsOLmFTAg+9tnPMt2cZXZ6ikqjTm0mws0sWIme67H3sR30DpzizJadzB05yVBtgEpQpqNzKsODWNehE4doCUJKkAKRGRKbQjnjvJ+9m+nhgJ/42Q9z4z3vZsfj28hTDdYQDA1y3+d+iTnfEDqacHYKbA465fa77qLRGKV1do6sk+HmLqbdhShlMKgguhHkBuMIEteSpQmjXo1qLNGRRPdyiAWOKtGbmuPgU88Qj09zxwfv5bLbbuK5Y4eJdMzNP3U/G2+8kS17dlIE+1jO23QFF914O+efu5FTO3czlkJFK+RcgpcFOF1DkORknocNynilCk7g0+r0QbogPeTwIqxQ0JylYmzBa2Hx8JjLUkqNBlE/ZWBwmFa3Te5JzHyKtTDgOT6mG7F7y1N09x1FWsXSz7yfDRs2Mjs5zcTkaezyIeiG+DMxw6e7RHGGUcXxnMYJgeODtRjygkDKc0hzVFDGKh/inMz1GRpezEwvJNE5ZbeKyRUIj3zNIB/4j79MnCTM7B+nKnyyMEb4HhveeQuX3v02ellMd8deyrUKynPpJJrU8RhYtIJYeli/QrsXgtEIVxEZjev5zPbbuG5AOwnBU9z20/ez8vLLOLL1aXpJSp6DVhJTCrCzTZDzmWdoMsfgLlmM6bRheJi9B17m+ZdeIJ2ZwlqJjmOM1BhhCaoDJKkmWLacS67azMTulyEXDBhJJnKUlSgLqTAkwhQkSw6tyTOcOPAy0YkTqNShkhU5UO48kfTKk4SSLl6pjTnZ7yBWLCePY4Yvv4IozbBCEPXbOK4lO28Zt//KL3BIZOze8wyHDu7njs98giPP7CDtzhRKwSzDRSKNwMshEwayPmw8n/r61dQuXE+wdg3phrXs/tpfI7OAZP8J3GaXEhGRNYSBIsZCxeOyt93O6Zf3wZol3PLAB5idnCLudCCLiupMFNd/4gE23fQmJnbsIon69FUGIz5qKmLR2vO44iPvZXz7U7BiMeHiQTpHj6K7Gi+zZIGka0KGPB+dWZqJxlk8hut7xHNz+Mot5s1apBXz0WsWaywlx+Wzn/wUjpCoV26x4h+/3y5gAQtYwAL+92JBibSABSxgAf/S+CeUSH/111/nIz/zUXpzTRgehks28PrLrmDHN78FM00IYxA5jYE6SRIR9npc8hN3se6Si/jmv/88q90BmkmXzqDBTSXlsEcHiwwcRhMXZS3TCNIBB4QDvYSK1vSreSGl6TuwuAqTc3jlCuniCm9585t55It/Ti2TdKsGtKXak7j4zAUSBstcfestbHvoq5SCMlG3AwM+QexS8kvMZSEXf+x+3nDttfzlJ/8j7vgZWqZDqVLFRIbI02QSJJqaW6bV6xOsXUWsu7BsKTx7BFdKMtUvZmpsOVfe/A52fv2b1H1FbfYMiVthJo9Y8ul7UWd7TP7Jd1g+tJTxRs51v/aLPPGt77ByznJi51MQamSphtRQqtfpTk8i1q/F1n1uv+U2nv3S15mePouREYyNwsQM1UxhFIQ2ggEJ3So4JZB9EBHVUgk90cILynSEgGVL+PBv/hrf/9znOb5vP0oLRJzgIgs7ouuhSw4mTRgtlZiZa2Edp1AcZFmhQpKKwFoII5auXsPREydhdBiSbF7lBF6eIsjJnASjLF5WWN1eCQW3SKzro5O0eCzv++DB/b/1ORb5Jf6fj36cla2UmJiYCt5bb+bwuaPQb8N3HgavxOjP/iSqUmHytx9EdlOMTaEmYPws9aEqqYE4zhG1QWwYFyqsfht8j0rgUmv2iD2PNjm2MVyocTQsqg3TitrYQY9cCYQKwJVs3ryZq666kt/+lV8GCrFZyUiCXNOQLjM6o4Vm+NwLmD14FA8HZXMykaMrBhoC2lEhCMo9Kl6ZME2w0hYb+kxTLlXYsHkznX6H/Qf2wkwLLzNILDiSZKiMdQX0NPV2yoisEJuUXsWn42TgeAROhcZcxoTpwKIh6IWFzS2KipM5T3EDh0BKup0ODIyAEEjlUJqeY8QqUhIiLC1kYZOqVWHRCJw6CaWgaM8qlRi5cAO33nU3X/nin8Kpo5SzBNOLGaw0SKxlzsaFaq3WgLkWY4sW05o+MX91KULkkyShWq2SpTme5wGCrk2gMQyzLaiUIE9wcqhoMMLQLVtQcPenP8sz33qYY089Q32gQaczA75TZGFFCcZI6pe+jrWXXEhp+Rgv7XyO/sGjuH1JNt3koms20c81MycPE2cxuj1XqPp8xU133cXoQIOv/d+/WXz+2VlKtTIJknUbLsSWKxzes6dQYdXqMNsB5dCwhjjqEJkIfLcoHchMce44qlCZWQ2uz6oLLuTkgcOYU1N4XgmTaTRZoQRbspiRK65g8+gyvveVr0KvifUpCDipqOkAmeW4DYfm9AxlVSVJcy67/noOnDxB++Q4QjiM4mCNLuyFyqC1RmQ5XuDSTvvgexAnhW1Slqn8AyVS6BaB4kYUBJKvwQ4GtHRYKPjqg7z1U5+BM9OYVpPv/ckfIoTBjixmdMOlZJWA1nNPginjXnYh2Xe3IMsSIXLcKCX2FH5mqaSKBEV/tAaymKdL3/FuThw4TPPYThobruTON97JV//0v9HftwecEL/ikkQZDI5y3pvfTDuJOPvo07B6iGtvup7dX/4G7enJgg0bLCGmQi59z11Mn5lk6vldpN0WldE6/ahLzRukG8awehGcmYI1S7n+/nt5ceuztP92G4uGhjnbnYayZanymOlncM0befu1m/nr3/h1Fi8aJTpzpmjsg6L0QEhcATY3lCplzpw5g3CcV++vr2xoFjikBSxgAQv4l4X854csYAELWMAC/ncjNzlDQ0NFC5vjQNhn/euuII81dBOUW6GiAmrWQYYpeRyB52Jdl9pIg/LoCNZaNClog4udVypAbjWZBxmWknJAW4jTolGHvNiA5hKsg7NmHViHPDIwPcMj3/0eCIWrDaBQsSniKlwBcQrNPjsffwIciESOB5CliNEqoxvOAdfhyEsvs/PRJ5jt9+i4ltx1yKwpsmdezb0B04+RuSA+cQZWr4OgBItGiywVUQZVwV2xhvNuvBGG6nTm5hipDlOvVCG3TDyyhVO791Pyq8RZBjNz2FYfpVzWXbaBpa+/DBQYralIFzfMUKqEPTMNZ2dZvWIlm9/0RkxuIQFOTkOUok2KFSnKE6BN0ehV9orwmsCnF/XxfRcyAUbBXI+tT20vGqFsETKrEIUiAFC5xYQJ5JbpbgvrUwRud8LCD5cYCAvVQSzg6PixYjfUDSEXSOHjZ4XLystNEUIMwCsV6gaLJBcCbQWMjCBXnQOlKiifv390C0/teIa+sEwTk+ESAf5Agwtet4mNV1+PHCgIq1YcMjlxGqZaLJFlnG4KrRZVT+HECTUr8ISDnwMoiDKqAw2Gy3VUmpEGHi2T4C4a5u333QOLFyEbDRIlySo+l9zyRt79Mx9G5yl66izHJk5xYvJMQQwIUTTjASUUXhTTyCjmuRvh+hUCLRF5itQZSrnF3DkBjhtQzgxJu4WNE7yBgWJDXg4Iwx66HnDlm29gzcYLoOyTUhB3ynWx7TZ0W+AaOp4klYI+KZ24C3UFokfcn6aTtvHLNej2Ic0hjmHVSlg0CrUqWRhTskXWUnDuem66/wPc+bEP0Xc0adUDNyBEodavhPVLYcUS7v3Up3Euvrionh+ogcmY2b+Xr3zjr8BoiCPCXBMjiJQglBYqJc59y83c+K534J+zjql2Zz5P6JVsKoMXKKRj0TYiJyYngtyBMESuXsrii9eDUASJQeaWxOaQG4hTdu3dx/ETp3DLNfIsAyML61KWUfM8SkISlCuowToTniG4YC2kfbJ2m5FlK3nHe9/Lyg0X0Ts9jZ6aK/K/+/1iLbKE3bt3g4ZRfDynQtTrc/WtN/OG229lIuqDzTnvPe9i7JpNXP4zPw1lD+V7SEcVIUnDg1Byip91VhCxzRZEGTe88x1cd+vNiIH5Fj1bEDXksOKyS7juHW8lWDTG1md2kLe6DAqPal6UOopUY5IYaXLCKMLxPTyhEFnO0d37aJ+eBMfDkQptDc58rlbiFJfTcgaiExWqLZODI3HTIjA+n3+Z+UtvPu8MfOX3Vp4Vx9FFF8GVV/KdHz1K6kgOHT8OWFwFzHSYfnw74akp8KvI5asYLFURfoDJMvI4xS154BQklcTgYYqHEe0Q+hkvfu8xmjt2w9kO2emzbHv8R/SPHYa6DyVF3qgV5HY34eCeA5w9tB+iBE6cZsfWZ0hnO8V8CgEmw8lh3/bnOPX8bmTZBwFRu0vZenTDNpgMJpr4fUGt3EB2Y9q796KCElpY0An4ijCJSclZv/n1eIMNyDQSF2UKUtQi5xWsxZw7hRMRYSiulQuPwxewgAUs4F8VC3a2BSxgAf9mcezYMb74xS+ydetWtNasXr36nx137NgxLr744v9/4/7hY1FbfP/OcouRkt/7/d8r8iSkYHa2Sc06dA+O48y1GcwMDbeErxSJSUml5Oz+g7y0fTtZkmHCEK9UJg0UWadHTQXkgUfm5ERxRl8ayueuJO62Ic6pW5cKGRJBHCfgBnzsP/wSzz+2FeIM41roR6hcMqgNaZpRw6NdUqSBQqVQVz5hrw1VB5KQEeNiApeo5nPpm66jvHQ5p594jtNPPw++IrNR0a4UJUUVuqdB5Hg55KnBHxwhUx7MNNn85tu59eMP8Pwzz0IngyjHXb6KF44chqVLYK5H9+wMcT/CkS5+mBLMhWQZdLVhcOV6Dux8EbvvMBNhm0a9TKvZKqxPcU7e7bEoqBP1Q/Juj51bn2T/rpcg0yxRFfwkpQxEVUlasVibUdaS9/7W72DPP5fZ4Qq3vvdODu3ZRzLVQVnLL/3Gf2Z43Tk88ZU/pzNxGhwHlWp8qzBoXBRCKNJcs3zVat78c/eyd+eziFhStYrKfIhw2a/Sj0May8a4+8Mf5lRzlijKoJvgxCkNK/Dmg5hjx2BVEXpshUBagTICicANSmjf52O/+qssu/Qy9n/rh3RPTXLihecw54zQG6vS0pbQrzB9YpqZXXuZ2rEbu/sw0pZ53dVXc8na84n2nCAdP0ItFxhPIZOEunSx2uBYB5EVZJKrPKJen1znVEoVZk0IQyXyrM/MUI2o18PGCXGvh/VzzvSnOZnGJCfPgoLO1FlePnYQNTSA1QayDJHkCCWZc1LOihiWDRElfUzdJ8li5Ogofq1KPDPHiPYY6uTUopSy0QTKx0hD7CkYrPL622/lqrvv4EdHdrHr29+gNTdTkBo56MAl8w2ct5arP3AvF3/0fRzqzNE5fZpEKLhyA7f82i9ypHUWzp4mSwW5NDA2wid+77d45tDL3Pz+93D5jW9g77bHoOTTT0OE65LpmKPjB3h5z7NgNX1H0lOCfMkAt//WLxFespbOtu3sOnyINa+/nFvuvou2knTOniZ43eXcfuc7OXBqHGxCfcNFBIMjtLstct+FOGbkgvN5fu8u9MQJhJA4aYygaJlzjSVQEp2laF+SBpA5OcSakRuv5LLbb2Dv+D7KczGLe+DrHJtFDNsyJrOcPnkM2+1gZE42WGHF+nPoTM1AllOXDlGe0+50WPXWm9ndPU00eYrLP/AB4ok5WuOneeIH3+P4vpfm1UEGggDhl6AZcvrFfUztPUJQqdLpzpG7gOtw4tQpXnj6abKpaUqvv4qlK1cxMzdLY6zB5NPbydoRlYEa0UCJB371P3A2DOmcnizIvCxH+B4YyfiJcXY98Th2dgbSnMBKBqwkIaOrUowUnPzuD4mOnaRcLqNbs9SER2AFJeXgCEvuufQ8SS4cRAqDtTomShEmRwlB4CiUVJSTBCly5kqFkklqQWhyxi65gP7UWTAKXwuM42CFQCtB6CqMO69EE8X0SCBbsYQP/9rnYGQxkZLEu57nyFPbaR46jFf2SMO4YJ0WLeaiGzZz9tgR7OnTrLv+Gtp7DqE9AyJFC4GVRZZ2oAUCifIr5F6ZlesupD8+je1nyEqVZGKa6aOnChWc6bD5g/dw09vfygsP/xDKo3zogQfYn4WsXXYOs0cOk8/NUe9qGsIiyIl1zgAuNjKUkfTDWfzRYQgTfvpd97Hj6F5AUutqho1m+vQM4y/tgTDFasnb73kPZz3L2Po1zJ45gymV0MtWsOMrf4l0ynQmJsgCH2UFdr5hM5eWwBTEvOO5fPJTnypIu/k4OkEhDHylnO3xxx/n61//Olu3bmXp0qU0Go1/9N790EMP8cgjj/yz3wX+V8ctYAELWMD/6Viwsy1gAQv4N4mHHnqI+++/nyzLXn1v06ZNPP30068Zt3nzZrZv3/6a91zX5Utf+hL33nvv/+e4crnMF77wBe669x4kEucfPDGNjSXEMLxuVWEVmZxECYXpxww4ASZJydGUSzU6cYg/UCVNU5wwI3UUqcyQjcHCQhFprLXErgEFi1o5Hd8lKgs2/fIn2L7tGdjyLMSaWhzhWUPoQuTB+eddxMThE7R7XRgMYHCQil9lcCahNTVJ1BjAyJg33Hs3T37pz8Et4fYySvNp3JkymEwzKsrEFmZ8C6tHYbaDmtGcQ4njqk8iDUpZdCmBHOoRdESF6//w80w2Zzjw219gdKbP9DKvsIIcmyGwDr4qrFGb3vNuguFBtnzjb1gagZN0mXCmcV3I7RhJMMrln/40rh/TO7Kfkw89iNcN6foCLSTSOuRzEYO1Os1uF3fdSqSnSPYfpjxQJmv1qSIpYzldDqjd8QbWrT+fFz/3J+CX4ZINMDdJ4+pNzO14DvaOMxJU6CRdguEanekJKlGxtkXdvUOKpVoboJ2l5DoHoPL2q9AnphHPjlNF0SJDNyoFI6QdGr2E8tuuJaxI5n74JKVQU88ledLHuCXmsgRn7Uqys2fAZpBrPAyDucC1giQ3dAcaJIuHoF7Fn54imWhCrcbYHW9n0SWXMf2tJ4h37kNETeY2VvA2rmfjptt47jO/S9APSSoOVoYM9BPKWqOsZq6UU1ilRDGXOORCEWtT2ACTpCA3XEksYxJfkkUdVBpQ6RmGLCQoWnUfKwS23UOMDpFVPXLT5/xbbmbmyAlm9h3G7WSUshThRoh+hleqE16wFrFuGf0rz8EkCTdddCUv/s6DhC8dJO22QeQErsbmOcZQZDhXRlDSY4ac83/lo+zfvg2e2Ikz2afcGKST97jkd36Flx7dCuOzsGIYmk1uueO9RM0uT/zW78PQCJw6Xsy1A8gSzvr1jAxUmNy5DW+kgcg1SdiDKAfpoByFjLqUXI+q9TGxoGskuuSROLD0J26lYzS9HX/P6quuYvzF/QVBcHyiCKnXCUUfesyyX/gkzV5GtG0v7/3Ux5iZmeEHD/wiSqTkXhsyWJrAmcKxxuLGGLKdsLg8zMTsNNFgjZZpgw+4DsFUSEU5mLLHnOlTih2W2QApJQf9HiQp58RweAC4+hLWbdrEke27YOsepPSohTHtPKX+kQ+xeM1yDn7r63ir17LCKzH+tz9gIEpoxp1CJeT7XPPBn+KcC87l4b/7NlPPvYRIDLW0uHZETtEGNpTmRBoyK0mFg1urEaU9cjS+l1OvDtCcCNGOgo3nFTa2iSmYi7j0/POYnjnDTPcsNslxZRFkn+YpjUadOAlRIifq5kXppQt+KugN12jqDBJNzakh45Syp5iRfbLRQRhazTU3volt3/wmdnKCRdUKptfHzh/3qXQYMx10HNEeLNNxXRgc4Cd+4dOcHj/Djj/4ArXzN9A9cIil3YhurUzXExD3Yf05XH3tNWz7yldhtkUtqNI9dxk0SzA3CeWcO/7g3/O9j/4yNFuk1RImTSBQDN72Rhbf8Hr2//6fwaWXUZ/sIR57llRqYhMzgMA4EpkLNIqeI2FsiJvefSdnzjbZ+3c/BOtw7e98jmcffYL4298t1iqcYuWmi5gN2/TPzkA7xlm2mIs/8QF27T3OEneAkw/+BSrqMpyEeEBLuPQEOKa4h2rhwFAdXMkb77mHx770FwzqMlmviystHWURQUDueshVK1iz/lzSLGLq9DjJgT0wUIfIUjsb00XCojI3/OLPseVzf0A9lYjOHG0/JxACJSRDQ0OcOHECay1C/M8Gtttuu42HH3741d+FEDz44IOvuW8//vjj3HHHHTSbzdf87fLly3niiSdYs2bNq98XPvKRjxCG4WvGbdq0ia9+9auvjlvAAhawgH8rWLCzLWABC/g3iY985CNorfnkJz/Jli1bWL58Odu3b+e+++57dcwrxNDy5cv53Oc+x9GjR7n33nvRWvO+972Pxx9//B8dt2XLFu69916iKOJ973sf48eO/U8ZDY4jcIQkCEpc95a3QFBhOFL4uSR1FB1PFOqFqkfiCHIrsEIR10uYqg9CYjohvp6X9htwE5AxTNcc4pKCUBM++hKLT/ZhfuMWO5DKwvYi3YBDz70MkaZSrkKU8sa3vpWb3/E2ptKIDBfXKjAOV2+8rKjkDhOknc91EoW9wKvVmFUwQwaDdc677nrUunXkWHpujlf1sdbi5Q5oUPm87UYpbK65+OINEPdI6cPELOLkNA1rGMSQ531QCWklZ8XG1ahLVhELTScMka5LaiAJY2g16bVm2bfrJcLWHGGvAwhKmaScSdwcjJJEDsixQTLX8vZ338Hw6hVEeU6mFJFyUOUhSDLOry/hpvOvoLpyTWFp270XDIwNNfCXLAZHMdOcJQ1DOmcmwBRzoWXxxDyTkALtJCLXyfwiQf+p7SQHDuN5Hgmm2Bi7BioKTB/qA5x+cidzP9oBcxFulGHThARNWnWxZcH666+kdMmF1ENLSUtSa5nyDKdLOTOeIDEaTkzB4VPkMz3QOWQZUy/vZvdjjzF54jit7iydNIKjx0l3vshzX/saOCmxiLFKA4ZcQqqKDJdUFQRSYZIpLIlWAJ7H66+6ipvvejeMNGhHfaJeHx3GkCsC3y9q3ZGkQoKxCGvxgxJxt0Xe7YA27P/RFmaOHoOwj+dIDBbp+XiuB2FI/NwBun/7N5ky+QAAIABJREFUFOahH8I3n+TFP/0rZvYfItcxVlmU5yLKNfoWRL1KlEOUJvTiHrR67P+Dv4an90FoqdfqBN0Ur5PT/KNv4Ty6H++FU/DNbfDEfvb98dcZ/9p3IVNw5iyUfKiUYXQQgjL61Fkmtz8HqUWfnKbcThjqSwZTj6FIUYsEOIrMWmJr6ZqUkBQtDMsu2cjVl17KOWNjMNtn/LuPI052qE9n0JUMhA6DpgYzMSVZ5fQX/pLowb/BOX6WyR89w9HvPEYQVBl2y7ipoJwWfFNDlgiEx2RzijPE7LUdJkRKK4lQI0sRIythLkaWaiQ49OYiSkmJgVSRpzG9OCxCvStl+g6FzXIqor19Pzx3DKE9TCukrSxcsIqhS9ZgPQsTbdIf7OTIt7aQz3Vp5inushEYqYMB242YHT/F1MGjMB/27My/XGMQ1hDqFOO5yFoJOVChm/SRlQArLLkVTPVa6ECz4oarWVIehoMnoZOyasNFrLl8Az3XkihBGgj6vqUfSLLhQabSlNgp0+lB4LiUEfjlQWYbVZpxDwaq4Pvk0sd1ypRyn2qoqKQeI/VBlg+PYptNUBKt9fw1z8wHmBsSVxH7klwDxgVbZub5/RzZ/hzVC8/nHe+8HVSx/l2dQKcFQwNcc9stXHD5JYVdMXDp6YSVt97GpisuhzSGsVHa09M4QYlcuhjPKxrRlEd2YorxH24vTr4tW+m8sIfU9/GUg4MgKTno+fNWF7nX+CNDzHbb7H1mG7gW8piZ1iTX3Xg1DNUg7uKUA068vIf++Enox5Bo9MQZ1OWr0bWc6vmrYNEguZJ4QBmoWUvF+HiVGk6pUtiykwy04bmtWyGO6Uc9LBphNL6xuMYUgfatDqf272f68DGSA0dAeUVWV3uOgXIVMFCusHRkBBwHS461FuefIIz+Rzz00EM8/PDDLF++nC1btvDJT34SgPvvv/81426++Wbm5ubYtGkTW7Zs4Stf+QqbNm3i1KlTXHHFFUChML7//vuJoohbb731NeO2b9/Odddd97/0nWMBC1jAAv5PwoISaQELWMC/OTz++OPccMMNr1EeHTt2jLVr177mPSklpVKJfr//mr9/6KGHuO+++14dK6Wk0WgwOzv7mnGf//zn+cxnPsNVm65i69PbUT+OsiHKDZPNWdZecB73ffrfcWDHc0x9/2nOhE3EQI0kjaBWgn4XxsaKAF9pYe0SmGhSOZvg9WIcFKkrybGUMoMHnK7mhbLFuNQig0SRSUHmGHKZ4FiNsoIgLREIh0haQgnpojojV2zkyk1X8fBffgNOzcBMl6AWsOiclcxNT9OZnKKMRFpDJiHxDGjByrfcxKK1q9n5lb/gzp/5BAPS588+/5uQ9RgYGSRrx/hhhcjrIUWGkwtW33gLu6ImJCHsP8Qi4dDUPbLIUrUgpSDzHaKSC8bgBGX8TBD0XLSwtIcyiEM8MUpqHT74hf/Cn/3M+8GVjOY5cT+lnki8vFA9pKtGaU4ch6o7H2IyyFBQojl+HGplwECYgA0QkaFWq2GHanTPTsOSxWy683YOnjxM4CjOfPsRHFyU0SRhl9qiYbqzc4WipDh6ipr4PKNyzho2v+lGnnx6G8mhIxAanAw0lrW3Xs/QdZdRGx3hsT/+c9h/kqoOIO5Slg6R6WKAYKDKrNSgBKxdzYqlK5l59BmiLALXUlIKMovIBbpUZv1NN3Kq2yJ65AliDxipEbz9Vmhp4m0vQT+CrIdyUnI/gI2XADF33/8Bmi8f4tHf/xMCnWGlJvQ1CEs9fIVEkmTSIZcCneb4566hPDjIpVdvJju0nxcefQybaSpemXYUFQ15xoIG3wiQFlUP+MADP83UzDR/9eX/BlLhugEiN5SMpJ9GaNuHehWMi2tLZK0eJdcn1Sk5Kf5QlWR2GlWuFEov4VO54EL6J09B1C+CluMeg5Sp5wOcIIZKDqsHCjVLJ6E2HWMcn36egHXAgmtSqq5LL+uS1XxYuQjWrYYLzoX/+rXCZukpBhwHFcbkOsfHw8HHIokwTJcjMAbpuXhBCascEp0V53HJB2PwNeSOg/YkYLj03nvwtOXoC7uY2f48g3GGXxqko1Mib96gIwEbw0gD5mZxbY42GTZU4MCd/+GzvLBvL0e+/TAMNCiXB3ngoz/L4WNHefQLX6OvQ6i53PzvHuDYy3s5/J1HwFiGS3XsXAcpBTOmQ2XJUvrTLXBKqDBjyfBiJlvT6BEfVo+w5IrLmN17lPTJXYV/yBcMXnEhN77lJr75678LocZ3fRKdFJ/ZdwiEQymDkjZYYYgdU7Q1Gogch9wYMDB80QUk3S69kyeoViuEEsxghTXnX87M1n1E/QjtK9a88UqO7d4BM3OUUojWLeeye+7hha/9JUxMcf1976c/2+LZh78PnR7EGVQ8GHFgdITb7nwPj377+yR7xvEySz3ROIFg1iZktQB0CnlGLfBJ52ao+D65UFhAS4dEZkgpcVIHYkjTDN8rEeYRa659HUGjyr5Hv4+jfbQrqVx0Pnd/8uP82ed/A5qzMDDMmJVMvby/WM+JEMhhUQ3oQV9BYrjp5z/OD//mG5QSQ3RmsihFeN25XLZuIy99+/uYZI56JnAdwWwtQ/QNMhdYW6iScIH15zK0cjXNHz7Jhv+XvTcPt6us774/95rXns98cjKQBMhESAIxhhBksCKDiApiLeKAYJWqRanVtlpftU+9tLbaam19WlQUVBQVRJkRCEIgkAQyzyfDSc58zh7XXvN9P3+sgOVVr+d5r17v87xvPZ9c61rJXvfZe2eftdfwu7+/7/cNV1KfW2Ho2efg+e2QKggD0JPMLD6BnDJoxzHkNfoveSOjTz0LSqF155HNiUyZt3wZNAPYfgjCCMfKE8YRwjSQtoA4Ia8MRBhjxyFKN0k1nch28NPk5Z4zUyVYKgXLwNcknQ3BlJSo3hIMdMKeQYgVfW4OX4Sk2XzIy0qk38ZLEzuDg4Mvq4ReUiZ98Ytf5OMf/zi33HILX/nKV7jsssu4//77f+vP33777Tz00EPccccdXHfdddx+++2vGLds2TL27NnDE088wQUXXPC7LzpmmGGGGf6LMeOJNMMMM/zeoZRiYGCAT3/60y97JGzfvp3bbruNOXPmcOONN7JhwwZuu+02Vq9ezY033viKn1+xYgVf+tKXqNfrCCF45JFHuPDCC3nHO97xinHr16/nc5/7HO12m0984hO/ViOJ7Lp91949fOcHd7L9qY2cOLiP2pLZpNM1SrjkAoHbVvimRf/8+Zz5tis4vu95LvncJ+nu7GHk0ecoAAkp9ZxJ5AAxWErQ6XRSlymnn7sWr69EY3wMN9EopApdKtq2INENhLSpyZjA0EktE0hwlixixwtbszhvvw22QeI3qSc+4eQUei6HEacIThrG6gqUSX1+P8acfuoj4+z+8aMc376XdtyAkkbS8DBSRVsrI/Xs5iHRNIxKN68+/7UMPrkRo+AQ1aeI8iYUbCLLJCQhKZUgSuiwOugKNeZM+9QTMPt6aDerzD57LbVjoxDGvLB3K9RGcbsqRGOTeCWHXChwE4FQGqPeOF3nr2X1W9/EsU0v0qkcquMTFJwCkd9k4WWv5YIPv4+9Dz/J6WY3UbNFrWRTKnYSDo+yatVy9uzeSW3zFvTZsyi5LnG7zazufiZPjIFuIJQg+6NBmmB3duKPjTBr6WI6OiqMbN6NmwqUZSBFQlULCHtKJEohhEF7zyEiFZMagpb0SByBsgWeH2GlmcdLfHicxoFjJDkNKiXwIrRm5l9VEA41r8mstSs45eylTD/5AkFnAbSERZddwsiz23nrlVfi9FcYGT1CbyPBrof4w+PwhnPY+cv7OfTQY3TWJJZUxIbMfIOUwIky7xEpxEl/EqCUI202CEaOc+TFzQw1qkQjU9gxVBKT2DFp2wYqp6EQGEn2LWhHVY6NjDJ5fJjq0Chl3cEKEvREItMES9NxpU1ggbhsPRffciOzzz2bgxs30aOZpGEbu2gShz7S0sCwKa85n7fddAvFhYs5+twmMFM0V8M3ExZ88E9g1am0Fvcx8LF30CyboGLk/uO4aUi0cBZrP3IjZ7z5D9i/+XGCpIlUEvSU5Ze/kfMuexN7Dp7gjNPn49hQnRylHTaz4qttULcN6la2blsGmmGCY6PCgKTikKoYWjXQBUYQQssjQSLjCDp6oRkw+vwOTmzZQfvYCdA0AlKMsIlrmbR7dIgDMDWcS9bwpvdex+TOwaxw2eHCuWvoe806Nm/fyfSeI5gUUb4iDiOe2fgY+0YOU1y7jlf/9c1MLpnD3p3bmN5+CKIYeor4q07Fj9q0DR0j0AiVQPT2Mn/5ck5ZcSb7d+9A2iZ6voAaGqO1dSfy0HH6yhW8uAEFi4CQPc9uhnoMqUkulRiWSZykkILluIg0qyklekJkSKSW+ZPnOjqIDZ2OU+fzxze9n73bd9KsN1DNEDOUJFMetaExIltDFmKoCGp9dla0rXl01UNe96a388RPfwFD48w5Zz2O7fLizp3IsAXdJZb90ZuZf+Yyhh97mjMWnUH12Aijz22BSpmO+QMYsyuMplWkI9GVoqBrOELSrk3R2dVBlCYoLTvuSaGIlY4wXVJp4uaKCMOg3fZAT6lNjzC5bxei6GLrLkkSEbsOL2zYAIEPYciFl7+RXY8/nqmMajVmmw6oiChoQVcnhAndr15L3NfLnPMv4jTXZWz/QZQSvO+Tf0Faa3Ng0yYqr1pOh2MzNj2B0mL01ECToEtBioC+bi5/y1vYt38vqR/gFIsM/exOaFQzY/KwjenaOIUCsdcm39VJu9Wiq6eHDrfIyI59mIuXc/ZFF9FuTRNMjUMcseaWj9LqG2BJdx9j03VEK8AOM8VREvpYjoHfriOMFB1QOoRpQC5vE0U+FhJDRpR0DRH4mCjyOZuoHZDr6iAIfahNMv+cV1Nr1tHTFP1kwp1UCtd1+dCHPoSu679xjj/99NNZunQpV1xxxcuP/fM//zPHjx/n3e9+NytWrOAzn/kMx48f5+GHH/4Nr6Tp6WkeffRRzjnnHDZu3Mjx48fZtm3bb7yO53k8+uijLF26lPXr1/8vX4PMMMMMM/z/HeP/9BuYYYYZZvjfzYIFC/j4xz8OZKqihx56iJ/+9KcAvOUtbwFg06ZNAJx22mm/9Tkcx3nFvy+88MLfOu6li1MBJHGMYZpZEUlKjh05CrUGFIugwfpbbuTpv/4SrZpAej79ZgkzDJg4MsrofY9C/zwe+sifgd7BQKkLrzGFVexEnNaBGhmknWZCGrPZAkdxYHKYMy6/kF17dxADttTxkVlkUW83/nCDyqpV1HbtyhLI5p+CTAW53gFe/+Y3seW5TXS5Bi9+/7sQtmB+P+nQKLHScFOJkUKCJNUtzl66kldfdBHfuO0nlI08YqqJlTOJVIgRgLQgzRtg5kkbVegoc2z/AY7tOAhBRCqb9FY6mJpsUSh3Q3cXU6069Hdy/tvfypN/93dUpSLp7UL5CSEx5Iq89b3v55sH/xutqXEYPwFC4Q8e5bLXX84D1cOMPXeYfLEDv9GEXJ6pHbt56sA+3FBgjU/hkKK3NbRyicHndjCY+DCnh/FjAaqYBxHR9EIIAx658y6ioA6VEun4JG+56QPc8ZV/YWRkjIJuEcUKDY1ExdiGSZBKookaGPD09+4ENHSlUKSZMscQMDbOQKxz3rwl/OuXb6cgCrRkndTVwTSRMkIZGkIpjBj0dkwfBiI1iEOXcy68kNIZC/jBV/+RyYILDQ/sPNt+eh+mbePGEkpF5l20lt1PPA779vLjvXuzthYZorcT8hg4nf3MXXgqm554HBotSrFJSkqCpG2AlgKpRAmNVJekKkEpWLv2Vay54DU8u3kLm+/7OarZwCkUqegu7XqVVJQgDDjvxhsopDoPfukbaI4JOZvRoWOYKZQtGzvIfFVeaqHL+TAXnWMNnbHHN/LgCzug7kPVp8Mq4Jo5Rr02Tl6jHSegBGvOO4+h0Qme/P4PIZeHZg2Z+mBqvHjrt8hrneiRz/Dmvay/6Y/IX7qEDVuOEbbbyImjPPu9b0FPP8QpOcsh7wdonmLw2z9n53ceBqfCrnQMTU+gHVCslGm26iRCg1I+8zM6/XRuet/7eeHW7zE0NsyJg7tYumYNp86fw95t2zj4q43kpUCXisBxaBdcLvmL93O0XeeI3+DUWXMYfO4F/B/eC0ojHxvIIIHJFnZiUTJh4vldPHZgnM5DTYzQQSw8mzPe/x6mxsYZ23sIIkk8XYUoYe65a1j37qto24Jf/MkX2XBgD6xayMrrr2Xb3/8L9OXoWH0m3U6Og1uHUJMt1Ny5MD7CnGXL6J7Tz+YNj3PW9ddw3jnr2PnMZh7/9m1YWgCGRrU1RSE1EdMJxUQw3GpBUYN5s5ml59i/bRu4Fug6bZWCjAlNDc3U8KUPCZQLvTSmG7jFAtWde/jix/8KPRGUzTwxHiUs8hgMxxG+nGbJB95LoVyidXiYvZvuh1rANBoPf+fbuELghz5jTzzBcU0hck52vOt0GRzcRfDCVgwtZtdTT6DZNii4/qZ3IU14ZvPTjA6OgaaTNhNypQ68MMCyLFpRSDuJGJg1h4mJCYpFl3zbot1K8C3FJR99P/f88n54cSuYFjRaGAryUx71JMTs7yceHOKCD7yfDd/+FvT18sQ3vpWlLPgBnUrhqSZYOl25ElMTdTBNJrc9T3nFCrZ9//swmfklkST82xf+HibGocfl+re/g5/86HbkUArNlHzBxrEsVDukGrZJhie5/8tfAz2LhTv2+JN0FfJMDU9TKudpSFCaoN1ogK5x8dvewj133sGU0aJj1XLOXv0att55Dy/uEyQ7D1HxQEqb/X/x3yktW8q28V3Q9kijmIrQkWmKZhl4YRvbMTE0DU/FpJpEGIJq1AATNMNEKI1IppiOC0JSHa+RLxdpJSEoyfs++9/YcXAfR/bsou1Y9EmTht8kjkOKxSKWZRFFEZZlZcePNGt7u+CCC7jgggs4fPgwd911F3fffTfPPvssuVzuFZ5IL10P/C7uvvvu37lthhlmmOH3mRlPpBlmmOH3mptvvpk77riDdrtNLpfjmmuuecX2M8888z/9Gi91DRumSZImDB0fxrb0X7fJhRFUurMEnt5uYluQlouMqJDENknbPgwep3fhGbBqDbR8pho1DLtA7Oisv/xi6CjinruawsolxF05yDsQx+y6577MvMgymEp8jP4OWHQqVKfAhD9465ug5IImedt73kPt+DBpO+Se7/2AuQvnc+rKM6C3g1U3vgfGR6FcQoiTWhuRJYJpQuPI9p08+bMHAEGSJMRkkdM0I0p5nf6BWXBKPwTtrC3Pb0EcsuqstSAFA5VZTNSa2HoJTc8xNTQGrQS6BxAdnbD8TCh3MBVFeKHHoiWLyK9axX//9u20Jqey2PskAJlNVdfqTVZf+nq0cpGxdhNlaJn8K06gHWMHKRYSx3azDiEvhrEpGB5jzRWXUQ/rNFTEuuuupau/BxwNQ8os7jpIoNHgzjvvJGo1SdOEKE1wLAfDMNARyCTGVCd9XxIyP6lUoiFJ4deJfSmM7T7Esc076e/op8vKY0sNo52CnyDQEGm2/6QCEh18oREjCLwGB/ceoBZGMH8uLJiDe+YyCHzy6KjpBlapCGOjHNu8lQ/ceBNasQQqzfxYpDyZkS3xJ6dJRqegdwBsBwEYCGypY5w07Rbi1wuaACE4MniQJx5+hAM7tmftewqUrmVeWU6RIInJDQwwPTWFrutYXR04+QKok/vOyUUIgdL+w2toipCQgmODlYd2Aq2EguFQj9pMxC1CI8FPJegG2A7jQ0NMjZ6AUp7rPv7nrLv0MvLd3ZkfWCFHWp2k5DXhUJXxjTt57t5HkInEb7bAzMHIFOw7BLEi9oKTn4GFKQVGIqHVpGC6lIWFi42stiCEnJMHdBacu46zzj6Lndu206hWicMIbIc9W7dw38/u4eCWzSDAUAJNgO7HMDHNY3ffy9577yfYuo2JfYfwR8cBjaJpU+7ppy4UorcXENS9OoxOUjs6RiOsodCYODzCpkeeZP+2nVz/qb9k1ZWX8aq3XAFdJcYmxtj0yyd48M4fZ143tRYcOMbuBx+DwSF6+uZSDBQHvnMnyo9AaCy95AIo5RnasZ3Nv3gAvDaHjxxi1/7dtFQM5QKGVCghSbRsH7KUQtRrmNLAXLWCBZddRGJrYAlwzCyGrFzktLVrCJMAnxQcDXIWVr6EilKito/rFikIk6TpUZ+exnQLYFlEaUKEhFNPYWF/H2piisHHn4HJBrguccnBl23iuE7OBJcYre2hJieh3oB9Bwi27YAgILEBG2TcBsfg0NED7NjxIvt3bMfo6oYkpTOXI2r7SCnRTAthOji5El4QgqajayZ2CpaEQl8PqpIjkm1YufhkBr2BmYKWgCY04rYPhSJrlq/MvKe8AJRARCmOZgCKxLVppgme55FTAvI2lXPWsGrpYqhOg9+AU+fCqXNgbAI0cF+1kgO79nBs/x4wNVypE0URjUYDFSdYgEhk5uuWSEgTSBKCiWkqApo1D7eQI/ED0Azmr1jBqUsXZ8fooElXVxfVqQnIF0mqVQgi7CTCkj7J2CRju/fCxAS0mxi6QAhQpAhDJ4lT0jQlSRJSw0DqOqkGColCEpMSk5IoSSgk8cl278TWkbYBms6GDU9ycPQEhAGiWKTueRiWSW9vL2EYopQiSRIajQYAuq5jGL+eH7/rrrv4xCc+8XLoxe9KVp1hhhlmmOH/GTOeSDPMMMPvPYcPH+baa699eabS87yX/Yxe8k/4v9PV1QXAJz7xif/pOKXUy+kvChgZn6Cnt4dLL72CfLHMz396dxZTXHBYfPWVrH3dBezat5ctv3oKtu+DWEFssOC0hcw6Zwkb7/wxjlXELuapjw7R9YYLSRyDNWes4Iz5p+EtmMOt198Ew+PYsYXlt2kSZSaqOYM//fLfs/GpZ9j8o59QWLkcaei0d+7i9Ve/gycfeYIgjkGEoEUYS04jGTvBFVe/lV/89d+CWSBf9TGlJBXgWRIzNAlNPZuWMMysxSSSmCRYtiIOPOKcy8U3/zkP3/qvCE2h2jUozeYjf/QxdD/kH776OejWIFJc8xef5q7bf4R76un4k2Oc945reOrLX4aGx5wY/KRGI2dw7kc/xoZ/uR0Rprhpm7YcRzcMhAedhV7GF+Rg91HwUwa6epgOG8RKkoYBHTGYhs14zoBWxEDXbGqBRzuv6Hztufh+iP/sFpzTlrBsdjd7X9xCeHwKM0yJk4Q0Z4ApMp+VOEUkGiq7g8LVLWQavCz1lZz0fhHZ/WUqNBJDO+lvo2X+PFLDxMBEUBI2sQrQhMBXbSIkytaIDQ2EBrqZ+feEgCaz99HVBR2dXHvJG/jJbd8k9Go4xRxBsROq9axoFEvQDAh90FI0mVCIJZrUaCQaMicyH6FUow8XN8l+x74piXWJUBrqpJl6lNWLSJI48xEyTbRUESYplZ4+NAVC6EyNjkClkqlREpl9Xo6F6U2jnxTFaSfXL6FOFtgK5QInGhNc/pE/5dD2g+z75VOYbUWsxXB6L/PefQnD//5TkhM1sGyIRbZOMn8VWvXMu6W3g+LlF/PqoMzo5j0c2reHQKTgGBB4dCiFIkQ6Lo0oyHynhAYdZTA1Fp+zljhNGHz8UfoL86Hq4ZIQeXUkCQEpsZlD9nUTaBqy6UGtBkIiinmUlgIJptCw4pSkGWCRScE73W58PyJBYuIQESCRSCJMBLkrL+PsN1zCgf27qQQpC2fPZtuO7bx478OQGIi+WShDh7FRcA1Y0A3zZmFoFuuWncmLv3iE5t4DaPkCxmQTs2Dj+QE2Ol2phWnazFu2iGFHccib5KzLX8cL7TqX9M7n8a/dSjQ+Djk9c8N3XeiowNAIA55PU4dmPksiJIFyW8OwXeqzSmh9nUQvbAHLAsui8+w1vPbCi9n6q2cYfPxRrG6LqFaHco5FS87nyPYdqLaPHYYkMqJj1hxGalUoFKDVANdBFAxUdZRCZx+to2OU0UjdCi0V0H/DH5IbPsjggxtAF+gtRa+bI/YjElI6S70MN6YI8gYsLXD2+W9k6733Z613UQR5F7NUJD5wjMXd3VRbVVLTILIcmkG2jy9few47NzxOoacXEQbkPTDtPEN40GVzyjuu5tx1a/nBRz+OMdbArLXoESYjrkMcJ6BpmKcvIo4iOD6Eli/i+m3MFGblO9mTjkIcgdTJtwO8vE7HmtVokc7UvsMYS+bypuuu4e5f3I/81R5e96H3MW3GbP3S16E3B1NTdAQWfkeRYGKa2bkOQq9Nm5T4pNG2lUoMqdEjFFMqolXMocIQDBuiBKNUIvGnoKCDruN6Dn4iIV8Br4WtIjpVjBIaE5pNaumgZYqyTmUj2yFhGpDYBrFIKTk5hFTUo5NfcqHQdInQsuMJSiCUAcpAVxLHVNSiACq9UPe5/vOf59v330n30iVMfvcnLOyZT9iaRKYhhmGwc+dOSqXSy5NAwCuUSS9xxx13cPPNNzM9Pf2yB9JLvke/7TbopfP/OeecA/A/Hfe7zv8zzDDDDP9VmWlnm2GGGX7vWbBgAc8888zLF5W33HIL/f39AIyOjv6nn18IwUMPPMidP/4R7Xabar3J3HnzeeaZZ1i48DTKlU46O7o5PDrJ1PZDfHfXHtAVi85bh37WaqZPjCImmxx+djOTIyfASwnMgLMufQOzZs3ip1/8eyiUePSBTTw/MEDdLUAbMFxed/WVPPjjH0ErgCiFVsBXP/Y5mJyikELriU28FLf28D/+KyiBNTCL13/wen5x309JtuyDWo1fPP95Kh19eOPT5DFIDUligHQkrm7gtlOMYoHJpM25H/ljlB/x3DfvQgQ+USEPKB7+x69htFskxFRedw61yYh//IcvIQodsPIM6PFh3x4e378RLJ/V555JoXwbLi0HAAAgAElEQVRBpnLxauiRTy5MaEQeha4ONvzTl1n+rpvZ+ZWvI/JgqhRSE1O3SCZj9OYYdqGCUdAYn56mbNgoqYhS8HKCqMPkqs/+Jff/6D6GH95CRXNJPZg/Zz4HzBDhWnDfdrZuezrLBg/a9GhlfBki9CK1dg10DaO7k8QLssJDEuPHEbrjIsMYQaY+IhPuYCoNTWRexEplRSVNM4hkQmymxLaGXyqgqilIiQg1HHSMWEeTGokQpIaVFToKOoQhzDkFu1AmPHSE7//jv0DkgR0SRJLX3vIJHvv3H8Gug5ipIE6q6IbATSSakjRclSXHpTaFliBXKDOlhYyZMYVA4sSgxWTqKaVASNIsnAolwFJgpaCFIRZQKncx0WpBzsoUTz2duGYeI1Rc/d53Mpz6bHr8MeSLEyRaVvdJThaktJOfh5VCqiWcqLWgbHH/v/4zGCWY3Ut8bBQKRZioUt85TIfdzURUw0KimRCG09nNpEywSmWSJKU50qJ52938sruQFZhyOpguOCaXf+HPePqXD1N//CnsZgsdSJ0CYuUKTr/oQvbf9T32PfMoyBBkwqh3DDq6IdHQNIuO1KJgGEw1qujVGgXLohX6FAs2uq7TbrYxTI0kChG6RozCreQJgxg9jTnhTyILOaRtkagYUoHQDNw4JWiHjG97jiO1STg6AqnHrwoOpcosOGMRZ7/37RweG6V614NQKjGwajnDaROeepZk/mnsGJmieXA/JAHSiyjZCYVGnR6g6doMO200Pc+J3c+TyAQW9vDCMxvAVzyp7yVqTFKe00V98jiYOrRCmPIoOyUaekwqThZADcCAuhtDHGEOeZQnGkzEoHXkkK0Wp556Ovt37WPw+a2IXIGkUSVf1BlYuoh5r13P/p0vQOJTNC3yusPIxHFySxZx5Z/fzE/v/wXzLZf9d/2E/kIX2olpHBShYdKyFYWFi+mQFvt2HoYUdNPGtBR1X2IYLoWuLgYnxzj93PXY8/oZPqWTrZt2w8AK+lbOYmxqjOUXvYadX/86r3nfB/nVv91KpWghVUrTzwos6y65nJxbYGd+GwibdrOBaVv4soVhGSReytEfPMDRW++CWh3DdonQGFcpcepDfz/4Pm53hfNWr+bxn9+LHDqB3d3N9PFhar7g4m/8LY/cfhts3UMHDp6ZUN2xBaopfZVexrbv5Gf/0kLuOw5ukcdu/zGyOZZFpU1UwXCoSo85q1Zz/Lmt1FSK4RjEcYwUABIB6EhGlCR0bejvYfGaNey79xFIBHojQhcWYZhAFOBbgqs/9Uk2vbCN408/RU4KxGQLlULJiWhIG01F6LEiiQM0x8LUc/hCYlkFWpMtTKXI2UVIXioeZa2rEkAJUgwUBgpJzW9BT4l5572GkT1HaMaK3FmvYjJuQ18vh0cmWXFqP5MjQ4yNjXHttdcihMBxHMrlMvPnz+eGG25g1qxZrzgHX3fddVx33XVYlsWDDz74nz6nzzDDDDP8vjPTzjbDDDP83rFu3Tr+7u/+7jce/8IXvgDAM888w8DAwMt//1/hdxWbms0mAJdceinf+ua3uPMHd/L973+fG264gVs+8lHGR8doVGuZUklk7Qhzcl3QSNj/6FN4tSa667D0kvPBEahWCG4eDI1QKObOOwWEhdGSCE8iJltYm4/BiTqkMOf155D2uGBbOKGiYBRhqgnthIIf0OWWsnafSDKrfyBr+YoipqYnuPjKN9Jhl+iyyuTtMoVY0JsrUbAcHMfBdB3IO+iOgU2KlUhwTCYImbt6BR2zZyHVydYnTYd2xOxCGVcTLDhlPq97+9ugswPlNRGzujjr3dfCrNlMPrYBTgzz4kMPs+/FLRza9ASoOqkbMuJ4SB3ajSpYJhdceBF0VIj8AJlI4jAkiUFHoxgmyEYbv9kikZI0iiFKQCkiXYEVs7M2Rv70OaAJDM2gmAr2795Dc/gYanQEtxllCWEL54AG3ZUyFhrN+nTWvpXPkdSmIU3pOetMzIXzwQA975BovLzITKSEUBJdga4k4uRNXS6fB13DmtcH83pY/MYLYfVicDMD7kgILKlRjAWVSKPgC+y2BlNtCGFg+VLe8tEPcMXf/lVmsuyY4Ev0KZ/Hvvnv0GxCLClrBmYhn4VlnWzFQSdLb+oqoRERtOpZw50h8TRJhERKSSKztUzJ1jKBNEFFCSoMUUmMmSgaU1MsXbmCd33wA5z91jdBvYZ/YpjmyBgnBo/RCNo0gjZGnKBkglTZokRCSkJMQqISzEgy383j1hMwcpnZ1/gEoFMxK+htl8adT9EaHEdXOmkUo4VtrDBF85rgt6hNT9NqtCgbefJSg5Wns+5vPsY5H/ljSFRmXOyUKGBBqJilGfRqDlgl1GidqBbzBzf8KWaxDzPQWZjCovdey+q/+TP6r3odMg9T0mNciwhNMHIWumNmyrM4RKQJrq5TMW063QLdpQoFN4fSDaRhEHQ4BC7olo6IYwq6CWGECgPaRPg5uOgzn+f8997MgjPPB6MCTUnjuT2w5zAvbNtGdWoSgoiBV6/gVReso4AOkQEv7KO2fX8WuZ7TwYiYLIRMCEULRRAHkAbIoI60RLbf/OFFXPEPn4ExD//QMSg5NB1gYR/kTNAF+URitVq0OjR8V6MUaHQ3odIEoZmQMxFFmwmvilAg/QAKRUKvTRpGIHSMk4VCR2lUp6Z59P6fZVejnWW8MCAhwervoXfBXI77dSJNUq1WARPLC5FS0kTh9+XAUrSOH2PPD+5DHp5ET01sX+DgEACNJGGYFPIm/qkD7JyeZPq+Z6BtcsVFbyKf72flG68iv2ARXHQBxTVnw4J5hKZOOwqzyq9U1Jo+L+7cDbGiNV2jv3+AQEhaiU/S9jASHQ6PwngLUgsTHdPNE9omc159NtgGxAH98+YwNDaSpQfmHE5ZcjroYJU68B0na20WWdOradugC/ryeeLpcUgVyeFhnEigmRbyxDgUO6GnklVkWj6VhfNYsHI5FByUa2GXXJLMColM+CNJhSQUGuRsOpct4fRVq8C2sa0cWpJSiMHyEkzDANumHfgc37M7M3Uvu7gVg3ynRr4zTz5v0+G6dBWLlCtFcqUibrmIVchhujksy6az2EnZzFPQHRypI/wU6UWoMEZGabaEkjRSWZF3/nz6584jjmN+/KV/oN1sAoLui1/P2WvWsG3LCwRBQF9fH3/5l3/JZz/7Wb773e9y66238qlPfYrbbruNdevWcfjw4d84H69evfq3Kop+F7/LE3GGGWaY4fedmXa2GWaY4fcOTdOYPXs2Q0NDr3j8pcjfl6J8hRAsXbqU3bt3/8ZzvLTtvvvuY+HChZxzzjm/UXA6fPjwK7alZIUEgFqjxuChA7zuotfSarTI5VxM28lmYnMFbM2kHJqECuoyJn/hq/AO74LjVUglxXwH4cQEmqYRuEbmlVGbBAFWy0EPWqicTmAGEGXFBrwE2yhTKfcxNjUFhFjCxJGKtvSRORNpSrB0NCmZXemnNZWCYaN08AOP2bMG8Gs1osAjiiJyOQcp2hgqa4uKdA3P1CiUK4wPDYOhgZHgLFpEMDRNfmiSPq3AESNCXnAmva9Zw9zZc9jyyb+BUheMTmTR2kkEOTuLfE8Fqh2imRaaZdP2auiOSWRqWAOz0OKQYGQE0MC3EZjYlOhcuYjh/VtBxJD6WKGkYmikicQH2hbglrj0wx/Cb3ps+MndiHaCajXBAqIEO04IT+1iwaUX0lHpYuvff4tcZOEojfIbz2Xhm1/LL2/7Nuw/xpXv/3OSasj9X7uNgVMGGJ48CKqNYSiMekoeiyktQtMSyhIs02YsBAoVWLqEc657G8/+4FaWDswlOjHCoZ270ZMU/aRYSDu580g0dCWJZUTQ2cmim/6ExliT0Z/8DHSJ7k/T6cX04sAHruKM5St46t4HGX78qcxcV1eQSnoqHUyMjUApB+vXctMfvpN//fRfQ20qK5yNTWK5OfJhShhlxTup60SWA5qVfd6pgiTBVgozDgm7O4ibNSjkoe3hFDoIak3sVGU3szqgJD1+irAMEhkTJAkS6CmXkElKw/NwEGi6znSaYKEx94wVLLpwHce0hL3fewCm28y+5rVUFs9ly1f+DWLB3NigpRqkuk3DzmynzFTDSSR+QRIriVbuwolM0gjCpgdlG/oq0GhAbGCPNenu6mfSaxKWdRgowIlB8CL6pcPonCLM6oLxKhwZoaA0HKXhODajXhPNMYiihFkih6Zp6MIgTVNAy1KlBCi0rLVRC0h1gTQckkRipjoEMYlMSHKClhmR61uJSG28I0cpdlp4kYciRqU+LF/MmvPPJ51s8eIP76EYKFJL0dJj8CJK/QOc+7Gb2OUqhp56Fo4dpitfYOqZjaAbmUKqHmUys5wBi+bj5nL4W3ZheYI5l15Mfv1Z1AdKhFt3M/bAYzBZzQogwsBJICc1GrpGYgvIwUWf+HN2PPI0k08/B5UKa66/nuNDRxl5/JcwXQPbhlji6hqKlFClGKUi7okqnbqDjNo08wZVLYR8HtoR5AuQtznj7D8geGIbh6aOQdmEVafAiy8ABvg+RFB0cySxJDIsUpWZ11//79/gznvuxR8bh117KceCupYytzybobDKVXd+g+3PPcfhr90JQUDabmA3QsIOG5Z103fpxYz90w8oTuo0cz4s7OWGD3+Un3zgU5Sl4Cg+5//7p3nynnthwzZE6qAvnc1pZy5j7z0/4+L3/CEbf/4I3lgV18nhpykEHm/+0E0cP36czZs2wdE6dFt0mBWcsSpuEjLYk0AxB4enMRdUUL5GMt6gUh6g5nk4ixeh5vVzxQ1/xIPfuR3vV0+z9po3s2v/dlp7DmSecmGSqchE9r0zYzAlkGjIfI6Fa1cREDO46VmwbCyhEU/XKBoaPpJ4YQ80WxSsbmTLI+nOEfkeHW6O9nCN4pJT0IIqBR+sNhxLfUSpgBdBd6mHyclRyue9isWew95fbSRfcBgZOYzQJUpBqaNIo+oB+klpZkLvGUup11uE45MgNLpXnUGUxDR27QUnD1GTGz7zab7zT1/HO3ICExAv+7spbvmzj/GVr3yVj370o3z5y19+xTl52bJl7NmzB6UUl19+OQ888MBvbUV75zvfyR133MEXv/hFnnjiCR544AFuv/323zDlfuk5ftu2GWaYYYb/yuif+cxnPvN/+k3MMMMMM/zv5Ic//CGDg4McOnSIq666CoANGzZwyy23kCQJ99xzDx0dHXzzm99kcHCQXC73ivjeZcuWMTk5yTvf+U7e/va387WvfY2DBw/iuu4rxq1fv57JyUk+9OEPs379+kyJcnJRSUSr0eTb3/wWaRJh6BoyiXHQKcQahp9QC0N8V4c0YNUVlzE8PsbqN1/JyPgE+tg0hSShK5fH0xSzzljGyqvfirlwEe+96V1suPsHJNKHwEdD4BZKxGlCaggWX/0GgrxFcHwYmUi6CxWiNCUu6JDXKfb2UcGkcXQcI1/AkwnL15xNYmkcO36ElozIVSq4pSLNhoewUpRQKKGwU4mbKKJaC2GZxIkPnRXmLlnMsgvOZ/CZF2hLQDdYdO5qjh49QBrHeCNVrOmAtBlAmmAXcqTtFhXLxJaSZpwSaRBpCmU4IHVM36cwVUNWW+gJmc/QnB4q61bgz+1gTv8A81YuYWT4GAhJPklJEokBJJZOLDWIBAd37uDosYMni20BeT+lECU4EmJXx04cJp7bxciO3SB07GKZuteiNjnB+PFR7FAnOjLBvl27mbd8BaMI2qSkjUmQCSKMcCpdtO0caRxTdByiMMITKRfeeD2HWy0uuPlPefrn98HoFJNbNlM9chSRJORdF00TJCol1RSpppCaBJES6BJmVShdeRnHB4/yqre+hWY0RTB1iHbJZEJXTOzYw677HqO5/yidTpEkSrDLZfJdXTSiGBmk6E4RNeUzsnM/RjMEX6Em6/S5FWj65C2LdhRgmYJipNETmqSBTgRc84VPYi2cxYnJceREjVNfdTbvvPlDmLbLsQODyJaPhkRTKQKJLhMQkpar46UBvpDEtgHdJWqtOk0tJurM0dYEaRATmYIYjfp0nT07djB6YC+JY5KIlGriIx0L7/goSEESRqQIpGEQ6wKBQj/ZgmcUDSwp0OpNlOcR+i2KA92ctv7VnP/2q2gN9LDo6stZ8IaL2HlsL6lo0fGas7nsmjexd89+mPJwI5NwchJtbBqqLTTDIjU0tLxLkKRoYYqZCkQiUT0VQtughaStQ2DotE1BYAgCA0Ijs7ZqypiWJghNg1BphElKogtU3iYxwX3PFcy9+iJ6y3lOPL2JXJISE4OhYNpn+Febmdy2lzQn0RIJhiLWY4xQErXaaKVOlq5aQzQe0OkWGd65BxptQCMfpxihwtBAJhI1Ok0yPAZC0Rk7jB0cYnTjFupD40Qbd8LxKfJhQOQIjDTFUBKhBJGuoTQB+RytdsLkE89DKCi/7SqGI5924HPqKQvwJqfRgphCCmYs0BMdOzXIK40kbyN6ywwHTQqWg9VOyEUKQwetUmT+utcwPjTGcKtB+Q/W8vr3X08+0RjdfgDaPiwoM+eUeVRPjCIRpEkKnRUwdV7cu5uk2ci85abrCK9JYoHZjvGDafYYbaa3bCW/9QjCb5AoH9suEPcUWXPllZSbEcMbnifqyoHVRjvzDLb+2+0Euk5LkxjlAmFPnubTz2GleayGz/qr3kC92WB68CiDO18gnqijxyl5YRCqBEyNwdETDG3eCs02dFrw6kUEx4fx4pgwyVR5VH1OS4soPyVJI2zHodlssuzCC1m88kwOPfEo+5p1om3bwLY4ceQY0bEh8GJczSbxMyPwDIGdiGwf1TXiOGTsyCDVY0PguNBuk7YDirqFlkg0qRN5AX/xrX/jqV8+gZZzKJ+3ktUXXci+bXtY5c7i2IFDdOdKGBMhlcSmhYZl5yjqOczpgJ6FCzl96TKe+dUGYtei2ayCIRAqfbkALbQs0c0tFTKfvZFR0mbzZOudwjtyjHBkNPMNTEPmnH8uU9U6k8dH+OubP5r5qamTPbYCFi0+ja9+9ets27aN8847j/nz5wNZYeixxx5j6dKlfPCDH2TOnDncdtttbNy4kWuvvfblJNUNGzbwqU99iiRJePjhh18e99BDD/3GuM9+9rPous5dd931/9blygwzzDDD/yeZUSLNMMMMv3ccPnyY5cuXv2zG6TgO1WoVpdQrZi83bNjAxRdfTBzHL49rNpvEcfwKhdIdd9zBu971LpRSv3Xcrv+gZHoplCuJYoaGhlh91lkEQYDSNZSu0eHpaGj4pkG1BAPXvpnhI0dYdvpy9j/9PCvPWsTRF3fj7x0kqdXIOwUi16bV8rD65iLjlKQcQGMKEkk50kkaLYTj0opj6Moz9x3XMK/Yxc4vfYuck2ekOkFudh+r33wJz+/eznlr1/Hot39Al5mj0aqiWSYLz1iCF8ccOzwIwDvedT0qlXz/9jso0cZO5ctGySiNWGl4GnimYuHK5Zx29ioe/s6tYBZB6jDVgiSBzgqa6yCnJvmzz/4Ne7a+yP0/uYuSqeO1GpgGBJoA1+CUC17D0Reeh+kUfIltGujtJmXLoRWHeJ05pPLh1FN49ZVv5rnPfwNroJeoVsVoerhRjAZoVo6qniJ6OjEm6sRpBCKBfA7qAW6qY5sOqS5oJj4lmSeVIU5XN1N2jL5ggHR0GMY9+tISUbuGg8OI085MpM86kzdc9Vbu+/DNWLqJ8jzini4QAjPOoarDJFoIFsx719uplntpTtYoTfs07n+Aomsg05g4zrxDlFJZItp/QFeSJO8Qayk9/9enmXj46UwhYoXMX7eEI5u3w+5D0JbQjjPj3DBm4DVrGXFBBR5XfPBD/OKb34SaBxt3ZV48SkMkko7OMscnhrPo+tgDTTCnqQiEoK6bxLYLmobh5kmmJwCJ292JH2RtOtQbkKrs/x9HaEqiRNZOI5SGlZgYro1mGHihTxgG4NonWx8Fpq5DwyPuzmepe22yVLxCHvpz4DpwvAlhmkm0ogiQCNNGSxLsVCFFZmYe6xIVhghTYDo2cZKQL1doTU9CuZwZN3fOgoaCXBH8KnR1QNuDdkjJj7FShSMEFQVBEjFpSWo5E8RJw2lpkGtpGH6MjqBqToPSEKUyKIWQ2aWWUL/2Ecg3PexikbGmh2ba2NKkpDQMFJGW0BAeYVcua19tahSmPQIrRZy3mDXXXM7Gv/oyTMacluvloF3F9CSaIQhFQr6R4IgcU6aCvA2iCM1pkCHC0rECH0OlWEKgBES6INVMwoJJ/yc/xKk7xnn6299DGBpKRuSlIodFlYikYkEaQAyFAHQMEjRi1yHyY7rdCsoPmDpzgJUf/GOsRovnP/dF3NSkqDRyCII4IbFMvKKDsXYFrc17MZo+jqPRNHzIA2lKxVO4niTs6GB6chpKLp1vfyOGZeJt3Y/3+CaMosON3/gf7L1nkF3nfeb5e98Tb+rcDaCRM0CQYBJzAkmIFJUoiZQsypRpWdIoWpY5li2Pd8Z27e7MaNZpNXbJ9lhOsiWblmXalkQFUgwiCUZkEBnobjQ6oMPNJ75hPxxQtsrami/LLzv9q7rVoU7duufUPfee9znP8/x/k0d+6/dZPHgUzy+TZ4WIVFk9ytV37+all/fxtjvu4pVnn2f86e8Xkc+G5Kr330t+1RrG9+2Hv3ocp+ZQ9y1iIWXbz7yL0y8dQEzV6UtgttTmpo/+HO5cm6f/+TuwdYSh1WuY/+dncUolgkRTi3KM4zIXZqAU/aVeWqpOqB0cITC+TyeQ0G2D6yG8CjI16FrAQ//1P/LPf/41Fve8woY3XUsjFCyeOIMztogOfdAN0IpqzyAdDYRBcW46ljs/8lGi+UX2/N3fQ5wRSpdyDrnRpJ64OBUNyjkEBhZkBL5DIDysNpjMUHJCHMcjU0V8VZZL9N6wk9nOLEwu4FcqBG/aSPvoMWRLsXnBEC4fZnKxQU8KVS/kpJcysG4ll229hEP/+ARto2BZL2LLKLUw4PxLL0O9SdCJGenrY6HeQIU+mdKFSy2OAPB9H601WqkiUlh8EBZCki8BQbV/mOmjJ6hWK8X0P1mISBrLQx/8EF/9668C0N/fT5IkP/q+P3z4MOvXrwf+xXEkhPiROPT6EIzXHcn/s+1+kuNpiSWWWOL/7yx1Ii2xxBL/y7F+/XoOHz7MPffcQxiGAFx33XU89dRTP3YxeNttt3H8+PEf227ZsmU8+OCDPxZxe/DBBzl9+vT/dDsBxZW8Bdd1Cb0QrMQKB2MFaWYwUpBiaWsFvsNNu+9k56238NoTT6HOTrLvh8+xOD2NMYYMSBxLZBW4DtncAnqhCedni5HluUOYCWr4iEThCA+M4NxTz/Dc975PErfIVAouRL7gyttvpbJiBUMbNrHy0itY6HSwjkQ6munzE0ydHweVQ5IwNnGW3Gh6Bvt/4jHudDrUyhVYbNBTqrBp3XrYfkmx6M4j8CTCCXEWIpz5DmSKv/3Wo7RNAtaQp4pQ+kXzcq6gWmXlxvVw+Q7E+nVQDklVRuRKFgNBW2qMNUXR74mzvPS1v4OyRzYzDa0WVT9EUnSltLMcBNhWnTyN8K0GR+LkRRG2RWM9h1QAjoOtBKTAwsI8g5du5Zp33c3aB+696DJKcVEoEuirgom55I5beeKZH0C1gpXFM+68fRf9t91GniusCJDVMkiYeOZJ2gdehSe+T+vMSYQAneUopVBKYYz5NwISFGJEzTigQLRiqPXBayfg8FHCHC7bcTli5RpoN4uYh1WgUkTgcOPuO3A3b+Sbj3yN0dtuZveHf4ZlV23Dqi4ydFCOZq7ToLJ6Bbe98x5G33wr9JRpuoKGB3lAsZDzHUSagxIIEaCios+Fer2ISwUh1UqFf/vqITOKdrdLo9UmU1BbtgJyXXRWIcijiFwYaHeLyW7SgIQe4XPLBx7g7k9+jNEVq6Fb9OxQLeNsXotVMVqCp/9l4psVkurAANZKsijBCkGnXYdatZhcJySy0aHiFH1ha998Fw997nNcdfsdOFnh8FHWMO+kXNAxdWK0oXC2EIDxi7JloOU4+KtXUh4ahbBCyQsQqcY1xWvydfEzUKAdh3qagO/h9/eS+5KOzoisIRcWr1qG1aNw6Q7KPTVMllCSDls2rKcchFApQU+VJEshh1JexB6xoIBcWOitwlAflCV4Dr4fUMIBq/EdB+E4KGNJc0OWazACu3IV560Gx2BljiM1FoN2DMr1LhasA8VwLRwMPoYg0zgYOnGDjIz+W25iqK+XMyeOg7VUHBdHKxwEmbDo0CWvhNxy3/3YMCRPUkypUnzGGA0qIzMam2dEzQWCwGd4wwYu3bqVoWUjdM+dLYrtwxLfeuQfWVxogHCxyEKEzHKyZotnHvsOG1aMcu7kaabPTYLrcPsvfIa73/0ejhw6zKE9L9J67TgOBiE0JB1qrs/c+fNk7SZ9PWXSrAMSdg6voHH8LMIV7P6Zn2L9ZdsBwUpRRkQRAoeGzRCVKtWhZch2RGgENleoLCdWGWQpYOlZs6aYXpYq3EbCqadeYnFsAoTg+rfcxWKjAc0WerAP1owSDA8VcWUpoNNBKgVhCLUaV2/bwlC5BEpTcjxCKxHG4IriMv/1KKURRXrRr/igNCZPCISg6oS40sMgiQxkgU9icna+5c0wOQPWp6p92vtPQKQLp1I54GxrjsroSuIwZF6Ct26UgZ3b6FRduq5FuQLpe+x6850MDA8WgmucUHK8IlWLJctz1l5zFbe99S0M9PWDsagsR2iLsFDyAgLPv7gTgF8uOs2ShPD1/0NR+nTxm/YrX/lLnnzySbZt2wZAGIbcc889dLvdHwlIAF/5yld46qmnfrQdwPbt2/nKV77yIwHp9e2+8IUv/Nh2119//b+5ZlhiiSWW+F+FJSfSEkssscQbjMUgkD8SkF7Ptc1dqLNxy1a6KisEEDn8K18AACAASURBVEeycu06ptpNbNwpHASr17BmdA0TT75ARfp0W+dxkVhjsJUQY/KitNXxoZ4SBhVGBDTq0/QEPURpSoLCL/fSjLtY12Vg/ToWT5+irA1RLYD1o4XYMNAHWhSTq1o5teXLaR8/SMXmeGFAK4oZHllOs90mzTU2iiEs0U+GZ0wx1p2i88UKj0YcI6ohSbtZ7HC1xOf/+s94/oUXeOa/fhGvIyhjcbwKiyt86AGm58CpUWrkhWMhi8h7KmQ6ghUj0JjnP/3xX/PII1/n2AtPU7vucnp7QjatXM1T/+2/M2RC3CTBYlgcrpA3uvQODhLPLBDg4osSC0Kx+X1v5eSpY/jj52GuQSV0SFON70u6mUFXahitcVat5rp3vYUDr75K98UD3Pkbn2V+wOPAI38FL43T2/FReU7XS2C4B7wy2+65l2N798Oh/chqFVOvc8nd72LtZVfw2D99Cy5MQmO2iCSVSjC6mlve/wEWjhxi/AePkyzUcV2fIAhQSmGtvdir8y+Uc6hayaTnw5uu5L7d7+S1p5/h/P49tGhApAlNCcd2kBY8BARlFkMXfAHGQE8vuGWctSvQx/eAKMNUHbRkZGg5F+pzOCuG2XDjmzj55HeLKVyJgdjHK9WwgU9142oah46AkpS7iqS3hIkbYCGoVjHduCgQ/1dOpNyRYB1uuv8+vHKZp/7ubyFwefsvfw63XObF/Xu58rJLGXAdHvm1L5DRBZuDV8GZ7qBX90N/CEdmWR8MczZdgPUrePj3/g/+7ot/yLnnX2GoY8mlIfEgDRywvZRXDnP97bdiS4In//EbcOEColzDzi5y2WVXs+Gam3Gv2MLfP/KHhQNrbAomW5SkS+oajNuF1EKS4Qc1slaE1zeMV6oQWQNRBP093P2hDzH+6D9z7MgRQs8jcCQi1zjWIK29KG4ZZkoWf9Mq7v3gQ5QrVf7i8/8bCP+igNKB/oDBD/4Ui1GE/ZvHqDY0JQsxunCzKCAT9IdVZKdJj7Z0PIe5si76cMISy955K2964J0cf34vp373z+hzQ5TKsdLSjSNwHYQjEZ6LwUAQcsXvfpHpbz/G7DceKRx6qjCyqQycoIbOc/ATMODl4CsQVpJQTA/EkYWYuHYYVqyA8UmYbjBcKpN3Y2S1zKJQRRdVrR9WX8Ll11xFX0+Zp//oSwyuW0M+M0Vr6jxeliKFJjUplUVNtW+I2ZIuzrXNW+CVU9BOodWEEPB96EaUrUC4Alkr0W4sgnCR/Ssw9QZcfxlX33wTZ7/2OItJE8QiaNi0YDmbzOOvrBFeULT6K2ibgHQJu5Zht0yjMUe51s+sqcO1O+DgMVZ4K8hnprEDgyykTRguQ2xgrsPOyjLOtCfwnRDrSJqhxAiFu3YVH/rAz/Dl3/xtRJyxrmeE03EDAgtD/WAyqrfeQafegFcP8eE/+WO+/LGHoNGg3y+jk6LrqJV1wZf0DS+nMX2BwVKVqBPjKksgHCKhiTxbFOgD5EWpfmojggCCVGKVJcdBVwfItYEdWxi6YjvzJ49RfvOtDMSK9h88yhV9o4ybBabieaoln06nwS2f+TnaDZeDTz1LksYQdGB0mN6tl9B8ci+ONZRXDqNUTj57Aa+ToE6PU8YipUdLGHRJ8tbf+DVW9w3w1Z//PFEcIYXEWEPgB6RZCoDv+RggUzlYwbKBIaYnJor9CoJitKOQKIrd/Uni9RJLLLHEEv/fsNSJtMQSSyzxBiOwxd1787otv7hpGtRK/MFffY12fR4xMADaoDYv462f+RDOqmXMvXKI8Gwd9dpZvDRHZ116VYpvDUiHzJUQSB7+sz/ivI5pHj+M8qG3rUl0RtsRyKu30smbJKFl23vvpRKWmdl/lP5ajdhGmACufv+7uPb+dzMtJFtv3sXsc3sIb72ZtRs38MmHPsjj//hNemp9mESRNDuEGspWUnZ9ylLiGFV0z1zECIE24AUB7UYDXL+4/d01PPvMU4yfOg3NNmUZ4uESuQa1LOSaT3+IuBSSHDiGzB200niiRKQUlMow14CO5unvfI/5M6cgSRjdeTlZmnN+fBItJJ3ZOUTokyhFluXI0CFpdvGrfWRZEccyrsQZHeLWu+6k4odMnjiJm5tinWUsuuKjlKJ3+w60X6E94CN7yiQTs5x99gVmn3keZurINoS5QruavEcWi5hWTvvYHHp8CgKDtTH4krmTU5x5dh/sWMfHf+HjnHz6WUQnYsDtpdvOmNjzAt1Q4Pc7ZIttpIE8zxFCYIz5Ce8piK0l7wkhjTn6vSexnS7h4hyeyqnpEv3WI/FytGexUqKsIBew9uo3EQwvp3tqgkuvuJ7rtu/g+PgpRoZXotsZnhL02xCbZnitlPrRCVRsYXQVu+++l9133MnLzzyFkYYtu29hVirIuvTddTvds2eKaJkFz3GRxhZREwqF0UiL5fWJVxG+dIiDgKzR5sTRk5w6d57LL7uCJ/7+7zm4dw/BQkYeG27+xY+y4dqruHDwOHa2iekmIC3NOMFZNoCNO+z51qO0kgzaEWEOVli0BOX4jF52K4Nr13Furs5rYxOQZGBcyCxkltTzOHD2EAsjIeGOjSzbvInGsXEYX2CYMhXt0WnnLI80NWVoSkn4thsY/dDbmVvfy9s+8RHOnp3GnDjH6adfYt7tgmNQviB1BYmryXoCOjrFVn3c3gpZR5EvRhw9doqDL+zDzjZZP7qWXutiG228KKXnyZP0PH+G1GriUk7kK5S19OChhYOtlIlFSiJTrBUs2gTWLgPhQdSl62u8iksyPknz8DG0AO3Lwr3kudBXA6OxJi/inMpj5m9eoHvqFMKkOJmi1u+iSx6O7xM0Uy7xhplL2vT01IjSjNyTZGUfE3qwfJCN730bo3feyDse+CBnXj1EevosSIkVGsoeTd2GKzax8q5bWHvj9SxkDtMvvEgzzUiSmO3XXUGpVkJLSffcedxuSq908HJNXYKpCNi0kZ0bL2X2h/ugm4KrYP0a8HzK1R7iuRkqviDptNCuKBxKUQpScMmum6kv1GkcPIlOI97+f/4axvdZfOVVvEDScRWJUAzbGt1WDEKghMJtJqSOQ9PTIF04t4hjfZx2Asaw2GPx33EDl/7cfcw++wqkBrcbIVyJQGIFpI4oxH+Vs/f5PWCLSNmFqAWBg3PbNdz24Z9m7PwUD9x1H42JWZpnzrDvwGFIOxB4JM0WJknwpcCi0IBqtfGMwSSKVAqMhJRCRB2+dDM7b7+ZyZNHIQiLSZAmxc8LRyPSIfUC9Mrl0Fei555bqDsZjPSTP/8yN++6g/oLh1icmWHeT0ldRZ6krBoYYe/elzh/8DSukagk4+2//AtU1qymzwtIz0zzoYceonf5MKeeeYH+bk4pyhHdFgBNazCehIrDyXOnePW5Z7GzTYSUIASOlOQqx3M9hHTIlcJzHEIhKbkuvbUqn/ncLxdTMp0iBqspzEpLItISSyyxxBvLkoi0xBJLLPGGYy9a7sWPXEgLrRQZuuw5epTjZ05Bq4n0XPKaixysMTc5TXRsnMGupWwK+5KSitBmCCRaSDLXAUcS9fewfuN6Tj/7DGQZJSegaQ2ZkzP81ltpbV4JNidaNszWNWs5d/AwBkuedcGVdHsq9Pb2c/b4abasWc/4/v3c+O77aLUWcZKUs6fPksQpUlvKYRlHFYLL6w9psx/fWyGwVoCUxHGCdBykslSER9ZtQKMBUqKVJclTcptBVVLbvokVvf1MHTqJbStcJDIISG0OfoAUDuU8Q3k+Tq2G7SY0Tk3QmZghGZ/CSAGqQ+Yqcs8iUrBuceyV6yOlj9IGyiHR/DQzcZfxs+eg3mawp484ienr70X09xAnMWm5wjve/V72vbiH5KWXoR5T9atkCy1kKhlMNT4GrCHxLG966z0M9I8yffgM5aBELmKQCtA4mUcll6ROTGmgh+7R49huB5VlpLmEaoXc07zvZ9/LsedfxdUCrTVS/uTUuREQSwNrlrHup+6jsf8gsc7wsi6pZzF4YB3qZUXuQeaKwgHkS659x1u46Y7beOXAAUp+QO9IP2dUh+5CHbVQRw/002i1SI3FSJdKbw9JFOPOdykrh8FVyzi47yVwBbMnTkCnCZdsIdx9He/fdRfnj50kimJsrpD2X9nvRCHsuFYQaJfu/AKL56ZJFlrFFK5WhJmcIc4M0cmT0G2QL8SQ5iyULGfGzpJPzVOJcwQC5cLg6rV04zakUeFCWWyBEXgarLQYAcpx2XjZtVx97ZuI04SZo0cK15Dn8bHPfJa402Hy1BmIImyWU1MSZ7ZB49BJZCoI/ZBOpsitxtuwnDmVggMqzuiOzWFOTdGYnKMzdQ42jHLHJx4i2LyG+agNtQBsxr2f/CiX33QtM61FmvPTRCrG1GpQ8WB0iFvvfze77n8X41PniKVmsTVL5mtGYp8aFms0ntLUEqhFCZ52aa0dYuv73sLoA3czu3cviRDQW+a6+++lfnqSvJuCyik7kvTYOJ3ZOawnEYGPUTmVLVsQ1YvOot6ewgHVjHG0hJqPtV2sL0ilRmuFNoo8lQQqQ/iCbppgquFFJcKCEGx661tYduk2FlRCXyI48K3vQDcuIpWOwHgO/Tu2csXuXbz2ystcOHCAdbt20/jB8ySvnYBzk0yXBTe8YzftNKZ+4BRD3ZxeK8mEpTNQgss207dmLee/s4fS9Byedcj7LTve914GK330lUvMnz6Nby/G8ITFWgdMcS71jC5nvr5IfPg0lY1rWHP9TsaOH8c5Mk4mFZmn4bbruSxYRj4xiyddkrJLnGao3gDKPiwmlHOLryzSkVhtSaqWje/ejQpdFr7/IsSKUFmUaxEU3VPKERirCmFVCGhFKKXo6RsiKNcY2bmVK268jgNPPkN7coGxl18EXzN05y1EjXmYX8AvVXCzvOgLcgBhcazAtRLHChIJ0nHIjYZKwD0/dR+rN6xj38uvQGawuSJQOY4tXKNaOGSuVwwWyFOy7ZsINq9Ht2M4MkGr22b68BEou3TTC1z2lsIh1d/RLCw2ILGMiICqstSG+pg5O87pV/bB+BxSC46fOY2YbxRF7kqRdNs4CNLAQQz2YY2Cyy6BsIocm/qX6ROAtgbfD8hUjuO6qDzHcwRSQLlc4TMP/2JxHGVxfF//tFkSkZZYYokl3liW4mxLLLHEEm80xly8ur0oCEjoSpjXcN8nP86pxhzN02fgyLEialSrQJLgx5ZaZnAs5BJS1+CbFGFdlAjoeB7Wk+DD2luuR80vcv7kSZz5Nroagidh2QCX/ruPMNjbx9yZMV778l/D9CJ4Lm6eYEf60c06uC44VTAe4fAASW+JdTdfx9jJ8SKO0mpzx67dPPXtb9EjwNcKaQ2OVRipC3cJ/2qEuZEI6VKv1/E8H5trPCHpkBZlNSWfYHCY++59F9/+3ndpjJ2CDWtYu24d4z/cT7kjEcKhKzRcvhGOHYZUs8KWWUjrGMcnCCt04xwcF7lyOSZe5LZP/yxPP/5tOHOa4FyXrK+ETVNueuCDHH55P80TpxDVKlZ1YXSEVdfdxuSBo7D/EMsHepldmMKWgJERUILaxp20XzsCgc/OS3dw8LuPEwD9FC4AJTRgyaSgduO17Lp5N09+61mmTx0D0QRSHGNxVYg0HnGPB9ISLNQJgHLvEP4lO5moz8PMGVjeQ62RIGNNt9vFcZz/VzdShoFqwPIPPcTcUy+jXztK2UREgQFbQeQetTwn0OpHMcO2D7q3Qq41Tm6oJpamzVn2q59goK+frN3i9Jf/B/T2M7T9UvJ2h+aeFyDsIdQVqmmOaM/jVnqZThbgslVc+ysPY3B49cmXsN98HGbmkEGIj0XHCZ4r0aKIs2lp0JKiDLtcLs4LZVh53Y24lSo377qdv/7zv4DpGei0Wb3zSuLZBeYvTIHNQCvKXShJSbcqSYZ7+Hf/4T+SL7b4s//y27i5wuYZYC9ODwOLQ2pl0YHkudBYLH7Piv4tkhivWsWoHJ2nhXMuV7B6BVRDbv3VXyG3cHZyEnHkEAsnTpKdGINOTihD3LBEJ20zcuf19K9ZyfFD+wg37yBpNPnUJz7OH3z+czA+DrUaLCwgRobwhUNfMMLs+WnQKQwOgTIEmcJNUkxzDj8QlPKip6ZeMuSeAgN9xqfmVJjWGnegn6QqYH4MFlP8TZsY2LKJmX/8IYGVmNCSpx2GDejQZzHLihX2wDLe/8lP88PnnyNPUu675x6+9Hu/UxSiOxrWjlBauZ745BgYxTv/yy/zyv5XmfrTv6E6r+nxqiy6liRIYXSYzXffw44N23j0N/8zrBguen+mm6ANTuCj2wtUhgfpJjHD69bT1pZkagpWrIVWCv01Rq6+nAtnT8D0LDgBzM1DJ6LqeZTqdVQg8e+4lvV37eLgsy/hPnaAtZGl7hjO37MBu3wTcmIOMzsDhw4QGvA8yCQoIZEmLKbJaQXLBqk1DPGaYXb/+qfY+/hTyL94nLpu0HvXtQy9505O//YjjJ6s0yFlbllI+dLNDFZ6OHfoCMx3qcQJBkVckgzGgoVAQ00V7q6TTWrWJ/UE1jWUc4m0kEtJecMqLoyfxt28gdHlK5k4fgYmmoXItWkIVg/D+ATlehGj1NeuZviaK2i+Ns6mgeX0NSOOPfEDTNQhySOMkAgrcUzxUGUPTzq0Wi3oKcFAtSjy7sYQF4bJslOcerl0UVKiXY/azh28adcunnz8MVa/4x5KjQ5jX/orMtll+YatWMey6f13I+KUo9/9ISvHOswkDWrlCgPKJ212uDBSZlZF9A+MoGcaxH1lMs9Q6Sb0ZDmh6zB1/hyu79DVupgK19PLz/76f+TZ732f0//8zR/7jAuCgKTbRXoe1lowipIrcYSkb2iIiXPnsdZihMO/XswsiUhLLLHEEm8sS06kJZZYYok3GqsvjiC+WHIqoSMgkvDE0UMcPbgXps/jJBGjqUNPo0klztAONMuabsmQS4NrNZFfuCs87SGNh1ASbQTNMxOkZycZzCVVzyOLMtzcQTfgwjefJT50jsWXjpJPN+gNy3iZwtWatNPCcUt4kWWok7PSBDjNDqljsIO91LZfys0feJDTL77E1XftZvP2Szh2+AAOCisM2uY44l9uHRe9N4UTSSJJ4gRXOBgsaehgfY8VWzdTHl1Ga+wkE3GESjNsK0eeb1A/PQaxwihIpYTlPVz2iQdg40q67UU6FxYIdY6wirjkwqohbvj5j3Lu9DFoRewY3cIWb5ipPUcQZOTWgOeQjy5n4+Yt1NOEfHEeOm1QOa1WzGf+r/+bFx/9JzrNNtWBKll/hY233oqq9dI+cJze3kHSmWnEdVvZfsf1RCrlQmOBbo8iDi2xhP5UMDNb59DefXRETvmKbeTnxqhlmt4MIl+TlizkDqLVoq8kyV3LoshZdfed3P6eezkxMYmdmEJEKeriZDYp5U8UkEIFwypAVwao7z2InZijnGmqJiPyKDqy8BCGHznXIk+QlCzGtGCkl/5ta2nMjIHnsWrkCo69dJDhkRUsGAdmzjN6xRXcues2zkycR5YrJComSlpExtLJE8q1KvlUHTHewh6eYv6ffgidDhiFVQqV54wuW04cRwhhMRKMsEhrCJXFdFNsNwNl0a2Y0eoAJ17eT/PMOVAeI04vs4Me1952I/6hSfJmg7QckPsWmefYJEH1GPLRURrnpmm/fIwe6ZHpnNwHg8XXUFaamIjQdpDtJjLPqJiIig9JpwshmFBjQw1JTjnKKeEzuHEz/TffwMG/+wcmv/M0nScP0Dl8BJ3mMN9C4jDa30/ebTM8uozpQwdY2LsPGdTIj83A8XMceOoF9HQbJ7KIhS691qNyoUOlEbOQaK56+9t5x6c/ha5WmHntKDpOwSgcq3AcWChBN4BQGWqpIdRgekvMmS6m5KF6KnB6kuFGxgbbx+LsHM16lz4CXG2IiKEqMalBK01QDshyA37I4aeeoz27QLfd5ZVvfhtfuDg+6J6Y9zz8WQ79w7Mw3maUZew9dITWvoOQJFRjRWokXa1gyxq2vP+9jF+4wJGv/QO9W67kIx9/mLYNmd+7D/IUm0XUlg+RRJ1igNZiRK2pCVuSeHoOVg1y9113s8wNOHPsOCxcYNWN17B661baMw1EkqH6Q/Jc0RibYfKZPeRzDdIoIVdtMteSzJ1h6/0fYH5yCk4epxR49LkKkxusLBxwwgoCDb1GECURbpYxeNk29k2dpnv4CGqqTl+pjwvnxph74UUGrr+RhdlFUsdBlyTrbrsRcXCS+rFJuG4LylXkPiBSBroOQ5nAOGWctmFd4uNYTT3UGE8gjSimVxrBwsIc9NR44OMf4dknvgetBtt+5ZPMdxYo33MDa25+E/XvP8PK+S7r0oCZsyeJXjmA1oJ6GDJ+6Cjx1Hm0MUhh0FIgjQdIHOsgtEZmGh+JMhqbZYR9/ah2Sr8NCIxCS5fUkWSOg5UOCIfrr7uJPifg+HeepnXkNAtPP49WDcRID/rkJH0KDr34HBPHTxHXW+RaY9YMEOtF0rhN4Lucp4vtKZOXfdKSxy0fe5CxZJ41I8PUp6dQrqXd7aAcioizEpBKDnz3eRYPHwNPFV+TxQA2lMrZtvMy2kmEyjMwFuEWIw79Splf+MV/j7p44+KiyffHHkssscQSS7wxLIlISyyxxBJvMFpIjJQICUIahBF4aU6P5/BzH/0ofds2s/OB+5mMGlQ372RqZobtD/40M6+eYKQ6SLvRobRiGLPYJq+CxDKkQ3TqECuNHalCNIcgx4lT5kON1IBRYGL6rGUhn0V0W+Ruho67ODrHmBzf9ai4PmXPIzeGRGjcko9NM9qzM3TGjnP6G39LoCynfvA04/v347qWjknxeyo0Oi1kT4m0G+NahyBz6e8ZQjgOi4uLuEKjswhbBu2kkAs6seLez3+WQy++SDrRonahSzlqg1VUPI9qniBwyLwMNvZyxbXXMP4X3yA9fIbeSoCDT6ItRvogJNsvv5wdV17JiR/+gJNjxzl58ggq7RACmZTgeXROjXH+tVPk8w3cOCUQYI3GNZY9X/5jekMPxxq0NqhGxPa129i2bA25Fuz+wE+z/uprefVP/5KpmeP4d+4kmTiC26xAXGPtjbdzfuUgzGeUMx+vpdh1+83Mt1okUU5/JkmUJhcO/SLAyVMSpfErNRKtmTt8gtcee5JwbJGRxCcxLgkGs3Y56kKXvrCXqnVQWZdca8IVVbxmxFzgodOUSiQIjEPueLR6ysXY+lVr2Xb//cwki6TT87iuR6xiZCmk4vbh+VV2vfd9CFNl/tQkC8dfgfYM7foMN23fSjUTnHn0exz/5uPoyWmWVfr40K98nmpPDxNHj2FUB7/qk8uI1oXz1MfO0pflJJVq4YAbqAEJLc+Q6wyZZvR6JXSSI5RECIFnBB4OZRxkJ6Y+PkE8PY2TJXhJgunmpBfqjO3bSxQ3MY5G2RiSHKTBdQS9rODsky9y/uBRUmsxnkeiUobecwdRvEheC4jrbaRvCaWgEgT4BgLpo1KFEcX0PHwXQhdhNeXYUrUG3Y6YOnkUkjZsXMOtb7uLrB6xfGiExWSeSz/2AFfdcRNeOeDks3tYP7wMlStQXVRzGqHa1JKIpL0AfVWsyVi56xYe/KXPEa5dh9l9FW1ynviTrzDzwxdgoIc7P3I/tc0rObd3H6tsDSV88kQwkJdQymf5jit57xd/i7H1q7nhre9jy5arOPXcYaKsQbsvIPEUo7uupbZsgJn5KYrRi6p4nnJA5nvIHdv51d/+Ai+eeA09PQ6dBo7OKcUdRJyROysw1X4WDp5CGElbLWAb88hUQSsiHayQJBcjrF1YOHwC3epy7ac/zJmjL/Py177K/Asvgra85fOf4ZoPP8i5VYO0T45hastwFxKEzEmXe/RevYUV776Xlw/t58zcJDQXYHCAXbt205q8wPk9exkq9dFONIENSLcs5/YvfI5ooEr3yEmSjevZ+IkPMde7kizRZCdOgtKohQU6cY5xRWF2kwLlWqzQ9GmN6ztopVhcnIbGBZiZwe/rQddnCd0Sq+58O8P9w2RnJxDNOrV2wuLB41yYnoH1q9n98Gc58/gTeKmi1pGEytCQwEgfnahO3XFQFnztkocw1DGUtKUVGFRPGdoRJ188hsoky99yD4urq6QL8+SPPkX9iZdgvkMDy4yT8LZPfIKzp2YxYYg5fYZ3fPpTnDh0ENNpI6VA2iKuqhxB5oEJJWEYkEZdemsV4laLUpxSyxXohAxDN1BFcbX2sI6HtZrx46c5tfcQMk2xWR36ShCWee/Pf55zY9MkSlAuVVlWriHqLbb1D2DPz6LbMdUVIxxrTtNz3Q1Ec3XM2XmuvvF2Ts1PM7BhA/P7D1BTFpNpolanKF9/vctICAIFoQDHxChB4QZ0ApZf9SZuuONO9j+/h3BgsNCXMgfX+lRKNR5++GFkERZEYnEu/hRLEtISSyyxxBvKkoi0xBJLLPEGY+BHhZ9gkVYjlcVxHH7zC/+NJI1Y1Aq1chVrasuYW97Dhuuv4swzL+MLBx14JCqjN9XEZYOTg4wUkgDH80kdDU6OpzRSQe4LHFOUq2rfUM4VcWApJzmm5CJ9D8d1qPXUaHU6aK1JshTruRhHIn0PYS2uI0ijFivWbaDx2kkGa334rsvgmlXMjZ0m9jxcL8QkCeVaDeV4dNIcShUmF+YJRgZQOmdIunSjFFMLkZHAZoojUQNrNJxbxFWaEpJ2aHFDFyfJEcIncTTIhMQIzCvH8LIY7Qm0Ktw51g0hTpicnuHskSOoZhPyFDptyqGPyhTadYsIkxNAlOBIiZ9rHGnJcoXudhns76NeX8TzfeI4Butw7tx5zpw4QX1sDDUwSJam1CemCHeuY+fbbmNiagp5dAFhfFZecQ2bPvMQ5775XfJ2RL9fYv9rL5MkbXQYEnYteD4JKUme4VWqGAeiOMGzltC6uJkmsxYry4TrlhOpfFXymQAAIABJREFUCLIuYdBHIqEVNakJD8eVdERErwxoexJhLDUl0DjEnsS/5nKu/rmf5fzYOHZgkLfvvoMzBw6htcI6ApNGZElO3ulwfGyS+SNjIBy8msToFL04z/jJU7THzhNmioGwQqZy5rot9o2fZfLkadxOhzxPyVUKflEa72pDnza0M6ju2MbqHVupR01YnAchqfoBUZxgXR8nDDHCYm2RanPt64tAA8JghUEgEEh8rXGsQjspRhrK5RDpSLwwwPFK2EZEWB7AHxggyyNUyYHlvaSj/Vx3++005lt48x2EyUCB0ILQKyFwi5Sp4+F4ZVScQDujYlz6CRAGFtMOShhIIpicYvzMGYKuprVQJ0uaXJCKTqvDiX2HcBoR7U6LbpaidIrEElhDxXXxSiGJUWBymtUKGQ4nx89xxrTQ9RbOxBxkhsGRAbbedBXjU5PUxyepdTQ5oLWmLH1aRpGUA+aqPmf37efM8QkuHD9LemoC18/JpKV0ySbueNvdTJ+fphFFCCMhzUA44AXQ00tt/UZyqznz3e9cXMx7lJKMPiSB18OV976X4c0XO9ZsDiUXOl0qgKsNmU4h9PHLVXQngZHllJYv46qbruHYkz+AuQYiSUF6VC/dwqHZc8S9ZS6/fhezpydxZutIz9CWXSLHEvWOUB1djjPQj792DcMrRjl38DXGXjtKr+PRaLZQYYAnPfyda8hGqpz/4bNwdp5dn/4Uy667ihPPvYoNPETgYyfGwfMhipDSwTEUpe5CgLBobUmVxmDQ8mKzm7HkOiXIFdLC9OwizQt1oukJbBZRcQBhSIQFKUnDKu2jh5FpTq2rkVgWA0FCCutGod6gNDCM7CSknqU/sUig44OtlLDKIHKH/ksvY8XOHay8ciOtE2fJXjnBYKxwsWSBpXbVpdz7wIM8/U/fA5PBymVsufxSTu3bj+22cWzxvFrK4mSSEpOnJEmGNhrHQiglnhDEeY7wBZkF7RV1bTW/ShwnlK7cgZIOdqGOK8H0SHAFrNrE5k3beO3lfUgJoeeCUtTKJUwcM1Qq02536UpL1FPhkhtvY/r8DDhVWs0G9U6DKE3w5ucJU4XQhk6nUwhII0OUl40Uwr5w0DrCFQYlRRGvFi5ZpUSn3aE+Po7SCjKNYyUOkrBS4eGHP/t6HVcxBRJ78Zt2yYu0xBJLLPFGstSJtMQSSyzxRmOKCFt28Y8Ag4oUbhhSXb2ObrsBlRqhN8DywQHGRh0INF7XkL/wKngOy9ZtoXpmltNqHk8GDBgfGWuMVSRWoUWO41pC30e2M3LPoV4R6JqlPKtxlWWVEYx70K0ACOg6UA7xPZ+s08aTLp4QlMMSQhvysk+zp8K//6XP8Wf//Ut0OzFJq8EH/8MvcXzsJKqbsPeb32Fd5DHmdGHTKq6+915e/f0/Z9VNN9IY8ul8/VG2dXrI0nnavoPNMoLSEOd7NPf++ud54StfZ/blfUXBcD/Q7hJ0XHpMia6EqCqhHVPLwHEEjSDCSQUlK+kaQVgbII4THMdFpBE1LDXHI9IdWhKySgmwvPPDH+OfvvQnANRcj063waot61mIM6K5C7gDg6iFhWLxqQyUqsXKJMvAOpBpkIbNH3kP3pphXnv0MdgzBrgQSHjXtdDfC5ML8NxLcNkGdt55Gwe/9TgcGgeV4l2yjsvvv4dXvvglkBW8VOG0EhLfK7qwdm6GzWvYseoSrt6ynW9/7RHmn3oW9603sP3anRz61d+j3wmouxHkBjwfX0nC3CF2XXJPwupBBq+7hoUDR4uS6bk6lDWELnQyKME7fud/Ry12eezX/xBiDWmKb2JMrYIpuwB4xpCnCSbpFvvXVwNCiHNotBkIfaKkSxIYsA6elvSkElUZoJm0WLtzO5fs3MpjX/0qMgwwUcrW22+lW6swuWcPfifBpjlCG6SxeNK92JkE6mJ1mGsMjtUXF4aghYCgTOpX0cZCUEU6EjoRJs+QO1Zz7298hhPjZznyu38I57uIWFHFoe1kOF6AFwYgJUmcUS5XSeMMHSesqPZSbbeJaNHEJcFCOUBqS8m4VLyAJOpSp+h2koO9mDyFJAWjCWu9JHEXv1ZF5Sl9Kr/oBhQkBnSlhHIluTLFe8lxi5irX8PvpugsJVzeT9d2C7HAgJdBxSSkaYKtBiR5VqjRTgBhLyQatKUiXIajDLe/xqnmNIwMQrcDKgcHNtz3Tq666XrOHrjAq199BEKPt3/mk3zzj34fLsyDsUhc/DghkcCWVTA1z6oH3sGuW2/klf/8x8weOUSGJncFy70KE6RQ8rj8Zx5kfGyKxnMvwmKGayzW02idFu4ux4IHfXftpjs5T35+Fjk1R1/Zpa1a5EGZyqYr6V0+yNS5MQY3ruPSHVt5+uvfgJk5UJatN91A/xXbeeWxH6Ba09Cqg1thebPEjIng8k08+J9+k6Njpzi1/1Wi6VluXrmKJ//HlylJl0ArsBIlJbELupzjpyFhLhC5xStXqSdtRNWjEkqaF5oM966kE3dQYYZ1FSrLQUHQ00vazHBsFR3GgKLclXg4NPsCWDvCjre9Gbeds6Y8yPe+9Oc48SLl3CAxpA409cUicyTXfOrjNK3lxGOPwMQclbmMHumS+bAwWC5Ky6v9cHoBrtrMVXfeyt5vfB3GJkApytJBWEkuXbQEg4ObgzNQI2nMs6w8QLMxR6m/l7ptgutBJ8UvlfDqMdKp0kbzgT/8LR599FGik2MwOcmuX/skQ4MjfP3Xfg/qbdasWsPswjzeSA8d10AaUertJ5udZbk22FLA8KU7KY2u4oXHvg/C5X0f+xiP/OWfghSU8g59WiK0YXZ2Fu0KPv87v8WpM2f4+hf/CJm7uOR4MiNxQTv/D3vvFSTZdZ95/s65Nl1Vluvq6kY7uO6GbaDhvQcIOhH0ICB6UpS4IilHUTMjN9QqJK1mZhUxOxMyox05aickURJFUgQIggAI10Cjgfamuqq7vEufee0x+5BNrR7mbRf7lL+IioqouFGVdfPczDzf/X/f54N0ICj2LbJSgFJIY/DdAlJKxsbGmFuY7WclCYvgx7bfH0dr/89LCQYMGDBgwP97BpNIAwYMGPB2k/fviSoJ/b4gixQSKSS/+5u/Q5oLpJGIZgNda5CsLMFKDXNmDkZGENsu4sM/+1M8852n4ZJrMULQyxt0nYieSPDyjKHqCBvFgN7mMfxejpsbMivQvotrAhLfxVc+NVf1JwuKFdAe9z35caYPHIDxcUzWf6CB6yKNxpEOvTjnlR8dAG2Ikw4UPQ6feJPFhUUqY+NsmdpB/fQi0a1XULlrP7o8RPvUGptHN2MumaK3dYKN147jU6ApM6TwiR1Llsacmpllz8QUKwuLuAhMHIG0aDcgizK0NpA7BNbHtaa/Cff7ZzDzLBQdlGMZmdpMVK/jBB4oTWpjXFw6FyZbEJbr7rufxZVVko0age+TZjHX3n4L73ni47w2ex69tgbVYQqTEyiV9du+JBR9Fxn10HkCoaR+eob15SZsZBArMBGIBDobjO+/ljtuvIm2hejMaSamthFal9b5JaTj4gmH8tQU6xsNWGlgopTRoWF6KgU05TtvYurOmznzp9/krRcOEJ08CbnFLM2z1urgr0T40iPJFUNOCUzSj/d2LHkAeIaf/s1/R21+gfUfvQxBiX3vupeV9SVotvC8IqYXc/rNw0w//xJkGWO33sCjn3iSjXZEe2OFd/3UZ3none/kpWd+iO0mOEGINYrhHTsZGduCjRVOo0UptzjGkDkS60uML4mLDlpbquUi7Y11Trx2gOHyECrKMIFPreCRXXEJwfatZCfP9KfJsCAkxhH/IiApB4xrUJ4hc8A14GuBawRRZtG2L/R5V1zFrb/2ac6fPQ3NFna1ycnDR1j/4Suw2GHCKaAlRKMuhA525yRq2yZ2f+qj5JdupzMcEO69jC9//bd4+cRxmqFLPY/JJiqYQBK4RTZHEkdYlnQXe/duHvm3X2Dqtms59/IrBInA0ZJypUqvmzDpjTKeh2xKAlIJ0gnJEBjRz8PxlKVoDEUpKGCpdCTlXBKUQoTvIoVAKItqRzBUwZDhOhnW9m2mFPqTNFu0x3Czg59nOFLTJaGpFPW0C2FAxSuQ1buQAwYaqwscPzNNVh3nlo8/wbnaMqc7Ndg8yl2feJw7nvgQh08dQ0UtGK7CWr8Rr722xOGXXmVjZobEd8gD0JtCrv34h1gdG0LlCbo0TP35A9DO8ZSLY3MskmCoinUNNk1xhE/85kmCTKHqNYKhEBNFVBLNiPFIVuqotXVss01veZFzz/8Q0h4UfCh4XHTVpRxcmcGcm+GLX/0aB555CVbbFPMe3tgmbNHj0A+eYvk73yI9cYrK1BQn//4fGRsaRSUJrgFhXcBFIFHC7U8jOS573vMOLn3HfUw31zDdGK+eMlmospzWUWNFTKNNxRjGFIgUyq4kyWJM2QdX9ZvRAB34qFLIRTfs5+xzz+FfupfX/u4f0I0eoVE0ixB7UFAWzwkwroMJFEvCUnv1dWh0cVsRo9qiTUzqQRYYsApSBXHG3Y/eTW9tgbXDh3Clg9SawIC8ECIkAMe4ZLkh2LOLoX172Th8hlFRopb04J59XP/gffQ2eqTza0xSJHclSehy5OQB8vEq5ZERMmPolgNef+p7jC43cNKIAAc/8OmVAj73W7/OdBzR7XSwUuKpBJUo0tUO06dmGNqyhXzLOJu2TzF78E2Gcomvc1xrsUrT7XXBdZjdWOPVF18E4WKTnMBzETbHCDDo/kBRHFMsl1FpRkEIrFbg+hhHUCwW+5NI9PX+CxWoF7KRLoQqDRgwYMCAt4WBiDRgwIABbzcKEP2WIH2hhNix4AjJ7/z730XlfesYKmN4uELsOJg0xamOYrWBRpOsXGK91ubi+x6CHZMkeQ3iGriWPLKIYkC+aztj119DfW4OP1YoY1GOxHcK6F2TdNIIK7L+p+xEw9adXH/HnczVauRz8+A6SAy+6+IYg3Qk5fIIcbuNzBKU6G+a0AlYS+3IcUIvpNmqo7aU8DeP0T6/THhqHacTs1xbAE/A9Ay9wEHLmGy4RGYVlAuwvE5npY7oRBQzQ5prCBzIDZ5XolIZJupFSNdBaUWqc/AATH9/UPKhEHD3o+9gvlkjb9XIfZfM5FAK0EZhpQBHcHRunqTdgzzHKIUhJ7MCWahwfnEJ02hAWODue+5m9tSpfjueK0nbHSpC4voum++4jdbqBnhDsFgDR1IdLyFci9I50bFZzh49Q3TqHLQ6rJ2Ypr2wimz0qDghOklZfvMoRDnEGcJCKQyJ8hyCImPD46yemsWcq8PQCMG+PeiT58EtwplFgkyQAjpwKMcGLTMEkDtgPQsOuKPDbMwv0ZqZp+iHPPhLn6e11qCxUqeSGmw3QjYUJkphU5m4EOBPjrPlqt3MnT5GMwxwXY9ocY1kbZ2iEpg849obb+Lqx99LW6esnzqFBCrlEsQZxjhY5WC1izEZca9DnicMD1eImh1cHBQC4h5qeZF8dRXb6PRbCxH9inTRb/bTPw7VdRzwPRAe2vTzkySCQqGCLpfQoc/um6/njdefgcPHQAlGnBLJ/BKVYAjb6JCqjNRkUPG5+We/xNZbb2IJy4bNEUMV8k4LtVZnyyV7ePO551GNWl8Y2FQFa1DNjELWRVqHjsxRO4bY//5HabSazL95glJbIYygE/Wo7tpJbWWNPMsRWmFKBTKga3LKwxWyOEYajWctmBxhDUEuiI0iKTikwvQr2ZOMUrHCQ+95N6ejFllzDYTFGPCFJFCWCgEq02RuX7zLSkG/cit0oVQiW68zJgM8mzPkFIlUDr0EV3uc+t73YWmJ/TfcyPKzz7Nr63acVoeTz78I3RiiHCfNsUM+NNrQjKAaAnk/Y23LBLd+5nGOzM1jjxwlOrEA7Ry0vWAPE9x0/z1Mbp5ifWMJ1e7iZYqqDEnTCOk5GMfiakVZC4QyuL5PFnXxJSSNGsNbpsiMBa0gjlmdPgXdNsWprbi9lPOHTyCVYqo8yVJjFd2sQxaD9KFUQfVi7PoGOsuRti8p5NIlky65I7CuBD+A0RF23XELp2rL9JYXIUlxehpPW7q+x64r99JsrGEDH68c0o0zpOOSpYaSVySzGViNqwQaiXFd2mfOwMW7GN9xKY2jJwEHq2NMwWIdS5hZHEX/mr9ud1/MPzkLcUbQ6RJag8bgDBWJCw7EEbgBGMn5hWnWjr4JeY6jLQXXQ6j+/2eFvCChOGzZvZtr3vcwqyYmOjSNgyIF9n70HchYsXTgGE6vRxGHzHFIpAIbccdHH2fX6CQzP3iBaPo0NJr4cYpnJdoK/EoROTFGcdtFpEDT8bHNFiNS42hBwXgYzyOsDtNprLD7pv1MP/siQ0biuRZhLEZroqgHrkNnbRXipD+mq/qXvLD9QgEBCGuw2mKVwqocV0i07U9gGikoF/oikvhxova/6mcbiEgDBgwY8PYyEJEGDBgw4O1GARJy2W+MAksoXYSB//S7/wnp+jhJzpDOWXNSzNYqm/dfxYOf+ignvvddRHWC9af7dpGL7riTTBhu+omHmD15GOpNNlfHqG20sYUQZ+cubr7uSk4fOkqOgIkJpvZewf5Pf4hOlhOPlZgYqhLVmnzga7/B3/7VX5C322zes5fuuVmk5xF6HiZPCISEKGHMKsaEpmAj/DwCVyHznACBXWsiQku6sUy2sop+6yiqG5HWVgl6EW6vicrbYDrgufiXXYxeX0J4IUXrkbSaGDRlr0TZeAx7JTpRxNhVe3nsc5/i4Pws2rXoNKIwMoLT7KK15UJnPcSK8ugmtmy9iKXVJcgi8Ay571LwvP7GfNNE37aT5OB7mF4EjqXb6XD21HnM6kbfXpRrOu02Zdejt1FDpBlbSkM4nqQe9bjk5pvYdtOdbNt5ORuNHmp1kSRtQdxlIsvx6xCutXCjlCAFGyUEucH6HlEWExaK6NIQtt3F830Kfoju9QgVlFKIpheQZ9fIx4fwb76GK+/cz9bFLnp2iXFryNCM7NrJvb/687z51A8pSYNxZV+Ucw14koVTM7ROzfQrv/OM1579Fo2TixS7ilKUU0Ezaj162nLJT36QHbuv4M3/8TeslDwe+sQTvPVP32bmh8/TXanhm35QrUBy7vQMx194nfbpOcoa3DwnyVJMGBI7ObbosOMzH6E1fbJvTSz7pM02roECHtINyUfGuerDH2Gtm8DsLCiN43lobdBKYf1+0G558wRZL4Gb7uVzv/Y7LM6t0ttoI12HNO4gAoPwFKvnDrNLTNBc64IViDwnsIJeu40ODVoYPOmwxZQ5ceQsi4dPwpFTSK/Mo7fcAx3NxtOvcPybzzCcFijUU8pbd7L13juo+x50ewy3BWO4lIxHY73O0X98ivnvPMemloOMu+y+5Vbu/szjlB64gXNvvUw2UaYT+iRKEYcu7/78k+y8ZjfHDh/BEQZPK7RjUNJg/QINqcjHC5isgwk8dCtiZHScyvgo548dBmEwQRlnI2NzWqIshlnQivjSLXzpt3+LcHyCM4eO8Njvf537H/8ob751BBpdKllGGYljFCZT6DTDqdfJ15ah12X5wKuEJufsiy9w5kcv4Hc7hEohreHez3+c27/wEd567XXIcoh7kCmGy2PkS02OPPcU9uw8XLaXD77/cY6/8BLuSBVjIrY9eg/bbruO1xfPEZ88RkEbKjj4NqbgByQqw5Z9tLH4BDihT0SMIy3CaALPhW5EEUFowMQZrpYM64D26TlWZucw1mKtom67UPYhTUBK6Br8ZoxTbxEAUlhGNk2yEXXIPYkeq2KHfLZ+9GE6J0+DkCwcm6Z3epaxPVcQL86jpkao7LuC6z72ONP1NvnMIt7oFO3FFtY6jGzdRUe6pDrDMTklZfCNABxyK8ENKG7ZztrTL8DoJBffcAO1mUNsfuwhus11ysrD9Hq4TsBDT3yY9TMLJOc3mNAwFhaIsh6e77MexX1hUCm+8Ku/TqJgbeYYKAUpVEpFJBKlDH151eJYi5KCRtljNt8gPnME2jCcW5RwWDlzmNWDxyjWMpyggNWQGY1TKaJsTKebcexbzzAuK0SJAmNJTUqMoTQ8zEqjTtztcnZ+kWazi2lE0I2x3RquAt3NscUia2tLsGOCpcVFvNUaw4nCCI3Whm6zhes4KKvBc/rvjwakG2CNItM51vR/5jn9qdiJsQk63S6jE1NE2iBLBXAkDoKv/sLP8y9vBsL++NddOCcDEWnAgAED3i4GItKAAQMGvN0YQF6YssDiYvGQoC2//fv/kabKSE1Kt+xhQ0UwOoaXacrVMuffOkUlsYxFGa6F8y+/RveNQ8y+8CJuI8GJBG4zpxKM0KtFZKst5l95FadcwGwa4v1/9B955b/8MbOHDhOdXAKT8vF/82W2XHsVZ4+eYXV2Bnpt7rv/HtbqG0QryyQqZ6hc7k8AYfAwBFGHokooYZFopIEAF4nDpihluFAg6XWQe3fibB8lixsE7R7B/Cp5nBD6AUqV+Llf+DmkFzJ/4E1kmpIPedgdm4iqIb1ehBt18Ieq1JsrHFxdoLR1KxfffB21jRVUo8GkLeFqTYkSTuJQMGUWTp5l6fhZRC8hdDxsZgi0QQpBbgxjF1/MOx9/guMvvgxpjrBQKRfIejFe7uAJHxwHG8dEvS69ep1yoYI0sh96LgUMlVk+cZbFhWUcq7lk51YWTxwmyDKKUqJzQwlBKqAXXEh6LQQkBQczVQIiMlfy0T/+fU5mLfL1OtoaKrGmwIXQXQxpyYNPvwO9Z4qVb/w1jWOztGREWi0gc8FG2uPUqIW8hVppoUMfU+gLYBQq0IoQur/elEoh8iFT5EZRsgIKBRY3V1DVMrUfvM7ysRlYb6GPnGD6xZeh3uxnQmUZyvfIhEHt3AQiBm2wgSAjI1EZKSAU4JWxKfjVTUztuYzG4nlwHYhjHOnjGIGrDEk7YuumLWwtlGjNn8MYiyskaIP0PIxW/dDeqUnu+MDjNN1RfvSPT9OdOY/KYlJpcUoeadzGhgLIEKfWkDiUikX8LKeaZYQIeqGBkUI/SL3dIk4Ntl7DrY6yf/denvnG/8XGG2+CsmAlWRqTWUP54imuv/9O9uy9gpPP/JCwUCHDoSEtmSNA+FQKVRrNJrFTYNFGHDl+iHMHfgSXXcIVH/gJ7nrgAZZPnCHOupw6+Tonjx/GWoHEEhqLcgWZL+iohEsfuJOb77kTXSzQPDMNrksXw/nlJQgrXH733eT4uAs9POvQUZZ4OMSUJa+v1Tjx/Mtsm7yEV//H33Hg6efRK7W+qJHn5BfWVK+ksAVDnl8QJtDgG5ROQRqsNBhpMdKSe5qz52d567vPQLfeP7ancTXEccylD91OfWaJnXtvZt9111MLM0TVp3nqCK52aE5Pc7ZicW66lE2JpDe3SI5GAzIMaCcRxvEwWU5vpEo7amILAiQICYERlJyApB1TDApoY/FSgd+OGK6O0250sEEIrqDw8G3cfOMNRKs1TKPBSCooao2vFdIqMilopwnWEdz3s19kdmONrbffinZyLrr8SmLhkscpH/uVX2R+bYVOILn7rrs4+vR3mWutcNnHnmD9yBzqXINJW2TCHWE+i9h80z4u+ti7WH/pZYYy3Y+AtyCsRPUS8pV1hrdexAP33suBf/4HNj1yF5u2bmbt2ClEqihqhzRLOfbSKyTza0glcV1BK+liPYcUjZVgHLef+1Uc4tBrr0MaQ6oojlTpNnskmcG4AVaAoJ8JpB2L3raJa9/zCHrTJqIfHaJo+vawTBqIDWNaUPcF1vZz8aO4C6FPMruE00oYp0grjvuiTCmH4VHC4hBBqUIiJL7r48UZkyIkmlug4Gg8L2ClUWfyqr3svf0mFs6dJV9aZsz1KQpBZnIqpTLSQifqYqQAB4qXXsp7H/sgx145AI6LNQopJYXARSuD6/lstNrguvSMxRoDo0OEhYDQ9fjFL38JlabI/hhTv4kPcAYi0oABAwa8rQxS5wYMGDDg7ebHFh3690wvaEngCJQn8SaqFC7dTvGKSynddhPpqRmS6UXOPvcaxAm60wYsSagYFoohAWKtRTEWiNjihENo1wNj2VwoU1GSPI4hy3hj5jRceTW0MzynCIvrfPufv8urr73K4ae/1w+pjSI6tQ0mx0Yh8HAcB4SgmcS0pKTnuRjXx3N8fOlScEMMLt1MkXkeQ4SYOEdIl3BynNsffRC2TmEDH6wl1OBGGnoZ3/v291haXCTAUnb9vgoxWuaOJz8MVlPyqnTipB+keu48vQOvMTw8wju/+HnYczGpJ8ndMjVtUG6RVAkELiVCCriIJCXQmiDTpHEKCGrn5yj4AQQFCAKsMUTdHp7rEViNZzSOMfzYDuGPVunGPSKdY/D7tipjQPiwvML511/hwCvfhzxjyPUIvIBEQoYh8QzG60+aZFkCnuTyRx+AiyZBp/zVf/nPBGMjUPTRvQ4xGQaBRpA7/V3dtit3M7FtCnoxQcmDIZckq6EczfZLdnLZrTeDzQhLQ2y/5HIuvuZ6MLIvVuaWguf3s4YcKOcXdueOIEFT0wlGtyFuIYV/IZxZECoNa7W+gKQNQyNV0DmELvc+8RHYf11/5SoNgQdFD1ywjkOhUAK/yPrxU5z99lNce98jvP/Tn4VCkaHREaTr4AmJg+bQ957i4PeeJu5F6CzDKI3nuBil8IpF8H1q09M8/Sd/TP1b32LH1Vcxeu3V/WwY38GUiiDBdiPo5aSu168sT3okSRvI8AG0hl6HPEvAC8HriydqdZ4D3/57RCC46q7b+MTP/S+EW6tU927DVA2rtksviWmubkAvYb1RZ9GmdFwFvoE4odNqwVAJG2jIuxeENwcW1jnx1PN8/xt/Q315CTAwWu0Hkwv6tp0LNhuLgLFhpl98ge/+t//O7HMvQmUYij6kXWg0uPXGm3jkgUfZtesyutaAX4RypW9bmxidf40NAAAgAElEQVQnOT8HrTbrC8vgliEXFCojpHFCDqRYUtf0hSPHgARP9pe5J8CzFwbYdP+7cyFCjFoDudYB4YIUBIArXEZ3bePBJz8IhQLnnn+FH/75X9FM26x2NkDmlHKNbx2u3Xctl+25jMZGgxxJhkNXCHToU6lWKRbL7LjjTnbeeydsm8IIsP9qv99sNykOlUmUxngeLZUwNjHFUn2D8U1b8K0H1mV861ZazQ6dWgMXEKj+OcegRf+S0FnK5DVXc9U1+6DVY/HYSVZefoNko07cbsNIiZePv8XS2gJ33X03Ya5Bu4w/8Cin3joKqyuweQwxNk6wY5Jrb7+JG2/cT+38eaTtv2JoYbGiHwLvWQ1Jiox6fPsbfwbC4vo+R775bVip4bg+9aSLG3pUq+NUJ8bxSwE9B/JigC0VyITAWkEgfMjhwDf/4cK0lQfSJWp0qWzdQeWibWjHQQuJFT9+8hSbNm9m3PHY+NErIAWGfm4T2uIZC2goBGQYAinxsf3r2oKDoR31+qHoo1WQHjc/+AipNqQXjsm7XeLVFWy7ztZKGdKcTOW4k6Pc8sg9vPMD70MWCgjh4EqBkgYv8Gm1WrTb7f77YKEAw8Ncf/31BMUCAI4XAA7aWOIsRzpu3wYrL7yGSQe2b+N9H/ow1YkxkiwFwPX8f+1kGzBgwIAB/z8waGcbMGDAgLcbC0r8eCDJ4FoD2qXX7VLesY1bfvJxrr3jFv766X/i4ssu5sz/+mcMtWPWnRg/dPC1QXiCuh8x3AaRQ9EbYs04qFIZ3IxPf/03+ZNf+TfQjXFVjDsyTmIzrv6Nr3H0Wz/Czs3B2RUYleAmEPWAkCAMSWt1AILhYdJmq9/65ftkhZDCDdcTHzuNt7bBRJ5hdM66ULB9Ozff9xArUQ5/+31mii3ce29ABRLOtmG9A8065DGjo6PUF1YYu24fte4irK3iN3NKQGO8CORc/cnPMv33z5KdOYce9mBqDFbreMUp8qQON18KjQYcmWXzYx+iMLWF2YOHuXh8C41T0zSOHgGTsil0UHEXjKYL5NUKVuf9J0AByjBWKtPt1XEch6L16OmcOPBAgrtlgqA8TO/MLO6mSVQ74vpf+lne+P6z8P3X8UVEVkig6jLZ9hHdiB7QKflUEkWnCAQSpyOxGZiCZPJ9D+BZh4XnX4dOAtu2wcYyNOqgclzfw5EeGWAdFzZPMbL3MhonDhPMLZIGGsZLeMs52i9ibr8Blppw8iSVi7Zy+8P38sN/+meS5VU2OSV6WUyvYPoLpddvI0NaQilISgKqRUo7L2GHM8rxH7wEOmdStslcB+uGGANRlKLcAghDeNt1uBo2v3KWNRXRHpWQR32hRjuInZdw5e23Ub1hHz/6+h/gOYKdl+3g/PxpsnNzTFTH6K2v47lldBiS6YyiJ0jjGIzFdV1ya0jQOIUA7dLPt+lqtu6/kUTHNLstprZtox4lXH71Pq7at5+/+KM/hdOvgRYUvCJuo0usExQGWfIBg1W6395U8PpNakGIUyyh47g/LZUl4Eju/IUvcdndt/HffvnfwomF/loZm+LJr3yJf3jlebom5+EPvZ/vfulXYaPGjiffi91UJkgVd11+Df/n176Os9GmEoa0ky6iGpJVPG79wsc4dewY9e++RBjDcGqIPOh5YHyLsD6TmYdSig3HwBXbueXd76SQS579nf8DhoN+FlGa9IWoiTHe/zOf5eyJU7z5l3+LF5YItUfHKJgYA5tCpwOdHp7ReEYRewbrgKcFIut/5JNAiPMv0xrigsqtMcQoJJAUQhBQjCwRGkZK4MeQWCb1BJ2qS5TMgdMfs9zWkPR0Tr3sQ0lCzcUrF8hJwE3BONDOwC2y/9M/ycFonYmpCZp/8F/xNDhW4GoX7Ti0sQQjVX7q3/0S//t/+D1YrbHtvY/yji37+Ovf/QNssUhnJIEoxm90qU4M0eslSAtGGIyAzHGZ2LKVldUGDI1DaqFVZ7QiqbfbIB22PXwvcnKU82+8DvUOnF1isjjGapLDZTt5+Auf4Pj8NJdev4dn/7ffg5kFSC1l6wEK5Vi06J/BQEnyJMXFg3KJRBhufe87ePXMLPr4WcrCoR3VAI3jBYhYo1wHhopgFZXLL6czOwtpTlk5xL0eIiyjxoa58iOPcezP/hw6XUb3Xsld9zzA8eMnOf3yi6BTAt3DNRqA3gVJDdejrAWOUlhh+oIiFtcIep6ExGNC5ziOx4qXgnUYLgzRShX3/vavsPnSXSy8dgR3vc0b330ax2i6UZss6eB6HqpepwiEYYGmKzFlKN9+G3G7i37rFH6msVkPLS2BkcgEPMelm8coV0K1dGHtONBVF0LRNDL0MVGnfwOiOtRvr+z2uOnTn6E8Moxt1Xj2m3/DhFdibXq6L3wL+lN1AjIsPs6/rOkBAwYMGPD/PQM724ABAwa8zWQXBCQfcLBgBCqOiVXO7//pnzB3+gQHX36F9KU3WDkzS5YkUA6IC4Y87ZBYRag0ouShJl26jib2SqjqKHve+w6q73+IZ775dxRKBVRSx4yWUc0elIdZe+pFRGGYB3/+80zt3Mn8iy9RaSaMuhXMSIlkdZUw8FFphlYZbilESImKuoxdfBmf+LXf5NWTJzFLy3S8gC4ubmUU1UyYb/ZwL9vD4uuvw7DG7L+ST/3cVzn0X/8Or55iCh64is/86q+z64brmSkpRm69hk4g0edWGLIFeqmCQoW1A0ehmaJREFg+8cu/wp6rrufwP/0AMsNlD93FY5/5FG+88ByV9z3E/NIZttx5M3PHD3HbB97LHAm2tkIv6xE7Cj+QDFdH6DRa4BdgfIw73vNuMiFZnzuPVwhJQ4eeUShj+ne6tca4Dp/6+S9z8NlnMFEPpMvmm/dTqo7QO3yGzPZgyAUvo9LJ8XURUx0lrgT9MODABRxKPUnJasa8KstHj9M+MkOppbk2rdBZWyNL477lTQqM74DvM64kQ13F1lpO+XyTjWQD8gwnhlJiSLTAGgtrKVtnmnRkQtZqMD09i8wtIgNPS1TR55Gf/TQjN16Dc8s1hDYEBXHU7QtKNiBfX2fbex9i+cQ0ZD3ycU0v13gjo8jyEHEnx7cBgVsgbnXI6g3i3NDzDFR9Hvmpz/C+T36So8emSc8tsTZ9jrmXXmU4Fqh2m2ZtgzzrQRoRW0XR8elmEW7BJ80TtLLkucZaCMMime5Pj1hjwBquufs2ZMlj6cxR4rnzWMfSbm5Qvfs2Zp55mcOvHuaOxz/Dnisu5uzB11GdFiN3XcfDv/UV7OWbqR2bZrwRs9UWcVROJXMIlECmGWFs8BKNG+d4wiOPExYOHeeNb/wjLDQg01CpQNTk8Ooc6cw89vBppv/iO4w1MxylWT99ktbsKQI/ZPq1N2gfP0PJdelmHUaqVXSak4uMBTelYF3i4+eRuUEbizbgZhIVOBQTQyFO8LUg8h3MSMByr8HMc89BnEOege9xzfse5B1f+hQtkfHSH/4JKwcOM2UcvKhNcbiCd/9NPPTh97AatUmWFyFTeFpQspayhqKydAoB5oZ93PgT72IVTbdRJ/FdEs8h9gVxKEgLkqkH7iS88Qo6x2YQCSBdSlYwlFj8niQRmjhNyaIuOB5EOQUjyFOFRqBziY0g1ILMl2BSrvnUx7jm9ruYOXoCFIT7r6Y5c4zohR9RWNNEjkMmJJmFghOSpCnahVeffQpKDlx/Ge3eBgf/+tts0WV8BG3VZbg8RNjN+qHLniQPwXrguAJXuCS5QfVSPvnzX2VuZo64VSc2LUpOiVGnRPf0ImsnpmF5A6IuWEMvTyHwYWMNOVlm4qJxXvzzP4LuBpP33EXZ8cnnlsgCh8wRaCmwwuIaS+g6aJVjpQJpmT1zGpMKyhtNiqlBuw6yWkErg8k1cvcOrvnoe1g1hn37b2Dx4CFwfcT4JjZv2kq708WGAeHYEO3paeT1+4lqDbLyMCvtJllt/ULZgcW1Fl8LtFfAdX2cKGHT8Dg1k5C4/UkzLS1pAOy6hHvvup8zx46R2X4rIoGHXyiSZTG1TUMc/KdvM/e3/8y5I6dIOzFxq8mTv/gl3nzxGUzoQpwyLMAgMEMBemKInbfcQm15DVZb2HoHI3KssSgLrl8iNxZrBPc++QSztQ2Isr4ApHMoF7nq1jtZPXsGP/ARArI4xq+OcN0D9xMjePUbf8m5U8dApVSro3z58z+NlP3Wwn4mkryQhyQHZrYBAwYMeBsZiEgDBgwY8Daj6AtIQtG/2yoFPdew2qrxh7/7eww1YmSrQS5ixtuaRCtSk1PRBYT0wA/IhWW8IWjYMlt+4QuUwnE6b51io7FBUm9w1fMLtBZmSMdHIGrDllH2vOtBduy/gaVXnmVWZMwvn4czC3hBiWDnDq7/mc8y++zLlLVPEYnwLKlNsDrDtRbW2swdeIu2TcHvcM2nH2c1amGWGhAD0mXq6t003ngZcgXHTnH85BG008W0FyHLcSPJiade4K2XD9A7c4JOL2XfLXeQhCG1hVW8zCKjHCMEZsiDKAE35M3X3uDEsRN9SxwOnTOLrByeYdPuK5n7kz8lWFyj+XffhKUFStUqH//cT/HioeOw0bdkmVTTUjHb3Aoy0iQjRaoP3U5w8UWsHzuOGqnw+L//FQrX7WXx9cMMmTLDhCS9lNd+9AzYDNyQYqPN8rPP0D5xmLE7ruPez32O04vrcK6ONZYNH2LPsuPxJ3Huvx956RW8610f4PCrBxCZRWcZBS1whcRI2GJjZiaAq3dAmjHZG4bcQah+9lSjELOmIjb8jPFH76CXpphOgkpc7NQElEKQPtuKQ9hkAw+Hgl+gV2szsmkT9U6TvCQ4S5e85LG40WR0/y3o0VHGdu2mk0fs/uRH2HXPHRz8799k03JMmkbkkwVoCDJThe2Xc+fnf5rZXofMMdBc4f5Pfoy7P/l5WsUyjTNnmT6/wEuvHiRdWqAyXKGoDd7aGkUdYd0EYxO0VOB7OFYglUEIUCZHey477rqbd3/ko/QQLJ6bQ4dhfxPoOlAts+rB7g++n+XlVVi/0F63/1ouf/RW5g8dgvkF5p77DvMHDqGTLoSCXm2R488dYOP5NxnugDVQtzkUhgjdMVZtTl4ISYdDMleQCwcvyShYw2ZZJG+3yaWAHROM3XY91z32buafewFW1vBMjpvUiJ0uMowp5zHORhdnYYn2zAzasaQqBwQ20TjVKbJrLoG924mfehVR61Hasol3/+dfZ7gyRmm+S69Rxx0vs0FGW6a4Qz56bQ17bg6n1cbXMVp4kEJtdonjP3iRjUMnIbOUjMVXCh+BjnpsLM9x5ofPER85Q6gkKs0xoU8USqLtk/SKDgiPob1XUas16b5xFDQEocuOHRdx8103Mn3yOJRddj78EabfOAE2gNFNmFaK54Tg+XToAVBVAmlASRdyi8oFjgyRwkM48sJX1m9jE4LVyLJgHO774s/Q3LmFlUYd/ALSDKPnUvb98he5+tMf4uzrB/HWG2wpjqGVIfNdbvnwR5DbJ2k99xIiTslNE1PKiEPdb2x0fcY6Hr4SaJEibUYp1fi5T8e42Kt3s7F9mNXnnwEVwfgknvVp1lswMcR7f/VLTNy1n/OvvQKxi6skxrVM6JCrbrieteUVNg6fgAfvwb/iajaeO0HZTJCqBGHBNxI31xilMRaMK9A4GGOxVkCviVMoEmcpZW1xowzPOGS+Zvi6y8nJ6Tz7KosHD8MddzL18MNUbrmJ+dVVbLeDrK8Tv3mIW//DbzN6522wdTP+SIUsdLj+kfuZf+llrFcmTyAxDs4dVyGvvJisZ+iudtHjY5DnIApUhEtSCdl+2228dW4W3e2gSiWwLkEGopdTVBb30EnCuSUC2yNwHdKix6Z77uBM1afXXIGoA0oy4frUdYqWCpsa2rGLbiTQUVhj8WRfWMuHqlz3kx9GbJ6isZqw69F3MPvMK2CLQAShyyOfeIJjM0dJ15cxWUSgNAUMotOhOXOO+UNv9K22+6/lrkfeyclDb/DVr3yFhBQlBOaCeOTkAiEYlLMNGDBgwNvIQEQaMGDAgLcZDThciKyAflMbhsWlJf70D/8YoQzK9HN03OEqeaSolKt04h6afr1xxQ8RytBTltF9u6kUSmwcPgZAPruIN1ZhPW/0/4jjwmoXT3s4E6NsrC/B2QVAQHeDPFFoT5JNVmnOzCE6HSqlYt8K5PQPkxq0kTSshYoPoeGm976b4ZEqSwfforTvSva86z7sNReTvHwQr9VFa4GqtWF+AzKHog0pBAVavQ7G5P1dfa1G4rqUhUv73CJGGYznMb5vL9HSAiSWITcgbbexvQ4PffiDnD30OkbmtJM2dRHB6io6ziDNQWt0dYx6N6KNIJ87jwgCJgNBJ8spKhcclwjD6vm5fn7M0ip0u5Q3jTO5dYpTz71MIXfwXUlbJbB5BLIUFNjMoh1NOFyisVTn3pvvIluvsXb+DEiDcZwLwdUe7eVF8vMzTGweZW7uFHneJPEViaPR0qKlxZcBjWLCNV/8LFv27mX6B69Q9UNcBOQJJc+jUqnS7fW4+p7b2XvJHvJ6j+5GE1v2Ie4AkvW1NSqepJVGDI1P0O0l6FThCYdCoUCytER3fhkOztI+eIRk5iw3v+dBtt91HQcPvMjqqVPY0+cY72VYm7P3gw/TbmeYWkwpzunmCZ1tRSb276Y3Nw+LXWrKcObMaczKEhQLsLEOrke2tk6a5lS8AMcYlBRoIVBS9EO1tcDP+2sKIVGOi94xxe5rryKyisWZaSi4VG+6jmRsiEsevhdTKDD7nedgZomh6hjp6jrxwjKyl9M6chqaXejm7DAFqmPjyGKZOFPQiiC1CKXx3CJOUKQZ9xDKIEYq7LjmKh794PtZnptHaINnJLnqt09FUQftONgsJe5FzJ85C4urSCsoWIvIUrKqh8KQaBgaGWZDpaiiB+GFrCMhKHsFWr0IaquwvEF5ZoOJ6hitssNbQZtzbx5h9ew8ZQx5t4vMclwF9BKKRhIqSzmHUi7oDpUgdDC9Tt+mqTU4ktw1dD1L2xckrmAokZSMi4eDwuKNVlCOhaKDs30S60lIOqRz8yQzc9BOIPS59iceZdfdt3G+02P9xFlwh1g9fRpqy7iP3E3hkq3kqocOJYnIsXEXXzr42sW4DqboQRhgpcTV9oKdjAs5RzkyDNBRDM0W2vPZWF0nb3Z54IYbWTs5TXLsNNYpMH7zHrI0Rq3U6M6tkFZ9ukkbAhfTSOkeniaZq1FNBVhFUCwQo7GuRLmSRiBJXEsvyEldi5KQOCF6bIQ7vvZljj79HUgSkPDIhz9CGZdGvc72Ky5n2/6rOHT8KB1toJ3iSQ894hGlCfV6k/kTpyEHshgxNo46foasUEDHDRyrkUKAtWAMQjhY0V8HFrCOAMeyY/cecqWwqUJbyK1CuZKk2aSztAIrPfAdbvzUE+zes5ej33oWtbACRRdrU7bj0s4coo0Wq4sLFAsBm0dHSZdWWDtyBPIEPM1jv/FLnE+6XH7RTlYPnsbGGXc+9i56eY6eX0AGDmmY0zq/DosbkOYUhMTNUwQZxtHkriL2FZljkK6kmyjwQ2LH49EPPUbLdWgvr0Knh+zG/Rgv3Y+NMxtNkILNl11Gd+4cxjNYT2C6MVd87qN0KgH1F19nrdklX1iGNMO94UrM8QXy82usri6AtpDlSCkIHJfUaJS2aGuhWOSG++6hIF3mjx7nl7/yFSwGxP8zfyQvFFkMRKQBAwYMePsYiEgDBgwY8DbzPxORrHR468RR/uov/hLfCEqlEsHmKR7+1E9y9AcHqIgC2ZXbefSTT9KNYjrnlml7OY62NI6eZOPwW7Dvclha4tKRbZxrnWX8qx8lOngc1iK2e2O0z6+y2N3gsa/9EicOHWPP9fu4+oPv4NwPn0WhaZ48BtJFddr4gUOepyBAIHCMRGiBR4haWQcNerXF2f+bvfcKluy6z3t/a+fOJ82ZcGYGE4ABZjAIAxAAkQiACEQGiCBSBMEgJlAUJYqSWKIVaUty+SqUSvKVLOlaZVplS5ZoJYsECYgEQKTB5BzOmTk5x047r+CHHlAu1300/NS/ql3d1W+9e+3dvb7+/t/3w3eQzYQcTd/unZy/eILaYhO9skjJODhJyqAu0Wd8QhnR8gwM+kBOqZ2QS0jGxmlOTYPjQm8FdMpVH/0we++5i/jcKK3VJVR/EUyEv3Mzxcs305gZBw9u+sTHmB2ZgGabwLGwfY/W5CyqXOW22+9k5J0D2EpTiBJKOITKkGqFj0++sAqtsDM64QQsnTjHmVe+B5aFm+TEeYgoFvj013+OrH8di0sr6EyDiTGWodgwnHjpByyPXIBAIO0MlMFKoTjdotQKiSenmRw9zfvuuZHZsTOdQGehEVrhGsmSlrCpn4XZCdYKPmpuDbHaQBpNVLWJm216opxBXWHszDBTR4dRKyF2bw/le27kio88wfqH70DVfNYmp/E3b2QtboJns/P2W4nqDaLFBWrGw2mnVHJNX6WIyULOv/ka43/7HYqnLlK6MElvT4FpsUxSg2L/FgpKo8cnqCUR82sTqHQOb/c2dm7aycrBEcbOnUTHEXc8+QSTx45AT5Uff/55qtUKq8uLKCmxDT/KiVFW5+17CnxpsIzhXaElrjc48c+vMnPweKchLUz5wJ13MdTfz+T5YTaYgN41yerkPGlVdPq+12Kq5xZp+hYMraO0HNLreCyZiEhI7vvcJ9j7oQc4f3A/cl0/cdUjKTvgQa/jUW8tszY7xckD7xCttshbERQ72TUNTyCiiLKwUMbGChP0QgNSRaANIk3wjCFPBIFdQ1oWcZZCtQfCDFqSXunhqZxUa279xle44uOPMXZoP7X5hFLSRK21SeaWYLkO2iJWEuk4mFKB3AFlcjLf7ohwFuS2II/yTgaPHdCjA8qZRSEDYQS53Wm40r5NYikiS6Iu20geNZFJCGnG1778NczoAouHhxlqRjhhguekpK4Cz2NuKWbkzRMszTfg3vup3HAD2amjcNl6dt1yPVbB4ea7bmfs7DlYngfAsSysICC2DSqPMIUAsgxLC5xLIpIBhGvIwggCD1GuwvgM6cwC+fGzjPxwP+nZi50x0j6Hje/fx8XjJ1l77W20p8k3V6jesY+0GSJOTdK/FOHJHFUMSHxQxlDOBEFuYymL3LVRlgFXgm1QwqDwEX19TEyNseORh1l79U1wPFIUZ3/4OjLLWVle4NSZY4QufPbzn+fI3/4jKk2gbLHlvg+wdmyEXu0SZSkPfvrTnNt/AJZmsS7bgpmb7+TViU7TmTICLIfOSJXBNp3xsfc99yx9gwMMnztFohVOMSBOUwarfUTLDYJIs75cohUlLIxNc+7bL7H9yj1s2rAJMkU4MkaSpuT1lMV3jqDjVfqv2sa5t/ez8sND2KtN9GAF1pc5G85izWbM/NN+SGNqv/EZ2lWbcHGJwbFJCpmmaeX0NhN6wpgeYwjSGCEThKVAKFJXox2Dtg25ETjFGjoFk2sWZ+eY/95LsLIGuaIiNb4KaEuN7uvHft8+Hv3UJzjyD3/L4LVXEYar6DiErVtoFD1mXnsTFtfInRxny2Y+99wn2dI/wNQ7xygoi0bUxrMdbEujjSHWCstyOu1+tovJNVNnz3Lh9HlqWHz9qz+LpTXC6liP3m3K64pIXbp06fLe0hWRunTp0uU9RgPOu08ALGiZlL//x3/gtVdfxTaQ5YrQwPpt25k4M04YRWgdYbYOsWXrZUxeGMVUPGyT0ldPKIoC13/px9lwx01c+Nt/RvoOV3/4g4jlNn2zMZNxi6xgQaPNUr1FNDvK8tEjhFNLRPV5gr1X8MBnvsDIS98lKJdAK3SeYXKDUQbhuPhBCUtb6FyhmyHO+AJ9bY1uN0gzxfLJ05CFRJNjZK5FXHbJCgFNnVInJ/cEO559mKGn7mcxarBudB5HQLFQINFAnvPUT36Rvfffx/f/wx8zevIYbZWienyufvQDrJVsFg69TePkedA+JGBPrdJfqFBfXaOkNTKKUQjCeoNC/yCBZSNbbdTaKlrZNIsu0rGoxYJqUOLyK3fBrs20L06wSfvIik3ejChgCHyfVppw5J23WVSSnk1DJLPzuGUbWY8RyiCwcT2fWDY7H2pm8LAo6wATNXBlRo+ymTl7jjyRkIGXQTHrBO86tQGy6Tabr7mejb0DLB06RFkEtFyN3jdEz+6dZCsJsVa0pGL9xs0Iv8Dq8gpZb4UobDN5/DBX3XAds0vzZFGDO37ta0xGKzTW9/DMJ3+c44cOoIUijiOurg6wtDhFHscY24BnUSkWyGROuxHhWoJCocbC+AqN0Yv4NUOzGJOFIcw1Sd46ztK5UeL+Io4EHYVUy0VSo0gXFjh17DBTJ06SZym275ALQ+wKckeA3andElogVMfMkboWQghEI6IiLdYFFbxUUbV9zh46yNjRE6Szi9SnZsmilNROWfepR7n6wXvYePl25s+O0XPTXm778Q9T3rSR08PHSUyCQjIuU2ayhMvuv4+Vgse+T3+S/jtuZ+nsGfTSIrlHp2kvkR3hynZRSsK2IQjXwIUgk3iZwkpThJTYtk1mcqQN2jbYpfUklRrceiXX/8bPYg0NUtq4kfb5cSgHhL6NLDpMvvwOYy+/DFmIiQ1FrdAILn/ica75wqfQl2+hPjMOacQjX/wMtz36IY5NjEAeYxyBdDoiUr9To6xsdJrSiVMzSNGpk3e0hScFRjpor8ze2+7i+U8/z1tHDkEcQm+FN195jbn5JWzbpWoUudEY4ZAYKN34Pj76r77OjGMTT89xx2MfRY1NkR5+HTm/yPIPDtD64RFmv/Mm3twyVprj+D6pTjGej3QF73vwPu5/6EH8oMDc6ASO7ghIRoDjgG0LHG2Q9QY9tV7sPMO3bfKwyfqeXlQ5YP3zTzNy8jDZ0aOdPCrH5r6feI5r913H6W+/hB1KPArEjk3DVaUP7+cAACAASURBVEgPMq07o5zSxpc2hcymmhqEyfFyqCWGSlKgPVfnzuc+xfH/8TK3Duxg+shJmvUFSHM810fFIRiJGR3lyIsvdQLCN27h4Y98jLHGEo1jw0RxDFsrXGitsr1nkL1PPMpAPaVx7hyOURhhIYWNxEJZHSunbfSPdIzp06eYPH0apMTeMEgmJWQpUmocpShqh+W8wfbqAGa+iUCwIJtYtTILZ85TsgJilZJaEezbCUNVVJaRHTyMv7jGlaJM2Fwmr7e45iOPkey5gnj/OTaYKitzF2hNjpOPjpNqQduKITQkNZeWpVCVIqFlOm2YRmAZC0cLXCU6zWj9vWhtg3HZvGGI+VNnO0J8rrAtjWs7NCVkXhGG1nHtQ/cxPDVGe2mRxx95mNGTJ8jrIbQ08dGLMLnKxz//JaI797D8zy9y+Mhxzp45TuZkNLI2ftb5HsI2aAuMMNi+j9KGgu2T5wY8D1vC5esGeeEnfgLLcTCW6TQeIjpNdN1xti5dunR5T+mKSF26dOnyHvOuE+lHIpINzTTmn158kaOHDmNJTZxleJUqI28fwuvtQ7kOFG2SUpHde65k5PQpTBaj0xA/01gyw71uV2cc6+9/QM0pMJ6s4i+3kZPLqO0bGbxuN63pOaLFRfAM+EXiCxMgcoKhjTz2+FO88dJLyDDEBiwpUbozTYDnQVDg/icf5+zp47iBRxFBK1kloECoMqgU2Pn8R1k7eKhTwS7TTuNOtQRpDKWAtTxhz223UDKC6OhJEilJspRitUbmeFQHB9m9dy/vvHOg0yqlDUQN3v/Uo1R7Ksy8c5igfz1yro6bCfK1kMXlJYhjBnuq5HFIZjmQ5izU2zTmF8gW5+ktlWlkWSfc2/NwkxidK668Zg8bbtzNxbcPEmQZ9TjG90BlBnnJ6WB8F7KMy/ZegynVCC+eQyhwKzVipUk9ATLB9TrFWQZBZvl4boVEKZIsZn21D9WK8CXY2kEJDyVcwkyzwa4R9JS57/77GdixnaWTw0SWxFy7jX3vu5HhE8eJhcL01GguLNBOEujtw4xPkF4YhTilUixjG4uw4FPatpXl+hp69CKjq6tkp08jCgW0ymg01qj4PQTlEo0kxuqrEcqMLAio+EWKqY0KFakyDFbLrIbNzhiUhP4c+qwSVz35OJsf+iDLbx5GqpyV5UXimRlEtQxphB0EYNkIOgKHci8teOtS87YBoQ25MGSOQFk2laCIUoooiZFGkitJrb8PLIGxBLmWpGEb1leJnIzZ+VnmFhbY0L+e6dMnafsuY1EDNT4GdKwvJtPU1m1kfmYOxysxfegkS2eH2XfH3TSOHSYXGjcooJKMUqUPbIuBy3fyU7/xq5xbnie8cAFHGSpuAR8P1y/Qkhl4AuO7KDQyEuy66WaufOI+jkyNYsUZG8s9LL59FKlV5zrQECQaqYFKAVMP8QhYQSF3baZn5w7OnT2POnISKhWGDx3h2A9+AM02CKejwChAG5IwJdeGvOgReprY16S+ILXB+tGm3yLPDfV2m/HJcZpjw52A9yiCoIBOUqRWpJ5LW+Yox0cZi7xW4cTZ08SnT8GGzdTPXEROTKBnxygFASbJKRpBPz79FAgsh7psYzy747qJI/p2XEYUhex/+Z+xJR0RqaNH4HqCKMzwHJuSXyCJI7I4xnZtpDAktiZrNynu3Us4OwEbN8LCKl6umFtd4OTRE+ipBXwZ0CLFcQMymVwaEROkrk1uWWhh4yiLgtQYobDRBBJc5dO7aSsn9r+D1dtPaWaZ1toidrUAcU6tWCSOQyiXIIqhVMXLDFmzzdGDh2lPjtDTs5FMK8y6gCc//SlG3jrE+YvnaJwexWm3AY2yHXIhOovesjGYS8u/M94ntUH09UGWYVotKASdjCLPI7BcgiDA7w1YWV7GIIiSlPuff46FlSXCsVFyQceJt7mXjR+4iRvffwuTh08gRyepShdlmqwfWE8iU/p2bGX8+GkYX0EryEUDLrsMGm1kYxVlG3oNRNUyeC66XCXXhkwbNDZauBhhY3CQlkP/7isQwiVfWKLZbEGU4PkelgAtU7JcgVvuBG2blI3vv5kLJ45BmNJeWGTp1GnwXMppQHZJWdyxYwdvHX2tk18nnM6iWT8AEspRZ4QuUSnvlkcbBEgFWGgN+D4mSukvFPjSF78Aro2xDPqSE8nuGB67IlKXLl26vId0RaQuXbp0eY9R0Plhay69YMHv/PG/Z2ZhjqmZGeJWG69SJpWKUmQR+wb6i9CMyRfmGJ4ex6iIoJ5ge4a2Y+iXRS4cOcPF4+dAadxWRjozD4ttmlKR93jUdu8k7e9FTU5DZrDqMf25RFqKeHGZN/75VWjUwbNwLUFgBJ7tkimJKpdR/UXcG3dS3L2V1YunCZM2KvBIXVCWhkrApj178BdWaS7Md0YIBqq88FvfIBjaxOThEzDfZPx7b7H0zhHCksEN/E6weDOkXKkxMTbB+Llh9lx+NTMTi9BOcYpFzr35BjPHTgICq5mhM4MxDhTLKMeGwMON2pDmJJiO7SFOII4BQWKB9H3oL4MtcENJZhIuzEwysjoLq3Vc2Ql/EvrS52N16qExBuKMlcVFNl6xk/DsMAVbEDkK7rwB+kqwOE/NdkmkprRzO1uefpjpoSqyWkCuNclSQZkiqRQMXL6b5ahN7ntYV19FPL1IHsa88eorXDh6iHSlSU+xTDw+ynw9QosW9Bd44Ke+TKtcJgx8iFMIFSLM2U6BpcOnaU7X0e2c5Vff5PqHH+eBJ57l4jtHiOeW0Y0G27fvYMtHH+f83DytRFKze4il7jiobEE2sBW1GHXa2wKLTEVIKwO7M4bW5xeJpWY+TojCGDU2RtZaw3MslFa4AoTSCKWwLi1u6VgEQ+u59o7bqG0ZYvnsOXQukb7Xad6reFD2SWVI5mpyX5D7gsyHtknI7BzlKHBA9FS571M/juMVWTlyFFaXSK7ciTy/SHj8IjoIYX4Vu51TkA5eS1E/NYqeayCPX4D5kP6mxfzrh/B9ibQEWZZ2gurTFMtxaKUpwzNTLA+fBhliNIhUII2hblmYWgC2BKEgKICyWZmcZun0GPl33iSZXmDxjbdh0wYKGditmMtEDzLw8D0XN8wwwtBc52PfvIc7n3uGH/y7P0EdHIdGRMUtkK2FnXqszFAwHiXp0KMd3Dgm6S2jihr7A9dx7c88x/y2Gjd89scw/T00jp8nt338oEK2YwvlrUMsLs1Cc63T/JfrTqq/csANkG4Vs2UHtfe9j9hI7n7yCcZfexXm5mF8DG96HD07io2mJSVUK2jXp5HFZORklkL4glwrMDa4NovTE0wNj4AG11j4wiZXEiOg3NNLErexLZskSvA9m1Tm9O0Yoh2u4l5/Bbs/+AH81EUN9XHl3qtY+OHbDKyl5PPLiGbYaW8vBKSWQOeaTdLFdV3iLKJ49z5uff4Zzk9P4CobnSTEjiS1NFpAannMNxrQV8WsLdNYaVIWNk4WUsJCpDmusLCyHNdYeFFGkCkwgqwYwLYhatqjvVaHaoGLh07QPn4a6svkRlO6lIeUOx4yCDpNdVJCuYRqhxQCH5XElJSPSXKUNOA69G7dzAceeZALI+fIhCJ0BUnYRlZ8cqvTTjh/6gL10bNw/U4+8+9+lYuvH2bbY3czs7LE6B99EzmxRlG7KHLarmAtD9HGsHZsBHsiwdGC9T/1BMnjd3B1cR0Lr7wJlkupGBBEihCbvhtu5X2338XE/DI4ATqVqC1b2Xr77Swvr8DmzTz15NOcHR5Brq6BzHGMhZcl2FJhLI30BNoRFK/dxce/8Ut89y//K0xMw0qL+rkxhFeB1OBKQ14FejzOHTrI/Q89wujxMxCHfOAbv8DE37wMazHaNqQyw7INruuipAal8UollAFjO9hBgKsFfb7Pl37uZyFLMJ7dFZG6dOnS5f8iXRGpS5cuXd5j3o1oeFdEMhbccMtt/PYf/h5KKepz82jbwqQZ/XaBds1n6MbruPOuu7mwvAATF8G1GVyTeI4grAkS49PXcqCRsfX+u7jx4fsYOXyMsigR9wWwVqc5O0vlg7fw4LNP0/r2AQpZROQryloiEkVueR3HgsqQWY6d5Bgt6BlcT9s2EDZYPHOa+omzOMrCjyRuLqlaPmmm0Y2Epf0nsGdncSUU/Apps82h//ESk8eHEaspPblLLwW0ZZM7Ibmx8YVDyQlI8hTZatKen6cxOkWpndCnCsgopIhHQbgk9YhStYq/Yzt3fvpjDJcthBGwtIxJ2ljGUOgpk2Q5ux5+BF2qkMzNcu+zTzFfLpAPj0Kco40m6CmRkkO9Dk4BmSssoYDOHl4LOsHAmYJSCdZWWZudRrUjgmof6eb1ONft5UPPPEN7bY3l4XEYGCArFOi99SZWNwTsfvCDJBjC6SkSIUh1xo0f+TDbnn6YcVtj1vm88Mu/zBt//TeQxVCw0anEDlOqukoepujUgckm02+cZeuuq6ntvpJVO+Ojn/sMO/bs4p2DryAHq5SXc0RbIo3H/OkLHP+LvyWbXGa9tKkpjWiGjF7WB4UiZnGNILL4+As/yVGZQqvF+597nssvv5rxuSnIVoh9iWcF9KQegVNirmCIixZ5pKidnSEyLYoFH1srjMwo+x7kObYxPzq075MvLJDYNkMbNzEzOQN+Adoh7//wY9z5kacolsusHTmNKzWuNJceLx25ws01tjSoepux42dpvXMW1ZRgbOTFUYqRzyavh6uefILN113B1JnT5I5ASoVdLaHjZsfdkCXEYRM7i6n0VChv3MAdH3qA695/M2eOHkMLoNUiWlnutE2hEFLgSQ8lHJKih3/HzTz2C1+hsPMKdmy7EnHbLhoVgzw5wkarTFtHMFhiz08/j1stsbpah9UWbRUTZTGZlaB6AvAD9FKDC3/zPUg9KNUYuHIr9cVJ2NAPtSK48Au/+Q2k73BhaoIwScEInKBEtVJmfHQc9h9l7juv0L4wB6Gg6ldotWJKzzzI0O4rUVGbZGoSwhxXCDzhI3PdUbK9And+9SvQU6XhaDb7BaZeeQM/juhVEqMzJJqgWKXtKfR1l3HFp5+hPlggnh4nCQR5O2FDuUyeGhSXbmyXBHI7N7gIcqPRQDuN6L/iciw/IGu3EEZT7auxtLLIoz/3M9Rdweg/vcjyiRGSi2dYOHgQOzL0pwrlCaTQ5FqjbAu2lLn+o09z/sAhPMfGqZZx+2uc+/ZLMLNKNS8Qe9AOMqQvSUouSV8fOx9/iLVbr0dcdxWP3v0Brr32asbfeQuEwQiDMQpXazytcI0GNG3fwmzo5ye+/GXe+MtvQS4priXUmgm255IFPqgWwhKErQhRLaPiGDZt4oMfe46JqUlMYxXHdylaFra00FpjabCLBW67/XaGR0ZozE51BF2dce3Hnmbh0GlKuYeQElUroHtdEIKjr75BeuEiK6dG0Kcvsu3ya6lPzOK5HqGnUAWD8kC6kFsCKWPM+gr33XUPJ/7177Pw+lG277kB6buEqwuELkCFUmoxc+4i6cIKaM26O2/jnh97hgPvvMnuz3+CJz/+HN/82q8jPQfCOpQL6CzB1wobhbQM2gFsyKM2x/a/AyMTYAcMbdhJK9U4gxsYvPZa1vIGz/zBbzIXt0mmF7j6jhsYfn0/Vtsw/oM3KPRtQkYhuizAsRAyx2QK33SWrsolRhiefeEL3HjLLRx55yAV1+FnvvrT4DnoS+NsXRGpS5cuXf7vIMy7ftEuXbp06fKeIAHH0Pk1TMcYcPPDH2TH7iv51p/+GWiLUrFM3mxh+0XiOIXBAbAVj33mk5w6cJDGybOEU3O41QJtX9MbVdGiiLtziOV0mYHbb6N/XR/Lh86y8vrrbL/zNh755Mf49//6F6HcS++ZBUQakfgZiafROdhZgPI1kCMsi2KoMNgktkPx/dfy6Mc+yl//1m9jzcxTAXosH2VBXabk+Di2D8qi4kBdNlGAFA4FxyewfdaSGD1Q46anH+bQiaPo8yegoXCVoGL7rKoEPAeMws8NDi6hU4OSD+EiTjFARC1yZXHFow8xcM11vH3qCNcOXcnS4cMsH36LPiGpOxZ5tQ//iqu4/bY7efuV7yMsQ9+11zHzNy/iJzGSmIwYYbv4kcTCJ/Ft3DxHC420O7OGngJUx8mQC6BggeNDpvnSH/4pf/Ht79IcH4bZCzz5xc/x97/7/4Jbhd51sHaxs6FOc0QQYNoRoljCJAn0D0KxyG3/5l/x1p/+Oew/Q6W3l1ZjCrauh9mIal3T3FCERkRv7iC0z+quIdjez4ZnH4a3jjL/2usQrkK4wsDO27nimmuYDZtct2cvRDH/+Ad/RFVJMrWGAcq9g6xFITqXUC3A5kHYugmU4Z6b7+KV//hfoL7KOitiiRzWbwHlwdRKxw3kO3hxmx4LWlaOynJ838exXFAa9S8SKUaAVDbK95BoVJZg2R6+sMlkjvKA3gIsrzAQa/53hPmXR2kJ2paFY1yKjk8LSAXc//nPsHHHTva/+iZTbx6nvLefpYP7OyneyoKKz4a9V/LBpx/hxW/9I2tnh/EyGy+1aQcafAuEhGYTJDiWh1AS4dtkOqGcOvjKJ8Ol1eMz+KlnqcdNzGqb/NXD+MToqIUf5pRxCZEIJyAq+EjdybpBWfTpBIFN4kOoJEgBlg1+QOnTP4bZOkj0zf/C4K6rcByb2TfegKFNVAtFmpMTsLwGjoOXdNw9cZbg4KGA3HagEBBsHCTJEghTKPZ2Rkjry9hpncDW5BZkHhTvvYed11/LfCtk6TuvQivBaiT091ZZWh6HUhGabQbsAGMESWWA+3/ykywE8PaB/XBhFEanwAsohi0KRqBlgdSGyKezWTdQzAUmz7E8D69cZNOTH2JoaIi3v/cSrZOnCdIctCYv+Gy68XqmLowAgis+8TwTJ0+QvXmQUjNGIGn32p0bpvII8oC+x+8Dx2X2xVfo0RZpFGKXAtrGQjgORjuU04y21wY77TgTvT4e+OwXeOn1V6GvCsOzcP48NSsmtwVSGIxU+AouXf6kDiSODV4FVhLY0gdxSDWxydstpC0p54KoYiN0jtaazPZh3SZ+8rf+LS+++CKP3vUB/vDLL4DMCWxBpn2M1ljK4PoeSRJDweu423or7LvrTgZuvpGXv/67bIs6itx4kIGXgoJiqY84jDClPp753Oc5eOEUC6uL9BSLzL/6FnYqESiUpTGuBt+n0JBsSR2Gsdnwb7/ArQ/ey9998ZfgyChOJUCuLVEsl8nSHCkVbq1G3+bNJFrTmBiFngrUQ4gFrCvA5l7Wr1/Pwg/eIEgkttGkjkY6YNs+WliYROIWquTthBe++nX+w3/6c+769a+TVQq8/fu/BYPr4OQ5nNkV5EYf1hL6dZkVR3H9Zz/J2ZFh+soOc995GSKJb8AHLLdAZEHmGJ796s9z6O0DjL19iJ3r1nFh+DQITeYINBYWFp6mKyJ16dKly3tM14nUpUuXLu8x7zYO/69OpJfffI21VpPFeoN8tY5rWbhad/4lzoAkB08yfOQA9eGLDBiPiIxYAJlhU1JksbdI6cYrCV1DND7Lvo88iQl8ll49gNi6nsHdOzkzOgrnx0gwCG0oyJyoBLhQ1WVUYKNlCtJQsjw8LyCSOdlAjd6tm9hULDNzfoRSqUCDjCWZk1ZspKXILEWGoKVjpGuD5+IIuxOMqgSJB6wvsO7Z+yhuGWTt3DhOqHCkomi55J6FLvlYgUvR2AjHJ9u5FTb1Qh7i9taw4xTL2KwlknqSkwqbhROnac/OYNprVF2IMEhbIAsV6q02rWaTbHKCRpJRmG8gkja4BukKPEtQyhQFu0ji23SCazr6gzACRwsc03nNGKgNrSNph2A5uMX1tJebtKdnIa+z++F7OXfkDDQzWIzpy3JqxqUoBKoVgjIUhaZUqJAsrsFqk6mwzQNP/RgXv/19RJqj7JStzz6I5/isjU7D3ddBf5nE0sRG4N56PdYNe2juf5322SnExCKbVtqYWpV6X5Hivj1Y6/uYX1vCeBYzwxeo9pZJVEJGTlEb0iTCLxUJemvoOEefuQjTc9z9sWc41pwBK2V9q03ddmDndopXXYFMbXoXmwym4DiCtR6DlUlsS2CLTnitlhJbdJqoxKUdm0xyCnYBz3Zx3YCyExA1m/i2T67yTth2uUAqQyLXEP8vR+oYkncfHUHuaPJMESmJKBex/ADl+WRXb+Zca4nk9dNECzOQawqZRU0ZlJQoKbniql0cfu01WFmlahdx8Il1AlkCJa/jNMNCt0KKRlByXaRU+MrGw0XikAYue55+nKXVNbJTw9CQlJbmKeU5jbJNu9SpuvelpD9zaNiAq2BnD7EPcRZRyyx6tE1v3yA5kNsWeaNFPr8MYUZ45AStegty0xGOohw7UXjSwookolokcQUmVdScAKNzLOPgbR7krs9/nOJ1l7PYGzB4972EtoKpcXqLBew4xjGQaiiu24Bn+0wfPAATY+BamHaTqN5EaBsPB6U1UW+Z2BbkjZSWMsSLTRrDk3B+hiAXlHODZ+VIBY5x0QKyd9OjLxWjCWM69faWYKbgcnFyjGx6BtoxvV5ANSgShiGtdobBAcvinq+8wMSBo8jVFgOthDoSc81GKNiwEtIfO6xNr1I/OQxJRhkLk6QkSYTGwNAA13zmWVbfOEpB5ggDjjKozKXejIirNYJNW/BGZylqQ6bqZE6nRVAbjWU6riRtddaeETZebLPRqdGsGLhsPWmagiswKNZlhmIGzTwnqBbJimXQ0CgUuXj4MKVKmfF33gYBWmi003mfRnfuwb7nUwgKZHFMbetmLGFx5uwIcnIBRwqKwqMgNe2SCy7kYYu+2OKy999OcdsQh3/4HbZ8+EFqmwZZevMw60JNTQr8HBSaojb4jo0tCjScHLFtM3pimeTvDpDqHP3BPRCukMsY17FQWYynNeHsAhVlyMIcK5aQWxhtQcnh9o88wfoN6xk/cBAhO+dMWQYtoJyDijOEBl+7KKVYaYSs5SmrO4YYjRpwbASGz4LtUG7nBK5Lpb+fpsrRW0pc++xTDI8M047qMD0HmcYDCoC2HJRtIYXkzNgY9fl5kIZqwecrP/szZDLDOJcCzd9tZ+uKSF26dOnyntJ1InXp0qXLe4xCdpp6tNN5QcBcmPH9/W/x/Gc+DXEEwmPzYshqzcK0IspG0NxYJd3WS/+uK1l56Sil2SZm0IZWjqj1EaaLsGsHD+27kRf/6q9g6DKYaVGox8TrAqjZfOgXv8T3vvqreE1DDZuGEFgPvY/kxHGcpo3VDMmH+jF5BI0MAh+U7Gz2c7cTyB2nrO/bTHtulZwcxysQqZDyliHaZNz/zOd4+b/9GQz1walzbBEujTgkNxCXilhfe467H32UkW9+n3tuuoH//Lu/B9OT2FFKMcuxtEIraLkO7rZdfO3XfoXf/MrPQmMNkUl6sFAWRC7IkujMnkU566SNMBFJtUozb/P4v/kl/vE3/h/ABuOz8Y6b2Lt3Lz949RXUuXMQSRxs1huHJjEtnVPWDgZIXI0WurMB0TbK8SBw+eALn2F7rZf/+Ou/CbnDQO8Ay6uLHeuCo7B7+lCra2zecz3TC7Ow1qKQxhhyAg+8HKrGJhYlWr5Ds1Tj+kcf4Oy5Y6TnTkB/kVsffYhtvYN864/+E2ZjHw/tu4vR08OcvjAM62psv2Y34coyyweP48QpA70llvOIDBdyiVeuUkktqo5PvNZAFHzm8jXoKdGb+djNkB63RJSvElhlWq5NWypi14VKBeoreL0uj//CV/jWa9/vZLskAuv4RZxmg6LJkIGinSSUgiJZO6LsBURhi5pfxrFsjDGoPGetUCK3LQQSx6R4WqKSjMD2SXOBsh2M0mxcN8DkwgRuILAwZBmIHhdtW+ACfYPQkBApkAkUXEhzyFOoFCFXlJczhNVxQEFnHDG3ILcBobGMxNYgMGSBDRhQir333EfJDjh74jTN8TkCr4gUCmnFoDS9OsBCENuCyOrYBy0JvSkYMjJyKl6ZdqZoWaLjKil5sG0TbNrAB596lKN/9xes/fAwdt1gl0t4N+xm3wP3sKyhLF3yesSxP/tjwLA59BFGMhXY3P6nv0q1bx0v/tLvw+gsFBNQimK9kyekEBSLRSJPgy8hl1DbBE/cz/pSlYXvvggXx/Dqjc4m3CuwlmVIBJ5VIdM5oPBrAWl7DQxYLp3zLi9Vq9kOGAtbgWUsAnPJJSY00gIlwFUdESl1TCcfjc4lYZl/6VbPa53Ac5ShGErsXOIXAupZjFQaLAfbE2hLUcxsHOUgLZsPfPpj9N9yFf/tv3+L/OhJaCad5rBqH3pxjes272B+aoIep8qCpxm8bjdq9xDJX72EJ1PWZIgzUGN5rQnCwilXAagKh7TZpGxbLOQJeD6lQpU0jnE8j4QU1zJYay02E3ARyTW/8/NEvWUu/v3L2AsJ6vBpNroemWqxctM+rn/kUY597+WOW2tpEWwXT0vgUkOdhgCbtV4b3BLMpyAEA7UerJUJaqUiI3mbILPo83poZjGVSpW51gr0eFgFF91uU0kMtihTz1PY3ge9fR0Fb2wGHE3/TTezwa9w+tvfhZ6crU0LX2lGagL8Mqy02TF0FaPUuee3f43X/vD30YfP0RcbPFzWAHZuIZ2f49kXvszf/N6f4NkeIqiR6pjHPvcc+48cYGlqDBYWAIe+BGwjWSKhgkvLltBbgkabSu7T6g1gQxGEDZMSrlnHzice4OLv/Dm76gan5jGxMsOGPTu5uHwRtAVhD/7lW0nXlmBpGaEFBSmBjvNJ2RY4NqSG3p4BFubnENa737QSu1NzQMfD5Pwf/y7v0qVLly4duk6kLl26dHmP6fTGWD9yawC4vs38cot/euMNbnnqw8zkEb0P3sSSGyOjNpbnEjdDCtddyW0feoCJqSX8lqS9ssDW3i0sCKDmwfQkF06dADvj1l/8Ghv2vY/JT+sS4gAAIABJREFU1/aDC9tuu4XDf/7/gVOgVxWQEkLHYsu9d3HPZ3+CMycPYK0muNqi4FaohjZRkkF/jc//yR9w+O/+AYIAyhXCPOTWX/wy6Y4hVqeGoeqT5QmkGdu2X83MlnVU9lzB3U88zJHDh0izFCsDlRpMo8nY/qM0z44xn0XEKMyFEYSxKGQG21gktoWyXXQ75fXv/xPQ2WwNShdb56wWc7SbY2c5plx4d+aJWqmfxbgJvsNqfxmrv59saZlytYfV82dYXWrghjlpJPnlP/sj1u3Zxf4Dr5AZSR82Riu0pdGWweJSJpKxMbYLjsPYzAxH3zgErQhcQ2QlnVGPdkKfXyVaa4Dvkq2v8Niv/CKFnl6mTp9BXL2dKIsIbRuUSxQIWo4E2yPKMqobqrR1BvOLTB84yalX36bHKyEaKSOHT1FfXKJYLuLqjOXzF8imZvBVjudZZBbEKsc1DtgWMgrxBnpQBY9FldDe2su1P/UJlrb0Es9cwLr1RuajJVqexRptog0VNt57C/seup+Jw0dgsAfVnGJ8ZYUgUWQnR+DMKF67jickqqiIVUyQutjCJs1ytGWhhENQreEEAbkRNJMIxyliG42jFQ4SgcYvBEQyQwsLaQRom4Ip07YSTKWAJ1PWZ7A5dnEiMFfs4YEvfolNl+1iYv9B7Kt3c/eTj3Hf009yYXyMdGIGX2oKWqKE6UyyXXKSaCGwjMYxGtt02rE8DcVYExiHglVg8uwIMyMXSVtNKBeQKuWmZx/jlqcfZHJ1kebKErFtyGV6KXFdY8SlvBydox2LFoq04rLxk09w3698mdFNPazbupP27BJj3/x7kjPDFKVHTXvoXBPOzDJ5eoTl195m9sApFg+doi/KSWRMDmjPIyl6TM1NM3rkNOb4eXY/+hA7PnwvM3lEPjnDDqsHRyk2Pf8A177wLGMnRqCRc/Wm7Sw1VpALi9y2azeTBw9RLBTJVE5L5ohKqdMulxr8QgFtwKQxnlCgO1NVrgJLOlQqNVIZYWuDc+lztITAWJ3zLC0wwuq4jQSdc63B0Rrxo+YAgRZg6IhcXqbwlEE5gtxzSWWKUyzjSEWp6JGIjNyG1LHIHZcLIxc58fIP0SOTkBrKhVKnlU3nELgsLa6wYWADWZSQy4yFpUWWL14gEZKsFhCVXdqtOoX+XixpGDAOqt7EOBBYNlkckQ5VYdMAaiHBTnLSPGfvZ59i/uhh1mUOdTKc9VVmTpxj7fA57rrrYcb2H8ONY7A0SRrRu3MvUT2l/dZ+RJJQylJKSuJq1clbArQliNHY1+3l9k88R7plI0mYEC4t4zseM1kTquDZRSKpyXyXZhZS6OtBpRLTSvCUhaUMLUfBQC/+VIPqXAhrCbd//YtM2A0e+cxnCdstZs+chUBSDEEbSbNkoBlSqfaxsLLInd/4Gq998z9jzpzDdwvIWJIhSBwHZUnYOsTtjz7CkTdfRw2U8XetJ6/PMnz0LaLegI9//ac5cfogJKvEtsFWgsA4tBEU7QKldsxGu0quY2pJjLO8RrJUh0yz5+lHiMImzcMnKMaC1bhJZsHyysql4CMo1Lbwwk99kSPnz6LqDRDvipOXLkU0LmCkolgo8/O/8PNY4kdlkJfWoKIjIP1IXerSpUuXLv+H6d5hu3Tp0uU95///Vvunf/LHDG3cwC033siuPbspXL6JbbffDElEGKc4jkN84hTf/c63ySsuZvsgBA6jYZ3By7fTv28fCItSrReExYbLLuPqffugt0xh+zbef/OtHWtGmJJ7Dg0U9Pcxduwkf/df/xrSBInh2uuv59577wUlsWwXXJ/p6WlYtw4yBQZu+fwnmBAR2dY+2LsNyCBwIEn5wV9+k+ytN6gfOcJMVO+4RSwLJ6hgAwxPw1tHYW6ehcOHqQBcyggxwkIiUJbVyYwRQH8FRAq+hZFR5+z5GnyDrzSkKXgOkSuYi1oQeFCtsHTwIJbnQ/8A7YWOK6B+aoTm+XFKpRoHThxj3VU7oOrjFAoYqdDi0igbncPVUCoUQVidf/sLBag3oFgE24b+AfbecjPB5o2sqgz8AAwkU3NMnDtFa3UJiiU+9PzzMLgeenpoWqBsAT5YJY/m2ePMHzoIs/PgFCjZAVW3RNyMSROF8Bzsgk+zXieNMwquR57k/E/23jTKjvI+9/29Ndeed88aWmhECBASAoEYzIyxDbYBY3CwsfEUO3ac2U5yMuc6CbnJubkZHMd2buLEscEDYMtmsLFBYkZIQrPQ3JJ6nvZcc73v+VANzjnfST7c/VurV69evVb33tVVtff/6ed5/rpuomkGMk4whUns2shCDvqqNGqzzHTq2TSVy3PBBRey5ZIt0FPklo/cxYYP3g4FIytwVgFNGbH+8ktheDArzXUtvEMHae18Da3eZCgVDGkGVQ2UDJBIdNdGcyxk3kINVkmMhBnpM9aYYcZv4SwdRpNgJxI7BU1qCz1JktQwiDVw+yoMrl3FhPCzWJVM8KIswQlZlKyz7yiP/fU/sv3hH4BUXHHxxYT1Ji9tf452vQFSIqVECZBCIxU/dyPpC8OmUCCUll17SkdgICOFluqUcyVsJ79gwVGgEl557Ec88vd/T+fIEbAtDMfOLludN+fRUM9+h5ISTBNyFqklmKnNER04RKER0NMGpjpYHkgvwktCtEThKgdjpg2NCKcVkgsi9DSm7BTxHagZAXhNePkw8ulX0fMFDr/0LDu+8RDsOQh9VaLIwwDOjI2StH04Po6oNalPz8DoJOHRE+x66ik0TaPdaRMrhVZ2SEUE0gdLEsoQYWm4joNIFxb1AZXyAImwaTTagIYUvPmh/tPnN3hDVNMVWTF1mvWJGQvl1CAhTdCTFCFTpCZITA3Pb0G5ROIHCGHi+XH2APT/pAS029DxMfNFhB+jRQrcAmuvvgoMgV7KMxd5+CrBdl3yjgtODjVQodWZI0lDqJTwvQBhmMQL272EbaMsiwSN/GUb6b9sA8rSKebKLF67hg3XXQWuTbFSIbTA77RhtgMjM+z59mMwNYeuAUhyAmZe2sXk9pehHeKmCrHwzNMFAxYiKxiXUnHlpstZsmIFUyLi/IsvBtuhZQgo6mAaeHFIkLdJhEIrlPBrLfRI4mhZv1woU9h0HtVrN6Oj4ZCyfPFSLtq8EeKUw9uf58hLr4KSkKSEAjTLBZlCrkCUJpTXrsbMOZCmIHQ0yyTQUzxXg4oLSQRRyKOPbwVXRywbYO0FKzKFUU/pK+Q4/MqL0KoBCTgandRHiEImUtomFjqtuEWqGTgISggswM7ZHNr6GKPf/B5EKR0SWiQk1QIqZ2QHTFrIKOS57duITp3izSD4G9cxBgotu7YBsXD+6W/mKf6PC7ZLly5durxldONsXbp06fIWkyKz/5KqhTe2CmbaEQ8++j0e+McvMdFqwNhZcAS4BYzRefIpBIZG2K/DpnWUb7gGXWnoSjLz9e+z5eOfYXb8DMefeQZ27ePm+3+Bp06OwclZqBoQBQwtW0508izzp05iDg0Qk0IQwsoVCNtC7d6Bo+Uw16/g2tvexexLh3j5x09l0SFTR8yH6CQkOmz8xAfZM3IEDI1111zDYCrwz0zwyoPfpddxaEUpkWvCJWsAF7a/Bs0E4Sh6oohU06j3FyFvcffd72f0wCF2PvE0RqojdZ3AMTKRptXmkj/4JK2ww9GHH2fV0Tk6pEwuTkHAwLhket0qzKVLuHX95Xz/a/+aHbfeItSnWXnb7Vy14RKe/ZdvM7l7F6VyH51U4SUeFDUouDA/CxEMmTazfptEz+YkU4KdgodBOLSYxVdvYfE7b2Dnw9+Hw8dYvuFiRk4cxy0VuOTqy3n+q/8EykF0YkpAw1VoIUhpwU1vo3fdatpnxwgf/xk5r05kxiSWC7aZDXdBSDHWcBMDoVkkvVXmkNCcBcuiUiqSeAGaTNGFQElJkkSQxKQFFz8NYOU53PnJj7P124+Q1DqIiSZqpkmhWEZqAk+bRZyzmAE7x9TufWiWhbRMSBVIi3yhn6BVw2SWSEBfuZek0SHvxVgyJSahaUFaMYkoECoJSwb4yO/+JnuPH2XPo9/n0rvvI2+4bP/zvyLn6RSiiFRTxLok0iWRSrNeGD+mvGIlvZvWM3LJOuRXvpxFp2p1SCU0AtBMrGIPkZ9mjzGJoeRQWTpE/dQJSEMcN48WRiRtn9R2UAKE+j8HSkhFNoCmQpAaNqahk0QxhCGmDpZuoGREGIeUh/qYCzs4Tg7m2hDFWDmXJnE2j0qwEigKkzSM0Eyb+SQEU4OeKtTaaKGJi2Jlbohx20c6JrX5CVBQisFUMS46LQ06Wkw1MYg0g8b6PnLrVnKB3cvsv/0AEziGRBUEi/wcUeozl4PKmlX4jTZRy6PUSXGDGMtxORM2cG0XxzBIgxZKxkhLEOoaCSnWpRvZdPnlJLMBOx/ZCm0PLZHkgHy+h1TXme14WbRRB7wpkKBLiSY1zAXxSIlMIEm1zJllSLASDTt9sxaJSIdIz4rpHSUR0YLJxDUISjluvvMO3EqVrf/Pl6k6vbQbNWQuIhUGWZO7nm3zS5JMjE5jBlev4oZb38XB0yfY9+PHwSlSLPcQnpnGihWGZdJWMUm/xob778UydA5sfwn/4AhFaZHOtyBv44kIkFR6K6z9hXdz8uwoM488DTEMXr6JqenjMDoJbQllcJRNtWFgoGOIHNNaALZCJD65KMKlgmuVqUV1mnSwyi5e0AGh0OQbB83Adntoeh6sHICbr4SHtkHNx+rPEbXGIEhh6RAMLeZt51/Mc1sfo1fpxI0mQtdopxGLV69g9df+gF0HD9H81X9gSOSYlC0YdKDZAS87R3s3rqEy3EvrxYN0GnU6JQmtBM3IIc4ZJl2/inMvWM/RB/4nGBr0Fjn/yi30Fnp47uHHMnE09uDSCzln43pGv/N91HQDJ0zI2Q6NqEOsMvVRBKDZDrf96Z9xYmaUA1//V9BdiCNoN7HjBGVA5AC+ji4NiuUS9VaDfKFMp9OCcxdBYwJGoYRBUwRZEi2XgySFUOGE2SWYCkj0FFOPSeOUnmoPk5NzP9eL3hA8ecOV1KVLly5d3iq6cbYuXbp0eYt5I+bxZpxNgO3oHDhwiIcf/h5p6EMnZFHHJN9OKJgOTqFIQ0lUImGmzto1FzDyxE/wdu+DyGFg+ToOfvMhmG+xWLcZ85tc/cF7mYtSrCsuIGw2ab/yGuZ8QLFYpp22WPuum1h3400M9y3hrre/k0O7d9Kp1YmUx9EXnmP04El0O48yDJAJeStPEnmgFJMHjsNYHc7OM7vrICNPP0d/vszkqePEfp2+dkjS8iiuW897b/sAxTDP6NGjsNjBb8+iVAyRRHVavL5nN2cOHsaSAqnpJLqBsh2wdEg8JvbuZu61g9CROL5PqAmChcLxqi9YevkVTE1Os3hgMadGzkAQsP76G1m5+Qr2P/QI+7a9SPPsFCuUyWRZp3DxGqLVi1EjE9BMMD1BTtOZjzpIK/t7vBGXsBRIdGLLoSVgfOwMvLQflEF97Di3//0DnPHqHPvmQyxZdSGtU2cwXRepYnq8NqVUYfesxNqwkVrHJ52Yg+OjlFWElSb4cYytaxQ1DVcJVBCimznSYp45PWXJvXdy6RWbCP0Os6fOYMQKFcfESuLJBDQdx3SJvJjUzWUF7IP96MUi7QP7oe1BuUqCRhRH2MqgPFlHPzNLj0wpxAIdDZkodNOFIEULE4qpQVjI0VIhvpbSdEySYp7UdknDFDcycZoxudjAD2P2HHydyRNnoN5hfO8RZqbqSL2Iqk8jNUmsk5VjazpOvkzSCshV+4gbHvVmwPp33op3zhIuvO02pGnSOXqWsiewEokf+IicDV6A4zgkUUQwM4XhusgwIvED4ijGNk0iQ0NpoFAYKkFDoktIhU6kmVkHk26D5SC9AKQETSPVJRExsS3Ryw7tegPXcGG2STkVFDDRYomQWemSkQqcROAXLDoiJUlS8lIxIIvobZ/eYg/NsE1saUzrPr6KCcoWN/7l79Fz3nJGdryKadl4SYeWkyBLCq9UImwHVDdfxMCqZRz4/g9Z2nKwdJdJo42eczNlxrZgUQ/X/fmvEK4dovbKAag3aQzkaVgBJAk5oZCxh1AJtiOIpSJBoRSk07OM7t7H+OtHwPfBNHCUji5M5lF4acxlv/E5et9xI1NHD0GjCUKglI4SAk3oKCF/7krSsgioEmqhA0lDZZ7DLMalpSAUuSRzhCkgsA1UweHkwQMc2fEqlPpIah59VoHeIEWLdQSC+I1skozA0bj+Nz7NgVOvc+DJp5mamoYVS/nIb/wKJ86chjDESlLSMCSnG/h6SnV4OVPHz6DmOoTHxtBjyBcKNNIA88JVnPu2yxk9eZSx5w/gHT8LBZOrf/Mz3HTLzez46nfoLfTg25KSsBCxwjM0fNdgNupgWzoEAaYmcAsOMgyxTZ2ppIHsyeNFLaSjIzUNZFbSn491iipHM04giODoST76u3/MOatWc2j7C/RVh1DtTKi/9bOf45nvPIpqd8iHMX7sESpF2lOi6dcZOTRGuP016O+jPTeOcB2WaXmSWovYTqGscf3v/xqvP/4ctZEx8qUiQRqhewotTklNg8/92Z9yZtd+kn1HSFWEWtLDomVLefUnT8NMG/yYD//JH3LcSFh38XpGtv4IUexBDwClg2WTKJk5MAt59BXLGSs5nP3uVi793KeZLxskx4+SDwxCC5KchERlAleq0IIOFMt4Xocb7v8wt/zWLzFx7gqi7ccoxJIor5AsWOQMAyKJLjNJSAqddMFslMoU18nz+d/6wpsLKxZeWpGiKyJ16dKly1tNV0Tq0qVLl7ecbA26eONdrYAwiMjn83z1n75E6nWwLBPLMpgzEjrrlvD+L/42uw6/Bj7k7Cr+7iP4JyZgTlHw85x+aS/oGo5torw681aHE50JgmVLCMdPsWbJSmI/RI1PExMTEzB3/Chnzo5z9mcv8NILzxOqxs8jPcJhqAV9eoF6u8k7HvhdRuvThLNzGEIgRZqVpoYem++4lThJOLnjFYhiJJK8hDJ5po6cZfzVI0ztfo2IiLUfuoWw38SfGKPgayiRoJIIU0AaJ8RSYOTzyLzLx//k91m0ejnHnn2ZUlvH8SJSy6Vpgoo1DF9hSY0zM/OojsepvQeg40Eqmd5/kPHjI6gwRVMaIg5JXYkXdfCFYt0F65kZnYYoxUihoJskkY/Us+yJAjQNDCmwnQJeEEAUcdUnP0K4Zjmdkss1t93JS9/7Ic2RMahPs/meO5ifmCBtNOmJUlITvDRFDg6hX3YB/vEDsHoZBB7e/CR+2aSkGbgI0iAiCSLQdGSpSNRTovLOa3Euv5A9P32S9ulTaBFUsNDQUAWXMAlJkxS73EPcaDFIHpkoxqfHKJy7DPuCtbzj879MfbhMq5yw6rP3UIgiamfPIlwDX8bMOClBn4XYsJp47RJ6rryITe99J4cOHkdaJh/8wz9iw7U3sm/bC0ShxDcs5NJhWq0GolDEz5kkQQsW97Nsw/kMXryBuVMniPMWS1Yso/76HuKcILY1epavwKn00PIDLKdEMN/GThTh3DxTU/PknztM/XvPoO08hiEEHVMRS0VvKlkeWEiVkKgYTWXCD3GELnQ0TcPQDRCQFgoQZWXRjmkQBQmlapFmGGfxyGKZGz//K5waght+53MsuXozZw7sydwbsaQv1Sm2A0QKHZmQ5HOYbralzLcNPCMl1RJSxyA0NVLLBFtHphFRT55mThFoIa3FZT76N3/Eqtuu5nB9jPf/4q8yqaUc2vEiEwcOw1wTwoiCZeCpBevOOT2ARXD0FLWd+yBJmS06TDoh2JKB3BCJEGi2SzQ6w+EnXqT21A5ohWg9PSg/wQ0NemOTea1DpClkzqLTSd/cBimkhlJmVma0UJytJxIhJZ6uuPIDd/LJB/6U/3jw/6Pw9rex9LJLmH7i6czOIYwsdqqJhYlcgcjEIxUrlA653gGanQBVKaMWeph0IbFQ5IoVQinwpSSVMnPgRQHmunXIiRnMVCNJEppK0r/xAt5+3z3kBsuMnTgFYYxRKHJ2dho5choSAX295BYvYucPfoA/MUHUCTHjbGMgKsGwC4zvPUrn5FnUbJOK4eBqJpFMKa1dzsa3X4vjWsy9dph+vcD7338P1Us2sv0b/86Ox39CFRc7jIlaLVZTYlamBFtWs/4j72XiwA4iL0akEqEZtHMmtcAjzINnpbjrz+Uz//dfcLRRwx8ZQ0WQJILBvsWcac1z0afuQlaKeC2f5NxBxkSHy7ZsYf8zz5EsH+TmX/osTz70PdTZcWi3KSoFhk5ogLJg4y9+BHXuaopXbEIt7yE+dpzexKBnbh6zWKbdX2HlRZvY8R9bCc/OIKQgNU0QGqUwpteq0pQ+O7b+kJkjZyjO14CY0GszdeQYtBKMMEWTCqUbnN23h9Pbn6dy0WX4p6ZIWiml8gCNhs8199xLcfFyLtj8Nk4++xLhgSMQKVatWcvJH/0ki2zGKWVcpNIxYx3ddZBRhGUUsli10PEdm207X6HVqpPuGsHWbTpaBzTJ0ssv4913vY/9O3ahy+wGLXRBgsxK4BW45Spf+M1f/7latJBJ7opIXbp06fLW0w0Nd+nSpctbzn+61S68s9V0sDSBnqYYSqGnaVZCXCqQNqbYPnYULrsAenPogxXmmrMMX385aGRxAteGUo5gagoVRdlQXGsxoHQuu/p6jj27ndbIKYQpULoC28h6R6ans18ep1D3sU2L5VddTv/6dYRopAv/1m01mywfXobyfWJDkLtsPeKKC6AimSjCpe+6Dm3pAJrInl6kOSSajkOCNzmCQwLEJFHI2ks2wFBv9vRV5vrJjkq2Hl6pFOrzHDx8CKdchERgSw2BpB4FpAuOjCQRxFjIVhsabfCzzVVIhW45yOk59CihaJhIGVK3su8xMsGhnzwHcQw9BSI9oRF0yGOjxRokoBKIJShTRze1LG4WR1QQtA+dxGwnTLbrNP15aM1BO+bQg1uJJ6ZJ0pCJXMysLWnp0DR8fCcCw4ehIptvuwF6czC8iGYQ0e74aKZBqMDM55GWjsrKVigVitCoQ+AhkwiVSmSiaDdbMDQIvRUatTlybgkHQQ4Bp8eZ3H2A5pFTHH76eYLjo7DnMCeefYXY9/ADj7bvoWwDRAIyIkkCbv2FO9GrBZLePEO33wJxwOTpCdLZNiKxIdaxSj287QPvg2VLcVspxbbCkjm0k9OMP/kiI9//WdZ59fI+Rp/clgkFaQIyYXD5MPd85MOsWHc+UW0ebDuLtUmB2rGb+bFTzKdNpo2YMAxxvIShYpUmkuaAi29k3TpZ94lEQyJUikpTpJRohonyPSjkQYJUCtvJtphl1ocqCPjZNx+C3a9z8OkXOfbqHvAiKBagp0S9YDKR1wmW9kAB6C9QT9u0HUgXValcsZGP/+P/5FN/95dQtrFmm+RnOpi5MlffdTuf/Ms/Zujmq2FqlGN799E4PcrF528gmauTjM3B7iNw5CyWn2JLhRlJbKBUKnPDZz7NdXffyYXnb8J2+8AtIQmhvwQXrkdi0uw0qflzRMvK0F8BXYNVA1z7S/dRWbEMv2gzlUuhVAbTJpYSt+Jmg7RaiGnGYEZgxNnXhpIgJGiS8ZkJtj7xQyiXkJHP/iefgHIFFFjFAoXePt6ozH6jE0kohXAEJNCszUO5RGhbdDptoiRBSdCFzli9RWjaGPkyuAWQUDz/Qm656UZQKbat44mYsFJArV5CszfHmN9CE2AGknR8jvjACdDzsGgYxqco5gtQLEGlJ9sYB4Ak1SSmF2F3QqwoIadpRHFAkkQ023XmZqd57ic/5sV//xbJVJ3JVo3ndu/gwMs7sxilF1GXIX4a04NNI6jhRzGbbrmBNVdfDrYGg/2YbgEclyBNoKATuhqQ0rdsmBMTkxjFKugmxvA5YNqc8ZsMXb2BoUvWISouzE1y4Pg+7JX9TAgPHOjbfCES4ORpco6FIQCRILQU09KgmKfRaOAfP0t+tE7nqZcRk23s2gygc9poct3vfIp199wKng9WHscpEesaum5S1Su0owbuyhWQpriFMmrh70gMRGCkkLfzABzavRem5mHJMEvvuB4cH3H9Bvrvug62rMZ9+2UEm9fQf/t1Wc8aKc5VG9FyJvgxWC7tngqeZeKHEl9XhL5Pki8QlBxII8xcgclXd8GuPZR7F4EOspzPXipti0uuuIJcJTvfhaahaZAkEZrrQKkCukWiG6QCoij+ealdly5dunT5L6HbidSlS5cu/wX85xtt9l5XMj42xrpz1yKlxJASNwIKFSYqgtJ7bqY0vJTRv/oKN9z/MQ7PjNBe2csSZzGvf3Mr5996G5svPZ/xXTs58Df/QGQL5vwUW5bRVg3gt+ZBpTA7A4ZYEJFsaMcQGdhI+jGYsRS3/uMfMeW1eeGLX8OohySOTpZfMMnZJl59FvOKS3j3pz/GthefZ/67j4I0oN5hSbGPsTDJyq4TyaDh4Id1PCSyWkDGAfQUIZbYsyGxniBFJgoQSFI03N4e/NDPVjenEjQbGgElK0dTRpBL0a7cRCE1aD61k5KhSLWUSIdEKMwU4jCk5OYJkpgwidGrOdKoRYkidmIwG8So4X5u/tDdaHmLH3/t63BmGgMdM2/jqwDSAC1R2Tr3gcXM1Oegp4rYspk156/n6Je/lsXHbAddS0mbc9iOgYpjNMciMAVIE4KA/AfexfCmi3j9378FqggTE2z80N0sOVPnyYe/i+GahO0WhmaSxCqLh/T2wmAPd33mPiaPvM7Bbz2BGqshdIv2kgrxQImb3vNumiOT7Pj6t6noilCAXi0R+hFxs00enRw2um3TCH1kSceIA/Kajhb6BIaiVXZJ0xT6BmBsDtasYcnttzL26k54/hV03SE310bYJk2RsuoDt3Li9Ams2Q62ZtCanAQZg0zQdQPdyCL/5sF6AAAgAElEQVQoSehBK8QqF4iEDpGCwSVQa2bnx/AwjJzk8g/chT1Y4Nl/eQhmG5DPcdkH382RmVEar+2FmRZGKNCVfFMoeGM+TFJFmqZomobj5rnsjttZuXwpr738Ert++jSWCcK2CBMFbhmWLuP2P/p9Xty9nelvfifrn0kE1JugCcqVCu1Og/zwIm7+xAdptDr89B++Cn4IeRfKC4XDQQRhwoW1PAWl2EcDr2Bk6mMqybtlEj8kUQmpUrB0FdTb5PwY4TcpGjaxTPBkB4ViqNpH8K7L8Mbr9B2YZW5mnGa5hFqZg9UrOP+cizj0d/8OWgwlixt+87NMb9vNgWdfxlw+yNLBRYzuOoDZU8KLa1RXnMfmizcycmgfR7dvQ9c1DJmJRkJlRcPiDfEISPSEQNeQmoBqORPWLt3M9ddcizXT4sePPApTk6AUmmmgsyDMLRRqC8tAOTlWXncD577tOp5+9jk6P30aZIrTamEmMa2l58BcbaFnW6L1l6gO9VJrNZBnzmBrFrHhIvsHWXrXTUw3pol+8ANoGVQ6oKHTLDokeZPh8zdwds8uGOyFZgvimHw7xJLZ/SQwJeXUQZkmEZKOjLF1g6jjUymWmPGbiIEKBcOiMNWibZp4uiCNQ5AJCAGaST6KUZ0Yp9LLfNSA8xbB1Dg3/8YXmHvlILt/8BjG0iWYw/34O17IRI9KD3RC7nngr+kdXMSDD36b2ssvQanE5ddcxciZQ0ydPQ2nxtD7lpA2p+DC8+DQMVa+507Ov/QSfvQ/vghhimlrmL6H6XkgoKMgcSzoHWDTL/8iew8fJn38xywxiniTZ9GFyexQCfuSSwkPHOXm2+/jqa//KwQe9LkwN8dQYBFqiuv/+nd45JFH4NXjCK2DJWPsRCCURqwZyGKeIFEgBPlylQ3XXMErtVOkB09w1S234QU+r+3YkZ0HhgG9gzAyBgN5Vt64hZOv7oH9J8APecef/B5P/sXfUFh3HkNXb6Lz05eYOLoHSjlIXcRoE6WDc/4a3nv/vXz7j/8MZ/UaBhf3c/rl7Vlfk2XCfAeClLxlEQQBaamUWY2q/QgtxTt1NEu+qWThJqGRonWdSF26dOnyFtMVkbp06dLlv4D/XUTKBrn67Awrly5DKAhUTJJzyXd0arYNmoRIcL7WT+o3OWK0YCiB8gCIAld99pd44UsPQKeFGG+g6ZAKh5xvU+kpM14fz35Gf46hoQEm95+EGHLKJGfksG2butcmdQyCqoByFfvwDAaCjm1i3nkVG887j1cfehDqAUZbYUc6KoyoFEpoeoJmaIzPjZEsXs+5772Bs8cPET73HI4RYqweoHl0iuHApS1syLs0wjZST0HLnCp5KfCCFOWYUHDJn3sunTPTcM4i6MRwYhStlSA3r2DtH36ScLLG6S98lVJtnESEeObC4p4Uekol2vNN9JyFrxJyOZfKXMi0Skg1C2W5ECu0gV5kj811v/ZR6pPT7PurB+nRTGZVHXRBf2+eYGoeI9UIU0mur5/ZRQOsu+5aotPjnN3+ImmtTiVJEVpIPYlJFno6dOWST2KKKMb0FCxA0+mnl5lOAgULp5InmD4DhgLLRPMSCpGOjiDEQuWK+EMRyBDGAvpjhwBFKydx3nUNppujGGqM//Q5cl4dzbFot1voukM1XySab4Om47kmiUgBH8IYEkl5YatRg8xVUqgMIiKNlt/BvmoDt9/5TnY/v41jP/sptCSD5TJhlFBHZAPdJRu4bssW4jMTvPAf38K0TPTIw8obCFMQagmLZZ7ZeodAN4nyRawNF7H52ms5PHaG9919B1/78t/DqRMwPQqzIaRglStEMmDDHe9mbnyS0W07sMIQLWe+6ah5o5ReSQlKQwkNhCCslKDTyJwtuiRsJ6DB0DVXMokFKVz94Y/y/AMPkLcc1q1YheaH7Hj+eYiDzN3TmQfTyBqgcelJDRI/JFIpZk+JVm0OFFQLFWp+LRNktRgsG+bb2BKK6HTKDr4WZkXvpUGY6dDnWyi/w5wWgC2grwzzTcxIEVsaaFBq6RTRmMKk97fvp3fpEjovHuH08zu45Mu/Tqsxz4k//lc4NkFKCn05GC7y9s//On3YfOvjX6Bw3gUUHJvJY/uhMQ1WthrdkFnNsFAadqKhkYkuiZ5mziJNR0kdHYs4EoRKwbnnwNkxnIF+gmYTLfIx1BsiUrJwPzOIAYaHGbz7LpauXomca/L69x6BV/dSiEJmSjku+8jHKKPz7HceJazPYBRskmCeQrVIOFtDaTnOv+VeJgoeM3tfgoIFxyfJBRpeHGFevJbbPvExdj62nbO79rB09QpGn32BUrWKWWugtIRIh7adYoSSBIXWW8Tpr+K9fop8tQ+jGVCyXJp+h2YSYrguy9suM4lP/ab1XHXf+5jcfYiRv/0mgphkZS+sWM2a5es49sgTCMNEhTHEHarXXME1N93Eszt3IJ7ZRjA9g8oV8A0XegYzJ17BhpXDrL9sM/t//EN48XnOlVWkgHF/nj6tRKrrjLmAJaCVcOvv/TaPPfwgTI3BXI2Syg61q4PhVJnuBETFUlY0vmyYqYnjoCfgpRiBSbJ6HRfe+W4OiA7868OYy5Zwy0fv5Ed/8Vfoo/P0LlnMtJjh1r/5W3b90/eY3P9TCGL6WjqagrZp4ZkJ7oXn40/U0CZaqMSj2msRNz3COMVwXDwlIZ+DMMWNddIoILLSrPfINaBURCv3c0HPOezfu5P+O97BwMAQB//un1n3f32SwfXnsu2X/4QVNZczjWly/VVatVns6zdx4eWb2fXdH8I5i9EtRbr/ID0Di5jfvXehBD8hzpe4+dd+n1YY8dpPHmN614sYKHIk2fkJKHQEb2x069KlS5cubwXGf/cD6NKlS5f/v6JpBlIJdA0CdGTZJWq0KedLNNoNSqU+arUJHASLCyXGtYjBG9/J5gs38aN/+QrM18E00U3QSzZpRxGJhOnZGdAFotqDitvc8M538a3X/xHTMCjoOeqtJkKEhFZCPu9Cy4f2HBXNYUqGMFAm3rWLm+77GIMtnx/93ZfRydGjXGzdxvJjJtNZSsVyNnfPz7Ju+TJsv8n+OECzdJonp7INPjJBIPGaITLnZK86QoDSiKMYA4NEGmhLl3Dj+25n6x89wFX33oUWpzw3+h0qTola0aY+NsrU0VOgQhIUUtMzAclQ6JqgNtekZBo0vAh0GLxoDWPBUZJOFtvBNnFSA70R06nPcWjnq3Rm5lG2QRiTOascHXNgETOz8+TKFbzZOmYrBG+Ew7NzaG6eomnSiAJM3cQSOk1iDCsztzipTsm0COMGPY5JgEQkgjCsYdpV4igimGpAIQdpCGhImRK5LrbuEnViZCozV4iWgmUjrByGTCGnEezYTbRiObpwoNPE00OII3KFHEnTpzkfYGESyIQkSLLNYRecCyNnoOkhU522DFCOBoUC7UaTstVLySnij0zz8s5dnB4byQSVkkbTjxBxipsoRNnG27OXbXsOkHPKWJgM5ss0Aw9dJvg+BAl4URsJ6JYJShFNTJF6Ect7+nn0G9+Ak8dgbhpqIX2DQ4gEZqamoeiw9+EfQiqxhKBaKtNIPDL5VZBoBqnQsg4rDVAKPQqhNgu2DZZF2GjgVgv4qWJydIJ7f/cPmIlCnvq3ryMm5+n4HXYeO4E7PAy2hrV4mA/+4kd47cQh9jzxGPgC5lvoTgFUQk7T8WbnKOkOhmkQNj2o2mBJ8GIQLrbhUtVswqCN3+6AIzn34x9m+cr1HH/yeWa2PoNGjD3UQ5h0wGtCFBFLAWYFLI3USzGFg64iprZtYypIGVhxEZRz1JVHIgLSs6MsKlZoi5SWUDA3w08e/AYk2aa99t4DtLUUCnrmoIp9pJCkQkNhIDVACTQ0pCATc5E4hk0SJjiagVIhuWIvtdl5AN773vdi64JvfO0rb7o7QEMArm4TpxKcPBtWnoufSlKlETZ9crpJuZyn96brufbSLUyPnCWcn8XsqxI3axjSoT1WAxewTfY9vw1kDdYM86EP3cuDf/7XeHPzoIEhJM/++HHmtu8EoTG6exeUS9nGP10HAfGCiJu4Dgz2smztGhYN9vLS66fotJoUNJeznRZmpUyufxmds2fwcw52ZCF0i0mvzUwaYZkFbJFQ9zqsuvoKii2g3UEJHd0ySFHUjhzjB+PT4NWh2aJs2ahI4PsJVDRod7jq0/fzwlf+if2HDoEfUHFKaPWYSMb0WwWqwmUsnINcAQwLLIMVxRKcOondXySsZdHaXn1hiWOnRo/Vw2TiQ18fF52/jqdO7AdbRzNNCtKhfnaEA49+F1YOApIN6y+g387BfJ0Umbk8B4epnToDUQTCAgPqduZYCwygv4/r33YNP37kcXL5IkZk4wYejuZgGwlurohjwfzMLKVqD0GnTsUokBgmQdSksng542MjyERw9PXTkHOY2fZTZpwiiITU0jk9M83m++9j5x//E0rotBpN0DTCo8fYtWsnJDbv+OVP8OT2J6G3THnRYuY5RJpoCA3QTNqdJhMTU4TzNXTA+N88R9rCV10BqUuXLl3eSrpOpC5dunT5byCKIizLolwuE8cxfk+RpZ/9GKP/8E36ptuIJKJRUEQ9BpgWjDfA6YHLLuOcLRdxeu9L8MSLDLtl2p06tbKCUCPnaSxavY4T46eyGJslWbnlcsb2HiAcm8TIOySJB44BDjAd0RcZ2OhMVvOkpRT3HW8nPTpNbvcItgmNpEXgNSHvoiUJq8p9TI2eJQFCA/R8AV2ZkMTIMKDsukRRlEWcROYOiDST4tqNvPcT9/HDJx6n8cxL9GlVYj+gQQiXLYOqiSVdoj1HKds2jbFxcsMDeNNjmAO9xPN1nEgS+BZmqUQc18EUONJEa0dYQGCVCBydRbffzExfgeSfv4tezJMGEbmGjY5Oy/IxKymLmj725ZfTVCZTR0+A5+FeeiH969dy5oePQ89iVlFk9NAuNCIMqTAkaEg0FK2wiVSgDEGqFDnHJlSSOI0xDAdaAY6mE8iUxLUyUYcIPEnJyBErDb/ocuWn7sfXdV77yr9x0TvuYrg/zzNP/wTv6NFsyFQK2h3ytosmBCJNSE1Jx/QggWIALi5KN+hIgW44RB0PC2htWsfHf+d3Obt7Lz/5xjehNQGLipxzx3tY3bOUbV/9LraX4HVC3I+8HX+gBBM1lkzHjG3dilMu0hsExM0p2gvnbsVeTBR79PQXmG6MEhpZb3MsXJyGT1QsIy0TBvqgGUOujB14WLZHa/5M1sMiq+B7IBa6jWSEpS9E1WS2CEqzLESckHdy1Au9yHKVTe+7m/6ePBMHdnP0R9/Gnw3I2w6GbhHh4KMyEaxoQX02Wzcepriphr+oCj0lrvnYJ9j91Hbar+7CqlaJWtPofRXkdAvltdHTGEsqnEhhI6hhEWoGLF0Eog6NOm5d4VT6qYUBObeIPj9PiCQyErhuI1SHEcfGKex5HS0naRjNhV33oCmdfLnCez7zeeYaczz5H/+SuaLCEM0tIm2XKz/2KebKZY587YvgtWAupBJamLqD6KkwrSV89kt/w/6Tx3n2b7/E4kmPetIhKuokKsKROqSgpElq5Uk0AZ0Oxb4KQewR+7XMBRNmpcWV/hV4zYTI74ARoQ0MsGJ4mLnpKeoz09lxjCIwTYqGjeMleAo6lgX5Ipg6NGroxSJ6s44lU9q6k4kVoU//jZcR5Uwa214gX4tIEQSrSjBQQRudQc7OAwLRM4hqtcDrgMi64lxN4OZ7mAn9TMArFSktWcbS6iCH9uyHJKZ3zWqu+cLnefTb36JSKtDavYv04BEIQoyeAVa//3YW33ozT299lJtvfRcv/vNDdJ55FWPRAOf/6t30D/bxs/s+Tw855pfmsiL36VmKK4cZHOjl+PPbINQour20PB9xzaXc+q4b+NGXv0ZuPCSXOMz2mrC0gn3FBSyb8hnf9grntSSntRo1R0NTUPE1ZM5hrj0H68+BkSmILJZKRd1OaRf0LPo549ErM+dgqdzLmfY8vP86ll14ISe/8j36JjxUEuHpEj8vIIzRYoWpW4SFPHq+Qjo6To9j01EhYRJiVKsYwiHsBCg95fJP3s8rP3sCzp4Ft8CQU0VXOmMjo9DfB4lET3XSyMtKk/wW5E2IfAzbJOkEaKmJoI9UBbA4B/VxQDEoNdpeQlDKEsoIC4aqcN65bL7pDl79H/9vtinRill3x40cfugh9FhHqDzJhmXQnoRNF8NEg6Ekz+SBw6AEt330Q7TNlG0/3EpvEDE7cgrSOLsHoyHQ0FO6zdpdunTp8hbT3c7WpUuXLv8NSCnRdZ0HHniANE1JLZO+4aXU9h6mmEiUrmjpMauu3MId99zLyWOjxM0IlYYsOWcpV2y4iFPbXyBs1rB0gW8qSCR2opjq1PnTrd/BWDLIycOHqO07TDrTJC8N8hIiPyKX6li1hIJRomfzRXhL+2nPzYBepeIpLr77nRypvU5nYoYkDuCcPrZ86P2svXoLO3/2DHapD8cpIjyJb5skpo50LGw3hx+ESE1/s5BXLqxnjtAZbc7Rv3SIjddczcGXXyHXWyEI22z8hdvZ9PYbef2b34OGT15qFOw8jYkZEDaFxEQ2IqqJTcd1sAf7+NQf/A6v7ttN4vnEcYShOXgGkIa0J2dRR2voSNKgw6Wfvo/TPSYbf+V+xhpTyIlxhCYYPzvCBe++hbEjB8Brk0416bx0ENkOwNbZ8ot38foLzyKRqIUlVUoohIA4CTOfjBCYCeTDFCOSlPQcuudTxaSkDHLopIkEKZAkFKwCjueTTwUtL2RGBlimoHbiNPM7D9GZmaM9XyPNu/z6F/+QgdXLOHLsEHEUEgXZ5qOeWKcUCdxQ0DF0mgXw8inxzZcQtUbp/cD7UGuGCQ6P89rDD3Fi/0tU7ryWez54L0e3Pkvtpzs48dwrOFet44qP3k6z16T5wrMwMACWjnPOIN7ZEZLGPC0dOhbEPTlkpYdmkBBaBrO1WWxDLnTvaAjpEFgm593xDq68/168C1ZRuPRiWp06adzhPR/9AIfGToIM2HDPXazesomJqEVamwPTxUoNcjjoiaRil4mUQtMg8HxipYFlM3H8JMeffpqp13aTNDzotaCToPsJuQg812bpjVu4+dc/zuGdeyCAqhfTMR2UZUOtxemDJ4mOTyEaKeZcjVyg4bQjeiOHIjYEEpUqJIoaOmnBgqrF2770FwS6R9BpU5zwaGkCuXEZcdQi31AMoZPIlJ6L1mHUIoLxEaK4iaUb5HWbIEkgZ6AURJ2I/fNnOV6fg9dHcCOJEaXEjgVewNmX9zP//FHK07NUmiF9iYWFgZKKKa+FsXKYV15+jtOTo9xw/4fYd3A3sWwjcwbEKVonJZ8KyiJHEEakUUpRWfSGNqXIIC9tYj9AYSB0B7/TZvPbb+DDn/sUabXEmVd3UKvPESQxtJqZexCF6+ZIwoAwDol1kK4F+Uwg/a0HvoiMfcbPnMR1bYJYghHCuYMsv/0GRr/zXYgVsTDRVy5m86/ezw23vpM9//6dzE1WKkKnA2mMu3QxumUjopCyU6DTbKJbOv+LvTeLkuyqz3x/+8wxR85ZWUPWoFKVpKpSSaUZzRKSEJolQBaTkW2MGa5t0bQbz7jdjWnfxhN9Mdd2X4ON24gZhEAgCalKQlNJpZrnISszK+eY48x77/twEt/F6mfwfYjfWrFyrXyIiBPnnJ25v/h/35eagrVbLmL7hRdy9uBh2ks1EIKgucSRJ5+FWBOenUIfP8VIoUza9XHsHDNLdU6fmeD8rVs5/NR36D7zY9yBKsn0aeYO7uP0418DU+MJCXN1qpFLvGkNdzz6LqamJ0mPzJCkivjqTay+72bMBPZ+5Z8gDUlkQv9NV9OaPwOrhxnevJGJN18n8RvMtZvkTEFoCQTgpYJApuRXjvKxz/wJP3n6OQgV+Y5DzYPzP/AIA+s30XjjFIX+ERZKHvV8ghIemzdt5fSeA6hTZ/Adk0AmSK2whYGQGqE0iSXYdO/dgCJs1BEiITYlZt5CWgZpuwFozAs3snblGGef/QmFxKJYq2M3YrRK6VQtNrznLu763f+DN9tLcNEG1l57DY2zp+nfvIVkKcDowgpdQqaCqJrABav4jc/8Hrt3PgtBiJIGBdPGsAoIN8dgYBDWQ9TUEud2/oQtv/RO5mWXkSsvZmzNIJN7X0FXyoyLQZKJaYqqSLjvGNbGMTbffyPT4QzMn+XY4YOcef1l0AZVL8fHP/zhLGxeaDQCgciKG3pB2z169Ojxc6U3idSjR48e/w5IKTFNk0qlQhiGiEKeyDRgsUXZMAhUQjLaB6Uc5225hNrBSfyZJmGymDUFFR0KjS59tkvXb9FwNSKFfAKdlSPYO7Zz5SU7eOHP/xLaKaPaQpMgELTNmFia5IsraA563PTJD5IbHeDJX/mPjC1KbCwmNpa47/G/pPnlH/Hjv/8iuAbulotYs3IV0ycn8A8cAgOu+/hvsevznwfDZXB8nMU9ezHdHDpKMKVEo9BagxZILw8FAWnEeXfeSfPIGRYOHYc4gKqDe+k2nGaH9p79gANpwoqrrqBbdmmdOYG1dgPp629m4eBuDnNFH7LbgulzeF6RsB1ALg8q5YN/+Zf831/4OzbeeS3XXnwxX/rivyLXr4YDhxkb30rjnx/HxsddO858cx6x/QLeduutDLUU3/vs32G4NvNpF/oNkBpSQGYh3pZSOEoT+i20BsMQaKUxlUWMIs3221RMm1TGJGjioodVKSBqEUkQgWeDljhY2JFEk6ING13OIZ0CODZJp07fts2kKqF94kTWfCQF+W4MOsU3BUhBsVSmYwGkvOXjH+HF557G3rSZC87bxL5//F8wMZ25wvwOhZF+urX5bIOlLEgtMDWUHNYsuJwlhcs2Ytx9JcZcm3TiHDe/9508++S/wNOvQ6jAHYBGG/I2xW4DW0kUNr5ZoFqtsiADqtu30mjVuObRRylok9e+9g0au16g6FmEJKTDVQZXjNGst0hqrSwst9bEGB5GdQIIQ0i7VDwLHcYUxzdSXbuB82+9g2997q9gaY7RgkEjDDCVhUihE6dQsMAzoK8KCz79doF8K2aq3+Git91EUvDQrsfxXbvh9CRj+X6Sc3OgFGneox4sgauzyRoUxECxnDUaDlVh9gT4AWbiIYeHuPxXH2Z+Zp6Jf/gmhQQ8z6PpSkrkaVoSw1SU5xfx8JDVAhf/2js59dohll49TKdUIGkuQMWGZpOi5WAFIEyPulRZA6NsYqsYYdoobSIB03JI/ZjC8CjaEPhzM2BKhGMhSBHdgD4nT5RK2qZg8KZrWbvjEmpn6pz61vdAa+79pXfyxq7nmTx1HHQCjpMFTBeLWWi6IbJzYNq874Mf5Ni+Axx4cw9hp4stAJmiDZPQNCBNl1u13KwBUUqIYsrSJRgdYcfdt1Lrdjj2r0/iGS65gSrtoolVyBEeO8a6SpHTnRZ4HngOl91zD1vXbmTnD57i5K4XcdOYAia+KQnzVvZ6KeRzFZJEkmiJO9TPtituYe34enY+9wytqdMk87OsHhyjJWFpsAob1pIr2QTPf5/qmrXkSkXuvPZ6vvHZzxPGAcGKAsy12RoV6AKnKgKGDTDzVI7UCMtlLvofH6djwLE//FvMUCEX59nxyLtY0IpNF2zhvNXjfP7j/wG0giTE9jwq9dbPTCLJnEvT0ciKAKOAMdel1MzTvGotw3e+hfkfPEtx9zk6URMu28DVjz7AS4/9VwiWR5PWDcHSTDahmJgUApmJ3I6NWtHPwKWXM/PGG7DURARtlnPVQYGTzyESTaRMkJqyMJBhh6F8iTaKjgmRSODCTWCYDN92D0Jp5g4f4aabbsU/O80rf/15MG3wAwZLJVp+C8M2OH/Leex75VUGSiXidhvPKrOQppRGhmnXz+A5BUI/wr14C/aW8+m88BMIUphdIp838dMUzCKrN25mcv9+RMFFl20ghFYTEjArVcoXXsjtN97Gj/7nPzJ//BiGbaKF6k0i9ejRo8cvkN4kUo8ePXr8OyGE4NOf/jRSSizTwrYdRDfAMiERKvuWv+tTm68TtCVmLNEFA20LSFPSZocwDLEsEyk0htJYGmLP46Hf+BBBo82ZfQex/JSyFtgIIhS+o0lsk6hQgU1jWFs2cHpmiu7u44y2FKNWH5NJg2hVP2mrzfzEJNQD5Eyb2v4TJK0YVg1Bn0PxI+9kYedL4OS59tZbSDGoT5xFm9ZymnhmlzEA5UeZjU4pauem8f0Qmp0s+MN1kVPniM9OgelRLJSJ45j8utVc+dDdnJABq6/YQVNFMLMEtouencssUbHCtm1kIpdfU5BUSsyNVKlNHsZvBzQOTKCOHINOSHuhizmzgFk0aSzW0eUytJZYEpKRFSPs2bUTx7IwhCaxs/f7bxsSDQKNBVmz0/J5TAXEjpPVVOdt0CmR55BYJtI1YLjE6MWbSC2PpFan6BRJghDLMAh0BDkb1zMRrQ5hGqPiADyXcHGJeG4eUoVh2uhUksgUb+UwcdUEQyMSi/7YxQ4NZo6eIZ6eRU3PkQqb82+7jrnnX4ROwlrpUG/VUSWgnJ2f4cDFSWIIFWVt4CJJztVI55ZQK/pgpMzpI0dgtkm1fxhvzXrCQh8kKbSaGCKbN4sNi9j28DtN8AzCkX7YvIHJE0eYCjqoyCcNQmS3g4wTcti0zkyjFmrZZjgMYMuFWMP9sHIU3aqDZWOEASJJqPkhtXaHwydPw+xsJniEXfqlS1em+KaC0XJmOUslzDQxlY3fbNEqWFCVLCwusHR2EpUahJOzsFij3WniXLKRdzz2UXSpyOTcHORKGG4RveQDFmLLZlbecg0jD99O7bmX8aRBIhOIQ84dP0NzahaKDknUJRAKFUSE+Gjpo0IfYeapVV3UxjEueuhOjh4+Sm1imlJLESURyDhrUjQtiBUi5xANlGDAgrCLUgppC/oQ1pgAACAASURBVJRjgG2gEFnjWicgbDYpeEWSOMAUAlsrjFRiaIMERZp3EVs2UNqwhqOOBBHj3HIN199xC89+6YvZ6wooDQ8SA4TdzHbZ1w+dDhSLXHnFldTmF5iZniINA5AKUyoMw8JwHKRhZKJTFGEWClRyeUxDMGRWWGrVmDp2jKWjE6w0S0RRl7ajUUGHdK7LkF1Ahi06cZg9hwHnkoQ3X3yJ+uGjYDgMuHnixM8K1Aoudi6HZTmYiUIrhUKhLJO4m3D08GFqJ45iew6mVNRaTQbGVrJyy0UsLM2RHj4IQYvy+DrWbt9CFMRMvvAGQkEsQhgoMtI0sMixMJKDG68AJ484Pkvk2MwYbZZqdTi1gHlmBkvC0Pg4Rw8c4JqLL2fp0ElOvrSXvlyBKEpAJeRS+TOTSMJ18JHQl2fTBdtonp3FcSuEZkQ36sLkDPmuJpQB519/OZML0wSHzzCi86QyRhZd0AGsG4eFOvk0m/iUAmLPoHPsJIQxjmlRMgWmCZZrkMYKz3ZwDRvH8MjbLrYFfhQS5g3CgoXXVyZqdGCxC11F9+BxuvuPgBaUvDz7972Jmp9i6KpL8Zem8eMuw26eJPBZWJxFColVytOOY/y8Qd/t1zF09aXUDh1isJ3gaEUnTIjnT2Bddgmj/cN0pmdIRAyuCWOrufmheziy+6VMRJ2vMYJNThmYhiZMQzZd9RZINUunz/BbH/oQpmX2JpF69OjR4xdMT0Tq0aNHj38HflpT/md/9mcopXAsi7DRZbBSJjE1uWqZII4BE8IU0yqSNFs4wkd3ugzlS0QyxasUidIEOwXXNJEokv4RTh45SbLYpHnoGFaqcBFIBE1XExd01iIkBVy+iVqzRXfnbji5gBQWS7YkNBSNnXtovHIUGUSYN13GTb//EU7PHAEj4qFP/i7rt+7gxd/846yevrbIyWaTTRs2MH3yTPZNvNYInYlItoKSUsRRgjYsiBPo+pgabCGwwhSRaHSiGLYK0OxQsfLMn5hg4vRZ1o6uJZ1t4S8GXH319cwv1JDNNnQjRqr9dJoNqqUSYZRgWjazew7ByRmYnmXp5QPY0x3kxrUM3XMPY2vWML/3VaIxL5uSilIwHYLjZzm651UomoQ6wpKS0UbC+GWXcvMD91KvN2gtLJFzHJASGf9/IlIiBNg2xU3n8zt//hl27nwWOl1wzCxE21HI4T4q4xvohCn/+dOfpjIwwP4De8GIUbaBNDVpmrLyobfR8kxodWHBJx9ohmILRwsM0ySu2Nz3xx9n+P7bWXPpJZx6aheDRpGCNEgabVJMVL1NMDENlqB7/Dg4FkncoeDaBFJBtDxlk0haDqTVlMiXrDBKmELQDgNodqlYfay2h1ghyohmi0plmI3bLyPU4IcBLopOt40eHiR/6VaSpRoIC9Cs376N+qED9I+toLlzF0zOUsGmIC3iMMT2cqQKtlx3PW/95fdTWjXGuq0XMhN2SXM5ODePk6R4QGqapKnMBCdDQBSiZUop1nQUSNfAu+R87rvnblpzS6jZDqkfoDFYs20LF193GxMnT8LcLOmFa7njN95Ld80A7aVZwlMTvL7zVSaPnoFugNhxAZc+8HYWV1S45yO/zpHnn6d9+Dj1kzMM7z/LYGxQF2kWjBxIGB1l+2+/n3j1ABRyqHOLaEcwFHpcGJsk0qBddUibixz+4S6Sg7MMBlAzEhzPo6ItcsJBlzwGb9nBqluv4II7r6djOcjdxxhILLpmNn04tO1CrHKRaGEWuaIKMiAZcMGK0X0eMupiegUIIgZL/XRDRXT6LPOHT3Lhr72bBZEwuvVCDh44QPfcLOSKrN68mZwhaE5PgWNx1UMP8Oj7P8DzL+yCRoPXX9vN2VOnSJMIQ2hsbWAmYGKS+F08yyLpdKmUqxCEy9ZGwazTzYK+0Xi+JpIJfp9L4bcfZOvD9zL31G7cTohVdegkCVgWG++6i6uuvZ7jO3eBBse0idstQOHlbDphhGWYxB2fHCa5XA4JpDpGB5JucwlMSaoj0mKWE3bzffcw0a7TnJ7Mcp2w2fLQQ4xccQlP/s9/xPRturGifM+tDF28jcndh6jlLW744LvB82gcO0EaRllOkq/h5DmYOMcamcNDcWx+Bvw2+159kzOv7WNlZGCmCe1ui9JoFbMT/IyI1I5CVM7m8ofu5tSBoySLLYJogbt+60PMHjqMmUraE6eolHOc27OH5OwUxU5IJTEoGwXqUZ23fOzXuPm2t7L36efIxWAuh86nWoIyIdXkghgnTijkCzQaAflSEQOHammAhkrp+h1ypTyd1CfxTKSliFptiuSpdGLOS3LIxUnsVohst5l99RXU9Gnu/cTHuPGtb+GlN3dBd4mKVcEUGktpgjgmtoxsGnBkgDt+5xO0PJf5nzyH3Ymo4tEIfS577EMs1hZpnJqE6SXGx9fTXGxw0z3vYM/rr9GdngGp6XNcVBwhLEEjjiEPc6fOcnahjmi1+eRjv43o2dl69OjR4xdOz87Wo0ePHv8OpGmKZVlUKpUsZNvN0fJjisUcYerjeR6djg+GBYaDlSvza7/6q/ztZ/+AvLRQCcixAeJOA0yXSjsilSFpziRKPShXsoDWJCZvu5h+gBLQ9VLIpyAdqNvc+rsfYWZikqPPvUw6M8/Df/MpZoMWz332/wKd45pPfpifnDoIh48xvGYj/drmyBe/yvDQKnI5l4mJU/Tfcjm3v/1OHv/nf0YePgaWB3GKlUoMpUBpLK0oS5PEhFhpUgO0ITAVmDrL1Wm5Bhe+5+0cOHQYdXgKgoS8VcQPw8zCgkE/Hhvufxtj69fy7S98gWE07c48npenHncxsNAK+s0itjSoWxGm1viuyx1/+xd4K8f41qf/Ep57gY03X8LxuMXbbr2bnf/58wwKm0a4RKffQ9opSEVfqKnbLpuv2IGrYN/Lr+EZxv9mZ4sxULqYfXvuGRDFWB0fW6fYpknXUUiZgFWE/gpctQWWFuHIJKV2ihGldEqCGz/6bg63O2y/aDu7/vbLuPvOMmK4pGGDOhJVKbJIHcoe9trNDBQrzO7dnzW+5fOsuXQrZ595DtoRGNkkGwNlaDWwSjk4t0T/8mRYB4NOzgIbzCsu5M5HH+G5P/8Hoj3HMfEIH7gBe8Mq4t3HYedhEB0oFGH1Gpg6mzWYCYnfbYDnMvzIu8gdPMfEC68yODLK4tICVArcfvfbmTh4iNb+o5TCNg1S6pdtJF5YzCbRvCJYbibmWRa0fYhTcG2KcYCnArqWTWC7OBdt44FfegTVWOKJz/8N/kydYqlEoiVR2AYTqJShEYC0yHrsLbAVlrbJY+BYEBZsVm8+j5WXbOPpb36b6mXbec/vfZzPff5z8PqbWWNheYzVTh+Tr+wGUuycS18UkjNNuhL8agm/bLHjQ7/MlBUy93f/AJVB/uD3/5h/+tbXWPzeS1TnWky5Au6+hPVvvZnWrjdo/+A1ypbNwliBt953Lz/6H38H7TZYGrFmJSMjw8weOQmLTapWgSCKiNyUHR98L5Zl8cqXHsfAQXkm+dEhHvjA+3jynx+ntm8PSInhFhi2ijRrdQKxbO/zHAglmA5U+8EPIOhy+7sexDEE3338y9hCkiQxFMu4nke0sJhN4RkGQisMrRAoTGVhRCb5nEecBLiuSSfwSZSib3AYP4hJpCapxJAozMBgLDBYsE3C0RwDn/xllr74NcTeLqNegZlwCmfjRuJWK5sicyxYWMwsU902/V4OGYW00xSVMxCGRd7OkVMWrTAkRmKuHMJrR3QDH1TEqluvx3E8Tv3wWegbzex1V17Blde8hXYn5OXvPA5rx2C+BntOg1Jc+uH38MZTT8LZOSgZbLriahpxwoIMufXRR/jhn/4N3sGzFDBpDXgktUXylTI+AVf85sd49avfhfkWdqB45EPvJXQ1X/ncf2cwLfyMnS2yTVpmCoMOIj+AO9clXOGy/cKLOPH0S0SNNlprUp1QLpZI/ZC8l8P2TZqpj1+ysTesQCtJemqKXKSwJEgja1lTKlufKqnGRFND4vX30XU8ZCOEVMOtF7C6UmXyq99npFghaNVpmSDyOWzl0KdypEGTkhmwKMF3cliFPDGafM7GEgmtmaxBD9uGBKrCwUhSbM9jLklAWFhDq1AK1FAN5hcgsUA5YMQwtgbmmlQXU3LEtKw83bUGTPtYQdYemLrp8tSkJteMsaVFa8UAaMForsDMsaOZgNSzs/Xo0aPHL5ReB2aPHj16/P8AKQwol+gaGsv1iKIERwmMROKZAkNo8n0FBkaGMU0TicAoFsnsYhohbIQ2SJVmYP16KqOj9G08D2/NSkTRIzazTQYAiqxKXSXse+IHNA4dJ12sgSHxTc0FV+0Az8bZsJq5vEHhgg2Mv/WtzH/zSY7801cpRibR1Bm6p85imVB7fTcy6LJ5/fpMBIgjhM5sTgKFIEULRWxItJYIlWKmKbZSGKjlN6RITcWSpbj6nXeB8sEBP+kiLMi7DiUhsIl47emn+Pa3v47huARRhGnaNMIubrWItgV6+fkkCbZOkGYMTspTT3w3a2FLFKPDK5jffxxkyoaLt2K7Lp2wzUp3kFJEVjeGQWgJUIoje/ay//U9OIaFpcXP/PFUP92sWB6m6UKjA+2IkjbJIbBlzIBwKTke5113XWYhOnIUTpwEIDYcjHwR2Q1ppIrm7BLPfOO7tOeXSGRKI2xhi1zWchfHmbCYCpJ9J5jd+Sq02vRdfD6XPHQbK668gAvf9wC4AvwmrF4JjSZISbpQxzbFT0vC0BigDUgN5EyT6bOTtP0GsQEhCavGV7D1sm1UbrwS1gyCTKGY45b3PIy9fSu4NjII8MysQS5ot7jhrTeBAWGnTR5BLo556quPc+TAG7TCBmDimAUGN6zh0U9+ghs+8L4sf6jVBj/ErLUppFC0PEwJQhvLkwUKhCZuNVioLTBTq+E3m+CZhGmCSCRFw6GvOoCtBNgCKgWM/n5yQ4OQy1FIJKU4ouB3MRaWOP7iKzz9j1+CeotcLDlx4AAsLrDxA7/Mg3/117j9w0y+vgfXsukvlLBJCRxBXSXEKiCotSFN2bP3Tc4bXw/VIZhd4Ccvv8r89BydWh1zbJzrPvbrMLaSgVIfuVQQRR1qfh0mTvOjL3wOnBTGhyDnoY+fZfb516hGgpxp04gCGO2H1cO8/uR3eOXrX4NWF7PWZdPASi4YXsVL3/k+9X2nQBQhFdx//4OMjq/GqBQRQ1XYtJHKzddDV1JuSYwz56Dexq7289RXvsJ3v/KvkMTkPA/TMKHRJpqeAdPAsO1/E5AQCsh0uQDBUhCgHYdQayKlMGybSGn8MCJRWdC/GSgqocJdvie3XXU1Vw2vh5am0lelbWgql1/Gxu2XQqxB2NCJwbKX2wwlqUpIDQNlgOHm0cLK7LKWjbBtcn0DXH39DQR+B5DkV6/mnY88TGoYMDgItSXu/40Ps+OCLbTnF3j1+Z1QLrP92uuhUIDRAegrIRabWe7YUBk8k6MvvUZ3cg7VjXnz1Amo1xkWRVzSTBAeLOM7wGCVzRdsgqUFyFkUx0eojo9x7OxpqFb/t7W+r68PfB9n/Xq0lCRJAq0Wbz75fWQnIG85pEkCwqAV+PgoGpZJN2/jA0hNcuQU6ekp0NlS9dO13VYKoRWmztZWCeQGBmlJhWx12XrvfWy+5z5u/8D7GTtvAygT5Sc4mKDAsB1iA2QpT4OURQkqZyFyDrEfQDckXGoTzjcZMbL4MPIW7rbzUeUCViGPHyfZMWpIZ+awOzGbr74uE7WFgY0JkQGLdXBtGgWHfN84G668nOK77gPHpihy5J1idg2UcmAIzMShX7mw1OLm++7Dtu1M5OzRo0ePHr9wena2Hj169Ph3QCn1b3Y2KSWp63Lte97LxO5XSQ0DHaUM2y4iCHCFSSds8dLB3fj1RYq5Mt0g4aJ73s62++7j1IHDuA2JIQSBAUEQMHTxRczX5njsv/4Rz339cSRgaLClwkgUVqqw0hh/dpbI70DBRomEoy+8wu4vfQ2kiTuyAtP0qD21k22btnF232GQmlIcURQaqboIESFH+jnw4+co5HIErRaDxQJpp4OtUgydIlCkhqJrpSRSYpsGjhBIoYgsRWxpElMjbWifPMrkwWNg5yFVCCXRVkoiO8RGSGgkVG+7idL5G+ju3Y80BZGRQCWHjDuAgnKBIOriFzWFOEYJReKA0dJMPvkshZEB6pNHGHRztKXALPWTSM1MrY7WGi9VuBIsBYGd5Q7nDIeqlyeoN7G0xhbGv7WzaVMghUnfposoDA3g1xagWECFPgYaD4t2EhDFKXLjOu54/6Mcee0QzLUhUEgliVePcsv738eL//p1kqOziMklVCcg0gm+LZhLO5iFPMI0SdoBTkfihQleIogNg/DMCWaPHGH6wF4WnnkeWgG24bDjPQ9x58PvxtA2jYOnMZWkZZt0HYPEtHBjEzuxYKFF8vpJul0fjAiGK7R27WXm2dcorhlj/QM3sbD7dagWOH36KMqxIAzoW6hRlYIoTvAnJjlZlJAzCdIuJc+h3ZrPwtQrJrGjqauUpqNonzrDnqd3MrFnLzQ65CyXMhJXJpSEwhEQKwNbSSwSYlOQWgKkYuDSi9lw/gaOnzpKWusCBhig0gTVblORFiY2URSjbZO0ksNIY8wkROmYrhHRrWhkXiAsi0JDoo9PsPjU61SdKq1ulze+8x3Grt5Bdd1KaqcOEyRdlPQRAyW6FkQYoG1wi+jDxxm+8QpKK1aytNjmzJd/QPVcQtJXpVZKORt04eA5zn3reeSeIzg6whQpSb6EuXYdH/zTP0aUK5x78VXy2mPIKpA2mwQ6QlWKOONj3PvRD3L4xHGYr+O2DValmtbMAgtnp5g5eYZR38CNBIFKMEo5TkxP4tdrUCmx/Y7bsStlkp+8QE530aQkRZfKxjWs2HI+jWYDE0jmFvCUgSVsbMNGxAkiSbABwU8365rENCls2sKd73wHfStHOD55BjwbZRqo/n5ue997icsVusdOMBZKcihaQtDKG8wdPsbp77+Cmm4jLhjHL1vo89YyOzHN2suu4I7b7uTAS7uh3YQwIO9pYpUSI9BeDp3EkC+SJJok0VAoMrJhHTUU5vQMpqXwF+d5afdrNA8dg26IMbKG2WNnOPzs80wdO4E+N4nXX8Q4N0fzpZchB9SXUK8fwQpjIuoQpYxb/TSWmqjaEsHmcVatWkdrz14EmrAvh24vQRyBnWPvN78PbgmimDDs8MqrLzE3OYloh+RTfsbOdm5pAWdkkJsfvp/auXn8iRncWCBzHhguQlvo2MC68jLWPvpL1C9cB32rufz6K5hqzKGbPoNGHisVREiUpVEaLA25VBNYCQYaMPAdm65MYcUoK9/xDhbyfUzvP8TJuWmmv/kk/VYRFSakpTzy/FWMXrKFNRdtpTHfJGi1iL2EpFRGh5r85q04/aOkoUIIGxn6BJ5D/2+8j0uuvorjz71A19DEOiQcH+aRP/oE+/e9Qf+WjWxQDmd2H6JP5cl1AzxdItiygSse+yBzF63isnvu4mi3RtSpkZ44R+j7RIbivv/yhxypL8HsErbZDxFEa1dw7Q3Xceill/mPj/023VYT23N6drYePXr0+AXSs7P16NGjx8+ZdPmnBVnwsyYLJrYship9hHGKLOTxdmyhvmcPKI0RhgykBkKmdHRK0lciidoYg1VoxNi+id52Pmu2biaaXGDp2RcQFoSWRp6/PguwnpkEy8gmF7qQTxVeqtDL4k3bleRx8R2HFVduZ2ZqCvYvsMqp0IqbtIYGMluQAHOogqzP4fZXiOrzWGb2TXeMBAmF6ijd2XmqlQpBt4ODQSokiVDk48y+5ucBbWBV+7GkRVhvYS6LTFoohAYZaDaUV+C35imQA9dkIqqTFC0wQIcp9A2w5l0PYzabnP7O9yFog2Pw65/9U77w538BU3OIYh86bTO6FAOajmlT9kZpqZTkLRvZ/tA1vPKZz0PDy6ZxjBAKHkiDctOnmEikofDtbMOklML3fUZGRlBxhAxDAt8nRSNMg9C2GLjz7dx0w3VMHDzMa//0ZZx8HhVGpN1WdvINICnA2DDX/erDrF25mic/9w+0DpxCChi97GLOtecpTzYwW22inIWfM7PgZcvIrF8pjAobU0PdBgcLTwqUYZAKTeqZtNoNhpwcOWVwNqfBckALvG5EueAxH7SyWmzDBm2CBC+UeI6goVrgWjjdlI3WCLESHC/Y0A905um/++1ctOMqdv39v0Ctzkitht3t0kVRL1aAlP6169FBSOvkadZU+wnCLt3IB9dCGQIlDYQokMqYOAmxPAtc0FpimQZECUqaKDNPTkpcFdB2BLFj4V12OTc/8CDPfP97RM/vYiSuMJe0wIrBVVS7Frk0wTKqTBYEXHwRl77zTt74l7+HfSexHQ/CkKSQXU9IwKqAr7jwtls4dORwJmDEMZge1FpYSUTe0Agd00wht3qM2x/7MPX9Zzj0v35EUyXEowo8AbMdxpqCLkWa/SD+0yOs0Tkmfu9vKCgTgy7tUgCOhoaFm+awikW6MgRHZNegqWF+lhHtUosEslBAWTGYFkYEG60Ss81Zmq4BpoTBfphqgyWgunxQsSI3MEIwsYCR70N1fISqofOA54IwGXvwAc4dPQ5nJmF6nlWWQxglLLpeNnWUaIqmhZEmhLYiMdPlD8xEG0XEwAA6aEPYhkIOopiV192AY5U4ffgo1smj5GRMYBmkZQfyJkiXlZX1+LZBfesw5sZ1jJRWcu5z/wiJgNkZSCLyLpAGJFqiHFC+wB4YIC64vPeXfwUhFV/66y9kDXJFD0oOq1sx9W6bjiEpXH4xDz7wMM9970ecfWkv+D7F0UE6rRbVFSM05iawBoZYNTzAmf1vUqkMMDq7gI/F5Mo8pZYk305Z8jzSnMC68XLSna9SaQq0imn1JYhIk08gjSTlwgCdVBFpiTYkw6Ui3doiZc+jZUpiw8JSkI9N/IKD7zd5y3/4EC9++VswMQ+OxyX3v40933kCgpSS28emjz5MbeMIC2WP9t8/AXETjp+gFJqI2hKe4THvJuApSMBOoBgr6o7CQCCwka4D/VXe/ju/w/Fmh/HxCzh14jQn/89PY/oRJdMgEopgLM97P/OHTC8scO6Voxz58g9wLZP8iE29UeP6D/0264fH+c5XvkHt0BtQLUCnAVECo6Ow2GSEHJ3WLI5boNPvkIRtcIvZ+tpswGAfzC/Rn3q4yqS7dS2tfg/8BpyqQ2qyTgpmOjXCoQpUi5QuOI/2ay+Da3Pbpz7FD//kM9n0UavNYL7KwumTgAIzs7OBgflTEalHjx49evzc6IlIPXr06PFzpk22X80DQilIVZbXIhVrR9Yw73cxUOh8J7MYIUAbmKZNHCbZdIztEMqExFFQylFs2yRYRH6XgukxZNucSRcpJJru6BjXvOddHD28n6U3XoV6m3yYUDE8lLBoCUWYxuTyHj4KzALO+Ru44VMf5UeP/SkjjZTK/BLHcnUMy6WQZJkbqZlZJwI7Oy5DQT6Bjq1Zq6oMGB5ngjpLOsKRijjvggcDDYGpfJpAtLofxse48cO/yXN/8Fk4Oc2A5yHjRajaNMIIYshpE9M08dEo1wKlEamkFEl8t0gqJEPvvZsLVq1n559+ARSUrtlGe+EcLDRAujDmMHrhdnKx5PQzOxG+j2MJikUPaUl8JYkNEzs1KEbZ3l0aitCCgARLGDhaU0gkAB0H4qwQjWJiQTtGYqCxaDtALgGpKBeH6M7OY5iZoUQaCsdxQKYMRGVm3AjsEGFZVOsxuJkghISRKEdUMemohP7SAPNTCxiYWFgYpkLKFGXEeHkX7bpEqUYKKwvJlsuh067D1TffwNjKUX70rSdpTU2CKTBIUMZyIFK5xDW/8ig/OXIM3twDi+cghnKU6V0ag65TJDYEuDYrHriLyta1HHn1JXh2LwO+Ra6/zJRVg1ZEX2LSbDdYs/FyzgifldfvoCUi2t98hmotZFNq0HbgUKmd2WbiAirxQSaIiosWKZBdYMXQxpbQdSO0UFjSIjINlGmAZ7L+xhuIgpjpZ3Yx2DVYzMvMEqYU/R3wlSbctJJrP/EYq4fHeeIP/hzj4IuYGjQmLcdCWhIsi02PPMy2i7bz1f/2V7BuA+vXbeLUk09Co0kun0N3aiAiEAplgBPkCDQUL9lEc34SaiEi0IzbZYKqR1T1aCxMQVTOTqhKEKYg77foc126UYeGDWYZih2PoajI8T5gy3nsuON2jn3ucdr1RagI+ubmqfdXYc0oW666itNP7MKartPvFjitazDaR//QCkqzLeZmJgkNDSMlrnrgTsbXr2Pv7jc48vXvIQKDFeV+2p1ZhGujLY+2srHO38g7fuXdHD+wj93/z98zjMHIug3sz5V48FP/iSPf/TGHv/4U49LktLGUqRStNqNhJiUpYEkA1RysGGbrXXfhxZrXPv9FiKGiYwwrR2AKQjS4LmLLFrbuuIR9T34PopDKdVfT7O9jTT1lME5445knoLNILlleM8cGWVhcpC8GbRdoDOagvwqz8xBb5LTGsk06OmCwERMW+miLBDavh1YEC23WBIpIdmiUEiInz7Uf+RQHF04gjZTWj5+DfZOUtKBsFJkWIRtuvJKlZ55GEtGuWmAK6MSMpS6hjPANg3DQxm1EWLFCWR52fx+tWhM8D5GmlITGswSNuEM8VCRXg6oo0lYGnZEiWJLx665h4mvfp98rs/kvfp/6y/uof+1bqKjNvF7IPuQIym6BlloerVEKW4LQkBoaJULymzdQ8QrMHDkC7RhTupkl2rJgsAyb1mWi4ImT0A6hE1COu9ieSWSYBEkK+RJSAbkCRDE3vfsRmnOLvPHtbzLy3z5MdHoW75VTNH7yJuK6rWy65RqOvfYm/nN72PHHH2PizQMsPvF8liUmBKAo5l3idh0LiLApjYzStaVz9QAAIABJREFUTSOSTgdiSdH0MAyDVuJDyYY4os/M43e7RCsKcN5aOLEAQQQb1+FuWUf05POYl13KuFskeG0f5w4dzBYsS4NFViqAsTw916NHjx49fl70MpF69OjR4+eMvfwQP5XsjeVf5Axqrkb2l4n78yiRLclCZ4KGY5gI00BYJh0lSQygWoZY07E1UeJDX4WuozknYlCCyDJgtsHU0y9hLTQhDaBk4rswI0J8U5BzCvR5JVQqYVnciCen+dHjX4eFWeYWZzByHngFLAWGMjC1gSWzh51mD0caWCoL5Oh0u8z4TZbsBHuoimU55BMAk0goIpb/qa8HcHqOqTePMnjF5TBUYimnaQhotCIM2wEFtmFiCQNTiOXpLbX8+RmUo4BiaLLw8h5mjp9EOBamY9E+dhiaCzCYB7pg57l0yzYu27EDq1REG5AITaokOpWQKpwE3DQThiATT0zTzI47VXjCyX4vlkOFl0PAzWV3j0STGipro4sAt4C9YQUyD4mlkQJcZZKEEbGUzBBmwcGxwpGCPGAm4GkDLGgWbRphQOpHzC8ugGWg8i6xqYnzLqKvhM55REqTCIEs52FFiUs/9gGG7rk1m0aRKcFAjuLF51NYOZy9WZ1i2yYkKtv9N7sYS22uXLsJCn2QZPY9JbLJuY5QqKoHZQeqBWYO7mNq78EsfKXt0+w0mDo7kQV3tzvoIKZg5ThzbhJmzjH9/ado//AZCEMi02CeiCUZg3DAdHAch6JbwDYcDD9GJAKSTJgUWaEfxvI150hwJZhSgVSc2rWL6V0vgJRZ5tZP7yuVncdKoQBLiySLNVSjhgx8EjMrI4TsOClWQZlYNZ9R7UIrhDf3MzpQ5dcee4zNb7mGoF5bfuJM1EVDNFhA9rk0J09AEFItVskj8ZMmg+et4q3vfZDyO95G5e7ruf2/fJI7PvUJtJPSzTks2oKGBdrNxNiGjlmknW3sj07w+mf/lmBmBsIAjIh6xYVinrHVa1h/3jq6SZemDjgbLuJt28j7/+h3uOdXH2FiaYaSMqgKB7opM6fmOPTGUSaPToHI4aIJWov8NNZILbfcDfT10azV2bvnTSgV6USK40eOw0KL1tQ0BydPoOImp8PFbB1BY5JdsykQAJVqNZs2wWPt6GqO7N0PxTKVviqVfJUozVr08iMj3PDgO1lbqrDv60/AfAtqPs2nX4ZTC1x1183YF62CpIuVwMpcGQ/BQqsBBYfEy9G2FPgdmJqBQhVL2OSwyRkOOk4QhTJJNZcJElEbFrLWtAgIU4mUGmyb1SuHqb+6i9aRvay69gpwU/yKxzRtxh+8jWhlmUZeENlkgojUIBW+TGHZ6kcnxTRthGsRm9DqtqGYpzoyhFYJ2rOJhEJ7NsiUfF8VI+8Sk8LSLHgOE7ueBUsTyZCD3/shh5/4AbIRZOHXLcC0sUyDsB3gxAJUdt4MrTG1ziZuCmXuefu91OtNCGPMfBHLMtBaglZcfcNNjJX7YKmehZb7HVApOpUoTDoiReYMpN+BdoAZSEgk/RvXMe03qIyPc+W27TRefY3ZAwewsTANgYwi/MmzFCoVRrBwmn5206rsHs1Xy3TCNmmxgG8YFIRDt9kiaTWxzlsFK6t0CgaBIzA15DsCR+VolV0iR7Dy+ms574KLoNaEUMPRKaLvvYhbGubeG25hoFhevufTbMEwMs0t+4vTE5B69OjR4+dNbxKpR48ePX7e/DQ7GrJdnKloIwiAkdEh6OuH+XOINMWW4KYGpjIIkhizUiE2IbU0195/Ny9870lY7HLvf/8Tvv0v34ADh9l6//2cnjyJfHEfcclmwLdo+10CHWD051EqAQmDYyvZev31/Pjpp2CxQVU5NPosqIWAzVs++gFkFPLyN75NtRGRmBIVhfy/7L1nkB3XYef7O6fzjRMxSESOJEGCRCAYIIlRBCVSomQqy7JkUrIsqWR7LUvrsE+233PaqrWtt/ba63XZ8j7bz14rrHKgRIqkRBAgkTMGeTB55sbu2+mc8z40tNpP7xu/3V/VVAFVU1ODvn0bt//9D64qbu5/+vv/tEhamCI60M17DNVGWCBl1c8/yvg//xuELitzjwknRmrBgONCt0NilQmFhFu28uAnn+ZKa5qd227h/33mo7B4Y8pbulQyQdjr4gYluuQoDLYylFLBMjQClzMVBWODcKVFzR+gbWuwQwbf8gj37Lqbb/6nv2XzLVvoNBtMHjoEUgECxxL4yiBzjWtcQP6vctrEAmU0Js3xbYeKcFC6VUQALYBCOKtkkl4c0xWC1C0aSKzERi2p8Y4//U2+/OX/Ad87CFHOqLKZE0lxczs8CIsRJOBkOTU0uVIoy6Jb9wtFq5VCUMUdHuLBJ9/Bi6+8gpaCaH4e0hgmJvBxKXV7LEoL1tVZ/u73UdI241/479RGltLuXi/cObYDMwtgW1hZhi8kRksct0Qn02gk5Dl1E6PQ5BaF4FIJKG/eyJ1v2Iu1ZDl5qjj+1W/Tmp+CK4usW7KCrbvuQGxfxTf+7L+wNHcJo4jO8qWM7riTuauXIAzh+hR4PiXfp5dHGFuDZcNcCEnMQFDGzmMwhlxIlJQoHLQALRWe0gR5cfJlUhN5gjTLkLmmZmw87TLvQ27n2Eoz1NP0UPRWDJOnCWRAIhAypJKCrQUam5Y2YDtYno/dM2TaoFcMQNgplssU1MsVsqiLFkXcUklNHpvCmXLLKt76S7/A+MGjnPnSNyDSUC8XbxSdwtpbGVm9mvnnnwNl47VTAqXxMXRFRiINmWtABuAVPV7Uh+DEFIEU9HSHYQUhhtixYUkJFttYokzZ82nrBlRccFyYDFluOzSUQa7byKr77uP0//waDA7AlStYcZc1AwNEaYtmlCGlQyh9qPlQdiGLod3ESxXLh0Zo4uPuvZ2ZKITzV7npltsYummUoy+9QHB9ET23QLJxBMutok9Os0IOoY0gqjo0TRPWLCnitMeP4w2NkPR6rN99D8LyGT91DqbnqGqbUprRISUaGIURCUIjZtsMZzAvQ8Z230FjZh7rwiwlYEHmsHSQe979LjauWs+X//S/IK/MUJEWea9Fe2mV3rDPkl13Mnv5Eo47wjp/kAvfeYFKyaNpFecZqQVLA+o7tiFURvOVY7DQZstb30JnzRiz3TnyA68hLl9Dt2OkEFiWQ64KAd7WYMKUDl2sqoNSkqGNG/jc73yef/vXf+XA975XlOcnIValzMNP/zzp+CwvP/sSPaPxtq5i776HefaLf4ObCdLrc+D4+EtvIr4yQ702QKvdLtTOsgM6R3QiHLdYIfNzWYwoSEk+VEXXKuTNDigN7RAHhbQLx1lpyRitpIeJOsV5KTQkMZ5VQts2mdTgB2DAW7qCpNOlvG4t4eUL0MsYyKBZWmTT234Oeewq1354gHBIQNmCKMFPAxIfTKNLVdkoo3CrNVqBoLZuBXvvfxPf+OrXccanyaSiumE17/+tX+GvPvc5aKbQU4yIMk6a0UHRXTXC2vt2sn7FKp79x3+BbsJQR+MYhSFD1UeIxgbpTUywfGSU65fPgMhJb8wpSCxcc+P5eF9J6tOnT5/XjX6xdp8+ffq83vw0+wGAAWloJD0s2+c//te/4N2f/Qwbdu3izIsvIrUoHD5G4vllWkmIlhqW1Nn20JsIpxp0rs9w2YOBFSvo2Ra9ksvQyBCtE+MoNGHUBE+CUZTTDC9K8JVLY75Ba8kg2z/1DGvvvovr3/8JWcng37SGvNHl2oGjTFw4BWlELAR+Lsm0JrEliV3ctGhRCFxQ/Dm2JcbzaEchyqTIXZtZf9+9hDOLtOcW0RUfEaaINGdwYIDFXoTll9Guy6WJyyx2O5zYf5DRu+/j3n2PMT2zQO/aNB4SqTQl1yXVGcYUhamWtgBNGvh0ghicFFGqI+ebrEocWlFGb/wy50+fwbq2wNz5c3RmpiEQULLBKTbjfA0lLfFySS4FbR96LihXsHLrZpYuWUaz0yFWCkSOljlGWEhtYSsLV0lSlRHZGuNqsAyeO0TuSE5/9xtw+TrEFm6mqeLScTTV1SvY94e/R21gOZP7j6Jdh56bk3geOTbGcdn2zAe4a+udZM2QhYkJrPVrqa5cznRjgdvvuZu99z9Anmlmzp6nZ9uwbgX3/O5nObUwyaLU7HnqSYa2rGXZA3cz1ZyBc5cQGnwp0YkmsGxUlpNlCVJrpNYMuD6OUmhM0allATonayxy9eRpLh85wdXvPE8y1y6cDJ5LmKacuX6Zc5dPIfGwUkNsST74Z3/A4twid2zahtvJmV+YhcEy2U3DkETcctsu7rvnDVRWLmN2bhYtDCKKKWkLceOc6vo2uWehRKHJ2BrkDZ+BMhmO0ZSBmtIkQpJZIIzB1QZbG6rVCq35JiQpIk0pocgsgZdbWEZga4v60DDGaJIwomS7SK3IdVQIKmkRjfOExChzI2JqoYXNYJ7jakiSCH3LKtbt3YFZMUrj4sViVazVY+NtO7n7w++mqxIaJ4/AsmUoA3GeEw7USUeH0IFH0LAgy3nDx55mzf17ufzcd3ji1z7Jnn1v5PLUNcJ2i826yrCSLOgELBs/zBg0Fu0kgSiDRo+N1SGumEXy4Rr1PXtYGBxl4zufonLzFrbt3cVCa4LZZBHRy5A5eF4ZbbsoW3D/u9/JvQ8/xPHjRxFJjFsr063b7Nh+O5defBUmG6xevoYLly6TXZ4gdwWqPgDzEaYRI5fdRCuO6JQt4sDwhg+8l0d23kX7/FUW6aLiRRiuwIZVTB74CdgKd8UYvbnr9FRMKQhwbYek3YW5Jk5m6IqYO379Y4zeupkr336BobzMvO6CK6GnmTh3jSPPvkQ610TYFpkrC2dm2mT1/XtZv2E9k802b77rPi6ePEVnapYYDSWX+tAo1anrjNYGiC9fpXXoBDR7BF6Z6WNnGBwaoXHyOESLmGaHwZ6kqi1yyyazFNnoCLgeuh1RqZUKp5UG7Xp85zvf5fqlS4VQpRWOY5N3Qi5MTHLp6EnyJMerlbnljlux8pQrhw5ihx0qGqojFdqqzfZPPM3ud7yDU+OTlPfsYvChe0k3DLNsZJDW9cvYxuApjaMNwghS2yKPU8jBGx7jj/7gjzh+4AV6cY8kSfGNJJ5bxMkNQmuMjsETqO2b0FfnWBqWkJ2IdGCIx/78P3B9eZkwiuCVcezEwu2F+Hu2E2jBpYNHKWtJT6S469YiShXEfBsZNRlwXKwsw3VcWr0OWqVs3nsvZ8YvE12bQAsDjiBdXODV534M7RwZGywj6eqE7mhAsHIlyaUFmmGTi9//CXRzIKWnMzwh8YVkxu6SZ4bq0BKEzvjkr32CtuqRS7sQ8pHYSvDTVHifPn369Hl96ItIffr06fN6878XfQoDwiCkjRQWf/Tbv829+95K3fN59fvfQWhwlQBTlCXH5FCvgFTM5RnpxWkSY1CXLtLrtKHbIT19mtaFy9jCRiUJnueidIbt2SR5ytjwEoTrE8Yx8WKDwdtuZYlXYeKF/SRLa+zZfTc0unTnmxjTg2WjyGoVp5OSGIW2xY0FMlHMbBuBFoLMkiSuQDkgpYXxXKKpi7R8nx0bb+byyVNARpBIfMDyXVp5iq5XoNuGap2RDZtYvX4zc/PzPHD/A3Rn5pg9cYqS5WIbgdYZuVAYARiB1MVT5o6dky+rsfnd72D++f14xiPQPQIZEGYJ6AzZ7eEPDZDnaeFYyrPiddCGQIOvBEILYlsQ+hQRQ1uwevPNbN1yM61ul4VmEylTBAYlLAQWwtg4xiJTGT1LF50cFuS5LEqwHR9CTV37uEqhgJ7I0b7H6YU5xmSF6VNnueX+vfQ2LiddaGB5ZXSjhVg6xFq/zoXjpwmlZOHaFRauXYM8ZebEGU6dOsXCyTNUKwOkvRCikF6tRvTCS3BunCV79vDaD55l967dLHQiojMXKMUJEoFSxYoT0sYLKsRZ4fBKVTHxnWFIbV0coxvfRy8Dvw5hSqVUIi07kGZoy4aoDVaGaXSRjk+cdBi3NJPHTnLxhZ8wf+4SDNehXuLNT7+f2tgYJ154mdMnT9JQKWnYQkkQSYZrBEpaZJYg9W1wATRag6UFRhi0NHTzHMcF1xKojMKNISXyRswHDGEcUyl5BJ6LlSuU1ijLxlVg6aJyeL7XJcVAyUMZ8EsewhJokxE4Hnma4NsuWpvi3BMSLQR15VD2yrR0xGK3wcjS5UycvUB87CxCuNjCotMLWfAlE+PjMFjnnR95mrnFFlGnTWXtKnY89jATSUg+vYCuVLl87CCXDx8CCaNjKxgtlzmy/2Xibgc766FRNFzAkvi2h93LyLSmVhvAzwz0Ijq2gjQmWuiQaQuzZCmLC/NsXDHGqS/9IyaKQQsc4yKkRRjHUAl48r1PYYzi0PefRfdSulFIXrG49NJ+iIr33EKjS3Jtooi+1gIQmtKKDbzlPe/DrtWZjbvc9+EPEmxZw6HvfJPjrx2hNTWHFhEELmve+Ea2bLuNy+fPcddT72K4VmF6chITdUmyBOIYW0gq9RpREkItYPrIYSZe3A+VIcLGIoyWizhW5uAsppQTqLglOnmXVKTo4cKV1Zqd5+prh9DjFzl/+BThzBxIC1wbe+VSbt28EXX6PK2wQ7vVZGR4CY6SOEoQZzmtievQXIQ0hEgzrB0cbNrCoGsuq/bsZmzJUpoXp8jSDo4tEV6JtNWGTIHjIhDQauE5NlJKVKvD4NAojuURLS4wNT3JlYvjkMaM2A6qq8hFTrJimJsff4JOprjytWfZ+Nib2bJ3J86Ax1Cec/3oUWxd1P8U12CIpcTYFlRqPP62J/nWV77K3JVz5NqgLYs8UQz5ZWSW49qCRCXg2Wx+6gkWTlxkaejgoFlz126Ol2LaHty59XamvvYCbqwoe5KF+QkWz55FN0PiOMFfsZRH9j2KyBTx7DxJ3EUohdaKUlAizGLMUJ2Z8XGiiamioL7XA5UXLsTUQJThaYHre6QihU0rWbdlK92rDXITQQYlyyfzBSLwsNB00y55xYb6KOm1KZasGOMTv/xxejpGSAcLsJHYui8i9enTp8/rTV9E6tOnT5/XGSWLvuMCA9rgJhrPtvn9P/hPvPqDH/Pqsz/EtkFFCdJyMEKiPZfUs0Fl3POhDxIvNGi9chJlGzAB+B5yzSrufsNDXD90ityk1OKikyIlRVVcnvzML7H/xR8Suh4ICcZj9rv7Of/iQRKdQLfDyNKlVKXD4qWLZL4NUvGhf/85Dnz/BUzS484nH+eB9z3F8Rd/hBkaJGt28MeW0COHZXXu/NBTTL5wAOIcylWUYzM6toxGxSGfn2GJqVEzHnOBIfNTlr/nCYJbthAeu0B04BzzPzlCdvUSr+7/EbPHTkOi8FwXFwkqIZOaBIMygHRIhcYNPNIoYe/9D7IYpzSvTlDRZXTg0xUZiIxKqsmFRqU9rMEav/Kbn2V0+QoWrl2nKlyyXkKUxmSDJdKazdo33YM1NMzlA4e53u4yE4dQdsk7LbIkwxkcJlSS2Ai0cAmqFcIsLF7WNWOwZjXMLjCcVBiIYspK4MuARZmjAhedZHBpkunzV0HnzKkI7013ki7MoadnIIZwcpqzr7wGmSKzbUgSxMpVfPSTn+bEsROos0XMpIzEyjSVxMI5fJWoA4QKb2wEHacc+9O/R786zopcI3ROqhQJksqK5XTjkMRozHANBsuYtEduB+Db5HkGOfiOh4wUvvYYTCxK2qZpJ2y8/x7e/UtPc+zYUVTJZe9HP8LVlw+SJRlyzzaShVk4dwmMxYAdkDuGt77vKX7w6ktMvPQTTCdjbOkymlED4hb4Drkt0WmO9H1EvUpSlvzWl/4R2/e5dPgQaZoRS01iMnAgM0Ufj3QtdMWHOEdmGuE6dIQhE5osUVRth4GBAebCCJTGUhaOsMB1iUQKvoTBEiaAJItQWQ9PKYRSuFKijcGIQjA1olCCI1vRESlaWjDXYeq5g2Qnr2ArCVqjpEFlGeGpy3BlEhotTj//ItHcAiQpw1s2EgYWY5s3oHZuZftHn0IODNAavwiTHdpHTnPhBy/jtXpEvsStjzKZ9JAP7WDJzttYnJrEwiFME9zBOsLxCHtdnFJA1gPwYbbF9u07MbPzvPb//APECQhQqUIYizRTSCGK6Oqr+zn08n5ohwhhFZEoneM5laJo2ZGYPGbNvXu5+c4d2OUyzcnrZKUKC502l06cAs/iamuBhR89C4GNnptFpzGWsjFdhVqIOPfSAWhFXL86yfTL+yEK8UoBQ6UyAz2DFoKBdTex59eeJqlVab98gUCVyU3Ovj/8ddbs2MbF81fwp3usFnVW1IbpmJzQCWH7Rt78+V+FhmbEqbM43YJejkw1IlNI36W2ejnb7t3N3MIM1y6ew18+SERGlOWsXLWaTq+LkxtkkhYCTZxRsUvYKdiWR0Ol3PyOxxhas4qZxTma8wtU0hQvU+gcsFyk5UGa42aaAdfDyRUyKsrFhQaVa5x6DTfwyToRbpoz5riYKCXTGrF+Hee/9S2uNNpURm/i+unTjH/5S8xdHmfyuz8s4n6uxBEWNha5EcRZBgN16EacOXyIxsI8btwj1kXJfjA0hNXTRWQ1KBPairU3b2Yiz8lPX0FnEssrMX79IvHJV6Fc4cHtezj2tWfxBJg0InYp/gPTBiybsSWjxO0Op154iTiL0Z4mtcBBkigNjoVSunDgpgI7zBnVDsQaCwslBaiU3LPJKh4Q8/ivf4pulhFnivr9O+mePU+WRHzij3+XA9/8JqkQCCHQroJOwtit21icmeI3fv1XUVJhYd2oGpRYfRGpT58+fV53+p1Iffr06fM6k1J8prV/WjyqNQgbBFSHl5E7PhJFHi0ibQtj2RgEqblRpiSBgToSQeXiNdq+xYisMe+IotMkVQy0Y5p+wkBH09m2FtWYhSRi0577yC9cZ+H0FdCQVatEgcst993LyZdfhoUWEIPRrHQGmTAxjFQg6YI3WvwDwgVGH3kjc4ePweQc0qqis5gVb9jN1ne9mVavS+vffsTVwydZu/M2Th/6MUgXTIy9Zxfme0epaIvWIDDkQJ6y/OHHuMuM8a2//iJeUKU9KLnjmQ+ShxnH//lLiNkZ3CyiJDJiy9CzLbBciDWe4xIIi1JPM0lS9MWkKVglGKizee9uzp46infgJLJcIrVAZb3iRsgYMBZVO8A3kjzNyJbU6SYNajvuZFltCWe/8RyMjkHcZd0vvZ+bZ9scfvY5rrdaUB9iZM16OhMzJOdOAxEITXn9Mt70kU9gZlv85K//Cbcb0iNDYxH5YHRaOCJsjw23386qe3bxw5eeh8VJHvv0r1DvKb7xJ3+GPdckq/l0sxR8v1gmcl2C1WvoTU5DllIz0I4aULeQicVwx6Lj+sRlGzaNUtm+le6Xvk+VgHx+htQRKCPAcdj46KOkjsB2HK5dvUR69gwIC8IM0h5og29JRJJR9itkqUJpi9SSpBUFNQuqA3BpHiplRu+6g87VGeJrU9Tf+zBqYobuy8cgyrDCmIHly1hYuA6+AL8EHYWoVHjk47/Ii8f3E50/AxNT2KaMkwh6aG79hac4ceYIrpakx85iOx6r1qzm9l07+MpX/qUons7ywuGgQvzIEEiPhtJQlsXNY+og4wTtgLtujHSyQVkVbqRuEpGVXdAJm9/6CG966EH++tc+A9omyH/W+YWRhQuJovMKIMg1li6KsRMbUhsQAuvGUqGjwDWSNpAhyVxZFKkrin6qJIKRarEwdrENa5dAax6aLcgSKAlEBvUYmjWgPADVEjx4GyC4dWw9J/7zPxWON5HAkhGYC1kxk6EQGNcjVIquSgGNLSWuI9E6J3YVnrAJLIcs7JG5ktT76fFSlJTE0gqZhOT4hOvHYMMKtj76ZkYvtzn+vedJLl0jzlOG/ICGylE+BB98krFbNzIdtVibOuTPH+XySwcJ2vN4skJLRzjDo4Qmx7ZtZNZDtttUpaGVxbBkFH82JkSjxsrgCe5901vQ801e/t63i84o4zJUGWGx1YSlI5Rv3cQ9T+7j+5//neLY5hZyzUb0pQno9bAMeFlMEPgsJCH4VtFlZRvw86Iryy/x4V/7HF//8teYv3wJJmfxbI8kjKBagzjBCsqoMISSAyYuXIfCAtul2ohwtCYVDonjYByPIAiI220GbEkctlk6OMzVxXnKY8tYXGwwsHkjzYsXwfHw0Lhxj7LnIpwaU50GW598C6tWreLZf/oqanKOSuATRW1sC9JRCd3ujT41gSUdqFWI84Ste/fSajSZPHiYqkqwBodppl0YHEEsJNSFTR416YpiDZJggMF163nTIw/xjW98nWyhUbTqKw2WLJyitkMpjImcjNEdt1EJSlx66UDRUJ9mOEFApnpQKtr4vbToyTMCEksigEpavCdGTU5KiY5rM293efy3/h2vvfwKk/sPAA7kOaiMW3/1Y5w4chCuzoBx2DS2kgs/OYTqJUXJeVkycPcefu6tb+Orf/GXTJw6Rp5HWHYxgGBjFWMPN8bs+vTp06fP60PfidSnT58+rzOKQgcqgljmxvyaJFWKL/zD39OenSETmlKuwLKJjUZhiviV6xYCSaoxYYSbxaQYfGnTSzNIEkgTfNsiVT1MlrPpfe9kLolgfoHF2Rb6whRDxsYGWq5BbrqJnY+8gUbYw5y/Tu4JsAx2rImzGKSEFUug2SnWcQYGiBrzMN+A6iBmocOa7bcztm4141mLc4ePsPDjw+SdiMc//EEutzuoWKM7Ibe/5VGszDA7OcGq+3bTsiyYmcEuD7LSLXPhxCkc3yEJF9l47x7Wb7mVE68cRHQ62EZRDRzCPEO5AqQD2ChLE6cxy6x60dm0bBBGBxncspX43HnW372HbTt3MPXyAeIsKfo4bogBOB6VoIJtiifrgevR0jE6S0nmFliYaiAijbA8SHo0AsFgYjBRyvz8HGve/Cj1ZStZu3YdE8eOIW2JSVOyVpdokZ7iAAAgAElEQVROLJmbnGL26iVCRyAHB+ilIX65VPSWZBlkOf7KUe54431oaTF74FgxmBZGXDh8iEqa0VQhVF0efvvbuDg1DUlCnmTQbEASg1H4nk2Wp9RzQTk3xex3DunCPOnkNMw1caOMSKaYwIWKDxJW338/N23ajFsqcdfu3Zw8fgIaLbBdQGMLUfyeBvxqhVgYQlegSm5xA12yiuMYAZ2IqN0mvzYLCpK8RXr5KjQ7VIIAO1fkeYpfq5JqA70UlEFIyfjJU6zecRur7tjO9Pg59HwHRzjkScqKHbczumkD8eQM8cwCutlhxfr13L5rJ8u3bePMtUmwfUg0uJqSkkhdzMg7O7ejox7kFm6pjMoTlIogzclF4VawhVVE2WyLhYVZDh04CJlBJBqhwSBufBWrfIaicwkUZSXwgNxAz6aI3bkSIwRBJgi0wEbSWjKIWDLAL/z2v8NZOsT1k0eLgidXFv1cnQYEIzz8u59FDZdoXb1UxCl1gpUa1qQG2ROEXgnareJOPNPMHj0LV+ZB5+z4zKfY/sRjjL9yED3fASBTIa7JccjwpMD2HRIEqbTAFaheSG4MpDnCAqVUcQOvDSZOi2WtoESaZ9zzrp9j28P3c/rqZc5+/Vni85cZdgKML2iqDk7ZR4U98hPnaO4/TB5rkk6IkNBqLlAP6gjPR5TLdHo9SGK0EKhuB6UyRio1Qp2Tyh6OP8D6leuYixJuevgBtt+3iwtTV1iYmIAoIxA2nXYXBgKqj9xL9dYNHJ26ACdOQXUY9+oi+cYNbHvLPmYnrmJabXwJ5ZJPlsdopxDm7XoVrVLwB8Ar4Xk1zh89CmEXVI40CltIlO0xsO1W9ux7iMudBkQdMFbRlyUE6BRbaYwxpEKS2RJtWaRRiBbgWAKlc4KST5ikdFDge9z3jrdx8XIh6CsNTlAiTDPioIIqlZm/dJ4Lxw5hmrN4WUI1SwnIUEaSVZ1ifVE6mERhkGQolm7ZyL637mN6+jrzFy8zKmt0jCJ3BPd+8APMXLxG4BSvlSz75K4NxmLtpk24I3XGTxxBYFFpxASxImk1YKgGYbtwrNmGxz/wHuojg5x/5RUCr4TJclzbIjO6iL1q8JTgRuoYZSkQGkdrLHIGTJlEOiS+Rc+DvY8/xoHnXiSfmgNtQZQihoeYbU5CL4eZ4rq3cOISNg46z7CXj6K1ZtXee8hUxtz5cX7lIx+m5Lo/S4sjkT/9W19E6tOnT5/Xjb6I1KdPnz6vM5KfTcgjDUoaQiEJLcn5rM3xmaugUkqLMbFRaJ2AMKx+w73suf8BLpwbh8QgpEBaPYaVxbzMKWeGUqaQxtAlpK4gr1m0E4cHH3mCq+0QNXkNVfbJTEpXJ0jPJcsTYqWIXI/66WvEJkX7hizuUcElyTXv+uPf5eSxU9ixRC+2+PDv/DZHDh+H+TY1t8bM5SskJY9kaZ3ku88hvDq4NkdOH6JeG6Z95DwVWSEaChi9YwuzVkar2eLT7/tFrpy9xvzLhzh38QyKkER3Ac2aTVuJvIDL3/ke6Aydp+RJj0yACexCfxscZtUn30NrwCM8O42LR2xCsBSPfugXmTk7xfWDpznzre/jlA1JmmJbElvYkCms/IZQYATCaGSck+QZyvchB2chY2nmE8Yp5Q3r2f3MB3n5C/+V+ZkFWLqMTW99jKaBEwcPw8wspDlDfplBZdG6OMvC7Cxb/sMzzJe65MNVSsuX0Tt7jYoXEJQryLpPY+EKR5//EbPHz+Eu5sQXp7h48hi4GVXHIlxZgwBErcrWm2/m2sR1mF/EKgeUqmVykRKnEXZZIgKHTq4wwsLxbMpBiWh+Duwcf+MyPvqFP+TA4f2gEm7/zG/QEJJD332Way8f4OSPXoREsf2hh1nIYvRiE1uAY1vYnk1DpmSBpLp3O2mvUSgntijcYPMpG8ZWkaeGPDEYx2PTR9/HtkqdK0ePkYZdbEdQsWx6i/OUYkPguMQqL9xVPcView5vbBivXmfjyHJmx69Qrwxy6chhZo8eIb48Ad2UWnmQa+OXOfCjlzhz5DgsWcrWnXdTHl5Gq3GJcmoYKFWobdzEg594Bn/TZqYOnUK7Zaqb1vL453+DWAq684t4touT5GRJjEkVMkyop4a82UVio4VECYr+L2EwKMSNeUVhDN0SdD2D0oaBzBAkhlJWuC96LoQedFwLyyuR5RmHX3iO62fOMxLU8FNDKcpwwxQng1RJLk5foHXkBCx08ecaCG2oJoYAwdWyRaVp48Y+j3z4acLZiM7LZ6l2ctLMZqoxzfiVy2zc9xjTlyaJdUxi9bCChMzJibyUxPTQNy3H234rN61bTfPiRTRQdl0sS5CqQjiqlKp4mQVlj2bNRnQVi1MLnDl9lvCl/VhTIUO4tJMWvVpO3YJkoUFFSazMI2+nMD3LwKo1dPIeWS/kqd/79/z41Ksk4QLcsYWdz3yIoe1bGVy/mvlL47SiNspoqltu5i2/86ska8aYeOkg7dfOcuz5H7Bw/jTkIYwE5KPw9v/8J5x56VVGRZXhWDKkbT7y658lTXOuHT9G5WMfYOL6RYItW8iPH0dK6HQWIMvw0hQZJYhGB9owlFfIrre5dvIStDqQacgVtTjFVpBYNs4b7mIyMKSXz0MzxOskrNceAwaUUMRGkUrIbQmOBNtieMM6Vq1bw8zsFFbg0Oq2UY6NdjSsWoa/bi1zR44xes/dbN52O1ePHYfVN/H2//P3OHXkEMO3r2XN3bcwf+UoKtZUVU4FwWzJhdEqpU0bEblA9HK8wEd4FjE5+194nvnx04yOrUA128SOh7pjK7X1a5k6NU4UxZSMDa6FsixM1qPdixj/wfOQpDhJRllKpM4ZdAP8sMdQpUYSWGSuzbXFWU4cOwJBgJnvsKQ6QNhp4wRlrAT83MLPJVA4+XJHgZUXm2nCcN2RtERCz6QgbA5/+bsMtRRV46GSjNy1oNOm2kqR5ybIcwUrVsJ8hM5z2Lqeez/7DO1SgBgb5OSxowTtkE+99/140kIKiSULEUkI0ReQ+vTp0+d1ph9n69OnT5/XmYTiM61rAHIwijiM8KtVRLWKLFXQUQK6iGtJy0OjYekAe596O3Mz05z58tcgzqiaEDcosSB6RYFzt8ew8MiNpmUy8AFhIapVTNyDsg+5jR1LnFTjlQKarTkIAuxU3+iTSAlyjZMpOiWXTKcM37YdcXEeW+VMN+eh4kCaUrZ9vLCHEoaOMOgAwMaSJbTWGJ3h+RUIE4zjkOoYaiXoRkjpoqOiQ0gGATpNsG+s1uUWYDtsuv8hJi5dIxo/B1mGJTRCKLQlQAi0Jbjrl58hjBIufeVZzOQskZUVDg9hUxM+cRgyVBtgujtDtRKQJTm+5ZEnaRFVEhZaWgghcDNJy84o7bmFKOrC+ct4VJCdFOE5RGULIgl2UMSS1gyx+b3v4Oyz3+O2LXdw7J//BUoudJvQVCBTxC3LEeuWYwZGuXv33Uy/epyLX/x7MDAYD9LYdhMP/sYvM5pKvvnJz2NI6ckUlbTBApYMs+ojH6aiDaf+8q+KJ/3tiJKs4KRgK42UHnODsGrbLbzn6V/gT37/9+DaJFI6uGmGUhmWZ7Fp/TqOTV4qHExjdWil4A5AnDD4xD42PrWPA8/+gF2Zz8EvfwkWZ5FCYmKNVbIQnsueR99Kz4JXDx9k4447uG3zrXzpT/8akQlquQ+9HMtxaVUcVLRAybgMuR4N1SRcakFzkSB0Ge0JMuERljzarguNheLdUTXgO1htiUoNDA/B7RsQWzey791v51sf+xz+qWnquMyUVPH9g3VEbCg15rHzHGyHyLXIrGJJLcgtUq2g7FFdtozmxSbyvq08+N4n6Vy8woH/489YmiqG6DEtUubLAkvXUbYFNQl37+LpD3yIL/3Rn9F4+RAVx4EspvvQLm57bB8rtODbf/AneInBMwbbLkq+E5UXvTDSZdAO6DXnyZdWyUlxlGR0LmGUATJHMr19I499/MN847//A80Tp5FCorutortMKfBsLNtHdWPIUnCdwq3kK7h3J0y1YKrJ6vIYV1rT0CgihkVpfRWSFEplWL6K0sgI7tkzNCeuEwRlep2QsaEReq02kJM4GYmrCwda6hBkshADZCGqBbnGMqCEJrc0Za3ILOg4DrlwAQsdZTAwUFjiKiVYtBjafTs33bOdoydegGqNWixIXjiEmL6OjcFxS0TKInGtIu6Y5+AKdv/x79M1GVpIehfGmT7wAm4npHPyKkt23cddd93F17/+ZaxeG9VpEsRtsl072b1nD1PnL3Lpu89hhz08y0YajRISJSSJ7fDoL/8qS2yX57/1ba5dOA1C4XkO8cICSy0fowyzwF2f+UX2Xz8GZ85QWrUN+Y0DVPIOPaC1xGFoNqGMzbVKCfY9AsLiibvu5dDffpHZ8fPkJkfXy5B2CudcJ8QaGGL5xrXUR4c5ceYUdKPiAmhsuGmYNz62j4nXXuPC95/FLpfwtUu3k1P5yM9x+4oRetMzHHrpJTgziUwtfNsnGrAhzcAJGAwF5bTLgqvplWN4YC9WrFHXZpBTHfRsC9dxSGlSGa7ihBFSK7TU5JbE8T10T+ElEmVJ2o5F1khZ9ZY3s+SNuzj4w28x4A6hr04Snj6NcjKoD0Ojx5gJaPVaaNcjdXvgWpDZ1HGhs0irbIGlITEMiwpJltJ1JRgYjiUWklknhsDikf/rt2nMNzj451+E0BRRxFUjhYg9OwXKMFSusnBtApPlCEv+zG36U/pCUp8+ffq8bvRFpD59+vR5nYkpPtr+LxFJKVQUoiyLoZUrCbXBwsGhwvs++2n+7iv/hjk7zvLNtzF5+CgIqOy5lSeeeoJ/+vTnABCug8EUFqcsA2OoDdaQwka3Wxhh0clSqNXZ+OiDbN1xBz/49ncID52k3M0oS4dYpbSDHFtlVFNwjWGuZKGlgExAr9hXHxpbQjg5R9kP6MQRmU3RMSJtyFKEAt/2imhHnICwkI5LLgDPLVZ5shRyjZsbjCXJPMBApVckgkIJSVlCKuCGsIQRSJUXT5ilKmIk0pBiFzfacc6AbZOJlDBXUA9uRE5U0TliadKwh0kz6n4ZlWYAaEugpUAIC9XL0cODDN+1lUfe9la+/MV/JDx4igG3hAZCcnY+/RFuvnMHf/d7fwJpF/+eHWzavJmrPzzA0NgoF69f4ONf+CP+5X0fZ3H8AktR5EjmqUClAq6G3jRlWzOY3MTEcgv3sTeQHj4Bh86BJyHqIXKFqQvIB0CWILDw6wFpEqFnJ8GrUhkYpnt9pjijKjbUKoxsWM38+XPQaEMKJSlRKBKhqacKYxlyC6I4Z8h1cJVPbjvM18uw6SZYbMCF66BSyr6NSXo40iA8n2YYgR8UN/dB8DOBQ0ioVdjw5kdYve1WXj18hNaVK9z+yEO0fvAKjRNnKHe7TIazYBkqXgWES9dkxQtv+ww3IwwJccUmyhPIXFCCB5/5GNMr6pz85jdxlq/i5ju3cfTbz8Kxc6Bt1r7rAbY9cC/Rq+c48M//Qm4pouYi1Go4wsbNDK4RRHlKLkEHAcYbQL7tXuzVS0jPnIP/+QJ0FSNxyHw1hQBoOLzl45+iuXKI186cID53AU5fwWn3KNs2ca9BvHYlbN1CkCt6+w9ClFC2LFxhERuDFhLhePiZRMcxgS/pOhnhoA+NxUIosasQpuBY4LtgWcVqVavFO9//Psqeyz/8xV+ALcFokA6Vdo8KAvCo7L6FpXdv56X/8XUsPPxOQqga4PoI12Pf29/O6IqV/PiV/Yy/+CIMDEHUg7iNVfVRyhT9Yt2EcpxjmxxtJSROUXeDcv5/r2daaoSlKGWSUibpWRaRYzOwexv1lSu5+JXvFIt+d93GhttuY6RWY//ff5GB9WtRUUTn0KvFNcEvQStkIKjTNG3YtI53ffwT/Ovn/yOb77iXxW6XuagFzUmYnS7Wz+wSte27WLJkKeMv/giiJnTbDLmwiAavDHEP2ynhpUVMDySZpBCSbA+8Kth20ZG2OAUyh5EBsByYbkBQpVKr0u1O4r5rH088+XZe/bt/Y+afv8cYhgjFrEjZPjjElcVFGmvWUn3mF+lcuALf+DZ0ugjPwvQiGAgg7fD4Ux+kPTXHj779PUAVooglITfYrs+6n38/N7lVfvA3fw5S4wlBtZ3SQTLwtscY3bCVE3/1l2DSwvWUuAzGFpbr0Vg/zKd/93d47Uc/5kd/8fcMBZJQapKRCnvfuo8Dz/2YZG6xuJ5nGlyXO+7bweEXnscOe/gOEFiEtgHLY7A2RHeqjec55HaCFTnkq9aQrxxj+xOPMPvjV5k5cgJz5jTUXXZ+6mlqoeI7f/rfqFdqdERO+c6NvOcXPsjffPo3oZNSNxm50EQGgtE6UbsNjgdJSrk8iGoVYlosgQ0r2fPhd7H/4Mvc9+ZHOf7sT1DzXR5aextf/dv/huVrLKkYGhpi8toESitsYf3sBP3pGmpfROrTp0+f141+nK1Pnz59XmcUxefZ4mNuYe9X2rDYbfPHX/i/MUmKkRZ5lGFGa4iyQ3d+nt0770IYQ6O1SOoZHnnvO3n1uRfRUUzJ8snTpIgYOQJ/bJRwpkFNeKhc41k+jrFJlCFdUmds5y30XGgdO8FALMizkMR2AI2FKbp1MWhL4noBeS5walW0L9G5gSjGlh7B4AA9T1LfsgmrUiFbCIsuEQTGGAQCY6BSq5FEIZt37cQfHaEzPVWsBSmJbdukrgBhcNLiuGSCovfI9op+Hk1xo2lu9PT8NKIgJMpywHGoWjYyz+jkedHXIzWsvglUVvwMAzpJsVyPpNfDsqwbc+2mWDpCkucKt1anOX2NYze6ceimVDwfLSG1BbNL6my8awcXjp4iX2ySX7/OzPHTxBenaZw/Bzrj1YVriNNXyLsdxnAI8MgJQNqoLIU0pGRL8twlvmUt97/lEa5NXke3OhCH4Hj4wmbt4w9Qqa8k7OboxjybdtzGHbt3MBF3Gd66li1372BK5hhbFO6iLCVamCmOV6aROVhSEuscHIvSQJ04SbGMwMkVw1aAlRuEFnS6IUwvQqOLU6ohMoWjishfmim8coCw7aLg2y9RVpLA2KS9rHC6WILFqsUl1SEJLFbetwfft1hdrxE1F4kuXWPY8vj/2HuvKMuu+7zzt/fJ56a6lTsndCPn2I2cAwGQIJFIkCDEKFISJRKyJA69TGrZsmVZkkdjWrZkURSlGZISzUwwACQCkYjU6G40OufuyuHWjSfuvefhFCh65mEeZsF+ub+1atWqVVV33Tr3nH1rf+f/fV+epSjfp6cTCCwIPehFVDKBBJqCQqCKig3/xNw006++BI02+ugUF151FWNnbiJfMUSn20KPD1Gp1Tnwwuu05+aIRY41OIhdCsk6XSwEvnkr1UiRawWugxyrUa9W6c0twqHjoDVGa3InBwmWVaE+Pk4j6TK9a2fRMtdNcKTAQpGqFK00TM2QT81ArgixsLXBdX2EH6Asmzg3uJ5PS2R0s6IZrlSrkaLwLzsf7QeYXlIIcc12MUWiinyzvW/uZufOXRDFRR6atCHTOLlhkBIgODUxxbEDR6HdxWhB1u2AVMXkkTEMDI+w2Giw5403GVi/gQc++AiJbTN/8E2MZ0PUhTyFUhkZp0g0tlZIiv13ZlkYSfEhirwnIwRGGsyyN9dYAmnAyyWZZZFagnd87IOcXFqgnRruvvNdzKwps2HLBkY8n/0/eIL4wGHSXhdMD07fWDwHKZFZQuYl1LdexOq1K9n/rR+iTy3QPXqcfH4S0laRC7ccdp0sdVhsLBZZUUaBygmkgXqdXEhIUywkSRRj23ZhSxQCZZlftoyNnHcWazevZX7qKPK8LVzznrs5PnMSRgdBp6Tz8zAyhGo2OXzoMAs//hl2KvCWlQmFoRv1iIC8PoA67TSuufwKjm/fXlzPZLByFNIuDFV58KGHibs93nzlVaxqBWMMblhGxDklbDZcdDHbf7AsMHk2dHtUchA4zOcRsydnoNPFsl2M5+PFBlul2NLB37ISd7DEjtdehUYLjSJKY+j2mD45DbNtSjgIZciNYuOF57Hp9DM5sHsPMjMgJJHSWOUKQW2A1mIHjY/lSNJ0iVwJsl6MbnawvYATr+9GnTpFkCpqlTLXf+QDtKbnOPiL15FSkiU9LrztBjKjOfTaTjzHJ1cZnhZUXI9mtwPrVhAODpEttAmsgK5KyR0BrgfNNqeOHYMTE2y+4Vr2PvlTzrn4YoJGxOyegxiZo1CUSiUe/fRnMMYgxa9MIEFfROrTp0+ft5n+JFKfPn36vM3kLItIb00iCUOOYO+Jo9z63vfSVIrTzz2X13/8OMx1AAssKK0dZ+zs0zly+ADMLhTTClFcjDZ1NPVKFVkNEesHmX9jJ15qU01gjpTx4RU05uawgirmytOJhg1sfxkyj/rRJcarI+zVCbVehpE5XVdD4OC1FTpVxJZVVKC7HpVqnTvvvJuv/c3fFmJOrc7Y5ZdxwWWXMNPusOOvvojV7hT2MNclR5BGCWKgQmXlOHfccw+vb3+V/T99Ch8XpRSZyIvNUsqyTQZwRNF8FOWgFVJISk6R4aRlsQHUUhRV6mlGdfm4xhWPWCUM3Hg1o2eew8WXbeVrn//X0E5gega7UiNfXMRzQBqNkBohwAgbKQK6ucF4NkGpRLTUIhQ2vTgqnljJhW3nQBRRtkd45zU38b0f/pD2oRNUu4ZsqMT5776ZZEOdHX/4RUzShTxCjo9x44d+nYVOxPaf/AR55BC1qEvkl4nrHue+4zamJyaxBsqsHBvn0E+ep7vnGOqmc7n80us4efAYk08+XgQqb96IO1gjfflF2LAeBsfgpVeKQFoERBGuU8bRAieFJZ0XU0qugJEqzDSh2WEUF5NFJLYgM5LQKeHFBoVkFkXg2Tg6R6sUpTO8WoUUTTdLQdoMKQcn0Uid0ylXaQXg3H0VZ7/jJuZOTjO9fT/qyR+DzqGXsMKqY+ZnCUtDHHEibvhXv8f+7XuYePJJmJtlKHMRuMyPDUGaQKNHzQ9p5U3MeA2mOuCV8IIyiVmCVVX46HvgtUl4aR80e6C7WGuGueqaq+h12rz2ox9jd2OqcYbvOiAh0hkic0h9l8xeDqSPU6TW+CrD1SlaGIQf0EzjojktzSHRSGNhZzHapGjPYIfDZFmO6fSoSonJFeVKjalWG2t0FBmWybotOGsl1EMeuu8BfvHHf8WpvYcY3LyW+o2Xs+cfH4PFDHuwwi133Y7JM/bv28ORA/shjkFaWBJUN8IyFgOVQRa6HbAEYmQEkxlYamGtHGfL2afz8Psf5Itf+DwThw9TGh2jO79QLDxCUl63Dst1aM7OAhFUXEa3bOG+DzzEl/78PxHvO46facpZCkKRSUnX9n65dknzz5tzLYoRQVuDJ3ISC2JPFusSspiuqtVgw5rC+rl4EqYWIRfQzgkqdSKTsf6KC7n4mm188z/8B9DgRglpzSom3EzxNMOkuLa7EqhQtKmNrYCFFtglqNZ44H0P8I2//q/QaRGqlE4ObugghEWe5ziOQ5bn//z8pcZIG7HlTN7xrrt4ffcOJp7+Md7tN5NkCYyMsPqqqyn3NGsPzfL4n/7nQnPKU5yyTxZ1IMsRrk/JWNhWRNcWZNKj/vCHaPzjt0Bn0G1wyyc+hDs6zA+e+RnMzBTX4NwS2AHCGEwU4XohVjfCA3p4qLKH22nhkBFaklk0lpCI3MIeW0U+v4jQisSFaiaoaUmHhMaAAl+DcGFmuRhBCMq1IWhGDBgPrTVdRyI3rSRcNUpnrktz935KloUjoKW66GoAluT8q66HBHY+9Ti1oEVLepiuhZ97KG2R2Qn4DuVeTilTzJw1AIsd3C6krQ7h+DC97jyMjcDkAp5fQQuDu9Bk0CpzUnX53e98ma/85d8w9/NXcbVLWndhyxouvv1Wpr/3HK1X9xLlEbmrYU29aDWMNTQ62KGHimNWr17N8SNH0UZj/aqNrT+J1KdPnz5vO30RqU+fPn3eZt5qZxMGEBqFpofk52+8xjs//CFUlnPmVVeSNVoc+u4TuJ0OAo2sVYiyblHj3ctg1Souet9DmE7M6//0rcK+pBXv+egH+OYX/3Nhi8kUjFW5/5GP8cJPnubU9jdhoMTtH3+QfQf3cvQ736bqhrSaHagMMLiUoWROM9RgMkqJB1nGaVdcyQkrJdl9hF7UYt19d3J830E4OceNt97Hz555FlSPsd/5MO0vfwmOnSRNUyzLIjOgZSGEFf/bm+VxLIv6mRuJmm3yQ8VkUl5d/pkESh3okWMAT1pYQmIhyLQitw1GCpRlIU2EjjVD0ioEKc8mrQSMXnIJujLI1OFjEOc8+tu/xZ/94RdgYQlUimNpBApbmGURCfLcBu1QCytYlsXS0hKx0XzwU7+JCD3+7ot/UdiOpAWpzYpzz2KqtwQTk7iZR9ppFVlD64dgx17QCnugTB6WYHwN4bpN9HbuhpMnGECz1GnijA6SNdqFIDdeAi+glFfg8BTdzXU4fQNMTMPCPKuvvIbG1DTdV3cjlSDIoZxpBDAdtMFAKahgliJKTkCa5gyfdSZbH7mfI80Fsk0rCaYW2fXYE+g3DtCKF2HIKaw0Xc1YXiLKNC3fglwVkx3SxpbLNd5SILRBWYJE5ZRTi3WyykTeIXJckjIwPAq5TeVok4Eg4qTXLSw3rYQN4RhLJqfhdGBkCGYNtBrgtKkmDq3c5owH7ue0Sy7l9a9+g4k33qBcVnSyJgifclSmEwp433VccMctHP7xS7T/4UdYW07n5ve+m2N7dxGnHY7t3A7kcGqSUlDBm28Q2hIs6OUxgeUhOxrPDkkCn5N5rzg/jaIa5YQ6Zx5NWA/pNGNc1yePM1zHJiNFWwZlayrKReaAViRKIRwX5TgMn3EmN73/YZbSlO/93ZcI7roKGWesmOtw6B8fw5ISu1YiCVwQDiQGW6fkzSVwbMhThs72LNUAACAASURBVIaGiKMuOstJsxjf9fC6KTmS1qpBtv77zyHqFV74+rd58OZ7+OYX/5psfgHmppDGILBQUQ9sG9v3yeMYbAt0If5ULYdWFhXHqeJBriGTuDk4WmOEBiOx1T9bg8SviEhmWUSyDFjSENvQ8SnOJSOgk0AphHoZpKF6rIEvIbINbUdAnEOqqVk+HZViSgHaaOwkw1EKgSGxNKpsCqXKFtAq1o5bHn6QFZtO5yt/9SVox9Q3bGTT+Div/ugHWI5ExDlDoc1SLwcL8iBAWct2QKPB5FhG4eWSgaTMEnEhfvkuynJJkgSkCxvWsvbaq4j2HWTuqecYQSPISIerLOkFrv/9T7NmeAV//zufL6aMNJx59z1cetNd/P3v/wFkPayShBV1zr3uGrxVK3npz76IZZeQqSLvxRjLFGu1UoTGQaaKAJcmMXbWw6bQhzsu4Dv4DYNtl+hphbYFeOAnmoEUclLmBymaPBNYoW3aXkikMpQweLU6yfQifrmMdD16JgPfg6U2I5VhnHYLgUE5mumoCdUK19/1Ln7+1HOIXgu/M0tvqIw9qyglYBEwPwRUXFhsUZdlGm4CS11qXpW0G5GhyV0BlsB3AkJhs9hoUPJDenEPUymBL4rJuVxAWMFePc41d9zGk089CScXCefauFqTmhRVtUktg8m7RbkCFqYTs27dOo4eOozBIM2vKEZ9EalPnz593nb6drY+ffr0eZsRv/pZGDSGmajFviNH+dbXvgpjq5jfvgu9lBDPT6GERhnFhvIQTmaTNnusuWYbzcDFrg6y//hRrr73Lk7s3Q3dNnt3vQm9uNgY1svQXcA6+yyGVo2z1OyQTs1z6NlXiE/Nkic9xEiFleedSXNqFuIMYQlST0DJp2wcRC7wxke4/mMPEdd95nbuIdt5imyuA7bLZZ/5EG/Gc5DFdB97nmx+GivPCkuBAGNJbM9DqwzqtWLKpFRB5nDHr3+Qa264gR0/eIJhv0pnvARlF2JFOUoRWGDJXzZioSElxyuX8ctlkk4HIxUytFGxYijwaccptuOweGKCzsk5WGjDfBN/dJCN69cxt9ggjXtYJkdgkMvuOApnC45wEKlCxwlGCFIpGNmwng1nnk7LsZk7Og1LKYNBhbmpY0VjVNlFdePCkuTZsDBZWGVsl2qkCJuaFYMbWNh/CjM5DS7E3RauI9BJRqBlsem3ikyrbLpFSUmyczaz6Z3XcfED7+TIay+w6porueH225hvt2kdOoxxHGSWEHg2PZkghCzqto2NUAZXOrRVTl4P6ZmcHS/+gvkjE0Qnp5GLTTI7K8K5ii57VJwTSzChgNXjXHjdtYxvWMfUxDQ6inCkjackjmsTuxJpO5AqjOMjKgHJ8GAxHRJphmKBlTfJfYESgpLlY3UUjV6X0x98F92wRL7rEAPVMjFtHOmR5jDvSkprV3PgsR/ilEPi9iyr33kNV3z6Y4zqgLld+8laTaYPHyWdnoZWD4PBTeDE8UOMrR6nNj7G4qkTkOaUXB/R62G0wvEcTOjS8g3CdsksQcuzSelByQZHkzgWSZxiBYDKsDOBpQo7XK41mVAYUdxvs3ODVIWYIixIbEGOoReGNKTgjSNHyD0Xq5cQvbofd/8k5DmJSaASUl+3jo9+4XPUzj+dgz9/Dk9IHCGxLYssS0mjCL0sqGiVMaLLxKQknuRU3OTk7AwoWDOymv3ffwwaDVB5YYnFIDwPsqQIkJcClq2qAvB6ESXpIyyHTBpINZawwRiSLCezLQgDFALlWMRGE6sc7dhox8YqB7SiLv5QnXYW42AR9jSWkthOQD4QQtpleNPpZJ2UwU5KniWkeY6yLYS0MZmiVq3STWKk42CURjsBlfIAUZKhDEWOmjSFRdMAQtLKc2bmFmgcPAxKE09NM3niOMKS2MbgWJos1gwMlIiznMx1i4k4rYs8L1sWOV+5QSsFlkVuFFJKrNigM4XRDmffcjuHfvwYvbkJcB1E1MO3A+ajRdgwysqzzuDY/sPMvrqX0BZkuWZ+qcPEsQl609PFnYKkjdYZ0xNTTEzOwMQiptFBpMVUlAl9iLusOu8cFqcmkWFAS0eUUoMfejTyjLTuFdluaPLBGrLVJbMdCCSMD7J6aIQAm1avQeJKkJpAWAzG0ExTslxByWHsknNJApdEpeSWVVgnsxykIBQa1Voiy9rUKiUiS4FlOLJzB365RDozTdl36BkDicRWOTku6XgAaYu1d97BzK43i7wtZag5PiqJKDk+b92ftpPi3PRx6NoG49vFTYNMwEC9mNwaH8EzFgefeBYaCbQWyYZLxMRQLWErRd7uUq5USVtN0FAOSwghePTRzyAQ/2+9qC8i9enTp8/bSl9E6tOnT5//CRQCUrH51AiEE/L9n/2UZ9/cV3x3eo44M5ClSMtiyA/JGw2yHJTjsKAUZ990M4d+/gJMTxBecQEXX72NdWecwdEfP1PcvQ40a666mLMeeDevfflvOTVxim0338rUK3tZm3uo5jzV0XGavTnOvOM2hsfXM3P4OFESFRsuJIkyyCBgemaSXTt30jx8ArXUIquHoBJAMXNsEjc1jKxZzVm33cCpF5/DXt5YGwlKCurDw2y+5CJmDu4rNoVxhDGSvRNHmV1oEJxs000Sxh+8ldt/55Ps/vnLrFmSdHSMkgohTJEdJcEuhURRlyROYGgA8ghjFEG1TK/Vox6W6HW6CMtDd/MiQFYZjh3axdE9e0gXF5GAbRSWASHM8usBlu1gK4OTg5CSzLfJKj5HDu7nxSefZu7YKVY3csZMjhWnNN0ctqzhgS98ljI2Ezt2gzTc8PFfoxM49JYWSVsdcuEyL2xMawmGB6luWYccKONOzyGNwc/BVRBJuZzrInBzQWLD4rOvMPPky2RzMfM/fo5dP3me3vFpwkxS0YaagSRvk0kLiUALuXwn3mA0LEUtpo/uZ+6NHXBogez4HP5SxCgWtspIlMFkArEcjJxYFpd/9jfoWIKugTWbNzM5OYNaamI0lLVA5jk9k5NL6FgZ1a3nc+tHHmJSJwycfTodT9DpLtA0XTKV4+SSoY7NgHap+1X2nTjC5Vdexsld24mzLmiFI0O0Z2PKDk0rZ+XoCHkckaqE1olDHH75VY6f2EMWlGBiEdHo8cDd91JbyOjuPcqJmX1kUYfZPXvQwOVXbOX4vv34SBwN0ndJhKBFjvEChHBQnk8aBoxdejHX3fseFrWmd/AQQblERorqQVla2Nj0jCYP3WKqSkrINY4pLIS5ZcgsQW4X4dhX3n035155JQePH0dUqySTk3DgFCMLPVqmR16yMLak1NM89fWvc/jl50AJ/FwhMUgMltHoPENgEKIQUbVOcW2PXm7g0BwVqjz6vk/w5Uf/oLC+6RxUgjc8iu065O02wcAAKk0RgG00NsV5P06ZOO+g8ozQCcjjiNAJkJZNhoHhKrpeRg34qEBiBksQSK77jQ9zsDFF6exNRK05Yp3h2D6O59ONYqTt4ZVLxCg++bl/ya4XX6J75Djti1bgn7GZ1twSm6jS6vYQY3U6IzZn3Hs7c7t2FRN+5QGu/r1Pcskj97H75DGY6jDSkgxENm5qk0qbzswcjZlZiBIs28cohWUUtimEFiMEbm5IMoVyPZSRyE2nce/HP4k3NMT0G7upBCGdOCNZP0pqdVDrBsnSFtnQACaN+bV/90cccTL0LVsp33015S1rWNqzi07eLfLWhObkE88z+/J+1stR8qiBa0HaUfROzlCyBYFOcfOMNM6gHcF0k2omCZXE1gZjWYh6iZsfuI/B1eMc3fE6uevAYECSK7S0yYUBlbNy62Wcc8N1nNqxg0AHpBWXNVdcwD2/9n6e+advsNTuYhBFDrobECqbkdRGSg+rFBBXbM68+2ZO7NtdvPc0O/iDI7hugLFz8qjFkOdQ8z2WWktEJidLMtyRGkmrBZZFYpfwBkfJFtuIsErt7I2sv+sGLnrvfZQHaxz/+QuUjU3J8+m2l6jYPmQ5njL4yiBN8RFo6PiiaFEwUOlB2m7DcJV3/vqH2f2jp5FLXbyoRz5ahdUD3Pre+2gfOYm70ME3kqVuk5s/+D7O2ryFN3fsYnR0lE/91m/1RaQ+ffr0+V9A387Wp0+fPm8zb03Xv1U7ppD8i3/7R7y6Zy/HexFnbL2Sx7/7LbjwbO4f2cD3Pv8F6sJjXsZkoYBqFQbHOf2629i/7014Yydr7rmb9oGDLO3Zh92Jca2cnm6DrZGrNqJjDVEKC12ojcDCYmFjSDswNggLc1CuFCG7xuBpkNoQCVVsmoUEN0S0uwhp0K6AVBcNRq0ItxSSZj3YtBpOTOIXxWdoCZmUGG349c//b/zNP32d+opxtl1zNd/9kz8HEWLHmrzbgxJQd2FkBOZi7FOzYOfLx6mw0SghMQis0WGUUmy+5EKuuO5Knn3qSY499TxBkuNYgnaaY1crZCkEToDKNKlugmXhSIu82yWw3eJJSoN5K2NJK5wcrNxCWRad0IZ6FdpdkD6eqFCan8cnI7ADDjtd8HIYrMHxJhUnJPNt8o0jDFUHmDl2CJrzsHYDZ3/kN3jz1e1cdO1NlE8cx2k02P6f/huNMMdSkjAr/r6rPv1rSGHxzJe+QWqBbnWwjcCUSngjw/TSDDM7URySPAHfwlYGryfJpSaxiz/LVlA2Atu2mc97YBs8awSQaJ2SdZcYCgJkFCOMJBc2iWXRdYFBvzjmvbRQAm0fLItQCNTMNGNBiXaSs+SBu+1sEgvYux+Mjzj9bEzS49pPf4I3vvxllp56jTC3KGUus3kPw/LjdxehYhcjPI2UQe0hXMlCmEFgQx7CYgdrbJR3/8tPkfrw3c/9G1iMEVFGyfGwhWDJS2GgxOqeQ6eXkIQ2qQSliykLR9gECJxqiWbaxViCWuLQNQbtOOSWi1lYKC5MaSh5DlnSJs0zfBvs1CLVBn/1Gtq+wMzOQpIxYAXkcY4WYGROLjWZJZGlEjoIoTpUCDtCgx1DJ8NdjMlJ0I4EY6CVMTiyiliA7jSxf/kvWGEnS5Ko+HJZcHZsyCKoyADHH2FJaVKZM37tJUy/9jI0GniWTSKASpV3veud/OQH3ydqthBoLJNjGY0wksQ4lAcHMGg6M9OsGRqj3YroaE1ecjj71z/Eqo1reer73+fKK6/k4MGDNBYXMcawefNmpFVkDe3+0lcgdoCMbZ94BPKc1599EWuiQWepAaGA8SE2fvbjHPn20/DKXmqTbZqBgIphzaceoHdyioWvPQ64UCrhXn8BQxvXMP/mIbIfvcLGWOOiaQFzLmTLAdoSKDkOWRLhOBaZBC1ASRhzQqaabUxYguoAbDytaGGbnoDZSex2i9ALaImQmz96P1fecA1feOiD0BEMDYyx0OwQ3Hk9URWoBpx3wXns+osvwolTuJ5DuphQdgM845MnGk0TBSgZkFs+UkSgY3wHLNtH4ZBpjzzu4CJBaSIH3FXDSN8lmppESB9XC5KS5tbf/W0mvvEMR1/eSV5yuePPfo/piUle/Df/hfrAII20BULB6hE4Mg3KQVoOuqSgXodWwsr5jCXVQPs+saNhoFw0VsYJKzZs4R333MP2XbvY/qPvIAeHcKbnCTTYjsBeMUQkoLnYLH6nNshDn/ksT339m0zufgN0wtnvu4s3n3gcghIcPwlaFWsGUK5USFodKl6ITHM0kNhF3p2jNT0HlAUYSSmVmMAnciTGljDfojJYp91eAgsuuvJqVg2O8PMfPEGr0yoKEVbXef+nPsGOHz7B7meeZ/3GjRw6cAApJOJXdzJ9O1ufPn36vO30J5H69OnT538CAopNJCCEIMoMe/YdJDaSF59+Hoxh0x238Nxj3yKP23RUD2M5xe5o7QYe/I9/wjOvPk/ZK5Fmgtb3f0525ARjfoVW2iBL25SkRSWVjHQM3mQTu9XF8QYItp2DdddVZKFmy7arWXh6B2Huk+ku57//PSTtNvGpWbw8I/UtGAi54MEHmH7xNXAMts4JezlBrnCTBNszGJEQ+i7MzeEpMMuijxGghMCtVHjpp4+jW0uI8THskRpz9TIDrxxmKMtpjVRZ+dF3052PMG8epyQDEj9DmwyDQgBaCIwUEAbUVo0TJzGLkxNElsupYxOo2QVc1y9ylAKBdg2UXZyxAZLWArYEWylsDBUnwOTF4xphY6QNQmK0ouR4OH5A5gpSx7D1o49QP20Ls9MLhIspzWpGO4ReFGFbNtrxYbbFaaJGkrbpxgk679I9NonsZQx3QE/3mNp+EnafYG6hzdHtr3D05V/gdTOSqoWxIUUQpjBTgXYI8xMnMLMLBJUSIrBJO22ckRGuu/VmwvEVzDbmwHGg1cLKFI72yaWFsiVYGi0hTxJcleEaQygEHZWy5j03ctMnH6K1psT03l2gbKSWxLZNr2QXmTYLCeQO173rfrZccjmH9x2AZoMsz8AVhEYymrksiZxs8zgXXX01tbG1LP7iMINTEclCl2O/eIHoxCT2XBdPOywMhwQP38zQXVvpvvkGQTvG6qT4yuAwQk0lWHmPdppBmuJFOWUrJGrl7DlwgpP//Qmy5iJIzSq/hIlbdH2NGrQg6THSjglTjWfb5FGXtNdjbMUKsiRDC0nsSLJOG+O5nH3brYzduI35kSort17E1ttuI/ZdWsePkrkZKjSEIzWihQjb9UmEBWNDXHjrjUxOTkMnJowkwgigmPwSGKSGAb9Mr7EcnNzqEpYH0BOLmCRG+VBOc/xKQJK0Cd+5jdOuupRu3COdWcAyurDKCTDCkKschF4WqpZ1LgcKySJDlTTit+/Fvng98bPPQK4YjjO6pTLjp22kF3WZ2re3qJAXGmmKSScLQ7aiTFp1cDavIQx95o6dBKWQrs/FD97PUiXktedeQL+0n2M/fob24UmyPUehlTH15IvQynAbMfMLi7C6CutWc3LHG5zcuZN8bpbUSnHO3YI2GmbnaXzvNZjNYbFLMlKDzSt58LOf4bXHfkr720+zLrLxkx7drEN1qYPec5jO7j1gZTQcxbyraVtF/lfZDfGMxM8NlkrwKJr99HIcUyYFUTumtmI1MRaUyqzadiWl+iCd+QZ0I7wowc0lfuZz8NhRnvz+Y9CLCIxH2uvhDA8RqeXGt1eOk+w4Qrz/EKQ5Xqxwga7KiVyLpF4mU10sA9q2IfTIrRgTUrTBJTkmzlGpICsZMlviVstouzgncwPEGq/Vw0tSkmGfRmQ4/vSreH4Z5bq8+czznDpyAnodTDNHJBG2F6B6PUgVlhsiqxVu+tzv0qxV6B05TruXYpVscqPRvYwVlKk1NU47R+WK5/fvZOrEIYLrbuCc8y9j8vg0kRYoJ6CpIZlv8u5H/4C9J2ehOsAbU7O0X9jNiisuY/PdN7Pr8e9BWxPMxQwmFimCNWdtYGjdSmYmTyJrZXppjBCgpKHrGnLXkLqKSmyoJgZPGVp+8Y5hLTVZTUjTUqRZDy9KGPZDDh3Yz4FjB0hqBi4+A7pNaBgO/OgZpo+fZGC4DsDvfubRwsb5/1SM+iJSnz59+rytyP/vH+nTp0+fPv9/eCvag+XMIIDbb7iWW6+7ht0/fQIO7oPFBbJDx+HEiWJltiUmSkDbcPgYu174BXSW6PziRTg1ieM4BLbDzPwEGE3ZK5F1c7pJzmyzhcBBIrFzQ/PYSc5avRpGR7n5hhvwPa+wiylD2fe4ZNsVDK1biWsHkOTQ7HLh5tNhoAJakSEx0iETDm0kjA2RKEMmwU4AJFoWGzqNxDKQNjvgBiAsuvv28vpPf4baf4Bhb6g4ACpH9SLuvuYGbK/MyvXrKdK3bQw2SsqiTlxLvEqZhz75cd7x0Q9B3OPgU8+QHj+F8H3UW+1LykAQUj1zCxu3Xsqa66+C0EalOTLO8LVAScgkpFYRXeIoiYOL8kv0qj5R2QNL8tLjT7FwYpqNZ5xJeM4mSGNA4/oBVpzjtjNWDo7RyNsI4VCr1yCOwPMweVEpX5chcmEJYbvk27fDxAR0OmhhiqBfCdiQW7Dw7Esc+/q3odcBB5K4Q7wwD6WQ3vEJnv3Gd0lOzRUNfXECloPjV8jkcg+7EsV5IiQM12mHPl0j6CYGBoc49soOXv7ZcyyemIagRM8pBKT8V85HV5ticq0Vc8VZF7Lh/AuhUgZXoj2XxW6TjJzA8zA7d7L9i3/Jvq9/gy0r19JpLrD1/Au48b0fgF6bUsnHLTmgYzasW8OlF1zE5Xfehc5yhqTESnIClZMDKQ5eyUOEDkIYemkXKgGcOI5IMkStBjpH5Sk5hix0iovJDZi3BFYpJEtSyl7A6Ipx5ufm8GyHO++8k49/7BNcdOMtkCn2TZ1korVAfPQAkzMThJUQYQFCs+3Dj3D1hz/CinWbQYMtZdGCNTvDK1/9KszNgVKUfItiYqg4ZpYGR0PSaWMZCGt1nEqVjz30Qe57x7tYuWYDRAlZGNBKI6iXue2eu1lcXGDh0AG0KKb2EksS2xDZxaSGkvKXjy80ZAlFXlG9DPUA4wjqpRKUqhDnuBjQmum9b7LnxRew3eCXr6utJWEmsDRgUh75/Gf5xKc+SbMxx+DQELWwRigddj/zPEefeApe3oHVi4oRqDQGIcgX5qEcMn1wH/tefgl6Xd7x6Ke46Y47i+pJy4Kqyxm/+Qj3/8ZHKA0OQqpZdf7FXLJtGwzVodOEmQm+/uf/O8mO3UgtEaRIDAiH9sQ83VOziG4CSheh5xZgSYyAqNNCpV165Ng4VK0y0lgklgXGwlWSgcEhGlMz0Opy/nXXcs31V6JNwgMP3EvN8cgx2K6LMDFZYwnabRipM3jJ2Vz13nuIOgt86t/+O8CDUzPEh46BZVOu1Ip4oqEK1EvIc09j8KorMNIUonkek8cthDG4qlhbAm1REi6O74EVgOvRHQjIQwdyQ5Br6PUYHhwi9V2u+1d/wOKR4wzXB+l0l8AT0OnC8ePg2NjGUKuPkXYT3veZR3E2rkclPfKFBvM79zH/9LOQ9Ljj93+TWBryJGYoCEhaDUye4jkWcZbD9DyUK2w+5zzG1qzBr5ZxAp80z7Edh/ELLmTF+GqQLttuuwPmT8D4IBecfQaXXngepAmD0sFrd6jgoCyHjZdcwpmXXA5IKnYJkxRVEpm1bAOVxbiYrQWWEUUTpw3KElSCCiZJoBcT2i7DlQqNbhc/rBWNfJs2Ut64CYzASsWyfbeY0sxEcZJnSfo/vuFK+gJSnz59+rzN9O1sffr06fM2oyj2vXr5a0lxd/173/kmjzz0ASwpaXcijOejpESKZbtSLtHSIhGC9dddyqEDe9jya5/gxNMvED//NIzasLSE04E1OBzBhU3jbLn5eg78/X+HBFY6VVpxAzFcp20S0DGEIbQ61I1DI2vDYAmimFUDq0iPHWfd4Fr2RPP07AgGRxleexrzr78BoyNsfeBeXtv1Gumzz4DjUlpoEtsuyneLSSshKGcGk6RIMjLbIQ4EcuUKBi/eSvzdZ6DboWNFUPVY7Y/QbHYZvGEbx6MFtq46i1+8+gLm1GGwbQY6gqW8R3DVRTiVCq3n30BGXRytsIzGMppUShKlIfQ47ZGHOXTkCKvPPZ1T//gVShM9xvHpZm1mBJiSXTQeLaVUcoeBFZs5SI9rP3kfti159u//keBIk6aR4Bpqn3mE5vd+BDMLiKkOZ9fGSZKII/EMaqQEnRa2F2K6PVTZASysWp3xNRuYePPNQjDKc+w8xdagk4xSpUxDZoUosNCi0rYJHJtZ1cYNIe2B9CRaawapYScpHSS9igW+zd1//Mf87Ctfo/vmDga0g9NImBc5puQQ3L6Vy66+lmf+9G+gEUPUYmx0FZtWr+bw4UPM6QgdNcFxAVmEDucphB5OR+I6FfyhIfJ1QwxuWsmxg/swr+8iVALf1vQcQezbYGzQgpIK6UYJYvU441dfxNQvfgST85BD1a2TSxdsm97iIihNFUVFuFiBYMIOULZb5CPpHnYeEwuNGV3J1vsf4I3XX6Dzyk5q7aI1LnMlPV+y6tZbOf+CS9n/2l4mnvgRgSq8lEoU9sBcGXIBXqlMlmWIWoW1117G1ksuZv/r23n1B09Ao0epUqPdbcH68eLCnI1hcYEaEdpA5FrklWpx8fbaVOOczHHJhY2jc1ylEWhK5SqznS6p4xf2KT9YrqvPsc5cz/0feT9f+y9fhEaL0A5gagHdS0jCMvbgINffeRNnnHs2/8ef/nFhO1Uauhn+W1qj49ISBkaHYHyETZddTmv/Yeaefg5HaUaxmScjccFxAsaVy0k7BgtqbahraEho10G7smjy6qa4bg23q3CkTSOJwLMg8GCpAbUybN7I+VdtI6xXefGv/2sR3t9LKY8O0dl8OizE0OwweMvFrL30PBZai0w/9jzZC68jRkZY+YmHSacXOSuosuO//QPdxQl0INGeAWUR9lx6tgVnbuKaSy5n8fBRdj/1JBY5yirCc/zV64knJhmygCRmoeIwEJdYVx/nSGOG9pCk0srwej1agyXcxQiLnHY1QG8oQ56xQg1Qa8Tsa5wE6XFaXGJu2Kc9ECAu2MiFN17N6y+/hvr+k4wMb6S77wDjwCki0ppb+OViDVWX4JF7WTm4giP/508wx3YUuT8Z9KpQahaRP7HnM55Y9EiZGRyC2Ofs972Ddfds44ef/hfUT7RRcQerUqIRdeD81ay8624m/+TLDPY0vmUzWYqKUPBe8fql0qM7Ngoln3PvvZM3/vbLYPucmXjMLEyyWC/DuRs5/4E72fm7fwRCMCDADyx6SFqdiLHLr2H19bdycH6R1s7XWDFYZerVF6G5RNVzSbVEuQFZUKdyxnm4JcXCC99Ezti4tVFiVwERozMtXKBBhe6mlQycsZGlN96AVDPQ0pSMoJN3aZZMcT6lOdVGjmUMqUVhn7U1CAtba6q5hKiLwdAAGAip2itxhI9351Ymd+yEyTk2UOVo6yiD129l8chhZBQRlAw/9wAAIABJREFUHz2BA8vCo8QISQIUK3GfPn369Hm76ItIffr06fM285aI9BZv5SO99uor3HzjTag8J41iXCnIXY8kV6AFnuVjVar0Wkuc98EHOZi2yZwq3lyT08s22x/7OlRDmOswHLssjgyhA8Pah+9n8FSLHd/+CaVmGzk8iLVtM1fecTOPfeX/wts/RbLUgnJ5uanHKjaIBkYGh5lbnIdaWFRstyMu/MB9zNV9kjhj7uAx1i1pGq/vAp0Qy5ggqNDsdMG1wZagDa4QBMKm2W4hPAdjFNghpZ7GJqXpGNzhKpUlTeAFnOq2YMzD2raVdVvP48jffQUmZvHnDeOUWCBHAFuosU826XgKV2k8pbG0xCuVmc01xrKKTXwagWouK3cCz0jsTCOlBEuSWaBKZTK3CkkEjoC4W9R+L7XxK0P4XsBSK+KmP/0U9bXjfOMP/yPsPASOy7sevJ/vfP9bOFqSLSzhCUFQsxG2T6Pd4f0f/w2++tWvQp5hOh38LMFFIlGsrqzkjbAN117MnR/+ED/8xOfRcw3wFfW5Dg3fp1BhKpzzzjvYcs45fOsv/xYOzxaV7ZecBqsr8N2nIRWMuAPMpRHWeB3lKUgSaCgsp4LSMQxlcNu1rF+/lmNf+i5MNcCkMFrlhvsf5NxzzuIv/vUXYDGGpiommsaGqK1dQdRYJD98gsFUYduSxIK2JxFG4uYSLwYnLNGWip7qQt6h7vgIIemlkthdFhd9Cd0OuC4kbShLGDoNWhn+VJMxlgixaaM5FbqM3HU7a8ZqbP/mdxmY7WFnKSkaXR+i63iUS3VUR+FEs0iRFV1+y3lccbuDqNVwg5AkSwshr+xAu4elJWtTG7eT0jMZJ9Fs+9ynOOxkzDz3Auw/jD2zSDlVDLuDLNg+vVCiTUy2NI9l+0gjsU2OrYvw61Rp/KFhmp2oyB3LDOP4NHxDMiAYOfcsFl/YhWx0qUuPZkmSSAWWv3z9UWTdALSaYDRhtYpKUsoiYKndQXkujA4ydOG5bLvlBh577Nvol18shAYl8FoCbdlUhup0ox6JyIuFRi8vQBK8TsLY+Ep6KmO+s1hMEPnLweEViy0ffh9XbDqTZx/9U45OTvzzFInjFOdjmlAWho7O4Z7buOT8y1lth3znj/8IBgZhssVwLOmsLBHbEQiLLXffSz6/yJHv/QA3S8FkIDQGG41EeRbld9/CNnuII8++zIn9+0hDA6EscndamlVnXcjczAnSqVNgQlg7zsrzzyLspkz89OdklkbpGGMZBlKbAItu6NCqAbnCT33ihSUY9sEIgjQkzmJs3yXrtItxLynAdSCNccIyebON7/tEcQ+Q3P3ww8Shy+N//w+QC/zEwzJLIBRpYJOFNnSz4lgHQbHK2wLGh1l91R2UspT9Tz4BcYy72MATApUqfNsnEZoukqFwCH9pBkjpocgrIbbrsbTYxBUuyTu2MnbZRcz87Q8YPjqNIqU1GqJEB4QNkYLMg7IPKoKszeqgztLMAsOnbWLVg/dwYLaNWopZfPJn/zd77/ln11nY+36f1ddus6doNNKoS7YsWbYky1juNu4NYxsTG2OTAoFQbBIgEAiQG1IP5+bmpnDDSUJOqkMC5FISqrGNq2xZsmS1URlpNH00ZffVn+c5L5YgOX+Az6v9fTfz+czsmbX3rD3rt34FshhhSQyVIqMOaIVYv4H3fPb/4u9+/w8hauHUpujrVFkUJqmIwepQzgzKToHpKMnfQ2opbBngti/9Nj/8wp/B3jegXIYVJd5y1Q0c+uZTRLW8g8ySUEzAURARk6DyfrWigyENlgc2MxUDMgEb13H7n36OH3z2c9iDa0i/+RNuffQh1uzewbe+9S3CM2donBhFJDGGaYLRFZG6dOnS5f8U3U6kLl26dHmT+a89n+K/fC4II/7yr79CnGUomeEjUCZkSoFhYbkukRBQLjA3P836G66l0QiI3jjEAw89yGtjIzA7Cwm5+2KgF5ZXaTz/EouJRM3OkPaUSYIakZCUKz0QxtSnJsG3YcNQLqCYFsgMbEHgZtBXgJX9UFvCX72W2DOYz0KG+pcRzC+xuP8IxSRDZSnSAFtYJJnEcl1UlgAamSYox0ElKZ7pIjHA9qhKgaUFHSJkHOIYNjqVhBpIM/TZeQaLvSRhRjLXoDfK5+KXSjaxIWhlgrYjwVQYWmMpja0EpArbcoikxiqUUUrj6hR5/qJV2hZFLBwlIM2Qnk26apDem68ljNp5dihsMnD9W9Br+okWZoksAfU24XAFo+IxNXIKZuaht4f7H32EIxPjdNIMt6+PuNEkCwJc2yEKY944eAjbsjGkQsQJrpZYeSMTi0lGUjCg6NEpFWm++jqEUX7R3IqQ1b48nmdZVK69jMHLttFud2i+fpoev0zsKh78w88yu+cgYTvANxzCKEKbwOoV9G3eTFgLKAuLOFjIL56nx6gXLB569DFGX9pPVm+DZaE3LmfFlo1MzE4RLtYhTgEFSUA8M41cWqTi+Ig4wDSdPEoiwJYCV2qsTFJ0HRCKwNT0ZBJPmGhtEBkG0nNz50vRAQtwDBAZ1uaNPP74JxlasYojL73KAJoCAsO0WVCSoFljZvQEnFvAjDVFTHzLRWuDcqGHtJEXV9tmcl6UOJ/qE4LKsmUI1yYKAxBg+0UKQYpQGs+xiWVEIhSZIQhkxsS+fYS2y+Y776Bv1UrmXz+IKSHIUhqpQMYRSkoMYkwsfqrOGDpfEDQdhwCNVgoqZUgVfqdJKjSZlRDUm9gzHSoS+swy5ywJIoVOiF/pIQtjLAW+ZZOmKaBJlUImMT12D3ZiYpguaaNDuNBg9wVbmHztAOH0XB4n0wJp+RimSafTQorsfJGSACFygUQJdCaoZwlBpw1K4wmXUghWI0HWI/o6knR0moOv7MN2PCyviBAWqhPiWy4izfANQaQVCJ/p/YcZOTsG7RqUSohazBpRYLY1DyIBw2Px0BFqx0egv4qsLeEIEz8FECRW/vMlp+c4u/cg9bkZqnaBJE5RqgitlHc9/gneOHWScPIMlIvQgZ6bruCy++7gzMgJkiMnSUwJNgjXxItz51+cJKQqA22StWKscgVV8iCOyNw8tlt1fKxOhKskrgShNVIkKBmBbWAIB5VkoAUX7NzOyPFj1E/P0meXKKYSzzLRlkVHJZCq82JcCaPah85audPynruZPDVKY34BNVujoiEIW9iOC0mKrS2q0qBVrBBEHVoyJUbjFUrUjZhIBuCZyGov1/3ar7B561ZG/vJJBjMDULQGfFjTD4MrEdqBWgLDg9DTC0mGsCzMSoHZ6WmmFmqUKr0sHDuKVSqjlpbwbRMLTZpFUPBYsXULMzKldmIELtqMe/wUKtRI10eauRgsrLxrTRl5fJZOAFmHRcMg2jOSu7aKMPDYPaxOLRa//wrZ+biz0HkE1NTg+EUcv0CgMxAaLSyKiaBTLsDyflZeeRknzDbW2lVs27Cemaeep7J8gOnaEmeOHsXKMj7z0V/9T7FI5K+nn84ydPs6unTp0uXNoysidenSpcubjED9bIb4p3UNaaYolnr4v//kT4iSBK01/UqRCkgsE7dcZNsVVzJz5jR4NqwfZmlinGX9Kwl0xqvf+SaubSPbIa7p4dgeWdnn0muv4pJ1l3Dq2Wegv8Sdn/0op6bH4ORZZvYepD2/BGkEF67l8s9/nOmDh3jiM7/DynUXMDI6QvnDj5DoNld97Amqy4aZfv4ZOueWUCenWNqzn2xyEnocQiMlNqGYGlg6F8Vs2ybJYqo7trLz1rdydnQ0v5gNYiypUUlErGMiU6EqNsayPqJGiyCJcA0TTBsdaxbnpkkmxiFKKEqDQCiSggmeTSJNMPL4kqkVltIINKnOCLMEKWxUp02h2oNOAqQh8uhWplAKlGGgDIPYFCjL4sJtO3Eqg3zwgx9B9vRy4tlnuO2Bt3PyxT0wX2OjtBg/eYrJ51+Gcw1wChAGvPCD7xNlEWL3Dm74hXfRt2kdHD9BvdFCuB6mXyRNYqSWWIAlNAaCjjbY9Ilf4FytA4fHeeSud5Hs3MySMFGHxsku3wQna1TTEuBx7tBRRv7tP2geGGVbWqI3TrFjgz3/+PeESQhBQphJTN/J3V5RwF233c3csZM0Zs9hC41aaEEthIUmR77972RzHZZpQZ/0GZ8Y4cALz7FmeBVpKyYOIryiT9ZsYbk+JiIv+LZ9IttEGub5C0GFgcY1oRO2SLMY25AUhU0rVUSWSVIu5k4b32XDrp28/d0Pc+CZH4IC1RGcOLfEgbNnIAuokdFMOnR0isJDJQqEwDRMStoky8Lc4eYWmVuqkyrQjotpxBjkRdSZSS4MhSFmucgDj76ba2+7BVlr0XN0BuUa1NIW0aBP4EiCtA3CpmBVSI5PsPDCXhZHx6DTJPVtkqFlPPKF3yL2CtQW61TbEanIu7WEUAg00tDEaJQhuOad7+Th97+P3sFlTLy2D+FbxEEHIsFyUaBkFZmO26TDA/Tv3sWtN9/KkRdfxApTSoaF2UlIkwitBPgOpQ1ruPsPfpPKzVcwMn0abBPaDcbPjFE7cQpHKjwJVskn8xQqyVh1/ZXc/MuPcepHeyjHAqEEphSsjASNvjIsr9B39RW85xMf5ZXnn0WnCsc2KbsuU5NnGTt+HGwPrQVWEFOQUDXtXAg1TGKdkJZKXPfIYzz+S7/CmZ+8ytLoJK4oMKhs5oIaaz9wH+s+9hjZeJPg7CR4JqiI6rLlqFpIjxIoJYg8AE2v1ARujOpxCIhRqYUlPCpDqzmctgjMiCvf+z523nMvJ557lXjtEIXhIbxUokanUAWLrN0EMgwklmFQsHxsu4iNi3ILZEnM7g+/n7s/9CGmFuZoj08SZxI/TRjAxiYlUwn4IEsuuD6ylrKMIsI0OXLidepBh+VthZl0MGyLRhbTViaUbPpWbuTGj3yA1Tu2c+bZPez+zEe54UPv4+grB5G2xdtuvYnyuRZnRg5B2SNNM3wc6q6Blzm0gcLtV3LNI/dRMzVLo6dzO821u7j9Mx9n9LmXGf/3Zxj57tMgE1q9Nq20jd9b4eOP/xov/s2TUGty1YMPsOXhn0N3UuoHjhAP9hCFLSgVseZDmsePw9ohbtixnanjJ9GdANKUguujCyUaJ07Sclx2vfPnWBw7gx4dIzaLpKkEQ4GZIclQQnPfJz6Jt2IVs/sOM7z7LWTnWujXx+iJJaWmxcLxk4w98zxpltCXmVhKgICOD0FJ0LEygiQCw8HRLiKBljLw168jm5+h1a6RRnXWDA5y9CcvwFKd2WMjzJ08BZ2AUqXCJx9/ArRE/FQsJReRfir1dunSpUuXN4dunK1Lly5d3mT0+TYkof/z3qgUcPTUWS7dfQUELfqGhrDGzrIgFO6KATIEl+7aTe/q9bx48HXK2y7gprvu4qvv/2RevNGqg+XA0hJlTKQpCDwrj1CEEio9UG+w5oqdGL0Fxva+lEdbAk1fR9F0TLLNa2CpA5MhFUxarsW2z/0iYrCHN/7+64iROXS0hJtkFBMIbIgcYH0/D33wA3ztb59EnZrGbgYImWE4NpFrYm9czY7rrkEK2P9X/4wIBQUsOqKNWNGHFgqCFltuu41OrcH4K6/iWkXiehsqPu/+mz/lnz7zKZhbwG3ZyDQl6y2D42HOBbiWQhoSkwxTKaShiJVEen7eSdPfz2d/53f53Sc+zEq3SrzYAMeiVhCooAmehxlq7JZEGiXSsg9+BlkI1SLUFunxStAOkI0WPZVl1JotNm3fxhsnT0GaQn8VZIr91qtZv3Uz44eOoP7jeyQSzN5eZLNz/ipGgevi6AwLQZoI0res5oLhS5l/9QTNdsxlf/QEc4dPMvFnX+WiJx5idnScdStX0S6abNm+jUOv7WfsP77LxjtuZersGNHzr+Sls2QMb97KnVffwF9/+S/OW91yRc/M8tqRoSQkRdBG4xUrRJ02dl8/vReu59TkmTw2srQEUuJYNjYalUkMqfErJVphQObaeD1lOlEMCkSU0FsokGYxhmOSaInjOEid0V5sYQwOolTGXR/5ILWZRV59+jnk2ck8QufmTjBDFVCWoHr3XWzbvZ0X/vj3YX4p71DpAIYHmcKXKZbKu6+UAHdgkPksyyN3vT24jRqFLMXxXOYWz/HQL/4SqYZ/+863EMUiOkuhE9GvbUJbgSUIFucgASw7LyYvFSAVYFVh6Rxm2UAmbegrU37b/bROjcPULJwcPR99On+c0wy/7BFLhTJN6F8GUZSLPbUZyKBXl9Ep1GWGOdiLjNuwdg2Dw2uIx04hFxsYrQCRShxhE6mMloyhaIFvwfaN0G5z1WO/xMv/+DU4egKiDFsLjCzDtm3aMgLPg45m1c6LafTYiL2jmJ2QtOTTDlosUybz1SL0eXncqdWAKIF2CmmGKUCS5m4fZUIkoR3hIfAxUBZIS9A2z0e/zCrLl69h7vQJtv76z3PJTdfwL//tD+DEPEwvgu/gtAWrdl3MhisuoeMKXv6fT0ItYiUmAZp6j5H/zWXq/OMaECYM7b6K2VOjUO3hkd/4NE/+6Z/D5Fze33XxJi6+5DKOvPAizE1D0oRYUm0F1M0sPzfGUDV8SA2kYdMyFFsffZCjU+PQamBmJnL2fFzv3DnIUgzfRnVCbBtSS0ChgjWfsdoqM5M1iVa6oBLMjglJhjQjoCfvvrp0A7xxGtYOQJjin4sILxzIlYzRGXq2bqVx5jDEJqQtELD9qhs4+JNXYU0VFjtgD0CPACuDyVkGQxccA712kKDgEb0xji1cItnhpk++l6ef/Iv8uNU1gx3oWBYdR0DJhcyDTWvZ/dZr2dXTz1998b8hDVAu+TE+v0VgKkUhk1iK/G/MK4LnMNtsYw6vRNYXIF4C5fHQpz/PwVf2MPLMd8ltejHu6g3Es02uuPZK1g4Oc3DvQU6MnMD2i5SCkGWYTBl1OhXBcOTQjAJSxyayU97xhc/xxuGjnPzuD0AUYbaBs3I5Wx67n/n9x/IepCyGNMyPYxLnsetUYKxYgTo3j1Fw6cxM41lmHlkVuf8oI4+ydUWkLl26dHnz6DqRunTp0uVNR5//h1b8rBwpSuHM1DTff/EFShvWMz9yAgNBbBtkSqJMk5nJaU6/+gpZu0kniyiYNufmajirllPasJbo0EmqRoGCVCRGPuntpRrXL5HUG5iVMvWx09Qnp/KL5gSKicKTCoHBlY88SvHSzczvP4DOAJkwe+IN5sIAGhGlE1MsTzSOlLScjMjJO2A4V8uXkaQm6i+iagvIJMM1baRUyCRi+vAbtAb6WLdlO4tHx8hMA6yEwmXbuPcDv0x19QZe/8GzbLvtJjrFIu0TJ3FxkR3JzOkJnGKZaKGO7MTYG1ZQvONK+q7ezrbbbuL0y69RyPT5ie+MzNS4vSXSuAOOCUGD5/a/ArUaciGkN7MwTYuGCLAv28rQpVtonhhnKHXy2W4rA9GBNct59POfIcFg6uRRYk+QeAktmZGqlPVX7eLedz1IoBLmj5zCyyySwydY2n+M7MgxpJmBVGjTQKxYwa9+4bcorRzi9IF9SJ2RaoUVS1iMWTh2nEgF6OEy0806vYPLaYyNsfDDPUTHjjE7coyl40c5++xe1N4RovkGg5dewPoLNzK59zCDbYeODGidm8PrqdKq1YjqdSxhYWqFEBIhoJUlZKYFpk0njnBXrWZJLrG0bhmrHrib5r6DkEFf6oBSmELjISibDkmSUihXaLsGrBxEtRsQdHBLFTppSuo6RD0+WbtOvGKIX3r8CcJEcm5xjt6r38Kyizfz/J98CZ1pzKWQihQgU6RU6MFe1txxL1IJTu3Zh5o7B1HAyku3cM8XPsXh6QmYWqKUKVJLk5qazADpuYi1K9n5jnsRV15C88hRskYT07GJspRao4FjO6RS0pqdR5gW5XIvrUSyYfvFXPXWG3F7e5mdmMpFJGGw8u67ueeDH6AxP0/zzGl6kw6e1KQUKPQPEi7MwcI0VDS4ft45pTL8UgGZJGRJhlks5Q4i1wWZwLIiaBu/HjDgVYk2LuPy++9g9e03MPH9p+mcPIttKsJ2E89zsH2XVhwSmwLt5M8XpTKcWoTpDpPfeYbiuQZGkFFy3Lxw37JItATtsCb2WYnD3OwM7ak54jQlKrokRWC4StBXglrA7Xfex86Ld3Di7DRqZpGhyiCre1fQmq/hOgWUsNCuzfC2LagoIgyaOJ5FIiSJAOXY0F+CNQU6QROEzfziNEcOvA7VHjg2wUBHsM6s4grF2MQop984xOShQ5BqECZtqUiQaC3xbZ+BSGOZLlErYsPFl7F76y5OHBlFLbY59O3vQH0JGh0o9vDA73+So1//HsGrR3Mxz08hyFieKhqoXEQaHiJqhZjSwLCdPI6bBjAyArFGj89w2wffxy0Pv5N9e56GVcvQFQ+CNqZdwM4sZJTiSUGsAjJhsvPBeyhv38r8sQPoTWupXnsZW7bt4sYH7ufIzCTU6lCvg1uiVAvJwhijHeOGivb0FOgYHJM111zO47/5Wc6MTzJ95hQMFuDBe7nq8t1MvvocDFTov+hCFk+cxE81rYVFCBNsCaGMuPrBt5HIiMn9+8CwsSKJpTTSEGiRe15ZsZJLL9vB/h//gEMvvYKZphgGSKGxpKYgNcrUGAY4WmNrcJVJ3A5I2h36y32ktSae65D4Bn133sFrBw8R1Bqkk1NYFgjbQs5H6FQwVTvF6P7jBLMNkp0rUassolt2sHjkGL0Koiii5WoSx0b4DipWrOkd4tUfPAuxhCzlHX/w29z0gUf58fF9LH37R7itkEIQszFxyKIQqS2UJcAqoBtNHvqVD2JkCb/88+9BaI1h/Gdg/Kdxtq6I1KVLly5vHl0RqUuXLl3edM6LSPo//60NYjh+epRXDx9i9w03cGpqmrTWyFfO7PMtD0pAkuZ9RfPnmBo7g5qvs+m6q9h9wzUc+48fg8woYBCZGiHAlQJHmpRXr2Tjjq3MTo0ysG49YrZGOdY4ShFZisA2WUBQ2nUBiyPHkO2IgcEVBFmd3uuu5PrLdzP31KsUyEhJaTgSDAkaRCyZm5wlmpllxS03ErUaqIU6Ksso2gUSoaGngrduLdu3bufUwWMQBOBCmnQ4trSIHRjUR8eZOHmcsLEEYYLqZFhYpJZB5/RJyDIqXhlrsMrlD95DYhsM9g0y+oOf4Ep1vkdDogxAQ6ZkXmorFYR5sa8Zg2faLCRN9PqV+P1V3v3Yoxz80XOUEk1HdlCOjZIphBHKKXLijcOooJ2LATIDvwyGweTMFGfn56jNz0O9w3JhY6QxRamRQoMh0ZaTixNRws333EOjUWdkZITcwmNAELNKeTQKDqzopXrPzUTNiP7+AaoDy6jvOUzRMPKOkjRBTdfw2x0GnAqnjx5i8uhxmKsj4oSkpwiWwcToaaJWGwwDVwhMrdGmRhuCVGQklothWsSWyZpbr2WxswgzczSHVvD2j36U4a3bOPmj5zCLDnbBI0lTjExjOi7KNAlcm4/89mc5cvQoSb2JoQR+sczA8Cquue8eTh0fAQzWXbqDZKnN5IljREsLXPWuhxmbr5GcmsAKU3wgExmZ0Ng7LuXed76blStWceT7P4ZGA9KQVn2JKUMRLSzBbANPKhJTo4VGGVDp6aM1PcX0uTlaNhRqTeL5xXyZSWk6nYCzp0aRUpEFEaZhEc0tYWgTv78Hp1pmIWzz0c/8JrtvvZU3JmdYfOMQh3/8DM16DZp1BjCwUHSSjM70HLgGrBhk4503cMfVN9LXN8DZs2NYQBwmVCplhtes5e0PvQvDcnCGV3L1fXcx6FWZO3QcgclSe4GJqTNMTE1APcTSJlF9Hq0kUZqSKkmSJrg9FdZs2siDjzzC3NwcarpGHw7IEMc0MU2DRhqQWRoqJVi5HNohKzKbDEmKQdpTQvWVQEbQV+RX/viL+EPLmHr+IOOHjnLsyBGy2gKYFu00ZmFpgcxSpD0+Og5Yfc213H7jjYwcPECaJliGRiqNEgrTdlBlny1f+A36lq9mcd9hiFow0Je7tZYSeiKNSjMyKyOxDITron5aOJ2mVFevIWwu4TsudpJhyZRFlYFvUSsUmT45Tjy9gGuaZH0OGAmDw2tQQYS9bhkTew+jwxSdBFCxcaWBG8XElRIrb7yaK2++icmpOSraod5po12VF+0rAzoxVHvZtHM7o5NnmQ5bPPiRD+H2DjC77wAqARlnoBUOBhqN6bus2nohR86OIoMOQ1ftZsOFm5k7PcXI0RHC2Ulo1GBgEOZrqDRGSIkpFYahkEqiXRuUpNTXx7GRExx56SW4+OI8Wjy8ivmzE8iwxbU/dx/r1gxz6sUXSWSCQpMkManIcLZuYvn6NbzyL/+Sn9uEjZkkuXh0/q1FYkDQZu7MaZg5h/ZdkjRCqQw3yTBlmgvaIkNIhZEptFIIqdEIbM+nHnUQtkWhXCIwJFf/3M8xMTZJPD6FG4WkaQdsCysW+JZPKtqQmWSuj37oZqiarL/nTur/9kPKQhCoDFXOVxpNy0K1Ys6cPIs2LHA9sASb7ryFp/e+TH1+Dr3/OCUEhlIUiJE4NFUKa1ZiKwvlF7ho0yZGDh/k4088jmGIn92k+S+3a7oiUpcuXbq8iXTjbF26dOnyJqPJEBggjZ85kVITvv3USzx439tgywV5OenYBJgZ1csupbdY5MzTz1Lt6UfJlMwVBJ0OrN2Esf0CnIJD+t29eNN1CipjvpBhIelJNIbwqQ+V2XH7DYy35pn75o9ZHZsUgCaKmSr5mo/bD/ddTM+lO+GlEzT+9SlY4YMKsS65HPNHBzDTkNRMSe0MofP+aVuZSKdIgoF9wQa27drI61/9/xFhxgqnj2lTg5XS/9D9LE7MwYHTkElwUrY9+gCtZsDZv/0PDL+X5dds5Yq3XsWP/+VfMU9N00hj+q7bwdLIIWg0sZZiMgFsWZfHrmIfM+hgkiGQWDrBQJIj/LI7AAAgAElEQVQk4LkWodJkUuMWK4RBiLBdhBDnp82DPDZTrmA0I9wkwyHDa8T06jKRzlhEIFf3EoR1fCHoDxNqUpK6NoktwROQKPo6Grvd/mnFMg0U/dUeWnFKSypwvDyOwfn4j8yjYGXfpq+ZMI1N6ltseP97aI7Ps3B2FKan8GdNqj0xC0Ed23NQUiBSjZEqBnqGqIUhcv1yrr7ndvZ84zu0zs2BzhfVRJpRFQbayAhsSEzAtqB/CNvxSGfGYdtmNuy4hvH9x8jqLbhkDWQZwwsRU/tfzIUHy6MnUMRhhDJ9kpIFWzZRXFygMzmLF1uktg3VMpUrL8VZvYLmYoPw+Bh9C02WFibBN8EXoBxopfhtiSNSmnaEdiyW3XY37sAwM3OLyOeeh7iDHzVIpSTrrUAkcVMwkISOwlAKS4EnCjRNE2PtarY9ej/jX/s69eMnwDAwEAhhIjsxTqFIliksyyKNFK5TIRIBFASYitKFF1EpVph+/QiUKrC0AFlEWae47YAUSHuK3Pn4x5mKAo4c2Ec4OUpWa0OrBVlKoVCCOCYMUyzHI7W8vH8rSaC3BGEKtTaV3h46nkRqCUGAG2sKKaQ+iLJPq9nIY3xhBJh5xC4zABtPSOIkxO7xSJIABso8/KtPcHBiimNnZth2xdXMj5xm7p++DkUTZ3iYZHIaKgY7f/Exqtrmmb9/Eoo2lbNtXMeibijSgSJ3vPfnOXhihJmfPEP/A/fir1nB5NMvwDOHoeDAwixohe/ZiCT3d5iGT+oXiEpFmKuB53L9E+/hgh3b+MonPk2lKWjWFmBFHzQW8FKwLI8OFsbaFVx24zUsXzXEv//OH7LCKhG2l3CXrWBuYw+Dd93Epk0X89KvfA47NklJuf8PnmA8WmTfF/4cwyygtIa1qykMDVKxPWb37IVMUoklTd/lwl94ALu3zJF/+hqcbWAWivReewl3PPQA//iZP2TnxdvZcutNPPl7vwsCnMt2kLRa0GxRXbWGizZsYu+PfogxPYk0MoRloxOVd3SVHa7/g8+ycuVKvvqx34baEpQrYBn82pe+yJ9/6BOYYUoUtejHQSKpywYYLkOJw2LcxrMcWhWP5ddfycUP3seB77zMdbfexv6nv8fEvldYe+Fazh45ADrCamkqMTS0pnLHVVx81bVMjIxy9qvfxGp1KGKiLU1kCRQWxvm4dGJJiplBwbCZ15288DtT9IZ5517nfIpTKANLGrmj87x4j0wZ2nUJquBw7pV9CG+AvrtvpjnfJn1hD14cEJnNXKHRBfojh6CsCGPJhY++E+P23Yx8+1sQ2fCNpxjqcZkN6/n6ZZK/+Tn9QyTCypcm/SKEHS566J0sLswy//wLDJ9eounEtNKYYavIjGOghpfx0T/5I/7kHR8A38fIEixigtoiSibYZh5l0+frtLsCUpcuXbq8uXRFpC5dunR508ly8UhZ+YcCJhsdPv/FL7L37BiH9+0BBdfddz/P//VfwvAgu3bvohDEvPDVb7C83MtCUCcrFKB/Jf3vuJnMFjT+/F8oKRsjCGgWFZaWFDNNw7Ggen7mPsqgJSmbNtJQJAYgFH5qYUifrV/6NfYfO0L8/Zd5/+3v5u+e/x7x+Ci4PkZboewA4pRCmJFYKo+llQt53MbpwRxvIp0mOBZl4SJbAaFXRrsgdm/n3rvv5Vu/98d5wXLYZtM9d1DpX8b+b/8E6h3wJJBg91ZQ52rInhJb7nkrA67H81/9BkP1lILnMilSEpVhtVKkZ6JNBVpj6gyBwjAM7ExQEi4OBmEU0ECR2oDn8Pm//DJf+MjHoB3glCogFImZ5nGYTsaqMBcu2gWX9Y/ewcjCWcI9e6kuSEoBJEIRD1VptBfyJ1BYeHFElEqwwKnYFBYFbZ3h9S6j3Wzmx0gqkBGmKREmGCUbsZRQxkc7DotZBv0lVr1lF+s3X8DzX/4KthXgGyo/ZCbg2AwZfVjnFqmYfRx1G/gP3kL1xRPMzM5SKhZIaw1KtouZJWSGouVCamqWiT7WvfNuChevZ7TTZlXdYM9Xvg5Jyg0f/gA/eeN1OH2SDW+5lOvedhP//Df/g+TYCazJNr341NOY9KL19O7cQu2pZyHRmI0QC5sYBWWD0luvY8f2yzj4wj6CZ57DG+qn7+KNXHj79fz4z74M7ZRyoEizgMhPwXTzcq3hZXhX7OLKbdt49otfxEti+gtlmktNfFGmbQQEjsqVSwV2ZuCnJqJYyqNLngHtFoZjoA2BDmPsSiV3ccUppAbLqgO871O/zgvT0zz/lb8F08ZcajBglUiUpmYkXP9bv85zLz4Fz71MKQnwXEFmG9RlBoUe8HthsU1/q8WiKaFg50tQUUy5WKbdDtDawK/2EQZhHmmLZd7T4hggI2zbwghTSpkmyTICJIWKTSgUO996Ixft3MG5RpMf/MM/QycE04dWh4JtgVBktiIhyx/XdiEywa7mq2DVCvaVq9h6xw3U5xY5+xd/D6tX4K9aQ/bqcbzpOmqgQNBZQrsmFD2IAkgEJA5mIukvVenECdIURGkbp2iTtGsgFQVT4GgTE5NMWcQKYgRDlGgQEfSVMTwXZhYRvsnb/+pzzPXbvPjEp2E+A1xoZVDxwRGQtsFy8eeWsIG0UCa0BJwXAmjHWJ5H1mmAL3BKLslCC1yDQdHDuQuXc8H1V3Lyh8/hHJvA7avSCRootwQ7NkHB4bZbb+e5L/8T0eQ0lI1cpDtbz7//hiFohXm8LsjXJLFM3I0biOMQpicxozbSkaA0aINy4tCqFmHL6vxrTp5foPMdKBSgrGDsHEjFTU+8n6f/5klotbjrv3+a7/7137L8wDwhMb04nDXJ+5NWLoMDi/ljBAFlQio9Vaaac+AqqkaBgcyiLQSzhQ4sWwm1JvamzaQHjtJf7qPVWEQJjanO36MQiiEUS2mMX+0lWKhh45JaisjNsDJNMYXYEEhhnN+LhMww0ELjrBri2nvv4umnfwRnJimb/bSUhkhRrA7QmR9j1Z27mJyfhSNTlNoGnSETvdQBXcHcsIm33n0XT33lf1B0HLL5cUwgxGLHjTewFHc4uzgLluL+T32GN159ndHvPwszddCSlSUXMX+OxeEqESE0Y6j25S62+gKkBYRpI+KIcsHh3PQE9s+cSLmA9NM11C5dunTp8ubRjbN16dKly/8RBAiZz80bMNZcYGjTWk63FjkxeRY8uPb97+HQD38E9XPMTJ1ifHEaFjr4hksoQRsOljFAp7mEsg2sUzOoVg1NilCKkmUTojBwUeuGsLZuRM3O4EuPUmoQSklqKCq4+MLB8hxmzk7QmZiHMKGwehUrd25lfGYCVg9hrxpEnpvFtSpESYrzlh1k7RoYgg2PPUJt4RzWQkoxiZGpQps2EWZegOu4MHma2blp4olx+h3BMs9h7PAIM2Pj4CvWvucdNE6MgNboWg1lSEgSFsOU6MwM4fQS5VTjGAZB3CaLIygItJHlRavFEhqBsfUiLrrlJiZPn6RjmjRVRpYm+FVBHKfgeQwMDlOPUtrNJq7rUQkSdK2Gb5WJS0WaSYumkfe0lNcMcPnbbyT2HeZeewPPt5G+RS0KoH8QSj1QXUbWbOP1FMnCCE+ZxMJHFQvEUQh+ET8GXyp6LIe2EaNcAbHGxiQ1IEYhXQFphxjJddddyXzcIp2ew5EQSY22jDzit9TAwaSm22TFAsmRI4hmC1dl2K2QHm2QJh2kzChU+qinMdgu1UgxNj3L6TMTWL3LWDY0yMSxgxA0SIdXsubqa2hpQfrqaygrY+LoQag3sZsplsxIUcihCrf86vs504xQ07Pg+Bhhh5JtkaqUePwM43v2kExN0GeYNDt1Wo0lJs6cRM3OQpxQsCyE0GghsBJNEUFstMgsyeoQlg6fJrAMWpYgETaxTokLCnQIfgm0hekXiQxISBBkiCymGqTElod2XUgUzoYVbH3sXnY/cj/Hv/c0qSFw1q/gyMIcnWPHIZH0mwWsNEXoDGlbjO59CWYmQWRggJuaWJlNiIu2XOgkECUIaVAZrJIKhWFaqDgj8cq5YFQqoAou2sjY/fCDLH/fL9J74WbmR0Yg66AMiWNbyE5Cp1BAVYok7QZaGAivyNq16zk8cpKlsQmQaV7irFLcSoWO1sg0QjgWJgKjlWBlGSqNc0ErrKNaHZpLDRZOn+a6jz5OqdTH4ukJ0hNjeDojjUN6ZIpvGjhaEQcdSsUiTiOgKgRlUyDTDnHUwHEMtEwwLQPXtChIga1MtIDYhrCosfvKLDc9ZuOQwlvfwrorL6c9vUAad2hEDVqHT9DsLbPy/rfROnMShI1pWOhmB1KFEYVgajJLgKWQUQhJgovAlAohYwzDQAmNTNO8RBoNpkm61GRp/2HoJHgasizGMXQuGIdt+tesZcPyFRx59tk8jppKyAx67QKWY5BETWi2IY2xXRNlpGBkeZF0vY6dSmw0mRB5Q7OhkUKhoyg/t0Ux6AR7qB91boZbfuFhxqwM3W6A0Fz/87/IwaMjrL35FoY3X8jx/a/RabQQjodOUiyt8FqKeL5ByTbJVIKfaexCkbi3RBwFsHw5UZiyJBXm0CBxXxUWOrBtJ2/78Ic5/sJBwlrIvZ//PEf3vIJrFHBMh0gkiCjGwsKKDGztkpoWocxwyz5ZmGBoCC0LZZgInSG0xtIKoRVpq8mZ1w9BIwAhSOI6TkcyJEq0mvPIrau55ePv59jJE3D2HJVEEWSdXAgremx/9wPI3hJTx0/hL3Uo6lzsjTZdwM0f/ghn2m2ax0/BBReho5TxkePIsQnIJEIrWq0lelatYymsw6YNoAzEfECxnWA4DpIQWypsKfEtk098/GOYxv9eo90VkLp06dLlzafrROrSpUuXNxkJGKjzlZ/5KTfC5hs/+D5Pfv+HfPfv/gE8H3p64eRZDBWijAxQDFFAy5QUnyVPwIpB6DQxCr2o+SkoGKx58GbSg2eYee0Y9HpUlU/djlh3/20M+GXO/OW3cJsRScFmUSSUgwzbNGkamlSY+V16AJXBwAC0W5BFvOc3PsPE6dM881f/DGv7ecfvfYrR0TMc+MrXuPWDv8yarRfylXd9EA9JsRWhkSwhqFy9g4cfeRff+H++hFVvMGe0IOyAa1OJy/ilXuZsg7s/9EH2ff1bzI2eROsGq265ismTszA2T6FYIa03MaImFduhkTbyrqiijahHFE2PSAoCvwB9FS667hpWrRjiqT/9MqYyKOuMthtg4pJlKu8KsWzoKeexoTCPHO36hQcwB3t49b9/CZoRlcggdU3CZR4Igb/QplxwqXVaVC/cyvxSCyybhz/2cUZfe429//wP2JaJGUZgVIhMBRcMQ6UCR0ehE+PIFNuRxEJiKwswkCJf6JMmeRwNBZ4DSlJITMwso+0KtGNApvG0hRVrXNelncXEQlEyBY7lkLQ6eI6PwKQZRdBTIlYJWCblpI2hfBqRAhz6169CBnVaS3XM1EPKEooMYbVRVgieBmHTl+ZFuxECWbZY/sg7mdt7EOZrsNCkJ1N5SbZIScx8edDQFkaWEqJQjpmXnIcxru1hxhm4NpEFdqZZIVzG3CA3DygL7CIUgK0buenRh3n5yX9D7TtE3K7Bsh4o9cF0jWpD42WSyFbUy0m+LrdqGdSamC0L27SIBlwoefjHz5HGCVmPjdsxcVyLNMtQOoW8ghhTq/MLfxBIiSthNQUUGXapn1O+4rJ33MXAyiGe/8nzBPsP4GtFankkUjG87RLe9cijvP76Pn78D/8zd9P0DUDfmnwer7GANTNHn4DYMrjv0x/nhwcO0WwFbG61OfraXlLXQ7aC/DUTR7nDLg4oCUnDqbBx1y5SHTK+92WQYCVQ8XzqSqGUxFk1TFLPJ+5ZM5hHKWMLZubxoxQz6ZColLJrUdcJ0hLQ15NHaGshYOJ5HlGWUCz3YDU6hBZkJlgSCim4Mq90a9sQeApscGoGay+5nNYVm5mdnIS9RykXfFpzo+AbrLr/nUyeHgepeOxt9/H1/+/LhHPnsLMU67yDUAqIDYVv2JgKiCSWMMgMA2lAYoA0FCQZhmOgUo3plnFdlzgIsHSGITS+ISh6/SzUmmRaYrgOmcjPtTpOGSxX0XGKVXCY6sxSsnwsqcmyjNDKXTyG/s/fNRUGqaXIjAyExlAgLI8ok1xww/XsuvtOvvobv5GvQWYKvCJmAjKI89W3dcMU1gyx+bJtvP6vX4NmiCvB6iR4pk2qJLLo0Enauephl/Pzr29gXbiJbHQMmhGlFcO875fey//7pT8F06SyZj0DfpXT+/Zibt3C9RddzDPf/BqkdZApBWGROS4Fy6OzFGD5BUIZ5n12KgQUvoBQegBYKsHSClPnz68CYsNCG3a+QJhFCGlS7Bmk3Wmx7PbrmJ8Zh1oN5hYhTLFReMKiZdhw/ZVQ8OHgCapTdaRcJKu69Ky6mFkbmDnDVV/4FC9/5UncQ+N4QYztuzRKAjLJQOowY3S4/bOf5sIV6/jzX/8cXhLjOgYybEAcI2wHqaBQKDA9PY1lWW/+m3iXLl26dPnf6DqRunTp0uVNJgIUGuunhUgSLGXy4nefYnF8jkYro3F6hvJCE08LyqZFn3apaJMlFREbJtKxoFzmgT/6LTZdtpORf/1OvkTkSBqblnPR0AbmJxfp27WddHaeJA6oz04xffQ4yewirjBppgHKFtjCIJYZia1BKAydIeKEHrdAdm6JgjSp2j289O3vMfb6GxiGge6xOJ10qJ2ZJN1zgonTZ3lt36sUdm0lfP0woZERFm0ol4gnltj3g2cIXejoDr3CR6Qaq1ggWgpohTHu9os49sIzpEGK0e6gOh0u2ryZ9z76XkZOj1Gf/F/svVeQZNd95vk75/p0lWW72qBhG0ADbHhDgPAkGgRAEABBkKAnRVIaShSpIGVXblczG7uKnZ3hjCZGCs6MZka7I0qiPEXRkwCJhmmD9t5VdVWXr8pKd+0x+3CbpBT7sBEbQeklfxH1klUVae65N+N89/993xSGAi0tOnCo1CpYazBpRl34BMIlMwVRbZis02blwgzndu/GrzWIrEQah9gpbXeh6+FjKVSCFwWYoTpv+dS/YObkSebPnGW0I+kfnWcsGKaVJ9Co4YURSlmU1KRFjlGG4YlJnv/kJ6mMTvC1L/5n5i5cgLiLKyBQZeh4geXGdz3OLc88xlzeR1V89HqHSloQaYsVEi1EOZgmyn2a1QYcD9cPMRqqTpXcSFTglRtLz0VValxz/Y3ML69gtUA6HpmwJEqRRyGxVcQU6LEmWhfsfOH97Hzn0+x645sokzPs+UyKGp2lCxgvRYsMqTWTpsLGoSZrTkLVCwmMwC0sXZViazWi4SZ5r8Bb7vHYU48z0Rhi5tABKr7AuKUwZoVAWAdfC7wgREYBIDCZouFWqOCilCJ1BMYH24gw3ZRm2KQaNujnBXQT3JbGnp6nc+gcNcdlU3OY5ZUlbn/iKd764E6EFzEzPY2WFiUFWhhu+ugL7HjmCWLPp7v3OHXt4PoB+dI6k14dkyukhm1Fgs17uCpDVB0SkaCkQhhNhMF3HWLho61Ly3FoOYJVL8OSMHf2LFP7DmIOn8VJEnSusF6AnBgl8SU/+Mbfc/7AAZxqFWHA9vtMvO1+dn7oOaynWHn1DaqZIk5z9h0/TW+hg79u6EyfoddZw+KUtscgJPRCQsfDyQrqXsitzzxPMTTMmWNHIE3AcanXmxRpQSEERCHv/dhH8UdHmF9dYeeHPsLZr34LlnuQKipSkKgEPIdKAqETkCY5Y6MbiNf6jA9PgpIkcYE7OkG21iJCkPhgvFLk1JQCC4Bjy5YvYzI0sNbu09OazTfcwL1PP8HUS6/iWygCMAcX8GbW2YDP9IVzrJ47Ab7ACIunDbXCEunShqqlS+pKssCQRh65KCOSmxlUlSWsheRGE9SbGARZloMjkMYiEbjCEnd7RH6VKAzJXUHhgTUpdrRGz8mp376dK+/YQaAM7YVlKtJDqFLIumSkw9fgWokWEmkh0BbfgK8FkReRalidmuXI7jegZ6l7Q3helaLdZ9KpIVVC3Trk7Q7ZyioLe/bSWE2oUopNhSfoeYa8GZEXXW599zupXrGZ1ux5HvvcpznbWebKHTdwy113M3X0JLIw7H3xB6h2G7I+av4iwfmL9EKFXZ1jZe8+QtMjb2iwCj9RpBLSPMdUQhQ54qbrmLhpO/25i2UBQWJwhIu0IK1FYLCXikPLw+xirSRQEGlNPtkgd1N4y108sO1Wznz1FWilTNx/N8XmYTa3DDVRpW8ctOfA9DS01qgYg/Yy4kCh13uo2VmoRGwwlvm9+wniPp4t8KRBmIKgUARU6IwEnJ2aZvdff5UJG9BuL5G6FpMmDBVgHQcNeJ7H5z//eaSU/6Tf5wMGDBgwYCAiDRgwYMBPHE3ZG/MjEQnotNqMbdjIZ3/lV1mZmyMaG6Of9gnecj2tlRk6QpO5DvKWq0nTFQofgq6m84NDHD93gqzoUl9PqfQhPXyOuaPTmHZKbCQffffT7Hv5+5ArWO8wsWEznTRGVioUApojY4xunKST9/GxVASEVmOThNFKDZSi3WtTbwyRqj6u62GSHtoP2VYfR52ep99bg3Sdhz/+YTqz08Tr3fKOfKHABWoVSHNkpYoIPbxalf7MKkO1MUyzzts++3FO5x303gPoOOZqv8bs6bPs+t7LtFaWwZds2H4NH/3Mz/D6gT0k7fVyUsA4tAJDz9EUUUiw7Uqe/pXPcrQ1D5tH0XmP3KTkY+PUb7+XdHGOIo9pBoJQF5BnFF6F0bvfwkKvD1PTLM22wPfYcPebeOz/+GX279mFO91lom0ZSRxykxM16izPL7L/lVeZOXGCaMMG1Noy0oDUGrTGkyGZMCyvLHPu0GHU4SOwsgapxjOaAEkhHfSlPY+g3LhWowoeEh2nVISL1gFJptly390EN99IrHNYXuOpD36UO+64kyP7DpH1YoR0QDggNBN33cGOt72N2QszgMfZQ8c4uO8I9Uig2wVFJkAGqMilFxSY0Yjt73mKtWsmmelexEpwW30ayuK5Hv0hSXDDVfTjNmFfMLSWcvjQqyydOkENQy/NSLRG+xaQOFYSaUkqLbFVGGtxkchc4elSRM2qPlc9ci93P/04lduv49Tp0/R1xs3PPclK3KO6tMYGJMlai5XWMsvtJQgi5vcc49Are1i8OIf1oXAtSkAtt+SHLnD0K9+le/gMXuDTDxR5RYIHHaUh8PHDgI4rkGGE44fYbkKoBZ6G1EJcEcRjIdd/+qe49X3v4uz+A+VIRifFTTWjeARJhipSQjy0tVQmJrjtkYc4f/YM9NqQpth2D08ZZJLiLLWZ/Yuvk778Brkt6LoCVasCHoQuRUiZ+aIVFAVIy9bt13PfffcTxwlL8wso1+Xc+RmW223ueOadzPc6kOVkq2W2jzYKtOHwwf3MT52DIODsN74DhUOoJVUhkbpAOxLjSZLIp+dq7HiT53/1cyQjTWbOn6a4aivP//avMjcckBQp4VKbxBdlfpEjMEIgjEAgcE3ZBHbru5/kmZ/7FFqGzO/ZR7e1ytnXv08xs8Kogl5kCTOHYT8i6fdYmDpXWsMQ5aSVMUhT5vKs41CdGMOJKhS9uAz91xLXgqtLc1IvTzGuQ56UNtbG6Bh5niOMQRiL1ArRHKFlc2JRoCIJFYcb3/k4b//4Bzl0bD/myo049YgzP3gVrcFxXLKioPAclBQYWbZ75VISew5KOrgG5KVWzU6RIMOIxsgIaaePKFys8XG3X8FPffF3eXHXX5ONV4hVD1OkREIwZCDSkFuL8iRZQDnepRLG77iNa7dtY/rsefoLK2y88kouvPg9WhfnmXppF+QW1e4S+T5uJcIBiiwh31jHrnaQcUwmczKlaXQNjRzSYY+bnn0/tz7yVk7v2cOdH/0Qk9ddye133cHRF7+PUGUGlmflj3xf5lK7mxFOaa+0DhLwDFRlhHPPzWSbRmlevY2LrxzBXFxjy+atvO2TL/DG1HHWT83RSnOqmzaSTTR4389/mpW5eZibIxcFhQsqzgmcgCjVLB86het4mLEGSaNCXwhEDplwWa9F0E4hy3A2T3DXzgeYPXaShpb4jkMnlJdeox2ISAMGDBjwz8jgyjtgwIABP2Ekl/ZP/+ABpxpy5Y3XkMRtuGITSXeF+rVbuOKhO6Hmwkid5tVbuW3ngzDWgLEmVSFhfpXO8ZPgSySaEVxGbZWaCEB6sLzCF3/v3+PXaxBnONUGi61VdBSgXQfSgsuuu5Y3P/wgwljyLMPkORgDQrPUXUG55UZq3RbgU9oFjISDxzj2je/ieG75hioB3/zC77G8MAdW4zoeIMrq8awPUQ3TS5m89hoefO4Z8GVZOb26yt//yZ+VdoiwwqaRCXpZHyMFvc46lUoIErRVhPUKo5MToDXSdXAQuI1qGdJrCjpzF6hOjHDfs08RXnkZb/nI+6neciPD11zBzve+F8ZHwQHtCoyy+IUBBavzywTXXgsToxD55EmbkwszHGwvwPZtyMLSwGGCgEZYI89zKs1GaVdSmmTmAvR6WF1Qq1RRQJ+8DFNebcNCizJdPKQyOkqOpIf+kYD0Q4SFIknxhMSzAkcZCmtBSi6/bjv3PvQQ9etvgOEmf/j7v8+f/NmXibsdNm3chG8lnnQhN2zZspXbb72N2+9/ENpdpAjwC0s2tUYoqgRRg47jERsBsYKFDl61xuYH7oJ7bgKToYQl8HwMFvKET//mr/Cez3+GsFbFmIy81yPtxXhS4LnlJBWSH9WLCyTWubQ5dSRuGJShvRj8IIIk5tzBA7y6bw9HTp+ElRXotNGBy4c+/TNY4ZNhwfGh7pciaKsLlbD8oIQtn8yUz6eEhG6Hzcpjk1OhSFLczRt47GMfpnbLDrA5mVF04pS2o1hUKfN5ig3raEK09cvX7nggAxZn5hkKq9BpQ57i1aq4jksv6xPrAul5x2IAACAASURBVBs4OEFIsz7C+tIqL3/1q7C8XObkjIyCNdSjEAdLe2ke2enSROAGAQzVytefaNiwhebOt/HEhz9YWv7Gh8GVXJg+z9/8yR9z9thhGB4iD0MYGSW4+mpuv+tO7MIidPsQhEjXgSBCDA2DkKUY1euBFjSiKk5eIJUqp93c8uqjkgTqdWi1+B9f+lNOfe3rEGcwM0tiLGtnz8LSIvaH/eg/HM/5ofXy0g+AynK6/R7np6dKK26S8OBv/TpD4xM42oKxdOizrLp0TYpXiSBTUICjDJbScdf1JVR8wtExmkNjoFy8XBDo0iIZe9D1IQeqlTog2Xr5ldx06y0IWS5Cg8UY6PT75aJ03XKkpjDMn51i19e/DTMLxEdOcvrP/wrQ1MdHEJWA5Ifn5KWLdO5A5grwJcaV5E5prVNSYoOQwhSsLy+C0oyObCDXGjkxzCuzp+DqDVz9yffD5RPQiBBCQ5ahkWTClG2JLtBsgOuyPL/A1/7jf2Lx9TdwvIiX/+yvYGQSltbBr+AaQS2qUhQFcbdDqgyMT/CmJ3biNhoYXHDBrQcMC4fQQtotePCBhxmqDUG9QSOqsm/Xq5w+fgJShW9dXH44hQT2UqOZki5a/Ljd7IeTZ4UnuffuN8PwGOt79tNaWCC3iumlef7oP/8XOHiYsTtuZtMtN9FZWeKKa69hbMMYy0sLaJUR+bL8bC1ElRoJFjHSJDGarN1HJwXGC0gaNfJmFVt1ISuQYUhjvEnPNxT9Hu1Om7RQFPL/fQ0dMGDAgAH/9AwmkQYMGDDgJ4xjy/JhsCBAAYkX8vWDu/nynpdhtA6dFfJawOQ9N7MsJfb0efpxxubrrmY5ydBTc0RdRbtZo/ALiCKcdp/R0Q1cSNcoXK/cWGwch7yN7ueMN8fRmeFDv/gZ9u3djZYOaEv1+usgDGG9S9btQZETRB4JiqwekjYrIAoe/bVf4KpH3szsi6/TiA1GeOgkJzY5d/7sh9ly751c/M5upFZYo7ju9tsQzRHii4vg+vzKF/4Nuw4fIPcdwi2TcPt2VvYfh1zD0ipcmGckASdOSSqSTr3MHneFRemMuLvG3sMH6a6ulZkoCnwDsS7KBqtqE+KCA6+8yoWDh1GnTrHci0nXO8SrLY4tzIPpQMUh6bdoZJaGE2ISy/JqC50k3LDzQS5rjjB/9iy3PvoQ17z5Zo7/3d9DNydwA5byLkkAVlqU1mAlQpaTZUIIHF1QZDnWEagKIAVRH6KugsQgMwmuIDcZRRRgLmXx/DD81QEwFqMNnnTAWOzwBMoP6Fc86pMTjI2OMbvrVUgVWbeLIyVp3CPS4ApJVuTMX5zn6J79XDhwFDJLU/i4sWKzU+diqsmGh9GRj40tVxU1xvMaR/ceZSlwcbdu5aabt3PxwFEarkuMJnNiXjmwm6O7XyOdb1Fxa6QVsMKSpAVBJKk0QpJCgXAQWuAbSVfn5Q7U96BaIcsKUqPxKhF5LYK4Szp9keL4InUVIbTH/PHDHNi3H9vqYrDEzQArcmqxS+65jD/5INfvfAQbRaQnF3C7fSgsxaYGickJCo1VGh165GnC2twyl2/cytLp02AMG697E/f/6uc40+lCa42kEpLV6xQGMB6O3yTou5g95zn94uvo8WGue/BeHvzgMxyaOokSGlPxUUVBlhv8Sh1dq6CN5sO/+mu86c33cPjll6lLichTjNIUFUssFBmGTEpsXCCcEI8Is9olPTXF6QOvQT3isWefZuTyy5g7dxZqEdvuu48n3vcCx5dX0Bdm0EsL7Nv1fV74F5/kgZ076Swssr7WQktZWtwmx0vxpNAQF4RpTuRKkAblWLQsLV/D2sHLFHkBZmYBvz6BziUEQ5w+cQ45PEo0PI6/skaiM3Bl2QRXWHQ/pUAgqxGx0MxfOMfBl18jnVuD8THYupnpk8fI9p9kU63OarYOlze44rH7iWVBOr/ISOFQUxZPW3JXkAUWG7rUHn2E22+9nSJVLJ+5QE27BJ6P8F1i36JNBkISBBHViUkeeeJJOknC1PkprMrxpUtgBQUSWyg86WF7GUEuiM/PY2dXcTKH4uI6MqhjG2XeV5ZmZbOazmBsmLc8+TizK0ugc7j+ah58z/PMnZum2qyz3lvHurpsYxsehm5CZfPlPPah93Hwpb9ncfcuNr79MdrTF8kOn8TVFleCEZa2FBSOxkYej77wPNZ1aScZzC7hKw9fSaJ+QqVwoJ+ic0vFSqpGIrH0shiaIf6DD3DZ2x+l5Tq09x8sxbJGA5ODNBHKqZBYl9de/D5H9h2ALOf83j2wuMD8/kOgLEFsqOCSk2GkRFmNDSLwPHA8pB8ircGxhkJqiokqNlOsvnoQ5luQZeAYGjdeQ7a0ANUqj/3ip3FqEbMH9rFuE3Z/62vY1Rb1RJFJSx5Kwn5Ar9DYDU3e+S//JzK/hq+qNJtb6FbrXP0Ln2D8wXtZnZ6mMT7Klq2bUBSc2r8H4h40Kjjjo+hc4RqBNGYwiTRgwIAB/4wMRKQBAwYM+KfAXpqkuCQiXUzW+YP/+t+4GMe8/f3vI9y4icUXX2Ph8CnsUhcSBTnMvroffX6B4TilCAOGfudn6Hou7D1DY/MkOz7wJOEz97D48i6o1dly941MbL+GtQOn8Y1LL844plO0KGvSGd3IWr/P9NIS68dP4wUBDhrpCApXoEIf+j247z7OTU1x7rUfYGZbVKwg9yXC9zBKse5aPMfBm26RLc1hQugHHo88+jgnjp8H6bHrpW/AaIVidp6502fpZgWf/8VfI9wwytSpvTBWgySjIiVurii0QiiF77uXhis0Jk7LcGZcfOkgkdQLqNsA2U9oyCZxP4fUQCdGLa7BhUUoBOQ9dv7cx6lsnWTp+Cl0bNCFYtSv0s37bLzpasavnGTvn32JajDE8uETHPrSV2C1g3EKOlVLEhZoAa4pa6RdY3ANeNrgKoPQGgEYaTG+RRQwrF0iPHIcMhSX3X0zw9dfyXqeYrsxjrX/qEHIAEiBkKWtJHZcKGKS0CPu9zj12m5YbkOucLUGqbBC42iNsYrICxBpgWq1GfZCao5H2u5iTcHKSMRVn/kAjace4Jqf/yhzu18juTiHtAmV+gb6tSqVWo0Lh/bCYot0fQ1jLGq0AaurZRh5pujX6xhhsNoiwgCVFvT7BW7oYxEYbRkaavLsxz7GplvexJnpc5jQhcAFlZP5Pj//2V+AoSYXVztQKIqhKsoBcoO72mfMWuo4RKki6yfUqg3iIic+PcX8sdP0Fpe5/NZbePzpp7ji+m2c2n8IO17Ql5ZUGFwrqCWS6nyb88dOY8eaYDS9dsaZE+ehHnH54zu58cPv4uZ3PsbQm65laWqO6mwXL8sQV43Tc/vY3jorJ48xfeA07tQKXmwwmcF6EjvUJClyCEOs9Dj44sucPnwUtbiASmNUodlarzLSK3BxSH2Peiqo+FXiLEM8soOf/3f/K24tZOaN3USjw/jKMDc1TX92BtKCtekLHJqdQ6+1EfUKqBw6qxz5zrfY8+1v0mt3McpiHI/xHTt44sMfpBWn9C5cRKY5DVdSOIrMU2SuxTUSz0gSv6BPAiNVaFZ5xwfeR88VdM+doXLrmwiu2kL/4gx6cQkdeHzuN36La7dt5+Are6g1muRaUej40hQgOJmDTQwMRTA2Aus9uLhMP23jVgLu+tT7ubg0T/vQQUgNUa5x4UdTSMYVYBzysx3O7d/LctqFN19HNuKQmow8SxnqKjapCoHvs9bvkfT6HN6/n+njx8B1EdrgGEtgJf2mx0//zm9wx0P3sefIATSWqNkgzlPufegBFttrFJ7gM//n/8brX/t2mSQdZyAFo1u3EuuC9ukz4HgMvf0RTp4/jzp6ini9A/UQRqs8+7OfYmRklJmDJ9nx9reyXPRZPDcFKwnZruO4+87TaOfoJCFOc/JAEoyOoJIYHIc4TujMLZGtriNzS6QFwhiaXpVcF+RWE/o+OklROkMi0FWfHQ/eS3TPPbQLWP7Lb4Dpw92389QdD3Bq937SiiBxL41SDYUQJ5AWOP24zFXTGgxII7AYPM9BO7KcTjUWRobBGGySooscaxRKaLSJWT0/i9crz31Garzv1z7LVddezrEf/ADSnBO7XmT2yDHICna89QEyVZCdnqZGwJoPRD5KyvJKl6Yo63D27Hme+MiHObwyz+UP38/Zr32D1cU1GlLy4Luf5LW/+kv6x8+Xx+e2a3nwI+9hcnQDMy/to+J5WDsQkQYMGDDgn5OBiDRgwIABP2GsACF+PIkEsLy+zuaNl7F73wHOn7vA6tlp3KmL5MuX6qe1gWoFeimjQYVIK+Jmldt/6eeIwgrL33mZXEDqg9lQY+3wGWym6HRWCCYnKGbXcHNwKxXSvMP7/v2/YccDj3Lkz/+GiSefYNstt7Dwymv4lQpFv4vQBqSkCGqgLNc8+Ag7br+D6TcOUG31yYFEFBh0OQWyssza3DxmrU/mJEjjUMy1WFxukZJyxWOPsH7oeBkIdc2msoq8k7F161X0i5ypfAXai6j1FJFrGtbiByFKmku2JYMnBJHjIgqLJyTWWJQ2BELg2Ut30bVHAoxs2oQaqmFWVsD3S8tM3OXsiUMwVOeBh9/K1BuHcXKBYyztrA2b64zffj3V7dtY+N73kJWI6moXJy2wAnwriFKLSynuCHupzctSCkHGYE05WWSFxWDwjYOvHTJcuq6GAK5823088eSTZFnK/LGTuOYflKJeCrTFEdhLIpKuhGVL3tws8Xqr3BB2Y0Klca3BSFVOlwiBMgpPOoSOi4+gSFLSPEO4DtJziGsGecNVbLlpO3u++B+hWsFeXKLmBix0V7n8LXfzjnc8Tmtpnva+w2xujuNagXYEauNGLrthB53pC9z53HMkG8ZJu13sWpvIj4j84FLbmQHh4HsBO+66k2NzMywtzvO5L/xrTs7OkiwtgRty5x13cfbUGZbOnIBrN7Hzlz/F0M3bmH/91bJRrLAk1qJQZSSRMOA4IAIIQvBCvC3jTGyepNNuM7f/MLphIDEEhUAgEUjQGX59lHRyCPodGkMbyOYXERWfK6+6gm7W4/SRw6zMzJCdmyVYX6eBx/L6IhDDaAQTTYrleVQGTRMy4lSpaI+etFx1282867nnOX/yHFk/Ri0tE0YB0uZobbGuoYdkLZIoXyCVgyMctOfiNuucem0fZ196FRPHqNUVFmcu0l9aRVZq0GgCLpM33co973qetcMHSC9MIas+Nk1AW0bqQ+S5xg4NURkdZbHb5eLePdDtE1iBJwyZX9qnlJT4RuJrwYTvk8QxVccla/Vw+orz+4/hejWyU+fI5xchLXBVgc5S3jhwiMN796PXumgrsK5D403XEm6ZIDs1hRNrhjZfQZqsAYat229CXVzEFBlKpVyYPUd89GTZLugEZEkC0kGLsvnNIEG70Hdxb9nOLc+9A2fHFUzc9SbWZudgvUszNtSxFFISO2DDCOo1qNTKqRhlcAz4WJLJIXLf5dCxI3ROnIDhIYrVZZ78yAcZu+oy9h87hL9hFM/zmX5lL35QQ8c5IEh6fTpTF8rJK9clm7tAeNU13LDxCpYWV3AChyvvvI3rt29n9tQ5Fo6e5eKZUyyqBOYu8vDjT9E+cZ5h6eNpjZEuThSQuxK13oGoAgZ6SytYbdF5UdrJLlkE3VrAatZFRy7aLQOvHW1BgnIsnTymtmUbk7UR5o+fgUaFW++6lZF+wYkDB8GzYMpJSUQ5ReYpTQ2N1GUboZEWLSRKCqwuyK0pJ9gcwT1PP02nUGTdNghBKB2ELzBoqq6PmwNWo7OExuYJThw5RHt6BqktNi1Ae9CJWZq/SHb2LOQwFNTp6qR8bSopbZdZgV7vE1Qj1n1Yuniete99p7RLD42Q7d/PUr9LeuwEvvDBWoa2bWFicpLpAyfQU6tI94dC2EBEGjBgwIB/LoS11v5//9mAAQMGDPj/SwaAIcAAFgzkqeKlV3az86lnIapDljKsUoJcsFAJoCK4/NmdTH/5q9BPcGyCrrhw68Nc9ti9zHz/+/CdvbhFSnWySXthGZBQ82D7FbB/HqEkfmOY7K07ytyVI+d48qM/y0tnjxFYQ+dr36SYncHvtqi5EpUXdBwXpA9+lasefZRgcZpzu14iq7ul7a6bsWFVkHs+LdeUGS+iV/qyqg3IDFx+Ndtvv43xm25g//RJ6huGmTuwjy07H2P2X/0eSMmHf+sX+d7f/i3x9w9Q19Dqt2kPu3jWIjOFa0oboNACx3NRCPJCo4TFOqC1oloZpt/LCLdvI52Z5tl/9Rvs+tY3WXp9D6z1qCtNt+rBNVvZctudzH7pb5HCY1JaelFMR+S4chiVxNS2biWdW2ZDKycb8liJCsg1V7YsndAj9iSONbhG4VhKC5rS5PrHmUCSAsdKtFuhX/dxHroLb7RB+r3vQM+AcZDtHq4p25DKVVGGTuNIhCOx1mInN3PrU0+xeWKcv/sPvw/9hHo3JdQKKwydUJMHpjzeWuDGmrqReNLD8wKK0KcvNP0sZ3u1xmxW0MVy5aNv5fxL3yaI2wS5pdFospyXdjgmGgSpwV9eIkAS+BEXdcotjz2CuGIT+7/7HYaeeZ5aooh37aG1dx8OmqDiI6s+cZph0gLwYLwJWReu2lgKoq0u6AAhy1p1WRiybp/qIzdToMlf2s+IdmgHBu2W58hk7iLwWKsGuG+6Cn90nNbps2We0+zF8jwareHEa2zvlsvvZMUlrXo4soIOXT755T+kt9LmS898koYf0FUJVnJJ0GxfyvuR+IWlJj10HpNHEdc99QhbrrmGb/7V36Fm17GxxjoWJkfLmvQ8BxHBWgyFolGpksQrOIHGDQS9XOMKDzezODhkI3WUKXOuaPdguA4BsJZSFQ6yyEErcmPR1RpDm7aw7aG3cnhmgf7X/pQJH9YKgxLl2x5v1OmkkCFKG9JwA9ZWodD4WUEltLSj8jwBh0bfL61SdIkdjfIExo+wuUfW1+U6Ghni7Z/7ea64bBN/+rv/O61z53CiOrrdoxlUWS8S5EidOz/8DMcvnEJ+dx9bOgFHshh23kp47Ta2rWgOf/nLRCMRdQxBmpNj6WYJsdX448Pk3S5oiackgYaeH/D4H/wHpo6f5Pjf/x0Yw9jYOCtv7IMigSgs31euUaZsdouuuZagVqG3uopaWKbquMhOhx4G6fiEns/GsQnOz06xadMWZuZnYagKeVwqwUgq4TAjTkhraR4jPBJbgCdBG+o3baf+5EM0ZMiJL34JlldAplClnCjNHJpZxLpvYKzOfe97jqPHj9E6eQ7W2kSpIUsSvNAjy1Lq1RpCG4zSKKXAcxCuU05jGQWOAEdRv+kGJscnOP3yK7jGx23F5bUm8Oj7QCciGJkg6y1C3KZZrdDzM1SWgvXBcbnhqccQk2Mc/e7LcPAk4yg0kAvohYDrAw4iV0g/QHshQ9uu5qEn38nf/I//GxYXocgg7uN4oANwE/A0CMcnao6w2loCV4DRuFZSceq4WUyVgFlSrITQi1BZzoa3P4C5fjPtP/q/EB2NqEHP86BTgInA9bnhA+9l7J6b2X/wAN2vfIfKaspm32Vd91gJFDbNy/HdvmV4fJwi6WKNolKpMDc3V2b2DRgwYMCAf1IGItKAAQMG/MRRAFhcDFBQBsV+4Kd/jlaq2PWVv4UshWSdoXCIdpZCVOHZn/4ERa75u7/+K+i3ufWD72f/H/8p3LCNIHLIjhyGLOaeF57n1T/+cwhHoJ3wsf/2Bf7rL/8yNMd59K2P8q2XvsPEZVvIejFWG7Zsu4r5U2fp7dqH54XEQoIjGL7zNlpTpyFOuOUjH+fAH/w+mAwvzygu3ez1Nfi5wo9qJC4kSQ+CS4qIFWWzkuuCUNz40Rc4deECV2zYRC/OmT94AhrD3HrTDvb/0X/H82uMdHNqgc9iZ5kicJCug+965Hn5mVUqFfI8R1tDoTXCkRTjNezKGmE0Srra4f5PfIjtj9zHF//4v3Dvs8/RqFT5+md/iUnfZ6G1Cps2lXfoJ7fA4hLMzNKsecRL67iOz1A0StLtU680mdV97JYQyKC1zrY2LGpwhppkWYLneQgh0FqjTLkptJfShx3rkaFh8wi3fOQ5Dpw5xhW33MzymWn6P9gDcQ4rq5BLhvFJizILCje7FGJcYbRnWfVFuUnLCnBdXAt+nuE5krASsNhZR4zVsL0CjAuVGsMP38udD93HS3/2FxSvHmaD79JTCdVMYwT0TUEWOjg1D5Vn6NwS+VUsFVJTgE1A+HhIDJY3P/YIu/a+VuaR+BEsryPcAOtlEPn4yz6BymF8nKf+4DeRjsNffOZ/ofqOnWx78x28+oV/C8by3p1v5/je/Rx65TUIgjJnpzBEnRhdCcmLAqfIqUifzDU/Cm4ONPjI0tJ4+Uaqb70bb6zJxb/4GqyB60aorIebaSpZhkITRwUE5h+EQstyzCsPwBmCuA++i5/28TBYYUhcg3XLv/NziQByKculbMEVDkWegoQbH3yAfr/PytIyvakZwmqDvNfBcyVWKArHYIUFDIFyEFaiCFCBz3VveTMTExPIPOalb36lzOFZh6YXoXWBMQbHkyRWgeNSCAHGUqG0Y7FjYylyzK8j5tepNIfoqx4M1Xnn+9/H4SMHOX/wCKy1EdLBdX8YkCxxtSwFWZECFotACZ/Yd8pz1nHAr0JalP/jS8xKh2HHJwwClrpLVDaM0s36iNDBtvugIxga4hO/8+t8a/9upr/9IiwmNNMC5RiMMLgmxxTq0gEthRCrc/BcKAROnDM0PMJa0QXKPKBhL0TlGV4UkGHo6xikIHADsiSHwOOuhx5m8+YtfPtr36JodfGsQMQ5edMn1Ul57oQB9GIQHkJfujxJYLTKXZ/6GFPffY2lfYcJ2zmRtUgpWVUdwo1jPPD4o5w8dZ7pg0dA5QS+JOsliJqLzQwyF4y6DTpWkqkMtkxAZ5EnPvdZ7rjpFr7w6/8z8dkZSFKG8PDQqKCCdn3WjcXqsq+zHoXIXh9PwEo14+EPvcDBV19h7cI05CmyWsN3AtL5Fg2nRsfV5bo2BcNpgWsgr3q0VUHt7jfz8Luf5SsvfhcOH4alZRzrIjt9/Eth2Uryo/BsY3L8S+dILgQ28Mv1tWULl735QWb+8qtgFawtwnBUhseHEbe99wXe+MP/Dkoz5oToJKMV+TjKUs8N4tJ0VRFV6DsuO//lb7ImDaf+7b+mNzuDkZSiJxIShbjmeoLmKP7wEJMbN3Lquz/AWVijlrTxqz5tMvLUQFiHngQ3RI5U8K2ipnOWZ06hVOm6xRrQsvyCDRhUBw0YMGDAT5CBnW3AgAEDftLYS3VSQmIoJ5Ny4N/9pz/kiu3Xc3xqGvIM0h7ClyhlEEIwOzXL3FqLZG0NqnXe+t4XOD43izkzhT57tgwwDj1ue8fbObnegnYfHJclR9PVBfS6bNuxg6kjx+idOEU2fZ7s4gWWFxdIT5yglms8JyDFASG45YXnkNdfT7tIefqFF9j36qvQXUcYTaghUuAZg8FiXbDWluKSsHi6vFvtGouW5RjR8sEDmIsLrC2u0du9F5waY1smeeiB+zlxbgq3l5B02rjSozHaRAFGW1zXQxmNsaa0eAGF0Sit0diyiWpkFLXYwpceF1dWMALmTh9nOS1Ymb5IfOQ4vaJP5brrqV1xJWmS8d5f+iXC8XHmD+yn6MaMRBGZ7+OLkKqN6KcpSbMCTgZZggwqNDsp/tAwSkriOEE6LlI6aEppUFtbCg4IrHExjgsjNZrXXEk0NsLc+fNk3/4e1a1Xc9c992MaNboXF3DSHAdBXgnZ9LZ7qV+3je7RU3ipwbtiM3klgE4H4foIY6i4DkWSoIscaSw60zA0CpUGpAnpUBVnwwY2jG1g9fRZstUljFII4WB9iR/6BFWXOEtwgxDruBSZRRWmrFwfqjFUrROvt7AYNt20ncfe9TS547J84Agb6mNE3TbxUAi6IApG2DQyyfzqEnMTFdb7HZb3HKffrDGx/XpSxyM9fZ6jX/0Gop+StNtYKct2O9/FyzLqYUDgSrRWaAcQPy4EMwJE4ODlil4nphev0L04y5U7H2P9yHlMqwtDw5g0o7J1M10K3KqPibsgQWqLVxi8wqCkA82JMhQ5Twk9D1SOwJZZVlKU56aVSCtwDT+ehHNk+XulWF5YIOvFxK0W5Dmh56FVipSiTIQXUK4EgWsERggKxwXp4IQRRmt6SYfV2fOgNBUZ4liLtmVbmZWgrEZiqFcDQt8hpULzuuu4/1MfZSnukc+tljahvAsygzzm5KGjrM/OQrcHjouwkgAXx0ocI9Cy3FsjFNIKHCMxUlI4Ls2bbuSdP/VRrtpxM6d27YE8x4YOw7UmaadHksVUmnU67ZVyQiVJ8WSIcSLwodcImDl5AjN1gbCAilKlbUoalARhBVJIHOGUzXvWlD+uD5kqA5yTmNHQIzTl9cWTgl6eoFUBEjw/xOQFXhCii4yFlRVmpqforq2VYfTaIo0g9Sy25nHjQ/dz2Y4bmD96pCwg0JZAugS1Ct5ok+07H+LgN78Ny8u4jo+TFbiOwLqWtN9lam4au9olXW3hOmVAtioMQhlcban6Ib0kplIfJk1SqARgNaZepbW2wqlXX4NC4xlBzfVwQp/FtE+qNQw3oVqDRo18dY2R5jC+49LRGfNTM6QLS6WdNM2xRY5KY0R9BJtqtKdAFrhKEWiDxBJnGlWpIi6/jOErrkRhKU6cQKcp1gpMVuAIB4Eoj70F11qkBx4Wz1iktShhaT7wFp75xCd45eARSAyjt92OOnUEE4TgOvh338n2W27m3BtlaLefazwriH0Hi0Bai28MVghsrUIeBZydOs9codDnz6P7cfk9GFZAOIzffx/3PvQwp17fjcbj8o1byDX0Tx/HiVyUKUiVgsIgJyax6yl3P/1uZhfnULogchx+6Rd+Fkf+A8u4/GXsqQAAIABJREFUEaWF2mEgIg0YMGDAT5CBiDRgwIABP2ksZfaEEP/o4Vd2vY7OCk5870WoRIQqQRUWP6qgjCFXGcnKMlgNrqDjSBqdjPaFOTaqAK/bw+kWHHnpZe5877uYUx2u+/gHmPr2S3D8HBjJ2e9+H7vWxhEOEheBi+33CcMIm2ZY6ZJbwPeZPXOK9noLOj32/cmXcfGh1aaiRHn3WshyQy5clLKYXOMoQ2AdarmkoiU17RDkDiY1jFQncdYNk20YtlVC32fp0GH2v/YqFdeld3Ge5uYtZIFk0aRkFY8iy3EuTQYIISjUpSkuYzHW4giJbTTLDI31lKZTxc80Z1/fD90Mtec48Z7jNAnIZMrk1iu59y0P0JIeb7y2m9kTJyHJGLGWVr/NyH13sDgzRbtaJYkcEDnv/t3fZi1J6R49zbCMaAloFSnVoQaJyslVgXAcrLUYUwqE0gr8S81tOk1YmZ2l8/o+zNHTEDUojp9h5vgJxieGaZ2boukEOJ5HnMdM3HYj1+24ifNzi9AtyC4b4y3PPcVVN9/C1J49WDdAdfs0CfCMYGs4gk0Lxq+7gcc+9j6ufvxtnPzzr7P64m6yVo/EdtFaUcfBHWrSUQoFpP2EUPpYKxDCQ7shb3v+Pbzj+XczVBjOHTrGcL2JUoYLJ0+y/9XXWD5ynObwBtYWF8k8i+nkICvkVZfVQIFOSPYdZ/WlPYhGxLMf+QSvf+WbdPYfhtl5xoeH6a61qPsRorAUcUZF+ijHIEMfLwywApTR/yhsXEnIREFoPYYJ6eYauhn13GGyMspqa41r3v0YWx++l6mZMzz6offgSliZuoBnXSIl8JWLZxxS1+PuX/kMzclhljtrFK1VfFUKGL4GVws8JfC1wPuheMSlmnNdTlf4ro8vHJJer8yMCUJMkuFqTYDEMwbXluKTZ0AiwDpoUQq0/ZVVVhfmWF1YKO1wEigMeZEjfR8ZeORClkKpdRCVIXrKYkRBQsJCZ5Xe7oPQTqBe4Znf/jzHTx+Dbkol9UoBRwSIOCdQ4Muyxl3LSxMoDgjMjwLijZDkriA1ivMXZ5k+fY58eQ02TfDYL/8M8601OvOzqKE6Wb+Ds2GM2vAY+VqPqnao6QKdpiwdP4BZX+H/ae9Ogyw778O8P2e/W2+zYzDYQRAACS6gCG6guIgSKYoSJYYQRUabZVGUbCuOoqooTqRYii1VbMdOKalSOamkIkeLy7ZkJSknlkSKpkgQAgFiIfYBMQAGwOw90913P3s+nAZkVVJ1vxjfnt8XYFCNnjv3nnN7znPf938IW3rFnDYsyNMleVJRtQFZkhEkEUVTU0VtN+S5lwIhSRsShBHp5hp74wnLMGDRS5hWOVUcE/cHREFCPl9028jCkCYOCZOENgyopzOqqiLo96jDgEEcc/jYMYZZj0f/4n7Ia9IgIZnkREXNcjanmC957otfhu0x/a0jFJd3SWi7of5NSzboE5YB090Fg2xIUkO4LMlqiGrIBmuMZwtuvONt/NJv/D16Rw/yzP1fhyxl55lnOP3EMzCekSUZbdNS9yK2kzncch3v+4kf5u33fD+Lo2vsseD9P3EPO3HJmekFuLzgQJnSn5aky4o06zO84Ro+8KlPcfzNt/P8k49BE5AVXdCP2paWkDaMKOOU6qVzvPy1bzD99gvUO9tQlCRRQlA1hPs/d5pXj4UQyjiiblqCClpCqjhiuZzzxBNP85bb7uAjH/8BLj31FPOTT1PlFaxtsUbCU3/2VdjehaRH1rTEdUtURvTLlqhtyeOWZdwFPQ6scdUnvpfpfELz8Lfo5SVZmJEFKUXZ8l3v+wBx2fLso4/SXLrA2fEe77z73bxy7iWK3W1KKn767/wiL9YF8+ee5U33/AiToGJyIOUXfuUXOfX4Y3zhr/0EYQAVTfchRBgQxRiQJOl15nY2SXq9vboSiRD2Pygdzxv+t3/22/yrP/gj7v/zr0FbkUUlhBE5EKY9mgjYWIO65jv/+k/y1d//PZhOIByweWbMMUJ6WY+Xw5zLwwDWYjh2mLdccxuP/R//T3eb9aKEoqCfZSRhRBQFtE1DksXMZhPaKqaIevQOHOCXfvOf8A9+6zeZPf44jNbhzAVGbURAwzzpZuASNpAX0ET0SVgLErajZfcJdwNJHVCGIVUIZV0xGmxQT2cc6a2xWF4kOHCAuhezPdlj/eBhxhe2gZojH76biw89SFBHJLM5URQR7YeaqqoIgoCmaciShPf85/8JB2+4nn/+d38ddhYwnUK/D/MZw6xP2rQsprss4wYOHIQwID5xPdUy74bxbm+ztlxSDhKu+fTHOXHL7fy7f/xb0B9x949/lnsf+Bo8/DAMNslOb5MPIogDgijmwPoG0/GEpiihrGn3t+t0waEiDEPCJKahZblckvV65Msla1ubAEzmVwhyWCdhSU2+uQZRBWEAm4fh7LR7jEEIcXeRDRClMVVQQ9PActLdmnxZdcdWrwd5SC/tsZzswIEUsqTbzpOXkPZYHwypLm+zkQ2Y1zX0+uyVBayvQy8jOPU8KRATkwz7JEc2uXThHMFgQLs95sDmBlfyy1xdD9ktctLPfi9v/viHePKL91L/zpcZtnA2m0KwDr0RzPbvaDXZYevQIcbnzrEWDUiagDKG3bW2CwNV3d20sOoGlrN/iJURNP2Q3k7FOrBLRBGF3XKdJoJeAlf3u1k3t9/BZpQwPHuR2ePPUOyOySpo6VbhTAYpfOJ9vPv22ynOX+bh/+W3yeq22zJXA21ME4S0dBfYLfsLGvb/PYoigiCgyHPKLOpeq6IkrmA9iWnLiqitXpuN1QZQBd33rIKQIoxoowiCptsiREMUBQTLBb20z7you9k4dMOF016fYnuX5Orj3HJok5PPPkWVT6HKSMuKJs6oRg29t76FtUXA7IFHCfYnr22ka9RlRROH1CHk+zfsakKIm4Ks7rbp1UHINE0IrzpCMuyTP3WKeP0wgxNHOPEj38NTf/JVeOk8tA033HQzH/vIR3j4/vt55Etf5WAFyXSHPILlesK8zqnLisH+87aMu9+PMiWLhrA/CyjcGvHWd30H/a0NvvZ//t8E06KLxRsjqskOjEaQz7nzk5/k1KNPsnf2HFyesJ71WRRTSGPquFvNCS0f+sT3c8311/P1e/+CU48+DrMF2bBPns+JrzpMdeEy/bhHMi8Y9ofs5nOaOCTd3GRyZZs061HMZ6RJvB8KQ4IWxsuiO4Zb6OU5GS0bccblasoi69FkWbf6KGphvn+ODdeIixKKqltdtr9FMein1NWC4IbrCEdD6sEQJnvQtiTHj1N+82EoC276zI9w6o+/QnJ5SlbWVIsxx667gdGhQzx16kWaCtYWY+K22F9Ztr/1M+mxLBqibI2mCWibiiiaE7Z0c5iWBVEU0dAFpG5OFhD1IC8Iq5o4hKYXUbVV9z7aJBD0YDJhUC1J+gP2FstueH5/SN3kNE1N21RsphmjeUtDyyRsmPTptqyGNdx1Fz/2n/4CX/36fZz+R/8j60VAHIakQUIdRGw3NW3QwM3XQVvCsaPc/e53ce//9E9h0KO/NuC293wHD//pl7rB+zNgcwuuGkKvx4mmx6kvfommyInThAL2txZDj24xkiTp9eFKJEl63b3a6rurzBDoxwHrvRG/9l/9MlcdPcJ0vAtNSdbvUxQ50WjA9332szz77NMw3uWtH/4gW7fdxCvbL8CV8yzbmvT4Ub595TyLKufmG95AdWlK/+KM008+DWHA1uFDFMWSfr9PGodAS10VxFHElfEubRqw1h+xXCwp85JHHnmIUS9lcu4cYV4wIiSoW/IooMoC6AWQhhy+8+3M9yZUeUESJiz6LU0KVRKQJyHVMGTwrrdSzC5w1y/8LM8v9tibXGKzqigHIdvbl0i31pnvjBlsbFHOFpy47TY+8InvZ+ellygW824AbQBNXZMkCXVZUhcl+TLn1H2P8MS/ux9mFexM2QpTsnnOAULixZS4mLOZDplS0bbAZE4cZdRnz0Fe0gsC4rKkCSMuPPscL/7FQ/tlb49xHPDO972Hl8ZTOH0ajl5F2Ito2xpo+ZVf/VXe/o47ufdr90LTdne1A9qgoYxLqrYiqmqSsuTYcJ16MQVaeoOMslwShRDVDb00ow4CyjjmfT/+Y8w3NlicPMWHfvoL5NM50ytXYDBg/aoj5Is5TTnl2u98Dz/00z9JfniL7W8/A2FAWAScqDJmTUFZLyBo6E8bqqjl1k98mFs/8H5eevRx8tmMXpDSb0KaJmSyLGiG/W4+zXJBFgT0kx5hEpO3NeO9y8RHD9Es5gRBRF3k1CH0cljQEt52HQevvorLz71A+eRJ1oiYtAVp2KeeTYH9PWFZd5v7tu7uptQURbfd6eCQn/v5v8mtt9/Ot775Tdog6GISXeQIgbpuGLUpUZAy7jeQtrA1gmUB632+++c/z/OTGdz/AMunv83k/GWqK5NullIQMUkT8jSGLIJ8xsWXz/LKk4/DYk5QV7RBSxUG5FFIEQVUURevljEUMVQx1L2Yssgpq5wmDmGUdlenSUibpizmE0hi2rChCbt40gTQBPH+GR8Q0kJVEgeQBBF1URASUtclYZpQFgUkGTe+9U5+4gt/gzfc/mYeffRJ3vfR7+Ob5x6iaXehjjk4K+jRMh028PmPk564mr0nTnJgu2EnXVAGMKkLgn63uqvbZtkFzi7QtQS03d0E6WLv537iR3nPu97Ng/feR5iXLPbGXPrmg3DmEkyXsCzZPXeOb37ly5x54UXqOKNsYZqGzOKIRV5AlJFmfcq6u4gPm5Co7l6DOuy2K7a0rB85xMaRQ2zv7rDz3CkGvSF11VBHEYff/hbe9P73cXY+5s3vfx9Pfe0+GM/Y2jzCcrJLvz9gvlzQ1lU3cy2OePHl03zrwQfYOfMKDHqMsgGL6QTSiKZYwnDIdddey3wypWhrml5Cr9djRMhkNu1ez15MPehRZwlFkZMvC+gPoZ9BEBJmPaI4ZZnPob9GnkbdwbkxgOkurA15z8c+RnFhm/bymH4bkrQtJAFRllDnOVe1Q9qLY+IrU8LtCb06pnzxDM3lGewtuO7Wt3LtR97P6Uceprm8S1FVrPXXuTKfcnEy7QbvNy1hWxC1NcsElmlElYRUVQmDAWFeMgxjwvmCMKiJCAiqunufabq5aE3Ea9u84mPX0AYJcVERthDSULc1YZbSThaMgoQ0jikTWC4WrGUDYqAtC8JBRpNGtD1Y5guSOmYRwqQXQD/sZlIdv5q3vuXt/Omv/0P27vsmBN0KuLZtCeuWNEiY1kvIYghybv7Ed7G1tc63/tffZrB1gPLKLm2Rc/biBYhjfujn/gbPnLsINHz3z3+B5//si1y/foC/9dkfI64awgiCoNtK2gIuRpKk15cRSZJed90dgf79X052pxw7epT/5u/9GmkYscxnZHFCXta0vZSNA1u8473v5pHHH4X5nJPPnuTam2/i+jvexEsvnIYwZnL5ElfddSdTKq6cO88gb+gva4peQh3ULMuST3/mHr71wDeoooC6bSBoqZqKKI27T6ULSMOUMIqZ7F5hsn2hm5FTVaR1S9HWFFSQwv4UID75Mz/N9sVtpufOk/YH5G3Z/aFe3baXBLznnh/iwsF1mlGfW97yZs48eD/lZEazllIEFU2SQNlSzQuIUy5fvMQzTz7B9PI2TZkzGAzIi4KmqonDboVAFISEQUjdhDAYwu6YIEsJ2oYogKLKydZGVHHIpeUMAkj7A+qyol7mpMMR9d4u1A2UJRBQ1SGQQJhAmrG8eIGjN17P0auOcX5vSrtc0l48383yCSN6vT6vvPwKLzx3iraqCepmf/VRRJ01EIfEYUBKd4EXhiFBErKoC6qgoZh3F21N09BGIVUUctd3fRdveOMbeeKZbxMMRrzx3Xew3MyYXDjNp/7mF7jzw+/nW48+xt5LrzBfVvSLgPNPnwQqorwlK0vKsKWOIA5D1uKUZT+FzREf/shHOfXc8yx29xgGMUm9f5tvAjbfcBOf/NkvcN1tt/L8ow8RBAFtFNKkEVUW0UzHUJekgzWKyZRBmpDGKeOmptocMdnZpbq0x+KFM9TkrPV6rK9tMK8rwmFGE9TdAOl+BrQU4yktFXE/Y9kWPPiNb/DYI48CXWyJCAiDgHD/n8PROuVsRpOm5L0Cjq51d9haP0gWJzz7ta9CUQMxBAksC9ajhPliQp0k1FELTQFHDsLZC9R5SbAsYLxHlmUsFwV1FlNmCXUQMFhfYz6bEG2u0VZlt9pkPoXRsLtLWFPD5ghmk24F196YaNCjaVvqtqJoG/KmJW9a4iAlr0rSJKZpa9qmpSpzojAgitPuJo11SdRLqYsK2pZlG7LIC5544knG4ykvPf4k8YXLZNOCqG4ZVAlDEqZFQ/PyBcoHnoAlVPMJ9bDqVmVVJVWSsJzNGYxGTKdjhmkfmpaqLQnbkICApm0pqTn54gs88sjD1IuCuKhJwrCbk1V2Y55oWkgjWF/rzu1lRR2E1OWCtm1g4xBtURPEGWXVkIYZ7bIlbiLKOOyGdrewsbHJ3vmznH/lJXZ2d2G+pCxqsjTj9ne/i3t+7HNcvHKZ0w89yPMPPdStsmsgrEPaYglhQJREBHHczdYKgLqGOIIwgrKkWBZsHj/GsinZuOkGfvieezh/4QJnXjxNOhxQhC3zfEncNAT9hCqmiyqjAYx3YX9+1ejIUY7f+XYO33A9l555hqLIOXjwMFfKBQQVHNjg2h/4OHvnzvKe7/0YH3zne3jhW0/CbEm1yGnahjpoqaiIwoheXhISELUtQduymM0Jwpi2qiFKmY9nPP/4YzDJiYOUA4MRV/auEBzdpJ7twVtvgTdeT33uLE2+oMySbr5XkkJdEm0doJ7NCRuI6pog7oJNADR1Q9bLKOuKeNSnzpcQtPwXv/EPue8rXyWta+IAqjKHNKSpKiIikryhqWuWYU0QxkBDGMCiKqmbJW2Ts3nH7SzznOVsRh63kIVw3TV87D/+HEGS8cK3nqQ6c6l7ktsKgogwiumlGVESEY0GLKslB9/+Jj72w58in0156bGnSRc5gzDsZsbR8pb3vpcbr72OR//NH/Oxz3yWtYPrPP3n93LtcJPPf/KHIE0BCKPuPeTVcUh/dfO4JOk/JCOSJL3e2v/vX2ebMicIAn7jN/4+SRKSpSlFURFlCU0YsFjMeOypx/mOd76T3TynPH+es09/m/rBpyjP71FVNVx3Fbd88H0M33wDV+oFy/PnuP6WGzi3s91duIcBJ66/hnh9wKXti90n0WFLELY0EbRhN8cnaSPCAEpa2raApiIsFjRNQXZwi3LU413f91FeeeE5aEtevHKFXhQymc2oA+jPS9aXAaMiIK0ClgScOf0ih48c5uUv/hlnHn0cFgvCjT6L5ZTe1ce55z+6hxe+9RSjKiCrWyhymnxBO50w2tpkcnmbJOuxtbnJcr6grRpoGtqqZv2NN7G8dJaP/u3Pc90738Szp0+Stzl5P2A6gvlGRJM2xGVEEobEhFSLJVFZMuh1q7IWxZK13pD1OiWdLglnU8J8SUvDmWee5vwzz8D5C7zrc5/jxLFjzPbG5Iuc554+yUvPv0AvToja7g5abduFOaIupDUNNHSLm8oQygCKsPtv0f4Q5RIoW6BqePqpZzn15EmqK5fZPXmS5x+4l8kLp6DKeeLkM3zr0YehyLnt7rs5dPggD37xi4wOHqMdz6nSgGVQsl6UrFcVw7RPdMsJJnu7zE9f4MFv3M/i0iWCOGKUhBTLJXlbUdQV0/mC5198mRe/fZJiurs/K6fb9nLnRz7IRz/3GTavOcGpJ59mFCUkeck0DqnjlvbsZZbPvkzx4ku0mz3itR792Zw6aMmTlvVDW/zcL/8dnr68zbIooC4gz6lpqIKGtmmgqqGsoChJ45Q4CAj2I1IUBFSLgoODTS7lY8KP3sWb7vkE/RuvZe/eh6h39gh7fe75zI9z6/VvYPfsBZqdXdpiSU1L2UtgmMK1V/OjP/XThOd3Of/k0wzqmrYsKPKKeD2lLgtYH0FdkgeQDodUk12g5iM/+llOvPl2Tj/zDEynDI8e5b0f/QjrN1zH1cev5vypU7Q0DNbWaGMo91erEUB/dID+YMBkuseRQweYTveAljDq5ollvQEkDeV8AUlGOhyQj8ecO3WK8cWLXehsKpphTZUF1EHIqAwJ2pDdtOTYz3yK93/u01w8e5by5Qvc+bd/nB/8qR/nyRdeoDh7DsKQZVFC05DFCWVR0mbha6u8+r0e2dqA2WSHuigJ8oK1NmA9iEhnBetFTa+qiZqWt9/9Xj7/Cz/PrKo5+/hjMBxy82c/zfXfcRfn7n+E3sZRimXJkauvZT5bcqi3QTBvWSQNFDlhkjDs9VnM9oPcfA5Jj80wo20aXnnxOb7+jb/g9ONPdMPB65YTb3wTcRQxPneegJY4jQjC7rgIg25eWjwaUUcR7/jOD/CDP/XXeOGxJ9k5fwaait7xozzwJ3/CvGkox2NGhw5SZBFN2JAEkIz63HHn2/jBz36GB//8K12QIoAGbr7rOzh0ww1860tfhLUhG4cPMiln1IsZDDKuuftu+hsbXP7avbzywmm+/sUv069apleu0O/3iNMIspAwDiCJmZWQRy3LoGLZFhy99jjTck6ysc7b7n4v8dqQd33mU2Rb61x46CGKJKQp5zRRQ3j9CT75mc/wzFfvhfEYaGh63Xs7oxG/+Bv/gMsXL7B95gy9XgxUBFFIGLwakoLuBgUB1AG0Ucg1t95K2QY898Tj3VbgsiDrRfvHL0RNSFKH3XtBL6GNAoIwoI0g6EUEG2t896c/xeHrruXFhx6kf+wQzfqAdj5jdM01XDh7gVe+fC/15SnpfMaBKmSeQJPEtFFAGIbUccCMgjpoWVDy7Wef4bn7v8H63oxB1dCrW+KmZTadsrO9w6Nfv592lnP6sSd54i/ug4vbvP8Nt/Pp7/kY+e4O8foI6LYlhvX++EErkiS9bpyJJEmvt/1ry9c+Hg5gPp8wXyz4r3/177K9vc18OuPCK9vsLWbkYcssX9JELTuXthkOh2z0+0TLimvSPrNFyTQIOJVPYX1I/40nWDzyIAevvZFmMqbeLVkbbTBfLoj6CURQ50tCIKkb4qal2Z+XMiwikiqlJWCZwIKCpq1IlwuCuuLwDTdxZbagahu2d3e46aabOHPmDP00Y200Yj6ZMpguGBb7W2bakHEWUvVS5v2YMEpgntPLEsq44dJyj7ZpePOttzN78Ry9ZTc7ZFLlTNqS4cYmURQx2d3j8KFDXD5/kbBqyKKYOIxIo5jdKzscOHqY7abg6NXHOf3YSY6vH2BIzKm9i7RrPcKtEceilEtnzrE+GBLXkCQJZV1QBAHzpqQXJ/SXkMYRZVxR1CWzYk6Y9dm49kbGVcVOFHMtIeXeHsv5giRJoG4oiqK7UNsfWhu2EAY1EHYXa69dwDSvXbgHbUjdQEW3wqttu4UNvbRbxREeXKPox6QnX2QriinSmGU/oUoTxmFDnfU4ft01VA1ceOJprqkixmnNsp1zdKckq2AxyDh3aI1+f4tRHnNl9wyDXjfXqh80HFzbYG9vTBCmVFGfybKiPxrQLPbI9u/GXkQwzwJ6m2vMJlOi3TnXrW2xGI/ZiVvafp9Dy5i4aiiTigvJjKJccCSvGW4dpowzZmXJhd0Zvc0DLPf2uOr4Mc69+BwH14ZURUm5LEnTlCgIu5Vm+9vZXtUGEA5GcGnMxrHDPB2NoV5C2uemaUJSNOzFNVWb0hYVvSyiKedUVcHWwUNsT6fkcY+iadkYjlgfT6EpmM52IQo4eNVhzl68RLSxyaINOLi+RXFhhzJfsn7NMQoazo2vkKYpgzYibCHOaxj12ZmOObaxxWJnTDkbs7G2TktJ3TTUtFQEFFXG2nDAuZee5+brjrN3ZYc2DIjTEeNlxWC0RhgWzOdT4jimn2YM+yMuXrxIREQUxURRxNaspQ7hzHpL0sDGEjazATsHE3YomG7vsNXEXF5PoKhgWXDjVdfw/ONPceTIUeI4Zme8R9bv0RtkhMucoG7pxQntMGO7mBAEAdmyZqMIiGghCojqbvj2MgzYyQLGtPT7fZJJybKqWV69CUXA0VnD4eEaeZXz3OUzHDiwydGwR7AoON8uaNuWoG6JWkg315jkC0gi6u0xR8M+vUGfi82MpmmI4pgsy+j3ehzc3OLypW1efvE0o2GfKOkCWneMhN12vSwjj4JuFk6W0ruwQzbsMw9q9ooZENJrQw5mQ5q2pR2kbG1tcOnsafrZgDTtsVjkpFmfvfGEvdmcweYmV193Pd9+4TTN3g7HrjnObDpmmCVs7+xy9NrrKNuQi7t7nMgy1tKE6d6Yl58/xVVXHYWmJUpC4jQiikOaOOXSPCdoim4LZVPuzztLyDYOUadDiqZltgks5vDKRahqjq5vslgsGO+Mue3ELSSThlk0Zc6SRRMyrWrWDxzm4MGDbJ8/A4sx/TimF0fM8qp7HHW38qkB6rYhHQ2YVwVlUzMPQ9bDmKNhQrWcU7QliyigDgKiJiWrImhDijiCoKKlgKBiXuQcOXEtQZTw/OlXCNOUXlSyLEpGG4foDdaZT+ZML13ipqNH6Jc5wyTm9N6EJuxmi4VhSBiGtDHdORNCWVUkMSRVzqAIiZsunLYbI6Ztzag/YCseMkgzhscPs5FmfOdb7+Dn/rNfoC0X3Yw4ku74yOlWzrqfTZJeN0YkSXq9/f9EJIJuRUrRVERhSEBI1HYXR8X+l3efjbfEBEwuX+bA+hrPnnyKfJpTlSEvX9nlwnxKuZnxt/76j/I//9PfIq5rbrvqDWxtHoQkIuzFZP2UIwcOEtF08zoaIIRFAP066m7dBMzrkmkzpyxzmske7XLJY99+nt3pgn/9L/8VWZJy993v5fjx41x3w/XEaY/R+hrXXnWEuKT9GDAmAAAPbElEQVT7vk03ELqKYR52g5rb8YJ+v8c0aanDkJyGsp6z+9xp0mVBWRZsLyZcLuZ89Wv3MR5PObSxxc033cRa2ufOt7yVtf6AQZIxGgxJshSCht2gYm+xYG0ZcO7J5xnUIScvvsK52YQ//NqfMIjgZ37sJ7n1xhs5cfAIDz30EI8/8xQ7yxnHb7mZq44e483X3EgvDVm0OfPljOmVKzz4wCM8fPIFvvzAAxx/29v44bvfz5HROuvr69x8883EccxoNCKKIuL96a1hs7/9JwAiqLpFDdD9kqjpXtRZXjKra+bLRTdseFGyffY8k/mMv/8//GPu+MC7+Nl3f5BRE9AO+8SHt6CXsn70GJeLBVGaERCyAYSTOTMKpssx8XhGUDe8dOkKf3jf1/nyVx7gw+96Px9839s4duwAWZYQhTX9LOPQ1mHiOCMMBxQ5RCkM4u4TfOhmV09CmLYlYQuHwqR7fWNYBt2x2S/2D1Aa5v2Gioq4mDCdLDh3aYcg6XHy1Cs88+zz3HfffRw9fJCgWfAD3/cxoqDl5mtuZjQakaYpWZaxsbHxV06ZIgxZAFsNUMFu2p0XGbAxq2C+ZLoRk6Y9lrOCtWFK01aE+8/77mTG2toGNVCX0CsLlrMxLTWz5ZSXXnmZ7d09lkT87r/4A9586+28+413cOTgQZrNAU0c0ju4wZEjR8gqSNqAtSimjGBR1gyTiGpesnP+bBc9pzucuXCe8WzKzmzGv/3zb9JUJe99xx18/8e+ixuuu469vTEPfPMx/ujffonLV3a55prD3PrGm7jh2usY9Ppsra1z9dFjXdRJUpJeH/a6c3Vns3u6D9YQnNmFo2tcDLsB9JdefIXdoiYk4MwLp3nskUd51113cettt3Fm+wK/9wf/knPnz/M9H/ogh3sD1gcjbrjmWkbHDhGt9wjDkPU2Jq3D/dq5hHnFLC9Y0PDU+bNsHjvGK6dfobmwx4MPPcJTzS7vfuMdfP4j38+/+J3f5elT3+bUYpv/8td+mYNtzPaLr/Cbv/PPKJYlH//uj/KpH/gkv/Srv8Ll+YR33nUXbzpxA2/YPMpw1Cc8MmSQZERBzKjXJ4wiiCPyfE4QR0RxAm1D0IbdAPu2qwNl1K3yWwLn9sa8MR3x0pmXmTYl52a7XHzlLNV0wX//6/8tn77nHt7xne9lPN3jqqNbvP+uu4kIefzhx5jNluxNJlzY2+XRZ0/yZ3/+Vd72trezsbbGpfMv8eEPf4gPfuhunn/+Rf733/l9aGM+89kf5Z033UASBDx58hn+u3/yj/ipz/8Uh48cpNdL2Vjrju241yNZP0S1mNIWBeVywu7umCu7e3zlG4/Q2zrKW99+JwfuvIU//Oe/w+Nf/DOq6Yy73vJmPvzhj5AQc2JwhMPNgNFNW5QpJP0h42VLt5ivZm0UkwUQUgEtBTEhENYNYdMSxDG0LXlbQxTzamfpAVm57IbzJxF5ENAQEJCQdTuf//JHWFhRU3NxZ5uWiMl4QRgNOH/+LA8+9BUunL/MNx76FieuvpGbb76ZO267lRuvPsYgaVjrZ1xz4haaV7chhl0kLsrujnhB021ZjrKQnIKsefV2gt1d4xa0JAT0Xv2hGNNtsyxyyAKKpqSKMiISUiDIgQQjkiS9joxIkvR621/h8VpAChsqWsaTXUZrGzS0hASkTdzdkhuo94dxZwTURUEaxuTtkheSmgP0WZ/U9KLsL2d2hy1U024+RJB124SyGOJu5UtES0AD9f5+qwiWIfSa5LXbUJVBTZ60BNQMqfa/d7K/NyuEvOruHNbrddUkTSCGizRdoAL6hDQELGmIyei3EJb7jzGCWQSTomCYppDPGETdto8FLUtqlmXDIOnTI6GlISXs7rLT0j2OqmacLGjDhDEhJQ2HyUgXFRndn7dOYBcYAtV0TFg1DIZDAP703/xfDI8e4h3v/QBLahJqupHjJRE1GQ3MW8g2WFYtiyxinb+MQK++hu2/F4kAgrwlLIPuwiXpHkO1/+Vpu38MdKNmWGavPR0MXt3bRjdvZDEI2aLpXitgWVQkUUpEAov9b7j/9bNNGFZAWzJJKhZAQsJWGbOXQzWCEZBQUlC8dpx1G/xCqCJiQpbTkt4o2Y9CQAhV0kWbpmnpLxuiJGIZVWRhTFD95WMggjrNqWgoKOkTEpFQ1S1x1OOP/vWf8nu/+/v8wR/+NvPFkt4gpSqXZOHgtXOiqUrCJPkr20/mwA6wsSwZVUl3UfjqMbC7gF5IfiChbFp6YQQ0NNTk9YJB1CcsW4I67R5nCnUGbd3NrOkNe/vnZQttDHFMPauIonj/BevuYjVrWpIwICy6VR1huB9ZXj3nyv3zjgDCav+qu6WJAiZRQkgXvYJ6SRJF1E0DYdZtZex+G9qmgqomDiPiMIS66vbitPvb/ZoBxHBm/5g5BGSLlrzfMqYmAA7SEszT7rlJ4N4vfpkZFe/58AdYZiFBlFADfWCd1x4mddjs39OtYQCQdwfjbpbTJyIkoiGiIGaSLziQrdHbH3+2TCt6TQvjqjuQs5BZWrOgpUdNj4CKNYqiop90x0yzf060wKCB4NVa3qugrLv3piDu5pX1EqChTUKmdc4g6h7Ra8dA0O1AKxNY1FBFcDjntYg7D7oRPVELjMvuboVZt6WrpiQt627SdJN037NqIQ6oBt1pkDbdSxGlMM0XZFlGWSwZJvtfUAKLAnopZPCh7/4If/zlL9Hun7sh3Z0U27IhCYYEQQtt3c3VaulWI9G9fxLw2s+IdmeXYHNAm7YswpArszFHhgeJxw3hINyfLRT/5TH46uMcdBW7pSEnI+TVeN1SFQVx1g1b716+lhkF60TE9f4TGlQswoS6+7/IWkjq/ccV0Q3JDxpa2m7qUBv+5YcjcQVNyHLZ0OvHzPL90yqBRb1LFmUMiv5r5zvx/tD3V38uFlX3/aoZs42QHiER3cCqJSElULcFm6Td18Zxd4fQXsgyLLuXgpiEhD7QK3CytiS9zgIbkiRJkiRJklax00uSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVvp/Ac8dpd9vzAB7AAAAAElFTkSuQmCC", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -453,7 +451,7 @@ "\n", "pdf2png(selected_frame, selected_frame + '.png')\n", "\n", - "display(HTML(f''))" + "display(Image(selected_frame + \".png\"))" ] }, { From 745da1d7ed89b69298d38c89cd1ac988efa55779 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Thu, 8 Aug 2024 10:17:26 +0200 Subject: [PATCH 13/41] minus sign instead of short dash --- .../Arabas_et_al_2023/fig_2.ipynb | 329 +++++++++--------- 1 file changed, 160 insertions(+), 169 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb index 3cc7a964e..8412d4526 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb @@ -88,7 +88,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "id": "b499c875", "metadata": { "ExecuteTime": { @@ -108,7 +108,7 @@ " \n", " \n", " \n", - " 2024-08-02T21:40:28.527759\n", + " 2024-08-07T19:45:39.196971\n", " image/svg+xml\n", " \n", " \n", @@ -144,16 +144,16 @@ " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -257,11 +257,11 @@ " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -306,11 +306,11 @@ " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -328,11 +328,11 @@ " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -362,11 +362,11 @@ " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -405,11 +405,11 @@ " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -427,11 +427,11 @@ " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -449,11 +449,11 @@ " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -471,11 +471,11 @@ " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -728,16 +728,16 @@ " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -799,11 +799,11 @@ " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -820,11 +820,11 @@ " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -841,11 +841,11 @@ " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -862,11 +862,11 @@ " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -882,299 +882,299 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1586,7 +1586,7 @@ "L 379.136067 104.174706 \n", "L 385.76167 101.204715 \n", "L 392.387273 98.250624 \n", - "\" clip-path=\"url(#p086a35f360)\" style=\"fill: none; stroke: #008080; stroke-width: 1.979262; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #008080; stroke-width: 1.979262; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #008080; stroke-width: 1.55474; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke: #008080; stroke-width: 1.221272; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p95cd395da3)\" style=\"fill: none; stroke-dasharray: 4,6.6; stroke-dashoffset: 0; stroke: #000000; stroke-width: 4\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1799,7 +1799,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1807,90 +1807,81 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1948,7 +1939,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1956,95 +1947,95 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2052,7 +2043,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2060,89 +2051,89 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2485,7 +2476,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2501,7 +2492,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "66e8d553dec94eddb065b55c40fb152b", + "model_id": "2301ff36498a47bd8308c7f0609bc72e", "version_major": 2, "version_minor": 0 }, @@ -2536,7 +2527,7 @@ " linewidth=3*abs(c.magnitude)**.15\n", " )\n", " _ = CurvedText(T.magnitude+.666, 1.111*minus_J_over_c.magnitude,\n", - " text=f'c={c_K_min} K/min', axes=pyplot.gca(),\n", + " text=f'c={c_K_min} K/min'.replace('-', '−'), axes=pyplot.gca(),\n", " va='bottom'\n", " )\n", " \n", From fdb92bd734b47f20a229ba8c9e4e205a40d84557 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Thu, 5 Sep 2024 16:18:19 +0200 Subject: [PATCH 14/41] add cooling_rate unit test (and improve robustness by calling update() from within CoolingRate.notify()) --- PySDM/attributes/ice/cooling_rate.py | 3 + .../unit_tests/products/test_cooling_rate.py | 115 +++++++++++++++++- 2 files changed, 114 insertions(+), 4 deletions(-) diff --git a/PySDM/attributes/ice/cooling_rate.py b/PySDM/attributes/ice/cooling_rate.py index 313bcd089..2de9ed9f3 100644 --- a/PySDM/attributes/ice/cooling_rate.py +++ b/PySDM/attributes/ice/cooling_rate.py @@ -21,6 +21,9 @@ def __init__(self, builder): builder.particulator.observers.append(self) def notify(self): + """triggers update to ensure recalculation is done before + overwriting `self.prev_T` with current temperature""" + self.update() cell_id = self.particulator.attributes["cell id"] self.prev_T[:] = self.particulator.environment["T"][cell_id] diff --git a/tests/unit_tests/products/test_cooling_rate.py b/tests/unit_tests/products/test_cooling_rate.py index a783e1c70..4b9c88951 100644 --- a/tests/unit_tests/products/test_cooling_rate.py +++ b/tests/unit_tests/products/test_cooling_rate.py @@ -1,11 +1,18 @@ # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring +import math + import numpy as np -from PySDM import Builder +import pytest + +from PySDM import Builder, Formulae from PySDM.backends import CPU -from PySDM.environments import Box +from PySDM.environments import Box, Kinematic1D from PySDM.physics import si from PySDM.products.freezing import CoolingRate +from PySDM.impl.mesh import Mesh +from PySDM.dynamics import Displacement, AmbientThermodynamics, EulerianAdvection +from PySDM_examples.Shipway_and_Hill_2012.mpdata_1d import MPDATA_1D T = 300 * si.K n_sd = 100 @@ -18,14 +25,15 @@ class TestCoolingRate: def _make_particulator(): env = Box(dt=dt, dv=np.nan) builder = Builder(n_sd=n_sd, backend=CPU(), environment=env) - env["T"] = T - return builder.build( + particulator = builder.build( attributes={ "multiplicity": np.ones(n_sd), "volume": np.linspace(0.01, 10, n_sd) * si.um**3, }, products=(CoolingRate(),), ) + particulator.environment["T"] = T + return particulator def test_nan_at_t_zero(self): # arrange @@ -61,3 +69,102 @@ def test_with_env_change(self): # assert np.testing.assert_allclose(actual=cr, desired=-dT / dt) + + @staticmethod + @pytest.mark.parametrize("courant_number", (0.2, 0.8)) + @pytest.mark.parametrize( + "dt", + ( + 0.5 * si.s, + 5 * si.s, + ), + ) + def test_single_column_constant_updraft( + courant_number, + dt, + mean_n_sd_per_gridbox=1000, + nz=10, + z_max=1 * si.km, + signed_thd_lapse_rate=-5 * si.K / si.km, + constant_rhod=1 * si.kg / si.m**3, + n_steps=3, + ): + # arrange + builder = Builder( + environment=Kinematic1D( + dt=dt, + mesh=Mesh(grid=(nz,), size=(z_max,)), + thd_of_z=lambda z: signed_thd_lapse_rate * z + 300 * si.K, + rhod_of_z=lambda z: 0 * z + constant_rhod, + ), + n_sd=mean_n_sd_per_gridbox * nz, + backend=CPU(), + ) + builder.add_dynamic(AmbientThermodynamics()) + builder.add_dynamic( + EulerianAdvection( + solvers=MPDATA_1D( + nz=nz, + dt=dt, + advectee_of_zZ_at_t0=lambda zZ: zZ * 0, + advector_of_t=lambda t: courant_number, + g_factor_of_zZ=lambda z: z * 0 + 1, + mpdata_settings={ + "n_iters": 2, + "iga": False, + "fct": False, + "tot": False, + }, + ) + ) + ) + builder.add_dynamic(Displacement()) + cellular_attributes = {} + ( + cellular_attributes["cell id"], + cellular_attributes["cell origin"], + cellular_attributes["position in cell"], + ) = builder.particulator.environment.mesh.cellular_attributes( + positions=np.random.random_sample(size=builder.particulator.n_sd).reshape( + (1, -1) + ) + * nz + ) + particulator = builder.build( + attributes={ + "multiplicity": np.ones(builder.particulator.n_sd), + "water mass": np.ones(builder.particulator.n_sd) * 1 * si.ug, + **cellular_attributes, + }, + products=(CoolingRate(),), + ) + particulator.dynamics["Displacement"].upload_courant_field( + courant_field=(np.full(nz + 1, fill_value=courant_number),) + ) + + # act + particulator.run(steps=n_steps) + + cooling_rates = particulator.products["cooling rate"].get() + + # assert + assert ( + 0.5 * particulator.n_sd + < len(particulator.attributes["cell id"]) + < particulator.n_sd + ) + assert len(cooling_rates) == nz + + valid_cells = slice(math.ceil(courant_number * n_steps), None) + + dz = z_max / nz + dz_dt = courant_number * dz / dt + mean_temperature_lapse_rate = ( + np.mean(np.diff(particulator.environment["T"].to_ndarray())) / dz + ) + + np.testing.assert_allclose( + actual=cooling_rates[valid_cells], + desired=-1 * mean_temperature_lapse_rate * dz_dt, + rtol=0.2, + ) From 305a952a54fee473527cc6600de60af6a778cfed Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Thu, 5 Sep 2024 17:58:28 +0200 Subject: [PATCH 15/41] cleanup --- examples/PySDM_examples/Arabas_et_al_2015/spin_up.py | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2015/spin_up.py b/examples/PySDM_examples/Arabas_et_al_2015/spin_up.py index 8ced490da..d045223f1 100644 --- a/examples/PySDM_examples/Arabas_et_al_2015/spin_up.py +++ b/examples/PySDM_examples/Arabas_et_al_2015/spin_up.py @@ -1,4 +1,4 @@ -from PySDM.dynamics import Collision, Displacement, Freezing +from PySDM.dynamics import Collision, Displacement class SpinUp: @@ -8,13 +8,11 @@ def __init__(self, particulator, spin_up_steps): self.particulator = particulator self.set(Collision, "enable", False) self.set(Displacement, "enable_sedimentation", False) - self.set(Freezing, "enable", False) def notify(self): if self.particulator.n_steps == self.spin_up_steps: self.set(Collision, "enable", True) self.set(Displacement, "enable_sedimentation", True) - self.set(Freezing, "enable", True) def set(self, dynamic, attr, value): key = dynamic.__name__ From c88612ef1b811b95d7d18792a0abe44d87527a7b Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Fri, 6 Sep 2024 15:42:21 +0200 Subject: [PATCH 16/41] dummy advection solver instead of dependency on MPDATA --- .../unit_tests/products/test_cooling_rate.py | 37 ++++++++++--------- 1 file changed, 19 insertions(+), 18 deletions(-) diff --git a/tests/unit_tests/products/test_cooling_rate.py b/tests/unit_tests/products/test_cooling_rate.py index 4b9c88951..69a04bada 100644 --- a/tests/unit_tests/products/test_cooling_rate.py +++ b/tests/unit_tests/products/test_cooling_rate.py @@ -1,18 +1,18 @@ # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import math +from collections import namedtuple import numpy as np import pytest -from PySDM import Builder, Formulae +from PySDM import Builder from PySDM.backends import CPU from PySDM.environments import Box, Kinematic1D from PySDM.physics import si from PySDM.products.freezing import CoolingRate from PySDM.impl.mesh import Mesh -from PySDM.dynamics import Displacement, AmbientThermodynamics, EulerianAdvection -from PySDM_examples.Shipway_and_Hill_2012.mpdata_1d import MPDATA_1D +from PySDM.dynamics import Displacement, AmbientThermodynamics T = 300 * si.K n_sd = 100 @@ -101,23 +101,24 @@ def test_single_column_constant_updraft( backend=CPU(), ) builder.add_dynamic(AmbientThermodynamics()) - builder.add_dynamic( - EulerianAdvection( - solvers=MPDATA_1D( - nz=nz, - dt=dt, - advectee_of_zZ_at_t0=lambda zZ: zZ * 0, - advector_of_t=lambda t: courant_number, - g_factor_of_zZ=lambda z: z * 0 + 1, - mpdata_settings={ - "n_iters": 2, - "iga": False, - "fct": False, - "tot": False, - }, + + class EulerianAdvection: + solvers = namedtuple(typename="_", field_names=("advectee",))( + advectee=namedtuple(typename="__", field_names=("ravel", "shape"))( + ravel=lambda: None, shape=(nz,) ) ) - ) + + def instantiate(self, *, builder): + assert builder + return self + + def __call__(self): + pass + + builder.add_dynamic(EulerianAdvection()) + + print(builder.particulator.dynamics) builder.add_dynamic(Displacement()) cellular_attributes = {} ( From 83318b2acb324c734f479e188e38d8b64d081eb4 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Fri, 6 Sep 2024 15:58:06 +0200 Subject: [PATCH 17/41] cleanup --- tests/unit_tests/products/test_cooling_rate.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/tests/unit_tests/products/test_cooling_rate.py b/tests/unit_tests/products/test_cooling_rate.py index 69a04bada..491f82b19 100644 --- a/tests/unit_tests/products/test_cooling_rate.py +++ b/tests/unit_tests/products/test_cooling_rate.py @@ -73,15 +73,16 @@ def test_with_env_change(self): @staticmethod @pytest.mark.parametrize("courant_number", (0.2, 0.8)) @pytest.mark.parametrize( - "dt", + "timestep", ( 0.5 * si.s, 5 * si.s, ), ) - def test_single_column_constant_updraft( + def test_single_column_constant_updraft( # pylint: disable=too-many-locals + *, courant_number, - dt, + timestep, mean_n_sd_per_gridbox=1000, nz=10, z_max=1 * si.km, @@ -92,7 +93,7 @@ def test_single_column_constant_updraft( # arrange builder = Builder( environment=Kinematic1D( - dt=dt, + dt=timestep, mesh=Mesh(grid=(nz,), size=(z_max,)), thd_of_z=lambda z: signed_thd_lapse_rate * z + 300 * si.K, rhod_of_z=lambda z: 0 * z + constant_rhod, @@ -117,9 +118,8 @@ def __call__(self): pass builder.add_dynamic(EulerianAdvection()) - - print(builder.particulator.dynamics) builder.add_dynamic(Displacement()) + cellular_attributes = {} ( cellular_attributes["cell id"], @@ -159,7 +159,7 @@ def __call__(self): valid_cells = slice(math.ceil(courant_number * n_steps), None) dz = z_max / nz - dz_dt = courant_number * dz / dt + dz_dt = courant_number * dz / timestep mean_temperature_lapse_rate = ( np.mean(np.diff(particulator.environment["T"].to_ndarray())) / dz ) From 5474c20c5ba5187c74d8202916adf18086340777 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Fri, 6 Sep 2024 17:04:49 +0200 Subject: [PATCH 18/41] refactored paraview hello world --- .../paraview_hello_world.ipynb | 78 ++++++++++--------- 1 file changed, 41 insertions(+), 37 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb index 58a31950e..0b6dccda5 100644 --- a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb @@ -84,7 +84,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 66, "id": "2030d8e7", "metadata": {}, "outputs": [ @@ -139,7 +139,7 @@ "palette_invert = False\n", "color_range = [0, 10]\n", "logscale = False\n", - "title = var + ' [μm]'\n", + "title = var + r' [$\\mu m$]'\n", "\n", "calculator = pvs.Calculator(reader_attr)\n", "calculator.Function = f'{var}*{multiplier}'\n", @@ -181,7 +181,7 @@ "palette_invert = True\n", "color_range = [0, 10]\n", "logscale = False\n", - "title = var + ' [μm]'\n", + "title = var + r' [$\\mu m$]'\n", "\n", "display_prod = pvs.Show(reader_prod)\n", "display_prod.SetRepresentationType('Surface')\n", @@ -248,7 +248,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 62, "id": "79477d3d", "metadata": {}, "outputs": [ @@ -256,6 +256,7 @@ "name": "stdout", "output_type": "stream", "text": [ + "output/anim.ogv\n", "output/anim_frame_0.0.pdf\n", "output/anim_frame_60.0.pdf\n", "output/anim_frame_120.0.pdf\n", @@ -368,14 +369,15 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 63, "id": "23e0cf61", "metadata": {}, "outputs": [], "source": [ - "for file in glob.glob('output/anim_frame_*.pdf'):\n", - " subprocess.run(('ps2pdf', file, file + '_'), check=True, capture_output=True)\n", - " subprocess.run(('mv', file + '_', file), check=True)" + "if not ('CI' in os.environ and platform.system() == 'Windows'):\n", + " for file in glob.glob('output/anim_frame_*.pdf'):\n", + " subprocess.run(('ps2pdf', file, file + '_'), check=True, capture_output=True)\n", + " subprocess.run(('mv', file + '_', file), check=True)" ] }, { @@ -388,7 +390,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 64, "id": "f1a1db54-3516-4fce-8bb8-62f2c83a0b19", "metadata": {}, "outputs": [ @@ -406,19 +408,20 @@ } ], "source": [ - "selected_frame = './output/anim_frame_600.0.pdf'\n", - "display(HTML(f''))" + "if not ('CI' in os.environ and platform.system() == 'Windows'):\n", + " selected_frame = './output/anim_frame_600.0.pdf'\n", + " display(HTML(f''))" ] }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 65, "id": "d6dbad77-51d6-4dc3-b78e-15c75d8131d2", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJEAAAM6CAYAAAAxMtIRAAAJMmlDQ1BkZWZhdWx0X3JnYi5pY2MAAEiJlZVnUJNZF8fv8zzphUASQodQQ5EqJYCUEFoo0quoQOidUEVsiLgCK4qINEWQRQEXXJUia0UUC4uCAhZ0gywCyrpxFVFBWXDfGZ33HT+8/5l7z2/+c+bec8/5cAEgiINlwct7YlK6wNvJjhkYFMwE3yiMn5bC8fR0A9/VuxEArcR7ut/P+a4IEZFp/OW4uLxy+SmCdACg7GXWzEpPWeGjy0wPj//CZ1dYsFzgMt9Y4eh/eexLzr8s+pLj681dfhUKABwp+hsO/4b/c++KVDiC9NioyGymT3JUelaYIJKZttIJHpfL9BQkR8UmRH5T8P+V/B2lR2anr0RucsomQWx0TDrzfw41MjA0BF9n8cbrS48hRv9/z2dFX73kegDYcwAg+7564ZUAdO4CQPrRV09tua+UfAA67vAzBJn/eqiVDQ0IgALoQAYoAlWgCXSBETADlsAWOAAX4AF8QRDYAPggBiQCAcgCuWAHKABFYB84CKpALWgATaAVnAad4Dy4Aq6D2+AuGAaPgRBMgpdABN6BBQiCsBAZokEykBKkDulARhAbsoYcIDfIGwqCQqFoKAnKgHKhnVARVApVQXVQE/QLdA66At2EBqGH0Dg0A/0NfYQRmATTYQVYA9aH2TAHdoV94fVwNJwK58D58F64Aq6HT8Id8BX4NjwMC+GX8BwCECLCQJQRXYSNcBEPJBiJQgTIVqQQKUfqkVakG+lD7iFCZBb5gMKgaCgmShdliXJG+aH4qFTUVlQxqgp1AtWB6kXdQ42jRKjPaDJaHq2DtkDz0IHoaHQWugBdjm5Et6OvoYfRk+h3GAyGgWFhzDDOmCBMHGYzphhzGNOGuYwZxExg5rBYrAxWB2uF9cCGYdOxBdhK7EnsJewQdhL7HkfEKeGMcI64YFwSLg9XjmvGXcQN4aZwC3hxvDreAu+Bj8BvwpfgG/Dd+Dv4SfwCQYLAIlgRfAlxhB2ECkIr4RphjPCGSCSqEM2JXsRY4nZiBfEU8QZxnPiBRCVpk7ikEFIGaS/pOOky6SHpDZlM1iDbkoPJ6eS95CbyVfJT8nsxmpieGE8sQmybWLVYh9iQ2CsKnqJO4VA2UHIo5ZQzlDuUWXG8uIY4VzxMfKt4tfg58VHxOQmahKGEh0SiRLFEs8RNiWkqlqpBdaBGUPOpx6hXqRM0hKZK49L4tJ20Bto12iQdQ2fRefQ4ehH9Z/oAXSRJlTSW9JfMlqyWvCApZCAMDQaPkcAoYZxmjDA+SilIcaQipfZItUoNSc1Ly0nbSkdKF0q3SQ9Lf5RhyjjIxMvsl+mUeSKLktWW9ZLNkj0ie012Vo4uZynHlyuUOy33SB6W15b3lt8sf0y+X35OQVHBSSFFoVLhqsKsIkPRVjFOsUzxouKMEk3JWilWqUzpktILpiSTw0xgVjB7mSJleWVn5QzlOuUB5QUVloqfSp5Km8oTVYIqWzVKtUy1R1WkpqTmrpar1qL2SB2vzlaPUT+k3qc+r8HSCNDYrdGpMc2SZvFYOawW1pgmWdNGM1WzXvO+FkaLrRWvdVjrrjasbaIdo12tfUcH1jHVidU5rDO4Cr3KfFXSqvpVo7okXY5upm6L7rgeQ89NL0+vU++Vvpp+sP5+/T79zwYmBgkGDQaPDamGLoZ5ht2GfxtpG/GNqo3uryavdly9bXXX6tfGOsaRxkeMH5jQTNxNdpv0mHwyNTMVmLaazpipmYWa1ZiNsulsT3Yx+4Y52tzOfJv5efMPFqYW6RanLf6y1LWMt2y2nF7DWhO5pmHNhJWKVZhVnZXQmmkdan3UWmijbBNmU2/zzFbVNsK20XaKo8WJ45zkvLIzsBPYtdvNcy24W7iX7RF7J/tC+wEHqoOfQ5XDU0cVx2jHFkeRk4nTZqfLzmhnV+f9zqM8BR6f18QTuZi5bHHpdSW5+rhWuT5z03YTuHW7w+4u7gfcx9aqr01a2+kBPHgeBzyeeLI8Uz1/9cJ4eXpVez33NvTO9e7zofls9Gn2eedr51vi+9hP0y/Dr8ef4h/i3+Q/H2AfUBogDNQP3BJ4O0g2KDaoKxgb7B/cGDy3zmHdwXWTISYhBSEj61nrs9ff3CC7IWHDhY2UjWEbz4SiQwNCm0MXwzzC6sPmwnnhNeEiPpd/iP8ywjaiLGIm0iqyNHIqyiqqNGo62ir6QPRMjE1MecxsLDe2KvZ1nHNcbdx8vEf88filhICEtkRcYmjiuSRqUnxSb7JicnbyYIpOSkGKMNUi9WCqSOAqaEyD0tandaXTlz/F/gzNjF0Z45nWmdWZ77P8s85kS2QnZfdv0t60Z9NUjmPOT5tRm/mbe3KVc3fkjm/hbKnbCm0N39qzTXVb/rbJ7U7bT+wg7Ijf8VueQV5p3tudATu78xXyt+dP7HLa1VIgViAoGN1tubv2B9QPsT8M7Fm9p3LP58KIwltFBkXlRYvF/OJbPxr+WPHj0t6ovQMlpiVH9mH2Je0b2W+z/0SpRGlO6cQB9wMdZcyywrK3BzcevFluXF57iHAo45Cwwq2iq1Ktcl/lYlVM1XC1XXVbjXzNnpr5wxGHh47YHmmtVagtqv14NPbogzqnuo56jfryY5hjmceeN/g39P3E/qmpUbaxqPHT8aTjwhPeJ3qbzJqamuWbS1rgloyWmZMhJ+/+bP9zV6tua10bo63oFDiVcerFL6G/jJx2Pd1zhn2m9az62Zp2WnthB9SxqUPUGdMp7ArqGjzncq6n27K7/Ve9X4+fVz5ffUHyQslFwsX8i0uXci7NXU65PHsl+spEz8aex1cDr97v9eoduOZ67cZ1x+tX+zh9l25Y3Th/0+LmuVvsW523TW939Jv0t/9m8lv7gOlAxx2zO113ze92D64ZvDhkM3Tlnv296/d5928Prx0eHPEbeTAaMip8EPFg+mHCw9ePMh8tPN4+hh4rfCL+pPyp/NP637V+bxOaCi+M24/3P/N59niCP/Hyj7Q/Fifzn5Ofl08pTTVNG02fn3Gcufti3YvJlykvF2YL/pT4s+aV5quzf9n+1S8KFE2+Frxe+rv4jcyb42+N3/bMec49fZf4bmG+8L3M+xMf2B/6PgZ8nFrIWsQuVnzS+tT92fXz2FLi0tI/QiyQvpTNDAsAAAAGYktHRAD/AP8A/6C9p5MAAAAJcEhZcwAAD2EAAA9hAag/p2kAAAAfdEVYdFNvZnR3YXJlAEdQTCBHaG9zdHNjcmlwdCA5LjUzLjNvnKwnAAAgAElEQVR4nOzdd5gkdaHw+291nJ6ePJtzIC9hyUFARFEQJRzPMQEmzPmIWVHUgygqBvQoR0UknGNWjAQJgoCIxF3SApvz7MxO6Nxd9bt/9Czqee97+5/7Hu/z3O9nn3om9Ex3VXVV9fZ3f1UbhRCQJEmSJEmS/p+k/tEzIEmSJEmSpP/vMyJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqaMUEJycnJyc/menEMLffQRCq5WEEP77zxFqtcb010ko1yZCvdH+uXqzFqr1UggQmg1CQiMERgIxASZCvbEmwK5Ak5BUCVAPMBpoEko7CZQb4ZH7rwuXXnJuWPXADYEkCVAKIdkZoBRICLUKgUAI8VhoTK0PMB5oxYGYMDVeDdV6LbTi0dCo7QokzRBXCa0SgSYhNAgkEyFO1oZ646nw6c+8MWzYfnWA9aG0g0BMSOLtoVnfGWgSaBEChIQQdo3uDlPVSqg2GyEmCTHNEKiHe/58W/js598dVq++IUA1xFVCUiHQaP8+IQmhNRXGJzaFQPv+mi1CK25/fvU1Pwjf/e51IY7b6zOwI8B4qE7W27/fIoRGEqAZCK3QrLRCzOT0RIjD9HPSqIdANZSr7e83GoRAMwRazz5uEnj280AzxJQDCYFWM8COAGsDPBOa1VJ7+ZsEKIUWldCAEFqEVp32OmdjICE0a4QWhGooTd/vjhB4qv15a3qiHhLat7fqhFKpFQLNUA+bQqAUQiCEZM98bZu+j7+d13ooNzeEFltDYLz9vemf37MdEpqB0AgkkwEmA4wFGAnQCtVq/dnt96qrrgxnnvnSsGt0e2jF1eltsNV+vhJCebwS2ltYK9TLk6E6NR4IrfZ6ahAmR6cCVAOUw2R5Z4ghtEhCi3ooJVumH3dtgPHQmGhvc5PVqVBjV3h6UznUA2GsXm7P+54/tAI0Q71cCtQJSSm095mkPVUnmmF0++7w3OMPD/fd96sAoyHE44GEENcJcZMQaAQot+8rtH8vmd6mkmQylHZuDzTroTJeCuXx6rP33Wi0Qr1RDq1QC7Al0JgITBGYItQn9sxbOQTKoZkQvnH5v4dLL7loenvZ1l7XLQLV9vaSNOphYnLj9H5TCvU64a47nwrX/firIWFde5tstZ+/qZHtgaQZSFph+8atf13eavt5CZTayxRagZA8ezsJoVkthVp5fHqZy4G40p6fFiFMESqjhFLlgUBIQjJBoEbYvHZnez+iHJLWeGhWa+313Go/TyGeCElrNBCmAnGrvVxJ+zh10SfeF6749y+3f75KoE7Y9szWUN3daH8vJoSYkIRGCNRCwlQI1Kf3v+S/Ta3p26rT0/Q+Gv66b4bpdf7sdkI5JGEi1GuV0GqEQNJ+vDghVOqE8SohZlMIbA5xQjjzzHNCrVkKgVaYmiSUSoSJqbH28/Y329aebb1VL4V6ZTRAKTRqI9PHor/ZB8PfH7cChC3b7w+f+OTrwprHHwjju0ZDaXyifZxmJBB2Tu+HrVCrx6HRDM8ef5IwPRGHhEZIqIWxyU2hVK629+vpx6gn20NgNNRb5fayNpleb4SRkalQrbbnq1Qph2pjKkxVt4dqc7S9HgMhMBqqjalQmiKEJuGuB78bLrn8ZWHztrWhUimFOKmFOKmFVlwLkIRmMw5xHEISE1rN6dc/ytPHnFII1EO1Fk8vfyvEbAzV8FhoxuPPHl/iOP4//lrt5OTk5PS/TtH0GxhJ0j9AtVqlq6uLer1OV1cXAHEcE0Igk8nQbDZJp9OkUikgAapAnYQMqaQPEqg1IGacYncfhBT1CuSLI8AkO3ZtZveOXrpyg5Aqs2nr42zbMk6aPLf8+nd09SV0dacZ2TXJ6ae/ir6+eWQyWRYuXkyxt4dcvsjAQEQI26lO7aK7byYjWyYYmrmIVmiRy6eJ6CFpxKSyaUJcpdmsMzExwcTEBLt2jbNl81aq1Sp3//lXkNtIo9LPa//5W/QOBIbnlMlmsyT1OWTzRbp6q/T0pKnUanR15dm+cyvbtm1lZNcOGrUq9z9wH+vXrmOwb5jjj3shy5esZPasRdTrTYaGe2i2JpkqjTOyezsbNm7krrvuplSq8OpXvYbly/bj9tvvoFKus/de+zNjVoEZsxsM9A6QNIbpH5xF3GiR7moyumsTPcUBWs00xZ5h9rxSTkzV2LzlCWbNTxgb38TqR9YxY8YC7vnDk+zY2mTBggXsu+/eDA33c9DB+xCl69Sbo2zb8TSTU7spjyxk3fr72DpyH5OTJQZ7DuSEY8+g0awze243Kw7cj7Xb1rNwyb5sfarC/fffQJJsZu2GR6iX5jJvwYHsv3J/egeaLJixnEp9K9l8i9kDR1CehP4+iFPQjKdIp3Jks3kI0GpBKgVECalUPL31RUAGaAJjEGZDTPuvBykgnQBNxidHSKfTkI4JzQK59DCTu+skoQWhzIN/eYSp3TVmDuzFT37/JXLFOocdejjnvfq1/OHOu7nwwk/ynndfwLy5C5k7dz5JaLBs6Xx2bttBqVRiy5ZtjIyM0GjUWLNmDdVamZWHHMaihXszc3gGMU2GhucztrvEksVLaCbtuS8UId0EMi2ImjTrebL5BNhNTBrCECFAnCqRYxuVyiyK3f00mjtIEZOOeolCL5OjEzRYy7oNW9i+fZyIDEPDA7z17eey975zOffc1zLQN5uewiIWLjiCVDpLV7FGJteEkCEkObKZPLl8PL1vjpMiADkgD3EO0l0QUgQCUdQuxVGoQsjQLCVkuwsQwTPrHqdcG2d3aSOrHn+AO377NGM7xzn/rS8mZjdLFu/N7KGVFLKLmDNnkEwX1BqTrN/8BKXqZrZubPLko2Nkis9w4MF709d1IH35wwjRJPsuHaJUHmfr1s30Dvby1DNPUmtNsW7D06TSMU88tZpli/dh5X4n0dvbz8EHr6TZbLJ27dNs3rKBkZEdrFr9IJMTJV7wghcyMAx9XQezeP7B5LqrhO4/MlBcSVKZSUxMNpsmbkI6C6QhNCBKA63pzS6CVqvM+MQooyMVRndNMrJrB9t2PMMdd95INpdmr+X7c/JzX0R3V45FC5fQSiIefexpDjzwQGbOmUmUTmC6TEVkpzfc/z7IPpme9vx1N4KQ+evNUYv2hk/7+drzY0kLUpn21xFUqgmt0KJcLVOrV9jwzBNk0zka9TSfuPAzfOqii2m1WixYMI9CMUWxJ0egTm9+iHQ6IpWGdDqQysDU5DjdxTzpbIZquUSh2EdCoF5v0mq1aLVajI+PU61W2bZtCyMjO/nDnb8gTSAdDXLRJz5PCIHPXPxhjjjyELKZHlIUGBpezPK99yKTydDd3U1XVxeFQv6/rQeeXf44aZJOw+6J7fT19ZGOckDh2dUVtyCVhmYMuTwEakSkgSwkUCrF7Bz/Cz2F9jJv3PQU1UrCE6tH+PEvLmfv/WZRzC9k2eKVzJ49l97eXmbMmEF/fy9DQ0OkUinSmag9S0mWahnSmUA6FREBu3bCnDnQaEGuUAfKQC+QZXJykiiKaLVaDA4O/m9fYyVJ/+9LX3TRRRf9o2dCkv7/KITAd77zHUZGRti0aRNJklCpVEiShDiOyWazZDIZoiia/o0KT6y/idHJdczsX8DYSJGQwI5dm5mqrmXj2jobn+ri1lt/xCvPO56n1t3LPgdmef2bXsXBBx3A3NnLaDQrrN32a/7wp29x5tkr2LhxFw+v/hNDc6vkesZYtOAg5s5ZzKJlM0my61m7/gnu/cuNfPDD57Jjx2OsXn0nb3/X2/nFr69ibHI9M+alueeORylPlclmWhT7IkhPksm1iFsR5UkY3ZFQrbbYNbaOM884m+OPfw6LFi1m/tzlRJlJ0rkSw7Oy9BZnk891Uy8nNCoxO7aMMXNwLls2bKOYG2Djuh089shTnHXGv7DfvgeyaNF8Fi0ZIpOrUOwLTJVG2bx5CxPjJeIQs3bzPcxfOIPnnXwcRxx5KFu3bmbr1k0MDQ1z3HHPYcfIBn7/+x9w+x03cscdf2Dr1meYLG+hb6DFw6vuYdfoFhYtnsfGNSkq4zl+/vOf8LPrL+Uzl7yDvuEN/Pkvv+Teu+/mkn+7gqH+PM990TL23n+QxUtmsHjJYgb6BwlxgR1bm2zdGDMx2sWOzZM88fQfWbpsPvvtfQRHHfJqli9dwX4r5kNmB3HcYPvYRlat/gtrHn+ayclnuPq6rzAxvonFiw/h8MOPYv6ieeyz9yIeX7WOcmWcx575LVdcdx6PbriKG267londNcZGa4zs3EW58QylUomhoVmUJiGVikhnakADKLQ/hDSkIgi5Z98wk4KEBkRNCvkC+dwA9UovfX1FdpeeoG+gQb01wjNr1tJojjNZXseOiVsYmD/Gxq0P8tiT9/CNb32RQw9byfr1aznl+aezdMkKCAWmyiOc8ILFDM+MiVI1TnreKUxOTrJ69UMUe7Nc8IE389Dqn/ODn7+L3aNbmD94AqE2zMTYBAMzKqQzU1Sm6jz6l4QNGzbz+JO38rNffo3b7/soH/nEuzngwG6+/73/4HOfO59HVv2Yr3/rPVxw4eUcvt9ZbNsQEVJjrHn6bqDJY6uf4ivfOZWdza/z/Wuu5g3nv5ax8Y3ccdevOPUlxzA4I+KRVfdx082/5qCDVpDPLqTRiEilm4SoTqNZY8uWDazb8DgbNq/iP678Mnfc/ROuvurT3HnXL7n1tl9z9z13MmfOPKamJqjXW6xZs5ZVqx7nbe/dj11TP+Ad77+ATM/t3PDb2+grHEWzPJcVex/LfvscznD/Ak5+3slc819f5u77fsrPf/kz9tpnmBBSpKMhuvPd5LrylOvbmCxtpVpJ2LxxJ9+79rOsefpBJicqROSo1Lew7qmnWLv2aWbPmcHcBQNs37meGbOG2WuvvWnWM0xNpBnqX0g2naFYLJLOBAqFDN3FHLlchoHBXnp7e4lbsHjRXsxfMJv99zuA9Ruf5OFHb+KKqz7E68//KPuvmMFT629n17YC+dwgu0ZHGRjuYfOmLfQP9j27fRE1SOVSpKKIkKTp6+ujK9/D/AWzmbugh+EZeRYuT/HFr1xAnIxSre9i/sLZ7H/AvuzatY2e3j4CGUJIE6WyRKQgRO37/zt7HjA9PQF7jqkR07dl9sxUex+IgZCCCOKkRkiVaTHK2OQWiGpk0gnlsSGmJgLVeA0PPnQvSxcdytw5c5m1oEpI76C/v5/J0W4KhRbV6hTlyiTj4yPcc88dTE7t4gtfvISPffSDLFw8l93j44yOjRInTUJokculGR4epru7i1QqRSaTYeXB+1AsdjM0NIPbbr8JUhX++RUv4oknV3Hld65j6ZL9aLWyzJk3TAiBJIlptZoUi8W/Xw8hRbPSXlWZzNNs3HUXmVyNnvwCoBuA3VMbSKIqO3eNsGnb4/z5wV/y2FO38JdHfsK1P/wyF3/uAkZHJzn6mCP42KfO488PX8OjT97BfnudRIgLFHqqPO+UQ4mSXh68/zHmz92Hvr5hisVehmcM09/fSzqTEKVj0lFMRJMoapEkKerNcUqVcUrlEtu3b+OBB1exbv0arv3h5dx2x29ZsmRfdmwf5aqrruLEE08kn8+3I7ck6X+MI5Ek6R/opptu4uSTTyaTyfDsvxL/N41Gg1wux5q1d3H1j99NdWIWX7r4RlqtCplslYRtpJhJ0phNrQKp7DijE6upx9v4wfUfZeeuDXz+wruIGvuS64oguoHHNt/OAfNPhugYrvjadxma2c2/vOocSOa2w0IWSJco10vk8hO84Y2ncM13rmDj1qd45zs+zIUXfZ5yrcoXvvx5Vh5wLGe++BwOWnEEhcICSAp/jRFRAlGdENeJ4yaZXCCwg4gijall5HrHgG2MTq1luPul7QUOtIctpCOqk6MU+nvb30+i6aEMWarlSQq9Md+58vNs2PQk559/PrOGl9NdWAKh0H6jxCayqS7++gYywzPPPEN3dw/ZbJ4ZM/r4wpcu4PWvfz0zhpa3HyKU+LdLPsSJJ55IV26Ag1Y8h2Ixz46t65g5u4/3vf+NvPJVL2GqsomHH3qCow/9F448/IV0FZdRaWwhIks+10cq6oaQBSButYiTJgCZzCQp+oGu6fUDYztHgTRDs+FzXz4XUvN4znFncMKRL+FDH3gdzzt5X0497bnAgZD0EVJQbY0RKr0Uu7OQSXjgse/S3ZNi2YITySV7U69BpqtGlNnG+s1Pcu211/IvL3sN82YfQH/Pgr8blNGeWn8dnRE1qdS20N3VHtVRraUodM1kqlylt7uPXbsmKPRMcM1/fo2DD09zw03XMX/OQmYOLuH0l57HD35yPfvssz+7dzXZd+8juOgTn+ea7/2ckBTYtHGUx9bcRlT8HV/70g/58he/R09+H+bNWwFRAOps2foIt915DaefvjcPPXgLucxsBvsO54AVLyCpziBVyAMlyrUniVvz6evei3q1RL64tr3hxsv4wfe+yexlq1m1+nZe8cq38vSWPo455DVEqRKf/9bxPLLqSY5YuYIL3nRHO6JFD7NtbB2XXfYt9ll+OKe+6HRmzOqnkMlP7wwFQtJHxOzp9VUGKtO3ZWlHiDKV5m66s1Wa8Xp2juwml5vFrbfcz8tedj4hyRJCnlw2TyBFbbJBoa/FxORj9Pf1A3l2jo6TzcE1P/oUub5neP3Z3yc0h5msrOfOu39FNptmxf5HsXzxCRCG26Ejmd7EU1VCq8CddzzI1vGfs2hZL4889DRvfd0nqIWt3HjjlxgdX8fIrm2sfnwTJ510LDfecD/POe7FvOf8SwkME8iSiouQbo+qghbju0cYGJwJpGg1WjTrKQpd/dSb4+RyXUSZhCSZoBY/xQ03/J7TT305+WyaanmIQjHD1m1P89KzTuDmm29mqG/u9PoKNBmlNFVhsHc50E2I05Qmobd/AFKTwCQ7J+5hw6aHeOyRpzhgvyO5845VnHfue5g5YynQ9+w2u+dw86zob46lIfXX4wpAqj166dkdIGT+5njVbH/Smt4XMuM0GmM0owkK2Z72qEvypBiAOEWlUqPYu4l/etXp/Oy/bgNidpUf4aqrrqTV6OZD772CKNozihQgpl6bJN+VJ4Qav/r19Zzx0rMhzP/7fTL89WOjBvU69PSWKVfG6OkbBOrEyQS//O1VPLlmNc874WyOPvJkRrY3mDln4bOPNb3Af13O6fXQKEOUr5HNPcEDT9zGrbfeyjvefAmFzFygmyTUSEW7ed8nT2HW4GF8+L1fplwvUcw3aLKFR558gAcffJiX/9M7aFZ7qaRu4pv//h0+/d6nSVpw053f5N4H/4vPfOQ/KZUjugp9ZFI5/vfa6ygJFaKoRkQCZGi20iRJQj4XsW3sIW666SZqpVm8+fz38/GPf5yLL76YJEmmR+pKkv6neNSVpH+gQqFAJpN5dvTR33b9er0OQJK034DcdPNvOeWFz+WC932IZh227niS717zWb70jY+yc2wjqVyL7oGErmKW+fP2Zu7sJUxNljn+hCPJpKN2qIq6WL/rGW655WYu+8rF1Errecu738nxz3k+JDlINSETQwpacUR3vpc4CSxatAioc/XVV/OCF7yAkZFR9tl7P5530vP555efxkGHLKNQyNKo1tvvl1q0/7W71QDKEDXI5Aps3ryRL19+KQ+uuoNcATau38SvfvcLfvKz6yCpQmqCn/74q7z5zS/m+1d+isu++n5WPfRriLYDmyE1AlFMLtc+9e/Rxx7k/Dedw5IFc+ku5Hj2XKwA2dQQUKBSiYEsjWadwaEB/nL/vcyY0UelNs4F7/swM4YWUSlXgYhUlOXGG29k8aKl7L//gUxNVmjFz/DpS17LT356BXPnzOKYo07h5OeeRb2S4eGHVvHne/8EoU53fohCvp9U1H6zFMc1kqRGOlsnl6+Ty1dJpXdDOrTfyFWAaJLBGWmGZvWwedNacoUKzWadtWvWMz5a4vNfuIxTTzuDdqSAyd1TRAkUMgWKxSy1CoQ4xQ03/oZ3vuuNbNz0DATI5yGdyVBrTfDYE3+iUt/KzrHH6O/L/v1Z7VEDoilgF0QVIIYQyGRyQIs16x7hU//2r1z06X8ln89CBL193UQRrF27luNWnsTBBx7N8593OicefxpZZnDmS89jr6UrefHJL2Owfw7ju6eAFJVqmUWLhznxucdw00038NrXvp5f/PxXzJu/HOIM1ckmJFnmz1vOua94E6m4yLvf81s+dcn3uOaHF/OLn19OiNv7wsiup/nop1/Gb37/DcrlGtlcD9AP9EGSZ//9lnPFN79LvT7CjMF5HHfo2UxMjpKizvLlSzhgRRdPPf0YP/nJf0yPShli7tA+HHfsScyeuYS7/vgAhcwcoEigizjOEaX6INUkRCVipkioAjH1Zg1IU6rEdGeHgR6y6XnMn3MIfT1zOeqIE8ikCu1T3rIZAi2gSaHQBfUe+nuPYGq8jyTJMDgYGOytk+0eYcWKObzlnWfx6JO3MWt4mJe99LXsvexwHn90E5Aibk20n7M90SGkqddgn71XcOCBKzl25XG86XVvYufYVrqiLGeeeibLls9jcmqU/gE4++yzgBSbNm2hHXbypChAlKJeKQEtHl39IFd+7wqSpEJIamRyeQo9PZCOyBcGidJpIJBKdRHFM3npaecRhSIwSKGYoxVPcNPvf8IrzzmNSy/7EDBCixFgnFtv/yXfu/pr/ObGa4EJonSV3sECoQXNWsTkRI1Z/Ys48sAjyWYjfvyT66jWpsNBgnwAACAASURBVJg5YyabNj3DnuoSkvbU/jKmfXpm42+m+L9dyWFPIKu1D1R7vp8w/bvl6eNgifHRp7nl1l/w+c99gi071hKRoVFPIKSIUtBoTkyvu5jx2hpGy08wozjAsceewKxZM4miEu2rmMXTj9si35Vn27aNjOzawfOffzIQP7sM4W/PupsOSbku6O2DKF2kkB9mzyl36VSel7zkVJYtn8+RR+4HlJg5p48kbrWnpEmS1EmSKklSa38eB5IEct2QzUVAlly2lwcfup+1Gx4CxmjGE8StDJDjrH86jXKpBQzTKA9SqXeRZYhFC5czNDREX66fvt5hZvcuplHNkcm2T3s76eSjWbhwKbVmjZ5iBKkSCZO0wgS15kR7lOOzcT9PEmeJ4xwpikQUaJ8KmiWbKZDPFWklCXOHlrBs6T5MjE8RRRHVahWAVqv1f/PKKkn6P8mRSJL0DxLHMY899hgHHXQQcdwknf778zCarSbZTPbZr+vNHTR5hJ7sUuq1Pr74lQ/R3dvgX9/xOmrARRdeRtyK+MIl1xM3EtK5Et+48g0s3aeLFx9/IbAXhG5e/YYlvOjFB7Jx7R845JDncsapn6FeGibfM8SWXb/jim9/iXR6kLe+4WvMmrGMiHFgE/fc+0uuvPJKPv6xS1m86HDaV8yJydNislwiidMM9C0DetqjO8hAiEniOqlMhkZ9ks998b08sPpX7LVsBV/8zN2QLnPpF9/Du9/3arpSBzExdS+Xf+OTvP2dr2fHyFYee/xhfv7z3/Ked7+DQw86gh/+6Cesum8OJz33bE59yVHAZr7yzU/T3z/I3suO4PhjzoXQR6sCma7pFRdgYmIX/cMFIOYDH3gHx59wFC964Wl0dQ3RagAhxejYTmbPLbJz9BlmDS8CCozthC9/6zQOPWIpJxx1HjNnHA0UqE7s4I9/+gWnvOg5tN+MdvOXB9eyedNW1q3dxmvPewsD/TOp1Rp09xSJWzXSmRyV5iqieCaF3FIIAdJTwBST5V3s2PUUj665iTNO+Qwp5lEdz1DoHYfURojqjGwqMjxjP1K5VPtiQPH0tpFez9evPovDj9qLJfNOZG7f6yDpg1SZL/37Wewc2UIm1cPFF36bdmhJAVkq5QapqItybQuXXn4ur3nFZ1g85yR6+oYhavDzX36NP97zW97zvnNYNOtQarXDyOUbEG1l+8gm5s1cCgxT3l2jONAN0ThJUqRcaZLP58lk0qSiFOecew7XXXsde0ZjNJKd5FLPADNpNArk0svaN0UQNyHKlFj9+E3sGnmAjRvu56VnnM3ddz/BUUeezOy5B1Kt76SQD6zbcTtLZ+/P5q2LGe5dSqG3DuwAMlzwvhfx3g+eSjp0cctvE1752svJZqAdCSYp19ZT7Mpy+RWf5LDDlrFlyzY2rGvwgX/9Kq16kUyuh/bImxKZXHd7FEcD6Bpl58QaLvvyZ4EUn7voP6a39yIEqNYSkmSSYj6BbA5ClmqpSqG3p70h0gCaBBIitgFDEOZOt886v7nh6zyz7iFqlSofvODzvPCsvXjFq15IeWwW737bN2hWM2Tz3ZAqsWPkEWbPHKbaKFHIzQEqtBrDlMd7yPQ8TbE7olTK0tO9F6RK0xEjeXbEVwgJUVSkHSUKhGR6NE8ElfJOkmiMu+6+neEZ/dx+2928/4KPt5c1zkPUHr0Tx1Okc832fcRFJnfX6BvqYtum3cxdOAipUWCCOuv4/S2/46ADDyNpFfjWN7/Nu9/zDvr7i/z4p99n5crDWLn/cdRqg3Rll01fjycwOvVnvnHFhykWsnzwgo+xY6TGT39yG+ed82aKxfmkUvk9uzhR1KRRGyOdiUhCnWw2R7VaoVYJDA7Mg6iLZq1BtjsGJmnFJVIUqUwWSUV5Ct05Qno71cZ6ioUeXv2ql3DZVy5mfHI3Xd19rH5kKy857Z3UqzlajRyZTIlMNiKdKnL6Gcdw9isPYHjGAC963pvoLiwiJFWiVAUY5sH77+PRR1exdt0a3vmut5HPZykWC+3XgaRBOtUPIWb7znX8/pYbuOnm3/C6172G2bPnsmK/w1m/YQNLFh8HSXufT1pVSFUImY2kmeKqH3ybjRu28pbzP8rsGccDCW9583m85a1vYJ999qGnpz3SDbLs3DbCjDnxdOzOAHUu/cp72bz9IRr1hAs/eBXzZ50EKdg+9hv+ePMkJx33KmbMgh/97DpGJu7jnHNfTnfXTHLZubSD3DbKlTTFwv6QlCD9NM+s286cWUspFksEIh5+4kkeuP8RIrp5/TnvAnpIkgwpoFqBQhfPHgdarSaQolaNSafTpDMJueL09QCTInGc5e1vfzvf/va3/59eYiVJ/4cYkSTpH2jbtm3MnTuXEGKi6H89na1SrdDV1UUqStFsNMjmauyefIir/+vzlHYX+diHLwVqnHrmwVx11fcZ6ltGNjmGuBXIFFpsH7mL39x0Jeef8x7K9YRifi8gS7W6iROfezA/+sF3WLr49dBMQQo++pkzOOb4vTnjRefRaO5DOt1Nwihf/8YF7Lf3LI495jgGBvai2Rgkm+slkCbEaVLpGlDmO9//LOMTOzjt1JewYp8XQFjQft8OxNEYr3j9Uo44ei/e/bYv0Z0+EaKYTRsfZeGimbQvmDrJzrEnmDU0CDTYMvokDz+8ipOe+0K60wP85eFHOOKQVwF5RkfXUOid4t77bmPlysMYLC6hURsgbuYpFAdIWhNUq2WK/X0kzRpxXCfblWNqYpTe/l6gi3YAyFMtjVPozfKRj76JhYuHWL7sAF50yitolPsgv4Yo1SAb9qY83kOhALXWBLsrf+K6n17Ef3znT1x77VvZui7il9ffwAX/eiH773sUmfQQkKFeqZHv7qE8OcnGLWu4/Y8/g6SLObP24uyz38yW7Xfwze9+hLHxdczsP5ZPffxaSlOBnkI/ZEaATXz2397J7p2zOfqY03jJmS+nq1hnz7/kT4ztpn9wmMpUle6euYzt3M7Wkb+wbefjjDV/xitO/RiwFForqDc28bMbPsGTTz3I7MFDedVZX+I///NqXvyyeSxZeAiQ4u3vfAMjo+s47jlH0V3o4y3nfwwYINBDRJat27by5a9+hLvv/S0f/+RraNRL1EoJr3jZuxkdWczw0NCz5xYF4POXXsr7P/BuMuk9wz2aNJo7yGVnAwVo5QlNiLL8zfVyxoCtkMygtG0OPTPhfe97Jy/+l8WUaiOc+JwzGOo5nqnJUeqlPNVKg4XLB/jMxa9hYCginavz9jd+mupEkUL3QkJ2hKnKOH3dfUCGJG6SSkdMTY7Q2zcwvbcljO9uMtC/nMpki+7eDESwe9c4xe4BcjlIsqOkoikmGzvoyw1QbRYoZGcSNwvUalAsQrVaodA1PSouyrafl752MCCqsyciwVoiZrT3kelT0mqNJ+nKw8TYJF2ZhUR9d7C7spHZ3afRrOxLNpehWo7ZuftBtuy8j29884uc+5qz+fdvfYn+Afjkh/6TZfNP4657f8aJJ55AszKHbKq3PeAjnl6/remH23OmZ9QEqtMXp84R14qkuyrACEyPtoIC7QgxSKOSItdVIGlAqmsMGKHZypANy5mcqNA3IyGudZGOMpCBuFUhnd/J5q1rmT9vCaHVT9LqIpPN02yNM1VfxXU/+BYzZ84gywJOf8EFZKMc6QzQVQY2k8Q1UukCjVqWXNfM9uCiqItAhlQKJqfK/O43V3Lb7dfzbxd/ijip8pvf/Ip6vUnSyvP2t36IKN1PXK8zPrGNj37iTaw8dAUHrTialSvOIJ8doNGscvkV7yGOnmLlwfvywhc9n7e8+W3ku3r55td/RKCfarmXfHaIdKrI7tEdDA7Ppj4BF33mYi75ypu5/757OPzQMyiNQc8QEO2k2cyS7WqPTrzl5t9x7HFHEIi57bab2bR5A+Pj43zkw+/k1jt/xvevuZyPXfh+ir0Jr33dR3jzm0+j2N3Hj390PV/9wo30F5cBg5AUiZsN0vkpYjZTb+0mm0nzoQ9czMff/22GZg9x3723cPefbuaoow/l6KOPptWMyOUGiZsxp521F8ccdRKfuvBbRKk8MM6GbX/isssu4767dnD3HTspT01QHNwELIHQRYhH+eZV7+CWP/yUHdvh9796lK7cAWzZejfbRx/g5t/fyNte93X6h+YD2/jx9V/gjtvv4+AVx/PaN76BbNRFRJobb72VE57zAtKpbpI4RaGrjz2jR4lbkJlk1SN3ce+f7+GN578NogwhVPjaNz7Nm9/yNgrZ/Wm1ipxzzjn88Ic/JITwN9cNlCT9T/DC2pL0D5bP56ev87rnv8b665TNZogiKJWnKBSKVHZPcdGn38nLXn4s/3zm+cTNFKn0PB68735OfeGLyaZ6SZqzSKUhlYrp6ekhlU6YOSvP+z/ydlYecgS93fuTzWR47KlLWXnQC5k5tJLSeEIqV+KEUxaw/17ziKiTpFOkoyKNZpkHHrqF0097Pv19g0TRMI1alnoDcrk+Uqk0UGfnzs387qafcvLzT2DpsqUUcsPEjRypqH0KVSrX5Ovf/hSTpW286ux3EUWzIKQpFnqJyBOlCoSkl3xmLkkokE4N09e9kPnzDyKXWUCj2c+82YdRnqzRrJfp7cuTz6ZZsGgOUZQlky5C0k2+0Mu2rRu5+ppPEZhi8ZLZ7B7bQk9PAVKQ7yoS12JSmW7ap01ETE7soruY4/Kv/xvve/9bOezgY5mYmKRYnE06nSEd9UI0SCbdfgOe78lw820/ZWCoi0JhkhUHHM9xB7+SpNHDfnuvZGBwNtXyTrK5mEx2Nx+98FweWnUDZ5/1eur1Bi87+9Xsv/9hbNu8g+t/fSUz53Qxb958Xnn2B+ntnUsun6cy0SBbmGTVQ7/hllt+SqkMxx57LHvttw8XfPiN3Py7H7Fuwz0ccvhMctkU4+ObKPam+MJl7+Br//5J7rzrZvbat8iSRUfR3bUXrckBMpkWv73p2xxwwFJmDCzhoINO58B9D2bG8BBROs2ap/7Ihs0PQGoXLz39JXTnh1i++BS2rs1CupskNBgarPH0pts4+ZTD2LDhSV7x8jOIwwTf/f4nGN/dz4EHHsVUqUE+nyZKQaVSZvleS4miNHsuwpROT0eJJA1Run2pqz2XjkklJK2ESiki1zVIvTVOvifD2o1P8Ip/Pp+58w5loLgMyJHPt/ivH3+RNWvvpLunyu7qOvY9cC4Dw4MsmH8EXYWZkI6ACnF9NiT97NxRoq+3D6IsIalSqq7mlNOOIoQaxx17KtVSTHd3YfqE/yaFnhwhaZHKZIhSEes3b2T24Fym6lWKuWHKlRb5fIFMpn3Jrmuu/Sa//On3WfPkoxx+9BHt+JufHhYX7fnfw9IkRER0t0/fmb5+WCYD9coEO3Zs4i/338n9q2/m2EOeS60xQD43l2opptAXuPSLH+D+h/7I+vXrectb3sLk+DMsXz6fnVsaHHrYKWxY/2cu/eKFHHnYcTSrPURRe0TV5C7IF6dnY0/TC+1TiogKRORIRRGkmsRhjEcevY8z/+k0yuUK/f2DzJyxhHSmm7hZI53OQHqUsfJq6vUq3fml5HvqxDxDOhNI6n1EaUhlIzZueZhLLvksDz24muee9BJSqSJT43UKxX5CEjj+mONYsnwha57cwCEHn9y+bBFApk69MUo2Owz0kY56aDVSpLLd7e0pav9vd+XqJHfdeT2Vyg6uv/5HnHXWCxkc7ObYY47ghz/4IaefdgaksjQqJfqGulm+bJD99lvMqkce54ijTiWdzpHryhInm8l2j7N+3RqOP/Z4nnpqPfV6zNNPb+SoI08im+shlQ60kibFvjxEMZlslnplkn0O2IeZ/bOZHK3RP7MbUi1KpREK3YPTp0xGzJ0zm+5iD5l0mrnz5rBzx05Gd41x1NErWTh/No88ci/PP/kEPvax9zE5GTjs0AV8+bLfMGsm/OGPt/HVr3+Ok054Ab2F2YzsHKenf4AUabKpLtL0UCrFHH7E84CE+QtmcP99t/PY4w9wyCEr+Nf3votid57rf/FTzjz7eL7ylWtY88RDrH36cY46+jkM9M5i5YHHMNS3iEMOPY6rvvcF/rL6Wg476EjGRnbQ3Zewe+rPxKxn7doa1ckRjjnmFOr1tUTZbezc9RADxb2Z+X+x957RUlVp2+61Uq3KYefEJicRiQIioARFUUFQUQyobQIDirRiRBQwAeZMK23EiC0GDKgYQZQsSXLceVeOK30/VoH2957zs98+44y6xmDswWZQtdasOWfVvOt57rukCwgqXbrnaGxoZvXKOs4dfwU5w0QW3Xi9AUJ+ey9VZAu7kjNNNFGH02UBrRyp28D27b/x+ecfcOKJ3fniy/eIJ/fSvUdnXI5aTNPJW2+9xaRJkwqeSAUKFCjwX6BQiVSgQIEC/5/AxG4L+J9ohoZpmkiCjJVOICgtzH54Il6fg+ryXlx24T/t/+qEaGQdgcBxtnmskLXzmYlx9c29mHbrhfjVPtS4ryGZztCQmkH7onuQjEoMAZRQHdDE/rodbPljNWNOGYdFVwQgktrIm/98jh07dtOx3Ulce+0DuDwlmJZMTt+DUwEQyWYNVDXInza39of7+sPNeP0K6/fPoO/xA/FwLlBpVywoMmYGTEVDEBVEEdK5JIJiYlgJTNPE4yhBRCWdMjGNCF6fA0jz+JP3U1IS4rJLJhOOpAgF2qJlLS65bAzPvDyGMn8XFj61EJdSzfVT7wPdAXIFmB7C9a1Iqoi/OIhdcZFm9dql/Lx6BbfecD/JNHhc3bFIYmCQygh4nEFEDLJGK6okopkK2ZyIKgko8gZ27dzD66+/xejTz2bVqlXU1R3h3PFn07lLOyoqqoBSMokynM4AiJDMbmDvwd84vkt/cpoXWSgmrcXwuHxgqcyedR5ff/sF519Uy803vgIEaWxt5ePli6ks9fDQo//giskj6VB+OYP6nYPs0Hhr2RT6nxxiw4aNXDL+Lo4cUqgs7YEgtberTqRGIEM6HsXlawemAWISDIOV337JqaNGYRlhBMkHuoKZrkZ0urAUEyHfDmb/sf1mUuk077z1PmNGn4vl8FNRVs2fUevSX37KZLNZJElBFsX8FDFBMLDLWv4SDYdtfjz3wZu55fbLyRlpFMWDW+xIRg+gyl4yWQNZqOPbn+YxfPgQnPQmrZXjUCwMQkRiEgG/BWzCQXdycRXVDfOePIcxZ/fk8IE0Y4Y8wvPPPsENM4axfdc2Nm7Yx4XnT0PLGiiqkzVrvkFxQPdux+NQAlhGKZIMLZEGiotcZHIaznzrW0ZrwakIRNP7CLgU/vhjO01NGieffDbgt8cgb/JsAaZp/0okmR9Xkeb6Jkwjwaw5l6AJW7jrrhdY99tBLhg/ndamNEWlIaCe1sQ2iry1fP/TaoadfA7x6B/oZiuhUB9+/nY9P294ktPO7MOKr77n26/XMWx4F/Yf/oOS4lJ6dD+JC8beg6m3RZLKju0zx4LNDEBKYHKArN5KJNrEow8/w+PzX6alyaK4uBZEHUyVNRuf54dfX0K0Aky/bglPPH8jO/Yvxeduw6OztmIZOQQpSkLbiqzAh0s/Y9KEGUARoGJmHbQ0QGltBGgFIJMoQyaA7ISG5t8pr3DbLX+GHT1vGJBIpPEXuRAkHTCw0Mhp2xGsGAsfe5gOHavY/Psmbrl5Og65GL+/I1pSRFFUcIjce+8l/LbuB2bdvYCTTroWDG9+bWzm+1WL+OjDT5AsJ4/OXwwIfPrx1wwZOoJ3P3iX9h06MGr4KN597xXCrXVYYpQp18wFvRZkGdjHnXf/DZfTw7VXPUBF2WCQj85pDTDJpOOoqoymZ9F1HbezDWhpEBtA0QhHtrLskyUUFQcZc+bZnHXWBO5+6Hw+/3I5kbpanl34KxgeMCGVNHEHRDCyIOWN1oUciGH03EFkh0kulyQWS3Db3+/hpRdfIZmp4/W3niEajbLuty0sfX8LGO1It6ZJpBoJlmZR3FE+/moO55z2AmRrsLIgeHfy4uIbOFK/l5JgVyZdeAWfrpzNH9vqGTvuTDauPURrg8odM98HYQ+R1gbWfB/n9LMmHPP3RjQJx/YjqylcqsgnXy5h3Oln0JrQKHaeAmY9SBFampt4/vkXuGf2HMCivm4jTz/zIvPmvYNh+DjttNP45ptvjgVPFChQoECB/z0KIlKBAgUK/Mc5Kg4p/DXPQNMMRNE+RIuiREY3cIpOLMPWfrK5Q6jOBE89/TgjTzmbHj1PIplL4FGLWPT6HVx92RkkMPExAiy//aAG6DnIZkwcDhHFDZb4B+Mv6cqBQ7Duu9WgD7RPsUorVjaAIEs0NRwgUCxiWRaJRBrLFCgp7Qw5eOPjO/FXrWHr5k0s/aCZJx/9O/0634WWDpFjBzffeTwLHnobr6sKt6cD0YZyAkGI6a14PAbX3N6X3r160d43nnPGnpu/+yiz592MW2nPjVPvQRKCqN68t0peRLCwAJ1ILELQX0I6nUZ1uBCsZkTZQf3BCPvrfqBXn96YRjFuZwXH1DRDJqcfIhEz2bljLwMHnwJoaOlmDA7yxNO3Eyry0tyS467bnkaQywH456sPMfrsE6gsbgsEgXboKS+yE6LxwwQCtsF1c2uE4qJSmloO8PY7rzLt+quBJE++dB8XnHM1e3c0UVRxAMVt0qn2PNLxzrh8LnRdItKaxefzoDohlU7gdqt5/6sM0EIy5cLjDpFM7+Sp52YweszJ9O0+GGiLbRztAxHqjmwnFslSXCZRUlIKuEH30hD/nBtmXETP46u549Z/IdMd8GBkwJFPMo/Fw6gODdXl5va7x9O1/1YcqUlcduECTM3EEJpQnB7yBiX51ywAUhpL2MCseZPwBxW++HwX106+lmzSz2WXPYSVldFMMKUYTtdBnll8NyNOHUKX9r2QaYOeK0Z2eDE1DVEBQ08iySkgmX/tXVhaFWDy8lvTGTKymL176hk28BY8alsScR2vLweYYNmvGUIE0EhlDdxqMWAnWjlUJd8+1sqWbX/w3r+eRhJMLp54PR07DAIkMDPYFyJhWHEkOQCGSioZxu0P8+2qV2hoaAIjyEXnzSabdSE7QDRsa6FkJoMghHF7I6SSEdyeMnv+YQFhptwwmkONdbRvF+CkAaO5+IL5kKy1p7iVv2UB4pEmfEUK0AKk+PDj56iq9jCw71QgBHjAEMhpMUQllm8N9AIu2//KgnDzbsKpn7np9sl4XPDUwtepCExC11qRPQ3Mf/5CrrliFtFWN20rziIaThAoscXreCyJz9eBeDSNy+FCUnIISg5dSyIrMn+KeyqgohkiiYRJMKCRzTXZQprpB7GBlpafeeONV3j9n1+w/KsVlJaUACY6FjoWAirNRyLMvPV2Fi58nPLqTuhaGFnJ0dC0mfKiQZiJGiwRHn/5PEznb0y97A18nv5gKYRbmgiVFGFoKRBcSKITdHt7tYQUAjrpXBMuh+0fpOWa+eXXT9mx80d+WbOeoUMuIVRqsGXLJsLNFvfd8RaqXI4oyyC3oFs7kIUMK35YzpDBZ+CQfFimE0n00xoOs2/ffvr2OQnbf0tjzaatdG0/koCnCl0DUW1E5CBh7RDDTj6Xj95ezjufTKdt8dlcfP58UFuBLJ99+i9+WPMa7drUcN3Vc8FqB4ItZkPCXs8Y6HoCWeoCQgJbhPLbvlRANmWg+kyOirpPPDGPHVvX8uRTC7AsAVN34vL5sMwWNm37jLfeeYFcLsfjD/8CmHy/eglz5s6hV88TeXTeG4hiMdGWNIHiEAB1zRHKSsoQ0clkk7hUETCob6yjoqwKyHD/fWP5YfV6Zt/9MCcNHMOll17OK/9citOtIAg+Mi1+FC+I+Q5PXQdBspCkViBNlgi6oeORKjEpJ53bg9cRBILoSRHZGSWVOojbh33vlAIuJkyYwNKlSwvtbAUKFCjwX6AgIhUoUKDAf5x0/mc+Cjy/62r6X0Uk2yWlsT5FwOfH7YFYfAN+n8nmLWvp2WM02YSM6i0D04Vmpsno+5ElNy6p1q4kIQGUgwVWzm6tyWSSiO5tvPTqbQwZehK9O50PVl8wQc8ZyC6TpsbdlJYVEw7XEwpVABLJmEZTc4p27drz0TczOX1UbxobVPbsPsTwwafS0iQTC0cZd+lgpt10Gn+7+CFEqZxDe9PIipOKmiKggRQR1qxZRZdOXagqOg606nxxym62711B26qTkSjG4Sglq0VQHQH+jJsCMMnkUjgcMmL+5J1oTuEtCrBn12o6dOmD/dV7gpZYhGJ/Z0DEIIJlGsiiN/94Bgf3/crPv3zO9t2fsvyrbXTuBD06juaOO14GPGzd8DvVlR3w+4oRVNWuyBAB6SC/bfyKNev/Ra9ePenScQBF7mFIUojxEztzXG8vkjvGnTd9hyzXoyUF3IrC04snEEke4vC+UhY+tAnVKVFfn6C8vBhLSOGQJUxMRAwgzWMv3kJNB4vBPe6mpqon23Z8xtVTz6W0zMuiF9+mNNCHZBw8niowwNTzhWaOfbyx9DYOH2pk4ri7eeKph5j74D2koh7KyrqQM91IghPJzHfViFmSqSZUh4mIwhdff8CZo3uTy7Yj3VqDQ4Zwqp6qtn8w65GptG1Xg6Idz+SLFpKMHeLhJyYzYFiIkaMGs2njNgb1ugIox0hWICk+26tXTPDRZwsoKtN46unHmD5tNru2Zph82V1gKNTts6isFUCEBx+ZhiHtpscJ1TQ0NOFUKph80V1IQhswIZ3K4nI5SCRjeAMeEAyMXI50KofHF0KQDCCHZWTJpA2cqg9ByrePWaZtQk4C2IetNtSAWYGe05GdWdLJBC5XFVhgGmlER0t+zerYQk0AsL19LDmHgEhG01ClIkQjgCjAvt3refKFa+k3sIYj9Rsx9TYEgyGuueoWMD2IuNi4cTNdOnfH7fODpaFpUWbPm8L639czaFBbSoLduf6aLUUSJQAAIABJREFUhwCRZxdNZ3/DNzx6zyEw7Ph3SwfBAYgRbNHNCSjEWgT8Ph8IsOfAh5ier3nm6WfR0kWMGnwXw0/rwTOLpuMvljEzXbhl6nz0dDtkpwhCA7bwGgAtcCzcEAvS6QyKIiE7lT+XYx5LBN3IoeWS6Dk7KczjcuereRoIN+9GVzZwy7QHeO3VlYhmT0zNXoqxRJwHHh3B4KEKe3Y2M/PmjRz4o47ZD8xg6owBvLHkBZ6c/w22iNLEJyue5dcfo9w/+2XScQ2X14tlZNH0FKKgIste0EUaW6G03H6OY/5ypghaGsNsRHKl8jfnBcI0tO4jFrFoX3MykuBFkBzs3rOKOY9M4YyzBnHRuTeRiFbg9ZbY4oemIbvyj2sp+Z5AEzDRjSyylP8nTIRjvYIuMNPsaZ7Fu2/8zBWTHuLlVx9k5KhT6Nh2IM1NcV584RWeePxze56a+bGW0sx+cBx+fxGnDr6U3n16IAqlYDn/7T3E1CxEh5UXnwxSmW28/9Fs/rVkD++8voZPv32A5uhmTh50JjUlp/HLxsV8+MVjdCq9mem3zicc2UJT8yG+/noll18yA5caQhCPJhKALoFAAmhEI8vNN91KWXENN06dQnl5CEgTad5AfXgtD8/5mH++9hYvv7qAvQd2Mffe5wAPmMfbaXfoWJYDQ5cwDAPVqZNIRfC4ixBMhXQGdAu8nn0IiEApmC5aw+v5be0XrPjyQxS5HfMefgXwFESkAgUKFPgvUmgiLlCgQIH/FY629+Q5+plXsA8hQr6dzeHUcbgyQBy/T7V/ly/VV70+Gpvr8vH1LvRMEapYa591cXEsnlrIHvOYcXodrF37GwcPHmb9uk2AiKXnAJCdEslYK6VlpTQ3H2bSxefT1HwATYvj8bto16EMxATjRp2Lix60LT+L4YOncuhwnOJSF48svIULL1Xo0vZ0RKkcTIua9pX8tGYxZ4/rTDTRhBuRUwecQ1VRd/v67ERwwKS4uBiX6iWVzAAiqsPJX5yV8wNk4nQ4EG3XVTQzjbfESUvDVi68ZASNR+oBlVQuTrE/RCymUVfXDCSRRYVUJgxWCi3XzJrfvsUkiWll6dYN7rn7Jjq070E2FSPWup+u3WoJFFfZRrM57HG1YOotI3jsuasIlQic3Hc0pYGOSIoTxCxlFQH69e/Nif1OwaXUoAiVZDMmqBKhkI/u3bty4OAh5j54J7KsU1xcjKKoOGTb1VhEBiT2Hz6C31fKWadNoKaqHVgC27b9QUlxCR3ad+OL5SsBFafTdWw6NTel7cOtFeOnVSsYPnIQNTXVDBtyJj61K+Wl/UmnBSRsIydBgJyWBFrxuDPIso4om1RXtAXa41CDeLzg8kJVmwoggsMTplfftow/fxwI4HSpnHrKaNau2cm7S76kX6/TsA/lKpLTkxcI7Yj1kqJKhvYfy+iRkxjc72wmnv83Yi0Z2x9LAiNnj2/QX8lll17N99//SDwepjVyEEkyiLVmQIdIswhKEm8wA0IYTBUt47P9hMQYWFG0TAzBEnF5/RimDoIdfocoYhp2KpWJi7SW92ARo8hOjUwyh8sTIptO2SKSaS/OaDyOnZxWjZb0Y+X8SHIIEQ+g4FYsZDGOqGgkYhmqK45j9KgLGHPGRDJaiqpaJ6l0GEmoRBKPZ/8fDnr3Ph+3r4StOz5j8Zt38ve7L6C2o8pxPSX6ndiN6poKbAVO4corpnDG6NP5q3pjG4/rQJqJk0az8PG7qG/YgsNli9SZKHToOIzq0oGcNOAsrrpyGps2/4bP56UoVM7po85h06bNZHIJZKeJlg0DKXJ63FaogAN7E2TzWovT6cSyhH+3aTsWQR8jk67H7bLwB5x4fM68r5MCqIRK2lMaaMMF501GwmeLgUmIRSAU8jHzjluIJQ/h8Zus+elrFj5xN1t2rCSj1dOnbw/ikRi20X4tw0++kltvngXIuLxBLE1EkFw4nLbfG6TAoVNaDuFoHASdjNZIJtsCYhZkFdHyY6TdpCICtigYpLzoODp36IsoOOyYeEEnVOxi4MB+HD58GHDjlEswUvZeIKKQTWVIxeOkEzG76jMrks0IGGYWyKJZ8fyr5UfXgqCrgIePPvySiZPGMO3WSXzz3Upe+edTlJaW0L7NAC46f1reDk85qkkBMsf16ExpWYCPlr2PKKTze3vKFozyIpmoCLaiZ7nAcuN2ltPzhO506tQJxe1j2LAhRKNhnnrqGXyhWvr1OYXbZtzMiq+/o7m+mVCwDV06nZivIi1H1xRy6fzaFEBCB+JAjkSsiVHDB4MZpbFpJ3Pn3cBLi+YSLOlOt86j6dtrGJDlqssvpW//7mStDBpa/m3Prh40LQ1ZAVHSAROv24+Qv2+HCB4nCGjUh//AslpBTFJU7ODUU/vSu29Xfvt1FQUKFChQ4L9PoRKpQIECBf7jHE3Sykey561fNE1DlAwQckgCJLINeFUvb3/4CuHwYfr378TPP/5E9269OX3E1eg5nYi2k4CrF4pYjGVCJgmuvC8uUivgx9BiCDgwTZBVeGDe1Vx341jKA1VktCBOufexNCiEJBClX/9efLTsfWqq2mMrAU50U7e9a8iCVYOehKwOnuAeBg3ryOFDsG7LLZRKj4NsglhHOLyVbXtf5NNPP6dhZy0VlR6mXPkINV17gNCMpXdAkBTC8V/4cfVHDB14CcFAJ9vfQ0rz13Y2+2SV4+CRPcxf8CBt2lQzdNhJ6LnNPP/Co7z44qs45V5kUwE8fhfJdAZVCSLLAhZJzGwQKT/kiDFWfPEGo0YP57HHb8cfMBk29FQefWQRfU88gSFDB3HCcUMw0h2R9NKjFj6EY2tZsWkSo0cMxc9V5OKDcaiQysRx+48ACTQ0tHRb3FIl8UQCX1Gc+Q9dSdL6nteXpNm1+W2i8R4EfeVAiJyWw6EoZLJZnIqX1mbw+UBxgkEUsh4kh0xLeAvLv3ydSZMupLXZoLT4OJKxDB5fkV1qJmlguVi99h/89OtbuNRiLhm/kEAoaI+dWXzMdyiXTuJwG0Ad9866knbta6gobcuRfXEUZ5DKNt0ZPfoCkhHw+L0gNhDXf+TV158jFoabpzyNx9WRpoZ9fPjRq0ycdCaiCH5vBXbbnwtML4YeRXIcNYg3yWZTqKoPcGFmHYiyZPvpCDtIpx24XKWAjGlGSGeb0PQsQV8F2ZyG6nDR2gRFpS4efmos4dg+LjpvBn263oqetOf2nbMGUVZUQYcOAxg3YbrdZ5ZPGjMoARQycfB6TRrq9hIsFmmI/Mxnn37BiFMm0KW93V5pmmFE2Wn77vzF3z6bs42oj9nZ2D7smGKWrN6ES/EDLqy0gmB3OnK4bj3u0s2EXF2JtlQS8NbS0gCinCZhrOa+R86mZ59KRp82jONqzwS6A37QHLS0HqG4vIR0shmX2w+CfQ/pRAaXV8WuQGrAoplnF72Iz1vE5ZNuxUwXISrFtkexWwMxDsgc+iNKTYc2NNcdIVSVJBoxKCpui5mTEZUIq9d+yPYdm9GzLoYPnUTbNt2QVRdYGpaZQ5Dz/Y9HK2SO7Ru/ks2lUZ3FGJoPSSkC0wtAxkggKxoyOUDF1EQExW9rI+hINPDR508gi3W8++77yFIpU24cR9sOAS6++EFWfLQVUt3tYjAX4NLsHihZxcqJdgEQkM4kcPn0/JhEgAD76rew6fdVbN+5msfmf4FThpnTb2Xq1DtIhCNkcyJ+T0dEWSeZCmNh4vWEkBQFxBSafpi0dhi/SwUqwOxA0+EMpeVONF1HcUeBNE0t+yktOvnYXo6goxsasqSg5SQU6S/imxll7R+PcqBuFW6pD5VlndDNJB+8v4x5931v34ycODZ+tgjbSjweIZ1t5bvvP+eCCdM56qdkv4+47A3KVOxkw/zcQ9JY8OR57N3/O9ddO40Tup1PLi3icBos/eQJtm/fytljLuSEHucQDjfi86u0tLRQXtaZSEuGYFEJzU17KSmzN86GpjhLl77Crt0b6N27N5ddfCXLly/hhBM6UVltceVVU3n1xTSNBw5Q1qYDN04fxOHGddw7ay59ul+NaagkYwL+Ynf+Pc9AUSwaW3ZRVuwlno3jU2vB9IABqYiO6PuZJe8+SSIKvY4/keNPKKKo2EM8nsDnGwZUA/5CJVKBAgUK/BcpiEgFChQo8B8n38dB/pP+MREpmxeRNCTBAtLkrAiff7mUU4YOxDRNQt62gAcoZcp1F3PJlC4M7XMJaTONS3SR0VWcQmeQ7JYuTD9aNgWYKE63HWcfBIgTT0bweToQb3HhC6ggQDYTQ/VAKtmK2+PANEREyclR7xPDsEgnJZwOkJ0aOXMfC5+ZxBmjR3Dz1Pl8tvQXFGEAqtciET+CN5jiosldGDmilt/XH2DG9XcjpHrzwsuv0q5/JZecNxe3t4j7517O3649lzblw4AgmCqpTCtuV5E9RsJREcn+hv/Vt17kgonn45IVzjynA6GAnyVv/JEfWy+YQfYf3s6n387G45WZPOEBUpEOePxgaCkO123k6msmMGBgL+bOvQ/DiDDpkrGUVimsWpPm3HO6c9aZE+ncfjAuRxlNrXt4cdFCKmthyhX3ACXEo+V4lFrE/LkaOXvstc2mnKgOCS1noLh3cPjwckKlOsl0jtLAcBqbyikr6czfru9HSQWcfdYEIuE0o0dMRjRqsAwnDqcIQhYtJaM4JVKpOqLxQ1RWVgM+sHz5Q6kGcgQ4DJSyZ/9GOrStteeJ0R6kJrKs58YbbuOJB5fj8VWAmGXf7h84f9JoOnSCAf2P4+vPt7L8y7UYWQ1JrcTM1iKqWVrC65k+czw+V0cuv+wGBvQfQUt4P15nO1SXOz+nBfbv3UPb9t1AF4lFE/hDATvVK5dDklQsQ7Yr4o4iaZh6AlFuZcbswfTqdh5eZ1smnDsNPWMiK5Yt3iGh59LIDvvQnEjVs2z5IsacNZJPPv6S88ZNweUoBkzeXXIHEyedx/Zt67l+2kNcNOkGOnbsz6mnXEJKN5FkERkTPWrh9jrZs3c9z79+MW6Pgp4u5qYrP6C8rAjB2QTkMHSRA/uaeemlV5g+/SbKKgPEEgeQFYvde7bx8fJ/4AsUM2HMLCqLTrCLLGSIxQ/hD5aCpYKZX1duN0319ZRWlgIJ0plm/rF4PlVtvKz+ZSVdeoi4xFouHv8orU06CxY8wcOPzWTZssWIEry7ZDlnjr6GPn1Oplv3nkeHHcSEvS4MlVxWwOEWgV+AaqL1fgIl5fb8MOMgGmhpHcUVAr0YLIiHwVeELVxwGJ0Ydr1aCTkty/wFc7nwovOobVtFNBqlNFTL0WozLD8IKb79+n4SqRTl5e0ZMOB8MmkZWa7FEu02WpM0zYfX43N78YUqsfAST2fJ5tKkk0eorXJjGEeQJIHdBzbQsfYU+zl0H0gBsBz5eZ6x9wHLb/v/uNx2q10cXD4IR3fx3tIX0KVdXDf5WSRJxPYHauL1915h+CljWPX9Hi44f4ottogOEP5s1/o3RA1IkcvGcahuWqNbeXD+TbSprULLKvz9pgXEElH8XoV3li3E1KsZ2H8kHWr7AEFirSZ+v2xXwQGCZGLqMUQ5SyS6jmAghpY5AUXujpaOoPiOgJYPQZDWYpuNu7GFIjn/93z7XE7Nt4mm+WtVazaZRnW70bNZZFXNz5FD/LrtaZZ99k/umboLVQqRTKdwBj/hzbdXMnnicyDuZfGbD2JZFuefNwm/qx2GKSCJMpt3fMWixQ8w8/bZVBeNxTTD7N+3lQ3r1jP+/Il88cnrrF3/Pat++4nzLjiRKy5dSuuRNE8/9xgjx6osee8ZkjEH/3zxCLmkiMNjV2zJqhvL1BHEBHUt63n/w3+wa9cu5j+8CAe1YAZBE2lsWcKDC6bQpVMvfvxuNd6gRrfu7RGtIJZ+PNNvew7wFkSkAgUKFPgvIs2ePXv2f/siChQoUOD/3xw1GhH+7E4RQJJEND2FIv2Zty0JJuvWr6ZXr7541DJyhgvwIOLj1zWrufziCUQTOggx7rjvElZ8/QHt23bmxpsmUlQiU13ZHgEVRXWDKaC6PBiajiipYDqQpSJUh8Nug8qBw6mAaKE4VEDO+2EoGFkJUZQRRRGHkvfeERuRhDDrt3zGurUbaVPRjZaDVfQ9sS+JeBhvSOeWmYNJxhP07DaEpx7bSf3BzURTv1NSY1BS2Z12NQNQnV5WfvcR484aw7EqFktCcYgcE9qEo75IBhY6PXv2QBUdrFm/irLqPdS2V+nfayT1TXtxqSWI+HA7S0gkY5w+8nwsqwy3WwAhRkY7woOPzKCpdTt79++ktp1KS3gvdQ07GTq8Fz2Oq6Cs6HjOGHkBOS2HqDYz79Hr+W39Nmb8/TKCnlOBdqiOMvuyJEBO8u67z9O+XQcUhw9ZVOwWs+aDeH1h/P4Mc+c+yJbfD1Ne2os2bU4ikxCZMXMKd905jU4dOtH/+EHIogtTlxEFi2SiBdVpYGoKEhKyAr5AAJDRsyKiqKJnNXJ6HEFKIoo64CMU9GO3iygc3JcgEEqw8JlpnNDrONb9Uk+//ieRiDaz4LH76N23FEGKkstm2bYlxTWXX4molpKMeVEdHpAM3C6NrHmE7l17YZoiHdq3w+2SkJUSe+JitywFg7Z/FoKI6rIP5pmEjsPhAkG0i6As0DIgqYAQRzdbkMQEOTPMxHNuprqqO6qjElF2HPNNgQzNLYdYsPBBPvxoMePOPouex52NU+5Ej66n0NLSgtvtRhSK6dGzI40NP/P5129z1vh+dO9+Mn1OGIkklqJZFoqYJMM+vEIVgggvvvQEo8/pRjaXRHUUMfLUyXZli6jl538Lz7x8E/6SCLv3baB/30GoDgNN3Me0OyfSd6Cb/v2P44vl39Cv9xAkpwliBNUZx243yoDoQcZuV/T4PSBEyVmNOBURT9BFdXVHqqq6oLqbSKb3sXv/avYc+g6Uegad2JVdB3/m5OHVhDPfsf/gIVKZVnr37k4y3YBDTZPOHkGRLVLpDE63h2w6SzIRw+mqJhvz4HQpdtubmOXuWZNQXElyuSaKS3pgaRKqC/bsPkSoxAeYiNieTbqmkk6n+H3HClZ+/yldulXh9Us89uQ8Vn73NQMH9gHLwjBidOzkQ9M0Xln8Gp079KS8oj2xuIHTrRJNtGCYaVZ89TrPP/84v63/hUEnD8Wl+nA6XXg9LiRBIBVP4nB6KApUctRUHbEYI51DdGRBTAEZtGwOSfIhKwqGlkFEQcnrQCtXfo4lJPEFM/TocBmC6cM0PAiSSq8eQ/F7OlJeegLZtAeXy0smJSI7c/+2H1uGbW+UTqRRHG5irSaqWIRuxZC9Ozm+Twlvv/Mm48ddgctRQSaXIVgksuiFxYw580y8HnscVZdsJwwKFoKVAdHANDREQyKnZVCdBpLcHjQfsXAGl18DM5RfuikeffJWunbuh9tdiS3aNdkLKOv7S4evgpkTbHFWANlhgZBDlDUMI44oaUCa6tJSXn3rXVb/eJDTTx+Hwy0gkqPX8afZe67QgiUmWLNmHaNHnAO4EQVbwAoWyTQ07WL3zkP0PW4sgiShZdLs3rWH40/oR6f2bSkpKebQ4V859dQRVFcNwdJVTjtrGKJSz4EDe3GIFYw85QbIuhCtDKIzBkRpad2N223hc1skM03EIhG6d+mLx11lt+SZ0Nj0E1mtHi1nMOq0Mezcs5mS0hIa6hPs2JZg/PjJCKKTN998k0mTJhUEpAIFChT4L1CoRCpQoECB/y3+utsKoBsZLDLEE81sWP8bK5YvZdx5Z9CrVy9MSyaT9qPKlXi8TgzTQpR0BNP2j7h15mhGjnVTU1vKnbctoqQcDhyA1gbYtCaDmVERFY5ZCxk5Hckh//t15NswEDJ5114ZIysiiS4771sCpCawSvM6WAOQJJE9yE8/f87o4RNAPxHkDUAli19ezEUXn4TL1QlI8MC84Uya8HdWrfmCgScNoGuXi8klO+BwqhyuX0t1tRuotqsbLGz/Ekv989oAuxLJ9tgBi937d1JRmsTjVkmmUnjcg0hGRDxBBbv/xcAghkicRCKIz+shkWjh9tuvZ/78+2huOcyTT83hnHNG0K59FS+89DyPzP0Q6AiWwtV/O4u68HcsePxOystqKfL0BLoAQdCVfBFAKzfN7Mftd11OWWAwKp3A6gBCC2Dy5jvTcTgOUOwdRPt2gygv7Y/bX4uZsc2wZTcgZdGzcWSnAxCJhRvxh0RM6kDrgSj5bWHDzIHoIBM3cbrt6rFYfC933nULZcVdqKnuzFXXDeWRp6/is09X8dbib6mu9PHNqnfo0nEQst6DiqoOZFMxPv9yCePOHczrb81n+PDhVJZ0Q8iVIXpKAYWG5rWUlgQRybfVoMMxg9si+/U52pb5//LJIZsALQuKAqrLfh1NHaLJw6Rye/lx9TL2HdzE79u/Ytp1T3Ni77Fo6RIsw4HDLZJOpHB53cy+/waO659m9cbFDOx7JmNPfR6X2tZ+XrmFeLwZt9yV95ZNYuv2r5FkP/fd/SJQDChYuMigo+BAwINklIKUBZppSf5AsacCCIHVKx+Jbt9ua6QBh28vgpRBkYI4pFogxf0PXcf1Mwbz+dL9XDpxCo8+ORO3TyeTkbntxrn2PCbEUU8jSxfz6wsQMwhkyBopFMlAsE3MEHCD5SUT0RAlcPjBFg6OJnQBlBCOJAgFO5JLWTicTrtyxVJAF0lGwO2GF1+Zja5nuWHK3aQiXlQnyD5A3seSt14iGTe5+rqJTL99Gs1NcW6aej8DBpwFhr2f5FIgihCOt1BatY2G2G7mL5iLYWpc9bcptDaZ/PTDOu78+6O2B48QQcvF2PHHHl57bRn33vsITrUaxeGgObYLS0hR6osTjjXz+lsfctOUuWj40HUBt+zA0ONIVppYNEUyleGLH+cSLBKIhWUaDviZPu1+ZNVPoiWHN1SSX3cR4onD+LyV2FV3qj0WQhjYCsZQMCCTSeD0Hx0/9c/kSkA308hSK1AEpitfMmSRSkRw+71oKQtLc9gphi5Y9s1VbNr6DcmYwtTJr1FbPciuIjX2o2fB5fWy+NU5rF77LwYN7gHI+N0dOW/s3WD5iTUo+AOAM8tTz15MY0OEO6e/iScUAOEQpDvZgrlkcah+E4ue/4D75zyQv6995IwEDqnc3gPNGswsiKq9L5pmClHOsHb9Dyz/fBkdO7Zn0sRLsZARUGloaWXFN8u55ILJ2H2YfuxN3aCxfh+lZSE++ugjzj33AnuMzLxZvzNLMrUTj7sUSy8HIWoLobk0iWic4vJKIMu6Xz+j74knAceDoaIZhzFpQhQUFKkNyUY3Hr9MOhHn1ofLqO1YzLAhZ3LFpf+ge1cPCx99keqqTridxxOr9+APghZvRSndxNp1/+L7leuYfssc7px1Iw/NfZQNG/fQu9ckLNODIKqMHTuWZcuW/T9vRAUKFChQ4D9KQUQqUKBAgf8N/q+d1rR0cloa00rz69of+eijJTwy9yZm3nkb02+9F7daSXFRP7Agp4HibEUggR6rQHY6iES3kTR/orq8mj92H+TxZ25h3sO3kYr5CDkvxuOpQstmUJx271UymrK9bswsyEcrPmxx5tYZN2IYBnMeeBi/v9ZOADJk+7wh7APa5Q9bMUAiHbd47e3b8PhiVJWcwIhRo7C/ObfI5lKoju5kEzkUdxwLDUmsx25Nawdajf1YSgqEZqAczLxwJKbtb6OPckxI0kml41iWhcftAnbxj5fnkjXiXDnpOUQqydGMZak4pRJUJ2hiKwpFpJMWLqdALgkOD0COT5b9g7MnnMInH73JkKGjCIbakUmIzJkzh917fueJpx6kuLgMU1dR3W1BU/MFOHXAgfy9eLHbDG2j4zkL7mZAvwmMHj6WlT8u5L1353Pp+OcZ0P9cJIcPVBE0lZaWwxRXwCOP3MK69avo1r0TtbW1dO3Wib0H1tOmnYeKwN+oKOlFsMRvi3mWbCfaG9DUcpiyKoAMmUQJmTSogT/44ddXaN+2G0KmF2XlIdweBVmswcqLGiAQibTiDxjoeguq4gZ8diWEmGXW3PFIrv106dSfSeNmAh0BE1M3IBdEFLDDwP7tdTH/xzQ3cwZi3ojK0m2fZS2ToyWyj/WbvqVj50pW/rCUfoP9fPnJbq6+/C5KiwfYYoZuP3a4EUJlgKMOjc0oKEAZu/ftY/7CB3jgwamU+cq4eebttO2kces1i4Ba0NuBHAeO8PTiW2jXpj+H9ueY+rdHABPd2s4TT89hxIgRhJstevUcQElJJ/SMgiypWNm8L7QIjY1NlFUG8xVxNtl0klwyjMeroFmtqO4QmDX2ded1HbsdrxX70C7ba8mEWCyHy60gyhlkKZ2fQ1H0eAXkvMgewNnA3+/tgcen07ndCC6d+Aqx2B78fhcvLXqNtWs3EAr5efihB3j+pWfwuqoYOuR02rarojX9Fi3RrSz7eClB5SwuPOdhfMWlIBwEMpi6yNrtr/LhsvfQcypmpoZH5rxLMurBH3SweeM2Nmz+kcuuuBCTBkR07EQ7jTffW8L4sZfjVsuAYlvoFRIYVhZJMAEHyVQajysAQob3P3yc1sgBqtrWc8aIy7CoRmIYubSDdBpCIVjx3UJiiZ/46vO1PP/EfpD3AFkMPY0ktzLj3nMpLirjxiuX4HcNBBnunDWRjl29XD35VmxRtya/b4Bu7UQWIiAmaWg5yL6D+3jjtU958rFXEClGxwKySAgIuGxhPD99W8N78QVE5i98AKejmJtumEkulyWnhwmFnIDJDz/9wNDB56BlnSiqh1w6i57TcAcUDHMTb35wFzv3/kwmk0OhPQ/e9439HFkXuRg4QlFMcRctsS18+sFurrh6GocOf8t9981iyuQXOXHoIKy0QiwOgVJAtPfahsbNvLtsHqNHTKZLhzOxK7ay7N27keKSAC63gCI5iCdjPPnkk9x+x30IVimSqCI3uotlAAAgAElEQVQKUN+8i4qSEnsuEsj/1MGQMTXIajFcXj/ZOKhqflrKkE4buHwSpgWClKS+dQO7d+3gh29/5s6Zj4AloKXSGEIGp1tiw5YtPP7sJBY98zEOsQYwicZ+5azTL2HYqApuvXcCr7+2jInnXcveHQIOsZxXF7/LQw8uwF/UEXQvDQcbKW/r5pH547jquitwKTW43V2IJOsIeL3opo9Mshi/z96IjopIhmEgSX/tmy1QoECBAv9pCiJSgQIFCvxv8H/vtIKJbqRJpFoI+lyktDqcyk5unXEbV115B926DkWRugOgWTqNiR9YsfIlhvQcTnXZQERBxeFxk4kaCLn2PPDI1cxbMB07UaqIQwd3U1NbA2joORPZcbS6JMFd915HUbGXsePORJJh69atnHrqqWRTEiWhTuiagiyW2j0eYhJ0T77L7BCgEmv2sPzbOYwZ14FU3GDWzMW8+I9FgIvW+hBFFV5AZvfuLG07qpjIZFJJ3EoU2aiyK1X82PHiVjGYcr5iIwmW538MnaZZKI4/D/OGvoG1v/1EbU1/KmpqAA+xiG0G7g9KxONJvD4f4dh6ivwdAZctUmDaQpVwhMcfv57RZ5zO/j1ZzjxrNM+/fAenjx5Fx5qhGJlaJKvWvmeTfOIYeS8aHfCgxRQUO/QLxBbiuT/wOTrR0pjhoQXnc9vfL8AvjMMV6GyLdqLtX3To8HJeevl++p94AoMHD6Ek0AsoB9z52HANCIKlYOoZRNltV36YkIxn8fgA+RCz5l3DeeMn063TyagO+96ScQcepca+bjlCJiGgeAUMFExTQRFlLANkyY6dMzQFCdA1WLnqZUaMGMmWbb/y2fIP8XvLmXr1PExDQXTkgAyWVZyfu2BXyhz1rTo6QAoCUVKpKIqsojh8pBIptJxBoCgIlh0RF4s24Q+EwAySjhu43JLd1unM2UbcTn++SkSyh1uBxshXrNv4Df37nUTQ1R9ZCWC7SCvY1Wr2PWmaD0XykYlpyK4wspoBElh6GwR5M/vqt/DKCyu54ZqHKK+uJJM5iNNZiRZ3oengDu3jvvmjqW5TRP0hg5uuepVQoDvxaDO+UIqXX3iOwYOG0b3HEJBcdhWfYLeiWngx8/HrgnA0Th5AwjRt36hQMGBvBya2MHcsjSvDiu+epW0Xk82bN3LumFsQc73AGc/fn4Pff/+V37f+ytgJJ2NYETZt2sqeXYe57MJbAI1wegWjx01n6esvUFN2BXpCozG6ig8+foqtW7YTTbbyj5dfY9OGHQzqOw67aksEEtwwYxSauI39u+GL9yx0LYlBFNWpoGsaybhAIFh5zNA8AygOEMkSizYTCAQxcgkkR4KZd4yjNbKfJxYsxeNtRzjayqy5c7jr3nvQ9AxOxeSO267nlRdeIpGMsvifr6ML+2hT04nzxz4I+EmmfsPjVph97yJm3/eWbSIvbOeTb56hsrw9/XqMAfMEsjF7a3UGNT77YjrBkMH+g4c4fdSFFAVORKAUXStCksEQNARMJETQlGNdxpZ0GM1swCHFWfLBvxg+qhfLvr6TWHMRf7/2J6xcEEExQdjItJmTyGVkHp3zPn5/gM3rf0KQo3TtUcJ5F5xLRXkRzz/zJmNOv5zRp5/L9dfdhdPrB6EeRBeQwEx2QFTdJLRP+Pi768mF+3D5pAWAi2TMhcdbTCYVx+nNkEi0EI2kSaczdOpcDehoZpyHHp5DXV0dzz79fL5y0IO98J20tBoUBfz5PbUJO13NBVTm52MSAQeQxbSaEQX7/2GVHBPWLMM2684AstiKwAFyJFnz60ZOOfEC4nHdrgizIGcliMeb2Ne0iJ5tL8WhdCSb2sHSry5jYL9+HKj7hY5tLkEV+lJWcTyYpWRjEb7+7l26dKvkoUfvpFfvbvztiml4fb2pb/qCz7/4gSsunQVWNZZgYqLRGsmhiD4CPlvbPSoi5XK5YwmmBQoUKFDgf4eCJ1KBAgUK/Kc5luDDsSoOXTPBEtG0LE6ngiKZxFO78bhD9O01AlkuQhCCtneSmKYpup4j9Zvo3qkLgWCQ+x+4i5C/lpraPsiyxMjTxqJndURFZePvX/DNN19RU12N1xtClI8KMAJg8OnyJbg9TsaOOY8Dh7bideskE83cfP3NnHPmhTg9RRg5BVESAcefQgppwIHq8HF8z86oksjb77zBqNPGkNEOc8/dMzll6EQ83iAgE/I7CMfDuFQ3luFAz6ZwKF4kEVA0IJYXqkT7CQQjP0amfTAX7GuWRAEtZ8dOGzooqkF1TWccSoiMVsdFk8bR2Bhh+Ij/w957BllRrl/fv8698548Q5ohDQw5iKCAKIhiQEABE2DOesz5eMScFcEsxyyoKOacUTAcFUEQkJwmp513707Ph97A+ddTb71fXp+n6q29qqaomj10977vvrv7Wr2utY4AkmiaRFNjK/c8dAGHjTsW13SRZNlrZzJTWFaaf1x+NTfffA19aw8lk4nR2LyTESNGIgs6ohwincygSLLXl7V/7kxwwmBJSPuGVAJcCU0Ok7MdQqEyokUi/fr2QVF6ghjANlOIsoVpSxRFXBw6cF2HoQMOxiv+othZEOUSkh02qurPewrlVUiAkXHxhSGT28s/75xN3aAS0qk4g/oPo7G5iXRSpqioD5iQyYCiS8iKn4zViCrZSIKFiIwoiAhIOLbkzQPg2KD7BSKR7rz+2kts3rKOP/9cx6wTz0cUVSCNSSeiW5QfhwyQRiCHgIuAlB8il/sf+gfffv8+za07GTRwCILkwx+I4DoiguhgGp34A0XYmQiiAKIr5tdHDlHJIMsmmdweFFkAIeTFqFsQCkt0qa4iondDlGo89Zqgg6OTyWZRFIF0rg1dLSLdaeEL6fz++zssfeN+lr//OP1rJxGJ2tx17110qxzC5k0NDBk0GM0nkcsIqLKGEgCDnWzd/R11g2qoqelL/54TgTCaT+L2+8+ms72RbM5k6PAJmBkbSXWAlJcGiOqtFxdEwc2PjYlAmiuuOocPPnyD2tpaiiJV5AwBJW+F5tgxBN2ivCxEcbQbgwdMwc2VILgRTNMil7NRVIXy8iIGDeyPIipIkkppSReGDhmJJERoazRY+eNnHD+1K0te/I4jjziDeEcLX333Mr+u+YT29kZ69allyuFz6VY1gJbmBAE9gpnLIEoJ0tYaVv2wke5ddaZO/ied7XFCUZmNf37HnLnHkUqZjD54LJKi4Ap45vICCBhcd9OZ/LV5FYccMohXlzzO1h2riSfa2PGXyKgRE3n77eWMOqQXry67m0PHdefhBTfRv89Alr7yAZMmHsNfO37mkPFD+f33tfTsNppQqBpV8QM6h0+cDgRBjOPSxEefvcbOnXsZPGQ4qlyJLCnIKiBI9O1bQSQaYMP6bWRyIj17DAZ0cqaCLEnkchKSKCMKFuTJPkQQxATxTCvIGsMHHkpQzzCyrpy0qVEVPhpF9GNZKXLSejbv+JpUupVhQ0bx9eef8d2qz9i2+1dqamqorKqkrLQXdX2PQPNLpLMdjDv8UBAFXDfGkleW8P1333HwIdPBBlVP4w8libcF6V87nqzThipLiJKLrNpAE6qqEQ73pLiknHi6EU1RsYFhB/WnvbOZkcOOQCBKOpvBdWWsnJ+A37/fQkkQ0wgY+TUazq/THI8uuoSPP3qOiUccgUdS5te1mANBQnAEEEVMvLUpICIToKZrNQIZHCWFIgbAUcmkHaKRKP6QiS72JpdSEcQ0jR0/0rN3T/bW7+DWm5ewfXOWXt3rKCrqiaz56VvXk+LSCEaunjXrvmPkiIMJhwcRDLi89tpnHDnpRGIxEVVPYhPHr5ciuqDkRUevLV3KqaedjGWZyLL0XzfaAgoooIAC/m4UlEgFFFBAAX8zvEdbi/0P625gf4x4e2OM4q46G9d9zc13zeLFZ78mqAzBNFQUP2TS9bhSO3PPPZjRY4Zz0vFXcOfDp3PVNdfQq8spBHzd6OxME1C7ofigPvY5K1ffyuTR84n6x4AVBrkT180gCKXgKLy85E5mzJiBT6nhrnunMmaMynOLP+WOf15H3yFnghEEpSstzTHKyorypq4GoIAjggVGxkELGzz7zOWcNHc8jz1zMxMmTKC2+gSqIrMglxdZSG3Iaph0LIc/GMi/HTexnd00tq7l/Q/eQRR8TDvmYirK+3tFDFn2S1DcKFgidi5vziyRT5sS6YyvYdFTN3HhReegaxFso5houDegcMUVZ3HfgvPR3MPJpWTUYAbX7UQQAmCFyWVB9Xd4cpCMR0agO9x0y7GMn1zKJx9/ztyTr+KgIRfQ1uIQLdUw3A34tV5gFXuHp1n5Fr+Qp2xQkoCD4bTjuBni8SQVRV3w2kiCGFnQ9F18/+1r7G7cxrDhg6mrHcq+JLzmuImmlRFRe5DoSBKKBA9Eqotx7n34PNZv+ooBIy2OO3Yyy1/5mYMPPpxjJ11EfYNLl6oB4IZpbckgiiJFJRqCsJEnn7yV6upqQsFyxo+dAWJFvvfKAdGgs7mVaGl3ENt4bdlTzJw5m2xKJhjsCa5CLm2i+jRcoLGpgaoqg9UbPmftH79xxuxL8h4lfkBj6RuXcPQJ4/HpZej0oyNdRthfgeSCIKSA3ZhZF8GpQ5RsRFUA1yWTyuALeYTMW+8/SGNLM6fPuoNIqAYjZyDLIpLokaDkPYXARbAUsmkDPeT3PhNaMNJbuefBORSXWQQCAc6Zdx8wBnDImQaqEvDOLXRSMQuRAL6QAqKBu9+Ty8JrXSz2zkEBMqzEh0m7YVCsHeIRikAmC15ondciKmAAMtgmOaOVdG43a//8isrKMn77dT2nzLoGbJWGPQmqqnviGhkETaN1bxOlXXqAK9G6t5nSqi7YWUgbBoGiJi67aib9+vWjsnQIM6aei6Lr4Bqcfd40Jk8awRETJ1BR0ptYi0S0KgJ0cPnlo+noTOM4MGbCGC4+8w0EpxTBcXEsG1EL0dn+K+dedhBPPf4Qu3ZnGdTvdFS9EnI/8fyS6xk4MsKLL/zJwgXvkzZqcQSHiKKR6MgSKs6xYdcT+EJJPvroE06efhN/rN3Axs0/48ZruejS2wCT11+/n+5943zyxav07VfJ159upyI8CVUrYf5td+EQJGs4qKqGLNj5eRaBYH48t5Gy9xCQSvh59Vq2b63n5JkXYGQUNL3II1sFQOgEkrzx9qN8+92nBAMR7rvjBaCbl3Amecoj8GHbxcQ6DYpLOgEwMhVoGiTtbwgpMtAFO1aN5JNAbef3dQv5+MsnCIfDrPltJ88s2gg47O54D79aTUmgFMMOoLmjQN6MQwMixXklZyMOMZa/uYKZM6/21rwjkum0yaQEiroHaWzdyB23zaOp8U8cO8XlV15EfX2cvv2PZsTQaYiIgE5np0E0uokOazdiZjTZlJ+KSgOQECwv3XLXjno0f4bnX3qU884/k6KiIkQhjGNqWKaLpT/K2t9+Z8UnSSrKaxk/fjy96sr59MM3+GnVJs6eM59udYPIAamkRlj34TjQkviNnPIJzU27+HlFkkvPeiW/VrzEuEwySc5MESkWsdjNT79+xK+/fc9nH32KXy2lo9Vk+Rs/EIr29F4aiFk6Wtey8qf3GDd2KmF9IqLWBk4JSElwZS69vi+pTDvPL9oN2WJiHZ1EysOccPwU3vv4w/+603qKyAKVVEABBRTw96NAIhVQQAEF/M34fyKRrAxs3bqe7tV+Zp92BAueOZc+3aeDVYedkpDytiq22c6lVx/NoifuQhbK+WPDlwyum4yDikiKOx8/hXGjLmLUgH+A6JLlE0r8h4JdQjYOejTrPeibQcwsKCEDzwDG5IefFyBIq3n0kQ8pLYauXXvRp/dQZs68BIcQIr3xHs5T3sHsS1EiSTq5E3+wExiKYdajKS4QIN3ZE39ABCXO7oYVbN2yiwnjj0WwK0FyScZbCYZN5px9FLNmz2DalFOBClobdEqLS7wKIJ8+5Bl/m0A7/7rtMrL2du688WtUNQqSSTa7F0URSCRSRKOVpJMZcrkcwYiLIHUi2cO8djC5hcaWPygv647o9PUmRUqSM2KoWjmYMigWL716M1v3fMG4sRN4d/lKHnv4W0x7J/PvvIzicpPDDp1Fj8pDqSgfCkIDHuHlB7cKhD2sXv8fHnjwbqq6lDDl6BPo1asvvbuNwLL9yJKPPQ0v8MCDtzLukBnMmnke8bhAOFyBi83Cp++nV58Kjpt0JqKbbzUS/gBCxBLtfLvqVSZMmEhIHcq7Hz1MRWWWZ559gUzax/BhR9JYH6Nr1zquveoWTMdGEEVkGvD8m8LghLn7zkuornX4ftWnHDJmHGF/H6YcdQa63BvbcbFp9RL79pn8OALs8zjCUzHFEs08tfh6jp8+losvvYBJE0bStXQY58x5zIvxk1Mk4m0ofhVXCKNKEVwD6nc00966E3/QR+2QQZjZNIquk+xMEYyEQDSIx+r5fd3nHDZ2AkauCE0tBURcFxKJJOFw8MCiAo+3kcDINjB9di+KyrOIIryy+DUwh4BQA5YP08mh+D33bNdJYVkGiqoSj3cQDkU91ZOT9+P67wrU8fblACYt5Jy9+NUImD3BBUk1vT9yNI8k9AFCA1988Tzr1m1k5456HlnwpHfItoHgBsCJsOHPLbz36QP06DqIU0+9FSOeoT25htffnU+/umrGjZlKKHAImMUguyDsAhoBga9W/MD4Q49HFMkTa3tZ+t69bF0T4p/XvM6GtX9yxgUDueaGORw5+WA64tvZuvVXjjryfnBGYxqQs7IEQhLtjTHeWv4YFT238sVnK1n4yHtgD/K+emYTN958Ht1qdOaecS22WURJ6UF4T40ZBNeHmQElbODYHXR0dFJSUps3mG8C/KTadQLhLuBCJtWIL2oBe3nl1ReYc/o1QBTsEhwbHCfvMZ33pTpw8Uzxx8ZlrPjua4476hxqehzqkUb7Qy8NPP8mHY98MoEUGaOTZcveYt6cf4BbBLZI1nC4fv5JVPcVmHbs+VSXTyFnJb0kRzSwZZ576SG6V+f4/edtXHvNs3kz9xSLn78Yk12sXr2ac868kl5dzybo64IgpQHQgznAor0tTnFxxOsHIwR08tQLJ5BMN3PNxUuAbrS17GDa7HG8vmQpXasmkDEi+DSHRGotn36yjBUr3mPho8+TNUy27bDp128idk5GcLw2wk++u58PPn6FtT8brPjqN6CFeDZNSOuHIDTkT1yDrBnjmadfwLElrrj8DnDCJDtzBCM2ODFQXOxskkcfXcBV118FZPj9j3dY/v7jdCYTPHr3J8ChCLYIkoHNj0hkSFsWrz2/irlzrkLxRQ54t+2DkAMhAcRoj9Vzw42XcPbcC+lZM4CKqpFg6uCksOwUi576JyXlAvPmXEZDg0tVVdjzNxPjJGIuatG3/L5uJaMHXcv2TZ0UlaTZsHEtZ5x5KX9tasB1ZARZ379rVyiQSAUUUEABfzcK7WwFFFBAAf8HIOyrRvdHpHv1z4YNq+nTrwt/bV7DoCF9KSmqADGLqKdoadlOLLabPfVbqKrsQW3tMJa+9iivv7GcqcdfiYCPPU3rEQJ/MmrUKILqEFRZxa8GwC0HW0CWyRMyLl5qFIiyTCqRQdVVulRqvPXWYvrVRdA1l+uuvZO2eDMfffku/1m9hoOHT8Erztz8hmQsw0SULe64/UY64zup6zkLWS3OfyMfihIk3mGSc3byzPN3smv3dsycSa9ew8AxyZkZVA02b1tLv361FJUUo0gRfGoFAiKxDtB9YFkGomJjWwl++PkjOuK7EZUYR4w/C1wVO+eiamEER8PnL8XMWmiaiqbLuK6VH+NyEGHHrp+59Io5bN26hcF145AEHy5pREVCcFUEUSaXyzJgSA2Lnrifa6+6hSOOOAFN6kZzy0aee2EhD91/F6Vl1URD3b1WKtL5cVFB0Mg4e3n73TeoqCymd58aZhxzIsXhUkDFRUEUBB5+/Dx0H8yYei6hUA2a1h3X8SEIMr37dKW00odrSvh0hfqGdYRCITrizUTCIQK+rpQW1ZJNq3Sr6sM3K94gFCohGCzi62++p7a2D7pfY8DgWgKqTsaKY1jb0aQSIAi2j1eXPkP/oX7+/GsV11xzPbW9x6L7ikESEeUkkix438n14RhBzzvFkgGZjN2MIoXRhSC9qyfSq3oYH3z4NDffdBPlJT0oKxoAhu6NjVmMbUcQbN1rPxHgpSW38PWqBWzZvpIRw45GU1VESQVHRMr3qGi6n6rKcpAUFCmE47rEE3F03Y+mqQfIo33/yu0gxPnqm2X88sf7nH6+H8Mxuf/eN5kx5SRUfzHJ1iy+cDB//ioIosOuXZspKgojShamlQRBRmSfUi6/bRusnMeLCSLIUgBNUhHx41g6sgKm24koWLiODyVfQze2rWPhkxdSUq4xbtxhhAPlBILVGEkVWe2BnfHR1uzQa0AG04rTt3Ywss/irnvPR/Jvp25ICY88eid1/fohOEXogSDxRD2iCpYDrhWhvGywp3IRQkAxg/vNZsyI2Th2lj2xlxk7WaUztY0xB82kuGgEoh2lqGQMuWwY24JEuoNgUMLnj9CvXw+6dNdx7SCVlX3w+StAbOLFVx5k7fqfcUgwddqR+IMyCDqxjjSoW1DUAIKrI8g2ggh+fxiQQWji7Y+e4pdf36a8IkqkKMS2Tbso71ZFLp1EUkMMGXIMVrwcMxtE1kGQwHItZNVFEDN4pFAahBRgUlFaQ88eg+napS8IDo6dwXFsOjta0VQNQQyAYJNKdmCZORTVj4iPgXUjcB0FUdJBEBBEgVhqJ2lrPX5/kF7dxqEoKo5gYjkpJPz07z+I6p5RYrEs/XqPIZ20UVSXIcP7UFQcZefOFo6efAplZf1QVB1Z1JB9FpCgM7GNJxZfTyyWoKmhFV2JEgwWsWPvh/y1eT3jRs8GM8KK775k2ME+vvvuR4YOGE8g0IV0Nk7Qr5BMxkilE4wZfSSy5KestI5sRkFXZCQRHBfCpWmqayooK+3OQcPHAFk0Wce0QRJbuPO+G1jy+nNMP/5EGhpbAIVhw8aBo2LlRBRJAScIcg5RlqgbMATdVw5olFQobNn9Le98WE9rYg2HHXwW8ViO1Ws+5KMvHqeysjsl4X4MHzkJ0bVwXRAEAQQFJwe5rI2sKHgfKPj0CLgugwaNoqKyD7hBEFSQJURVZMDAGj765D0GDa7jnfeW0aV7mFCoNwg2mhxBkHYgKBZhX3/WrvmDpcseYMNfP7Hpr+1ceun1ZFIWiqofYI4Ex2sFLqCAAgoo4G9DQYlUQAEFFPA344ASycz/xmtlAHhv+WImTKwjUhwBcix6+loWPP4Vs06Gdeth6pSDmXPqpQSUgwCHz1fcxcihMyn2n+jV+kKWP+rvZP4dd3H6jLuYcuTZBNRKb1f7osuVDIaRRNNL9u8XFxJtECpP8dyz13H4xDGYVpx+/Ycwe/bJPPnUs/j8PfDrgw9sJ3+3yCTTqFqW5/79GOddfApka8nmQA+ncOwEolBJojOFGqxn5U/LmTh+Jh4RFQEkcBxyZgdfr3iboycfiecjEwUhjGPFEeUssUQDgUAIWSzGykk8/vhjVNdUMn3GEZi2jSIFgFKwvZjuXMZLX8uk29B0yfNsAch5rUgPP3kG5118LLal4uMgNLU7Lgau6BLrtIhGghgWmG4jfjXNntZ6epTWEY8FCYcdmpu2UlFZhpVTkIQwgiiDuE8l5Y1pxtnE559/zglHH39gnlHw1AhBcEW++H4+R46fAPQEorQ3ihSXhXEcyNntaLqBQAuffbuMjRs2c+EZz6D6RNqaO4j4uiPrgNIOboCV3z/DgIEDKSquYF87CcjksJHQuOq665g4JUA27ufk6ZcT7wih6jl0XztgkDF0fMrQ/Lx6pFs265mH64F9UjAFTD+OIODKKSR85KwEgryBJcsfpDP9HWfPuZQQg4GxmDEbJVQEroKZE0kmIVoEgtzIJVf3Z8QhBhUlAwlyHYcffgI4qsfQALg5crksqk/zUgTFfSlmCqYl0NmRoKys+wEVCpBONeMPFpNojyFIzQSjbSx9fSG9evTh4/d+onu33syZezmafyAHjGKSQIZt2zawZu1vmKbB+LHHUFU55L+MiCOQKwEXLCmJ7SSRKEFEwbRcVH8Mgcx/jbuEi0xHe5wvvljOiNE2b735Addd+QACNTjpCKIm5fefwrWSCFocx44jSi4ffPg2g4fWsvT1xcTizVxz3QVccNHVlJSppDM5rrzqUm64/jFmnngUA/pOYuMfCc495yZwFRr3NiGrWUynlarKKOk4+MNluLkO7n/kbM6/aAqfff4hs096F9vylH6ClETEoLlBwR8UCIVasK0gjl2KLIls2bmavr27eelyQpynnjybXbs3c/fdy8HpA2IT0AVMH5blICseyZxLgRqC+safaUm9wH33P8nwoQO49tLbuPn2G4nFOhg6cBLTjrqN8kB/UMEQXDQdEPOTus8nCw4QA/s6pqROsrld6KrCvsQx19YQhEj+mDy/o3TSwR8sxUhlUFQZx80gq/vO6RyfrbqHutqxdC85CVeIk8rUE/SFMDJlGFYT4VAW8FG/UyAaqcorK71WuXiik3Co2/5zEzQeWDiLivIuzDvlFEw2svTVHbQ2wlVX30SuI0xj4k1aO3bRr2YKPrkG0S+BsJNXXljGnLk3er5wQoZEYhdbtqzju++/4B+XXQ9oZLM+XCuCz+dJbOKp3YRDe4AMjy9+jUvOvRVQ6ehMEI2Wksj8SthXwtP/fpp5c87Hp5UDKo7pQ5T85NIQS9qUVQpAEzYmEmVYhi//0sGgMfYtncnNrP19BbOPe8LzIBMbgHXMnXcWhx0yhaMnzaWiSxVasNy7rhMAWwcxT/buU4rh5NeciJm1kYQgoiyB6ORVZK388PMnHHLwSOo7fmPRoie555avQXCItSjc8/jh1A3qyhkzFzqq9JsAACAASURBVGJbFgaruPOuW/j30ztoqo+BGz5wjxLAFZz8abOPDS6ggAIKKOD/axRIpAIKKKCAvxkeieQ1xHhQMFJpNL/G3NMP4/qb5tLQuIdJk45j9ZpVrPj+Y6JFAaprqhg6dCh33HEXZaVdufKKq/ArxUAvrERfZNmrt55//TZGHtKV2j7DsMwgQroWWXTQQ6Ln2eN6ZqkARtZA00swUiaaGgQBzFwcxa+wn3lyAFvHsWVEzSvYcybYVhZfQMZTCXiFODi42X4IehNetLkIbl+PrJJS4KZwzXIEGWwrgSSHcHJ5Y145ld+n7L0VFywQNnPngxczeNBw/L4SJk84E9yuJNpNgkEFQbZY+Nx0tmxbw+ihczj95DvAkcmmLPSQiGmkUHQdM5vFtk10rZhMOosv/CePPPMPNv65k6cX/EI2EUYPaXR0pkHwEwyIiBLkLAdVOTBPOUNEylu0qDq0NmcorfSBCHt3b6ZrjzLA4Mgph7Fo0dPU9a3DxkXKF5deceXb3xaFZAAGtmNhmjaq6EMUdS+hTvSGH2UDq375lFFDp6EoETpbJKLRCJ6xUD6DW2gBx+9Fq6la3jvJK5ps10QSBFxcHLbkba91DEtFk8vJpF18viDppIXf73nJpNON+APl3gEIWW68+UxGjalj8pFHE/J1JZsNoWmlnqBNhFSqifUbfmP48GoUyQIsHn74di6+8HReee15TNsmnra5/vIFpAxobzJQxRwVXQL54wwCZeD6sLJuXsmRBQR2bWuhR68enDRrFFddcz7tbQmmHjsLEEinbfx+r8UNJHZs/43LrzmJ4cOH888rX4F0GbIGm/Y8ws6mt9n81w4uueB1YAjJRCvBUIhsJonuC+BVnWp+ngAMXH7DpB2RYsTcaOLxTl556wZWfP8JTyxcSlQ5HNkHj71wPCtXfcXkcddx0ozTiWVXYzkxenUZDc6QAylXho2g5p2ARXjy6Ysp7bGTCZPqiNgXg1WBFnXZR3548+gArUA9rfFGVv3wE6MOGkdVSS+ypomuVABh7GwAxxYRBbClJKpmYVs5JCmCaa7nngcvRfZt4/rLnwKjN67eG0fw5w9lPQIqotPXm1PJAFtjzw6Xbt0EDAxEBBRRZcP6VVxw5VjGjQ8y47hT+M/KHFKwigvOvwVcjWTmD4J+lYaGNFWlowCwbANZ/4m22G62bt3O5i1r2bH3R1as3M2sWX2prT6ew0b9A6Qwra27KC0NAi7bd9RT0/UQkp0eEREq9pZQIr4XQXAIhovYx2gvWHAndQN7sGTJyzz774U8/cwietUMpLMjw+mnXkGs3UBVVXxBhdtuv5zjpk7goOGH4aUhtuER2zLX/+s4giGNW659GY/w3UjWkVHFLohupeefpoFtO0jKvomVDxAlUic27/PDT52MGz3NW0O5Gu8zLQl2GiQJI9WCFrCAKBAlUR8kVAqZRBpfkU5nRyPRkhAuJr/+9jP9+vUnFCgC/OAouLQiiGnuW3AJ111xKVnX4NijT+Prz7aDU8buHXvp3rMKy2pEVrzv5l1/8sll7n8lXAptZOwUPimKjYTgRsimvM/8PkgkIRKB9vbvEQlQVNwt/z93A9vZ27CeV57/EF2rZfOevygqKuOOfz3K1q319O49EMeUEeUguYyB6vOB4AVJeMeR39S+sALi+XtJgt82LeGpJ//NMws8vykjESLOMn5Z/RVHjr0K23TQ9bWcePqp7N0BK79uRlbKDlhoAa5YIJEKKKCAAv5uFEikAgoooIC/Gf87iSThPfUajD64lHc/WkhxpBpVmuyRBIIJVhbbTiJpIi+98BTzzjzD8xXpCOOLVIHUjs1eJPzkckVYbg6/5sclTC4JseQmIiU2muKSyej4fEEgw79uv4LJE0+ktm9v7rvvZqYefwaHjD0Wy3YRpBy6JoANklSEkzNBTeNiI+EjkWlg2471NLeuYeeudWzeuIltW3Zw1tyHGHtEX778+j2+/vI3Hrz9SxQpiKhY+eI0gGVAMrsLVSrHr+sHBBz5hKr9b5KlJC+/+iCnnXYykuAjkxZQxFJkTcsXHJ0sfOFY+tR25dhDbwEGgqXhuAai4pnLWgZkMy7BqIqVCiCIYCo/8Z/f36Fb1950Lz0WWepCLN5OJFL8P+YJAZKpOMGAj3QmRsDnI5FqJhSI0NboUFIZoL1jEx9+8gozTzqVZLqFx5+8j7PPn0epfzq67kcUpANfbl+hue9O64BlA3IOhySpdAOqpBLwl0A2DJKMaYLig872FgRtN5FQad4QWgF8YFfQsGcn0YjXSucLdcHKQiLuUFQmkjVtdJ+Fi0k2GcTnB8txkGWDlpY0ZcUl+dPQYc2Gj/l9zdf855cPeezBd3CcEJ2d7bTHthAMaxRHK1ClPmCFcYF01iAQ3EyWv1j+/jK2bWqkuls/li97k8GDe1Pbs4qVP6ziyadexSVArDNKNNTLMy7PAroDUjyvaugKbhAzm0ZQWrnsijMQBZXHFy0DW8YR9iCKFh2xVh5//Em6dunOWWdeAEjYtsG8eWdSPaCebl17oUoVnDv3XlrqW4hGdG6742Ju+dfFaP6IN2b0Zm/DLjZt2sTBo8YSDFTiJQ8eMC+/+57zOWhcgK3b13HI6CPpWz2ZgD/ENz8+xeFjDuKQI0/ju/c7kX0qC58fQY/qLgzvczXlpX34auWzWNQT7xCYO/uR/GTnABs7oyBRBqoM0l7efO9q3v/kdbqW98VM1nDmaf9i4NCRtLduobgiQyrbwLvvfshff7Yw/7Zn8JSL5MmlFLCXK286A9PKoGt+rrvubmSxluJALbm0jOrvBNbhkqG+oYXd2+IMGjgCUw0Q9nflr52rWfjU2XSrGMjN//gA2wRJS+IaGoKkgNSMK6RxXI3OjhSBaJyWjjd5ZOE9+BWoLO2PYQ7i6stupy2+mxdeu4auPaK0N8PF817CI2IywDagCCgi06HjKxLZteMXdjf+xHPPLWbx029gWllef3cB0RKHPXt34te68udvNvfd86ZHroQ8P7bOziTRaCW4FslUJ+AQDCqAhU0WCQmHDCJBDNNGU7rQ1pygpLwc10mwcfPPfPTJGzQ2dPDAPctxTQMj66CHW9iwazFbt25j94YacDWaU59z7pn3Ulo8AE0uAmRSSQtNkz2lTv464c2Jyd0PzCZQvo4zZz9GxDcC7DLvUi8A2jYWPH4OOsO58JILWLv5cZ577gUW3PMBnXsPwh90UCN7yKV8qP4yEASSyQSBYICskcZ1HPw+HzgWiPX8tu4j9jb/wvI3VjL7pPPo0a2WJS9+y603Po0aAOSkpx5zPdWVmQFln12QiJfAhkPOTqBIIbKGhK7pZI20d+3HYb/33f6AzAZcS0SQSkCI8chjU1mz9gcevG8RWzaIPPr0ffTq1Yf5/7qP2259ANuSuPWWe1HkEJIcYJ9C8n+DAOxX6JpAhrT9O6+88gpnnbwQRRPAjbJ4ycl8t+pjXnziz/xaXs+6TT9w4rQb+GtjwlM/sc9YvaBEKqCAAgr4P4HCFbaAAgoo4P8GbBPHTDN9xnFUllaiKgFSrQ7YGm5aAjGCpFaAW8S8eTfgFdzd8YWrwIVt235hxuxDueuBK1BVH36tiGTKxs6BpkN5ZRhNcUibrfh8Ufb5MPWt7cGwEf2oqIjQr66YsROGo2sKAb+OX1OQMJGkHGamEVG1EMki4WA4CTrjLTQ0bcMXsFm9ZgWhiMjMWdM49thj+fTTT2lvb+foo6ag+YOICiDZpFJ7QEwg+zNEi4P4Q/oB4gj+51tpF8y0zoknXIAklNPZkcPnL0GSxXzbQ5pde9cQ8If4/bcNuEiAhGUbiIqD14aUIWN0Eoz6sXJpZA1sG1xHZfxBR9G1qheyEsTOOUSiIe8NueCAYGHmkqSTHThWBoEUmpbDdBsIBdJAGyWVPiDOLfMvY3f9ejZs+p2iaITKqnIiUT9+XwhR8NpsTNM98N32fT8B0lk8BZkr4DguReEogYDmFXdyjGS8GUWGHZuSREuK0DU/yexuTjhpNC1t9YBIU0MzVV2r0fxJfFEX20whq1BUKuI6oOsSLe27SFtN+PJew7IgguujrNRrZ/IOLc32neuIJZuYN+9MPLJCo7i4C+Xl5VSWlKJKIi3Nu/cfvz/gqXaa2hvZtGkDp50+i8bGeiZPnsQfazdx+GFTGdz/MHBDCFQTDQ8gm9TBBdtq5+cV/2bpS7fz6ZcfeNNvWSiaxO133kDv2gq6VYe8eZRAFIOAj4cfeoxRBx2CYXgkbCLZzEMP38sxx05k1NhyZNVgxYpvgTaWvHM5514+jOqepZw57zImTpjKq68/ANg8//y/2bZtC6+++up/TcqBc1CSBer6j+CvDY2cfdYNfPLp2zS1buHwMUeyuX4Tld1g684fiXVsp6MjxoaNf1LdowxBzHLc5FOZPPFE5s4+m/bYGlrbVgE7uef+s5B8SU/slAOsIjSxhnPmXc5/1mwmWtHBN9+/DcQprtA564LJHDttOpFimz59e5LscMAJY6RCXssnIbbu2sao0QOYduIENm3ZwHU3ns93Kz9lx67NqBp4REAJhlFM16pJfPzx5zzwyPWsWvU57bG9fPXlB/TqVUlDw1YQwDIMoBNBawW5AYQ2BGQkIUBRcTm6GKEo2p8+NcM5+8zz6GiP07VLDa3tHZSEqzntlPM5aco8IqFKQKattZnm1t3cPP9iXnr5SdLxBIJdCrlienQ/irEHzeOoI86mfncOVenGjOmzGTFiBPX1exg79lD8fj8g0NnZiUcyOESjPbzzU7B5/6NXWfb20yxd9izgIhEBysjlvJRDTYkCIiXl5d4siyp1/YbRs6aWgD9KLhNHUC30sETGaOPfzz3N228vp7KqlO7du1PXfwivvvImmuypo0wrQyAg4zgHTpv2jiaymXYgwQUXn05tn6EsXPRQfpLZZx8HmFx2yYU4rkEq1ciqnz7DERJ8//NyIsUuaiQD1KMGJLLxBCAiKxo2Arrmw+/TyGU7QMxw4UWncsut13PJpctIJWyOmnQiA+tGUlFR5hFIIsRim8imO71WWzyj8v95rfUe+1WpCMeR8GkSYKJqNolMK/FkM5630xYvTdEF0Mg5Etie+fi4scdR228opUX9GHPoZGprBxCNlKAIPs455xwOP/xwWltb8z5J/2/eRCLsV2368EvdPUWtBZZpEu+IISsSFRVl3sBbMhCgoqQfro3nxi6K+69P/3O7BRRQQAEF/F0oKJEKKKCAAv5mHFAi2RzIbM+xe+d6brntZCYeXUP/2mHcftPH3PLPOxk99kiwJcwUKP7Q/u3E2vcQLm5DkKuZcEQvlrz5MAFfJVHflPwbZhPXCSM4gLyJ+x+9iqJoOeed8YyXtCU00Rr/idJwF8AmazSja8Nx6YKDiEsbt951LvHOFiaPP5ITTjgTy5WRhTIcW0OUUji0YbKR1994llkzTsWn1AB1vPPuU0ydNhGJErC91of2xE+89MYN/PDjtwwbMpaxo07n0IOnIRJBlPx58mZfYl3eJ8rxzIxlH56BrmkiKhoIKUyzncuunM0dd19LWbgHUIeVCiD7LRBaeHHpfARUhg0Zy5CBkwADI94NzQ85ZwdN7WvpXtkX26hGkv2eIgaDb758l1vn30Tf/n1Z/OzLGEaKX3//lnfefpmnFv/MoqemkoyJTJ9yM127VrH0zQWcOvMkoB8QwGvHaMB2apHyZkymZaLICgdkVl4FaqNhWzaq7KnRTLsNRUqzd8+fXH/jOVx19XmUhubRo6aWTG47Pl+IE2eP4dWlz+KThgMasY5WItFKHn9uFFYuxIjBpzN+7LleS5wAq9d/wRcr/k2XHhFOn3oHuGX72+lyFghKB7abRJdVYskckWAIxzYQ3Qrv7yRA2so1t0zjmGOOJh0PcMxRFyKJldimiJGBQAjiiWZ+X/shAwZ0p7S4Ai+lTvF+MhZIJTiOH0EEQW/irLN6MH1mFd2q+1NRdgndKsZ7Jrsk2dHwCY8+cQPRSDHHHHkeQ2qPQ/d7CXV2No4kW3jO1QZgkjM6UTWdx145jn49J9O4x+GkGVNpaP8Qvx8+fvdnvvpsLfPOmkzXmiq6l95IOBzhgI9N3lPH9edTpZy8p45KrLWVSLEfxBj7zHg+/nwxbdmPeO35rTz60PP07NmFO++7gqKiErpVjGTGCfew+KmHENUW0u4qGusTHDxmMD/89BVl0WHs2ljMgkVLwZVZt/513vnwWT5b+SV33X4SxYGx9O87Ckn08+3KZeyt38HME89ClWrAqfVEGvnTyLIhkdtBUUkGsEiksyBofL3yI6ycjxOPPRczB62NMaq6dQEcHHcNotTGo4+9xcD+Y8nkGkg737L657+47ZpPefqZRWT4lnh8F68vbeXqiydz0aVvY2cDdKazRMt0JBHaW9sIB5LIviRQBU4xsWbwhTOo/vwaNkVsx0HSO7D5ioWPvkrv6kOZeuR1CCp54/J8a5MNyXZw1Z08sfg66ps2suDhpxAYDDmv1dYwdoKQQdP7Yxo2ir+VtLkFv6Lz1ntvc9IJl9PSmKWspDu2k0bS8s7oFqTTWfx+v9dapzj7eQUn18E1/zwORQpz260PouvtbN61hr49poHbk9aWLXy/chMnTDsRUTTJWTlUOeC1gfoVwCBjtuBTgqTTrfj9WaCIts4dlESrwekGYhseoaQBHXS2xomW+tm693WeXfwYv/zUwkdv/8KS15+guCJD644Kzj7/DhAkUtksmq4jYLB915+88vyjpGL1PPDwg/zwnw+Zf9cdXHrWffz2815uvesaQCQbt1n9xxcsffdaXl/SzqknT2buaZczcsQxB3zw4ACZHXPwR+PcfNssRo0ZzvSjzwFqvDkUWkjkfiGklmMxHNsGVRIBk3iyEb9PZvfO7fTq1RewsOwksuTLb1ymqbGZisqegEa8PYnfF0TWlQP733893Hdc/+2BZWLb9UhCNYhJQMPkfepbt1GiTyeo9wEpg53tZPYpc3hr+fv5OD9p//b2xVcUUEABBRTw96FAIhVQQAEF/M048FBr5X8jsmv7X/ToWc77Hz/If1YvZdxhI6gb1I/K6FAU9xBweng1iASJzjZC5Sluuvkkzrv4KALSCMorR9LcvIfy8t5ceO6/6DckzJX/uASXLgiODmITi56+nQsvOAfFHeHtWknx2DNzkRWo6TGQKZMuALcbrgO2C8gw//bzGTy4LyfPmIWRltD8XcnERXxeQJdXd4sbEIhjOSqyUAu5ACiQTTchSQqKWoyRTqCFNmPyE5ddfzHzb7mHyuDxZM0gbk7H5y/P+/sYHHDN9ZQwADimVxzYYOdA0vKDKKawrRSSHALTh2uC4DeBJpYuv5OTTjwFwQ2iCJWYVhrJrkVU4ZGFF7N125+cMe98Ro2chmuBIHt+HKedfjj33X8nsuR5h6z84Qs++GgZR0w8lGXvfEBxscj0qRdy4jHz6Ww3iJZ4BZGVrMA0wBcC1AwOFq4jIaAjCqJHkmHieUV1AiYZ0uj0Z/HiJWzatJpetTB58hieeuIJ5p15DJ99ew/ZxGhGDJ7NccdcgJFtQ9NLsLIisi56RJErcO9DpzP9FD+7d8U5ctyF2GZ3ZClEzrQQtHYE6pGxsEnxwtJv+OaLDdx204tUVhUj6a1ookg668Mvl2HaoGibgRqwFBAgZ+9CVXPYroNEDUZSQg3FyKZVVDGIpDkgdPDaW/+itDjCxvX1nDr9FkQnzuIX76ao1M/xM8dz34N3cfiEI3jvvTfo1lWnskLiovOvAMaTTfZBFHyogSzQwK7m1ei6Tnm4jnhHlHC4BhxId5r4ixWsbBtPL76Hqq4Rvv/+ex5e8ARke4MM2XQchTCi7aVXvbz8cg4eX4TrSAysmwtODZlME76AgmHE0LQI+9t29rcd2mDpXn2rt3PxZWO47prbKYuMwBdw+OCbGwjqvWlvUpg543KQmoA9pLMKqcbRlHWNks1uRw+t4f573mTbzt85+7zpHDxyGjiVnuEwLbzy9rUcNLoXOzZpTDniVEDBRURwuuNkinBsPAN1CZC2eFcQpxtmVkUQc3z4+ZN8veJd7rntJXy+ao9ckjYgI2JTjGSV0dFhUFRmAX8AJWCVk8m4+EIyqfQOAv5dgEbzniLKu5XyyKJJ1PQz2PzXbqZNnsnLz8a488HFQByXMInOKsIhhT17fmPuOSN58cVl9OhyOG17A3mFnneY8+bOoaRLM30HRDnlpMsJa70xTIdAJIJHtqbza74CJ1GCKEPW6mTDpk9R/QleeOlJHrj3PXB1Eu3buH/RHEwnxd6dMi+/+CVeO1OQbCqH7t+XCAnt7S0Uh8oOKFJE8n+jYuZA2Xf9ECygCfiFRDrJv25+mL79I8w6eTrR4BAU4TBwRWwHLDGFKBmk0wY+pQjLcvD7dVKpFh5+7AqK9KFceukN4EKyGYIV+X3k7a0Q8stfMUHIkOpsJBAVgBTJdIbTTp3De+++RTrbxJfv/8rUWXP23x8MR0IVA/mXD3Fuu+0ibv3XYyBYvPTqzcw5+VZsoxgl4LDf84hmPv7+Ru66432iIUh1lvLZx3+hyEX/pYrMy6kcEeQdmPzEdz9+xcQx54M1HFyR1b9/w5c/3E/P2hqmTrkFnKq82MdEJE5Hh0xxJEIi4RKKWLiOs98b3zEN0kaWYLAoTyizP9jT3X+t32dgtM8zzlt/wj6+XUp7fm+SmfeK+wWDNjRGgV1CNmmgBzVOOXkWry1bSiqVJBDc53EmemuJAgoooIAC/k5I8+fPn/9/+yAKKKCAAv7/DGE/i5T3yXEEdL0I23b58ZfvSFsxxh86g57lM2nraCLgKweK93MrmgId7bv5z4+/IQrtbP+rkQGDjyAQKAInxZo/PmDUIf3o2WMkAhGyORdJCHHwQceBYCIKLolWHS0g8vWKh5h18qH06d0bTR4BgowgCAgiiAJMmnAUg+pGAjqyogJJshkVTZa8xGbVYFv9Wzzx71vZuWsbg2snIDqeWkqWg/nWsyyyZoLgpf5sXttGOlZE//6HYztBjKxIW0uKcCiEV324OGQRyIErkcvYpFI5VElFEDw+SZTANkCUVETJx74qTZABMQFkqaurxTKCaHIFyYSJz6cjyArJ9Ea+/8/znHvORQyuG0kmV4+iWHh+LQKhIosRQ0cTClZy7/13c9yJw8nm0vSvG8J3P67ijHmnU919AFVl/dF9xeAoIPoQRVD8kkcWiZ4puWkKKIKGkQBZ8t7Mt8XW8eGXD3LeRZfQ1Pw9hww7n4fuf4CO+GoGHLqOTz9/lcPHH8uIQSdS2q2ZWcddR1FRLQGtBlkKgyPyv9h7zyipyvz793Ny5apOdCLnHBVEgiKKBAUDKKKOCcOImRHFnMcwglkU45gTBoz8VESMoKACIkGSDZ2rqyuffF+cApy569775j/zW+uu2mvVYnU1dfrU8zznW/Xss/f+irKC3i4hCwJ6Fr76+nMmHXUC/Xoei+D6ECUV3AySYnLeX87ipBPPxjIVZCnF9z+vZPwRI9m0aQOHjhiJLAQABVlSEUQZUXTIJF1EFERFwLHT5PUMqhZDFMJAEFkREXBQZB9iYQ3jBujVeQS9+x7BkD5jCZdX8/7bLzDh6GH06duJ2o6l7Nm9kQF9e/H8M19yz103sq++hZxucNcd1zNj+m2kEwl8IR3HrcDRu1NeMhgIoqlVXg6MIKFIXlczG/htx9eMGjuIDtUdCAWqke1qZBUkRUAMpHAQkAIyQ4dPoSzWl8rK4eQzErIYRvFJQA5ZdoAA4EdPSciKDIKEnZURJUCr54JLxtJ1YDMrPv2UGcddz97deQYMOIyetacyoO9kTxXlaiB0Q7SrCZWrIKWRZBBEP2+/ey1zL5jCxg2bGDLkdHA6YWVA1HIM6DeQDuHhdO82jqSeR5RtZGRMwUZW/YiaUigVDmDgujKCW4okiRhmit2NH+IPtzGg7zgwS7BSMqo/5l3rpKjfF6eiqkMhQ0wHNBBDKEoEBBtV2R9G1o2g1htHVzh87DASuZ9IJJuYPOEarrzqPvJ8R2tuNV07DySodgcBHl1yMb36h1j52VdMOmYWgbAf3Ix3gboSe/etpf9QjQ7lFQweOBNRKkX1BbCtnDe2AATIpx2UoKc2yuRFunYbQklJBY3NdfSqPoL21n3cfd+lhCu20NQUZ/vOdrp1z/PiS08xftxEHAxcZERJwhVACfiQLBEnC4IClpFFUXxezJroCZ8c0cJFx7JEMslyIuE+PLH0KoaP1Pj6uxWMHXUurluLaYOogC21Iws2PjVMpl0iHPJDDlS/j6VL51FTG6N/3x5oShlqSMR0GnCFHKIQPMDVrF77AW+8N58RIwYiSK5HMItRVKUEUQzQs8cIXKuMgcP68tu693jj7fv49rt3GXPYRBJxDb9WSkurzdSpM8CuBaeMAYOqkeQkltyCZfiR6IxAEIQoNTVlBIKbMXUYOXIWXbochumK+P0qv+/4kT92rScSdFF85Zi6gCJXEQ31wu+rJKe3omgm1bUSjfHt1O3bx8jhE9D1MLIgIQgSruDg81sIgo2kaOh5CUWWC2o+GUGSUFUfhmkgFUj5tngG1eciChkEspjE0Y0MshRAcGUERBy7kLcv4DWBcAUcQ0JwBJBLkelAJtuEqlnIPj+5nMUbb77BjBNmEAiGONh6sUggFVFEEUX8N1BUIhVRRBFF/KdxgEQqSPjdg89t/O1L+vWLIiGRTmqEIh29HY9gcsdtF3HK7Ml07NiZgL8H3636ip11yxjY9wgGDZ/jETBChvUb3mXYoMPI5mtQxQ4IamH/KYArbEekBIwyXDvD6RfFGDf2MGafMp+S6HT+n7MjPBVNPteEKnb0vpqLYNgtXHX9BB65fxHJvEvEdzg33344O3dsZ/4Vt9K3xwRMU2fRg7dRXpPhg0++5rLLjyKXLuPo8c8VMRMnOAAAIABJREFUwnANvJRlA48M8u5KZ3J5NFElb7Rw2pkTyRttfPLhu6RyBlF/fyAGVvBgpzMKL1XSmNY+lj53B4ccOoRgMMSAnkfT2lBKWVUIyNDcspWK8ho8G1MMTO3AHFgG7Kz/jC+/eYOfNn3MwgX3UFXWHZEQ69a2MfzQzoVzjYFzMIgbwcG1HARJLoy1joBIKmUQDgYLxFIOaOb+B67A0Ns5dORYJh5+JfmsyNvvvsScsycW3oyfD99/hxVf3c0Roy/lxBnzSLbpRKI1AOhZEy2gkE2nCEQE9iu4nntqCa3xfcxf8DfA4fTTTuXOO+6lrLSGcEkFtluPblgocghFqiLT7hAMl/5bC+79Y5khk6kjGPTT3FpHRVkXwIeZV1GUME4+ixiQ+HXD53zw8Uvsq/+DxYuXkIxbREo7YacVpIAL7l6QMjz55G2UV5TQXB9nyrEz6dyjP9dfM4/aTlGiYYHm3aOYd/mVKNEEhh1ApQO2CTgOkiqC5GDbBrmsic+vYhg5AkGblsQOymMxmpN/MGPaSTz55FP07tUXRfYhUAL4wAmCXSAg9y8x+SCp4uYUrEKAuWm3ofiyhdeVgZjEsHehSrtI61FCHIGRw7Ns7d+hKq3eD3ap123Qn8Q0sghOGMGS2VZ3Mxs2reHrL7fywAO/gF0KQo5nX72K6Scdw2+/7aUiNJHevfrjksd2TET8iMhYJsgKB7tXuQKYMu2pFkS1mWD4N+599DqunfcKhl6JKlSTzW1g47YVWGIL67/PMe+iBwrza3qdvWzveIJEwfqaA7dAVAvwzXdPs7PhVaLRKG+9WMfDi1/n150v8vnqV6guOZLJ426msqocApv44ZcXeGrpB/z17Dvp02sovkgI3KB3Tan1wBYsW0KWSnnljRf5+eef6dd3EGedcak39mYYAU/xZRpgiK0E/WUgNpIztuKXxhGv34Mr7ea5V//KmNFH07NvN+6552FOO+VyXnj+cxY/8BQQwS1kvTk4SCSBZiDHtQvncfMtj+LXOgKluJg4tBTqWjWSKZJozRCr+p65l06krRWefWINft+hiBKIBpgiqKoOOLS2b+bZF67kpGlz6d7tcBobf2Dy8bM5Yfpwbr5hBZhl6EYS1RfC0kUQQdZsBOEndPYw86R5LF+2iscffw5d15k6dSq9ew8CYriGhJ7+jOtvPBOTLOdfcAlfrNrJpZc9DoRwkbFJITthMLLg28Hzr/6drVt3c92CZ3HNrgQCCqJkAX9gGtvYsWMvHbuPwKf2IJV1cWydULCFp5++jE9WrODOv9/PksdfYeiQURw2agx9ew9DEgLE21opKSnFdV1Wf/MVww4ZSVjrxN69Cfw+mbIyjVQuTsgfI5lUiQQCB1RIXi3JATYtbU3oeZPa6s6AiGVbIKV5461/8vMva7j71sU4lGDkBXy+AAfkW7ZXlyxLR1ZVj0iWE0CCj798gOZ4K/W/V7Fg/gNMmTKFjz76iGw2W8jRKqKIIooo4r+FIolURBFFFPGfxoH4B73wg4ZpiCgyxBMtREtdJEQvH8ZRWPvjMyz/5GGmzTicQwediShUATbfrHmJLh0HUVszDOyOmIaDpFkgtiAg49ARsbBZzJkN+LQsIs2kM50JKdXkrd1cd+tRXHbho3TtPhavzfr/O4xsDtXnJ5VIEwxJniPHTZHP6/j8JTTta2fZezdy0UXXgdsBJxXghlvPp6LaYfOOj+jdayBTj55L/0GTwSoFWSdv7+OWO+cyeeoEhg85iojSEehMMmEiiXFmzRnD2+8/gIbFk6/eheAGOfu025CpRHC7g7APzydS5o2ZYAM5nnv+Qc4+65zCYAcAkadfuIYfvt/K44+8yfW3nE4kGuSaK1/ETPpx5QyOq+PTSlmy9E5Kyl1OnXUi0JsDXYP0yP6oDwDMvIUguLjYKJrvoDPDhWQuQySsAk2s/eUTvv7qU6ZNnU6vriNJx0UUMYgWi7NnZz2dOx15QCRi5ywkn8yNN/yV2+85D1DZ07CVt957AFWqYt55d9La1k5ZSQu3P3AZXbt1ZM6MW5EYxGcrPmHipKMK57ufrSy09rbBdYMIkuatO9smlUqhaUFkSUWUJXAhnwVJyWPThM+f4vt1K/ll41q6dxlC397DqK0eAWYY23RBbuX+x85k5PgwAwd355uv1rHs5S307zWRBVc9W7Cu6CBkaGjYSDAYJhzuAIRpaWgi3tbAP1+ez+SZW/jno/DkknVAdxB1XNcBIcee+nd5ZMkVHDP+Go6ZeCLC/rkmRi4RxB8BxARHTS1h0KBB9O0+ib9eeBOZNo1gicOOnd/z/bq3sUyB46fNJhbuC/i9jlWu7A1VgTwxbVBCe3j5natRw3u49/bviKo9mDRpClf/7Xx+2byekNqX7j0GkE414Toq4WiA9z56kOOmzCETryUcDdHa+gclJWWIYgAsMKz17Gv8lUwmRa+uU1BDFSC0s+CmqZx86kmMGjCZtrbelESi3sJywbIgnXEwrTwVlZ4K0M5HkRQBJBPL2cHehs2UVFi0t7fz4/d7OGHaWeBWgRkoEDh1ZLNlBPzdC3ZKL+fJJQKO8n9XaThg5NOoIQPPbqZS/ztUdywBrRlo4uElN7D229+5+OJ5fP3DP7HV37nknM9It5VQXlZNY+Neqit74ugCoj8H7MLBs2JZdh5F8vH2u29y/HEzkKUAHlmngBAAIYue3YwWqKCtbROPPnE3N1yzHDMTRpDyyP48EMAx62lra6WsQy9ww2RTeQKhMNl8lkDAx8f/8z7J9Gd8+vnzzJ17LrHSDjz+yNssvudFoBKQcMkX6m8AVw96yij5d9pTP9LUmKBXz5OxzDIQDGTZwDT/AKMzrutHDTWTZRm33HEfd9zwDCIqmfwGVn+xhuMm34GjhxA1G5BxrJAnzBLS2GxFJkpDYytVlZ1w3CzP/fNxfvhhDYsXLUFTumFmJVatupHt235EN/1cdPHlZHIO637ZyLgjJqIK5eiuj79dfgJVFWFmnXI6ffqM5t33PuC4484kncni8wtoslhY2H48+2wzSVMhrAwFV6S5ZRuCtoLV3z7Pxp8dblrwOA89/hC5nMm558zljTdf49NPV/DGay8iIQERcPty2RUncsyUEWzcuJFIoDsXnHs9ji2hqiqC6IDkK/xdvfCw2b1vG19++SXTp5+AYRhUxPoBOhYZnn3+Ec4/6xLv+AUSMKe3YTkpwv4MpmOhiGVAEKwYiBLJRCuRUotX33yOul05/va3Wzj++ON5/fXX8fv9/5+fY0UUUUQRRfyfRZFEKqKIIor4T+MAiZSmEE5EvNWhtCSMrnt5HaJoAWnmnnM0/Ya7TJsxnr6dp4B7OODj6uumceb5Ixjc/WIcAjhGKZIMed1F9ecxHRMjF8KniSSboKxmFxu2f8TXX6/ir395GcvIImqbee+TBzlyxN+JxTp5cRT/EnQKByx3cCDMN5dvxB/MFCiKKNhlB6M13ByZ3AYCWi1GNoA/UsK+xo949qWbufSqWUTkMWAcTjYJvgiIqoVNnMWPLuDKefMQKMElBFYVkgiO00Zb+x7CkQCqorH0qSX85czz0LQYhm6gahGgoTCO1eBEAGhP1BMtNbls/uk0Ne3jpRde5OEldzNoeCldOg6mZ814vvj+NXr06EF16ZHIbjeQmvFYoCQeoRbEMh2y+WYkIUIwVOH9zqzEtUGQdZCTgIVh5MhlbaKxGvRsHi0QxbRkFNkE9vLYszdx8onHURGrItmuEQv0BSHKfY8dyvadP/DE4t+Bci83xFYxMxZKdDstiXVo0kAWLXqMS6+aTUDtiE/rCo5GRv+FL1a/w7GTjsHIVhAIVPPnibKtPIZu4Q9GOCCZsYPk0i7+sEAmFScYDZJp19HUELYuovkK/1UBhCbmL5zN/3y2ktvvuJwZx57rjYtdBQRAgHR6Ly8uu4r6tk8ZPWYYP6zZyLlz7qdDbBgy/T1SwnZRNRtIk82bBHxlNDfmqagIEG/LUFqW4Ny5HTl06An8/IPIkiVvga8RCJLPCbz5+tPMPL0ricbuVFX3B1EHx39gzSVSG9hdv4rV6/7BJWfcyBXXPELdLp0H7lmObdvEymSiMRfDzqBKscLcaniBXgo4Ima+0PpcSvI/nz/NT1teZHv9OqI+H9df9jlff7mBfoMqaU3+zK5duyiNdeKoMXMAP9//sBKTHezdk+HUk27B0h1kLVWYiyiYIU9waO9DUNNALXraRAvZ7K7/lC9WfsvsmfNQ1BiCG8AyNBRVLuT1NANplr50O+EozDjyQUQ3hqNs4fV37qepqZHGvQb/uOelwsS55HNxPl/xCd/++A4XXTaHkHoo0dCgwuVcUF4VatCB3Jn9l7rQygHiwYoc/J1s0lqXp6wmjOWuRVYCtMfzBINhNu16neqaEygPDUQ38iiagUAExwDd0dF8CWRKMXIumk/F0nPIPrGQ76UCeVwy5I00P/34Das/f4e+/XsxZtwwPvvqI0454SagKxAkEYdYWDvoVnLhx7XrGTFyGIgOtp0ir6cIBARcN8Hy999ixvEn4+UExbx16wQPKhclMJ2dKGINuBLp5B5C0f2J30FAxmEH735wO7a7l4fv+QWf3ItDRh3JLXefgkUElS60JuvpEBG9AxLh951f8PfFF3Ls1GlMn3QTitPds2eJFtlkjkDEh0ewNAFxWlONlIQ7gdUZUYyBuBbXyCOo/UF3qW/dxserXmTb9k1ce+0iwspg3l9xJdu2rOHd13/n3Te3o2kxJA0Ufzu7921gy5bNfPzxh8jkOGbyKNqydbz43Ccsf70OKw+mCf5II4a9k//5eAPTps0BTNrbGwmGbRrjG/hh3Zf4Qm3srtvA6TMXEMjNoSn3KjfeeQb1e+GwIZO4fuF7npVTagXagc6FGmTgkfs2YPH56hUcNe4ob02IXWluaSCXT9C5YwUOEgIBL28qIGJYcZqaWuhc07dwLM0jGvfHCAqQSscJl8iAn+bmBCeddBKrV6/Gtm0k6YBXsogiiiiiiP8Cij0wiyiiiCL+azhI1iiKcuBZUQDHzLPqs+fo2S9Msj2FY5QAncDVSCUSDB40lD7dR+MSIJO1kRQvlsZBQDdBQCEYFJEkKC+D9mQzu3f/TqItA66IIGXRnVYiJSFsq7CjOiBLsP/tYR04NyPn4A/KLHn6Tp7950NYduIAuaRnQVRFwlGb5168j4sumYVjtlFTW00q00JE1oB2UJMESgq2IkTa4jkuu/hmoByREqT9iigB2toSaGoMVekIVHL+eXcgOrXgRlHVCg6obPZ32Cq8lWhpKb9sXMv4I0Zx+pknI6Gz/qfvOGzkBHrW9AV0qjr0oFP5YO8FUh7XUYBoYU5sdD2JrDjccc/FfPHl+4XncyDhZS/JOqbTwK66Nbz06qOs+3kVkEDW0kASWd4/ahodyrsTi9RgoxKLloKSBzmBILcz+6xhbNv5EU31Gz1yxBRRwiJXX3ciby57gXC4hAULriPi74VP60wqboIDQd9Axo88H9npTyDQCduwDoxHPmMgyUH8wRISrQlApHFfE+nsbvzRfbjiDhY9Oo9PVz7Oa8vuo65xDVrUORBEvHdPHQgSwUCEW29ZQJfOPQEFw7RB9JFp995ZKBTGzPup7XAIk0eex8JLHqIk0gVcjXxGx7KhubUFF4gn2/H7IuiGQ3lFgD/qkpSUBkklTfp2H8jOHXXUN/wBsskjzyxgxsljefqZJZxxxmX45K5U1XpWPifrBwucPBg5g2+//4wnnnyEXzfuRkcnVupn0pTDeWf5P+nSvTvRWCegEluP4qkyRDxSwVM6IaVRgvECiZhg8+bNjB19HCdMncgV8+4mnwkwderpdOs0hKEDhjJz2gkcNWYCmQxkMjlGHXIYYw8Zz6knnQpuFlmz+Nu159AY3wA0ggSWDkhBIOARSIEYes6hS/VgzprzNzS1MyI2gpDHJY/j6EAGiLN977fs+mMd4ZiNP6Sgai5+n8Dx0ydx8skn49phMolAwVoZwecPsX3nDww7pDvPPv8I0Uiho2OhPfu/cMTCnx8mXtB1BjAP2judnWz69TUCIa8OyIofy8wSLa2hqU5mSJ9ZlISrPFepICEgks4m0HXw+zRcRDJ5B01TwDWRNQUja6D5ygAfEEAgRDplsuW3XQzqP4iXX36OG29ayE/rfsR09wJx4sk9REs0cnmw8gffw4iRw8hncuQzCSTJIhiQENARhQ7MmHoxUEsy4Qe35CCBtJ88c0ERXSCJZbUSipbS0pgE/KSSHiki4nDitFkMHNSbnv3CDD20kmipwPpffkOlO6n2EKWRXqTbJXDD1O+u58GH72HYoZ14Z/nzmHa7RyC5kM/KBIJhWhva2R/iHk83URYuRUTCMIzCxCgIcgXYJWRSCtU1/RgyZDguMpoSAGS6d+lCjx7d6NljACIh/AEvmktAomtNN8aOOYK5cy/AlbIMGNSfIYNG4lieCjGdsfH7AacSxR3AsUef6o0pGtFoLbIYpba8FzMmzWLI4EN4/vmNbNq0GUGTaEvsomMX2PI7WE477U37Cp8RObwbI/sZPrlQlzUsV2DM4RMwXRfHFtF1m4ryKjp37EY6l8O0bAQkgoEgIgIvvPg8V111FRvX7/A6JjoHazt4nzXhkjC6kQWgoqIC0zS9JS0UU5CKKKKIIv7bKCqRiiiiiCL+0/gXJZJnZ9PzCq4rsOnXn+jWo5wPP3yKXzbey7nnnUHfHmcCfUg2VqCF0mhBi5wVR5bKEYQQAvKBL9iiC4bl4Dhp/PvbKOt+2nLf8NTzt3P15Q+A3YdHnrqCj1Y+yDnnzuGkSQ8Qb5EoL4+RaG8mEJJwXRtNVkik0kiiSjhYjutKZJPtBKNxnnrxemZMP4WKSH9w+nh7CAmQ4mR5leXvreKwESfSpfYYdL0B3d7Hk89dx5AhQxgxZCqloT5AT2xbRhKlf8mFOvDAwtYdJEXB0FM4joUv6CeXzuIPloArYuQsnn/9StLZFob2n8qEI09n7546artUsmDBOdx77+2Aw76m7Tzz/IOcOO0SuvUs57U3l/L9qgQTJ0xnyrRxhMJ+Mq3V6BkorQHkOJDm7Q8eplffCgb2mAFUYuZkFF8ABJ0lT82nW2+NltYGqjp0Y+KYEzHJ8+ayV9j2+y4uPPdRKsuqMC1QZAXI0xbfS0kp3L/4Gjb/uh5HauOEc7NExOM48pDrwTi0oARqZNmnxzF17P04coJ7778L1RnK/CtvwCEDroxf7XHAPqdbdWi+ysICK7SjckUsy7NMyorM9m3bWP3TfAKxFvbs2cWAAf3Y/Ot2ph47h71/JDj6sLMxHA1VLANqaWzYSiBsEg6GC5MbBQJg+b25UrxdfCrVSjgc+NME7if2RNIZE39QBHRcsggEcFHJZiAYVMnk40R8OVauuJUJk2YBNeyu/5XvNz/J5CMuwSf0RaUPjzw2k1+3f8ngfsdy0dwX0NtACwOKiWXswnFtVH8U1zERRAOwaG5JUlE2HGzZyynyZfjsi9f48quPmHfuUjrUiCQze8gYW3j3g6coLS3llOMupLlVpaJskHdtOmGyCQiEwSGNoGwo2OkqwOgHksXuvd/y5XcvMHjQoQzpN4Vrr7uSfa0ree2tViZOgA/f2A5ODxBzWCSQ7Wpammw0v0M4lgE3BiY0xjdSWVVDe4tItDQGYhsmv/Lokrs45tgxvPnGu1x/1RvIcoRk/gdUn4mR8xEQDkd2tQPTbphtqL4/QEpQ37aZ6pIp4HYGIKPvRRQ0fFo5kETwQsQAiRWfvo4ktxJvbWTWyWcDpUArX2+4lA0bf+Gi014DOvH8S9fSoSrKrz83M/+yZTQ31lNaG8PW/eSMOKLWSi4PZeFetKUaiEREjEyYUDAB2LiugCCUe50XC3ZbPQdaEDzlym+0tvxCWYcSFj98D/XxLYwaOYURw6fQtXIaO3c20a1rt4P1VDABg0TiD5Y+vYhwyM+eP7Zx1x3vg/Wne6MinqVPyIJbaBEm6Gz7fSVfrP6UZDrHhefegqX7iZWEefqft5FO/046DtcvfAGkX4C9gMyPG7cTDtfSq9MsNm2w6DdIRhLjeJ7REE2t33Dx/KO5f/HDdCk9Acvo6JHKAp5ARwTXdcg723jn/SdAsJl98gUIbg8c3YfoawUiYHjdEZEgb+/AsLNEfB1xnRiC+AvQAgwi31aBL+gd15EMRMHAxkTEZdnyJzj2mOmEfLWeCiocAMELwseWvY6H+TZk1UKRAwiyiqVnyOQb+ennb7nt75cycHAnJKeURfd+wjc/XcmHXyylqkJh67oqHlr0E6Cy7sfX+Pzrt7ni4mU4joMkKdi2jSAIKIrkjc1+5m//ekUvzLmER/CCSwqTZrLZJDcuvJbDRh/Kxg1bOPsvF9Knz1hv3TgmyO2FY8YAjZNOOolly5bhum6RSCqiiCKK+C+jSCIVUUQRRfyn4VLIJynsoFz5wP77i6+WMWxUJQsXXErTrvUsvGs8y974in7dz+SYsU9SWaOSt0AMtiMhA8EDElKhUL1tI4uk5fBayetADbARyGCbg3DNjjz+4lxOOeMoygI9keiB6Uiooh/LTfHSK0/R1FzP1ZfPBxSS2SyCGyQcLPPangstmOzBcUQ0sQzo7H2xBxCThbMRAQfTSKGoMradZ/Hih7nkr9fi85eTzrQTCru4BBBQvaGAg2oosbDZsETyuRy+8D6gnX88uoCAv4TTZ11DNNwbKxPh0ef/wsjRPRk9bBaZtL9gO9v/UaaBIzN16lg+/Ph2UplSwkGRDz57jjGHnE0s2pHtu77goxWv0r36BKZNmeMNmQKukMcmDlYVSG3IqoGZrUBRJOLtu/hq7XNMnzK28F7LaE9ZRMMCjz59O3UNO5l90iL69ByEKnYAC1JJnWiZRnPLD+zcs5LuPSpY97VMQ+4Zwr4+nHj82Vx9wym4RgeG9p/OGWcfSaZ+HI+8MYq+Q/3MGH8LoHLX4gUMHDiYdGs1c2ZfhNd2vQmB4QDkchZ+X5BczkSUQNMkvI0a5HJ7CpkhHtmTTVsEgpXeGnQAC3TTRQ79hiR4lq9cTsfvr/TyplzxAHGVzMZRZD9+1bOWpVMQCnPQASl4uUyJVD2RsI8ddZv46IPPiYU7cOacuWT1NtK5Bl5/dQkNv3/PHbe/g20HkYJZoBXDqgGrA6oogboX+AXTVFGEw4AgCCZPP3Utv279iptuvJVorDeY3Umns4RKBFw3jmsHEd0oiAKGvQNVTdOU2EWHwHRQdSBJQ9sXvP72YiRJIJuMcvWlL2OmYl4beMUh3vYb4bAfQbR45MkFhKIuMh04+9QnMfMuSAkU3z5AxTKD6EaKn7e+xFffv8GA/kNY/tZu7rjtU0qiNjZpFLeGxjqDqloVxEbAD3YEhDZam7KUldWy6efdvPXeI+juZu68/UYS7RYhrQ+yz+XJpYsIRR0GDBjAkAHjwenqTW+BbEDyrv1kahN/v38hwweeyqyZV5JOtxEKtdKYrKNDpAdQiu1aOI5FPp8nEgx7C8DNgZBmytRDqK6q4e67nqZDVU8wO5Fstvh41b3saX2Nd9/7hVUfrcPKDkAKmEgEQUrSnPwBVfET0vohid54h329ER0JLRApWAg5UPN2797CvMtO48KLT+P4qbPA9IPSQqY9RzAaZvppfRk+rDftrSqL71lFKpkgHKktLLJCVlkhg8eyUsiyzHPPPMHZ594IhA6WAiEOJLj5jrn06dWTOafOxevIGAZ28/GqTzj2iMvI5ULoRgI1uJWgnGLZ62s5afoNoJkg1BcG2suoggoSiSTzbxpPn65dOOPUS6ipOJZ83sEX0Qv1vRzXBcNKoqlJjFRHL5TdAZQEhlWHIgueNdiq9IrPfjfWnxVjoveEbQu4jkAutY1waYBEayMOEqVlNUAIx1EQBAEXm3Q2jV+LkUnlyLUnqe4SpGHfGqpqq7y/QzWpDATUCIINuu7iDwlemVeTQIrv1r3BfYsWMm7MVC4+9yH2Jt5i/nWXc/y0kRwyYC69Ok3H5w9gC3tY8dmrTJk4HxsXUxeRxICnsnX/9D7YP/cWB5WuGqbhSTcV1Vu/DnF2NXxK96ouLPt4Oc8/+xrvvrYGy9b44osvyBlNHD9lJlALhIokUhFFFFHE/yKKdrYiiiiiiP80Dny/leBPKiKvvXUjP234lPZkE36pC/f/40tmnXEoVd2aeO3te8AFnwyOrZB3mhBdjzw6+JXZwbUyWLkWzj/veK677my+//YZnnvpTn769WskJYiswdChQ1GkErL5UsBHPp/HdnVkQSCvp+jYqQNgktLjaD6JcNBHOpvw7mATQKGGfNqHly9z0AYFGsl4EPDhkOWpl27im/WvIErtXDl/Ab5AOXoOQsEopu3iuF5nKEfMgWR55NF+Asn1PpJMSz8waC0tTcyceQLRcAlgIftg6tEXMXrY+eSzZQSDHanbswvQsZ0GoAnEFiZNGQWotKf2AQ5TJ55MLOonmd7Jy68+Q7fu1Uw5fiCGs8fbW4kgyD5kuQOyJGJb3gZHVnWQBAR8HDPxBAwUXMJAFdFwP1IZ+GHNFo477gRiJSEcx0CUHAQJgkHPSlTRoTsD+o7DJ3di0uTpDOwzkSkT5wIBRo2PMXZCD2afejZQS7AEJo49nxnjF5I1fEAlotWVAb2mMGf2BQBcd8N1CMTYv+O0LM925PcrB2ySuuEpkvz+juQzIbDK0dMlBPy1pOIurgEtjRmQIas3EE/9xlvvPVV4TSHwtjAf+90qkXAEWZZJZ7wFGNofvfRv+7dYOIKIy6qVX9C9Wxcy6XZS6VYCmshPP31DPL6XfQ3bWbt2JXl7G48+fybPvHMNqtyMK+/xhE12NbijUKRRtDemQcyAs4+XXluEJW7ktnuns/jxI8la6/GF40Acw2pHlE1Qsuj5LKpaTaLNT4fYaJChtbEV25SpLOlP7+6jGdCbZikqAAAgAElEQVR3HAFfBYnWNIoPDAMQdvLJFw+RyK0nbzZTW9uJWbNOorRco6l5C4pfQNHCeCoKP7IYIxisZWC/w6mq6E2v7iMYNfJIDEfHxTlwqVfVqIVximO7O0DaC2KGssoYqXiabVvX0bVLOT7NYcOmtcSi1Uh2KblsloGD+nPMxOls21IPaNhWChRoaN5BXq8H9nHxvCM57uRj+cu5kxDkdOF68joRVkYGA9XYThhZ8KNKPhRVxLQEsMMglKLrKcqrHA4d3ZOnl74BThV2DiIVMsdOPpJE9hcW3NSH+x6djRrOIkne9bH51/UsfXIRjz76dyQxx+dfvsnLLz3BO2+/gOYvwdUVjAwkWswDxMiXX7/DmedN4MnnF3DqX8aAHCObdQlGu5NN+enTvScNda38tGYj2CrhSKlX5/49u82VkOUSsP2cfcY8wMDFxD2wJk0MO4ljZ9i1c0vhdQp6QgIkDj/8cBxkNJ9MJFpOUI6QyDRx0imzvDUoAFRi5KvArQRsDGMPsZjOhAk92b17K4sWPQCOgi8QIZWwSKVccpmCuFDRAAvbzXt/WvLqpSqXeAQSGogKruUJpVwK2e+Sgyt6/L1riwgIyLJNONaVPVubuPX2BWzdtYJXl91JKvc7LgaWZaHrOqIoIsoisRI/HWpdrrn6VFauXM76dV8VLmQdW0whKRaiCj6fQC7tYtveuNqOQXV1JV26dmTSpKNxBYmSkh4cPuow1nzbQO9eY/AFyrAsGYkYh448EkjT1PI7muagKAVm+t/rggD/4ilERJbBizLy2ifahOhUPg3og2NUIFFWGLc4rtzAxq0fAHV49ssiiiiiiCL+N1FUIhVRRBFF/MdRyBjar0ByIJMDQUqz8PYp9ByYpzLamVljbuPFt69h6RsfcOzxcMHc66hQr8B1K4gnTKIlOrIT+lPr78KdXSHHC0tvZcjwMIbdworVrzDj5CnUVA6nRPkriDEMcR0q5bhWZ+LpHLGYjESKnBVn/c9f06VrNbVlNeyqr+ejDz/FtQNcfMHfcAwR0xBIJJJU1pYXOqEZ/DmkWM+D7u5A0tr48ecVjD/kdKAGDNmz2wg7UCWNbDaKRSP3P3Az5VVw6bnz8Cw0EXCrvVDmHKh+sK0supFHkm00v5cJ4u0hRZAbAYONG7fzxJJn0Hwi1167AFn2EYv29s4pBVoUEJLkkjJ+XwBUE9No5fXX3mbmzJnUt/xI106DgDZWf/8RdXV1vPTy8/Tr15v5lz5CVeUQ8ikHn8+PY0LeaSAQkoAAGMGCM9HhvfcfY/rxh2JRjWGa+JWo18IcBVyJZGuSSKzUWwPy59y9dCI9oguZdcp1QD1QSqZZ461Vk3lv2XeY6YGc+ZdzmTZjFH6lGoih53RE/+/cftfVnH3OaXSvPgKXLoCEYbqoitfiOpXKEA5r7A+4zWcd/D4vfBynICxTHQw9jurLcvXCufyw/lNs2eXJx+7j21V7mXrsaVR2GHJQbSZYILi4SDQ0NlBVWUZjSx2V5fvtdAUWDgXBdUi21REp8WHaKRQ5xP4deUP9Vlrbt3HTrX/hscdm88YzAU49/Qy+Wv8Wk465kKDcvXDejRw/dTKZbB2V1RapLEyZPIzqyp6cdNI8Whubuee+m7hqwem8s6yNiy78B8l4ikBQJWNsoTm+jXsXLaCirDOXzltILNQTRYogieWeY82GrLmbUFgtXJeVYHtt2V95+3J6DwizeWM9Z8xc4mWziHsL51UJhr+w560Hwl6ItgDI9UAzLgKGWQtKDGjDJYtCJ+LNjaxc/Tq7G16iU+cQa77ZgGP4GNh3AnPn3ghYfLTiEQaPKOPdd5Zzzmn34lcmkjN24A96CkTQSCfbCEVEVn3zBj+uX0lDYx133HoPuQQYQh1Lnr6fSy94nHBwIJLocO2tc+jYqRJZjnL+nIeQJLDcdkQxi54pwS/5yGfBV7qFex8Zz1dfN3HXTQ8j6cPpN/Dw/ft9LOlNZNK89upvnDr1bghlwQ7gulvZ2/op8UQbg/sdT3t6G/G2JtasruODFcsZPOQQjp44jaGDJ2LmXRSfihdk38hr7z6Grgc5buKtxMos7HwpighZ6wvWrvmCxj0Op5xyGygmSA42zoH0Ha+sCiCoHtnpgqskcQgBIpINSCa2WY/t7mPPzgZ69hwPZol3BN9mdFLouT7IRNF88Nmqh9j084dcefmjQDd0EqhEcB2R7354hWUfXs6gnhPoUj2OIydO5+3X3ub7b3/l7nuXkklnCJYmAMhlanEtCIQAKYNjmYhSDMdwEVUBhIxXt5HA9jKb7P2qMuoAC5FycEKegFUApEYwK8FwWbvlXn7c8jRffbONgb0ncu2lrwMRUukEgZAA5Niy53Nee/1aDhs+lF2/auzYrnPfovexBQcEk8+/uYVfN/7EOWdeh+BE0cTOqFopbS3tlFREibfUUVpRRjzdRiBkIOCw+svvmDBuNqIreppa0USkkXc+eYw9u+vBCXP5RTeSN218Sgn71ake9qvI9ktQQ9hmgUQSHaCVnGEgmeWowf1qMxHwk2prR/OJLHv3GWbPno3XqdFfVCIVUUQRRfwvokgiFVFEEUX8x5Er/OsFqx58LsfbHz9MIr2Nc2b+jR0bBB56ZSgl0Vq61kzirDOvYX8feDvfC0kSsRWPCJAEHUFsAdLcd8/5HD6qJzt+30I0HObZ9z5h7FEljDrkWMYOvgWsPmTTDrqVoaQkfDDK5oAFKY9HDOVY/ODfqe3UiSlTpuAYEtFoF3BC3l6gcHfZtPaiqCa6mUZTImRSCsFwkHy+CZ/PC5C1zDJkuxoEsJWdSKILVGOynaeeXsQRR46mf4+JQOeDdhcBEAut6t2DweP785OyqTSBgB9d2IemmBwyuge33jKHrb+txXUkRo86g9GHX04qoREOeBaRbNIlEBQwcyCpIGpgGy6S7LVNR9jL9bdMp75lAwBlZREuOu9mOpZPQfN3p/WPHKFS0IISCD5cXTlgI9wfB5TPpTCsOJFYDY4NrikjaQKQKngOFfIJFV9A4o77L+HahbPA7ItMJYiQza1i/sJTOXS0xphhl9KckKmq7kSH0gFEwr29TbKYxnbrkAQZyyhBlstA3MIt9xxLVVU5F535EZgVuEIOQXXAybN58yruvPcS7r/nGSqrBoFeCoLO9l2ruW/RDcRKVe65azGplE44PBRbDyIpPvRcGi24P+hZIpdW8Wth5l1yFBMnHokj6MycdS667qBptXiqHAcXE8eOFexVOpIb85avAGh7uGz+KGbOnMnunXvYumkPt9+5AjNlooRT3Hb/BXTqVkp9Qwt/u/gf3H3XP9m142euvuZcdu/ZzuSJc7GNIBIF4koE5EZc20awa0i1wXOv3MqkmSbvLX+afr3GY7T3pbnZ5MKL5gMSza2b+G7tZ6xb9wM3X/cItqUiCVXkMw6+sIjltiOLDaRzW7jphuu5/JKFdOk2HIjiEsQmgp5OEgy4uEISQVCB0sJaLYR2FzbJNgoiMmAgkMUwRVQ5Wlg3P/Pjhpd5e8Uijho/m84Vx9Gz6xgSLRKx8nLizX9QWuGjpXUnn658lk2/rqN7l+Gcc9b9YIZY8uRCdO19Xnp5G7WVkGoq59PP3uTbtcv5ZOUTdKs9nDknLEIJhrnv/qk0JzchuOALHsGl8+6kPOQRk+Anl07jDylAKxCnbt92zjv/Sj75YA2WHsExAqiqerBeuHgOOFFH0BxgB4uXXIyLTofyLpwx8wqgEoiRyW1m04b1fL/2F+ZddD2iVI5pgKJ6WTjpTJJgUMFwMmh0wMxb3P3wCET/Zq6/bB1mtguKECYn7savhanb8yPNyc0MG3gkEPFsfYW8OVfMYBNAQCCZShMJhxCwEXABE4FcoZaGcbMhhEAcyJLO2wTVLqSTEI5QsOd6HRgvWzia7Tsb6NQR2uNw5pnTeOqpD7jqsssYN/I6ECpI58CviYiijmnaIDbx4JMn0qXDRPr3PpKBg4byzJKLaGsNcuWlt5PLVhAsK/lTjJmJg4FEHYaVRM9rhEPV4FYcqImWm0OWEthuBaIgIrAHz1oX4LvVjRx22GhQWvnmm1f4/Y+VnHnq9Zgkie/18fOPvzNpel/21f9GTfVRoFd7eWHhb/jx11WM6H+KN5bEvDwp0fPV6elCZpWk4zoSgmgCOa658Tx279nKk088S8TXi1QizxNL57H847eZfcZo/nrOo0AVUE3eyBTmWkSksVA0/eB6XQDzOvgCAHW89M69xGIq3375HXfe9B5mrhSl0DzCsHUUWTvQnU8UPIHs2DETeP/9D4nF/AfrMftt49KfPmuLKKKIIor4Pw3plltuueV/+ySKKKKIIv7/jf3dzmS8XZhNKtvCvoaddOlWzfLl7/Heeytpa7ZQYuu5Yt4iRg6/GCMZxhVS4LpISoRcxkHSZCSx4DIjCaT59LMXqamN0aGsI+PGHE2og01Dg8HRE2ajSZ2QxA4osoDfr2GZNoLo4FgOolgIsxEO3AanPdFGl85dqayoRFU0JEkD1/cvFjxJzrLrj418++0qOnepJBCoBVRkWeWOe67kvY9eIRwqwcz0oLRMQ1Ta0a04shgikdyOaacYNXQ8UOFlwxy4216wQuD+yQ4hYJsGoiSgqAq4FrKq4SKxc/e3bN70P1xz9Xm89uo77Nqxg8GDj6S0vJKGBoOgX8F1BGQFJBEMy0VWBUTZJZ1Kovpdmho2s2Pnei697FxGjx7Bio9Wc/bp1yErNZjpPKGyUmSfDYKLrYuIkgwC5HMg+wEpjUMbgaANtCOIIqIQ8N6GnANSQB5ZjYILow4/DIQIrh1BklUQdZZ/dDfBSIJhgw9jcP+ZdO7cG3/QTyjQGa9FuQ2igSj4gAgiJeTb4byLJjBqnJ8t237i6HFXgRBCkATApmHvTn777TuGDO+IkXepqqxBVCMgZXhi6W1MnjyOYycdQzBQgd/fCZwaRMHLMpE1kfqmdXyz5n1KSv1EIjUgyTTt/Z7jpk1kyPAB5HMGPi0MQhmOpWFaLpIk4IoqHvlkHxwHAZD/oL51FZJk8swzyxl16BF8++UmBgwYgeXY7G1Yz6RpI5EVGcuq5ZBh0znrjLOoKKugtlMXFKkcwQ0iuNpBElQSEMQcOBGcPHTpWkZpVZyJo4+ivHwww4edwSFDjiCXzaFoEb75fhlIaWo7ltOr2whEMQKuhqwKGGYORfHGbukTDyIKLsuXv8SYMYfiD3TAQSOt+4gEwDASyLL3f6Gwo3UV7/oWBDzSQkZAQUAC8kiSD5CxcyLZ/C7W//QlZZVB/FothwycBZTiU6vAVfCHIvy86QPue+giLKuNI44cy2+/bWXcmFPAjfDb5u+o6ZZgzZqddOsaZECvyVx949Ws+r/Ye88oKcr9C/d5K3ae7snDRDKSlKxIUFAxoMeAAcWEWTFnPeacs0eP8SCoGDGDWVFMICpIznlgYufK90M14Lnr//F67pd+1mKNuKCnuqbqLd7d+7f3Dz8wbnwdB405nXjpILBszNwqvv3udzJJ6NOvNwMHHEBQLQXi5LIGmm4jSbuS/0tJtpk8/MST5M1tjBl9gC+GisCeIHwJ0C3akn8SClpAmrUbVtPU2JsN69vo3XN/goGu4IXRVAs9EEIiQFNDH4QU8s+DK7FlUxvlZaWs37iZRCKEZAeRdYmqht/Y3vI7wwZMw8yVIjQFXc/Qun0n0//zCD/88j6jxozC81QUUe3nZQtwRRZBkHwuTTiskzXaUJUAAgXbVhGSgy/cezhumLaOndgORMMxTMP2XWxpC00PAB7p9A6Cka0YzmK6dS8nFqzhpx9/Zf0Gl9uuvxpEbxwCWI6DokpIWCgihOuZaNFl/L7oZ7756gtUz8Sy/+Srz+cx6bhJaLGGwnPAP5eu8F03H3z0FO/PfouR+x2MqkaBAJ4nQAJZsvHwcEUADxkHC9ARxKmI9UBRAbmDmkqVtev/oK6mP6FAKZHwIBb+uJpnp19OZ2Y9Q/YZBXYlwoWO3Da61Q/AD88P4lgGkmqCyGPms+ihYGEN9rBzAjyb9vatbG/5jS3bltLe1kJ9TX/KyrqCu4P6RoVPPv2Sbds6GTp4HBIl2J5J3syjqQGEHwiF/0GK//4lBWw3jSylCZcodOtez9y5b3LEIRcii8DuR6YkeyAE2ZzAdvy1PJ/P89VX3/CPo45F16S/PC/+eqEW3UlFihQp8ndRdCIVKVKkyN/OrhTc3R3wOF6ajs5tnHXecfzz5kvo22cgUj7ETXdO5oF73sIzwwhZA6cCHMFTz11KWszjnFO/IF6SQBLgeq1IIseKNZ9T36UMx1SJlnQBJHKZikI4MnQkVxFPFIKS3TzIy/BHrfoWnDL+yIGZyyArAlnVyGXSBEMhEBJ44d37ZQTYzjYefvR2Bgzsx6ETjkQ4tViGQNFMXn/3NiYffwj+5qQ/kOOlWWeg6RKjh51LQ20JN9x2FaYh8+Ddb4Nb4Z8QYYMw2JWPsWcD4OBYGWS1YIHAAGqwbBtV2cmmTZ9RX5/gsUfv4tLL7sWlHJcYCl3IdEA4Dh3tW4kn4v5Pwsyzau2vXHvjVI6bdBRDBo5nQL9huE4S23bR9Bp25z5hsHXLr1xz7SOM3n8C511wGVbOQA1oWNZOVK2dp1++hgmHjeaeB2/gxMkHUF9+KH3qr/UPVd0CbGfBnx8R0fojnGpuuGMK3RpH8sCdM0CYIJZy74PnccpJp1NfdyB45UCs8PZb8CvYZRw7gixV4logqeA5Jluaf+Pm+w7m0svOZ+/uN2FlIn44tOK7BmAnecMhoFcXzmWO/7x6Dx98/B/Kysp49IFZ2NkuRCIx0vn1RCO1gEMytZVnX7ydEfsOJJPJc9i4c/DHqfyxrrbWdXz99c8sXryefQYczZGHT0FSIZcDLdqGoBOBQOzeMJo8/Og0xh/Sm19/+450pp2Lz7kUGI6Tq0JWa0Bx6UitJxaNIoj5GTkhB3+8ZyO33Hcta1dv5ZXn5uE5ZQih4PeoL8bJNyArtaRaDNTIegIRHSsdQjiVOK6JHpOxcjJqJAdkSKXaiQTqEfIuccQAxSWbkgmFJJC2gshx6cUnctAh45n30wr2HjSS44+7kOV//sHAfv2Y9cZz2I7JiZPOQVFL/zL654Iw8FB9F4yn+veOYgA7ueXuSZj5NCccO5VB+xxLJqUQDtf9RUhNAy3k+YW1W79k/hdZTjtlGoaZIhrYm9Zmh7KqKDnvKzZtWUavuhFALXO+v5+GbjaLf+ngxMPf9I9FTmLmfyOX34gr7eC5F5dzzeVPg6dg5n29Sw34TWc7NzcTj3RBDSVZ3fY8a1ZtZuiggyiLNOKHUQcL90QeaOGdTx+hJFrNtk0uU064Hgjj5EPIqr/GeTakra1EI6HC/ayDp+KYJrKqgXBo3rqBqpoaHClMcodLotThh4V3sPD3T5l21gyQG/E8FYcW7FQWV2zm8usmM2DgSE6YdAGViTH+iKYESEahRc8knU0SCUX9+6hw/nOGyZxPZ7F+0x+s3/wrj90/l1xKIRgCT25BkASybNpiUF8zxH+ryhq++/kpqqoqaKofjCqFef3NGQTVOo4Y+0+UGJiiA0VahUQ3Uq0hotEgaB14fMJHn87i7tvfo2cP6N5Uy88/beHVmV8TKx3kn09PxRP+t5LZyS8/zWHYiOFs37GR6so6/ABwHcMMoalhTBsUFSRsBFl2hYzbRivrN/zOiy//izNPP5+ePU4ilVxKNFEGZNnSPp1XZv6L8854GM0aSyAQwLXLkBQJOWiwbOmPrFj3OansJjQtwIn/uBQ/vDrohzS5ku/aJMOO1l959PEHWLpkDbPf/p1Mu0I40YbNah598nram6u4647nyGU0XGkn4WDQXzussH9NShRey3d7GY6DLpcAYZLJHWRz66ku3wckDUQOhxSCIJbnIgsZgYGHhJmDM04/h9deexNZKjwr9sw5siftv0iRIkWK/B0URaQiRYoU+V/xl9XW8fKYVprHn7qTSy8/h4AIkm530HUVNWQBm5j1wV0cNOwxgnIfzjzncGbNngJMBlQ8FzxsJMkCOgqvGsYwJdq3RqishGQ6SySqogRkEDvx2ME7Hz7HkRMnoVEFXvfC3yuIW54HnoPrOEiqXMg/ssEL+huJXZ/2ig58kUIDAr7gtUv3kdfw6rt38NYbH3D4Qedz9lkns8/Y/pgmXHPxeQjhsWzZKu69/Tmgyh+VA5By+GJbEN8VtSuANQck+XPZN/zy87d0Jjfx1oef0Lt3H7o11BPWQpw99SLCkS64uRIkrW7Ph9EKbG2ex5Jl8xkxYgixUBOCIA89ejOvvvsiH3/yIFWho8Cp8ufcPJV80iMQkUHJAK088NgFXH3pLfgiShQIYxkOqh4CDNo71xCNaSgC8paL5MVR6eafD8XCtrfx0mvX0dRTQg/ChjVJjjjgTkpL9wI6uOTaIRx1xOGkW0s4+uBbQA/tHtFB3cwd959BOBwj2RLngrPuo6y0AiVog7DYtKWV+loDizaMTE90LY4s+7qf7aZwaUUXTWTSfmV92ljDG+8+wviDR1FT1ohOb3BKsS3wXLOQVwMIm2x2G7qu4tgydj5BKKyA+gPPP/8Ao8cP4K233+aC86+gNDIcqANHo7PdpKRcBS+MkQdJsVDVZrK5FHYuQiQQRwq2glDBqSWX20QwEgJXAUp2Gwhy9nqCqlSoqc/yyRePUtVFJhAI0dBlMJFAPyBM23aD5189kmAwQt/e+zJ2zME8/e/bSaVSjB15EiOHHYdp2gTCYSwjjKoJXNdGEvqedrkEIO/ENDNochOuAZa9HT0ms6vtsDXViaQGiAZqUNBZt241XbvW4Hg5li/dSr9++4Ib/suYqIuH5IsargoWmE4GObSeOd/eiGJ34atPNnLvPTMxDBVdD5FLgiKBGoCWZr/1LhD1r2FPuIDf6iaIF6Z1DKCNtkw7Tq6a8kip32CvwvKlK+jVtTeS7nLbXYcQCHkEpe5ccvk9tHWmcF0XPSDxwEPXoWlZFv36M/17D+O2W54EKVC4DyPk04JAuOS/1i0/pMfFs12EAi0t6yiviAEO2VwnwWAEQQiQsUmQy9uEAmpBFrbAMQrjjhnatqyktLYvjleHXBirzXZsJJ1pp7K2HpALIfY6wjVoafmDRKXN70uW88Hsr7jlnzP9ynoKSwZtOGYryUwHkUgMVa3CyykIwqA7IHUCbYw7vBeP3PMhe/UajabHMKwNfPv9+6xY8x3TzrkCaACrBtdKI4U6/LXIDWAbOfJGlki8HvL+upXKLWH216eyYVmEf17/AU57HMmCZ94ez4bmL+nbpyfVld148cW53HrbDcyYPoc7b59RWEuq8DwV14Nsx06ipQ7QQjrfzAcfv00i0cjYsRMJSL3AUUHuQGBhmxUoHiQ74e4HLiNevYrrrjwRl1YeeuwtJu43i6z7G4/96woef+pOVm6czabNazjukFv49detzP7gZcoih3DpFTfz66L3+eXXL1iy8mPuuOs6vvhsPscdfgPNm6NUVVUWzLMenpvFE1kk2aAz2YZlSqjUURKP4ymQNlcR1XKYdgU4UTRV4bXXb2XTxnVUV3bjtDPu+a+R6D2j0Tk8TDRFBgJgK6CsBQwMI4CuNYDowCNF0tvMi8/OpKm+L8cccTJHHX0878+ei2HY6HrwLxfprgW0SJEiRYr8XRRFpCJFihT5u/k/VlnDzLHkz0WUVQRoqq+hM7eZyy89hhf/PR/fCbOZj7+5lsPH3gJWd7JJFWK/IJy9kaQQuhrxB+NcyBjthENRMnmFoA6aA8hZEBk8Ujzx+DMEQi7nnj0FsLCdUhS5MEr218N0XIRmFZw/hbEy9ELVu1L4h79BsnMTsZIERs5FVypAcdmyvpXahgry5kZmvnUHPXv0Ycx+p9DR2cy3Cx4lkYgyqN/xhPQKLFNC12r9jfcuhF0QrXaFNO/KtkixedsCvvr2NVauWIjt7uD3Jc1cdvnVWFmVIw4+DdeNIkkl4Ib9QG0dTAcy+Q38++UbGDq8D0MGjyQeHgZeiKuuvJBrbz2UilgUGAx2BKQsSALbdOloy1FeXYppdCCpSWS3C0KK7ikXwv+ayiQJRc2CS8rFMUPIsurPaex6D55FJtNKKCIXRhBztDZ3UFZVyaYtf1Bfq2KTRqEOvF6QKwEFLBPQtjNj1n2ceeqpgF54nxF8h0AQB0jnkkRC4KLjuQqyJGNZIKsGEgYQw7bB9Ww01cDw2tGFztadO1FEnEiohkhQIFxw7DyyLjBySXRdBxHCsySEkAr6XgZEkukzbmbRH9+wauVaPpy9AKgAAmTa09x46/VceM699OrTwLYdG5j55jVIksIV02b6sVvCBUWibSsowRRXX3cWTz93CzIeEMJBRqYS3OCeoPWAB5LhW2eEH+a+yxmXTq8gkrBxvQ5ennkXPy2YSzxeyn23zgJ6gRcFIXPvwydj5aNMPuEcenQf5W9WZWhpWcNtd13IrbfcSEzvjhoqBZEjl+lADYAi64CG6dooUohUsp2SWJTb7ricyqoEJx1/NolEI7ixPfe5BJ747+mazo5mSkp3ZQ/p2BlQwr4QkctmCYZ2BZCrpDvSRMJlfqC1DULBbzIkz7bmNmoqGuhsh0AY9AC4pMgYnUR1E4OlaPREsXqT6gRD+oHy0m2s376ZpupT8PNvbHwnyDYyznrCcpRv5/3MwL3GES9vAGKk2jw0JYK+y0gkGYWLXwFXJZu00QMyLh2ogTy5fDvBgODqGy6iurqa0tJSJk95GIEvTCrYZNKbePedGaxZOZ+yhEVFWYBtzXDZtR/iuCvQJBXsGnIdBmrJOiTVwCaAQi8kfFHPYQuXXn4RTz7yIlADXumeNdZp5csv3+Gnn+cxYt+hjBt/WEEUUwrvtxUwMbwMd97+GNWV3bjoglvwFSgTaObJFy8nEAggsr046+zbCu5NXwFLpIQAACAASURBVHTEhs70OkoqImzbvJw77jwfxE5Gj+vB/K+3Uhrtz0knTGbR4jmcfPoE1q9fSVPTREDw2uvPMfmk09jRvp3KRA//HqYKj7gfpyVaQKQBB9NK47jQ2p6lrrob2bxEMFCBx0IkTKAHvjssD6zirGkTUaUqrrvqXuorRiMHJExrEe3JDUSCXQiHPX5ZNI+eXfdjztz3WLjkTXr1HMk5p92Ai8D2TB566D6mTbsEWYTo2BmlS9VeZFMQKnFBdvCcFK5nIkkCI+/iuQqaUo6sCGwFTLeddGoDlSUDcW0JSUmSzX5Hy87tfPzet5w/7eXCOk/BcZrjrXdeZ+TI/elSXU8mYxAOx4A2Xpp5LsccfSHx8AGQCkMYTLEBVSxnXct2fvl+HcccdTonHj+V1199D10rFC/spigiFSlSpMjfTXGVLVKkSJH/H9B1ndbWVsrLKwGFe+77J1MvGszGzd+AXUq+vYHDx14PyKCmCJWqBNUKFEXCsozdryNJFEY3ILirplzZgss2Nm5ajsDAUVbSs081HZ0e0BdFTmCbtr8R3xVDBAjVr4C2nA4gieW0AhZ4HmbOAGEBFrGSKO1tLejBEC07O0AY1HQpxzYgECyl317DGLPfRGxTwzFjaKKe0YNPIKLXIlGGrnUBL4znF4jhmB54CrmMw//1WFqwYAHTX3kZVYPlK5o56ZiL2KvpcI44eBpQg2mGAB3byaGX5CCQQQun0XSXAQMGMH70YcTDTRgZBRyFow6fSkTrA3QBIoUJuhQXX3kijzx9PaG43wykKAkUqQmhCFpb15LLtYMM6ZQJMkRLYshyOXgJII6shtn9aTo2O9rm88ob13PT7VMRohzsGsh1oayqimRyNY8+chdr1m1BIoxFG4iWQmA0qEEbVSvhzFOvA6Js2r6K404awx13X+z/0DxwPQgFYngE8cgX3Fw+ngcOEpBDUQw01aG1PYVjxIEKulT0pbK8mlDI9gOh5VbyzlpgIxlzFUgtIFoRWhJUg4zdWnCgtaGEUpw0ZSzb2xye/c8ltCQ/ARYw6/1LOfyovnw971VsJ8lL029n1IHd2G9MIw7bSGUdOjObQTIorYZZH95Mfb/tzHrvn1iuBW437GSjLyBJOVAMtAi+ImMHwNZx8xKO5YECppUiEu0NXhOSaKC2ajDHHXU5Ea0vnhcFgmD6odd5bzGBaCvPvngnhrEDx8uAZPDVNx9zzLFH8p/pz7N67U888cj1QI5gWEeRfecZxNCkCiRKKIlVsHNHM9269uDggw/m1ddmsFtZLDTQe7uERg9yRgqkDr8JzouR7+gBuUpsS+z+Q8GQiu+4S4HXSSQu+41kf6lJ70z6CeXVVeUgoCTGHrMeChE9ATgo9Eexe/vFX+omykuDQG+aqseBV4aZVcEJ4jiV5MwoYbkHUMGY0ScSVOvBi+NaDtGSCIoMbkH462jfXDhG228eCyrgCFQ54bt2zCocXCq6WKzc+hpedA4SO3EAy7MAgzVrl5LLt6PqJitWLaRHr0oamsro6OxAkfJAGiSJYLSEDRtXcvGVZ/DAY7fg7h5PUvh63g+UlJRw7kVnAFkQaXZs3wiAbUrst+8BnDz5DH799VcQFs1bVjOgbxcWLJzNiVP25+Enr0IXCv336stFF1xCLtUOmGTT24AUo/YfTO/eVTR3/EwmvWz3vYbl35emmQVSPPD4uRw3uSdjxnVDcbtQHq9ny5ZVXHb9FCr7/MAL0+/Hs+rBGo5n1jL5pBvwKOXddz9n645tgITp5sjnciBg0cIvuPqqcwEdTa0mqDdRV70PECEUCAJtSMTI5oNAvODe86/tseP3JRhzefDxW7ClHbS1LELTbKrKm9BEPdDEwN5HEdabGDt6AnW1jUTjLm2ZTUhE0EQ111/1BNFADxQpQZfacto7thNKQCadBkyE7CErMkJS8TyJYCSGrAlMCzqTWRRJUFFSQ0dbyp8yxSYUitDQWM/551/oP2s8QFjkzCW4LGLluvd59vkbAZdwoIpki6Bl6zaqKhuIhy0sbyE50UprawuaqETQk/ryQWQzDslkEtu20TUd7//6lKZIkSJFivytFIO1ixQpUuR/iQCEi2Xn+e33hcRKomi6zroNS3jv41cZPqKeytIx2JkYSsjjvY+eRpZNyhID8cxSUkYLiqz5gcCyhBAuEhkkcthWjoAq8dgLk1m9/luQOznh5JOYeOQhHDLuZEKBRuxMFEkEwQ0idpl+8L/aVgeSksUTaR554lZKSiIoIk4oVIZt57Dtdiy7E1W1yOUz6GoY3DBasBMhh5BkAWjU1dYBIbDKCYcT9Og+ED8jqQzcOLian52t2CDlcd08kqzT3moQjmrssfsAePTp3ZVNW5YwceLBXHLBSewz8GRKYt0xDAlJiYEcwrAcNE1FYPoZNyKDpqWoqKjDccJIbg2aGgEPaqrqCOgVIMr9zBSRZ9o1/6D/PnUcf9IE4uEKBGW4jobkKiD/zCPPn0zOWU2PblXoQasw/qYVDFOSLxzZwhfkAhlmvn0p9zx6MT36mlx/2aWAQjrbiWeEMK0V3PfwpQwa1Jemun2Z+fobfPn1h+xo20ivbqOR1NbC6E2J32QkAvzz5vMZc+AAunavpU+PfYEQkpRG9jRadrYTC7eTsbaiiBi4KqaRRiGAkLci0UbG3E4iUkkuHSSoSEguSJJAoqXQXKVx7nknUVUbJG+kSSQqkaUS/I2qhyKpCLsM5HIG9B1GXVU/amoSHD1xCgt+WsxLLz7Ljz99zfXXPM6QYWORFI/Ro4ZQV1VNfXUvJFGKHoyBJCErefJiGX33GsrBo6bQvdtYAorOP285g1Xrvqa9bQU9epSRtn/i6mvP4rDDTiSf1VB0EJrFkmUf8vV3M+m3d8x3oIlOIEmP7kMoj+zLIRMu5IVnnyNvrGfh73NZtWEuz0yfQ9dGwfjxh9Kz25BCCZVBfUMpfXr1Z999BzP7vX9z0skTeP7F5xgxfCQeMaAE4Sq++8kF0AhHYgwc0IuyRILhw/bHd7IEfKeUBMlUmx8jrKioag5YiyTr4MVRLAGKgqKbIErBDvvuKqHT1tJGMBwDVDwLhKQgKeB4Nq6lIMkWqpRFEnmMfIiQXviWAlKpJLouY+Q9VM3g5oe6szX5BDfe8xi/L3qVxb+uYcSIE1AVfyxVkgTZXDsB3SNrdOBYeZ568kmefvJRjjtxClZWQ9FAyICcQQ8mC9eJTj7fgRpchqQ188jT1/Pn8u+obyyhJFrG/sOPojI+iHEjz0dTGpCREJ6NImxqqkoYOmRvhg7rwZ/LF7KjZTPVdT2p7jKcGa/fx5KlC3nygec5bMIE1FAr4yfsjydUutePQhAglzNZv3E5WaOVssoY+w0bCLiEo77bSNgaakAnXlHJ3oP6oWkKjmsw9ZwTufn2abw2/Sly3jY8kWO/QWcgid6oahnHTurG7E+ewJR/Jp+Fz+csoGffEubM+YIxo4/Hzdt0dLSBZ1JSGSCTWUvXvkmW/raRPt3HsnT5cuToCtqTOSYePZzFqxex8o8gU6Y8jJ0OI+QoQoojRIIuNQ38698v8vPCXxk7chyqqmGYBvUNGjXVFQTULuhyOVgRBCoIzc9Oo53fVj3KnM8fYdOmdfTpPQq8IKZRxuAB/8CzaqipHMDeAwfz86IZfDx3JsMG/QNZ9AQvhqLFkeUE0VAJ3bs1MWLQRIJaH5x8A8KOI4iRz+dZunwR01+7l4MO6o0tdhDQ60Ek+eqbd3n4kXvZuaOVocNGFZ5lWba3rKC1cxV6KItp5QnrXZBlifnff8ynX06noa4XoWh3kBUsayuvzHyQWW8/xoTxB9DUvYGtW7YzZJ/9EURBtKNom+m715FAM1/+8ATf/PRv+nU7gaCaIJ9OYHtZhg/en1Agzssvz+TUKVP93oFCq9yuZ0YxVLtIkSJF/l6KIlKRIkWK/N3szoCw8T+SdfAweemlF/j88884/tgTGD74QKyUS0Vtjn8cdSxCbmPosAH06bU38WgDErUI1cEmTTgQRZFVECa57A62bF3A6689RL/eZaxa8R26FuWree9jWp08/8Tr7NXzVCSvErw8ht2JKkUQElx7y6HoAYPGrjUg8kiKf6CypGKYeYYOHkkkVAuoKJrA8VppadvIP2+9lAkTJqBrETS9BETKH+fxp7dAzpPPp9H0BGbORdby/glw43tGfmSDZGYxY8f1I2e0sO++B2EaHsHQrlG2XSNh/u/H7D+CUCjAL7/Op7FuMI5to2oKLgJHKMiyAp7AMTRkKcSaVat4dsYlHDz2TDS1gY4W0IMWQs1gehvI57Louh+27QmX/fYbxoihYwjrtShUAyF/ekoCx/UYMWQifXuMx/PCdHRkCAZ1kNIgd4KcBMWipaWTUKKd+58+mDEHNXD26Vexb78zcax9sM0EqhLE8ZZzx13nUFYZ4IsvP+eUk89i2dLNnDz5PPYeeACSEsZjJ48+fjdfffklo8eMAVyCeph9RxxI/77DUWWN9uRKlMAO8skouuah6itQ5Q5yaY1QoAxdU5CFiiSluO6mqaxbt4iqGg3PzhON1v53iRERNq60OH3q6dR3aaCqojsyNeCUgKuRT0uoQZVUvh3HS6MqHhCgd4+hqEoFb8x8ja6NDVxx5XkE9TF+zpWQQISBBjo7wwg5gCxruHYAIQeRRQUyNaSTGtFwGdBGdV0am/W8P+dRBg8r4/mXH+eaq2/isYef5YBx+5NMbUbStvLW7GcZOmwgL700k5HD+/L0C+ezYds33HDDpZxx5q3g6gwe2pX6Rok+fRp5493pvPrMvfzxR4bJx15Hsl1FD4ZwHZtAIAye3yI3ZHhvXp3xDHWNfZG0IFqwElkJI7xC6ZoHroXfvCY7WE4nslRQYl2Bkc9j2zkisRCW7bFjx3beeOdFkvktzJv3GQ0N5QRj5SAl8dx2PKMMMw+KruA6GV585U4+/eZxvvr+GVLuF3z01fVs3LgYTXGpre6HIkss+fNzLrhsHIcfdiCqVIZteCiqja7nmD79SVqSH/H1129w9fnfM7jndRy03wAOHDMMVSRo6laHI2XwRA5J5Phgzn9I59fyzuwXGbP/AALRDBMmDuar796mf//+pDJtCLWFT799mKVr32PGG/fzw49fsu/wg1DlASCiDNinAhFYx5ffTefZF+5j0D6j6Nf9aIxkLQE9gCRJKELGNAwURQU0NDXCmNGHkjFd/vxzB+PGnkyPnl0YOmgErin4/Iu5HHjQeDxPp3fTGDwqME3Q9SA9u9az79C9WL9tCRdcdCHN25cQUD3S7WnKa3uCLOF6LoqqYdkanogSizQwdvxhOIrG998twMikuP+2j+jTOIry6jJOPHkvRo0v5813P6amrBvjRp3NIQceSS6doEePQQjRSXv2ZzqSG5FcX4TvUl3N9jXdOeDgc/noszvpPlDj4oueYtjeU/Hsfpx5xu0gNJSghJBUHA9cPILhEAcfcCihUJya6gZAxrJMsC1q6voSCJYihIqQ5b88NyRAo6b0YIbsdTpbNuwkUQ75/Bbf4YZOU9c+DOg/BIFHU0Mt9XVdiUQHgaXx2pu38sGHT1JdmcDNVxKPNSKrTeCWICEQgGmAHrFIJIJoOtTX9sAwJHIpCT2Yo2tTGYcfdjBLli5h4IDB+NasNlZv+IZ5383gzTee5pgjjsfIBVC1IPWNZbRlNtC/z0FADdffPIGVaz/j3LPOpLGuP7Pf/pkDx55Kl/KelCRK2LZtEUtWvcGn865m2D5TIT+A7nWHsOIPk+HDD8M2QIu0g7YKmTgQ5523P+aEE07BtkCRpb/oRs5fHrxFihQpUuTvoCgiFSlSpMj/BPcvv2zWrF3NDz9+T1lZGfuN3A9VCdG//1C+/fEZDjt0HCdMOgc/fLUaSarAM9NcfOVRhGIVVFXVgCOjKC6q6vLZpzMIBw3mfzuXRQu/56yzr2Xdho0YOZmRIyZhZhJ+a5Lkh/06VpiVqxfRkvmSiUdOwDQtXNdEkcP4rgqFLjU1aEocCIIrg2SzadNSVq3+gxH77UNTbS9sxwEnjJANXCvi73dkEEoeVRV4joSiy2TzG1BVCdySPadDSnLPA5cwYmQ/Djr4QFQpTiJRVRiZK6Rig1+9JCwsp50XX/w3a9YsZdTI05CkMkDHxCvUqAskIZAlf8M/99NX6TR+Y8jAo1C8CkJhFaF2AC3c9/Dl/PLLQkaPPgKQEAKCWhiZCII4ohDyLCRwSCNLCRSpkmS7QyBUiW1I6IEQe+Zc/PyoTCZLOGKzbPV3HDryWGTRDYk6sCpRNJ1cxuVfz55HaSV0JlPstVdfBu4zhK6Ng6gs34tMRiGoBzj1zGNRZGhorKOpsY5gMEhTQy9i0RpUOYpHin+/dDcrVv5K78ZRRBMRvpr/JDPeeI5EuA+1XfqRTXUgWUFy+S2kM5uobyzj5f88xgnHTgYR2+0G88PRFWQRQAvlAD+XxXdZBdm0sZmy6hiZXDORsI5fvuWSy1ioWoJMq8mwoSMYtv+BaMLCSVYiMGhrXU8oGsHK6oTCJShKHpcMQg7h6zESioCAroDI8fZ7D/Pt97PI5ds5bcoZ/PLjCs47/Vo0pZrR+x8ByOgBgSxyjBi6L9UV3ei/1wGEIxVs3DKfYSP2Il4Sp0ftaGQvgNA8/30QYez+xwESQwYdgyx1QZPiCFnxiwklCdwAQsggtTB3zvskU4Jly9YxetREoBAKXdjQ7xKTkC1kyaYz1eqLl46MHgqjyGC7NpoWIRYLMGDvHnSv78beA3oRDDhcc+MUli1dQFlpKfFYb7SQwHPzSKrNkGE92Lx1GfuPHkpr+0YsJ83i35YioTKgzxEY2TTr1v9ELNFGujNL7z6jEK6LpCgIYbHP3v3p2bWKxb+vo750FC889TJLl37P2PETaKzdB1cGGQ0JBdCoq+9C94YGOpIt9OzWlZrqakKRMI6jUlM5AFWO4LgWfXrUECl1aW/v5LeFG5l0zBVgari2hh7wEGobf/yxCFmRWbm8mX2HHkowHMKzC/qHJ/xsKd/WRCF9nIbG7nhSlNravQlrMoqk06WqBl3XqW/qiipHMZ0QkhRClsDI2+SsVjL2Jr7+9mMymXVs3riR4yedyE/fL2bA3vvvFl4c4WLbGrIURVGihPQ4npAYPmB/OjqamTVjPr16DKT33vV0Zubzx5Jv+WPxWrB0jjr0HGS1lFiwB+FYCUgZ7nnoHH5Z8BMTj7wYTUkgJJ3uDSNo27GdI44agKRFqCs9BMcrp7FuBJoqISSwPAUhaQjJACwkyUNCRg8ECQYK660nUPUS39EoKVj5DPJ/1dbLgEZyi0YgGCASClJeFUEPCIQIAjGEJOHhIMgjCBCJVIBTBg60Zb8kXpFj+7YWhgw5DlmJFFrX2C0kywFAZFAUidqaHghRSbpTEIvG+GjuTN567yUau9Xx5+LV9O+3N8lkK4GgwUvTH6CmWuW1V39i8R/fcfTR59PR2kkg5NG1oQI/u6mMcQd248abb+KYYyfS3mKyV+8heLZEZVUXkGSisTgNddV89Mkz9Ot2IOFYX8y0yj7DRwOdoHQg5AwyUXxXa4Dp01/j5Mkn+88Wdp2rXc/YvzZ8FilSpEiR/68pBmsXKVKkyP+EXS4k/+v5F52LEDL/evJZQGBbEorq8sizB3H5eQ+AV4dnNPkbXYDgKlY030ePqn8ioWM5Mposg5fhjtsu4MorzmDH9g2UJhLEKkaC19MPwwZMuwNZFkiujpAdkHaybP1X9GiyuO2+fyHZcUbuO45xo08nm5KIl5X95biTgMXadb/z1uxnWLn6N/Ye1IP2Foee3UYw+YSbgByeVYXwIJ+FQHwbrteG8EJMu+RiBg4po1/fwYwadqn/kpIFbOGhp6Zx/gVnEpYqgCb8gOYcEPVbrcAPT05u5777bmP/UUM59PBRkOkNAmwJRMClJbOORDiOjEl7x1bK42V8NOcljjh0AI8/+TXzvlrFm2/OBWktLanfefv9xznvlPuBvQAdD5V83iGgy+xsdognZFQdIIfJNrxcFQHtryHg7HFUeX/5f5JNuiNHJBbFyJnoEY9dddOZDodwNMLLM45j/g+zOfroqezY2c4pU05DEbXYViWqXI8ntfPhh6+wV98e9OhWjYcFBBB0AU8vuNma+fDzZxg/6kiC+miaN21i2cbn6T+gN+Ul4zFTYbRwCTgK7S1bSNRkeeKZm7j4/OOBONAbvDKwgruP3VOTCDbywqu3sXXrZqaecRm33/wkAwcMprGpnomHHca6Tc288cY7HHnYafTtNdwPh9bw92uWA5EW8ILccfsUYgnYuj3D3be9Cbg8P+sqUrmtTDvnWVQSgI7kBXEsULRW5s67lVGj+xCmFhgKdh3J9A9cePElzHjlW5JtLcRKQ2ze+iN33XUXjz8yHTfXA10DV1/A6+/cSzCS45hD78LIqpx5xtk8+dgMSsu7gwFEWkm3qXhOAM+FWLkKko2Vy6PK0YJ2ugLowCOBIIHhVKBIheIvkQGawS0HWyOb28KlVx/Nb38s4eyzz2bb1hamnXcP5VWNhRPih1e/+9F0vvv6Bx564EaS1hq+++EN3HwDG1e6XDjtGkAHbFKp7Vx3wzSeeuJVoNwfc1OSwK+0tG6jPH4iODnQNnLljcOoruzOVdOeQ3gRUCpIt7hESiWwYyB0UD8DNjD/l88YOfgW8LqCksV0PDQ5jmsqWAYoWgeybjDrtYfY2rwcVYkzbdoLGCkVVQZJBtNJoYXSGLaJrtSDKWEb4Ng59EQHsA0Xk1ze4t23P+b4409E14JALXZKQQkE/H296l9rhtmOrntYXh4hgsgk/OY2TMAAxybZmSccSSCr0d2+EtPyQGomqLRg08oPCz/ii0/ncev1jxbWjipMxwHh4joKuhLZLZRYDqi6gWE2E9C2Fs57CLB5+927iZeq9O8/kF8XbOSwCWfQ3hogEesDigFiCznmcvddDxDhEK69/kncNHz386Os3fg9qXyWi8+bS3uynXhCw0XCpAUJHcWrBNGB5eRwHIeAppFOpSiJJrBtBVlEEJK0R4vWd7XXbS2csDi4FXta670kqElWrFjEH4sXMukf12G7ARQdUtntREN5hNmE4+SQlSCoOeAToJN7H53BdZd8see1lExhfTcLv+JABDcbJJ2EaAmIYA5o5q0PXiCbynL0kacRClSgqDKQZOHi2dx+2zXccss1dLaUcuCBF5DP2ATCEi7tZGwJnAhRvQWwyKTa0AIWTzx1P1dcdjfpDpdIaKAfXi7B5rUL+HbRA3w770euvORBevbpzSPPn4SQ4dIzP4FUI2kbonE4/LATmDVrFtGo2D0mvkcZkynGvhYpUqTI30dRRCpSpEiRv5vdEQ0G/r/g/eDm+T/+iG3JjBk9nkzaIBTRSWc3ocu1qIqEkHaAU0nnDiipMXh2+sH06n0Mw4aOIqBUolAGyDTvaKWqMsGa9Uvp3tSEvzkK/0Xg6KA9u5Lv5n9BMtnBKcdOxSCHisIll97NiaeOpk/vrkTlQQSCcbLpZkJRjbZtLdzx8OEsXr6Jw4+oJxJzqaxOsG7dKnSpG0t+28mpk+5l8OiDUGjEs0CRXZB+5o03nqG6ai9++XkVF199GhoxoCd70rwtHnzoDiTJY+wBoxkyaCg7W7fhYRUyoSSUICAXNnxWGbjg2CAXzAxt6VU88NgFjBlzAIcddDJQv0d8kgw6Ugt56MmLuPCCS6iJT8Q1SpF0l01bvqW+dgg4cZAzhR/QrhoqC8gUTpwOXhBEhnyulZdfeQItYDL1tDNxsPnk4++ZePhZ4AXAU8jnmwnoJSAChWPIARad7W2UxJt2h5gvXvkfBgwYhL9pC/DCK6cTisisXxbivKl3Ulopk8t1cv9D93LC5MPp2bOeux+6isau3amt6cGIoccSVfv47XqFsTSn0MCmhvL+N9nVqAe4AlyySCKLQMGjBMcWuA6ouodAkE0bqKE2NKkZiw480uRzgliwHqgBcjz4+EROP/1iVv4p2G/oqYWcHwqmsRwerQjitCcXowUswloXoBbI0ZKZQ3k4AQz1BSzvvzd4Ri6JYaaJJWJ0dmznjnvOpmff7ezcpJBpHsY9jzwHciejR5dz74NTwI3QtcsEKuKHosY3kHeWEJBbgSifzZtLRWUcO1fJPn2PINvWSCTexkOP3EHvPl1xvCzHHDsFULnhynu54pJ7QVEorw3gN16F8EO5wcqCWmLzw/xXeHb6VHrUd0f1Ehw07liqmvLMmPk6l19xIboSAo4GqwKAScfH6d6njgumnUlT3TCgGxDHyYeRdVFw3K0m3xlg1dpfWLL6E/YZadG7dipecl9kOYQtVnP73ZcxcMBQJh03Ff+GMNm5YwEbts3niqvuZ8iQKJZRwiP3/YKqFVQaL7LbaeY4eWS9laUrfmDm609x1y1PACGatxqcOvkM5nw6E0m3uOfuKYwZ35NUWuegA59EkYLkchaSpKDrKnvaEk0/Hyqr07z9F7766SFWrllAZ6fBqOEnc8yk03jvvacpr5BZsirJeVPvoaM9T7yke2EtsgstZK5/f6H5uWT/b/7LRLJLHHD+8nswrBye5xHQ9L/8pcJ15QXBBjMLWhhQknzwyRN8+tkbbN7wB9dcfzbzvlnBNVc+A3TSmW0hmyyjpnoYfgucgksUBQ3TTKJrq9iZ+5xXXp7JFRfcC4xg+dJLmPv5q4ze73q61l9DvFrHZRUWNgFvMJ5pIPRtODRh52wUyUXW2zltygHU1FVy2x2PkU7VUBavwnbaUZVEwRlkkMp/zz+OHU9jfV/uu+0dKst7g+I7KQ2njWwuiaP/zBUXPUE8Xsrj9y8AN4hDG0gx3222+7mTZGeymbJYBW3tLrocIxa0ufO+k9menEfPXg1Egr0565Tn/MZMd9fS4WLbBqriryNvvf0Wxx5zPJKk/GUc1gbWAl3A1x1U7wAAIABJREFUieA4nZhWjmCwGlxo7viG1Zs+YfmiHZx1xsPgKris45W3rmbySWeAWUe2tRfx0sqCkLuW7365iWuuf5Ux+3fl3ttmkXV3sGrVCvbufQSO1RNZ9Q9w/IHHM3v2m4QjICl+eLv/IjpFAalIkSJF/l6KIlKRIkWK/E/xN0N/LlvEKzNeZsHCH/h8zhzALowjlLJh8xoa60r8P2t2AwHz57/Jlz/dxVXX/IcAUUw3iCaV4iHhOmA7BrrmYjp5NDkEhPZs1EUO6ODRpx/gsguvIGtASC9j5w6VihIFdINkehOxcBPZ9Gby9jZuu/0CbrjqUdZt+gPT3cbC3+dy/IkTqSttpCMrmP3mz0w4aBI1tXvjEMRzIv6gitcBykJ2tC6jsmw/zEwFWjiMadloSkVh81wQkR68nTPOPJnyskrA5qZbryZRpnHZhY8ieXHaOjZSWr6D2+/7Jz0axnHkxElEox5Qjj+G1cbyVb/Rp+doIAaWumcERLaAHKncYkLBCLmOOoJaGbIOOWMDwVAXsFVQdjVr/WUkQliF/1DAAcNeg67neWP2Sxx/9KEI4MY7bmDyiefSt9doJCLYpoaiJsBTcPIg64Bw/E2Wa5PudEklTWoqyiBgY+dSeE4ANRBkxYrvqW0IEtDKkMxGvOBOZM3EsQRCkpFk6EhuJh6rwN8gVZBKJonGtgFhjGwUPZAoHP+uijAFXMgaHYTCGcDg7Y9fYfu2Vk47ZRrRQHnhesxh2h6a1AUz34IayON4NpZlEQxUYVkyihQl2WFRUmqQS7YSLPEdHJZloqplBcHKbyWzLNCC24AchuGhK1XkzTZ2JL/h628+pWNbIxdfdCNC1v3jFB6+C8KipWUj7733LpOO/weK4oKdI+D1R9ZLILCK2R/cxIiD0tx040eUR8q47oLviJf28ZvMpAz5ToOAXuW/rUAz0OaLKTT458XMgy4DOTLpNfz62zy6NEq0tC9nxMB/ACPBLt1zHchptu78ghtvOY1hQwZy/KRJXHnlZQRDcO+d95OIHcbDD95FWVkFXSpHMG7cschqEDz4feV5uG6Ypb8bnDLlDrLtQULRYOF1bbZuXc/yta/zx6LNnH7K5cQTITqSW0nERuCkC+NF6q/AHH5e+SWL5nucd9qL4JbhmSoilAN2AA6W5SK7fZG0gjjlqRgZCz2kgsiSyv1Ja/t6NmxdxthhRwNB1qxdxWNPXcT/w957BllV5l3fv533PrFzN00DTc5JMmYEBAVRjIhhZvQ2DIYxO4YRHbOY05jGiHHMWREjigqKCJIzTefuk8OO74d9GvC533q+ed9VT51VRRU0p/fZ+0rnXOta/7V2t2znrLPGcvCEWfz70a/526X3AwNIpuKEQwWlGh55y0RTNCzHQREjhbSyNIi/kbcaWLliLZPHnwhSGGgFUty66B+YuQgLr7sP6AaWDJLg94VXMCrfj/fZ2+6/Wyu7IP5e9bf/q1xwXRdZ7pLz4M9dV9tLdiSzG1ix+g1W/fIlq3/8mqef/I325jTltbXgiLiOTSKzh5KSenKpEFoQLBtcN8my5e/zwy9PUFObJdOpEZAG8ufT/sXXy66gosbl1Zc3cMM/3gMR9rQvJ+m8x03X3sKksUewbpXFA/96mWxSJ6hFEdQEq1Y9w+YdP3PjLc/x8w9bkahBcAyQ8kAeK28hSzpNnd+wu3kFTz7xFI/dv5qfvt/AS689zKTDw8w9+iwgz+LnVzD9mFoef/hdTp93KTWVQ1ADBbJdtfhp9Qcs/fI/aLrEOWdfhuT0RhZDZFPbMCItnH/ZUVx++WW8/upyrrz4JfB8xaVXIPoEQoCDi7lfN3X51XWlCm4HNDzPwMxJaFqUfEZAC4ogbAGauOaGi7h14eu+mTx5/vXExaRTJpddcje4Pdm17Td+W/85v278F9Nnjef6q57nr2c/xJHTFoCSB2L45L6Br57SOGLaKbz37qc4jkMoqOy7J1ferxSwiCKKKKKIPwJFqr6IIooo4g9HYTPkUSB2FJ55+gWampq44cYrSeR3s2nnLwDsaFrO6+88QN7NAN1BzdIRX8eaDZ8xbuSJaEQAFVnUAAnbAklS8I8DJFxH3Peee79EK4DGsCHjsD0Vx/KVFuGgTHsb2LZCwPAJkEC4DMu0GT58ONXd+zFx3LEcMnketqORSAhANYYylMkT5qOpPQvXbsSTzEKZVwnQF40hQA2W6QAdqErWf3ZPKSgPFEaNHEdFeU3hHkWOn3six889BQEFzxMIBEI0de7ml9U/ouoO4bACZPA3EQnAoV+foaQT9j4FUhc8CdfUCGi1SFQRMMqQCi9xbNH3BKGrP8R9J+uFdoR9p+2aVsu2bTGOn3MOeTsMVDBq+FSGDZiCSBVQhoAKQhOJ1EakQJpkajeITdjudhCbCZWmqOiW97kvT0ZWdBRNw8lAfd0YQtFeyIZAIuHgOr4HiqSUkoqruGYJJZEheE4UKANHRJM1Mu5GMvZWZDUHeOQzZuF59qkQAkEZyNOa3Mmexm2omkAunwTyOGSwSeMKcRCbaW/bxH13L+K/zjqHO29/EDCQlSAdsTyRqAJWCMmrAUKAjKLsl6Tn+X9VVcBTcRwFTYuCJKFpGk8//RzRSDVlZWUIQmFgCl3lfhbZbCevvraY1rY9PP7EIwQDZQQjfRDUJGgpwKB3j8No2G5w+JQ6zjpnHt98t5RsHCDPji1reOTR+/3rmuClqnFz5dg5wx9vjgZSGM8E1zbRjSj9+4+le/VBTBhxIZlcD/9391n2AG089Nh1fLs8wfRpcyjRxzFsZCnHnNSHzQ3fADBoRD+69azCdD1MZQvIO0GOMXLoTEYPn8P80/5J526NQMjwhTRCJ7Cb2lqPKQcdSbfuPZAUHcsOUBodBU6BgJQAVLbG1rPki8/4/KulfnvJEoKm0d6UwidTK1CUHoiyQC5p7xvXXYyL4KFpGvXd+zB+7OFABAjR1NxCQ8t2+gyCG29bwY5djWjyAHzVmUA4FCSdi+GSAbI4bg7TyaJ0qc8EMLMOsUQOTenJ5EmzQYgCwcL4CDF0+BB27Nzs97HnsHdB8sS94+V36ez/N/XR/q8rzEvX8YlLUQBJLKwt/H79M3M2iA7hcIjDD5zCnGNncNAho8nGJMrLevt1bmKAZ555nqVfvgW0o2v+tVUZdE1kwsTR9O/fn7FjJ1NeUc/qX7aDB2NGnM/gwedheYDUAIJLbcVIupUOJRiCbP5nVKONrJsmFBZAiuGZbdTV9aSqsgenn34EazZ9A+zxvdktX6GqaCEEIYhIgKrKbqSz7aSzmxk0pDdnnnkmX3+1vNDOZZx68rnY+QBDhgxDED3UAu/nOQ6Qp657KWPG9OfHHz9DEjLIsgmCixFR2dO8BQGFXt0GMH3qnH1tJ4BPDuX3/iyTSQEetpcnlW0v/F8ecLn2H9fw6BN3gRBDM4LgqIX1MAeI2AQQ5Sx7Gtdj5+KAwdEz5hPQCmuJZ9OjbwVHHj2ZHj0rGNJ/OIMHjqVfn5H+8mBrvnqRcGE8JGhOriNSCoJoEgyqhT7fby0voogiiijiD0VRiVREEUUU8YfDAqR9ahegpa2JW++4hrGTutHYuoZu1X2YN/dyHnryUs46ez4hRmHHeyJHdvGX8w/m7LPmMWnwbXihVkBCJIhfbgVewQTasrPIsuTH3KPhn8pSOJXNk8mlUKQIiqjgeiDIeVIxDT3ciSLZ4FSCAHcv+jvnnjcXQxyB42h0Ztdw4ZUHc8ABBzB4wCRmHnYtqmxg5iHv7iQQlYDuiC4IgsXnn9/Fhg2rGDVsDhPHzwO1oDjZn+gRXBwrjaQ65HNJNF2kuWUX0WgpTqaeYFADCSYcVMqDD93N2JHHIcohIIFjeUiKStdGJpf10I0y/xT9/9xsii5mNo2qhclnPBQVRC1DLp1H1cOIks3e02u62soqXEDxjWlbU5RVhejsaCSeaOL7H5Zx8imnAYZPThQsON766HK+WPo9Jxz3Zw6afAgOHTz1zL+orIpw3FGn+9cjA1TiOgnS6TThyBDwgrS2fs3CO07g4bs3AQaZXAZdqkIs+C/ZtousWyDYJNoTbN25glsfPAZFrOCx+79EoR7NCPi3LXaVTYrgGHtP5WOxVgytDE2R9o0bGfL5RhZcUMugQWMpKRvI7NnzqK4eTh4FDwkBFcdzCdhl5JJ59KjmX/P/8K/1BL98SNPBc0wERcDMdaDqLms2fMKwgWOAOtIJh2Co3FekCF1lKHlsJ0kulyUUDPvjN6+TybXwj9uPoaZ3E5aVJ95cx3V/W0Io2tMvF7QN3v3kSt78YBHduocY0uNi5p/8zy6v873+7JlcmkA0BcTY0byM5xc/RjgcIRrszZ9OvRrL0VAkEX9z7peNQRObdn1KKpFk9cqtnHnGzSTi64lEdfY0tVFbeWRBPWKBF8ITtuCSI2XGePH5M1Dlek499iE8sw+BUo1cJoMe1smmBUQEJMNDkJKIQEcqQUmoFvD9hhQVPGwSmZWUBg1cDEQiOI5JR6yByvJKcjkPXS8h2SkSDJRiWin0IH6negXSijzICTzSNO5xqa3pg+uCKKfZsO1VHnj0Ii664K888cDnLLrjWzKdFmLIQ9dtFt1/A4lkO2f+6XT61g0rrCkR8lkZTQHLBUdoQlFAQse2Q8iSTM5qQ1FNJJqAAO3teSKBgSiSvrc/9pJIXQGMewmkLuJo/yACkd+VKO03x+1CeavQNR67UjAFDzwFzwJBcUFoZdkPr/Hbxg/ZtvUDrr/4JzS1BlfIIesWDu288eEiTpz5V0xzHKoKpmWhKgqQx6URkSxQQqwDotpAhGCWdCZOUK8hm2/HMHz1Z3PH02Ttj3jn9c+YP+c9jIpDiac+I57cyJIPPuCC8+4nFXfJ2Sb/fOBUTpp/KEPqj6JUPxA3H0JUAKGd1Wu+ZcTwkaRzjXz6xYts39LGxQuuQaAKCJA3G0jEbCqremLlPCTJw/b2oKp+mbOdziIHPRp2L+enX5bT2LSH+af8F8FgDWCzYuUXLPniE4YOHsXso/4KXre9a6ZHKyCSz0Vx3AzBAIBDU/tOln3zHY2NzZz1l/Mw1DDJ1A5eeu0BTpl3PHZiJGWl1f51lPYCkRRkT+dDXHTeIv7zyipweoIUY9kXn1NX259eA+r5582n8OWXHzKgTy8eeexRXCcMbg2i2M83aJfx+1SM05Jazrvvvss/rn6MjeubcGyPSDjEPiXS/qbkRRRRRBFF/BEokkhFFFFEEX848uz9crs34h4Wv/Q43Xt7WN4epkyaikA9TU05KmpsVAyw62lu3sATz9zEeeedQrk+GyHYdTqs4Ln+Jkrp4mb2fmlO8d9JJJt0JkXQKKGzDUorwBN2I1AHNPr3aHcHz8ShHcfbgyqPhbwMRpZvVj5Inz79qC0dCXZff58nAXIrMTNLWOmJ6EFn+0bue+RUzjjjBPr1Pg6sgfs2iuD/XuHvjmWSN2MEwgbpdAvBoIRfstAHL28gKOCKmxAJ+Pfm+goBUSxcR4dEaj2RiMm2hnX07j4UqCST8ggEuhROhfeyk0hqYefqWSRTHYTDXeU6QWxHR5ZUfPIgA7iYjgBOBFU1aWraSiSqcfc9t3LCiXMZPGAwoOO6KpYJmqaxecuv1PcajCz5JVVWPsXmLesYPKw/ic4MkdJKHD7hsceeZeeujQwePIie3cYzYdx0/nzegdxy71z6VV0A9CeZsdDkctSuTbfYztNPX0fO7KS2toS33n6T625aSG3VUAx5lO+PBGSz7RihXGEMuORMixtuvIrqmgouvfAS/NP8Esy8jaqpQJKr/n4qdbVb6N17ErNmXYmvJKnERiHt5lBFAQUR2Y0U4rbkQucDgks6G0OSQFUlRK8UHLByoARgzW+f8PSzD3Ha6SfTsCvOzOmnIMkR0jGBYFTypSRSHttK4Lo2rgu6EcbMCKhKmJvunEXPYZvo33sSB46YD0yiszlLaVUJjplA0jQeePR4ho0uJVqqMGbgBThmBEktw8qmUbQwjz2xiN9a76RX3WBmTDuB995YzZUXPuQ/p1eyVxGTy4JugOOB47qoGrQ0b6Cq2iWV3cK5C+aw+KkMmAZWFpQIJOMO4aiE5eUQJR3L9tDkOGbnbhADaOFq7HwHrtyGqiikshlCxlDSSYlAWMd0s8gie+d0F4mSyVkEtBC5pP+jYBiQLByvgxtuPodgWOSk48+hb48RmJaKJOaQJAeHNBJR4h0SoUA1kvx7wXmX8E6gy5dI8h+eJH7JkF/+55DAIY6vNXMRKRB7RMAV/aKxQlpd3syjqT6Z6rpg2jkk2UWXkvjebAE/eUwAx7KRtBQILmbOAlFDVUr2W7ssTDuDKks4WEgI5O0smtw1V/0H8MvrDH63uFgKrg25vEkgKu8t580ks2iBHILcAcJu3vv4Kjb+GmHl8hhPPv4GWtl6Pl/2Mus3/cqFf3qIq/6xkA/e/4AlH31MQB1EONoNJychaS4I+b334bGbRFYkKvQlls5QUrIHpChWZgdKoNlv3vwUHNlAUrYA29m9Zyt13U6mZUeWqp7V2OJyftz4Et8v+5HhvedxxGFnF54nAYTwTANBsWmOfcjTz93L1Rffhm32QVYVOmM7KC0JkEuXcuddt3PBRWewdtPbbFjzG+vWNHL33R9C1gAjj2c18dLrd7CrcQWbt/zG0H7H8aczL2Ttus2MOeBAdLUWx1EwLdAMcMUUICITIJ5sIRIRSeXaCOs6ix64DzyJyy++lnQGgnoQy9uCJGURnTFgQqwTSmqz/kLthkB8AajFMbshCYNBzuJPoiD5dAObG97kx+9/4LpLXmV3+5ZCG8j+WpVWUAMa199wEZdcfiZlkQiLX3mXM+dfjW2amCaouov/OUthHnUtnEUUUUQRRfwRkBYuXLjwf/smiiiiiCL+30ahlMMT922WRNi6bSO9+3SjV30tYa0UKEWiFkP1N5OZpERpZZiJE0cTDpchSJV4oofneXieH2kvdMWOw34bMZO9G/1C6Uk2nyBgaFg2qIqEJAOCheAFCqfFDohhkNKs27CMp565mZGDJyFJlUiqS2mlR2mw2t9MelG6oqERE8iSRD4fIJsGTbGorPYYOngEZlbGzqvIhgeCiW3msCwLWfENgK28haJKiLKIqkrs3P0b5154PNOOOBI9WApCBoFO/43cUuwur6EugYIEmuHx1gf/4rvvl2B7aXp1H4SiBkjGTDRDBU/ANh1k3SSdaeCbbz7jjTfe4rDDDmTNpm+ZfexRHDZlCpVlNeTMDJaTRpFsbHIoooIkaZj5GJLsEggqmHaWCWPHkbczyKKGIMjIsgyCiKoYZFIuhh4FFyRZRVOiaEYETQuDK3HvfVczdMhwLDvPzJmz6NVjGOFoJaXlNo//+1H69BhPZeVwZCWILEkk4ml0QwAaWfLFM6iBFNEyj0GDBjDpgBNQxCpwy8CR/RKcgEtTyzr+/dyDBMIiS79+HkfayceffUxD67d8uexdnnr6ARqafuPeB69i3OTurF79BcfNOpb6nmMJRwcBpZimAVIIVfBjyEVEhKzti1zcJIKUI5Xeg6q6qIqELMmAguu4iMi++bkIK3/+mEiJwrSpRzFwwAREyVfISKKCKEMy0YlmSIiSgCTryIpBOpHDCEZJxeO0xtYwbNgQBHMgJeGRdDYpVHQPYFkNyFocPJtx44bRp+4AyksGIXs9EJUg0IikJEBwuWHh9fz1siMoDfdj8IADGdLvSMKBQeAGfme7IxRCnkTZ/4eIQDBYyQ8/fMEvq7/mgIkGLTtC9KwdhqRDe/wXSkq7gQCSmEFwNGxL8MuK1CpkLYiZ3YMSTCNJCdJmGyG9GssKosohHDGOIsKePW04roSHTC6fwlAVVFlFEERUxS8RtEwQRQlRlFj1yw+MGDGcNas30qNnPeFgKQ2Na3n0sXvoP7COQMDAMKoQJQ0rgz/XC2sOkgskCyRSFC+n+6VHYgJYg0+gdkPEIWemUCUVkBHQABnbFnEcCU/0yVwPkCWZjo4suq4giiDLMpIoIeKR7LQwMwISCqICogLxxE503UaQrMLc6Uo+9Nk8x80jiR6uZ2G5eTRZAWw6k21cc91VTD5oAkFdZ1/n+cRbOqaiBUDRJfK5BLKiggO27eB6FrLiIgoS3buVomnldLaLTJsyD0lpQzHylEb70r3qIDo6dnH4lKGsXPkzB06eQypmomsF431B9b3OSAEZNKUEOxcEMYGqNRNvTREIDwYxBLafnOchks61oykykXAN847/M+vWbeDQww4h7TWhazoiLq+/9g6jRowmFNLIpDxUpdRf0kWRgOFx8MTJgMpJJ5/GhIkjqanuDZjIaoSdu9bQ2rGNaYcfSmtsC20tSQ495DQ/wtKTyeccBg+vxhFb2blrAxF9EIdPPRlVilBSXkc+I6Bo0n4HEjKSoCIAui7jkCZvphEVl/HjJ3HIxEPJmg4BvQxsBUn2Ch8/frKnbgCyS2d7K8mYxa33n0y/vqMpLR0MRMgkmpEVB0FWkMUcyC306FFLPiUwdcYJ+GpAhY6WOKFoOYlYK9+teJutu76jvu8Q+veewOqfd3LKSSf5JJIm4MsP909nK0qRiiiiiCL+KBRJpCKKKKKIPxxdMTn7yewF6GiPM3DAMEqD3cnZBpJYhabIIBjgRVB0C9iBJGUBCYQwgqAhCJLvK1O4jvDfpPtdMqEujwubZHoPlpsioIuIsoRp2khi2K8mkg32qRIaufiK46jvnyedzjN46GRsR0CTAwhEcDwdUQjsd3mThN1CUK1ClkQad+/g9jsvZuOmXzn0sJnImgA0AJ2Iso6sylh5P35aFmVERd37ADfceBGz5g5l+JCBiAhct/A8GjtW0L1HGQG9DlGSQLZIxEwcT0YxfCPhd957gQmTRnPw+Ik8//JzPPLwQ8yedRySIoOr4DointjEkBH9GTiwFxddeC2Q5Z6HruWAAw5g+/Y9TBh7IKIEV119KR3JBgYM6oci+N5NklSOnQugahX07TMKvDCyVAlOECuvI8klIHioWgNGUMK2IZHIogdVtIBQIKFUQCTTqTL1yDmMHzuVSKAe3egDQpY+9XU0N7UxY9plZEwVSdKIJWOURGHrzhXccvtZbNy8nLIKj93bN7Njezsjhp2CplQhCmF/aMnguh288/7LTJs2hYF9RjBySJSPvnqS/zp3FvNmHUN7soVDDj6QSZNGES0FQW7njBPPp6LyRMKRiZCrI5+OoCkGnikjCTK5tIbgGcTbG/C8DGqggwsun8VTz92KJyfoP2AYihjFtsLIioOTkxElfzj1728waFgdnh1FEuv8gSoJiLLnl6MJaUQxy6JFt/HLqtXs3rWHESMnkE63oEV2M2LQXGojs+hePQFVqcJiF0cdM5znX7mL9uxSfvt1B4PqZ6BqI5DNweCUEW+3+Pz720nmf+Ojj9/kb+c/wZBeC+jbfQ6KN5SAUYUoOiCYIJog5grtJ2N7WSQpCWIWAQPy0L3nUAYNGk3/Xv3oWR9ix+7lvPveE6zb+h9Gj5hSqLUBwVZRRBAVF4Q4bS3LWfzW5QTLmnj0sWeZdujxbNssU17Wg3inR0PnYnRdpSIymICi+2ScAJKoIwguAo1YwiZEsQNJURHQwVWYNOEo+vUZx4ABIykJV+PisPTzNznksPE8+e8HqOtRQ0VpDQiSP+4K6kdPtnHZgUcbAmkEolh5FVz4df2bPPLiqazasJQxI04lb1kE1TIsR0USI9iOgutJyLKMKJnEEttQJFClgF/G6imoql8iKQoueDbNzXsoL61BVVQkBfI5E89L0h7fzGNP3k1tXTmhSBhJKGcfM2zTEWvh62Wf8fkXS/hs6YccfOAkwEbTFCZOHscFCy5g7rFz+d1iikCsM0EwqoKYwfXakGSHTK6DbDZDpDSEILhAGNUaRI8+fRg1bBJGpBbbTVIaHkj3qllglTJs2AiGDKynrbWJ/r2HoAbCeJbqi/BEQBDwyCAUSj0lVcFzNvDLz5/xzlsfMXH0XHCjIFZiESOdE4kYVSQ7w2hGlPreHg1ty3n93Sc5euZ5lOoTqKsZzPjJ3fnTWcdw5vwzUMV+e1WbrteJKFbR0eZgBCqYOnM4/7zlKmYccTaiJANpBo3UWfXLDwweOJU+fStQjSp6VE/wbcckiCcsIqUqFTURevbqjyb0of+AiSiiT9zG460EwgEQwbYFJMn/QPFcQMzx7fLPWLr0EwYPGQieCoKKLlcUPO4ECjV4PsEmAZJMKtFGtNRAkBPMmDqBW276N9OnnwpIrFr9Lp8ufY0+9d1BcNi5ey1vvvUiup5nSL8DMYJ1tDe2Ul7VCxwBLaSy7KdH2dnyMbNnnIaudueD977mpBPn0BVKiNBFIoGvRiqSSEUUUUQRfxSK5WxFFFFEEX84ujZI+8cLyfzyy6/07zsMQRAwjC6hkoWVU1BkaEt/ykdLHqN/vyHUdxvDicefxjvvNlBSEsG2bWRZ5L8lGAG+B5O239ul2LTjOx5/4mEA7rr5IRIZi7DRG8HEr2AR0n68s9eCI+5mzfo3GTn4JPJWOZpS61eBFbyX/C/rVuH9JJI5EQURTYHZcwbw8jvzefKpuxnQZxqTxpzNVdfcSCqb4eTj5zFn1hmAT5LhyngOCLIHosmSzxYz9YiheJQj0I1777mZE08bTV1VH/AGAL5q6vxLxuJ6WWZPv5RZMxeA4OA6nYhSG998/yljx45HEcuQhD5gargWiMEWUrnNhPQaoAfQwQ+/vsL44dOAMjpiJmUlFXTEmwlFBFRBLTRMBPLKvqYt7FntPMjavi5dtfor1jXcS8ioZfbUi4Ay9pF5fpx5OpkhqNSSSK8jUh72n8fTuPq6Q/n1t5Xcv+g5KqPjCFb0Y+OOHdT3qiWT2METTy7i2ONG0dm2hWi4BDOhMXr8cfgmyBpWRkLRZXDzIKeIxZopKalP6it5AAAgAElEQVTF30il+PtV57Fz5w6uvWYhQ4ZPgVxoHwkoJUjFEoQidVgmKDL+gX7XbRdULJs3/czX3z5GW3s7V1zxd5589gmOO+54NK0SkXJ0LYpAGIFmcKv9KhYyoKzAJo3KKDqaopRVB3CdGKLczoOPLCKTSWE5GUaOOIBZM+eRTJhEIr3ANfaLKO9q9wT3PHoOJ5xyID+t2MCsqZcTazH5dOmjrPr1Wy5ccAV13aeQ7owTiMYx7Ti4QRRhILbkoso2JnFUujyv/HIZiAIyHgkEsqTMTkKqzq6mbdTVdMexFDxLRtFq6Gz9kNIaDWwPvDra95RSXt294FuVQdBjiEKaXessPv3mKdbsfIwZR00nGxtCKhbklJPP5ZqbT2b0uBo2bvqUMf0uZ9bMy0FyeemNBXR0xJk0ch4HjJwNegeQIO85aEINECzMewewSGdsgoGSQju143oxHvzXPwgGNf50+kU4lo6mdo0DFwcVDxNwCpR2CMETQXDZvO0Dvvr+CUorKuloquas0y7FskLkcxAK+ApGWQFBtIAYnenNeKZBWelQ7IyCrHf1UZYuHyOPxkK6V8BP8HNNcvlOZM1XLz73wrMcN/c0woH++62RvsdUR6KR0kgYFwsREcsDVQjgIdLQ2EwoGCmkFUp7B2k6uZtg2OSLb97j/Y9eYueOJkKBcp567DXaOzopLQsiUkamIcC3vzzFyl8/pqauhDPn3waUg11QREmAGwMpxjV/X0BNTRV/vfBqZLEbHpG9K7pEM9DGMbMP5cUnPyYUNkCPgxghnRqIbsg4Ejh2DkPUAVi+7HmeeeUKli1vZvqRI1l0y3fgGIV1dSu+EswAty9utqCpCVpAkkSnSSRcCnKWr5a9zCGTzwFhO1BGIrWFSKgc6IlHOwIB8IKYeUDKoCgeDkkkVIRCupqZTCNpIpIqkjdb0VSl8PCVeF6QVBICQQ9J8sMMGtt38sAD93HbjQ+RTJtIVCBLCngxVD0CQooff36VzVvXUlnWi6mHz+OZF25ny47vUAlx2YInCUTqQEwBq1n2w0f8snIHfzr9UgIhgBgHHzKVV154hy1bd7J+84+UlFVz7NFXomghUtYKbrhjDmecdjEj62dz9DELeP/tZfvWh73lbPvGRBFFFFFEEX8MiiRSEUUUUcT/CPxY+31GsQqNe9opiVQidZ1wa02oXg25NIhajB3tD9OtbDQhrR+PPvwws0/sTV3l3/zLeR6IDqZloioqv0um6YrQ7oKQ4NQ/H8GMmQdRXRPhiitvYvr0w7nrpjfAK0EQbMAhE9cIhKC9fReakSAUHuDfuaPsi/IUANHCL5lTwVNwhBQiAT8pSWwF1vLOB89zzFFnAipX3ngms46ZyyGjz8AlAK6GKJZjZ0U/Sj4cIJlsJxwp1Kq5EXZsbqNX3wqQ/Hh6PAUElWVff8o3q69n3vzZ9CyZi50bjCz5Rs8tbZupqhHJWR3oShi8vr6nkwCu3IwoxYAgOHVkMi0Ewg1AAD+xqoRM1iRgBLDdDLIo732+WOJnHv7X7Zx/7iVEg/3wHAlZzwEd+CSEQeOejXSrTeJ7Dg2gZZdDVW0UJIv333qZo2ed5XNKHqD/xMdLXuK3NTsYc8BEktYKJk+eTFAYi6r3paElR2VVd5qad9OjuoR4uoGSYJfZsAJON2INcUp66oVO8XvHsnKFxDT49dfVrF27lp49qmhu2kGvXr0YOXw8gleCqFQUyhEtEJN4tgdyOWBhO1k8x0WWRUSxi6S0WbToai6//AT8zVkI16tCFCowMyFUnYIZbyMCHjh1/m1JCZ5+6a/YTprqkoM4ZsZl/viRUrQnP6c8XENjWyPdKnoDXSyESjwRJxoJ4vvChLGtELLiq+U8LAREclYeQXTRpEriuTfpzC5n9cYXCXMYdnIYUw+6CEFVsNNp5EAVnpTaO4CzGQND8dvM9XlQRFJACMGFbDaHEXS4ZdGfOejQOtLJDMOHHkhd+XjmnTqGU0+bTiRUydihFxAqqwQpBJ7O6+//BdPbTmujyaQhCxh3SA/WbHuSZ555harwKZzzl5uxrVIqqmOkvA2EBA28CeRiefTSGOt338raNRtZ8yPccOVS2ppbKauuRJThn3dcQmmVzZhxg/hoyfNEwj249JxH/HvGKCwreaCR3Y2rqOvWHRB5+bVX+HzpV0w/YirHnnD93th70QVBAk/swLbiKIoOBMhlMmxv3sDA3mN9AmgvkZfHdlKs37iSZcveJxDK0N6apmftWOYefzaJjjiRsjI8O4cgS7S3NPPSm7cyaMBoDj5kFqJbXRibeTwvjmU5qGoFXcmR+9ZIBzCxSSHjsuSr91ny2ScMHzKKk086FVmI4Jt722i67q91XR0pxti153u2bFvN51+9ybChB/DwQ//mxeffo7a6O6+88QQdrRnOmXcrUqQDWMMrH/2d4X0vYkj/Y8GtJp7aSUirQpJ0mndvoLoeftvwHUMGDscv1arD82Rct1AZKGfpSD7JBWdfx4uv/IYZb8QWQZD7g2iQsRNEQiUoJIAMeWcrq9d8x9q16zjppIvQ5UF4BJBwaWlop6qmFFfI0Ny6g25Vw/cGpFnSWhQp6t+DZYCSACTe+eQaWnd246yzLy60Q5d3FFi2h6zmsLw4klCQBhIGFCTSQIqsuZPW9p18u+ITDD3IIYfMIKwNRaI7ggdZczeGZhTIPP8aqbRHKFhOR7uDLEGkpL0wf2PARjyyNLRY1FUdCDSSZyPPPr6UE4+5Gl0PoAUTiMoOsnY7b72+lGRM4i9nn1LwpIN3332V5SvfZeHCKzn7wv/i4buWENIH0dmRJVwW58e1b/P2Wx/yzn9Ws2pFA5IQQBK7Etrk35PPRRRRRBFF/CEolrMVUUQRRfyPoCs3vMswVETXdWRFRJT8NCZRyCIIHrLmIUkQUOow5HoEsYSXFj/LsXNOBqcHnW0dBEIB7HweRdMLsd6C/+XZAQQBx/QQJQHP9dVD773/CvW9avjpl4+YcfQgKqsqGDnsDFwPPFdEEGVyVhpV9zCCKpoWwLREchnQNLlAOLj7Nm1dnkuCSTIeR9ddBCFFlyHswP5H0N4qEwhW8tEn7zH/1HNQhW4IBBEEHdN0MW0bI6gjiKBphU2AJ2M5uyirkvE8G8GNgKDQ1P4Vd95zMQ2NGxnUZzojBs1BkWsQZZXO9jSeI1NSWoHraChKOf7m1CDdKaLqICg5/FN+jVRnmGAkhCe04pJAxAIEFMXf0La15AgGoyRTOTRN5c4HZ1LVo5mm5i0MG3QKnY0egWiShbeczGGHHEkyblMSLkOUGwAZL1dCKFwNSow7bz2Hioo2Bg48GKdZR4wmOWfBQXy38mOmzhjKyp+XceJxFxDVRyAJI8EME476UdaRUBkCGoZaUmhvAwiBG0FXdFDbgA4effrvvPDSgxx48CgEQUSWMjy++Hw8bRXPPvsx8+dfwvDhkxHlUgQput9Q9CPMBFFF8FQEwaW1rZFoJIogBMHTAJ+gmzx5ClAFwDW3nca6TT/y/YpvmDx+Nrt3OIQjEhm7CZlaBE8ulP200ti2ihkzj6Bnr+5kU2DoFaSSCUoibUAp4UAv8HqBV+X7zWBz2x0X8e2K5/loyX0k4u0MHTIT3CiZVAbTa0aRbQRJQhKrETDR5YFo0lBWrdzKzCPmUxEdDq7FhRdO4ZgTjwDRwHITPP/a9bz90X1s2bmSA0YfjQdksyCrWaAJERkECTObQtUDHDJ5NvXdxxMKldK9qgezTxpJe4fFwQfPZvr0vyELPRG0EHgW8XgTo0cdTd+6ozho3EV0r++PZ6d55oW7aWrroKRC4q33X2bGjPlYdjcMqS+ZWBmqEkAO+POoLBJkaL8DOOzQ6biiTbCkBDMDspFjS8ODePImbrnzKep6tTF+7KHUVA1Dk10stiM51eDJIMpEwgbQSUPTGr795n0mjBvF159/wsyjpmO7OoKn+rbochqBX1l401msWvktkyYdQz4J5TVDEQSVvBlHkTPk+Y0bbjyF5xffyuZN33HwwQcw+bDhVFQb3PvgQnbsWsOkA0ehyBqCaAAegYBKTS+d775bxbixh+E5JYii5JfpCRaSZODYOqKogweOA1ZeKKwpKlLB6K2uVzVGwCGd3sms2fM47dRjCBo9cfMgKQJ4zWQzLSiaAW6YaKSG+p6DsG2HIQMPZOmnPzF96nGUlgaR9QTlFeX06DmZeEcaPRDl6efvZdPmLQwaNJCwMQBdjSIqFqCgqiqSGqairDeCUA5EwNP9kDAPf7GVTBIdLoMGHEpdr/5IuoaiyihoKLJOQNNxhRZEIJnLEFRrKa8YxLatGUYOPQQPGRcXXJdgMAyChCCqhEOV/pougu1ZKIpKNt+EIru+J50ImXQL2/d8hRpsZXD/oSQTGTSpbC+JYmZSKFoQSQiRSpl+uSENdJq/EpSiQIKFd/6JZT++zsSD+7N48avMm30m6WwAwY3iOGluuOFYpk2diUCJrx71gqhKAM8DzRDRdRFBSABxLr/uBEaMGUxYryMSHIuViSIpKslEnoMmzqCtpZHy2gizjj6U+af9BUWspG/9QLbv2EhNrUYwUIGdqaR7H5HPln5K2BhOQ9MyvvzyYw6bMpmgUYtIHT2qerFjdzNLPvmWyy++ClHoWtBk9rJHRRKpiCKKKOIPRVGJVEQRRRTxvwTLsgpqD5BEaS/h45eLgWdbCHIWSDFrzgDGjZvA2actRg84lFdFwQsR70iQzcXQAmkMPYpulOMbabjEOjspKS/Hc7J0xLfjCRkW3nwB199wCdWRYezYWUvPnioQBwQy2QCGWo3r+Wa8tp1BEQI4wlY2bPuYV157hj2NO+lR14t/XPE6eN1IxZPoShQ5mAc6uPbGMzjowEOZOXUeibiIKGiEIhrxVBvRUAmprEVba4xgoITKilpsx8TzPBS5QLC5CjsbP+CiS0/nqBkncfrx96KqMuddMpnRY3tz/NzTqC6diG2CrEJ7ewtl0Z4IUrigxrDZvWsDgtKKIGWpLZ8JDmRySQIREScvIMkBbrrlHB5b/AQnnTiS2UefwZRJJwEBMhmdgB4gmTJxHAtFFVm99klGjepHPlFDSWQ0iHDVP8Zw7nlnUR4eQ7Q0wvX/PIEDRpzMgIGDGTroKKxUECUU4933H+LIo+tRmYgb681t983nhFMPIZFuZ8TIoWiiyH/efZFELE9l5ABmz74MRLtghxIqlJ7YQArsOMi6n3bkBkFyaWlZx89r3ufII+bQ2WlSGh2OZSbZ2fIx3XqIBITxQCV707/2r6ikqywROmNxSktUTDdLOpWjNNLLJyWgQBy64MqYXguffXs/Rxw8DZVK8IaS8ocPoWgM6Cr1M3DtLKJcUJKRBYKkEhJvvv0CW3Z/wtzZCxgx7FBwKgsOzRZ3L7qOaUcP4L33F3P5JVdjJsvRxeHImlpQMfmPEouliZYEEYQN5B2DX1b/zFff3cv27WuZfcTZdHZ0MG5iNat+Wsvxx99NW2uGisooAPFknmi4Hg8RF4in2ykNSiQSMaKRCF0EqZOXiMVbef2d+6muE9i25xPsTA2L7vqEeacOpaqqir9fsohEyiUS6oPnurS1N1JZqfPeBw8wefJETEugpnI0UEM6bRMMRvCI0Z7ag+bVEA6XAQliiZ0sfnURbR3bSSWzhLT+XH/1E1idJWg6EN4OWAUdo4jt1CB7fvmVJzkInuR3pwKp5AY+++JpIhGZDz94izvveBw3LyLqo8HWwAUnB1LIpaHhHTTdYvumRob2OxKjqhqHFHk7hCGX+J46QgxoYNXqJWzcvBzLkpl/8j34iW4NPPzU3cRjea685B5ksQ84BWWRtJbmWCcl4T5oYm1hLFm4xBAxwAvhuiBKFpYF6VSegBFCkkGUTTxyiKTZsvsHvl/+Nhu2vkEqrhN253HV5beRZw1vfLoAAZX13w/i+mseQwvlyOTa6Izvob5+DDgKbh7yloMRSYIgEGuziZaoCHIK2MSXy7/g6Sff4pnHfwIP0plGgqFSEATMXBJVN3CsPJJi+GPDk8ATyWXiyJqCLAf8uSR0All+XvEZX3/xI4cfNoPhYw4jYyfB01DEAIoUKPgMQUdHHknyEHBRdRtDN/A8EUGQSCVzhMI6nucbjX/51RI+XXo/4yeMYe6sG7Azhm9lJ6xl5W/vMGbIsUAVmOW4eRADLohtvl+XV8bGjTtQDJPX3rmZXn2DnDzzn0AO2ERLfit33HEL5/zlBgbWTQJ64lgakpJn2bc38MPKbzn//MvR5G4IDAQvgieASxqRTMF0vYM9HV/z76cWc90V94I32D/QkPP4BwtxuhIjv/9+GT9+v54LLlqImc4gynl2Nqzi59Vfk87u4Yx5N7Fy9Ss88+/XOf/iI/n8ky2sWL6ZR+5/D0PpDUae1tg6phw+nZ9WrkURfRPuvYq2ohKpiCKKKOIPR5FEKqKIIor4X8LvSCRB8v2B9kus9l2vO+jo3MzHnz3MvBNOB8azccvXXHbFBTz3xDLCwRpsr4WdrR/wzdffUls1nBnT5hUu4nLpZRfR2dnOQw89hGGEMPMuuh4FdOLtWe546DhGjovy8ovv8+YL28Cq9/2PAEHL+xtCaR2nnj2eu+6+iSefeoRLL7mcsDATrB4gCZCDVM4kVJbh+1WPM3BwHU88/gKlwZGc/ed/gi0XDolbefGV16nv1YfJEw8lb9poqobrOZhWBs8VwJI5am4vXn/3HkRB455bP+TyS27i/Y+fZ97JJ5LK5AgFouStFDfeuJAjpx/DhLFHouslICiFDW+G2+5ewLARvZk97WbSMQhGAyBYZJJpAuEwty86gzVbPuDEYy9izpFnkcwIyFIQQ6sgmTAJh31lVN7MoykK+XQjr7x5Gzu2ZPj71TchG1n/uewqWju28tyrt3PpRYsRxCy2l8Y2S7GdFEbAxmMjLkEEaoi3tFJRNhQvDYIOaB38uvFJevUpIyL3I5nsTjgcwcNFKJSegMuvv37F1q1r6NevH0OHTgannGS7SLgMkFvJZrI4VoCQUbHXy8hxckiaRDZr4jgemhpEUfbbXf2OSOrgnY9fJRoNs37dNs798zVQICn817l4tojtgCt2oCoe6WwaUQgS0MvJZrMYhgZ5ESSwLYt4Zj13P3gJCFlmzpjLwRPOAtP38HG19YiUks96aGoVniNiu3E/sUnK4JdLang45KwMhlIFaD55JqaBBA6bkJiMm5VJJSFStY6ctx5dKOPWO65l7Pg63n//I+5f9D12ohpPbkYJyCQ640RKhoOnkM1maOxYybkLZtC3bzkHHjSRRx58jaefepE+dYegKt1xrBzpbCuRkhzgsuKXrxg7sp7Tzz2JIf2nMaT/ocyZvYBMqpNAROGb5c8RLE+ydXMjx8/8G8l4FWEjQCYJrrSbhL2UT5Yu5sRj/05Q7cHNt11LMKwSKYEzTjuF115/m1OPvxYnX0MmvR3LzFBWOYJ82kIL+eVoectFUV1EUSabLaRhef4fQcziuI1IInR0tFFWNgA77YEYRdZF8BwQY9xz3yUkM+sZOqQvs2cfwRVXXMXuXUmuvu4Vxo+czMbNW/nPf/7DJRcuwAgWyqQ8i2QsRbi0Gj/9MQC2b96dTYIRhd82fMlb7z5DdQ+Ds+ZfCYTBK8dxAMFDknKkMyZBo6CKo4GcJaArUcDAdUUQTBzHRJFt8nY7rp3EkZfx6ZfP0rqrgpPnXkw0MgzP243tJpk4YRp/u+x8Tp93CjniZDImZYERQBm45f8//lo7gXRhnYzg+58pdLbFKa2oKswJf25kMnECgXDhtZr/3IXXe/jm064DshLDJ0rifP3V5/Ts0Y94wuLNt99kyuFHcvDB0wCNbMpE0zRERWH7lg3U9+2LT7JSuH6B8N37QdBV5vcL737yH2Yc9jcUsXZvaSi0AUEgBJZBNgd60EYQdxeeowzXlhAliZ27vuf2u67h7juWYAQM8t52NIHCM5WRzYkYWgTHLqT6CVt575ObaIlvoL0lzxUL3gCvHjzwxFYEEnQ0VVJWo2A6m1jx40+MH3sYslgPDnjkcIUErZ0r2LTlZ9atX8tBk6dRWTKMysrR4MrguKBmSaRW8sQLZ3DZuevo6PySdRt/ZPlPL3PZX98AIrh5G1HogS3kkRWLw4+YwscffYaiaHt9nooooogiivifQbGcrYgiiijifwmu6/opa/8fe+8ZJlWVdv3/Tj4VO3fTDTQ5ZxAExIiIgIqYFTH7jGF0DOiYs6LimHHMOmIajCgqBkQRZRwTooJIznSqrnzq5P+HU93o+7wf33me/4da1wUXDYeqU/vsvbvvtde9FnSSSYESyQPBx7NsBEkkFNJoad6Goik4rsLb7z1FeaXCtCPOQZQiuG6Gha/eRf8BfTn04BkIfhjXsxBFiR9+XMVxxx9NdXUNIS2OLFdhZECR4ugRlQ8/eYyWxBq61JRTHulJfd3oIGTHAyQXkEEwWL9hDYccdASvL/qASRNmEtX7AzqIAq4JekzC9/N0a4jx9D8WkEpmueKS28CLkUtJ+EBTYhO25TJu3HhkKThll0SRgpknpKkosoRt5dnTvJYjDz2YHXt3sGnjdt5/fwmzTz+ZaKSKtmaPWFxj/YY1JBItTD5sKrF4PUV3cBAMUpndxMoUJow/BEWsBt9FUixOO+0YFr/zOo3dGjj2uCOYcfQMhvQ9EIEYmlKGIofI5x0iYa2okCAwL/dEZN3jp/Uv0qVLF4aNmASoGBkPRa8hEq1j4sQpCK4GoocoJJFlnVS6QCgc4uFn7mbh6y+jhsOMGDgM7BiuUYySl2Tqqh0+WPYmL73+KocfdgIiYrHeDeLVwWfx4kVMnXooPXv2BVTampOUV8Vx3QIFezfhcARVD+1TgQCiKIMooSgqsqziuXSmLgWTreMPLpBk7Ybv6d7YwOGHHYFElM6TfQHAR/AFbAtkMYQg6CiKhqoE/liubyFLkc5iPZPJEa8Q+O6Hz5hyxGQmjZ0CfhVeQUOQQZACs/HA60gkm0kRioWxzAKZTBpf0FDkChwcXN9EEYOWzUx7ikxyF++9v5DlK16kX+PRhPVA3SGHcsiCC4RIpRL06tmH7g2D6dlzAkvefof5D1zKm289SnmlTt/eI8hnTcKxMJ99uZD+AyO0JVo499zzWfXVt2z4bQvTpp4Gfhjf8whFQ4BJJt9Mr+59MH0L0S9j+JCD+PCDL6gqb6BHr74UciY9evWhvqqKQf3GIlCJppYHQi4HwhUOzz57PYn2jWzd3M7oERPwBJsvvljOL2t/pLq2kplTTwKi5DI+C1+7nKWfPEddxVAauvcE0SWf8whFDAxvPbKYQ5SjeIIEAuQMF1WRyebTaGqUUKga/ArMnIKqSAiyg2m2Iivt/PDTpxxy8AGsXv09O3du5pNPf+LMs09i/S8C+48dTXtyCz/99DXbt29g1KgJpNvSqEItWrhrsZ9LA1vDs8ApgBaCTMZhy64V+FIbm7dsZeKkI5GFEL4fwnPBcVxkRUFARhIlEBxcmpEkmVw+B76CJMoIgoBX3B+EYnuupts88/zf+PbbjTQ0VNCn5+EYySh6uAs7dq2iNbWW2u4qn362hPc/WEz/AYOIR4IWtHzWRhIlBEkE0ebXjR9TXRkDYrS3uYTCcSBLKKwCGvlsikwmwcZN61i27GM+/uR9Dph4IPsc6WWMgguy1JkPJ4pucS3ZNHRrpLKyAVmWaU9vYNasuTTv/RdDh/SkurYcQTJYt/ZfvP7GCwwb3B0lLNHW3kYkFAUEPF9AECQAUukkhmEg660M7NMPqZgM6ToupplEUWUgaD91bRFRBlEWQcghYON6aSTJJZ3cQ3VlnKqKanr1PgAECVkQius8CsSD9mVVxvX84l6h06dvNbX1UXbsbGXM8GOC5DkBBCFgLY10GaGIRqGQpLGxF4IfwrdjiBIIctCuHY34yKrDr+vWM33KCUQi3YrtceCYAqKsomkuW7d/y7CBswmFZYysxS/rl9OlciSVVT1IprZgGDaReBxQWLLkA049ZTZCp0SxhBJKKKGE/ymUlEgllFBCCf9L+IMSSfLwSSDgEJAHGnjx4BBagHxmK6FYnqtvPguUJm64/kbK5JngV4Fgcvf9J3PJn68mog7As+IIooUg26z8ajGTJo7jmeef58svvmfalNM58cSzi8bKJi0tnzH/oYsQJItvvt7JI3/7BwP6jUEW6kGJB5Wvr4PsgZAGL4Sb05CigLAL17OQhO7s2bWN+m5VBK0LDiDiugqSUA1oZDJpYmWBRMa0HWQpMFKWRHB9G1HwefGVJ9j423eMn7Af0444hlPnHMuO3WuZccxEzj/7WqrjI8DqDmqWPXvXEI2FEQkRiTRiZFxCkSiIaSCHabejyf1ByAM5fJr45xsLGTZsFIP7HYwgdJj6+vi4CMjYjo0ia394RulMkrvvvJJ4eYa96fd58K6PcO1ynn76SaoqunPCcVeBA4UC6HFA3sPyFffx/aomrrzyRdKtSd5f8SKzTppC3raIKAYKVfh2DVbBRY95wA5efuMJTjt+Ng5xZCLB86c8SLWCID2PAp5nIopxzLyNFnbI5nfy4KPXU1YeY/jQsYwZfgzRSF+wxU6LkHzeQhRFdD0wBBZ/f2AvABhknNVce90VDBo4lHPPuQidXsX377gm8ImhWCdnDYiWeWzY8Q6PLLiPc8+6giH9piNLmeK9h8BTgvcQbQKlhYRtCHgeaBEd8HBsC1kJbsSybFQ1RKFgB74rIhRMCCkgdia5J3nwvr+Sy7Vw/c3Xg1MPgoxhJnj0yWsQhBTbtu7goQee5M7bHyGX8Zh35z28uugapkwfTnVFLYbr8/B9Szlh1jn06j0QUW7BIYXMMKAM3y8gCIHRdDqRJ16pABnefu8xtu36npVfrGL00OO49q8PYtspHnn0XqprY/z0w17+Once0WgdcrQFFx+VMjAVrDQAACAASURBVIy0RjgU3P+ObV/w9EsX4NPETTctRqYrAI6fBSHNKafP4MYbb6Zvz3FEtD58tfZk9hs8nPm3J7j+xofpUJZ8+tXjZL0vaGlOMmv6g0T0fggEBviBQ4xDvpAholdg54upe25xa5GSZPM/Ew2X09aco6q6C4gW77zzBNOmnciebVU09o0AbbgYfP/tekYOPhhFiuK7YQRNwzECY25JB/Aw83m0sA5CCthBoMip+d18jmPkQC/6pwsi7N69k5/WruLTL5+kf58xHD75aHrUj8T3dQRBwnE8ZNnDtjMoikNg3LyLV998nMcf+ydLF/+Crg8GPJB2Yvo/8bcH53Hd5TezfNXnvPnapzxy/3NAdeAj5MvgwdvvPsm2ljewbINLzv87utqf5r1b+fHXN/jkk0+5547XMLIWekhFkFwcJ88dd9zCLbfMIzDiV8FTcEUPFxHXA0UAoWhA7vs5ZEHDdSQkOQ8s4+77b2ftL+uYNOkgFDnEO++8x1//ejWtrW1s3ryZSy96hNvufoCLL7yaeKwCRYwH68V2EUQfURSw7e1oqgQ4JNK7+HzFMlavXsNf/nwjFdGhCF4IRHDlon2dD4nket77+GY+/uSfjBs9kj4NM5h2+FkYXndCcQ3byaPICqBgm8E8aWtPEY5ZhNQysFRQwShsIBQKBZ/fL/oudQSO+pDJ2MSqPAr5JHqoDN/SEWSwTQtZdRHkJGDgeAVkMQpUkmvXiESLe4TsgOAGsi4hAYikmxQy/ntcO/dhXnhxMVt3LebdpS9xyblvgV/H8cefwhtvvFpqXSuhhBJK+F9AiUQqoYQSSvhfwh9JJAGfPAIWQfWv/C7m3GPdL5/w58tO5Nb5FzJy1AAyaZv77ljC2NFTOOXU/wI/Sz4jI1GGVuy4MAsWWjSD4zVx5123M+vYExg+9FCC9hIBPBvQeHfxM7z+5mNcffN0nn9hAQdMnMph468iHtuP5qZtVIZ7IMc9kH7ARUeyhvDJyidozX3KkZPP5fHHnuPcsy6nproveJWk21ziFVJwOCxkCTxxguSt32XLF0fBJZlupTweYcFTd3LIoX0Y0vco8LqBaDL2QJ17HjyR4QOPpTpyEBjdghrOyyLKBggeyUSB8oquQZEoeHhOHlERiq1PbQTeH7/vE4RCVkcPleE4EPBGQULd9p2b6datEZHiabyo8tCC05g582Dqa4aiaYPxnVbeW34bB40/g7g0NeBW/D1IaoQdu5Yw96rZ/PPlz8HcP0jDUkyQc3i+xA0PX82nyz/guCOOZcpBRzJq8HT8bHBrqQJEq+HyS4/hgIn74ds1nDr7wiKRES6SMQRJdQDCbsBh0ZtPctTRUzELLhWx3uCXk8/4hKPFdqHfFVmmaSDLMoWChW27lJfFQbBZuOgujjp6Mq7rUh3tDtT+jsCCoPXHBeIBjyEBosHcm47kvP+azaYNTcw49C+k0zuJx7sEnlVyJYV8Dj2q0pnm5yqBB3znfXXEukOnWXvRqwja8CjDzsjoOrQk1zJ24hDq6qBrPfTtdgB33/E0p58zlU1btnPZ3JMZNbaRhS89ihZR0eQaZs+ew5ln3Mx1Vx2Gk+/GtGln8uH7X9C9Rzd2793N2HEHURbrT5CyZxKYrwfMmWuVIf1OXYVk8uQLZ9GjVxW5tMJR009BEgRMJ0tYjpFIGVSWNeL6YRAiBO5FIRwjUOqEQoC8G+RfMJwNhOTpQFcc00BWg+L5o89eYNXXn5HLWvz7X78w59webN+6h1v/uhXcCJmUQSwewhbTKNIGEkaKstABFDDRiGIUIKyLOE4GTRZJJNpRpVpkVPRoDtfdyMqvPmDpslfp0difc866HlWpLq5Ni33sQI6rrriM+fc/BX5NMI9Fg6amLzn1jFksW7oFQRTwPANR1CgYJnpI46dfP2D+QxdS3y3Mpee/SdfaMWTzOUJ6OZIQtOI5Dsiqg0c7ltdOrrCDRa9+wIXnXI7rx7BNFUnUUFQB8LjqmtkUnG/Yb/RoTpl1PVqomp9/+ozmzEe8+MoLJFsE3nzJ65yrZt5CC6vBevECQtvMyciCFJBe8nYKrGLpJ4vZtVnn4v+aB9i0pL5j3boNHDhuDqkExOPliGpHEqWNZTqoWnVgOG+Dqxq4uIF3mV/cXYTfTWsfWpr3UlP/Kz//+i2SIHL//ffz1BMv0Jbaw6WXXMFTTz3Dxt82MWTYESTTNm2tOfr3HoJpgaaG6WhLDnpAFTas/5m3P7yNCYdWMGhIT5a+t5LZM+8EBuCZoaCTVUuCW862tdBjMCC9zJ0PzSafhwZtGhf/ZSEIVbjkkcTiKQWhfYmegknQIieCX4+ZC1SZmUwT8+4/B0HKc8N184hr44Oh6QhWFAzwbDwXBHSEYtqaZ7uIihQwW51tgqFiNCIYZjuSmsK3VTQaWLryCj5Y+iZnHP8EYyYcQPP2Vmobyyl477Pgsee58s+L8N1yjp11EosXL6JQcNBDRf82OoIfSq1tJZRQQgn/SZRIpBJKKKGE/yX8N2Ntt3iaXfz518wV0KIukOXW22fzXxeeQGV1PzRqOO7EE3j1tSdxHAfXrCamjywms7Gv6BXBdTNIaoEPP3qbwycfgSTFAh8KAFHDaNcIRWH33s00dN/JF6tfZPzIQ1CYRD7ZBTVUoKXJ4PUP5pIoLGXM6AkcdeAt3DTvAmbM3B/X6E4sFmVY/ylADW62HEkpvr8MiFmCSqPD56PDu0LAcW1kCTpivYOktBT5TD2qVIthtjL+8BpefPVqRvWbAzSAE5yCFwzQ42m27fiap59+hoYufTjlxIuoqAyUHfgeSG0E6gUN3Mai8TYg7QGguQkqK7ogqwIdJMnTzy9gxIhRjB01CQ8BkQiwimdevIlMNsFlFywCKvC8zYhiBJxB4EHOzCLEDK694yQmT6znmMPmQlsjRCsDc1lfBEFj0vkjOPH0SRxz0MGonkJXdWhAmHkhkBwQUpjuL2iSQnurSEXVSDxTQNTUYo+hiO8HKoM/+rx4eLZJkHQtBua/roDrC8HzwKNgZdBVlZyRQ9fDSIJefB4eYOCSQcLHdF00qe53ZJVHoCxxgEiRUAAwyFjriKmBcq5gx8im9vLiwkXMOf0cdK2MSDy07/n75cFLCIFaYh+83/1ZLP5uYPqb0YVa8GpYueoD1qz9mAMOU2hq3sx+oyZToU9i8VtPMmikgq6HqSk7gHC4B6u+fY8J+00jmYhRXllDKruGsqiGmfPR1DjIXQKCETqNxl0bfAfkcMeaEcmmMkTLqoqf2wDagzmISKC2KWBZYVS5DtuIoIQpkqYOmOUULNBjSWz2IPrgOD6aUoPnOIiyDJRj52QUvcg8iGlgD2CSKSSI6XVAUzB/6YlbiCBpUfDFIFVRTCMJEslMjmhMQyKMgELg47ONcFjG83PYhoiAyvsfPEXOaCEc1hl/wBj2tuxm1NBJeIgINJBMqlSUV1Fo28jhM0ay38QoZWVVfPN1K08//iENjf3J5XbT1LqBs885j+XLlrNnbzMvvrCYLZt3Mm/ePD745HnWbX6Hgw8bweqVjcy9/G58HAR80mmXeCwgJl2hHYndeNg4aKiUY3siilhJOmUHKkMRwOSfb91FvOYH/vnCpzz/5FcsX/kCWWM706ccRFOLwjNPLaK8PMqpx8+jumYwubRBpEwDoQnI8uW/3+NfX/3E7JMvo0t9r+Kz3EHK3M4dt9/FzKPOZNL4w3F9D9+TkaVKPFtj3rx5nH/BydTWVgEmqXSWsngjZt5H0ypAyuLjAfFgiQgUCZgsVi6LGomRbM3hA/GyCJIis/KLZYwfvz+yotPelqSiqq5IstjFqajhuB6K1EEgdawPF2wNx4Y1m55gxbcPUV0T5/3FP/LyU6uBalzHRpILBGrQrpCtgrDJ8i8v5rs1b9OjVxfG9L+S3n1mApWd6sbg9YvJj1Acn3RxT7CR6FPcv3L4fMPC1+/hpzUbmX/zMvAbMb0NmKZJPFZFLpclEgnazVxLQvCjiLJUVL52jFGwj3luURUppIFWMlYTMVVmV/MPPPPCrZw68z561JyAGlICJaz0LTjjOl/nqKOPYcmSd4qKtd+P1b59pIQSSiihhP8MSrtsCSWUUML/T2FZzr4vfJF4rJpEM0BXDth/Fo6f5Lctn/PO+0/tuy6wjuk8wJZUHavgMWTQOCSpAtBADIGg4roWsh5cW11bD1QxqP9UFHphOTLhMhVZE6lvzPHSqy9yyIFHc9SBp2Kxm359RrL/4JNQ5RiRcHnwushISufhf1E5IwXkAXH++C1HRJZkDNPAdm1a2psR0CkUIpiGjCBZxCpEjj56NJXxQQTFewzkNAggiQAOH3y0iGGjujFsVFcqqvVOUsWxfMDh/ItOZur0CaSSCXKZwFM4kdwO2NTW1RV9P4IizbDT9Ovfg0GD+gEOYvF+2xIuslDFeRccDSRJ7GlHFIaRTwWtb74F4WiUZWt/4cNVP/P1z81AJb6qBf8omfiSiitAplDHz+tkyuWDqVInYeQ1wCXVvBU7nQE/jiYBtFBRHQIhh2knisWpHfzqUPL4nbcetK95IXzHA/Js3/4je1t+RVKCCzzfRhACJUAkpCMJkMun6WTW/AiOrQMRFCkoAvehozBTg2s7lU0yMbUHhhPGJRK06Sx9FE/axap/f0QkUoOXi4JdCV55oFRQ0iBn+e/E0e+VYh6goAt9oVADJkwcM405J17FiD5ncMSEG4jrh7Jze5jDJp3LgF4z6VE/jXBoEriDmLDfmRj5KOXljRQKEmXRrviFRrRINxKpPAhikCjnBvPBF8ARDeRYggcevYiDp3Rn9hkHISrZIhkXArcS/F5ghfByGr7TFceuCtrRvEjQLuaAZ0YpZDSMdtBVAIOFL83ntXf+zpKPXgZERKm+mEin4Pk2rgWuCUEhHyeT84jpjQTqqO5AjDPPOoTnX7qT5pbVODQhSiaCH/hWlcVkHMvGcQ3SqXbAJBwWgSxbtn7D/L9dydPP3sGxx5/LrCMvY0DPY3CyAxg1ZCZ5E1oSeQSqqYg24uUi3H7rjRx7whCG7Rfl6x+2cd5Fh3PfA7eQbN1NJNKD3j0O409n341IA2++/QpjD6hhxLgoBXcLp514FkP6HovZPpRzz7wGkDEME/CIx8NYlk9ra5LPV3zEY8/fxz0P3YZKHMMCUQhh26CqGqIYqOYcz+LkWacxcvgkPLsSPInRY3syfuJQCmY9DRVzuPHqfzJuUhceefxaENOEYyY+TaSN34A9jBhbRV03h7y1hYBUjgK1CG41DV27sGLlh4CHa5Uji13wPR9RAUHK8/iTf2P1T1+ws+kXXnvjWSCLFhaC1isEBKR9y0HIAUnuvefPvLH4b8BvlFe7VFR2x7LC+F6YocMmICtVmKaE54dxLB1RigPhQL2DhmN3MvB/3DOFQDXZ2NibM2ZfyswZ5+OZ9UA1uVyCe+67lqGjevHywnvZvfVziCRoa/qeQw88lmOmXcya7wx69x0PVqD885FI55MUnHwweTvXpFKciyFAwsUEATzPJW+JNNQMpCreHd+1sXLNaKpBPCbg+kluv/M67rn3ZsBAUn0Mw+i8932qSDdY9SKB2ToKO5ubWfPTdzzyxFxqKgYydMAR9Os3DrU8R/PenSCa5DM6bq5jLDw8z8LzvD/6vP2fY1ZCCSWUUMJ/BCUlUgkllFDC/xL+2M7mF9vZHIICQgNXw8qBj4WmJ0EtADXk20KE43DceQJTZnTllOMvo0K8As/ySZvfUR7vTpDWI9Kyt42auu7gi/hOkCIkqeC4PnmvjYgeXOe6QauUIul4BDKR9kQTgrSLZ/55HGFxBBef+QaWVUCL7MIz++MWBJSyDQQ/tHcJUpoEBSSDoC3IAr8uSOwSAdWg06gHsehFZNGebkXVfCJaDdiBQsT0f0NTk3zzyxLGDpkLhXiQ+qW8j+wejmeqiOGdrPjmURY8fg+HHTKDs2ffgmf0RJUrECWJHTu28s6ya5h1/OE0VOzHrONn4wsG11z/J8aPOhOsLkFit1hAIIdDFhkXGx/BjyGgIwlxMCGTcInVbw4IBaGO9r0JKqrqcEyLNevfZOFnN/HF3hMYNbSWs489lGEVIwgBrmfgis3YdKG5SePut5/gwj/9iR6Ab0Kt1sazT5+DHrIYMnAiijSIR5+bw/EnTWb7Zol8qo6+/UYxdepxxTGT8IgACpJnBG1TnYfvHgi7+eiz52lu3URFRRkzJt9I4OPi0tq+m23bN7Ns2TLG738ABx0wBdeTEHw96DSRwPEcXNdFU35nqi2YBK1ecYI3K8a/daihitdZtoWs/hjEt1OOmStHU6PFDjU7+H++AoKHg0kH8fjfYSIh4mdlRF0AOYFltuN6EArVkTUcQqEo4HPpxSOprttNPidw782/IMj1eG47oh4DWy56IO8CYmRTOtGISlOzQW2DgkcekxQCUVR8PLby/ofPIogeO3fs4aJzbgcaA2+yourLMpOooRB4GonmLNG4jxoWgDSpZA7HFqiq6g2uCKIJUhLHziMrNfieAqKGV2ydxE8hODpmPkQoqhS5s2CcfNtHEPWgtpcAeQWvvfUO27akmXvFNeD3xs2D5YBa1kI+ZWDkTGrrG0m3b2Tzts/ZsvUHmprXcvIpJ7Lso0854cQbwesNlg6KypNPX0pd7xSZXJLpR15OhT4FnAxPPDma1es34vhw8UVHMqjXeXywuIlZJ55d9BjLBPtQroVwxGXjlnX07TWYgPTS8D0DQfRJtpYTjimomkOgZAuRy3nouowvbaMl+xWP//0ZJo68lKlTZgIyrhOICGUVgg+fJ2fuJqI5JJp8km3Qe3BRbVio7JyKqGvIZSXwuuA6EK8Ms+LLhaz77UsmTBrE8H6TaW+PUlHRG5ygra65dSuhqrWsWPEZUyefjuwMDwQ/pFB0C0jy9AvzCYVFjp11JBs3bGfVl79w8gnnENG7omoBERi0ZQW+TOefN40zz5/IkveeYdr0w3n/vV+48/ZdCNiIOPgUsFwD2/MIK+WksnlCaghFUvA9AUXR8FzwPJA7tsqOFjAvBIJHwVmDrgDEsbK9UVUwvF8peL+y9JO7oV0jkWpm5+5ddO82iov+/BjZdocFj7zCX2+6obgvVwZG7IUdqJqEIujB8/PFzrnuC2D7QQCn1LHWfdi7fStdenQLPrfcxl0PHkU8VsNF515De7rAh0s/ZuYxJxBS6/GsGmRFC84SMIJ5X1RveQ74PkWlZJas/SvPPXspl573FTiQ2OvTJt7Iywvfp2vtOM6bMx/PiYHmIsoWU4+cxuLF76JroY4NkBKBVEIJJZTwP4MSiVRCCSWU8J9GZ6HdIRvpUBjJpFIFyuKxfdd0/LAuQTL1MxdcfDpnnnkm0444HZwIyFLg+SM7/LrhC579x8M0NMp079aL46ffjG9XIwg6jryOa249jUkHDmX6odfh53tgGgXi5ZVBTeIDCuzYs5ob7p5IY+Xx3HbNQix1DZoqkstLPPL8MYw5oD9mqjdHjH0IU1nOw49fweyTzqMxegliOMnN91ewf/8nmT7jbHbuWE+3xq4EBJZFJreBWKQa3G5B3SB5IDYVzZB9kDZy3S1ziJQZHD1rHMN7Xo+R64Lg6+jRDv8MkUxKQAvB3KtP54QzezB+1D34LuSsjdz3wOHU1WXAkzhw7J8YPeIGsDRyGdCrPUSSCATGzvc8cCUzZhxIodDMxnVN9GiYzIRJpwVDL5jF51IcGCi+v4lgVwGwfe8iNm3/gq9XreGauc+x/sckz7x4Pau+W8oZl/amrvscBvcbTbf4IUhGPLCcEsHXdoOynvkP38TeTIp8SuOpe9/CtCCi1vHF8g8ZPao/rrCHE2ZPwXJtzjrjFJxcL6YecTzdGxtoa02iKwMJaQKiFMwPCk6x/9HvtBPyPRNBDr5wPB9ZbAJ8vlzxGT/8spi08Qu5ZJzTTrySIcP244bbptPYo4H/OvN+brzpKnbvaeeCC+YyZtRRiGIUH3DJ4GIgO7U4ro2mSexz1YUOPylwyBubcN0Ejzz2MKJs8+dLLyYqVwO1QCM4CojQlFrO408+xJWX30RUGY2VB09uwfXyRPR68FUQdwEejlGOrMWC9SMkMd0EmqQXByFCh5G7k1eR9TCuk0NSO56jjeU2owgRBDHErbfcQCq/h9NOP5oePXpQU9YHiJPPF/Bdi12tX7DwlQe5+MIrEO0B1NYOIiDQRHCj4O8F2SIouDVso4lnnnuQXgMk/vXdW6xbvwnXhu61x3PH7feiaXVIQqToBxO0bXaMmml8zW23/oWu3RtJJrNcf/0CCvkIergW01DwPRk9JNK6dzfVDRJG3iYUrgsMy52AaPDlAqK8hfMvmcIhB09m/dombr3hUUSvumj2FSTvQQG8niBuIGtuRfLrCSkj2bxzCdfdNpMNGz2+/thDRgB1F1+vvp/Wtj288/Z3PPHId4G5vuCSzewmGouSySSJaD0RRQXkXLBWvHLad0EkDmoEkAPS2HEEZDEwtS4YoIcByeC1xY+yftNKevYVOHnG4yiSjmW3oCrlPPX89XTvE2fFyg+569pPgvF2BfCNopu3RroFYjEQZGhNrKW6rh+p9B7K4hoFvw1d6ALEcC0FUXbwxb1FiiFcbMkUSbTupbKijnzOJRyKBdNa6zAHN0ikDHStjLBeH/y//+biLBdfywO2Y/g7efa5eRx26AwG9RrD8hUbGTb8KKrLw1h2AlXZwwefPcKOnZtZ8PfPWP3lFlrTUBHuiSTnABOPCKKjBWpDKV98fvUIpoDvgRhazbwnJ5FNVHHnNb/iG6FgG5DBlt/mi68X0tbWxG/rtzJ2xCkcMmEuqtilaEsXqKU8v4AoKCx6/SW+++FH7rnzISAa+D15Mq4VHDbgQzJpI6rtxOMVwdxzA+WcpAFKlkJ2EzfcfCHNbXu446YlNPYYgmuDpNv4KHguIK3nt22f8/rrb9Kn52hOO/5GcIqef4pHU2IVdZURkmaWcmUSVg5UBdB/ZtV37/LCc6/zyL3vIuu1IDZhGEmOnHoib77+IVW1XYvtdh3fQh2E/ys5XUIJJZRQwv8rlCj7EkoooYT/cQRqDssuUFYWwXGgYPqB6Wx+3zUrv/qI08+czqj9+mAYSZDCtLe2Iso5Dpvan4H9RjPn1MuIaD04Zvp0wMF1FAo5kBFx/SyjxvVFFVS0UJh4VRwr3/4Hs+W777qKxt4G8coEQgiefn4uV1x7BMnEFnr2LuOAEfsx+aDTAmWFlKS82qRnbXc83+HXtcs48KChHHb4BNKZjTz46LXcM38u4JBL54lF4hhmG4jg2IBgks/upL0p0emsvG3TTuLhSob3HA1UEgrr6BHIZlySCcBVkCQZVc2z/6Qh9OkzhEzBw5UgFipn4vipGBmVIyefwIghY4rpPhCKgI+HRyWmXYbrhxk/dhK9ew3kvSVLGTasH4OG1v/umUh0KsA6fxXJJMWmYLbwyIIFlFdWc+Xcv5DP7WH5ypfxhATde0bo130c+/fvTt94BToeigSaApoIulTGM88+SJdan5bNP3HasWORacZ32kg0Zenf+zAisf5ooXoGD+vLqP0a+PCTJcRiVdTWdMdxXKqq64joQpBSJkK6fR24beC2Bwo1yQbBRZA08DXypowgKIHRj21TVlbG8BH96dWnhqlHHsaQYWOw8hkae8YYN74ve/d+z8DBlaxb/x0PPXI9nt8M2GRzWQQiyJQhyaBpHQRbRy+dRcHKYXtBi0w4JHHRn8+iZ48aJk4cX1QlhYrj6eFLgOiwfPlbGPkWXlz4BL6bQdU9dM0iEvJxnTRtLXtxSQA+shYjl/TIpy0SiZ0sXfoy36/5GMiDHybXHqGQjiNr4UAQohT9jkjw6/ovOHzyAWTzrUCB9Ru/Zk/rR1x/y5ksfHkemUwO0AiHw0RidXz+2VeEQzGeefoFamv7BkU1v/vIcjiYF75Lcm8TSqiSCy6+lsMOOooN6zdxyMGDGDm6OzYushYOjLk7eYeAbBMQEdDQQ1054rDJTJk6kpoGh5/WvckVV8/moYevRwu5FOwkLc07qG6Ic+tt1/L3J+az9pcvKeRMkEDUs0hyKwLNTJw0gv32H0h1bRhRVLGtKNgh/EIUqAEq2bplI2ddcCSPPHEzIV3GM2Hjr0kqyhvo1giymglaUd2u9OpxOGPHnMSUQ88BR6NgtJBMbiIaC9PanCQWK0eUFOw8gIXjtpFMbqOiNkhe84UUrp8BgnYj1y0mGIY69h6NKYeeynVX3EWPxmpyKQMQi0l9EnPmzOHIAyfj2BlamluLS1QAWSaTSpNLJ/HII2iA6FFd14221nbK4hFMEuiCg+3ZpJI2og+CICPiYJMA2hg6op6HH76dyuouIIYJR2PBFqAGc/qJ5x7g+ZeforKsG2G9S6Dc8aKBl5YfIWjtLO7lAnR4voWECvr0G0Mo1AuXegb0P4SK8jIc20FVNGy7nT69qjn00FFUV8OFl59HdbwSSQTTKWBTwDAyWNYfv1fgCwgSiHIwPlOnTqWxsSs7dqxB0MA2AAsUBnHI/icxfsJMvv73LsZPmIEaqgi2Mgl27PiZ5154mO27fgEMxo4dTXk8iucFJwu+G7SuSWrwtq4N5VUC8bhKNt0c7K9ikccTwS14eJaKiEgq3UxVZV0wJD54uHjYZPOw+IPn8Gni+BMOZPfutQS+S0E7aSa1k6efuZcvv19GmdYLxwW1uMwSCZgwZhqGYVKwWylkduBZ7Vx3zeU0N+2kqraaXCrNf4f3f/m7EkoooYQS/l+hpEQqoYQSSvgfxz5FUiqToCwW+d2/RegwOr587qnMv+/OYkR2N3AjGEY7oWiGtVsWMbjXKPKOD1YjIa0Ox7FRNBWcOMhN7Gj9lu7VXcEfGYgpVAvEX7n9jsuoKOvCny+5izvvmcOUE7MM6XUGEWEi73x2KUccMgvddKYXGQAAIABJREFUPhPD24bh2lSGB2KkagiV7cRiM6JfjuwOZ9OmT6np2kY82pXj5hzAQQfvz2Xn3QYM5scff2TD1pX06t2NiDKEgQNH89WXr/D5ysXk2hq5447Had3bRnVDFUgmTj6L7FcFST+yQ2tiD6qqEo9WEZA7OYKWmCYsorgoOI5DTI4HihxNK/qUOAQKIg2XGsQi1yGIgNBCMrmDjz58i2NmHIce7gpiGUEB2KEO0/a1dECxraMFDwvLCBMKRcnl24iEU1x81cksmP93cq6N5DWgyz3xvRyIeQQ/QjapE42rIMLfn7yaCy44iS+//YBJ+02mua1AbdUAki1hyisqKOQd9HgbL712G29/8hj77VdJcscY5t32ZnE+SOBFMI00L7x+Jb9ueQvR6UpdTQ/+csntKGIDoBXb3Wz8olG4TAT8CvDtorJnJ9l8jGh4YHFcfyjOxUa+/X4Rv275kvHjx9HYdTwqQ4AKjJyIroMv5RCR8XwQBQXPA1HYdxZlFuD2e8YwctRg1v60m2uuXIhMA2KH0bpk49OKQJpNO7+kT7fDyObyRCM+c687nwH9h9O7V38OOXgiC574G7FwV0YMnsHo4VOKnSoOM48bxmVXn0hNbTk3XH8j40YdzzVz5we+MlZoH0Eqm1z05xms3/gtJ582jZ9/3Mndt72MGsryz49OYMSYBlR68+PyEZx4wkUgbqVQ8Ph69Sus+HIxklDG1Ze8iCzVgZgLxsrSuOaGs+ndq4qfftzG/fc+j23KhCs0sqldiGoLsmqiaiGgEYiQaPWprFD3mQrj7ZtfDvzjmZt4e9nt9B4Q4ZDDx7Dk3W+4/C93URmbQCTUh4heST6/i8f+cTpf/nsFbc3w6bubkOlNOvcbe1r/zdpNi/nso+3cfvudxPWuQD1Y5X8YC8jR1P4FsYosr776Ouec8gCFVE/0sjbgZ26cP5u6iv05/aRrEK1hxKtNQMa3FdK5nSSMz/jHwseYOHYWRxx6WTAerkYuYxAp38CO5jU8+OCDXHjenfTt3Q2P3eCPQxTKsJ0sSlFl07nGKMe2NAyzhXgsDW6fYperDZaCYfiE4lkcfyey2ADsBaLgdd3XUakm2LjpOxYvfpcTjz+bxh5DgWY++9cStmz7mbNPvgbXq8B3wshqDtgEGHjYzH/gb3z44Yd8unQl+9oqO4hjm+b2dZx66mzuuOUxJoyfXFxDv1O3CBQ9kETwi4oa0aDgNKPLBSCE7cvIQg0eClIxhdDM/cpb7z3Mojde5O57H6dfj6OAShxLRlHd4lqUwJeLCkkrmCi+hmsZyKqOZRio4QL5fIZwWAN88ukIqXaH+m41GPkkoYjArr1r6drQm31+dAawnURuE/PnPcu8OxYUP4xCQIppxQ1Po8NUb8euf3HPg3/ijhtfobysEdxy7DwoIUBuAa8GxHVs2rKM5V8s4bwzHgevEh8dQdyND9h+iJ/W/4N/vHAfD9+1gCWfrOSowy/FtSuQFBXYw/rtS1j8zqecd/rzREOVWJZDNKqAkCCbX09L63Yeeuh2Lr7wIvr1HcOePa2cesrFfPb5z8U9W/k/lEil1rYSSiihhP8kSiRSCSWUUMJ/HMEpe/DDbvGvBMjlEzg08+bi51mzZg23Xnsf8XiXwChCgET7dioragE9MCeWBDxxDd99/yOjRg9EJklQAPQGpzF4Xckhl5GJxAM/EdDwClpwgi2neeWNsxk8UqS6qgvPPf4ja1enmHbUJOacvAA8OPrkCNXV1Ty3YFunQbdhm4RkDcNpIxSygBC7N0FDbwU8FaTtrPjmKXL5JB8v/Yb5d76GJIokrc95/NkbOXr6bOLhvrz98tfMmDmO3j0OBb+hSPokaG1Zz9V/vYqnH12NhYkeNgnSgRxAwSdOJmMRj0XxyOFQIFPIUqU34Ns6ghAUd46RAC1T9FPx8fx6RD/wGPE9EAUPQS1+UZBAlQMFT0f8fEek3O+9fnwwXQ9ZFbEdF0WWAJuHHruDJe8vYr+xI7n6qmuQ3GoqlK6BmkHpSPLSSLVnKKvoyj5FgYLjtPHE03exfcdGQnoZt9z0CKCRz+SRZFjxzQKGDx9OXfkx2DklSP3CAU/Gd+Hr1S/xyls3cc1f76W+vA8uFUh0ob29QEV5GQCWk0OUPGQhaNEpWGC57cSiHlCG4Mk4NshaGhDZvaFAQ18NhBZsL4PtioSVakCkPdtGOBxGE2sIfJkEBFQMwySkhzDNYEh1HRz3B2RFIlAfVRVN1f/osyKQw7R2k2quobq6nKzzHchtxPUhgE6usJGInsP1uyE6jYE3UNEvaG/zKrrUihRoZc3P3zB0wBGElb4EqXHlZNpAViBUblOw1qGrDjatKHQBashmDKKxEIZRIBSqwrfiCDIgJnC9FIb/HVHJJet5RMWDgDIgVZwLXcnby5DUFBJVyHSnkBfQw3E+/+w9XNr49rsvueCii4mHxtPcnKK2qguGESjjOhVJHZ2AUhstLStQwnv56NN3mXLEUVRoI4EKoCv4ccwMaFEwnB8IqbniuA4AO4ptAWIWSW+huamNLl26ABK5jE8k0rAvGV5sQZRM9iVwBaRpOrOJeCxQiBmGzKcff8+yT1Zy/98e2hfa58Eb7zzE3uwiNm5ZzeQDz2XsoL9QV9sHANe1kLQd+KQQCHHfva8w96qbsK0UilRVNPrPUeA3ln7yEul0mpkzzqGQrqWusndnKl0qkaOsMliDudZKFAkUHYRQgudfuI/lXz3DdVc/wICep+1LWRS305xcg2O7LHz+Hf561UNAhrbsTvJGG91rhmHaOppShu0389Jr84jFVcaOGoko2zS37GTZp0s5+aRTWfXVt2z6rY3r5v4t2KcJQgEeeugpBg0czoRxU4iVVXfOYwDEomm0HwruqTNZM0joc/ER0XGRkYNeUxCytOxey+o1PzDlyONw/AokQUfAAD+EWYDA4qcJHx38siKHXEDwdXwbhGALCm5Fb8J1CyAlaG1NU1d5cIdvNUg5EAqBTx0inmMiygXAZPnyVUwYfxB6KIZrO0iKSi6TRpIk9HAE1yngeQ6Kuod2XuHU6W/x6ksfoYm9CYUFWhIbeXnxJfzl3A/wnN2ImsHP676gX+9D0dS64HuWkKbgZNDkOB47WfTaPzjmmJn4ThTBq0ZXapA0mYK5FZQ9rFy5hsmT/oTl2Nhukmg4glPw8Umi6Car177AgsduQ/K78PiCdznq6FN4fdGn6KHKQB3WSSJ5RRKphBJKKKGE/xRKJFIJJZRQwn8caYLT5UgnQZEvWDh+O19+/Sa7m3/i3FMvBn9IoO8XO47aA7NrzwZRjvLMM/OYPFOnofJQVHEkx504lKEju3DDDTeh+gfh5sAoQLQC9jS1UN9QFZhX+wpPPD6fHTvXcOudsyiwhmuuv5W9zTDvxnn0adwfgRFAmq9/vRhRcuhVeRHVVZODFg4BjCyEYltpy//CvXc8zj23vQvkQdB56sU5DByp8PLLL/P3ez4jl+5DJFYFwmZeefNBDpk0i/raQQSE1xYghm92QVAimNbPPPzoHVx++ZU4hT7okQpuvfMq4pUFGnt0Zcb0Y3HNKjSpAVkKyCK3AJIcpItFynI8/tSdbPjtV0456XzGjj0mMKAFEHdjW2UoSiTw2AhDPmMQjoXIJUHXQOpor/kduRfEtFsElXQIBwsPkaAIDzD3+rP59oePOHLq0diWyM1XzUdGDTxD7OJHFbdiOm0seOxh0m0RbrnlYbycTN6yuO3ekzn5tGkMGNSdqNKTbFYgGhlYFCI44PrB6bpiAru4/K9zeOCe1whUBRawE7Bobd7F/fffy4ABgxg2fBSKVMnLzy/lxuseIFxeiS8F/reOA5btI0k+mravwLIdFyvvEtdVfAdSaSivChL21m35iseevBWl7Cfq6mo4a9b71NfXY1p5NLXDF8nG8gxUUWZX0w5uvO5UDjzwEM4+61KgRzB/OuO9bXwyCKhgRfepc0SPfCZHWIsFdbYGiAlAw8qDqkQCMgJAzGJau1FUB5c0Cv3pMJG3CwUUXQc8bDOLokkEA5rjldcfxLcaqK/rzSEHT8VzFfAVJEkIyDQ9sNuxyKNFcuCp5BJlRGLFZymwz+RaANuwUEIqCGlyuT189e2rCPoWfljzOUOH7c+08Y+RyhSIhusREIokjl38EMGYOFYWWevwkxIAFccykFWRex+4iFC8nfNmP0hIbwQ0CrkclpUnXqEHc9MOfLcsE/SKLGDS3r6bkF6GHgoIP8fK8tpbf+fnX75h4OAezDnlNiDCPfdeRtL6mE2bNrHoua+AnrS1b6Gqojv49SA0YRZcVKkaQbHYsP0NKqoU3nrjY2afcCNLP3qD77//jqzRhGklSSTSvPSPpcgMCOyRTBDDwW2adhJNCcz2XVxeXfQOp5x4AXYhhCSDaW7gljv/RFVNiGuvuB0z3x9NKStyunuA7SQL27n1lnt54O5/0tYiUFXTUHwgLXi0IZICRmKYENJkLC+DSATPVVCVEIGvUBt7k7vxTYGqWgVVgB9/W8Fbb73FOWf/ie61/x977xkdR5l1//4qdXWUWsGSnG2Mc8ABnAg2GGzDgMk5mQzDAANDhiENOQwZEwaToxnyAANDxkQDBgM2zkGWrKzOXfH8P1TLNnPv/fbnfde6q/daWsqlJ5zzqOvU2XtPRKEPnqOgGYLrWuh6aRIENNHfaNdpVikHIlsLN54XCEVnc2nicZO8lcM0E2giOJaFoap4dhEtFjjrCQHV1wh1IF4NigKWk+L5V6/mxCPPAxkArgZGFinEg4KnYYFtguGD0kIhG+bxl06mo3sNK35wePqxJaVYK/DZ4g+4794F7LfvQZxw4tnYORVVNdDDPigeuXSWWEWPYL6DVUwz/6Qjuf2Om+jbZwi2rOfJN2czoe9jTJo4F7w4mXQ3iarN/Np+C3+/ROXB+x4P6lRa0GWX7XaJmjpqT0MT29bMKUAmBdW1bCssA0rIR3yVbBYSlQUgjWDQtSVMdU0Ux7ZQw99xz4LzKeY1aquHcuONT7BubUdpb8pFpDLKKKOM/0mUT9kyyiijjP8F2LZNKpXCNE2SySQ51wnYHq4WFCLEDMRsJYqqRwGXd959Fc/zCGkJ3KLP6FHjmTplBiHiALS02MRLjR/1Db0A8PwcKG0U7Cb23W8vHCdKjOHsv8+RVKj9aEjOwi32gWJw8+27IeprhlNbMxXsOIUCgcZQFGALdz9wEWMm9CoVWxzWr/6SCTtNpW/DaHaZuA8QR1fqwNOBWo4+5Dx6140HknhFF6jE92wUvQasMMV0LbN2PwWKI/CKtSARPvvsE4aPGMb06VMJE0ZTdcTXyOcC3ShNBSlSsnbOs3zNV/TfIckuu0wAMRAbct0AaYyQA4qDqgUaGdGKgPIUqww0qa28DT50t3olGQ0Xy24GOoB2HGcLQcGmJdi4khO2YRZJFZo48JA9mTRxF4LuhV8RWksbDL6AqSu0dv7ET8s/4y9/ORVFh3hViCmTd2fSuJloUgskicd7BxfXfFBSoKdB9xE205paSkM/4dV/LcCV9aWxdCKFVhbcew0TJ0ZpbP4nn399B089ew77HbAjISMFihMI7ipBd040qmwtIK1dvxJw8HyLRIlyp4QgWbq5U3V4/eW3mTVjLgcfcAR//uNF1Nf1xfdUzFAY17fwKZAqbEbUDjrzK1DNNo48Yj6ubZQ0r7pBbaPobS4V5lwghmUZJde0NNn82mBfQglQApFkBKxsAsQkFA391sDNjWOGBqMyIIgXvzpw23IN0pk2II1VbMUwDTpa8ti5OL5bwZhxQ5kzex57zprJutanufPRfegovhHUbEs0KkUHQ48ECaQoxCqCsdh2Cyhtwc27mgUljacUg/H4FZjGMPaZcSF7T7mWi057h32n/hUoUJkw0TSbfLGDztQmIIdPBiiQy2fQQ3GgIug2IQkSx7IiOEWVi86/nMGDBxMJW0Ar0I2qF6ioMvBpA9rx6EQNQzgGViFPsZDnyace49q/XUZA/yyQymxB1TzGjBvOl9++hmV1gCgM7r8LB+x7KutW+Rxw4AkAaOF2oAlw8WnCDKfw1Q6QKEMH7ENtbBKnnXAx0WiIgw6aysFHTsSIbWa3mcPZfeZInlt0F6gbIQRqj+45LqYRo2iHgQZ8r47DDj4V14FwRFDUIoZhcOTRBzJi5A6AhhFyA20mAYhgi08yPJSpU3YDOhC1HSjgFiJALSrJUr5COFSF4xqE1Fp8N0pIjwX0wVIXVkNyGL3rxxNS+gHVDOg7nkioL9WVO5JOq8E++BUU8z66HsWxbcRzg9hVHMQNzhHPBtBw3MBtzO5xGtOCccfjFYBGxIyRK+RB8TDCKvg2WqQCKfjgBxRQTQPwSXd3AvDev1+nq7ORLW3rSnQ2AAXHo/Sq3cIqAIpF0e4kEleYOn00U6ePoq1zDVCku3sL6UwHU6ZOYu5+e7Lw8XuBPEU7hR4uUb3ECIr9YhCIlSl4nsecufvw9TeLAZ+QUkVD3UBqa3oHY7A8ElUmDp0sXfYRqpEPUl0AUXGsIvGkTtEWChnIZ3Lg5Uq5AoYJieDfFVLqKAtyXg26GSPB/HwsFITq2kDnzHdMNG0QQwZO4bhjTmPgwMF4LpQd2cooo4wy/ndQ7kQqo4wyyvjd8f+ks7mey5q1v1B0mxg3ahAKlWRae5OoAdfJoZtmoMHRQ59QLTo71xCOekTDdThOkWeeX8Bxx56Arg4k2x4jHC/gSBORiEbBjhAJVQBZXDayfsNaqiv6ke5K8diTNzJ48ED2mnkEAwZOweqOYEYToLexfMMdfP7lhzSvHsCVly8CLUsq24EmDTTn7+aWOy/h/D9ewugBF7F65Wcs/fF9DjvsJsTPlWy9wS/WU90LMLNAM1BN4IhksHr1O3y8+CX+MOtiGnqPAmMtkCWXcejozDNg4EQ2b1lL34YoLkU0oijUbe3isiww9SyoxVInQJ7X3n2VebMPoeiF0NxafNeguWk1z7x4PnNmz2fS+D3xvRh6OERwg+zj2gahUAjf7aaQUYjFezofuvn7PafR2rEa39OYf9wFjByxCz4RoN82Kg2NfL/qTSYMnQFU8PTzT7Ch+VH22vUsdptwYdCZEO6m4Kzgyeev49TjL6ajw8fx0vSt2wGoJ59RiIbrgq4NE2y/kUeeupC1a9ex27T9mDzuePr27839C67jzLOPwSnGCIdjPP3iDRRyq+lcEWHDpmWceNYM3vv0SWbN2YvOdoUpk06ltuYPdDQ51PSJg5IrhV2whgWnhWgoR2t6E1XxUViWRjwSg5KOUjDBOLgmvmujhm06WpupqR0KgO0W0UI5NFw682t59fUn6VVfwfdLv+Sqcz8ExcOxNnDPo2cTqcjx8adf8Owji3HtMahuHEMHQm1cd8feeH6eow+6hRE7HFLqTLLwHQ9VjZY+zwECEt/WnNdDG1J9sl0q8SRYRRszniGwn1dx7BCG1rB1vwr+l4TVkaxbv5IPv7qdI4/en0XPfsKBs+6kuiZO45Yf6Nd/IDZLue+hK4hGqlj9s8v1N/6Vm/5+Mn37J9nSlOGqC14hsLKPkEp5VFZUBQmtgO12snHTahY8fAfTd53EzBlz0JQoyXgFkGNd02oG99mRgCIXRrZ2T3Sj4AEG6ZSDqcUwo2F8twsfFz2kcdzxBzBh4lhatnRw6y2PgxcDcXC9XGDChgGS56fln5NKdbLrtNlsq74FekRFJ0fI2xlxSsLIxlo+//JTdpmwP06himiyG/B5+MFHaS+8waXnX47KcHAD6lrQhdUJ6IjkyOQ3oJndxPQ60oUM4YjCzysWc8r8y9lvzqFcf+1DOJ6BQghdDZPLgGEEBUrdcPEkh6ZoFHJZPH0VmhImEhoCmLi5GI4FkTgQsnCLPo1tH7N87eu89/Z3/Ly0m1eeWUE0AUW3lWffOBHVmsXRR1yIGSKgEG5rHCzlbEBRs7MqoagHqov4GZSA6wsSp5gG1xXi1Uop9hy24x9i5QUzkkAcnaJTRNFdHC9FIhojXxCikapt1DZAFJ9UNkcybvPscw/z7ZeLuePuJ8GLgB/pqd2gKB2AhuekyRWbqUjk+Ps9D3H+n24mn65A033CcY2gEBulmIoTrizw+Tf/4LkXHuXe2y9h1ZYVJIzJNNTMBtGw8nkstw3NbMf1M1RGIyx67WWyGYuTjrspEAnfHqoFFNmw8XvuvPt6Lr/0Bup6DeLVD09k3swHUZVEcC6QJWt/y9ufXcic6QupCI/GcQXX7yIS6qBImjA1pTzp5MFHrmbO7NMYPHAaYOAUBM2wUfUCjpvB0MPk8y7RaB1CHIU2XDrRMYFa0q0KiUQMJQTibMbyNoOqcPjhp/HGm1/gFDyMcHy7TiQHBY1ycamMMsoo4/dDuYhURhlllPE/Dh/B5eNP3kfTYPddp+HhUcikiCeEgt1NJFQFXgP40dIT2yKKIeBFyGSaSSQtIApelA1rMwwcWgtsBDI88PSVuLkdOfn4y4hHewGNFO0U4VAdf/nzqRx14mgWPHQ7e+wxl/nHXE2qeSghJUkkDn84YgCz5o7ignPPx7IG4NMLVzrRqOL0c3dm1pyxnHTomdx174toRivnnHk5MIDrbzmfkKkwadx+zJx6KlrJDQiFrXq62dwmnnnpGkZOUJk+6UR06cvDzx1JZ2otnhti+YpmzjtjEWNHz0KUDK5rE9KrMPWagOZUoj6dcVo/Pv2kmb/f+2fmzv4THr2ACK6noPgWIUPl0otP55xz59G333RwwogfJ2tlCZkqaC4hPYonOXRlC2tWbWTIkJl4xSK2bOS6W06gImkwb/+j2aHfTCKhycEE9MDZCQx8ry+Kb+CRRzdyLP7uSYYP70VtbCiWXYuh9EY1NBw7xZa2n+nfN8mqDT/xzAv3sPOkXZm+81FUVw4Hp4Zsd0BBRG9mxYZFjBi4F1APdi8KGYhUQi5bIBYNuqg+++ItJk/rTYidKKRaiVQKHcUtJBM1OMTY1Cl0dpsM3SFBJaCVXM6QqsBlT2+m4P/Eq68/ieGN57BDz8DDQKUbpcfOnorA0h6VbMcW4r0qgQjFoosZVhAlT1t7E/W1FWxs+ZUB9f0JaHZJ8BVQNYr5NOlshrq6vgScMANBx7LzGHoH361YyC6jxgRzZQJWLoRpmqAXcSwbI1QDSoFAY8YEIuAG7nA9RSPXzWFZDrFYshRwBtlUhnhlj2D6NmqoeAqKFgIxcAo+nidoaqDDY5iAniNd/JSKsEZwszyydI31tHavpy45lNsfOpNoBUybPIdVy9Mcsf85CGF8P4Kmhkv5bfHsS/eioHP0YfPJWWluveOvjBkzkmU/ruC6K+/DdnRUiQb5YYCCg0qajq7NrFuzittuu4pb77iSXlWTMY0qHDdDJFoFRJCCgaJB4+ZN1NbrmFEbRQaCUsBxtmAYBuKHA9qgEi1pjzkgPtluhXgywT9f+xvvLv4bw4aOwC324pJzX8SzYuRyORSjk6zzPR9/8D1z9zqdZGJwsLRqgcDfPSjoZXJtJJIqHVtUamqrSGU2UVm1gY0tG/lq8SoOnnceuh7buv6ZfIpENEGgq6WTSmVJVsbIF1eSKaynvmoCS5c088mXT3Pun64E6YWTUjHiQfhipMm7SzD1CjQawOkX5EcCMH7gnfe+Z+4+xwE6+GDbECppRQPbqGiAaxXQdR00DbtgoetBt6MWUvFsQTOVYD3tTt5+5w2at6zn+OPnEzFrcR0liE0BTwRNa+Ltj55ml0l7UJsICsQ9hSRRgg87Or8hWeXy1utPM7DfRCZMmgN+PXlLIRLRUUjjuWt54OG/UVEZxvM8Tj7hPArFHJHwjuD2ATWHZecwzYpSgctH6OS6m8/np2WrWPTMaxScIqrXDzPcC1wzODeS3UAalyYs1+a5Zxdx6gl/B7/itzRe1Skd1p0UnVYKBYeqir7AcmAAgoFjRQiZMTLZjbz69l0cf/iVeEQQwujk6LA+ZMn3H/HhO19wyH5/4rMvXqLgriKkj+K8s+8gpFcBYfLFTbzzn6fZ3LSeXNbn0gv+DiQo2mE0Pc/d919Jd2ojs2dP5dGHn2LksF249OJHSDWnqeytgWdxzNFn8uwLb22bg9rzv9VC4b+5dGWUUUYZZfzfRPmELaOMMsr4vbFVqNmnxz3MsnN0dnbS1ZkF4qiEUMPN+GzkkitO5m83X4AvhaB4ooKih8EPbo4S8WqyWRekFisfQ1Fd8sUV3HDrX7jqb1dQdFo484yTiEfj4Kk4bhRNqQBMBgyq55kX7uLbpR4zZ+4NFKisqwie+Ouw0+hZVCWGksrmMc16IqFaEuEYquaAV8UO/XfFxuTOu59i7fqlgE5HRwupdCvJapNRY/sHOkMqpZsStr7IV408K1Z9x7qNP6BqNl1dXViWwyGHHEExr3DqKSczYsQowqE4ESNJIlIXaKNIUEAKLmNhOy1cdsVYFDULFLE8B0HB8wTdCJHLZbnk0ovo229YMCk9iqKbJBKVmGYUVMFH8JQczZ3fs/DJm0HtwvY62dj4K75YjBw5kn59BxKJNgTNOR5s7+KmYqB4IFYI31WZPnEGtbGJNLZs4U/nH8KTz92IZ9sYRh39+04Horz8ykucdcZfmDp5Bi8sWsiNt5zP2+8+T7yWgMaGyoiBu5HOOqS6CrQ0eUQq4LtvvyWW8LbG0W7T9iVkNIDhEampJW3FCSfGU2QAeWo44+Jrue+5heT4zX3zNlcwPNq2bGDq5DHM3msGhVxPkaaCoHugCiQK4lDIbuaG287g3HP3AwXCEZ1sLo1KiPraAaQyPr17jQx+hzrApqW5EdAIRwZQVzs+cHAiiScekCUcEjS1mpE77s3mDpvOfDfgYJpxnIIBEsEI+aWx9ig8W8GbCsViDjNuk7c2cP2tp/P8S3fz8acvBz/rx4gnGihkLILiUwfNLd8H8+tx11Ky6GaWcMKjBz3qAAAgAElEQVSlaGUwSnblvy7/hXvvXcCqjRuAGLhJultDwCAMGQr+Dlx4xg2cfvR5TBgynSP2P57ubBYFDU01KBQK+H4QHQcfeARHHzafzu4sMbOCgw86nNn7/IGqZB1g0LS5HVTwtZ4UMYAwtVX9aGxsZOcpw3jyuVsQYwN6qAPHzQEmTRu3oITg6yVf8PBj1/Ly6w+jIKVaWQhDjwEmioRBiQdi7JYJfpyujgyCBUqBPWZM467b7ufYY49nyJCBQJ50Ok1FVRWqCr2rR3PUYReQTA4uJW+WQNst2Jd161dzy+2XsXbdj0QjQTGiMtmX1u5OBtQP4cB5h6JrSfJ5C9vNA9288PJdNHV8D3STznRiGklA57Gnb2bBwzeRyTdju2nShZWsb/oQUTYGIvmlIlAu5RLV+6NRCSjYlh8UkDSABvbcc0/AwvWKoGxfQHK25m3weSagdGkCvk8oFEI1jGCNpYgWdkE80l1dGKEQc/fdmzlzZ5HJduJ5No5jb71ePlek4KX58acveH7RIwRdX+5vzv3m5m7qqqvRFJsXXnqUDz9+A9dpA9XGdYMKu1Ow+XXlUto6V9HRtYlffl5Bc+t6brz5r7S2rkBsD6jCNPuxcuUyfl3/L7Z0/AgkOP3kK1j0zNe4XgV33HUN9zzwV3744QMAYokIkEAI43lxYvogTjr+QoKi7vZnAyUKqkKhmOfzzz/nsssu4qsl7wMxhBwKDoEsnUEivgO7T54f5AkhMmkXiFBt1rLjjjuyZMlyJk+eQZ8+/fjl50Z0Xcd1pZTPGtFwkkP2P5xjjz2e5597BcdRyOZszJCJbfnMmbsPdQ0VnHDKNbSn11BVn2HZ0veprKsj056ioy1NNmP91gThN/D/375YRhlllFHG/y1IGWWUUUYZvy88EfF7PrBFJCsiWbnnvlvk1NPmy4YNm2ThY3fI4u/Pk4ee3U2++uVyEflURFIijoibFRHHE3G7xS740t3eIdlOVyQnIpaISKvcdN90ufKmXeXOe06TF989SkRWiO1kRCwRzwr+tJOzRGS1zD8b+WLpaSKyWUS+F5EmEcmLOCLiiohni9gpufzc62XyxD3l7gf/JK7fJCKeZDOdIrJR3vj3efLrpmtE/J9F7Kwcc+wkWbXuJSlay0WkKCIZEVknIptKH3eJyBL500UN8uVPR4nItyJ+VkSWichK+fj9N0VkbTAO8Upvwbr5bvA+k0qLSEbOOSci2fxl8vb7h8rtC/aVN9+/R/LSKJliOlhmEUl1bAz+tpcX8Wy54brz5c67zpcvvl4kIh3iS1ZE1sgp51aLJy+LyE8islKmTUc2t90rIm9I0X5Njjl8l2Bd7NLa+MVg3H5wXas7JeJ5IsXgS088cYs0df1DGjufERFHxBGxu0XE75BHFp4lntssIlvksefOlQ2tL4glH4ovK6Qr/bOIFMW1RFyxJe2mJFNMyYV/PURuvm9/effTP4vIahHpKK1Nu6TkaynISilIRlIi0iIizSLyzPffyRJpkVXSLY7YpfXPbJ3HLTfNlwE7IHPmIanOb0QkL65XWmc7iCknIyJ+t2QzX8i/3jtYLFlQWtmiiGyRO/5+nkyfPkjaWtaI+CJ2wRfHFhE3L14uLV0tbSKOSL4rWDfX6skBEc/zZMumZhHfk0x6jdx4+/7y/IvXBZfOBWOwio3BeH1HRH4RkR9EZKVkuxtFpEs2bPpALr56vHz23aXywafXyA23HiYiRXHSIl46WPpi8Ue56oa95Opbx8nesweWYnCDnHC2Kq9/MlduXzAlyDFPxHO3lFbvaxH5XER+Eq/oi5MT6Wixg723RKye8PSllMcp8fx8aeFSpf3JlL5XFBFHulJNpb8dfK+7KyupLlcc2SSWrBZHusQVW3xPpLXZFfFENm76WHLuK/LGR/vLmx//Qf71wTkisk5ct1GKzlLJuItE5F/y4ddXieNv2BqfVjEr4ua2xazdM95ikFu+I55VDNbVS4lIZ2lsGREpimenRKRdilabOAURKZTiXtaJyIrgZz2RF187R1Y13iT7H4G4zupS3nbJ59/eKvNPHyEiKyXVZYsvjvjSKrZ8JN+vvVbueWJvEVksm7d8I+KLOHaTbMndJk8sOlwmT4tKe8e3IvJPefDJfUXka2ltWR7ksV8s5Z8jIl3S2b1SRDLS2dom+XSmNL/NpTXOi4hIoVCQbWdRcbszuFGefuYGuebak6Vp01LxrYyIZ4tvNclrL18rF1+8lyy4/yoRSUmhsEZENsi2s6xLRPJi5fJiWwUR6RJfPheRL+WkM3cprVFquyMsL64jpbh6Q9L2bXL7nTMlOP+6pKO9VUQ88ZyNIrJMli67XU47c7DYzsfS3vW85L3H5e775wb76IiIb0t7++dyywM7yhEnqiLSKuKKdDYX5Ltv35Mrb6uV626bKMec1FfEbxdxSue/L7J+/edy6SUnS/OmlcFaeKW97XnzPREpimWtE5E1kreWyJPPnSMiS+SjL66VF/75Z9m44ZPSGeiJ+I50dv4o2UK7ZNPB33jj3evljvv3l+7sv0XcFnGspfLehxdI0V4mHa2bRXxP8umM3HvPVfKXiw6QzVveF5EmyXR1B2d9aaLrN78vz7xypvhytzz4wkA59izksMMGiXi2tG7+UV554SHpW1cjmY7C1rUOjhevdLY7UkYZZZRRxu+HMp2tjDLKKOP3xvaUgRK1o2hnuPiSCxk2bAf+dNbZPPX0gxx/3FyKTg7T6ItPFSLV5LqhshL++dK1DB2ZZNzYEylaCuJWBmLXik97ahl3338Vp5x6IoPqdgB2JOgsKT0R97e5B+VzLoqWJRKPB50ZajceDoKJ61YQLj31P/f0A3nrP69z1W17cdihFxJV9wFXD5pxtBY8WtGIkMvEePChi0DvoF+fERw0+xrMeCXo3axc/iX33LmQ6285h2RVA+m08OuGlxk9cipRfTCBdXoNUB1ohGibgQi+HUPVzGD4BoiURKLVMLgmX3x3M0u+f5OqmiS77zGXgXUzgmvQb7tuEx/wKGaL5O1NXHHTNIaNqmHHwbuw606XUZ0cB0oHban1VFfWY9sakVCYruxaVq7+mJbWFbz+6svcc9d9RI39Aqt6cUFLkys08pdLjuPkk09l8vijQapw0jpbmjbQZ2AlWjSLh4bQG0UCs7VcZwuxWpP29iyReD+iJTkS17PR1RACeH4RhTBftnzLJVdfSFi1OWDGdE48+mgiGISUSlRiCJWAxzPPXY3n24wePYb62uH07zcavOR2FugEgtYSLYkLA2oH1900n+EjBzF39qFURkfi+xEUpSIIzx6RXCVHsdCELwWiURWnEMLQhgWNBOpH3P/gORxwwMEM6PuHUryFaW1to65XFJTEb2LO90DVHXzfRTVMUCw8Wc87/36LN956hlvvOpMKtYHNTb3o22ci+ZRLtNIER8dy27jjvv2ZNH4gbS15Hr7/C159ZTHVDTXAZnDHg+NCJLAux6tB8iXqY7yZdevfp6h/x2MLX2TwgEkcf+xZxI0R5HMammpiRsIEnSoeEHxsFTswwzE8P4KmVFO0wDTBV3y0UjfXhx+9QLf3Ep9+upi/X/cOne0VJKtiiBdCUytBd7dL/kDEKZPJkEhUks85KIpGJNqFIxaGUkM2axGPVmw7M5SeGN7Ipk2f8mvjS3z4wTLm7HU203f+I7rR4/RWgVhBk6Lng6GDY1n4XoFwTOfbr//JD78s4tfVX6P7c7nhxgWluTp0dxRIVvXbli9Kmq16WFs7ObaNvxRAJYkgG7QmbHcVijsAXa8NuiVpo7urm2RyCLbEUdVObFp59sWbKeTaaW/p5NpL7wJUTjj+GLpTHRxw8LEctt/NVFXHyGTbSVSFwAuc59RwM59+fT+fvbeEP//xH0Qq++GpWYQCHoJJbbDv/AJSB/QNBJ4LYNkZ4kkzEKeWUienAq7aRTq/AlXyXHv5Ldx564ugGfzjrotZ+PQDHH1Sb9LZ0VxxxaNAhEw6Q6KiHs9S0EJRxPHJ5YrEq1bzweIHWPz1C3gdB3HN1Y+B0YlvFSlmKti0ZQmfLb2BP+zxN+5beAo5ay1Tpo3jwbu/5qbr7mba1LPAMWhvaaF24CpymSHEwr1xHVj0xnVknWWEIlkq4vXMnfoIz785k6bmpVxx3pe0tnXw9oePsGb9Gk468hEGDKnHVX5lyfJbGV53BrU19WRy1cTDQ/BLmnrrWxayYf1XvPHPd7jz1jWBrlbpvLcKacxYj4hUz967fPrRS+w+czS+FFCVBFs252noOwTI4PETV153BscedA1jxs0j0xomUVcEUlx38/WcfeZtJJO1QBavWEEoZAAWmdx6EgmDl15+nubmLZxz9hVAjEIuRyRWHVBW9cChDTbz0RdvUZmoY8KYY/CtOKrZDDgM6D+SjZsy5HMukWgomGeJzqZhlh3ayiijjDJ+R5RP2DLKKKOM/wUoikI4HGbQoEEA7Df3UPCHEzaGk7MM/EAohVilRzq/Dk9bQ30/GygQNoVINHAD6u5OYxpJJo3fk+rKHQjoSD3uWKUjfqsQMUQrdCKJCI5V2I4uFIiQGnrPzzoM2CHO0cftxOSd9yGq9S9ZD4FIDp8OilYWCBGL9Wblxtdpav2Jru4t2H4LDz10KZ2dS1i8ZCF77NMbVSqAesJGHQMadiOqD8fKVwCDQPqC21NwqAViOE6p+qABYqNoHoqqAD5oBmNH7kXjWpi954kMrJsCJAjcl7abLw6+YxGOq1RVx5g+dQ4NtaMZO2o3qqt6BdfCpFdlPzTihENVQJSqeD/eevMjNqzrYNTwqXh2nB5BatdxAMF14IjDTmby+LmAil3MYySg/8giWnQN8CuwkXR+LariBu5oqgA+tfUQi1nkCk0otOF4m1EUC1VJY2gb0LXNPPPCOSxb8REhYwPHH30UCaWesLIjijcAcWtAdDxfZ+OGNupqBzJ0x9FUJWuC+W8nOh3oCZW+sJX2oXDccSew156zqYzWsnr1KlRV26YbA6AETlHhSJRoNM7111/JeX/+E+kMtLd0ABUs/XYjTzz6Gu0tLTj5HKBS12sQPgF1CbUzcDMzcqjhNOjdqKEU0AU4aEodq1b/zPIVP7Dg/idZvbmRG2+5iJdfvYtoZZFff/0Z1wVTr2X/OWcxZ5/D2WnCMA45ZigvvnYTkCJf6A1AoZgCXLq7fgGtFSXq4/o2mfQannn+Qf5++wMMGzKVynh/FAl4m9FYJWYkFuQKJqDR2f4TZ52+P2Y4RHtrO5pSDR6EQ0EhzJNW2jsa8RybaVP35OB9zmHsiH3J5yqorh6E+ApaSKFobU+l2bawWmDDhaJAJKICRTzJAwUM0y8V/bZ7K9m0u36GhvoBTNl5Dj//0IJGBIjiShHL6YAQeGKhaAUUJUco7Ad6P2KQrOzPEYf9kXn7n8aY0eNId7fTQ++qqPwvYeWtLwl7hKT/v58xih3CsyoI6UMxzCEoXg3YMaAXlRWDQRK4BQWNOIoX54C5xzFl531R/RogQtH2SVbVkM/7fPfNKqrqs2C04SmttLVtQOgEvRuoYPfJZzFz5n7k8l10duQBhc5sCp0o4qngwEfvv8edd91MJt2M7+XxJEe8KoTvZYAivpcl1dWN7wu5XI7q6A4kY6OYsduB4OZAzaPpLsceM4WnH2+mT/0YfC9YZ9NIBvVjUwMlSyq7ATXUhojFzhN3Z87s/Vi54V9gtAAFVDOMYjYyZKTCzlMHkqhS2f+Ag5gyZSbff7+SAw+exRNPPwpaGt/PUNu/Bqjh3D+fyuLFn6FH4MB5h9JQ35vWLXmGD9mDSKXFScdexcRRx4JRR3VNkqOOOoJQSMNxLTTqMBlGRB3Pm289DxgkYvXbmZe5DKyfzJBBk6iv741dbAXVBdWhuWkdZsxkW/FILbm16ey+x77YlnD1VdezaWMjDX2Gku20yKcE24qybnUHJ83/IxtXbyBRXUNQiI1yyknnYhq1+L6JJzFCphEUKlUfTdNobmlkt912R1NNgv9BChEzCZ6BeAT/E/x6ulI+M6cdzoQx+7FhVeo3tPDJk3cGfMKR0H/FcPnWpowyyijj90a5E6mMMsoo4/dGz8N8IHgB7AE2r77+Kv0H9GHcuDEYahzsCEKWjlwTNVV9ABOFDNDB326fTVvnem649isSRh8su4qQHkMEFFVQlKBtx7Z8QoZa6mLwQQncheyCRShslFo0Si0+Xgw0F680wHyuiOe2kaxUOPSwHenXt4a77/4AGASeCVoaSHP/Py7jlPl/JqzvAIVePPbqXpx09E1Ab6656iKOOX4uycp6nnj6fs4953xMf+9gDcI58GNkUzniFbGtjVL/3eiAD75voeo+onSCkkUhBsTxi0lUHdx8Br1CcKw0jqMTjdcGXUgKpfkVKebzhKNFujONJBNVdHS3U5NswLI9zFB/chmNWELBcUBXTRwHQmGf7757h4kTR5QGFAKnH54NWqwAbAEMrKKKadaBEjgaOX4jx8+fw+AhtRx14h94adF/SKhjmb7LvkwYOY1YjcFrTz3AT+3vsseME9h957kU/CIRdSA4gbOQaIJdUPjzTbtw2tnz6Fs9nvrQBDo6bbpbPIaMGAqKj0sGnwIhFIKuthThUC0QASl1syhpgg6N4MZsK7Q0K1b9h4cevo/urgKP/eN1ulNFKiv7l0LUBTw8t4u/XnUu06ZPpH//SsbvtCvQj1yui1jMp7v9JzLZdo485nT2mT2bp556ly+/WENdr0Hgu4h4KLpHzyYX8zZhszbYYDdw2Xv0+TM5+bTD8JwQl15yJZHKdn5ctpwF9zzN4L4HgcQoZnw0JYOR2MDiz55kweN3kC/A/OP+wry5t5c6rTSs/GYuumYaw4eNI8wExo2ZzqPPnUlLWxtnnX4FwwbPZdCgHUrBpiOeBmKgqPGg4KoVeObJizlg3mSOOfoUNm1y+OrzXwnHhgXpqvugdpV+PwJOhK7sMqqqBoMTp30L1PZvAwr4UomqRLdPenL5HNFoFKX0tU2Nm3jwsYuIx8OcPP986qsG4PohdDVa+o1AO+2yy+ex2x4j6Uxt4fgjbwZ/ONjgqqCHmoEC3cU2NNpJhKuCvKYaaCCf84lGE3SlNhKOCBEzAVi0dzRSW9MLSIBUbsubHie8rc5WPUn5X05XPdJuBqBkESuOUnol6Wkuql7ALhpoXjjQNNJ9UFOAgmt7gIIecsjam1nf+A2XXXUmbzy9jLY2h169BmIXVEJGEjsPWqQLzVhJoDU0jEx3DeGEgqoJdlEjooeCsWvL+fGnbxg3ZiYQwrFUUC2WfPs5vyz/niOPOIF4rB9tbR306lVHJqXg20JldQS0JiCD1b0RsXXuuP1JzrvkZuJVvYPlKBkWFu1m3n7vST7/6t8MGVbDmccuBDXGNdfviy2buPGaN8AbEtTojBbQNnLOxTM5/eTbqKmpQUToW9ePb5ctZtmy5cw/5gKgnvaWFLW9hpHOL+HsP17AU0++iucVKMpPfPj+l+w/53y6Mz+R0BNo4TrwYxRzjYQrFLK5buLRSeRSOrE4fLnkJf790ZVURXfmj2c9gmb4uBTIF10qw3Vkskt47oUb8bwazjr9ctrauwibMRTCxBMNBC51xnbdsxYoLaxe+T1PPP48f7t6IaiRUhp10N7+LbvvNoc9dz2KO299DrMmS+CQGCKXriEag0zORSFNosIEHAqFNsIRA9t2+Pc7HzJv3jF0tKao6dUXcV0UIwtWEt8GNRHEuO8lUP1eOGziq6/f4l9vv8kvy5p47bVPgBCCsV3vnIuGWu5EKqOMMsr4HaFdc8011/xvD6KMMsoo4//X2L7Lo0ce2rbJZDJUViapq23AlyJNrV9yyNGTmbn3eKIxhebGFMnKgaDE2GXCDJAKxg2fAYTR1So8B1LdPtGoSrEouI6KGVLYyktSeopJWTQjT3vXOk488SgOP+wwFEUHNbBQU0VDRcUMhQiHBShgu1u45OIbgAGIXY2iqojYCC5TJk3GdsDQE6DG2Wn4Xih6PeBy2dWnctbZhxM2+jBz1/noSh1IHAE2tb9MZWI4oYgHahF8s2SoZYHaRGB9Hgy9UOjECHu8/PoDPPXcAvbecy4QRlGiUADVNMEz0DQTw6igpK673Xq76IbGrXeex1tvv8EeU08kER6JolbhSyeaFiOkx+hKpYhFEwHtTINiQeg/sC/B0/FwyVo+hKoDaisOTWhouMVadDXCV9/8h5dfu59nnn+AO65dygH7n0VDcihvv/Ep1151HwP67EBI90BvZvny95l34KWMHjYb/N4Yfh257hCaEVCRNKOIYmxi3JDJjOw3i7hWw1VXnMf3335IVZ3PoEHV+ORQ0XE9F+ims7uZFxc9y6pVaxgzejxI5Lcx50d/uy6KxQUX/JlRI3bimKPnU1/Xj3A4BmgoJaoleKiqQ0WlwZ4zZ9DQkCBb3MgfLz6An37+jGx3jlEjhnDf/bfRZ3CB4aPrue3Oa6itGoDiVQfX0gxQ0mSyzXR3dZFMDgRPCwzcVNB12GXKFHQlgaEl2W/ugbR1ruPSSy+id/VY8vkwRqiIbgqaHqNjYzerlndw4YWXMGnn8fTuV88Nt53L6lXfssuEg9FVn182PMInn//Irz+vpnHzJu69+3wmTR3FpFF/pDo5hnzOwjBjgI2iuiiqD0ooULf2DcaN34lH7ruOH5ev4tob5/Lav+6iV61Jbd2OZFqLmEYNaCooHlZeQzG6CBmwpTlFptDIZVcfQUfXOiaM25WgM66nOqoQMgxEfApWCkMXKivCzJqxC1OmTaUyEohtq0qYbZaGwVmx96xZNNT2Y/LO+wENuEUDRdHQDPCVPFm7g0UvPcBnnzzBqtVfoxkWd997PzNnHIRpVuL7Cma0Ek1Pks+188KiR3jzXy+z4telTN55MiixYIyilArMPsEmsXXs295viyNRLArOWhQ9habVgtIjf74cRd+EJc1EwrGSbXwhKDoplah+DFWLgBrH0ELUVVUya9+BfPJeO+PGTuGrHx5n0Wu3MX3SsWi6gmNrPPrcJdx0+6Us+349++57LLlMira2Nmqrem3XPJOhvq7nHNDQ9DCK4jGg/wAqKiPU1tajqhFMPYKqVWCaBuFoCHFaUfQczZtWctdd97P3vJPYY9bhhCJxQMN3QNFLMRvyGDmiN8lajWXLP2KPKeeCpzBz1p4U8xmSsQGofgTDiAai5mqSsaNG8OyLT3HAnD9RERsD1NGnvjexigh33nsje804CEWJYBhxTNPnkIOPAHQc2yES0hm240QKeZ9ffv2cp598gA/fe4Xp0yYT0nqjqP0Iaf3wHDBjCqjQr38vYhUtPL7weWbNPgDRXEw9ifgxFNsgEosxesQw1jZ+g2Jk6de/nrfeeY2mzS0MHTo2OPdE2/rgw7dyKEYOIUuhUGDUuF2DorQPEEVXdPr068PgQRMYN3EnmluX8fW3b/PGO8+w+657oKgWWqgV8XPceOO1vPLKIvbee28MI4GuxRk+fDxIiGisilymg1B0PfAdMJhiUWfpyoW8+MoCpk+eDlqIMy8Yx54zZ9DZmeXxx/7FJZdcVAoAHdkaoyrq1nJtGWWUUUYZvwfKRaQyyiijjP9RBDdqumZgWTbJyhpUTSdkeEybNZbX3r6DBQ/cTj6XYfrkA8ENI5aObvRlxPDg5tSyTXQlRDoFVVXBzYNueOiGlBoGlO2eJAuu18oFlxzHl998wCMLFqIoFaVvO2SzeUwjgu+BuFKij5ks/3EdY8bNAEwUzQRfQ5EwilIBaiXtbVtIJMI0tf5I3BhKtriU+x46l/c/28DAIZvpyv7C4AH9QY2BvpHHXzyfr5a8y26Tjy7djxax8zG0sIsozSikgHqsvI3nOHiSJWT6/P3uq5gxcwqDBu6IoQe287adRwuDSBuK4ZPL5gmZsa1zzuddjJBOd1cTRjjLiSecQjHdm4gZwrcVFCOHqkZATCJRjaCNIqB06SEFyCCS4947b+fFZ59jzh8OxfcKiLaBG2+9mN59GqivHwui84/HbsKMpbnyr+eTMMYAgW7U7L3nAlFQQ6WOjS7WtyyntXMzP6xcQOOmtXy7ZBljx45FDy9F07uwCiEuvHI2TWt+wM21MnDHBgrFZk457SQGDRyK61dRyEdxrWqioQSqupau3CZm7robY0bvDIRAYiVqoI5r6aiqGsjYeA6KXgQ8Dj74CKZO2ZP6ugFsKxIYgcsXpQ42HD7++G2++XYx6zes5PkXnmDS1F04dN6J7DLxQBY9/QoNDQM46ND92GPqH4iG+qHQFxRo6/6aux/4E/f94zTe/Wgh6G20t29m8A6DwPBAt7EsC12tBkkGxRxSjB05i4g+ArEHouthRM2g4AEmmqsyatJUVF0jkTD58OMPOf6kw5gx9QAKHfUY0RiNLW9z8cXHcfyRlzN37pG0pH5kQN3O+IVJ+D6YcQ0osnL1V1x6+bm0t29mwvhJFPOBq1+qaR3JaocJUxRefOk9Zs0eimOp1FWOIRbvB74Cuk4m1UGukOKZf15Gyvqct//zGKvWv88ZZx9KQ0MvErER6FqM7XhpgI8nFqYRFGktSaMrITQqaWxKU5HoDWKCqPi+ii9asHd+EjM0ANRw8HteM0ZYpSuVJpezqUjUMXjQYBYuuBtdj7GpsZW/XnYTqlIN6PiqXkoLF123GT58IHP3mc27/3mTPXbbG4hQyBYw9HDprLDJ2+0Igu8raGqI3xRoS21IttWCqrUz78A9OPzg+YhvoIeFd/5zP6+88Q8++M9bDO6jU9XLY9n3b/Pc8wuZOnX3Up7pOA6ouoZgoji12LbNC4sWcvhBhzBt8lQUrQhaBrQUO+00hoMO2Z+VKzsZvsMEEgmDZFWU9pYOotEKUOG5fz7Eon8+za7T90bTEnS124RDFShahOqqelQ1AURR1eCcyOZXcNHlhzNiXIKqiu7BNJMAACAASURBVL4kKvuT7tJ58L57mHvA7qAUsO00uhG4uGVSXZjhgPLVp6E/M6bN5cdlH3DjbacxY06EYUMmc/5fzuCdT6/n868X0VA1nrqGgVQmwXIMdhw8m65WE12JoBk6KDoDBg7iwQUvsPesw0FtA+kVdIYRQTdcwOfOe6/n7f88yQlHX4zrr+ab797kgIPmoRgJnEIOLSwUnJVkC41EwkGXXe/6JEYInnrhIQ7a7wyymQoiph7UP9UiYut89/O/+fmX75i+y0xGjxhH4+ZOBg8aiWt5wVmvBdRYxcjwn/cfZczo/tQ2hIlFa4MxKoAjaDGD0aNHM3rMNLLZIjW13ewwKEpFfRseLZxy1ixefv12jjnsZCZMnMK4cWOpqxsAEgIlQnA4BnS2UFjhg8X/4L4nzmfOnmeCH6O+f45Vq1YxYexudHR00G9oN4s/+ZmT55/Hq6+8xISJk+nbZwCgItvF6X+VPcsoo4wyyvi/jHKvZxlllFHG/ziCo1dTQ6iqFnQFYTDvgF1p2tzKlMk7M23qZMADDxQNVLXHBlzDDMVBIBrdKnNDQF0qiQvjbhNIdn1QXHaaMIIhO/bB8fNACAUTH5dQOAQ+uLYDYqEYOqBz2MGnYuXN0nhLnQk91A7PpHfvHQCfex+4FkVRuODCs/GlwOCBkM1m+XLJW5xy9lzWrvkRyNO8ZT17z/oDKGE8SwWihCJgFXIohHE8DXwwoyGKVp54RSWBzk4fRo8aS9SspKdKFKpQyHavw5MMttVBrMIExccPHLuJRg06OrpIVtWwx7S5mFo1kUhAwVAN0LQShWkr9c3dTovGLV2rgBGCww7/P+y9d5gUVfb//6qqrs6TGQaGISMw5CAwoCRBARXTrmkFc1p33TXuGjFLUNecs7i6BnRNIJhQDKgoEiTDADMMk2c6d1c6vz+qZ9DPfsJf+3mez/fX7+fpp6HndtWte8+9Xedd57zPiWCnUL0Or735KiUlJdkxcb9z7LFzmD59Bj782CrUN+7ghhsvIJ44AJig2IDG7ffcy9bqg3QprWDnnp84bFBPTj39eDx+kz9dfwqnnzOFNV+tZGf1VppbdvDpp+8AFsceN4/GhjiJpI5HLUL3BAmGIJ6Ms3b9am6/42a++PZjwKG1tQEr45BJuj30eDVsS7DNNKrXjRNJp6K4Tpueff3yNkD51btlOUyePIUxY8aw8I5HOOfkv9CzbCxIISefcB6nnPYHepYfie0UkUwGQEpAcXjuxfvZtGUNA4eUMubwARwxeTTDRw7EwU2HhHY0PePaXQIcSwALx/FiZ0JYGRVV08hkOnOm2LJ1PQ8suoFbF/yBppY6Tj3xbLr4RwB5BPLdMJgfv9/Fq39/H4UwLU0NlBUMBvLw+HDTqrJaP3uqdzHz6GmUdSuhre0g/rCXVKyRgooiRkyYwKiR44hEYda0+Rx5xIn4C4rJLj3sTAqfL0BpWSmJdD1dyxW694TZx4+ld2kZ5T2649PzO8/VgfZIOwAZ212jPoXstQUoKe4B6FhZrWxVAU3rUDx2o6SQAC++9Bh3Lb6W7ze8T1FhmNKSXmgUUJLfhz//+Q5mTPsNzQ1JDKvDmJ2sM22ikEEchaC/CFscNm3azE8b1wGCrutZM1DxeHS8PhWfx4tpmqTSqf9EHkkh2hLnmzXfc/IJJ/PMk0+4BeNNmzHDxnD2GeczdsQkHnpkMXNnT+ftd58nEEwRi+4HPQ0KJJNxLMtExUs42IMRI0YzbOgYoBCFLggpIMGV187ntjuuw0Fj6JBRFJaUoHosMulG8gs0kgmHTEaYMWMGRx45mdtvvwvQKSrujuoJu8QcfsCXHUf3Cprb9jJ0RDkfffI2GSMDBJk542R69+uPOG1AEq9PAS1DY8Me8go7IvoCmEYAKGVX9Y8MGhbm+pv+gK51wTDSDBxSgMEOVq76AEQlkbAYOWwyOCpeXUX3AvgpKehJ5cDDKSrohpGxgVhWHZ3O6CrbURg2fAj5hYJlakyfPpfCwnwu+/3F1NWuRw+1s37TKyy5/0qK84MIFhBEpYJjjpnN8JEDEDRCAXf+2iJNgIlHCzCxaiqG4aASALxMGH+EO/8+H6pXIRGL0tpcx7LXX+Cll5/kyuvO5rsfPkacZtAypONx8CpgWZi2m7IazvcDGVoze1m3/lPaYrs5etYoRozpwsL7bqEgvyirAaiBomcjnjpSJd1qAL16DKNPz+Ek4iksC7yU8ZuTLgSKKSnpiyr51OxrJOQvwePx0dzcTFukjRxyyCGHHP53kYtEyiGHHHL4X4cb/WHbDsFgGF33oSgBZkz9HeUlFbS1ttC1qDshbxHoeYAQTTegexPYkkFTVDIZLz4fxOImPr+rAXTIA1FxiQJA85DK1HCgYQNTplVRHO4PTtZpVWy8qg9FyaB505x+2hG0t+1h1IhKPP4KPFqhS6rgAP5DqSMKrnAzSZLGPgYfNoXp0ybRWB/jnruf5qknn6V7jyL69hnAuOHn4A8OwK914/BRU8EpQ0UnE/ciInhDNqCjUdGpPeLzuacwMgaTJk2kvKwnTS1tpJImwXApKDG8QeGZZx5kV/V2KiuHo6pebFtH0yAaS1FUFMT1GANAAI/Xh2k4aJ6syLTiR3BQFMO9ICWrrUKK+oat5Of5EEkyYcJoTEtB0zX279vNWaddQElRDxAdy7Tp2asn3Up74ZDmlntO5oOP7qGwawtv/PNFZs8+DQjQbHhoytjMPOlM+hZMZki/cYS8/VCdAjxei0hiEzdfdwMH6mop6hLhuisXMm3WfKAP6WgFBYWV6Hoppm3SEtnNbQvPYO6cgbz2xgeMHz+JUSPHoSoB8vPKSCVtAmF/VjQ3g+oB1ZOgg7zx6H4gP5v25s2SXB7orGbkEhDJRDuHHz4Gv9+Dbaf5/aVXUzl4PkXhvqiqD80XwIpmUH09UJ0B6NLNtQ/FS8Zox3ZsrrjiD0wdcwZFoWGE/GPAKkJR3eMpqonqFKJqoHiFcy8+hiGDR1Fa1hOxvKg61Nc1UZDfjWefuJ8v1z5PQddW/nL9GSQzGcLBSsx4JZpW5GbgOTDzmKMYO+JI6g/Geebp5/nm27Ws+243VeOPB9VwX1gM6N+XYUNGMXDAUAKBAnBADzjAAXbv+ormZpMjJh3Fffe8x6xZVwBhMql2PIEUqi6I40HVgqSt7fy0+WMOHKinta2ZDVt+ZkDfMfjUIahax0Jxoyz8fi8/b9nAN99+xO0L/8IHq5YRadMYNWIyuhYgnQKv7haasx1B81hAKlsR0IOZSFLb+BN5xSZvvLWUE4+9lETUi1dXQHGo6DmKXr1HMnXqMXj1LrgV1nQUFFQyqGTQ1DwAVEVj4qSxrF37A/16DyUQKiQRTeP1e1nz5cc89dwSvvxqLcfMmIvjgEfzHlr32CAeQr5SuhXmUzVlPDdddRuzZxxHQNMpKCskP68XQwbNpH+/EioG5OOoBuOqhpPOROnSpYBIy0EKSnxkEnXoPnf9q3YF/fuMwXLiXHv97xl/+BzicYejZ0+gLbmNa65ZxK3XP9ehKMUNN5xHXd1O+vWrxBuA/DyVAX37sHdvA6NHHwGOFysNqqdjL/ylzg+ECtoZP2o41bX7GFF5AtFWhXB+F6omj8ewW/CoYTJGmm+//Zxlb71CY9N+hgwZhpnW8Hq7glVM5dDDGDS4J7blMGTApZxyyjkcMa4/H3y4gvKCEzl8xDg0r4/8/L4kEgahfE82qMsBPGhKPhMmTHfnW4uBU+j2UQVUExyNAf36Ud+8jeGVx4BEmDHjFHqVj+Shx2+guv4d6qLLmHTkOLxaJXnBAaTaAjiGSigvwKBhfUgnC/F5XJ20UNhLOl2Dbabo3q2c2tpmhg+ZQjwuhILdENuDoqqgmFhWBNQ0I0f2o/cALyefeiRbtv3A0pdeY9TQSRR06YqdslD9GqqqYVs+VBX2NX3Jzuof+HH951TvrGft1z9w1u9OZv33jUyZfCymKeh6kbv/SHa/USzcCnoeiguHkIim6VYylnAwBFoxPq0P2GGcjI9eFQM4ZuZZiOPn+edeYdGiB9y0SbTs9LoWkotEyiGHHHL49yInrJ1DDjnk8G9HB7FzCCJg2w6eLKnhCOyvbaNnryQP3PsnupWVcdb8G0i1+AgUlSBqihvuvIji4jTjxh7FtAm/w7QCmKZJMKBDNu3HjW4wwXKr3Cg6LF/1APsbPqVnrx4cN/0aMPuDAhkPeAGFBqxMDZ+sfpzHn34Ow4QXX/ie0qLDs4SLiRvh5F5HPBolGNJR1DTRRC0F4UHs3v4jTz93P/klCS699GKK8/vz7VfVTKg6DTIqeGFvwxus+3YXUyaeSdeufTjQvJxHn1jEMUedxrSqP4IKhtmM1x/CMVRSqRTBMChagmQqSibtUFTUDyOaxhv0s2njGvKKApR3H4iiBdH1PDqUWWziYHhxzAISiTiFpUnXUSEAZglokLGa8XkDQOgX2iom0MC33y9n+5atnH3OpUAZZlrQ/R2lzx0cK4nq8YET7tQPaYy+SyRygLZoDeOHH0/M7o2m9WB/XFj5/XL0kMP0ngmeWvwUF17yW5565gGCwTwW3vE2rndpUrvToaJPv6yYM9iKGzTlqHDbXZex5ou3+GLlc4CPutoelFd0JZ6oJxwqwBUUFnSfhk0dQhIzVUws0cg/Xn+OwmKdmdPOpLzsCDfqAUDL4KaC6G5WX7ZMdjx6EH8gjUdXOPvs43n4oacoKJwAtPP0c1fw/dcfoyo+pk05hzPmXQd4cRwb1fFj2hEctZGUWUthaAg4ZWTawRcCy7HxBNzoLycdwrHBsNs42P4RW3d9RGlpGaOHnoRXHQmOTnt7NbUHV9HetgHNozCx6lQyiXJ8wX4k2j2E8rLzZgGeBvBEiUWbyMsvyq6HEFgl4MkyTQiOlUFRFBQlG5pmq6BZrFrxEgMGFvH12i85bu5J/OPVlahKNy686DJELERNoOMF8sHwYdGSFbcOIDTz05ZviLVrTKm6PKsFpGbXI9n1k8GmiabITkRJY8Z70qVoAJk0FBW6emCmnULVTBQlxutvv0Ce12DYkFH07jsdy2zGo7tVEXGGdHARCPuBXkTjTRSEs5Edku8ajZOdU8Uk3mYRLlZBTQHt7pcpBNt7iERV4rSnN/HWGx9z0txzKS7s7gpvd0CxQIQDP6zjvZUPs37LGwwZOIW1X29m6JBR6P4kf134KBhFJONJgsWuJtsPG97ms09X8e1XPzJ96vFsWL+ZE46fzbgJM+na9RSXCNQA39fAPq67/l3+etWDFHXpCsoeMoTxSlcUJcETT5zJ3tqfaKyPsnjhB3gDXbjm5ssoyhOW3P4MkEdrg0pxcUlWEzwb4uVkK4R1is7buFFK+ViGgqChe7OFD0R3RaVpBVKsWLWMKZOPJhQYAFb4F1t6koN1W+hefjiIA3odYIBZBh4Pba3VFBUNBrWFDI04ksKndEclD8cJoqq2K4yvd8mOb6pjI+rca6CF519exMcrX2DOjNOYN+8F8Ozn7eXXsPbnN9j9M7z5QoxYRCUvL5jVxreIyW6CwXwcpztig1cFtP1AA61tBsVFA7FND5oayKZLOlhGEo/PAuJYtoFH87F119/52yN/paYGPlz2AS888y3zf3c5mtoFfBa2kkGVEKkE4P8JwznAvYtv5atPqvls9TpcUXQ/1dV19O07FCOp4/VlF67CId0sfGAHQDtIe3sLiI/Cwv6uinx2SAyzAVWCoHg4/vhj+fDjj4gn4oRC4WzcndopDZ8jkXLIIYcc/n3IpbPlkEMOOfyvwPmXTzya+qs0kUBQxZEElp1kwoSxAKhKwHUGCbFtyz7mHD+RseP7Y9EOSoZgoCPlTHcdHweXdfjF7q6qKtOmTWPm9Jl0KOC2NB3qlThJPD6HohKHkWPzmH3sCEqLPCSS7Vk/Rse9yW8GGjHsRlRNRVGCFIR7A1G27PgcS91D/xEHueXuebS0NjBk4HSMVCOW45Z4/+Tz1/HlNREuioEW5dmXbyRc3IQ31OKKa2txvH4FHBPV4yPgL0DRQoCfG29YwF133QXY6FoBkvIzfPgR9Ok7HK8/DKIhIqQzMeqbatBw0Lx+dC8E/GF2V/9MfdM2IOGOjbjizlkv/BcpO64w7wcfrKChoaljplyNG1sH0wdOINtOOlP87Di01HTjsN6/ZUDFHA40aXi1HpjAsy++wdvLV7HkwYd45uU7GDZ0MMed8AcKu9Zz3Ml9cIwozz2zkHsfOIuKAV0BSCWSmLaDaJB04kjWqZs6bS4wCBhCeffBIMWEQxWAn1g0iu7T2LZjLQ88soCbbvs9gYBG1y6FGFaMgYP6Ut6t/D9YYdZQfvk4SVTC+YV49CAtLU1UVg6loLCIhLmHjGyjNbmGgm6NVE0rIFTYTKR9E8IebG0nGTOC7k/j8zq8+tozXPr7s6mt2YUvq9+s6lHXliwvqs/CE4BgXhG9evZj6Khidu5fwZ+vPRkwiLSnKCzWWf31S/Qb0J2iggpIDcSnDwTLQ6goBZqbfojugJaPWCp5+QVZe/WAbYIn47K22Ygr1ZNPKqGAkgfiJxFPAwGGVM6gX//J/ObUM3j+pacZPKKcUKGDKA6aGkClKxkzDeKmmXqUEuAwkP4o9GL0kGlMmTT7P6R+uWhqbiJjZVBR6VbQle75ZfQqryAY8LpVqxQHw0qiqBlUxaAtfoC00cL+g9+zfNWLgInHEwbyADd6KpUCRzJAFNMRovEkadvM2nR2b+ngIRydcEEAFB+xSIKOCCmARDz+q74W+gs5Z/7ZFBTk/+uFIIBBfeN6ovHtjD68hMrhPsZP7ELfAQqmvZfrLjmJpY/cSjDYE+gKFDK4chSHDexPMKwwbHhv+vctJBGv4ZOP3nLXfrbSezxRQDLTn6NnnEhRaR4oCVojaTwUdI6raccpyNfYsStCaWkxXp/Chg3rqTu4n5TRAhgUd8nLMgkdQuFGNuIlQypZj5nxgHQDpxjb9KAoCqaVRERFLJ14O2D6SKczWI7JnGNmEQoEAAs0p3MoDuw9SPde/UA5yM0LzueWG28APNy56GwuuGg0RSVp2totNu5Yy8uvPUJd0xYUMrTFG3EQBItIvMkl0ZQELmnlVhxMRJNk4joNB+D7Hz+ioSXF+o2rsynFFZx87JVccsHv6dltNOJ4ycsPApFsgT0PXrWctBVD1Dia7tpBa0szH3/2Kmu/+R4I4lg+UPwgkE6k8Ph8gM2TTz/EhRdewP7d+6kcMJapU6sYNEijse0g06dPRwuEsinQWqeZBQIQ9JRR6O3NZRffzFOPLCdyIABOH0xD+PLLr/l582a8gdB/sKmOiqUZIIktMRbe+yeWvfcgsdheRCCTMdzfB58Hj8+PpgaIx9OASjiUT86dySGHHHL430UuEimHHHLI4d+NzmiAFK63oOI4flQl+4RfgUw6js+fwTAO4vVmI4qkq1tdS1yf0FZjKNSTMCPk6z148Kkz+O6btfz92WZw8hAHHC9oNIBddui8noMYRgavtwfYOqlUC3ooQEoJErQOyea2Jav58PO3OPa4YyhQQ24fCIFTjJkEPdwKHOTRFy9m5IjxHD5yLhKfRCDf5oknbqNHHz/LV9/Bn//8Z3p2mU7APJFUOomvaDMeRViy5DZKe7bw/bfV3Lf4HZ547i4uueQOgmpfMplCvL6NLHn0SoYOqWDWEQvRPS7hcfXVFzJ80kFmzTyL7kVTQXqAYrJz78cc1mcUWN3dPKDATp5/9kYMw+SS3y8BetF2UKGoez1DxvZn2Qsr6Nd7Or6wjmnWotOrc/w7q5grB/hx03Ia6pqZM+t0cMpcsWrFcVO/FAtQMTMKuu4FgYwBvoBDU9M3lJYOByPfnTMfxMx6HnjmGlZ/txIUhapBVSy4+h78njirPlnGMTOO5Xen/ZEbbrqJYSNGY9qlqFo+ybRJwK+76U0W6B5IGwYer4HiqSWAguIM6jAn0Ddwy8LfM+PoI1jz2TaqqsYzdvwgCrUpoOVlo8myxAphXI2Yjif8DnAQ7B5IytWPrmv/lEuvmkFZdxjQdzA3/Pk1WuoGUlJukLK+IZ5op7SgH8mkj2BQ4/JrzuKUM8aw6weLiy65hkR7HY2tdVSUD0L3loBSAWZWbFoDtGx/JAiGB3wJZp8UxuOHfB+88kItjpUirXzHrXefxcD+o9m91eSuv/6I6ugQBlv7BI3R2UiwJE8+fyM9+4ao2bePS85ZQCZZQSYdJKgX4Qk6bsQREI9CuARQLEzLQNeCv1ijZOfY1WkC3LLjHhXX0RVXm8wOuhSMliTSXk9N7UYKCsP0rBgIUoaR9qHa4AkCaitGJkNbu0FBuAd7DnzCO+8/SCyxjrtv2gdWgFtvvYQ+I2s497T7sDI98ehhUBuYPqUbxxzdi+tvfhvL7oumFWCZKroG5585Ecc6wLbtNUw+oidzTx3Fq++8RybRnWce34WqBYlHDhIu8ZFuS+Mv9PHA47+hqCyC4ezkolOfAvM0MlEPHh9o4RbAQaT0UFTaL99tIZNO4gt5QW0GbARBIUTaNPDrNtW7P6Nu3zr27d1NfZOHVZ//k2Ej+nPvoucQ6YGihHFTK1WamzX21zQwZvSYQwS4ZpI2duD32jgYWKkw3kAJDq1ctWAG+cXNDOozlYnjj+XAXofJk44GdCy7mJ923kY80s5by77kxquXUhCuxB/MzxJJTvZSUqx47R5eW/YaL7y+HKQXtmWw6uO3+OLrZdxw7RLyAsOINhnkl+9ny843WPbme9x83eugFPL2W/ey6uO3qOhZzo1Xf4iVgNU//Ym62MPMmHQe2zbtZ8b0Z4hGdrKvbj1/vOKvnHfWkYyfMB2vT+G0ebdz+Z+msXlDhPvu+JGmeuhSlg2S9Bqg1ZIxbHzaYZ3pvXgaiCS38tiTN7Hhpy08sGgl3bpXEm2vIb9Q5YcftzBmxGyMjI1PD7s/OVKH6kth40fEh0oeqZiPUH4rsJm3VrzCKXOuZMGC+/jjH/5EfkEYv6+Py7cpgLeWPXu/574ld/HoY0sBlaV/f5rKYf05fOQU3DThngg6JnGQsLt9Zms7KGqUWKSRgDMATxAsXxvvrb6NVatWcd/tHxL0lAAekskEweBBsAaQMXzYngZ0pxXNauTjlSuoGj+T/B5jQAKkDT+qruDN/mBNmzqVD1etxO/3u+v0P5hsDjnkkEMO/z7kNJFyyCGHHP7d6LirVQwOiV74QBQUFQyrjfqG3Tx4782MHjOEO+++k8LCEsrLD3MdVgVQBEVRyBgF6Foejplh3Q/vseSuv4H0QGwf6ApJuxavqgHhQ06xKqgSJBVTUPHgDRmoio2GH49pQLIOnHYCeR76DBqIXylAI+wSWIoHHC9iwYGDO3nkiSVEEtWcfNIZhLQ+YPXASClMrJrBoIFTITmISYdfjFcbgGnamIZKwN8bqMDniRGJ13HFlVcT0Lsxcdxx6MoAUukgul8lQz1ff/MhF5xxPZrWDRRIZ2pIy2Z+d/L55AV6gVNGQ/M+wiGDr797nX69+6MpZVkSqJYPVz7PrFnHUFo6CkkHCBRluPIvk7nmhokMH3AuPqUENIX26HqCeRXgUbPfTYASARp59c0nKS3pymH9BgGF2VQfJTt/NqCgqX6MpIMoCbz+NAuXXELtgXUc1rcnvmAJiVQtDz9zFk+/cDkjRnspCYe4/ILLmHbk6TQ2NLNs2ZtMPnIGeeGujB4zgkGVo4Awqqqj0orPE0PFRFe8eBUVjwM+0VBJs3n7Cn7Y/AE9upXhDQCaF+jKxnUNnP6b3zPliCPp17s3fk8BKH3BCIDjdyNvbC+uYI9b0t3VF2/k4edPob42zuChVaheeOyJmxgwsJRrr7qdoydfhRgDCeX5QHxkEoUUFfQGCmiqF/JCgxk/ejZDBw5j7Og/YLaV4Q8MoKh4NJrei7SRj3h8iEelNR0nZaQI+hxuvvMsvvn2baZMnQkY5OXv54gjKzjv/BNY8f671NS0UL3D5rKLH2PMiDOpGn8cvjyDJ166ns/XvEgq00K/PnPclEIlSP8+gxlROZXDR80Biqne3Uh59wqisQj+vBivvLaA519dQHvqZ0YOPxzEi6b4scVE0SKgtKIoCQ6FEvmxUhpmWsHjCYDjczPFEFcMXwFFSeH3w8efvEtDXQNbf97GkGEjsMwE3pDC+k3/4JNvbuel1+7gN3OPQtVVdlavod8gH4UlSdr3DqCiTz+mHT2UUUMDvL3sO4YOP4L21ho01cO0qtH06TGKsp7jUNWuNNTHEGyamr7l668epVcvByeR5KY/vk2Pbr057rip/PbMJSh2KdiuCL1l7OWH9Wv4aM21RJo0/njhSwwvvxEtkMf7n1/EN1vuwRe26Fo0lWQ0hJ7VJDtEqpkuAa4m8PhS2EYLqsdNA3XoSmObSiBUiIKPaLSVVR8uY+r0Scw98WLmzT+PYUOH8/prnzJm9O/cuVJ1BA/+YA+6datAUQRFsoSmouHxJFn95T9pbGzgk5VrGT16FpGWDCNGl/P4E+9QNeZk/vn6ZuaddisebwFmxodOKeUl4+nTqw9HzZjE2yse5t3332L61DmIVQCOjqg2CiqH9ZpKRfeelPcdAU4Bqsehb/9C8orr2bLpGwb2GYFlOnjDCT75/BW2bv2ZIyecgOaEGTpyCEcdNYGaA5sZNfxUVB36DSjkow/fZNOPG8gkdfyEqeg7gbLSQZw7bx6jR43mxZdepKWljcceuJ2hlVMoKSinoqIvoXAeqYSD7lXA0wy04NG8tDUFCfizgueqhV+voH+PWZx3ziLCwR7gePH5S0ERNm39iDVrX6FHH4W8PB3HSLP804f4++sPMm3yXDTFhyMOPq8fFJVtNesIF6TpXtyXUF6Yhx5ZwhGTRxDwFlFXmyC/MMiata+ycMmVXHDxcfSqGAJ0YeSISaz5ZjV/f+N5upQV061LH1oimVfhSwAAIABJREFUUXx+A5QwimKiKBqKAvc9/CcqhxWQXzgQPBY2IcJ5XenbZyi9uxeiEKSm2qZLcRFtbUle/edNhIuSlHWZgMfj0Fa/nX17f2bX9q955ol7mXXiUVhWmlgiTTAYBEXhtddf56yzzkLTXFbp12UBcsghhxxy+HciF4mUQw455PDvhpB9Gp7JfhD4hchrlBdevYeG+v1cftGFnHLq8bz51tuEA6VAd0SKcKvZmIjoKDYYJnh9e1HwIBkHRbdZt/5H7nl0AUOHDWfBNc/jeh8dERVZnSQM9u/fRa9eg7ENQVPDoNSDto99277h+XdfZdqc+YwfPpOg9AfTT0cFeMuK8uXaf7J9xwYuueg8IIxj+1GVbi6votcCzTS0NFFWeHSWaxHQm9m2ZQ9vvvEaN918Eag2kOLa66/ktN/eyLixc0AgZcRxM/MOgnEYyXQMtHYU/x4WPTCfv1y8llBeAbFmH4q+kXBBhkhqB6pdRl64ClBJpn/msScXMXzYWPr3Gcmrrz7O9Vc9x85dW+g9wE8wGMaRJFdefRFnnvonxo+Zj+pL4IZA+LLvSX7e+j1DK8e682SXgKpiK6BioXQwgrbH1fJQDgBR3njjUX4z9wJUPQBKhnMvmsacUw6jpm43J55wIWHtKLp3mYAADz62kPPPOY1AQOPh+/9GYVEp+XlF/PbUS4ilbfL0cldfxbMfO7OV+sZa7rzjPgoC/bn04ivpM2AM6GFsO4OmtyPEUBgMpg9bYmjeJqIRBdXuSTjf0/l43kgK3qBySHVWySBkUGilrvVzyouPASnFNCLovgNAK3sP1tKn+wk46XxU/17uf+gOBg4cwqyjzsXjzSeTaqepZTcVFf3BKkU84OAgqKQsN/gnbbpi6TYOQgaHBF1oZ1/TCsJBL11Ds7AjfYjH0hR084OnBewkJlF0rTdOOkw6A/4QpOzN+H02qbSK5vQlENR/YecKmXQEn8/DvfffTHnPIDt2beLW6+8Aimlp2UPCaMcf9KJ78/FoIfK8vbAJoeJqwijZlLdfpoJFW8DvBW8I8Bo4ioEiblSVosQRiaEoyeygeunQt3L/neb+x65i5lHH06PbEMKB3ry14lYU/y40cTjpyA945PE7qW36gpHjCph/2ktgRcGzDRjnhoVhgBLCtHVUTSOWaOKFZ2+lvCTG2q+WM3vqMWzfAMPGdeGn3V9w5bXLwKoE4LrrL8QfiHCgtpZHHruJeWefSkF+Ia2tFuMPP5Zrrr6b+vpGPly1nAsvOh3DcdDV7igd5egASLN16+fU1e9kT/U3KIrGhefdQ9qwcaQQny8f2wBFyeBRm/hp3Xts3Pgd51zwCInoAUKFQcyUD10rdQ/nTWDThmV0w+PxoKpRFMn/Bdm+H2jFweLlZz/i7HnX45ighlpIGNsJ+Qa5ZeZNzyHJKRPaGuOEi2LoIRPDrsOrFQL5iHQHx125qnRMjQV4iLdBuBgymf387eEz8Rg61974GkihSyyzl1fffJpoNMEl5y8mHfPiz9MxrG1Iph++QBcQEycS592PruG9f37O/IunsPKDKJdeeBe9DxsEWgpbtrB8xfvMnX2Zmz6mRLnnb+cz86i5jB51PJDPeZccwX33305x8DBa6/tRXJR/aAqyzx4cS1A1BTsDliP48tqBBh5+YhFvvvkmn3/8A2BRfWAV191wA6+9uBnwY4uOJl1Bgbb0T6z5+jlOmHE+yYzDF2s+ZvbM6UA50BXbSKN5t5BiBy+8eCc+xnL+OfewbdtO+g3swd1LFnDSiacwdPBkPEoRNg6KE3CF/LFQyFAf+YJXXnmCqy56CwDHE0AMd+9RPbUolJKO+bANCOXDpz+dya69eznp6G/oWtjKpyvv4ccfVvDh8g0MGAQlJd1RfL0597ybGdBvChDmlFNOYdmyZa62WQ455JBDDv+ryCUR55BDDv/PoaSkpFM497+6wXz55Zd/1U5VVSZOnPgv7a666ipCodCv2g0ZMoTq6ur/sd3EiRPddh1VjTqqpv2iZLZDip82fkXNge14dJg3/zTSRoxY2tX2cKtn2Z3nURxX5sWxEyBlKHoFeDTW/fgFVRMPY8L4sbiEiAkkcVOGNMDhQN0Wvl77IaCi6UFQU+zbvJZzf3sMDz12H7ZqUjW8ChUvVodMRdax8/hSDK7sQ0lJCUIeOAWIHQAnQ1trih83rWTF50/zj2X3ZlOnAE0BYnz1/SvEMtuxTI1U0ksqraDpXvr3HYpjgiMOAZ+CbQewnBAI+LxhgqEC7r//fo48YgpBf1c3rUw8vPf+qzz62G1s3bKRvHA+557zG1qbawj6S/jtaecza8ap/OPNtzlr/il4gkEqh00lGKykrb2WXXu/Zeaswxk7diypVIrOqDDCQCFQSs/yEcQjDhg+nISDrXTUvVORDlZNBZcUjLN7xxpUiaPqpWC60QOnn3oy77+zkbamFC11QrfiUWCUcaC+lVGjDic/VIpH9bFt6w6qJkzkiElTaY+1E/bnIXENHB/VW3/kkacWcOeSP1Dex6K03Mu27ZtBKQMjhEaxSyxiEYnsAT2RreqlkB/uTTjocedCi4KWQfNkje5Xj45cDZ0uBSNJJ3TAg+7zUt+yj6VvPsvXX38FWKg+i0hmHYdP7MmYwwdRU7eZRYuu5M13HqKiIujaGfDVDy/wzid3s7f5ExxPE5oKAR/85ba7mHvmaRxMxvBQgEYx+aEKgr6ugAdNh4JSPzU7a5gzfSrNTdXoWrZMvQeCIVA0MG0/Kl0I+3tjZcI4tkqngLW4elWmoVJY0IVRo0YxatRIMk4CCFFSMoZe3afx0Yof+WD5O3y6+h0yNKCh4BK7ITfaqENHCPfQ+SWg+zOuOLeSOTR04jZQFB8iFq//42XuvmMBifYY9XUJxAoRjxvUHWjhb/c9yjNPv4yR8nLGSZczd/bZ/HbOZXiCQZa9/RJ7923n7WUfs39nLXgsrrjhJBbdeTMoFrHGfaCk0D0ZVCVNQdjPiSf8lu7dhzJn1vkcc9LZXH7LORw2rIR9+7cBUdCSoDqUlZUyYMBAAoEA2DBr1nhOOX0yYyf24Ou1a8kkulHRfRTnnX0VkMKRxuxcWp2XmYzHqKysZMb0KVx4/hm0RvaSTLbh9+roHgdVQFVA13UULciQoeMo69qPSEMMx9YBH5rmxUiBnd3KNDS8uoaq4p5PcTqjngwrRiTRiIrKyafMBQ1UL6DkE/KVYxoZGuv3E09G3AgpJUUyafDByqXooQDYIZLtxbikSDaV85c/AzrgxMBJEC505zGdFHxaMT9+uxO7xcJOpF17oJBxYyfzznuvUFu7E9sMgJ2P19MFX0h1iWRHR5UidKU7Dz3wPMWlBTQ21dN74CDSSbDMAJpSyuw5Z4JSSjqmAQG6dStk8+bVwEEymQbGTxjNBx98QCTZSnFpfmckmGPbYIE4aVRfElSwBTd6CZ1Y3MLnKWPS+ONxbJcMbW5uJi9cTAdjLHJIk68w0IUd22sAH0FfIePHVWGSBGxaGuvQvCrb927mnnvv5os1O6ip3Qd4GDx4DF61kGNnn8yoynHoipd4MolGANUGFV+WhFXJyyug/mALqYSAGkQh2akfZ9qFID40D6DFQYXKykosy0HJeiVHzZrBpX+4EEtgwsQhjBw9kK4lYZa+8NQvFif/LYG0ZMmSX90H/Ge/7wATJ05EVdXOdiUlJSxZsuRXbaqrq/+lXSgU4qqrrvqXdkOGDPkf2+WQQw45/J+H5JBDDjn8P4alS5fK4sWLJRgMyn+2zS1dulQURRFFUaSqqkrmzZsnFRUVAkhFRUVnuyuvvFIA0XW9s11lZaUAEgwGZc+ePSIiMm/evP+2nUhaROLZd1vEFknGRdrb4iJSI5deM0wee/FUSSU/FZE1IvKZiKwVkT3iSEwcyYgjGbHFkVirSDqWcv+eFnGaRUS2yG23HSfNiZfEku0ipohIs4jsEJFdImJIMrlHHn3qQlm38RFJxhpFxJC/v3KT/O60gdLc9K6IrJO91mfSKPukXuqlVVLiOJI9Vkz+9sgZ8vwrF4jIJhE7LmKLOIYpqdRuiUZ3yPG/KZSHn50lIh9IKr1NxEqJ2CIiO2T+pUGpaXlMRFpELBGRVtlf9544hiniiIgkRaRBJOMOj5MUSUcdibW1SmPjT+45JS7imCKmyN9fPk+uv7FcZh+H3PfAcfLTplckkvhJHKmTmFkjprSILU3Za68TsSMiTlxENsv7y/8q3627T0R2iki9OyeWuOdOZ98tESsVFzHTYsfiYopIKvtnSwxxxMj2uUa++PSvctuCvvLl6nPEadkpidqNIs4+EVkvH314rTQceEVEaiRelzUBRyQarxORRhFnv9jpbRKPbBTHqBaRiETiTSK2LW11u2X6zDzJyCuyN7JY3v7skux8NovZ3tkZEYnJ3UtOl0/X3CORxBoR2SORyHYRx5RtG3fJ7XfMksX3zpIv1izJntMdY3fcTXEkIiIREdMSKykitiPiNMufrqnqtEPHbpKDB9fLg0t7yOJHx4rIenn3o0vlyw2XyovvjJPTzwvK7ppXRaRO3lw5QzbUXiwReUos2SwRKym1EUPm/fEO2ZcWaXLPlj1/xO2T1IltbBeR7+TGBSMlad8jIq+IyDaxJC2WiCQNUyyxJZpulqTVLpYYEkmkXXvJuMezMnERiYnYra6tSYu0te4QkaTYbdm5NUQa6naLyG6xZLOI7BZb4uLYIo6VtXe7Ywdokb0178voKmTIKOS6W0pFZKfYEhPHEXFsEXEMSScbRKRGRKqzr1jnuRy7XkQ+FJFPpLH1I3EydtYQdkjaXiNiOCKyTUQ+l207X5Elt98qImul2Zovr//9Flly9+ny2eoF8uHHt4jIZnFku4jUimPWi1hxkXRcxGyUh+6eJNs33CrHH4uIbBSRiDhmVEQi0nDgMxHZJH/8A/L4E6PkhaXHi8g2SaYaRCQpsXitJNOb5M9XTJBE+nNxpN61705bsUWkRhLpNXLcycifri6VJ5/6k6xY8aA7f2ZU7HRcxDHESjeLSKPYmT0iTlpuvulsmX1sf9m86TOJuttO9ry1IqYlImlxZH12LUZEpFk+WHWn/OOtC+X8S/tIMvGN+7ltS13NLmlp2SSGtVVEdotp/ywiu8SWHSJSK1+vXSgPP3KWu7ZtW8Rw59wxRRxHxJaoOHJQ7lx8oqTlcxHZ4k5zdr03166WD5Y+KpLI2oEl2bnaLbvrHpYTTh4oYrjbn/t5rZhOjYgtkm6wRJza7Br9UJqaVrjXKIaYkpT9DdvFdBLumDq2RFp3i2V9KpdcUiB//Uu5JJLrROQHmXf+QBHZ5Z7bkuw+07FvNorInqyNd9hqUkQiYhmt7qZgd7RbL99+91x2o2gR067PnlvEkTqxZauItIlIm1j2Hln91X1ZG06LiCEt0Q9l/bZbZN7FyIerbhRxDPc6k6nsPLWJSLJjG3G7aXas67QY8oPUt7wnTtKdc5Ft4oghVnZOzKRIW+t2sewN8sc/ThKRj8SUr92fG6kVkU9EZJmcdw6y5pP58vXqP0rzgbdk367PRCQppmnK3Llz5b/Dnj17ZPHixbJ48WIBpKqq6l/aVFVVCSDFxcUyb948qaqqEkVRBJDFixd3tisuLv5Vuzlz5nTeX8yZM6ezXcdnlZWVncfTdV0AmTdv3n/b3xxyyCGH/0vIkUg55JDD/7PouPH7j6ioqBBFUWTp0qW/+rzjhrLjc13XRdf1TrKoAx2kUcfN43/Vbs6cOdmbx9+Je5edFhFTxBbJpERaW6JS2/C9fPzNHfLj1kdEZIdcceUEmXtKgfzjrSukqe07cZ0VQ0wzI46kRCQmIo3y4IOzZOUbL4mYSbnrluny+GPzReQH9zyGiEij1NStlAcfPV8ymX0iUi1ffHOfiGwQcUwxzJhccccMWb9tmWQkJs12Qi6991659uXn5Iv2OmkRUzLugUSkRl56/TwR+VxENkgq3uI6FIlWefaFq2XV5wvEvfGPi0hSHnzoCrngwqMklagXx24Ske9EZK3YdqTT0cgY20QkLXW1W6Wm5lsRqRExRDJRkZYWt49ii6SjlpgxEdcxrhOxHXnu+TNlxarzRGSNrN/4rIhskrT8LPF0g8RSSTHFFkvaRKRWEq31YkYyIrYhixf9Ts48q0L++e7VIvZe1zHKknpiui/LEEmlt8t9D5wui+85XhYsmCKmpCVmiaQkKY3RnRJL7RXX6d0hs2ci558bkHPPRt75x+Xy/Wf3icguSTdvdhk+p8X1Oq1Dx3eduQ7Pq03EaRexYyJiiyMiGVkvZ//hMNl08E1pljq59bElcvPfXpJms8O/jYjILkmlt4lpHJBkcpfEM2tEZL10OK6Gs06uvnmg3P90DznmJKRyNHLNX6eISLPrSNoippH1+cSUSOsBcVmPNnecZaPEU2tFZJ9YSZFH//aciHwjLsm5VkTWywOPnSZPvTJNLrtelY27bxaRFln63CXy2P1nSsuB1WJF26W5Ji2xJhHbEIlnomJKvZxz+Rh5Z81xsuqLhWI7eySdrJbWprUiUitt9VvcuTBExHKJneYs99WeOij3PnmBLHriRFn06EniyAZpj28Qw/5J/v76FfLp2qvk/Mvz5Lo7DpPHnj1dDHO7iLSImYyJSLO8+OLlcu5F/aUtsVJcksnuJI0cMcSRuOw/8JNEkztFpEbS8r2s/Wmh3HjXAFn97dmybMWRsmv/++JIrJNgMTMuEWJbeyXa9qOI1Eh78/rsGDZL2vhZ3l5+ldyx6CR5/c2FImLIBysXylsr58tfbzlB9u3fJS6J9IOI1EqkYZfcced4+fS7IXL7TbNFnN0iskMc2SEiu7OvGom0bRFxWuTA9u/l1JlHimRMkZhIutEdNyPl9k+stNjGBlm1/HpZfOdg2bHpfnlg8VniEgBJ2XPwY7n9byfIA89Mkkj6blly/2hpaNkl6XSyc11Emw0RiYlp7JLGprfl4kt7i8gm2bH1dRGpFrHqJd60Q8SJiBjNkkzUiEibGPZ+aYwul7q2N2X+BePcdR9PZ8dmp4idkScfXyS33X+UnHLmcDn3oqMlZW6TtHwsLcln5dSzdVm/8X4RqZbmhh0itkiiPSmffvqKrN/wujzy+GUiUi9G5qBYRpOI7JBnXzxd/nxNP1lw5yTpIF/MmEhLg0ue7GtYJe+vuknWbrpf2o2vxOlkDCNy800zZf+Wt8RpbXX3Biu7VqVFRNaKIzvdzwwRx7IlY+/PrrfdEon+U0R2iJlaIbG2b+WDlTfJLYunyZr194kp68SUpBxsahSRiNhSI6a5T0RaZP/+V+TFl+eIyEERaZRodIuYmcZOgti1je9EpF5Ms8YlJR1TxBLJxE1JxZtEpFFMs0bisWr3b0a2z46R/Xd2n8nCkTr3/4ZIS0OjpJMN0tiy2t0bbBHJiBjWVsk4H8tL/5jt2pxxaE02NO7PHtMW00qJSI0kW5tFpFYaG9eKyG6JW2/LYy8cK2Ilsl/cIZOPQ/5y+yQRWyQVMUWkRazMFtm49Wa5/PczxU4dFEv2yq49b8vFlxwmCxdOlZ1bH5ATZ3UVSW0SSbeLxA2x0hmJx+NywgkniIiIbXeyvv8l/jMSafXq1f/y4EjEJZ8URck+ADr0MOk/I6E67jH27NnzL/cFvzxeMBgURVH+x37mkEMOOfxfQS6dLYcccvj/HQ4cOEBRURHz5s371eeLFi0C4NFHH6W6uhrTNBk7dix9+/b9VbulS5ei6zrffvstL7/88n/Zbvny5QCsXv0FblUsAAEFvF5IpVLYlsKAfiMZdNgY4m1JopEMe6sjKHjpUlgGqDgiqKonq8eTIJ1qIRwqZvS4HuCpw7CbGT16CBAGCeBYACpPPfk8AwcOxOu1iSYamVx1DBACPIgoXHjRpQwbNBGHMLoapKnZYejQifQq6I6JiYqBm9biMHL4eNyKPDr+UAgUN51i2bJlTJo0KdsujWXX0hzdwLEnjMcfDKGoKtBMxN5LIpXuTCvx6kXs2/sz3XvkUVHRBXBorG/CG4TCYkil6kGx8AU1PDo4JAATVINe/QZTWNIPKGPQwMOxsPDhw+8rQPcEME1QMYEMwbwy4jGLaEsd332/htPPPIFj507CsU3SEQ+pdBTUDIlMDEfLkLK24fc1k5GdlPexqGn4CoUMlmkiTopQEMJ+hW071lF/oJrBQ0dSVTWT+Wefy/jJ/Tl8cn/2bP2Sxffe8Qth8wxoTeBpcCVuBLAVnIwD4qZ/YLp5PumUoJHHiJGT6NfNFdtujdqceuZ8PJ6O2dAQNPy+IixTQ9Vslr56L/c9fgUL77maxoMH0ZUgU6ZOorW1laFD/UybFsa0k8QTDYhkyBgGHk+2L+IhP78c/j/23jvMiirr9/9UOrlPZ5puugmiCAioCAIiQUGRIAImUFBxVMQcEMxhMIGKY2R0DBhfFcWcFVBRBAURFFAyTWg6nT45VFj3jzrgzDjze987v3ufe987/X2eehrO2bXPrr3X3lV71fp+l2OQTQvgYeGiRSz7+ktMO47mSzH53HFANXAk2D3JWDm2bf+VoYPH8tjd39HzoPMAlbqGVZRVJGiIfIdm7KK0UiVU6NKdgnqQj975jEMqD+e4Yy6id9cLUM1OkGtPcVlHECiqqAAcUE3Qmtm5axu+vNBz2GfQpkKlR48a2te0RaGIwmA3DLUTI4ZN4bh+ExnY/2SO7T+OAX0mYGhdwCxB94RYvupmmlJfcP7Fw3l14ZO4lK2sW7EDiEHWNKmpqqHAXwaE0KWGfodP4fZZbzG4z9VMOOkROtf0BsDKyzDphpvWT9V8ZDIZALxGCZiVkCvFaxRS0zHI2An92Nf4C3tr9zF88AUce9Q0unYZhOZxOJAFUbzMmDmdL79aSbJFpUuX9qQTfqA9ClVkLT9QwJkTT+OLrz4gHt3AFyteY9CITjTv+w60KN4i1+YMn4Xt5GioaySTEmLRFKdM6MuHHy7kwgung+0nEs+w5Os3aYpupG2bcsLeoykv7IttCx6P78A6VlDoUgV1o5TyssM449QLAIv2NVXunMy0ECwNgZ3h1ltvoLa2FgBFhfKCMiqLKjhhxPGgmHi8sGnTGu65+0ZQM1w07VxOOWU8dXX1rF+/EZ/ux0uAjRvX4/VqLF/+FS3NeyltU07tlhYCfj+9DjsGlQLWrN4EThmZeCGZRAEQZuo5VzBh3NkoWg7YC1oDegBKSgEqaN/mGCqKexJv1lGdYixHJZ5MYEqCihqDX2uXoRSnXNriAaaUFyhCwUcilcV0QNFUPGqQRe+8w3U3XsTaDe8zasQA5j08l1BRZ044cSRtKkp4461nWb1pMQo2XkMDXN0gTdPAKaBtZU+69hgAjh8IUBBqh24U5383zbsfv8iMW6byy+ZvufHWC7jj7umkMztAM/EEwOv1Aj50tZSgvxpsnVQkQd3OPW7GuwPUVYffKIo6qZQDAiVl5Xj9QcpL2gIKyVgaVDC0QjxKKVPOvAYxVaxM/lQF2pSXuOOOja5luOPOU1i87HEiLSsoL1eBBubcN4uiUhu0ZmKpjUCAi6aN5oijSognf8EXNnHSGprRjq6HHMbhPXvxxdLP0UigkeXIXn1JJ3UOPnQwxx4zDrzVoBYCBqIYqKqK/P+UdH377bcBuPzyy//m806dOtGvXz9SqRQAy5cvB+Dll1/+XR3nnnsuAAsXLmTz5s2A+/zw9/VNmDABEfkdTa4VrWhFK/67Qv/Pi7SiFa1oxf9b6NevH+PHj//d5/s3P+A+FAIUFxf/rhxAQUEBAHv27AH4h/UBlJSU5B9GDSCf+UlxsCwvtbW1qHqaI/v0RscH4TBz736a2rpfaFtVCXjJmYKhe3ClH9wl2+cL0/2g4eRYyd13TiIYVvlq2SL69Z8KZFH9AF5mXH0nilHPMy/NpqXZ5JrLZ4PdFhzwaAEOrTieur0tlJaDrsPj91xHHAgAxfjRUwnwOqCV0KvrqdiWBWKg6RpgoepeXn35UwzbD3oE2MxjL1zGgCFHMvLY0YidI5bazh3zTmfgsSdyyrBTEByyacHnL6GwdDO9+1Qz8JijuOSCWzmo4xGgWqgE8QeSbNv5MXfOvpf77llAibccV/BYY+jgswAd2+mIz5vFYQc2DtmkQsAHaK4OSLQuyN1zpnJYH6G4qpbXX38NqAFyXHndRB7604eAScaKo3lBVVSWfv0qm7cuxet3+PTTjxk7+gyS8ThezY+hJtGIse6XVWzbupOTR57JRRffTk1NO0JBL1CPbdk88exTzJn7dN4C9r+rybpjozs4toqqW6i60LB7E599/jm9e/fh0B59QRVijW259g8LqI/V4g9nuGnWVDRMcpaBVwPNCaIQxMqCL5Bk/dZXWL/lbVavhrdfXUhpsBTsEoYPuAEtV85PP6+jxzFHcuygUYSCxdh2Bp/P1Z5ynLx2r5t0Dq+vGJw0fXoPoW1VEEODjLkRX7ASSVaj+CBr7SCZcrjwvDs4pN1RRJoTFJe0ASfEjGuWgZYXFVKyzH/oGopKdQpLImzb/QWdOvuJ535FkrcR9pdhpcFbmOCGm8cydGh/tm/fyosvv8fBXcHna8O8uW+gSppLL7+KB/80l8mnXIBCENdhWo2VS6B7TUpLKsha9Zw67kIKA2VAADO3B8NTyA03TmLsOXswDINBvSdxWKdwflxaQMuCUwQ2eI0id6jymmX7L0On3W+yZP4kYKPrkMuAxwug8cPqVSxd8iGJRIxbbn4QHMimwGu0o0PbEykr7kivQ8oh66V2927a1lQz5axLydEIBMhkFHzeME8uuIdfNg5h/U/fsnH9CnoetZt27cqwbYWSkkqSiRZe/Y/3eP7FByko0pk05SRm3Xoe9zz5MpdNe4gO1RNImi1oKPj0UsrbtgOlgFPHTWXOA0ewZAkMH7GGyupD8RWHmXzqDKKjz8BnBUg1ufc8AAAgAElEQVTtqeK8KfMRPUEq3YShhchlbEKBoOuQIAR4GTZ8Gk89OZP6vfv4avEyjhs8jNKSCs49bxoTJ47l1jtuIRgOc//9TxEOVWARZcrpl5HL5vB4PUCM8acN4NLpI3hs/gJ6dhrC0s9OJxqxSCQ0Vv34Pdtr9+D1FDFy5MmsXbeSwUPCVHc8FARK2xQieiFPPPkIqRahoMBPIgoQROEQBg88hG6HjMuvl3sRtQGHclQpBydIn94ngZoGfIgNgWAIcLjwost55tknGWKm0Y0yUPdr7wSBQ4EEoYIYDpDO+DCMYsaPPZ/uPUu4446JPPjwk3yx9FvIebGp5pTRV1FVVsBXK5eQStdTWFhOJBZHQScYCqOrBrpazVGHnwsSAscCx4Nj66gavPQf81ny9fNonjjPPf8ks26ZxOeLP8Lvb8Z2VDS1EEX35rXAdOyMm6hRC+ykuDBOJr0Ln7ca12GaBgpcX5IaJhDQsFOgaQ7iJFHUNNlsBE33uqtVNseKlctZ9uVH3HjTc+j7xfjVJm65azo1NTVcdM5MslLHBdOPZMlHy/hs8RoWf7qe+fNf5PqZdzBsxCRGHx8hHAhgi8Hx/S9k7U/fUVCgY2Vr0f2l1O/cSZv23fjD9AE8/cg8kJUc1KkXzXuzrFlRi5Vsy/Qr7gYpIhKJEiwowDBUUA1M09Xe+1eFtdu2bUv//v3p16/f776LRqO/++zvXxLtr2M/fv31VwzD+Iflevbs+S+1sRWtaEUr/q/F/+lQqFa0ohWt+N+Ff0Zn+8/KL1269ICOwl/rIvx92ZKSkv9yOZcWEReXGhEVEVs++3SpfPzRYhGxxTYtkZiI5GKSTKwXlyaRpyA4Ipl0PmzfiotYpkg0Iy++1EW27Rkqk6ciTy04UlwtjF2STK0XsVPS0lQnjmyUx549SZri70sysU1SzXJA78OOikhOxEw3ii1NUpv6VZISd2lsSXFllfIUhnREJBeT3zRjHFsiDXmeUUZEnKg4slFuu2tkvu1NIrJHVv3wmog0Siy2R3KSloS1y+0KS2T2vSfIDbcdIm+9d4mI1MqNM8fJ/EdnSy6VljvvO0lm3tFZ3vtyvPy49TqXf2W755kSl73xfZK1RExHpCmxVnbWLROxRaz9bbS2iEhUrr92isx9+HCZ8wxy3oWl8tabs6X/AGT77kdEnJykM3GxbVsSiZg4kpZXFt4vIuslFl8uiz990qWiZUXiTRER+VVmzxki9/xpkDQkXxeXZtQgIglxbFOi9TERyxYzs/uvOs9turX/EFebRaRekon1cuPMcbJx/Ruyb+8XEk9tEEca3dPSIuJkJCcxabEbpdnOSTJPhbOiDSKZprzezjfy8vuD5ZGnRsr23W+KmJk8Vc796yQzYiViLp9M4nnbc/W5bFskmRT5ce0qOWdqb4lE87SZ3G4RiYlYWRHTkmzclliDmafYREXkC7ltTm+596HjZfad54s4pmQScRGJS1YikpaoNKV2y6ada+W1hU+IbdVJMrpeRLaIlfxOXK2q+IHxdP+/4QCl8M3XbxBHXpFkY62INMkTf5kgP6ydLY//eZKIROTXdd/Jlg2fy8SzCmVP7Rqpq63/TdMqt98ebRGpl0jLGrFljYisF7F2iEjclZHJ5g9HRMSdJ47skIaWtXLVdWfKXXMvkbrG5WLJGmlJfCh/eni83Hn3IMnaG8WUZkmnrAO6NZl4WiKNv4irKbNDDmhtSUp+3rhQbrm3qzzy9AhJWUslnYhINLpB0taXkjQjYskW2a9lk4vnZPolVfLUX04SO75UNq65RZ79jytkxu0TxZF6cXWKTLHSCUnH94pjbxOX3va91Na+JG/8xxPusDsi6WyDWE7c7Q877l6/fCYfvnKHzJ55kSTjbgv3pbeIJS6d8L0XH5OZl0yWjVu/zF9DY34ex0WcnJjJtFix/ZzM5ZJLfCIfL7peRFZJcvd7IvKTNNd/LSJ7JOnUimmJJNMiWScn+2m8Ytsi8rWcPRUZPQb54KMbxJF6SSZykoztt4d6qW96T75d9YCIrJY7/jhSnn5liNx21wgRqZcPl8yUW+7tLktWXOWueY4tYufESeQnWDopsaa9v9mXI5K2N8ldjwyX2fcNll9/eE5cnbVdksu40kymIxI1fxFHmqSl2XI1ryQuTl73x8mJ5ExbHFkntqyVrBV157MjkpVN0hRZKiLf5kXqXPpqJi8rJXY6vybWu9RJyz2vPrVTMpKQjORh53WNDughbRKRT+WxBcfn58gOaWz6TlYs/0hEcmJm4rKrdrXMue8i2br9YxHZIYnkKqmtmydfrDhfDuuFrFj+qbg6Xb+6kyPn2oc42XxbmqQpslL+vOBMmX332eJYLXldpV2Sza2Wefedl7eBhIg0Sk6WS8R6Te55dLg0JpfKMy9fIpddgUyc4JN484eye9PaA5p8qcyPko6LNDbEJZn7UfbtyLrrmikiUivLV94kzz53sttnVlxEtsg9M7uIyDfy8cI/yeov38vbiy1NLfvEkohYEslr0omccMIJ8l8F/4SO9o/wwgsvHNA/EvmN5v6P8Nf3/wP3+v+kXCta0YpW/L+A1kikVrSiFa0AunfvTnNzM/3792fIkCGsWLHif+0PKAA+wIdlOWiaSiaTJZXKII6KqgAFaWbeOIihg/sw4pgb0fR2JHJfESry4fUdhJULo3rylISAF5ETuOO2BUyaMoTPPv6C1d/9hd59TyDgryaZ0CgsrMAxK5h+3osoNAI2BLNguW+b1aD7ka6WggOlRjO29QsevQSMTmRj4M0nv/KFf7sOy7bQdZWi0nI3asMEvCYKOV5a9CGOfi23zXwcTSrp1nEQkqrHbziAH8UpIZWGYABunvUQ0dR3KKrD/PnTuWDaH6iqGofuhekX3c28++5k08p2jB44hYED2nH1tTMYPuwC9BKDolAxODa6spGXXphGeWlHzhh7JJovgK0Bio5m7uOO2+7CU6CwZu0LbFv1KM+/PJvl33xDpqUa0gY+v4JpN+L3KSjYnDbubBCNglB7jjvuCOyMgaaBz1ME7OaYPtX06NadskB7sNqjiBfLSaB79xAubwGK0JwqcHRQG4AkkdQeCvwdMLQiHDyAFwcFX7Atd855hBnXnUd5WZCxIwfQvVd3HnzkdvbsiXHf/R9jSGe8FugGbiYrgUzGg1/NklZW89OPP3PywAcJBXu7Y5GFVAYChW4WQCUQQ7M9bkYnK4Gm1+FGaBSRjofxeAu4/74Z1DWvpijcETsNiXgcj15KoNgCJYJpRAh5urr1W2FQBnPt9I8oKFCBelpiy3jmmec4+8zzKKvsD3gJ+cOEa6roVNOTrOngD1eQTgte30HkcEizD0MN4QF0qcbMfsv9TwyhoqaEzoeMprTdVE6fMImff32NPkdVcNEFD3BE93Ykdhl07FDN0y/cxR/n3EFldYbZ915HpNFi3n0vkktBJg3hEhUUjaLCUiwzi+p0Bj0NpECpJ531k0o7lJa3A0pRCIGofP7eaxw/9ChUr4ap6Ch0Juyr4bKLDuaXjZ/jUWMA6J5iN6rDSOMNOXgDXfJRHhbQBKKCspmCoHDVlE/w+4rwqx6Sys88vuAC+h9byvfLarj2ivsByKRb8IWyXHLlLJKpFt5Z/Bbjxp7KoYf3AgnnJ5lDKhEjECxBM4Ik480EC72kUxptK6qYMNHPk8/cwxmTxlPg70Q8alFUAI8/eTOWuoVfv9rLow+/wUmnloKWxXGauHTqUPy+BB2qchzTtyPl1Zv44Zt9HNrpIXC6YeZAFDC8oAeM/XxK0LpiBA1OHHcckCBQVQ7s4dzJo3jh2Q8I+tuiF7iUNs023LXDgWQsSrCsLSX+Q6juCrfefA/Dht2GP+BSr9Ip0NVyigKj6dFlOJDg2htuxq+3cM700TzwxCgun3YfR/c+iTU/bABaQMmB0w5Fg3i0nvWbl7J4xT2cNm4aFeETyMbaUV5Two2XLSDdEuGCk4dBh3oK21Vz621LCFkHE/LB47PvpahA5+Jr5oF4aWiupby0jHgySsjXFsNSyaba4g1H+WrJVRw/dA7JVIhQuC3xlhglBe3JZQw8QUBrwOvPAo2gwqI3n+bRxx9j8ae/oFCJhkGJv20+26MDjoo4OpZTi6ZpqEohWDWgd2DqqYcDAcysQWlJiPd33c538x9j2NBT2bl3CZUdN3DBha/w+Sdb8RlVVFe0o9BfzwfvncMHH3zA0f075BfvFjCKUVARcm5mO1IUFxVz0bk3cNtd92KqLUQam6gor8C0YeDQAfxx3rHces1fgDZYTpxPPnodv1/48P0PmDrpCiJ1DXTv0oZQ8ZGEikrz9NBSNMfAEwBVVfAoBxOo9OSTlKZ585VX2L27lhEjzgLHAMfLmy++wupNvwJ+Thx/MWR00rEs/iKd4sIC4pk0QV8JuawbtOXxeBAyeZo3uLRD9UBG0X8FL774Iueccw6KorBo0aJ/rZJWtKIVrfg3QKsmUita0Yp/e3Tv3p0NGzbQrVu3A/oH/6th2zauFpFGMpnlg/c/ZsuWzezZs4u6ukYi0TgvPD+fgsIso04aihYKQgZCRTpr1r7Lrbdeie7RcLABARWGDj6bM067jtWrNlPZri0VFUFSLQ0IOoGgBwFyOYBSBH+epZNF9j9ga3+l++GAX/fg100gSTzRiLeU3x7IVZOcE2F33a/oehawyWRTOK6EDpGGWiDDqDGdGHRcXwSbXBb8hcV8uex1nn9xLt+vXYHX8BMIunW2tMS5/75HqNvbQDTWTKeDuqN5oCXZREm4lFtuupurrrmbF59dxOy7LuW004eRNRsxMFBQMFQLSNCxfSljR5+IangQZX8maYuMWYenIABSxBG9zqFXjwFMnz4dAF9BJShQt2sXhu5BVXRs00HBB0oYM+OQTmXQ8tIwugeQNI88/BJz7rmTz19/F7JG/jsDmwjCXhpbNqNoOrm0BeQwpZHbbr+E555/EIjnu9vAwY9NEMHPQZ270feovpQWBajf/j2BcJKag31AHABVXMqZqmURieL1Cf/xyvMsWvQ027dvJ1R4sLtxMyGXEwJFDmammUyqAWjgnvsvZ/ad03jzneeIpSPcfvcMbr5jGq+8/iCGL0MsXstllw7GiQXRPKUUtSkkUGLS2LQVSCOO6wzYr6KYiIKhluKIzq76n3nu5XtpaFrLO+++gIpK3u8IefMxDBUb0P0KjgqRVJSxF4zn1ntmsG7jBnC8XHXVNZw4ahBdulfz0hsvc/IZxxGTtQw8vjvduvfBTDskmloIlYGq+bj4kusxlGpWrF1JeUWQ9geF2bV3NY7WyONP3c78J+5j/cafAQPdCIHTQjq6EWhE9WXxF6iUtnEpqdu3NYAToGnPDoYPG8LJo05n9LAzaFvShURKQdGK0PRKuncfgZV1nTmRhp2gW0Rbdrsdv/9iRQe8RBp+4c57p/HeB69RUlaDP1RAvCFGMCAMGNCFjLmH5qZNKKggNr6gwa5dO+jR5QT6HTGBUaOnAO3BCYMD2zZvBrL4AypWLuvasDeMmRb8gTIUzctts6+ivuVb9uz7CRWHwsIgqUyCiy4+l/MuOJc+ffu5/kMli5NpxM5FaVtWyLgxJxEIOBQW21S2VVm/bhlYabBcp45mQCyZIpaIgAamaWHjRQiSSmpg+8DS+GrxYo4d0Jd5985FLyjCsQXLZn+WeTBMgqUamXgTkyadTUPjHoYMPhIzp+CI66zyBdy5pusQ8HsRQqhKMSpVTBh/OkXFQRA/JeFDOH7IBHfhwiaXZwwXFPk4tGsnTh47nAf+dBMbN39FebUPV4ysDH/oUM49+2LWrodgoVAcUAj5Ye/W3Vx/6438uv47IA22Q1GoFJsUih53J6ADXn8Z4GX5Vx+zfuOnhMJpIEeHjoeSTYfx+MIgQfbVb+HL5Qu5atYk9uxeS3mbAkaOOo6LLzsjP69NVAwUVBRsMilQND+GrqMqFjmzmUzGIhPT8AfKMbNJDMPAlAwTTxvFnr3beHfRO5x4/AQyqTQnnjAa8KKpOkg5BeGutK/pwcCBA92O2e9gwQRxAA+CiqAjuP1cWdUJyzFBsxB0gr4Sju5zDDUdSli3aRUrV33N3Ln30KF9Z/odNZhYcxpQ6X3kWAYPPQXQQcmQzuwDJUssFgPFQtMUUAL5Dszi5Boob1NEIm4T8pVBphnUJOPPncjEKeNhv9aRDv5CA0gTT9QR9ulkM3GamxpZ9vVSEokYH3z4Hiu//5Z0Nn3gXuve8/7nsd+BBPD8888zZMiQf62iVrSiFa34N0BrJFIrWtGKf1ts27aN0aNHH3AgrV+//ndlli5dysyZM//l38hkMvh8PldINQ9FsfH6FHJWDFVVaG7ZRdeu3ejSpSuP/2Uj3bos4ORBXTGsMh6ddztZmpkxYz6QRsWL42jkEg7VNd2orgnz9rvzSKVirKzcyPhTBgMhHIFMJkcg6MENHyjF3UT4fxN8Jg2a1938aiZbd67ivY8WUFZaxVmn3uruzxxAwFKaufv+q9B0hzPPmMwh7Qcg6KgEQKC4vBJopChQzbC+o8jmLPxeiEbWsuaXNxlzygQ6tu+FSIJYPEth2MeF0y7i+QUP4fcXcv2s00knPWjBJN+sfYGVy99hSP8hHD9wMnvrNzBi7GggRUVFDYKBLaCIDk4bjh88jUCgPWR0bAFNhyefu4dONTlGHn8lKIXsrt1C3/69yZoR7p13NSOGXsyRR06ibbuOxBstvB4djx/MDKg+EMniLzCAZlDLwQbbcjju+MPZuG4DOUfA47i6KUqWzVt+4cefltGr23DKwpDLWniCHgylkEsuvoaAtxrwoIi7o1bRcBQNCDLtguvQdYeLpgwnFa3lulunEwyXg+Mj1txMQUEJChbQiG03o4d1vl35Ao88ORtXwaoJ1AR4LTyBZqCJ2x6YRkFBkLr6ZoadOJC+fY7BQ3fC/r4M6Duaqo7CYYdUUrvvA267+1w+/HA2h5bu49C+pTz65CQ+X/Y5x/aZRHVFP8489UpsE5LaOgo85YRKfESTu/jxxxW0xH/gw08/pk2JQSjoQyGGQpjf4GCJhaYYqCi8/+H7vPfx+3RqU8M5Zw8i3vADmZSPx+Z/Ck4JzS1x+h81j0P67mT7rzlGHnMtZUYvoB5TNnLpVbcx65oXaN+pKx0rT6WqTQP9eu3XfGkG1jL10u5UFHQlkQphWV62b/2ZxpYFvPfBZ2RSCr26j6ZH9/H07nM8CHTsVMH8v8zilYX38fyClyilGzYBAAKBJjLOXsQy8Es7Zlw9C1uiOGqMe+c8RqzFR2FREPIRSq74fJCX3ryaE05ux5ZfWsDTBCQpaNPIVbNGc+fdN/PxZ7t5891llJVNZ+zISyktrqGy/AgycRvQ8Pk8rmZNyCKR3MlfFtxCOttMJpNl/iOvY2YCGN5CNEIgDmYywx23/JFY7geeeuIVqiYfiW360DSF3bvrKC4tZtK5E5lz/01s3rKDG265l+qOHXjkkffZt2cD8RaLaAQ6dRpAfd1PxJtNbJqJJtLowSANTRvBsQmHjsB2HKKpelTx4TcKiSdaiEd3M2jwiRx71CAee+AlqE8QN5rIqGl8toamZgkFVJZ/+xlLl7zLDTfcjNd/Jb2PGkcyaZPMbCEc0FxBazVMNluE1+PHNr349W401dcy4cQHyZh7+WHVj7zzzlwC/hA33TAb8CNqwtUV0qAoXEVR+HI6tK1l9dpP+X71F0w+/XbCRT5QVE48/0bWXTyENTu+ZvEXrzCk63jaFCnMnTWDeU8sgFwQVC8fvvsli1c+xWG9OnPh5CvAX0kuloRknGP6TuZP8y+n0yEHc+NVj1K7w0tNZS/IQjYHFW16UNGmDW3aBHnt1U8ZOWYYJxzfjmz6y7yNeFHE1WED8HkBRyeVy7B+ww88/vhjPHDffIqL27CnbgN33HU5ndoP47ypf6C05ChGDrkFw6qExBGcPupBisrau3NADSFOHEVznZk9ewzDfdRX3YifvH9GEUDxgFKQvx+YTJ96C+AQKBGiiXoKQ0EgwGmj76bAdxCQI+NspEfXE7AyhUT3/gykGTp4MlYuiW03EomtY+Hrr6Brfi48/2awdcTSXSecZiO5BJYdp98xh/L5kucxlR1cce0VHHVEX6acez6qfZjbLm0raDqXXTyNMyaNp6S0gEBBjnkPPczWLSbPPfsONlF0XWdfXRO9evjY77p2dcr+5/D3DqS/T7rxX0UkEvmXzmtFK1rRiv9uaHUitaIVrfi3xLZt2+jRowepVIr+/fv/LgJp5syZzJo1658+FEYiEdq1a3dAlPPNN9/8h86mVCpFr169iMUSKIpQUBAkHA4yfPggunStIRaP0Pngtghp+vUfzMgR/Vm6dCmfvvEHnnh2JUf16cH7n72BkGPrlnV0qO6FZqj4goCtgxqmX5/x9O1zOD0OG4OVULGzGhmnnsKwB2jAckLoFLoOIYW8krIbzYBigWoDCV5duIANvy7H5w1y1qlXgVqMOD4UQEel88Ht6XJoRyraluCQw+8rcOkJmsW9t19L1o5y8rgzUCnG7ykGsSgsMahrWc+Lr+7jxmsvRFVNCsMaQjMLX13oNkYMnFQ5fr+PMZPGoYe38fi82VQFD8JJhbnu6vngTUFWx4yUYhS7kQqSAcXXiaA/SC6Rw+MRdDULJPEaMPL4P+DQjEqED7++nTMmHssDD93PtAtvpyJ0BKC6zhc9jidUCYARAEji8bsb/4XvPs7Bbc+nc4fDCLcpoGePgTh2ASNPOx2cDKgO33z5PouXv8a0iy6jvLgrWBAq9AFZRHx0O3ggECKVyBIIRfI+PM2NQsFys6Th8M03Wzj7jH7cfM1jrFptMX7sdzz0yFuuv8/SQfGgewp58c93UxQswMxVYhglOJkwqt9LKrqXlxY+TKCoic5dSmnXrootW/306XEuleGjwS7FSjv07DqSiopyHCtCTUUTj/35Bi65+Bz8/Mh7n77GuRf14Yh+FfTreT2G2o5MtgGfH3wUImhYNhQGq+l3RBvgWBJNhYw+aTQ+X3newPaHAribOl1RydlpPJrO6JHDGT1yKDEzTbFeiVW1E11fx7Zffdx5x9eESoroeVwpR1SewdGVlTjZojxNbC+fLHmBx/58Locd2Y3hg4/loQe/ItbSSGlZiFgMCgu7Ah5KjBypuE2oIAhAMBCiuupcjup9KoZuMPfBP7Llkw28+cEDzL79QcCk2+GFvHrWk6z49gdKK47Bp1Xg4MeyCvDqAUwtA3qOP82/m0xmGymzls8+f5/xY252fbR6HGjCdRCU0r66J888+WcOO2Q08XoVzd/Monfno6uFhLRRDO9zLKeu3kJCEjz35AucPuFCLMePryAAmFi5KHqogERiD6ECnW49KykqqeKBBx7hwUdncfVlDwAmrjfVg89fSrrRZtXKXVxz+TVs+fknOrQ7CtVsR7isimRuL0awkTETTkHVfEy79HJeW/g+OdNHScnRnHlGF/bu3UJl2xLaV24lnfHg8yfp0DFANLWBju1tdPxkk7vxBWpobMmAmIhq89Xij9jw83dE6jYRra/nzlvmQYkHXzqEgoVXA7RmQBjQ/yR6dh0MdKD3kceA40XXFJKZJpZ8/R6fL13Iw3c9g9fbEcFGU0NYaSgtqSHTAumcnw4dm7n1j5fw1psfAGHAj+5JuqYnWVB8YJVyw3WPs6n2debedxcXn/eQyxqzIdLswSgtIhn18s3nrzByyHGwq46Qx8ZdXDwgFmNPG4S/dAdfLPuS/ZE8nrAX8NN/YB/6jejFvfffx+vvPUXHmj7UdOiI7QTwBnWwQ6AG6Nr5NLpeczKQJmcm2b1bxc3EZ+xP1OmG+SkgFgT8bTi819HMuM6LP5TFYQ9lbW1Gje1L/W4fbctqwHY4rJeFR1X4ctnrLP7mZY4c0JVjB43HrwwiEHTjHeORHAXhkr+9IanuWoOdp33t1w5XDFANbAc03SQUCgFCNJakMNzDpVQqUfr2GYxf6Q5aBSOG9yYSXUGxF3QjCFoC1chw5lkjeeONRVhOI7pajKCCZuFYTahe4bXXFvD96k944IE70FQ/h/fuwI7dPzL90kt44i8/s+Tz+1my7BlMM8v4CRNYveJzCgs8vPfxQvzFkMpCIreeXzavpaSkhL5HHQuiEo+lyZkpSktDuNFX/zWyxdy5c7n++uuB/28H0hdffPG76KR169Yd+HeXLl349ttv2bZt2+/EtZcuXQpAVVXVf6lNrWhFK1rxfzta6WytaEUr/u3w1w6kyZMn/1MKWyAQYMWKFWzbtu1vPp8yZQoiwtChQxkyZAiGYbBq1arflRs1ahQAnTsfTDgcymd0c9izdxeWk6UgHKCubhc+Q3Oz3wBH9z2WyspKjh82EOwWSkoLqa2t5dVXX+Wgzp3QlHyedxOyiRzpuMnUc2fQ47DjAD/xhIk34CEQ0IEkidxedFVxnT02+U2DlT/yWiX5ncQZp09C1/yMGjmOppZ6wELRyO90DEaNmEjP7oMo9NSQTFq0RFtAhWxyO598tgjLSdK2oppsyiQbz4HobNu2iTYVVfQ+aiCGWoJjCVkzhZKnoYCOIxqqz8e+PVAcOpaD2p2KV+0BVKF6i/nxhyWMOekgzpjYFaPNDvf1h+Xue8QClEI8oXLwWOSsfUAjkydOAqqxcgfjON04qO1UwpzJhBMfp6pgHJrSmVgkBjTzyJ9v4Kf1n4HaQjK5B1FagDhCI/5Qmk6dKjA8ritt+8597K1r4esvvwHHws7G2Fm7hbFjTqa8uBPg+au02jqK4mdffRPpVBZV3d+Zbl2uI8kLhIk1pgj6dLxGOQcfWsalV3Tn9LP6oBhbsXN7QdkH6l5gH7HkeoaNOArD0wVybcEqBTNEwN+RqjY9Ofu06xl49BnEmkIMHjiOkK8zkisFGzLZKFU17YhFTRJRHxAi7D+U9k58lCQAACAASURBVBVTKK8o4ptvvmH3Nh/dq2eiJHtCrgSfV6Mh/jMGBirwyy8bWfndKsCDSIBTx/0BQy0nsi+B625UUdHzh4GKgU8LoKITaWmmpSWJ3ykjk8ghuTAQ5sobh7N2+yOYxjqKCnohdCGZ1UjnIm53OYdz8nH3UbszyGVX9CNYsou6yPuEAhUoUkNhwaEgBSBeDCNIIFCGnfSTbvZTWXE4Bodh6BWARtbazd765YTLWoAIO2q3cPThJ1AcPIKBx4zCtGOYRFABMX0gQXQ9jEM9qVgOn68LJQWdOHHUUSRzP4G+F4jgZi8rB9vPzm3NFIc70dzgUFBczMLXX6aiMsyYMaNo2JOgsPgwbKoJKUdz6bSHaVPaB6/hZrhDAugePygWoYIybMtg7JjTOeigLpx99pmEQj6279gAZLHtNCgmaC2s2/gyH3x+I28vvJ/VKz9j65YlqOWbEG0zjpNmz65mSkuqqGzbkeHDRlJUWE48mqOhKcHefSkMXyW+YDvaVHSjsKANuiGgZmho+pXJ557MxZeeyfqf11C7fQcFwXLCwRJCoRADB/Rn3NhTOKRzF6qr2/H0sw+TrF1LNBLDzgmJWIJ9e+sByKTThIragV0CVhDSOl6PRpuidhzeoy+H9+jLhm2bAduNvlPB3u9tESguLaFtWRleHGrat6GpPorkvGiGFxTI5VzNOJEcYHNITR8mnX4JLS0JUAxUwyDnKHiNcvr2Gsyo4UOgaTNUBWlfXeWuiYoJ6m5aWn7mhOPGMPWcK3GkApwQTibHimWf8OJrj6LaFQzqdzaxaI5XX58PbELzbQPDBBvMpEo2Xgjix8yBxyihuLASRDuQAdBdKxxQXF8S6Bh6mO6HHoHPKETFh4cwpcU15LIODU0R0Lx8t3Yhr713I299/Ee69Qrx08YlFISEQMAANDJJE0MPYab5bT1SLVCaQWkAPeX6rpT8kXcoaQpuBk58ZLIm2WyWrVvX424XfPiVanD8B6JUiwsPAg2ikTigUxKqoSRYwyGde6CrBo4dxQiaoKQwJY5pRxk+YhgHdT4YVfUBBn37DuHnn7dRXd0NHIgnYxSX6jyzYCvRlkb69z6GEcNPpk0ZOCZ07V6EaUfpdFAZixcvJpXKEIuaFBT4KS0t5bcQ2v8cU6ZMYdasWfj9fpYsWfIPHUiXXnopwAEq9F/jgw8+QFEUTj/9dAYMGADAWWed9Tdltm3bxhdffIFhGP9yhFMrWtGKVvzfBkVE5D8v1opWtKIV//1QWlpKc3Mzf7/MBYNBUqkUgUCAXr16/e688ePHM3PmTObOncusWbNQFOVAxFE0GmXDhg0EAgF++uknOnXqxDXXXMODDz74T8slE0m3YjekBFdDxeT+B+dS37CXGTOuok1JO3B0NmxcxEOPnc+Jx05lwsQbePKJ6RzctSvHDbkCRfFDtsTdhKgecFJkc3E8/hyKroMdBNtAVA/1zT/y0KOzGTP2OI7pOxkypW4bNMBIAI4bwWKQ31wksZw9bPzlRyoraygt6oT7lt8CvOSyXuIxk9IS729+EMUiYzaTlVVMu+RsLpx6MUOPOQ0ldwiSLUDzQCSxio3bFzKgzxiy8WPxFmSp3fkTny55lWg0wqWX3oBHC5PN+PB4QyQVqN33Ay8+ewdnTBhPp/JOTJt+IpPOP4wVK1dz2oQ/cGT32yFbCh4/trI/O71gs53nF9xBNLKbqy6/BUMbTCIq+HwKugHZXA6vX3fFfWyIJxMUFG7m5TfmM/HUy1FxHRqJeASPL4ei5ahr2EhNxRiwvaTTG/j8qzc4um9/2pQdBk6ASNM2issLgCRQDXjzjgAF04xi+DSSiWaCwSLE1khHWvB6g2iBItLxHP4Cj9vFGi6VR9IsfmcOnbvU0KH7ULCqMOMKRqgQ0mlXx8pTD4aA0hkcHUmB47jMRLwZUOO4myjd1VLxmriRZ67TcOuuFTz06F2MOGEso4ZdBQTBbgZtOQvffwgzW0jvblfTtctJWGYW3bec5z+cyaEdJlJZUcXGDVvA9nDikJGAxi23zeKgjjUE/DpnTrwNKMJxVCwTPHk/pTjkHZKWqxtkQbQxQmG4mPrIejbsuw9/WQzDaM8hVXeiOEEUFQzWYZADqzPk3FTsBLYBaRx0VEqBIJloGl+wgmzMQddVtACgOKCa2JkYjz/5EC3p71n+3ccMG9aVCePO48fVOxg35iaseDGptEa4zEt9tA5/UCXkKQDHTzoBmg90T5YX37weO72dXNLk4gvnAEWAhmmDoZXh7tbTQAvz599GVrZRt8vk3rvf4r6HT2LH3tV4fbD2Gy+FwYOZesH5VFYcRu/DRxxIzx6JJClu4weJk87E8XurEQsUbwvCbhRsook0haFq9r8HNHNJDE+hy6PyRrjrhvEc3vNoVn+3k1lXLyTjBLFIgZ6gqCiMbQuCjsfvJ5nNYFkW6IKjWBT4A5C0cWxIZfbiDSRZvvp5tmxfQ5/egzhrwhzWrGpE9DBeQ0X15HDS9ezc/isdD2rDtg0rWfDMn9AN4fxL57Hyh+/4bvVXlLRxOOjgKvbV1TP9gruA9mC5NFHHgViqjqJSH5DCthQ03QByZK0GDF2INFv4tW4EwhpffncPP21Yhpku5MqLFuX94Q4odt7O47z1wSOMGzUVnAqww/n55Q5RcxQUbS8F4RQ/LHuCt556iKBRQEusnNlPfopeGELjF1599c8s+7qWRx5+iT27Vaoqy0FtBvbxzvt3MXb0o1gZP6pvJ1+vfJVBRx8LBMnmCvF6OoEYZBI5fCFPXsTaBBRyKR2Pz4+VAd1vufN+v/icLaApZFIJfAGDv/JIY9omCgWoOT+q/yP2NH3ALTc9Rk1NDccMHcLAgWcSZIy7IPJbleLkUIwcd8+5hC07vsEhyVkTL+KEwafhSIhsWsXvb+fOy/0/p7jzx3K28OW3L3P8wCux00VofpNULEEgWOxejgp4Yvl/GIgprn4aKRQtzauvP8kXX37GvXMfpLZ2N2vWrObtRW9w3YwZ9O7VB80IEalrwrZUyqq6g+2nOfUZN902hlwmx9OPLQMOJVNfT+3er1i1/m2GnjyaZ557h4cf+Ji6HRkQ72/afftp2hj8NdlCUZTfRRzvv28D9O/fn3+E/eX36yaWlJTQpUsXAFatWoVpmn9T7/5njn9UbvLkybzwwgv/8Hda0YpWtOK/Hf6P5oZrRSta0Yr/jSgpKfmHqXn52/fAvzv+OhXwCy+8INXV1Qe+UxRFunXrJlu3bv2bOufMmfPPyzl/XdIWkZwkUg1y1uRT5I23nhWRiMSSu0QkISeP6iTf/3CxiHwk1116tLz8/ERpiSwSM7NXRHaJFdsjZnSvSLZZnHSTmIl6sbP51NBmRsTMSSa9U35Y87Lc98BkEflJROrclNGm5LPOR0QkIZITSUbMfEr4hIhTL4n4DhG7RaxsQtx8zPXSEt/pNjsrkom5f9000KbYskdmPzNehk7xyyc/zhFLdrjXeyDVekLc9OKb3Rz3skdENsusm06StLVO3DTiERGJS8LZLFlZKZNneaTenitJWSDHDymRJx+7VDZt+ot8+dUct6wTF5EmNx23WLLPEdltxeS72pdk3Hk+ufehwSKyMd/fe0RkvXyy/Hp5eMFI+WHz/SKyXtLZ5vxF7JDG5hXipq7Puf2UE0lH3L9OWiTXkhExs/l21h3oE0ci4qbPXiMiP4qbCj3pnuSkRSQjVjYmIilJxvZJKl4vdvpzeeLhsbLo9Wtl5YpHZOp5vfNj9KP88eahsu2nh+WTdyfJo/OOkKfmnyirv3tcok3fipgJyTbXidhN8txjf5CvPpkl4qwRM/OzSK5exIyIk6kTkV2yc+sXItIkdqrRzayei+bb/ZOIfCODRiAXX1shIt+Lk0uL5EQyu0VmX3eniOyUeQ+Nkbc+PVXefnu+iCXS0pQRkZWSlu/z1/mDpO0fRGSbmGattETWueMr37vj6dgH0qvbKdfurJTb3Zlki4hkxM4k8zaZkVwiIVauWd78/Bx58IWuctcT/WVHbUayOddk9kU/kktm6PLAY11kT+3rrl1lRay0LTNurpSXFo6UZxacKSJNrt3lROzULkml35Z5j/aRHzZeKUu+eFJEfhaRjWJZv4pIVPZuXy9iNsuj8y6RZ5+eKTt2/CxiiWQjedtNi2ST+0Rkh4jskEjqp7xdbRGxczLvgSvl5UVT5Zqbj5Lmlp3i5EQySRGRlIhZJ1nzE0mmPhGROln07lRJy5/k4ac7y5Iv/ih/vGO8XH97d3n2lUly063jJZH8WUTq8+O0W0QaRCQjZsJti5VJ5+2vSRzLPUR2ybqfF8mYcTVy511j5N45g+TWG9uIyGty9XlFcv3F7WTGZQdLU92XIhKRxL7dIqkWkWxUrJadko5sFpF9kslsl5bUZtkX3yi7m9aLnYlJriUikV1rRMwf5cO3z5ahg5EP3z1LGnd/Kg1bNotkTInv2S52dJPE61bK1h/flnT9SnGiyyTT8oqs/OoamXf3VIk1rpTa7e/LggXnS8Z8T5pib4rIRrf9OZGmPSmRtEhkX5Obzt0x82ndoyJSK+9/Mkuuuv4QOeu8g8WR7WJam0XkWxH5SpZ9+7hrIKZrayIpETvh9svWW+XcC3pILi5iNomY6Yz7vSREnCYRJyciccmlPpbnHxwqV08qlrfm3yC5eIM40iQi6+WrxffIRRf0kZzp2vry71+XPz10jTw470rJxNeJSEqsTFJSid2u7Uk8P9fismXbR/LWe3dIwlx+YK10JJ5fI0xJx2OSibfkz9sjv2x6T6LRX9zvYin3nP2H5dq7I1GJ/A/23jpKrirt//0cP+Vd7d1xd0ISYiRBggULzgDB3SFk0ODuFtwGdyfBIVhgkCghxD3d6bSVVx3d94/TMPPOveudP+5v3nfdu+qTVatXr1RyqvZ+zj5nP+d5vt90UxCXqWYhnMVCiMVCuMvE3I9uFGecP1HcdOss4RX/eY22u+JqgxDi7+Kqm0cIX7wh5n15ihi9K+LqG3cVn3x5rRBiddf7sqKQygXnbE4I398sPv7mnCAu7eBctorbxR/XD+EKUbSWCiG2Ca/kB8ctdr1EuxBioWjNvi7Ov3SPrjVinfjquxe6jpUWws4E8+cIIfJCeLYQQqwVT78wQ5x29kAh7I3BcfLBWiHEuq41aLk46bRpIpfvFEJ0fVe/6/XnwP2Df72uCyHEhAkT/u29wL++X9O0P/8uHA6L/fffX/wr/0/vmzlz5v/tfWXKlCnz/2XKlUhlypQp8z9OUGr/8ScfkkjEGTt2LKoik0238e1Xb/PqOxcycsgoFv64iYcefYRorCe6OZF0egWJZAIQWJk0Rrwa0EDE8G0ZT3ZRNZm29q84YNq+RCNVzP9qKb7tIus64GPlixiRShAR8AxQfCxrO4ZpEjy5DQVPkxUd27YoljIkKqK4vo0qK7S0tlBdXR201XX5cF3+7DWs3rCG3vW9mHXqVVRJtYTU4GvahWb0uEX7jg08/bcH2HlsHz786H0qK/tw5eVPosm98D0ZSXERlMhnPX746S0mjxtNONaD9OYwoaiGHGtHKCq+X4VsFdEiDk35zZiRoeywZSyvjaeeOpEbLjibJA1IDAV0fPLI+GzatpFouApFUQmFIhiaSsHKETYSgIrvOMiqSiFrEY7GsHPgOBCJ0eVO52OVCkiaiiNkTEPHsdt57LHrkfwsPbp34/AjriPoswv0pkp5D9MMB/ZW2IBgnz1jTD+imr33PZwPPvyMrdvaiMQijB45nF1GDeaaqx6i0KlTmRzII088gazVomp1uIUoqg47mjYSiqwjVgXZnEcs2gBE+MN56ZlnHkBC5pRTLwdM8KuCQ7vBr7ffdzK77T6eXccdyo5tMmZIJl4ZDvpE/CiorTzw6HFst75i2qRZTB49E8XrRspeg2d1p6oqhGXnUIgEbZJu16E9AaGmrvgOAUrQ/uPIyJoEeCDngRxgkM3axGIOUAmlKGiQyi4nFlPIFzuIR+txRT+KaYjFIJVeQEVSBpEEu09XRd16INM1tg5PPH07GzetZsuWLYTMBEcdcSK6FmLrVpsZM+4AobJmxQa61fVBkcCIw8JFT/HgE2dwzgVH0bvn8dRX7gNOCEoliHSCvCXomZRqgD5AOghsv4J8ppNIRaA/k8sZGHocTYdsNk3MTIC2BsjTsilBXa84xdxWQtEYfjGJbOogteB6Hp3tHjW13bGKBXzfx7F94rFG/BLYUgeW20IiUUnL9laqkt1RtQoAdrQup6VtLbXdTeoSPfB8ieXf/8yzj9/BfS88BekCi5fsYMDI3clZLrVxix+++pgXX3yeO2+7CRSJx595nsq6RkaOm0KfwTthWTa6p0BJpqo6CqKdRx44B+Q8v63YyN13zUX16rjv9vNZ8Pf57Dx2MJXVvWhpyTN79hwiiQoypQ3ops2O9RXEInUoBnjkSTYGmlmepaHIOi3boa4OQFCyNmHGVLZtWcG8eR9z5tkXAyVsu4NnX3iW2upBHHrIUbheEVWupFhwURUdzTTxHQ9ZjgaVSJKF72eQle28+958Dp0+M6iY0VP88ONctq1bQm7zIvY+8A66Dx0Dylbs/Cq+//on9tj3AjwLlEjQzgoeTz/xJCeeehqoCj4yP32/jB8XLOGkGedT01hNIZciHK0Ex/hHBZAO7ZkFbG5ayMOPzeHxB9YgSTZCFFEkj0KuSNiMBKJuWoFNG5by6JNPcPutz4NfAy64LqihrmuFH1ROoheD34uRoMLISvPg4+cRi/Xi1NOvAs3h3odnc8mZD3VZOlpAAV9k8HwLTVEoWGnCRggo0LxjNX979nFWrVrJuHETsYsmRxx6Mj17TwSvAs/yKbntROItwABwDApWM+FoEVBJpywSFRBUrBrgBfplwgmucEq4CDQTVIdVIAhRtC3Cepc9p+jqpRP/pKwh+eSz7ciaTGdnmtra3qhKCN8DWQaBh+tn8X2fgw86jE8/mR8sQP+6k5EoU6ZMmTL/QcqaSGXKlCnzP06QfAmZMRLxanxPwfPBcWwmT9qdmpokw4cPJZlMkIhXoodr8YqQSNaAU8DOtPDOe6/iWxlwS4CEh4SmaUj4XDH7AoYM7c/Mi2cBIWQ9DOTYtPFnzr/wZFqbtuEWCiBBurMZw1QAh82b1uHbLq4bJLlUVSdsBokqVS7w49I3mfvZQ7z/8cNABtvLs2H9Dl56bT69Bkzm2JMuJWLUouhQtIKvqemC5Ut+5u8/zael/Wfeef8xho6oZ9ZfL0AWKvgykgS2qwIRYmaCfSfNIBztD26SRHUITVNRtRCyrGALkDQdUKiMVOEi8/q7c7n+ljvY2tKKTJSU4wd6K2h4ro7jqfTqNoyqZC8qYt0w1Aos20fXgsRZR2srsuaClCMcL+F6zaClEErnP9pgAMOMomkmiqzTmS6i6yGampo4/PDDOfzIo7o2RX9oPXmYkRCe52EXA/vpHS1bmLbfcMaP3oshA/dgYN+RLFuSZcLYvendczhrVzdj6nDO2ddy3jnXoYd7IkQEMFC7HIdc4ROrSvLcsw/w84+/0bYjRZC0CRTTFy5cyKGHHk4xm8a3LBC5wJipS/OkrnoQu47bn472NLXdKohXKkCKXOevXHP1kSxZ+BmnnXomY3buhet6FItZkKAiWkk8GsJzwLY8VFX6p/YRQAhynTvw/DRQAEogl5A1GyQXIXJks82AjSBLLBbMT6qzgOND646tVCQGoEgDCLkDcOw0Pq2YMUBAwtwF7GEg1YPhgmYBOng9gQaEa7B23Qqm7jOScMzn9DNm0Lw1z+67n8qMI6/kj9aWAUP6oBtgxKCQ6uS7776md+8kO40cTn1lLdDB8kVv8eGH9/H3L56FUgrcwCJ9R1MLqZYC+OGgLQ8l0JoSNYEQsVzAdrLEYgmQ4PeV33H73Zfw5tsvgqsRivYKWkilePB5RA2y342amoGAgRHSufHmSznuhOls2boG2YC8vZann7+Z+x68irr6GlRD+8PVntq63gwaOBzPFQhMXD/Ce+/+nddf+52mxevACzNy5O4YoRpcT2b9+sV8MO9Z1q9byMsvPkSsIc6I4f2pr0ny848/EjerKORLZAvtVDXWYnV2km5u5eADDqNX9/4MGzqSUFUdra3b+H7BPM44/QCWLF7EgP6NbN60AVmOks/pINVRtOP0HDSMWCyBJhkkk/XYGQcn66JoOihQ1wD5AtilFGbMB5q5+sZT2LZjIZs2LgIUdK2WM0+7hkMPObPrfFZBVBEy6oKkhSh0xRiAApKErISBHhx0wHEgZSh528hkmlizbgkrVn7Lkh/n881Xn3YlL6Loke70HzoWRAglFCKdaWL7xoU0r13GjONOwXdDeF4UnUrGjZ/ExMmTSFZGCXTNAlcwy7JBBa8rkVRV0Y1RQydTEe8GgC9cJEngY2MaCqg+KA6IHD171NK7dy/+SIZkUiI43yUnaIOTA82kXLaI7dq4Xfp2i5d+zeqNnxGKlhC+SqHgM3HXMbhe1/mHRSbTgizpaEoUiBE2+lPIVWIXIzTUjqBU9Lnooovp1r2arU2r+fvPnwF5cAsohkwkWoPrVIJvgAzhqEXQLmZx74NX8cvytwm0wP7h+inpICQPkPG9MEHbZxyIIhPFFxogUSxkAAe7sB2kFEgZwEN4IUJGI431Q/B8CQ8HX3FwJfAkhWxGoZDVUOQoIGPbfwj58y9aU2XKlClT5j9FuRKpTJkyZf43ELBh/WYQEvX19YQiGl6pFUUp8tDjJ7Jy5SJ23mkyp5x+HpKoRWYsrtuGagaVEIt+XsDosVPpaElTWTcYuySjmwotO7Zx0627cdF5VzNgwJ6IYg22SLFh2xcsWPAJU/c4iD499wQpRK6YIhrWueGmS9nRuoWRw8dy5hl3gpDJFzJEomHw1UAziU2cNnN/Tjr5GCaN3AOXRiRqgUqWZ6AqHty3JwlSGhrgFjvQTIu775hNyVnPrnvbvPX6D5x22jmMHn4KMJRMMYKiBYdRgLAPyO1AiVKqhBnuBwq0pFcTr0wgUYdJnoefvJGiuZXd9rmJZ1/4isFDu3H8gQO4/+Gz+Oztn/j+vTTCBF+2kOUsEhlAxUVBpRowcGwbXS9x4kl78tfLLmCnYTvz2ttPsmzlPNau2US3upFcOetRamqGdeluGF0P0H2gSDaXIRYBSfpDc6gHQWlOl/MdJsVciVA0TlAt44FIgSSTS7tEE5WBXombAVXqGmcfRDdAw7aa0E0dS4BwKlBkCU0t0tb5GWvWLGXiqOtAUcDzEZ6FpHiks+sxTDDDPcl3OEQqw0ARz/NxSzGMUJy2zp+proKnX76TX5dsY7+ph3PPbXdx3R1/YfyYw9C1KkpuJ65VgyLqCIWquty14uSLHWiGhyaHQeg4lo6mFnD8dm6+/QxGj5nAtH2OxtQr8XwD28kTMiTunTObdLqZpi1bGbbTCD758keevG8x3btXkS81IbkSYbMh2PvKgNoJ5g6yXicxZSRuRyhIk0UIhKyVWFDBVITbbj2L31b9wu0PXkz33vXBOFMNfl/w4+CqCNNBYhuZjg3cfecdzJ79AEa0qqsSYjNINtDAsl8+ZsH3TzFmzCBmX/Eixxx1GG3tIQq2yxlnn0X3blPJtmaJNZQIsgbJYINf2kQ0HAPi4Ki4/i/ccv+hHPGX3bjw1Ff58ss1lLIprrn2cro39uOEE4+hsnrPIExkQCqSK63n48+e5IiDD+DhJ5/h/DNuBzYBBd75aB5TJ59EIjaAUiaKGVUpWdswTLC8ApoaR8HnvjvuZOl3P/Prsp/4esEXRGsSlEScdNbHsxcR0dp54+Xn+PnbHzDD1dz2wOvIWjXtWQ1VjRKLG+xoXUNENVn4/des+PUnZs6cgRQLgxzDTVcy5577KHW+zrqNrcTj0NahceP1j9LQ/QCUSAMlxaHkpAjJGSLhEI5VomTlmDXrYmKJOFfOvozKqgQ33HAdZ599HsuXLeORpy8hWSPQTcFj973HGafexKMPv4RqdAMRwi3K5KytVFRW4ubCqHow/CV3FYZhIHk9g4FU8sFPOwQqOP5aNLUAVCFoQWIHN5x4EGrFccy+53nyznYiYRtQuOvKBxGKzWU3HsX69fN55+0vmXXZ6yASCFdF0nyglSCJksct9UfVDYp2lpApUSgVCZvxrgkNquNAxiWO53VgKAUK7lq++vQ7tmxq44hDT6O6PoSgk3TOoSI2HCcfQzMkSsUiZuwPHaUQuHFQXXKFdqLhKEFF3EZ+3XQnT875iTuvX4UZiYG0Dt+LdyXSijzz4tX8/ut2brh2DuFQj6CoDjji0L1468O/AXk6OzfzzQ+fMmTIEJ5/7hWunHUbMhWEIrUgxYNKKBeKdo5Q7HfufuBu4rFqTjr1EN6eey8H7fYSsWgVSJBJrSWeTIKfpJAtEk7ICOHj+RGyBUEsKmFbRcKmQTa9llhC4dLLTmDqHnuz336HUbIbCRt1+DbIWiD/59KJQOBjIBFBFaD4cMBBh/HhR+/g+z6y/E/VSP4f59T/i+tzmTJlypT5b1Guv/766/+3P0SZMmXK/P8ZQZf7zb/ilMC1SFYnsFMpVDwko8jX839k+lHjGDNhZ5599RY8JUXPbruTy/gYoRAQJlnZHVWLE4omAQVF0di+pYNYqJrfVn7IoYecBlSDnEAy4lRV6Sxa8SN//+krVi1fhqy38/Sb1zFm5734ecFSJowfwtFHTUMRtfiehh52cVhPqnMV4VAIaGDK5NPo03MfbGppR2ChUUChn6qQsCCpgCm1U8huwfdK+L6OpifZdcq+TJo0mldfupYzj7uPocNPwU33oSBrOKZCk2dx/RNz+XbRJkYPa6SQWs/1N15GojpMz97dQDKIGjVoIooKzHnmLNbveI543UIOGX0t0ydMYnRjf6JaFEV7kVNP3Z2EehByyEWWZqrVSAAAIABJREFUZCRMJBJIxFCIIiEj4aMoNlCiR582hg0ZTDEP2zcXWb3hbc6/8HBOOvp8IuFdQUojpAISce67+0KW/PosHR0LGDZkLyS/DqQEruThd9mAC0zARBIqmm7iOwUcO0sx14keimFTTc6sooCBJOVpWv0ln7//DF998yEjJuyDQgN2QaXk5pHUEsLzsQoyYbMCCBMO1dCj2yhwqkh3bsGMCSQljlN0sdw27p0ziykTd8eINIITo5gLo+sJhC9Q9AzhcFC11L/vaA458BQG9B/HXlNPZPjw/ShaJXRN47kXXuD99+bRr18vqqq6B+2PkoWuRVCkGK6nIcsGkupjSQ6yGmGXSdMYMXgqrtcNx0uAGkZSLXxaWbj6Fc499yhGDRnKnIfmcNejp9C/ey+QNHS/Hk2J0dnWQUl0EkrmaEot5Z4HruLWG+7kL0eejOX5qKaCEvJxXQ8ZBTSVpUtu4MNP7yUU3U48aXDv/Y8wfvyeqFIdql4D6Hi+hKQqrFnwLE/dfSGnz9ibD79egqVUUFE3FKhEQQVLcP1fr6BbYx8+/fR7ErUuqdJmTj3/YIaMTPLdj+/z1fw36NUvgi5raIoJapZU20q++OwdhgwbAbhglxBemt594tx95xyevP8VHrn7Efr3D3P/Iw/Qq3EbH7/zLftNPwdXASG5CAwMqZbujbuQK3jsMekIsHuA1xuU3gwZMBrTqAURQzUtrrv1YG667XzWrVvNflPPBz+KJMWYOGkPDj5sH4476QhiDXUs+OILPn3vHSKyS/XAiaQ7U3Srq8HLbiFc0YeqAQeSEfUk4t1IiCxKqYCbl6ntpfHG3DtYvn4Bld17UV09mlSHjmI2sPPosUyeuBumkeSo6cdgtZf4+tP57H3MMdjFFCU5h685uJ6gULDwhIypm0zbaypTxo/hmUfuYNL4/rRv/Jl5HzzJwTPGMXSnWlpbmxncdx/G7DyT6XtdgKxXgbod21tMutBEZVVvPFtCMdNIWhsLFj7Fu++9zrIla9hl9D4AWEUXVdcQooAkqXS0QCTSh2w6j2FGEH41exx4PbsdsC9IGRZ9/iZqsY1ohc6kvUbxy9xXmTBlX5INY2nNGsRjlcSiYSTFAVIsWvAe8977G78t+4xR4/fDlkxkVcdDQ1bDCIK2Nx8NFwOBiQRocgbYwNvzLmTuB6/Qo0c9UyZfhJAq8aUKVD2OIkVQdGjvaEHRsuh6UFLj5SRkOYyvtIHio4hKLNtEUUPUVoxjl7GnoaoNaJqEJIWQZJd8Nk9nR4Zxk4osWb6EiWOnoSlVlPg7ml7HIYdWccnME5m465HE4kMYMuhAksmB7LnHwRiGxvc/fsZ7HzxDj74+8WgUVB1FFtiOxooVK1m7dh27TpjKls023QZECKm9kQQIZRmq6oJTj6brCKUZX0rhSlVohoSQcugqyK6B7xTQzBT77jOSF59+j3HjDsTXa3CsEn6pgGYaSL6Hn3ewSx6+DLqiIEsgyTIvvvQcxx57LJIkIUn/VBlZTiCVKVOmzH+ccjtbmTJlyvwvUSqVKFkFABRFQQqHsXIdLPt1ER9++CHdakbQu8fOTB51MOATrwyT6SyR6SxhhiqxijaO1SV4I1nU94gTqZCY+973bN/sYefjwVNZAR3FFKNHj0LTXfoNrOGZ5+9iwsT+xM2enH7yeTQmJ6MbI7jksoO45qbDkMjy3Mt389orz+GVLDzPAlHCI8/mljXceMM1zHn0QQx0HB/kUB7kFny2EYtBKAyhaFAukO10UNR67GKMzlQBnAJqyMFz8yi4xDSF31d8xxGH70o8LHjksXuYstuuTJo4hcD+2vsvjnCD+o5D83swath4dC0OgGZCIdNMXWMNfWoHkC2m//0EiAip5iTDBx6FrplE43DA9GM4+/j32bn/RUAP7EIrJWHjdzmb/fTLcvr0GsaoUVMA9R8tHKjIvgkYSBSRsMh05EGoyFqY226/hONOngR+CYGGS1CroBDmb0+/yuqVW5m654HImBSKDpIEiXg9htIDXepFIloDQFv7RhatfJWrbzkchCBRWx3YWwkZhMoXn39DQ31PFC3+ZwsKSgaUDA89fgWXXX4OQWtJLfFIn66BKNKtZ+D2FQ1XUyg5pDqLdGvsxS+/LOoafx/huvieh23bqIqKD6QKedwgJYeqhkHEUVDwvT8a7CqxnQYuOOFp4spoUm0dNFbHGdp4BJCkVMqDkSNlbSLZTSVZm8ArVvLuq9+yvW0px58xkk+/nkO8MosW7gSRQtV1hJBItRb4YsXHHHz6eOI9BO++8SrTxo1mxXffYYTDeHiUZI8OPce6Ld/xwsuvsXhxG913PoaDDjyB7vW98BEIqQiSg1fczh77jGO3PaeQqKimR+Mwdt/1aPIdCQb3PYgTj7manvV78MO3TUhSBJdtnHz6KC68cnfWt7zLkl9fpbPzFwjBG2/M5/mXXmTI8DiVdePp1bgfktuXyVPAMBpY9VvXppcU0B78VHwScYfqpATsAI3Aot3SyLTHwasERwU/wtFHzQha9lrWgJTD8Xx8AflsGiUUJxKuhLxNPldi6dKl/PrrYmKhKhrqBjCo/zgqk30ZO3Z3+vbqS1UyhqYVEXI7Qk4TS+ik2rfRUN+dcWMns35tM6YRQ5JUJAk8z6FY8jjgpFNRVJV9DtiXVD4Fiowiq4TMOL6ngEigUIVwYwg/TqiyP/HqoZx3zu0Q2pmD97+MIf0PZsnC7Tz1xLus/H0Hu07cBzwfx3cpZtM49nbOOPs4vv76iyBSiw6SrOMLj169ejB5yhgWLZ0PSg48MOQwflFDkmMgCWoaKkDK8MAjl7Nq40dIcmvgbChs5r35Mnc/cBdvvvcWD9xyHeQ7GTC0P0gakGDyrpNorFMIdH2K4FUyeMAeHH/CRaze+CvgI//LH+mfXvIft9gCIIIgydiRh7FpI5ww43SQLfKFIpZXQpeqyHaq4KpUJRuIROoIqpBS3PPAxdjWCnzyqLKKJMA0NCTAoURtsppIWMIqCUDjoQcf475Hz6auIYTBBE466RRCIQvXsXCKFYDLtm3bGLnTLlQkG1GVMKDioyETAkx2Gj6RMaOm8PFH8wHjz0pMQ0/Sv+8Izj5zJiGjlrGj9yFpDAQfsqkMN9w8i8uuOAEUH9+Bzowgb0WRJLrivA2Z4JpnFWWggvWrOkhGhxOND8DzHaJRg1BcAblA86bfyBc7UDUPuWulkboyRLIsBxVIZcqUKVPmf5xyO1uZMmXK/If5L5VIXTbT4LPw7z9iFfPsuvvu4HiguiCW8NAjtzN57wHsPOx0go2ECtTS3LyK+qpJSJoMvguKAFwQFh0dLaia4Nxzz2X21ccxZPC+QA3CDVGwwQynUMjx0Sdvsf/Uw7nx5tlce8PFQG9wYyBZ3HTDNA49biAjBk/EZSj33vYBF593GnqsglKmgJmIAjYXXnMBfQeN4PgZZ2NIdURp4cprj+LTz7/l0isOY/26ZkaPnMp+e5yHTCPY4Houq9Y9x7CdxhC0GyWx/DCuXE2nk+fpN17guL9Mo49i8ePPnzKg70hqq3oDCSBMkA1xg3/rxjnvrOk8/PSJ4BwJQHvLNqq6e5x+aS96dk8w++wmFEP/NxOj4ubBEc3c8/QUevet4vjpD4O1Czfdfi6+/hvbW7Yw5/5v8EmiiAhuqUQuv4Gq6hC+V49QTEpuDk31UZ04kgKSvAXQcHP1qBqgOTzy1IGMn1LLmCG3ctTpd2Akajn/gvMY1bua1KafULwi1X37Yfk6wtYxzRBgIVwFSY7g5kFSQQlluPexQzhmxv5UiuPxRAehsInsdwPJ5OtvXmf3vYcBDVCqAhUsfzWy3sGb7z7MsYdeDt5wvCKUHAc5tJ6QGQLq8N0isipjW3mamrbSu09f/hCBF74INuZdVt4uMsWSg2ZqNKVbaW1rYXC/QRi2hqkGcV6yfUztjzYTi/tunkG3hk7WrF3P2Rc/ip4YRCjSyKbOAjXJJBoFNASlthzRsATh7YBGLhMlGm4EWcF3LWRNAVSyHRZq1UZMfCR02rdlqYr3gFACFJW85GPjI8jwzWdz2GfEPkQquoOqkc5sJVJZgUcYnWokTwbRTD63nYgZAyMEngRKl024JKCQA2MgIFMobOXVt2/n6BNG8fBjtzF9+gGsWp6jV/eRfP3pVk4/9QqiFc1YbMBw9+0SsYdM9lPikeGIVCNSDXjSVmRsguRjgnVbvuXFl+5C1xSunPUaZ517GPnSNg48aF+OPfwqoAaQ+WXpM5x7wdls3gjbN+8gXywSMiPIvhH0AZXy4DvYxRZSHVux7DxKcgIxzSeiFpC1Itg6TQUTJRIBqYm6ZIq2lhaKmQoWLvuK5b8v4sSTzkCilmi4DxI6lutQGQ/jpLahGw7ptt+Y98HbhMw4K1fluebmZ8jLYfKOhXA1EpEQrlOikG+nJplA0k0KOzKEKyqDuJCh4GwmW9zIs889xuWX3grUdSVFU8y+aTq50maS0dFcfvGThMxGhF9C0grk7EVce8PFnH/eTPo2TgCvD8hqoCX0X2zeBYXiJm689UJmzbocQ/QlnoyAm+fuO66jf59Gli5exHV33cOjt9zC8OETmLDb0WhJAWzj/blvsvSXDq65+m/gQ8nZzMff3Mah+98Mourfrv+5HESj4FkZFNOhkNlIOG4AEtmiQTTUjUJOIfLHeiUDpJkz5xKmH7InmVwLV/z1KuZ9sgqfSoQVR9EhU1zDldedwHFHXcKkcUd2Hc0DLL5efC7vvbaWe2/6nsefu4itzSv464UPkUj0JWi3XQzEgAFk04JoLIrtgyJ7qLKPUyiimfDYk7dx1mlXIxEJWuF0QHYITBosdDMOcjDkltNCU/oRmps2MHLwyQhnGNFEHcIHTwXYiISDTAWSV0OmNU28TgEpC3Y1yBpCdXCcDnTNwcq3MXPmxTzyxIuAhu3qyHIYVQ4E4qZPn87777+PECKoRCpTpkyZMv9jlJNIZcqUKfMfRvCv1fU++B5z33uPUj7PkX85ClBY9O2HLF//AqvXreTIY/dh56E34FsuckRl7rsvsGLDJ1xy3nOoukGwQQqewmZSLYQjGqoGuXw70cgOAjHTGny/G44H2cIOYhEJQ5WDp8q+GXwyZQlOp02uuJHf1rxBKt/Mhk3NaPJEzj7xNdAKkG+CeAykNKefcRJG3GDWpbfQs34kRStKyNjCW+/exl77juXHhfNIdVgM6DuWcSNOBr/nP1yLpBSo24A0lu+jyzvRkYoRrZBw8ZHYzOtv3olXdDjthGvIZhxi0fpgY4j750huXFKi95AqXPcHVHViIKak5OlMrSDLZ/RIDqaQOZBIXPk3M2MBnYDC6o1f0Ld3AzJxZPpy4aVT+WrBMp7/22306X8SptJA23aLRNggGiOoXPHAlov4koWGj0YSiT8cyMKIfAWSobBi+cfMOGN/6ntCdcPemJFdmHHiKQwa0J8K3Sckcl2C3BBseotY1g5uufNixo7biYP3O45SoZpMe4Taxlo8tx3FSBNslDPkckWikVHgaDjeDrRQBpwavFIDJUsiUt0BdODTjEwvcHvh5EEzoOTvwAyrgI5rgapFES44bhFVt8gXOkDJ8Pjjj7PLTtOYPGV3PAwUI4QHFHw4+6LziFUm2GOv3RjZcxUJtZqe3SeC6M1vvy7g+wVvs3XLPE47YR8+mzuXQQMm0bR9KEefPZOMgIKk8vmSD3j+4fvpX9uDR256EjIFiOU5ZsZJ3HX74yQSCeLJMHM/fIYPPnyZvn37cvkl13LPtceSaGhg3D6HUN//UG5+5QPee+czPn/9LeyNOYb2iCJ54OkOitdJLrONd+c+QGtxPQ09evKX/WfjFoagCXB80EJgZQRGTAIfVv86n9feuJfO1GZq6mQG7bwfw0ZMZtCAibTtSFNdE4hoe14ORUlQyNqEo7WkMnl88kQjKrpaAb6MVcxhRHzsrIVMDDVsIhQXCQ8wwAVPdJIrrOXnn75j9NAZlLSFKGYbX331FQfvewFhsz9gc8nV4xk9oQrTiNKtZgqjhx2OoSURIoEkYrRva8M0ZCJxG6vzdzo7mwlVTUDxJXTFR7Vt5Hg3cnmXcNykqfMXHnriEuIRE0PUcOHMixBCQzeryXaGKRZ0JElCj3iETQVNS/DTd3NZ+PMbrF+9hGuvuYm5cxdx7ElXUfIjdKRzoFqYhgOyhUSaeNTAdRwMvYrMdot4VV/8gkNJCMIVXtf5qIIwQXKw7VZ0fStnXDyda668j8bqSahSX5wiaKZL0V3Bjo5VvPLyq1w+62YkDNo6N/PiS89z6CGH07vHSFxH73Kzs4B01wqSJJVuxdRVzJBKkKgnWGOEx903XIeqylx89XUgdJBU3n3jXabsORXF1ElE47TlOqiJNgSiPf8dEl3/vwfEsTs19Cik88u55rbDefCOD+jsSBJPRFAUj0MOnkom18JVV51KNAq/LvmNM8+5BdJJiEk4noomJbFdD93cQVPnD1x+yb3ceetzNDTUAykK1jZUYwe5dJzK2G40b9vM2vXLmLL7TmSyncRj/Vjz+8t8OPcLjjnuRuoaByFEIH0kA3axhOwpaCEBSidQCZ4WfAUVkFysQgHDjCP8oHBLuCDESl5550Ief+wz7r5rFuPGnEWqo5aKeCIYiz9MCrpE/l2niGoWePap6ylmsxzzlzOQ9MFUVCsEVUs2H3/8DvvtfQSSEgPqg+RiV/HRYYcdxjvvvPNv1vgyZcqUKfOfoJxEKlOmTJn/MP81ieQDPr8tW8rxx81g8q4TmPPYo+BY3HfbLPY+uJbZV9/OX46dyoxjPyG4a7c44YQ9eebVmWgMwfZcdKUO3w0hfI1spkBFdQXCyyMpwR22KBhYroYRkfEVgM0otHHrA2dwxKF7MqjXJGAsF108kpoaj1xLHWedfAeHHnsY5160L2edOwcnZ6BFFY7a/0BG7zKGK6+/jEcffxAjqnPqiZcCCYQfxfdcFG070AG0cv/j9yCJCBecdTuy1IiVFximCUqRE0/elUOO2JsjDj4FGI6dBy0waQOtlcefvo5jjzqBZHwnECEK2SzhuI7vlpBVk1ynSzQSw7cc5Nh2cHsAFqgOQYNYCxADuzvo7r+ZGQfXT5PugKpofTBRBjSnPubL+Z8zbe/jqEz0xaEi2Pe4EFL+MaF5qxn0EtlSlsqwgU4ztjDQpSHgR0HOgdvB1deewrJl33DIoftz9OlP4lOJ2RULEh4CQUeqjWQsTCHXSWUiDOSZcfJEBgxqxHN0brr2LfD6gZBx8hZaNM39j5xO0Wpj4IARHHHIbKycyz33X0co3sHMC+8H0R28wDWpkCsG1Q/C69r1/UtwyjkQ4WAi/gxYG5QSb73zGHvttQcV8WFd8RhUInWZRNFlxMeMM4/l0P1XIeXDHHPk5YSU8dw/50a695FIp7+gvkrjy3nLCOsxGhsO4Lwr55AlwpnXXUsoKXP2jAMYUFOL0tFCvDLGy6/dz8Qpe9OzcRQKCcDlgw/f4uADDgcUrJKGtHE1eq8+FCSV35QQT338OaFYnNP3OIC+ZAlTRLSX8BK98NUOVm79nPMv/guvPv8gjeHBwHDSzfXEYxJSl8mdlQPHdohWaJx18jTOv+AgmlpWsnDxRwwbcxCotRwy7RxK+TimGbQ0em5QtNS0NUVjQwWuDCgOEjuQ6YYkoD21iUeePZ7LZs7GoB92aQC6STAngYIwaA4dbYuJxRQ0dcyfDl6e76CI2j9zqQV5KWFzO82prbz2wnw8C5qa09xzz6t0tsnYBYdkPITkbePh+2dRXWnw6+o2rr7uVoqFEg/f9zRb1nbwzHNv4Hk2nc5mCtp2GhsS3Dz7clwfTj31QvoOGEVbk4IkxTBMBaGmsZ082BUI0gh/A+2tG0jGk5hqI4nGkXRuT5OsrcVywRU5wmGFlrbl1FfHeOn1Z1n40yIun3UtdQ0DKKQtwome/CORo4LQ8DwbSbaR5RTQQt7bQljphyRGgAulApiJIr6XRkJHkiop5VxUo0Q6s4MHH7qNG264oSuQPZ596Ta2bP+FM8+4gtr4YfBHiAsI2oEFwskjST6oDq88cRtbNzVz6ey7wYyAWwDdR2DgEcInjk4H895+kUwmw7EnnICVz2PEE8w6/zwuuugieg4YCJQ45Zw9ufuOJ6iKjwS7oUs4PsU3i+7mobve5vWXlwfnndLBK6/eQCRmccllj/PoQwez8tftHLbv7XTvPhUiRTram6iM9gMDkLYCm7oS+X3wPYtzLjqQW+64mOrIdBBhOlLLqIzvHJyoejPQwcknz6KY+5F4LMmTf/sBIcIgxfC7zmoJGXytyx2uDYh3mQoIfDcT5PTRsPIqhqHx+rwbeeWl53jn9TcAD7vQwl33XU1H2ueeO+eRyvjE5QZkIwKA54Osg1XKYoYEOOs4acZURo6cwhmnv0CsVuWa2WeSL6W5994HwNVBTVJoUwgnQkEySoZp06bx8ccfk8lkiMfj/2atL1OmTJky/ycpC2uXKVOmzP8AQRLJ5w+RossvnUVVZSW9e/Vg7KhRaJrKF5+8xOFHT+a3X39lxIjB9O22P6gqdr6NigqT6m4+L776MkJ4dG8YgCRHkWUDMxRDuB6SGiSQip02WiiGqktkcqAYDo60HZ8O6rq7LPj+TT774lMmT5hBrrSMBd8vZ7+9pqG6w/BEK5XJXgwaMJ5QArKt21izeh3XXHcj6AYjhg1l59FjkKUQuayDrsaQJRnLspBkhUyxja/mf88eu+1Pj8ahgIKqeXheHlnxSGe2MHT4YCpreqKIWhQBVhEcO+ggGjt6J0JGFcWsQinvEE1EKBZb0A0NUBBuhFLJQQ25yKoAIl1CqoJgd2EASXDVwEb7v0UGoREJJ2lvhnwGInGIRToZNnQKEXMQrg2yEughqbKDLPnBcdwiulFizYYlLFr8C336N/LSGzfx/LOvMXXScahqDOQ2hGjhmwXvsnJ5MwP7jWb0xOmAhIHdpfEhcNEwzSgPPj6HRb98z7BBA5Cw+WDu28iSTlWyFxNG749dkFENA8VMgdzOcy/MYdnyZRQLBcaN2gvTjLK1aSWqkccq+uhyFF2pQVEkNE3DK0lBK5hc7HIjk7uyd3S1qGgggkgVHkiqBJJHXV2CyopqgvaXQOnI74robLGIqWmAy8+LfqDQ8TOdrTmSiV7U1w8lHIvwzYJvOPmUYxk1YjfWbvidRLKKu+6az0nnnoCh1/Ppt79z3LGnMbixHo0iTzw8m27VEsNH7URD9RBkKgCDbC7PiGFjgBBWScYwGlCUCMhhZLMSVY0zetAIhvceSBwJFZfmps1U1vYkX9RotTfx+PP3c84Fx/LBm18zZezB2FmTSCKBr/jIagkkC9UQ6CGJXGoHe+09mV4De9GjsTt77jedwQN3p3evkahKBaquk8m240s5dMMhX8iTSMSQZQVfAmQfiRwScdra2lm87Aua2ucTiytUJCvRlW5IstW1WZcpZCTuu/9Kvpj/KsuWf8+uk6eBK4OqIssa+U4d4YDwwYzpgEfM7MmE8YfgWmkMLcqQoeOJRmNkMkVMU0W4nVRVyNTXVfL+++9y5NFHISsKjd37kM/YDOk9EEPTcHCRQiaFksOgPj2or+/GD98vpK6mG8mKnkiSge+7WG6GcMTEKijIiksoDJoik0zWEo7VkW7pBOFgRhRyWRfb9nAdl4pYDFfY9O7RD9MIM+/9j9lt973QzDD/SLFL/JEhcB0fSVKQZYXW1HYqwgb5koMuNyJcGU0H2y6i6mEkKQqOhCLLKIqOoYfI5dMMGjwkiHEsfLmTjvR6li5dyYTRxwTLRVciNZux8D0JzQiBEiRYe9bU8dlnn1BfX0k8oqHGooCJTwQwESgo5Ojbq54vv/yciVOmoBo6IPho7nss+P479j/oIKBAZ245Cxb8wqTxe4NI0tqaJxKTUc0Ua37byh6TDkKWTNxSiViiRM/eVbSn5rJ69Wo+nNfEycceT9joh+N1EK2IASbpVBtvvfcE3/00l13H7gdEkWSZUCTHp5+/y8Qxp4EvIalpVC0BsoLjdqAoMt98+w3N2xYzbNhIdt9zOpJkUrQsVBUkPKQ/s8g+SFawLkgCcJBki63b1hCPx8hlLcyoyuDBgh59orzy3JtMnngIvqXy6htPIGkO++93OKahMvuyi0hEa2js0QdZgVzBQlVAVUyQJZb+8hXDhuzMTmOng5enpibB7ytXMXHiBHSzChzQjCilrI8aDvTE3njjjT+FtRXl31WdlilTpkyZ/5OUk0hlypQp8x/H77ox71K5xue3X5fS0tLMtVfPJlFTDXYn9XUlLpx5LrVVPTnq6EMwQj1Bz6HoJfoNHMnxxx7CJZfNZFCfnSiWJDS1CjwF1/ZQDEEqtZHWtg1U1Wnce+81/LRoPrvtMQEheWgYaETYtq2Z5UtXcOpJVxMJjeW9eQ+wx579+OjTD1m0eAU3XvM2u+xyJKF4GGQfIwKaodC9x1CKOQnDrMT1NTQlimHEkSQV3wVNi4AXIhSqIp9R6N19J5KV9UCBvLUB227GMCx2HjmemoruyFI9shwmm/XQdQlJpFBNF5Dx3RC6kcQIaTRvX8KjT1/FiJH9MPUoTjGGmvRxVBePKEVPQVFkBAoSCpIfBV8Nhln5d0kkBdfRKNo7iCUjhCrgkGOGsWTVJ+w15VysQhgj1Bw4u3mgytsoZNdi59vRoxLbt3/PN9/No662nsE9RrJy7RecffqlREJDAY8TZoxl1brvGD68O3fe9SLjx04HuQYDF4UsMjYuCgVivPvtVzz0+GPccO0VeFlBdU0//JLBJTPnMHniCRTaY4STIVBauPGOyYzYBRb/mOaIIw7n3LP+SjgyEFmN8cOCzzn6uL157ZW3efP1D5i61zRUNUw2YxOKqthWHkUrAnYgsiSCBBmyRFBl1IUASRFYxRKxeJJ8roQyf7m4AAAgAElEQVSuV/CH/ZGMQEYQ1iRSHZtJp7Zx7EEHMLDbBHYddxg9eg5HMWPU1O/MlN2OQzfG4tGNc664ikEjR/DE4+cSiQxHlavZe/JEulXECUsRNGwisTbWr99Az8aDMENjEXYlkhzHMJIEdU8OqiqB5JMJ2aCbSJJC3NWotqDegyjQ3KHz8gfL+GHFWjp2LGPw8OHk9RA33vQ8D17/GqKUwAyHQN3E1bcdyYK/P8+vv31Mr95RomEPJJtIshGoQ9X6gugLfh35TCVmSCdj/U48uo7XPrqexSvf4o23n2O/vSaDHEKSdGRJQSKKRJZIJE1dvU5ID7N21W98Of9NJk+c+n+x955BdlRnu/a1Ou6cJifNKI9yzkIEiSBMkMnJZIzBGGzAGOPX5GByMAgDxiQTbLKIxiAyJoOIymk0Oe28d+fvRw/Gb9V36pxT5+M7f/ZV1aWpGc302qu7V+9+9n3fD7fd9Xsef/JPrFv3HnvstZSZs6Ms328c23a+y4xpM/yaCgWyhe2Ew3HUoIaswcat7/CnP9/GqFETSMTaaR3dxsxZS1CUCI5QSGcGCEdliplOhJ1h+6aN7Nq2nQlTp1Hf3IzhuOyzx54E62uQVHDLDkqyCSHCxJUgLa1tTJ02ndq6BvoHMiiKjue5KBoUi3lUEUKSQJEkJEdFEzEkQqxauRe5oa/xjO1oWjU1yWaELVFIu0QirQT1ZsaNXcCM9gWUcibBaBzflqmMbH4ukJBkZEUGT8cwPNZv/pBnnnqJhfP2plg0KJYy2N7QSHaYhlMSSDqg5pAUg4nt4/EtvwEKWY/WlikYZfDMJFMnLfPXh5FN11VURfYLqMLfZyDUTCqikne/4pMv/8HOnZ2MH7sfwtEAGSGyuFYGJRAll80xdvwkRny17LZ4NzZt2sqihYsQwmLihCbeffsrli1diSdFCEUDgEASGvvvt9LPpyolyGdt6ltbiEaq2Hf5cjZu/ADbyFAq9jF7t0XImukP2IqhaiYzZraxveMzprQvxj/jBbGYzLvvfsTuS44BFxQtBaILRBfFcgbhNLF092kIN8MXn2/h4EN+SrFoEwxG8bBGgqsZORbfhb8rfKc5fPrZv/DCi0+i6RITJkxncKCTW/50Bm+9/SRDnfCjJb/GLIZoaLFJ1MojY1NZvfoXvLDmIY7/6SkgBXG8PKocQ3IksKNMGTOO2XMXQEDgWhnC8RieKzOxfTqSp/kyP9NACSsgBIZpsmbNGg4//PBKAalChQoV/i9QsbNVqFChwg+Mh4v4dwEJvlMk/e3hh9hnxXKS1TUg5zj/Z7PYY8/l/PTUx9htL3j0oTc58bSDmTZjDr++8O8UM52Ekn4HMM+JI0Qcx/SQAzbpzDfcfd9lRGKC9d98xPHHncbcmXvg0YjLKPBUBnuL1NYF6On4lPpRYzCtOJrazZIl45k6K8j5557H+LYLfCuDkuamO66gt/9Trr30VmAMuBFsBxQVPCwcz0GgIf8798PGtU0kOQooWEYGNZDh6hvOQvayLJrazrKVF4BbTbmgYogBUHYSC0gILFbfcTcvvfwJzz79LyRFx3Uy/OLX+xBJ9XHqyefSUr8Q1VxKXyCHTIDOfpe/3nM/l1x0BhqgYiF7I1Yt4f5HztD/+MgUS3lUOYGq9QBdPP/etSxffBpB9sC2BYqyC9w28OCtd6/ki8/WsnPLIKqsk2wsM759FgcfeCaZwXriVRaMdDeCHC+suZkFi6ZSXVPHX+56mDVPvsKTrwwjezZYgyBcLDnGTinM8gMO56brLmPF5NHEPIW+7TupbQmBItG/s4eausmYpQGQh/nbc7+hpTXFsrnXIOkuxWyBUGii/7rVIZ557nJWHXgc0AKe4OLLzqaltYaPP/kXN13/Z8LB8eCFR+bJt/L49hXw/VLf4auUHNNG1jQ84f9MII2cww4DXduoboxjFYZQwxq4MZDCmLZDWQriSRrDpsXV19+AHpY57ZQT8YpZZtTVgxf53jon8vjFBPw59AIYpQKm4RCNx0HKADl+deGhnHjKj/n66685ZtWp2MxEJkoxO0Q4rPvnoVWEgEIZ3+C4I9PFxPhYPu2zWPPqe0ydNI7VvzuRuqBNWxU0jpvAeRdcCpTJZnYRi9dw9VVX09o6mR0781z4m5txbZ30MERjoAegt2+IunoFlw4kyjgYyNTjq7Vi/jw6YX+a1DzDwxtIJhtx8gFstwtJ70XVx9DZswnhSWze2MWyZYdhlL7gwUeuIhozWH3zKxx66DXsvsfezJw7Cl8pFqFY2sk32x+gZHbz8YffcNYJt6PKE3y1iesgFJVieRjbyFPq30ZTfYxi505KWZnVjzzO+Rf/nqxZICl5/Onyq9EknZ/dcAddGZtgOI46NAx6Bj1s4XoeQkpQLqnkcgXiqShGqYDqBfFci4Auo9gyuAJZU7jgrFXs2vU2qSponT6D3gGXye1zOOEnFyLLTSAFQEiguiAZ/rknACLfF3Yk8IuFUC47BAIyNl188enXzJ69nPRwB6+8+jTfbn6DBfMXM2nCQlqb9xwJ1C5+fw47YcyyihbQKeTyhBPfKUF1v3Oh9x+dvcR314LhF5PsEEhpkDezZcuX3P7Hh7j55pf834OR7mNlJNUvwhrFInooBB64pomkaeA6fvMDxwQRpVjKIYcdZMIYhsDMGbz55o189tWTbN++g9+efxvtU/YFNLCKdGx5n1yuh+tvuphkPMFvL7uZmrpp4IymmNtFKFHgiWduJBmezvIVp+CUSsghC9DJD4WIJAL+VGjd7Op/gzfefooDd7+DUNTi2cdXc9ixZ4JXh2VKSIoEsjtiZxN+EvZ/+rAlG0QRGODKay5m3332Z/rkFejBJEXjXbZse5WJTT9CzS1CJOD6m5fQNbiBm29ah1sKIIkXuejc1Vxy6V/QkmNx1TKCKBgCScDa53/HM88+QPfgMLetvp9IajSgEY3UkEkPEk8koJiGUAKowvMCHH300TzwwAPouv4/WecrVKhQocL/11R6Y1aoUKHC/yVWrFjB66+/Dq7Ltm++oFAcZteuTo44Yjr77bccKaaiBUz2XbmUUv8QoXgrEMU0VHIZ18/FVgVgY1hDxFMOBx+yG54TJBUfA8QZyBaxbImBfpvamhC4LrF4AMfpJe9sID1cxf33vsHCWafRXLc72ex2UAp4uOjJTk467TDKXonvniZkGYpFABlZKBh2CdsZxg+TLpPNpsGTyQxmUfUolm2SL6QZTvcxb94UMFywNAKhIPGIwtXXnc2fH7mEtz66n56Bbzj5lGORFIVspgfDSjN73hhKVi+RmEtAcpF1KLo2JjoPPfo83QM54DuN10jhSNggsv8LR0AQDEYpZQUeDZhE2LBxBwqjKJdVbFvBMFvJ9DngwZaN65g3ZwKLFk4lGhUM9G0nFvFtRfFEK1jN4KWAMkaxg1gsQnXNKL758nPyuV4OP3qFf9N1FD+w11WRRJAA8MvzLkYLpvDQfYtdIARSEeimZpQMogstEkTYQepji9hjyVmU8ioQQ1eqcIuAAeWMxaoDfwKE8EwXhMNXG17j/U//jqNsJBgs+/kmDiMPiWW+L974///fGy4g4dgSru03NOffBSRfUVfdUMvNV1/OHbfeBJggDQEmmhJGCI0SHp6WQ0r2MHpKI8loLY114wAZI2vjjVR63JzuF5UI4VkK3d096CGNaDI6og6JgBtjwaxDmTH+KI5ZdQ0wEyUfReQhHKrDsQE5iB1I4FCNShOq2cik+DwgSKq6jlOO+THj2yfym/86jmh1P2f/8nCyQwYwhsJwhFh8Bul+i7qa0UyaNIlYPIgkW8i6jaxbaKECnpSmtj5BoRBGMIXO7jok5mCYbXheDcMDij/HEr44xYmQDM4BuwE5GEGPtKBqM3CNKprqZ9PYMIs5M/YFK4geauPEn5zLkYeeQXPDVBRZ55133hqZcwXPhlCogdrkdCa2HcDuC85EVWaS3jUIroqqaBhOgeFMH9FYgEcfe4jfnn02a9Y8T9XoGZz7y98TjDciKQG0qiiWk2bb9i/AySLr4HkekXAVklAZGhqit6+brVs3oukSwaCObdtIkuTbnjyQPRVZCSHQQNE5+MD9CeowbUoDcxdHSNR2smHbs+RL30AoB3oeVIOd6z/inX8+BWYWDx3Pw9+Efx17WNgUkVQbcJEJMWH8NMAlkQyx54o57L7XNP7+1J0899J9IIbBDoJTBU6d3zVNCqEoCkjw8ecv0Tf4KdDtXyiiNGLV8ouhuAZmOYttZUGUyKW3Q9kAmhg7djnLdtsbxBDIBf+4OhKuG/KVfJ6KHoz/++tCwcOzVL9g5gRxs3GwJBQRR0Hys4eESiwSZdWhh3H8SQcRqs6xbuPD9HV8gTWcBaOJllErmTzjcI4/6le4jsSRRx7Or87+KQOdHYRCAcDl8b/9nSefeAKvVEYOhHENF7wYkVgApMLIdR2luWYc49rjxJMqqpbisGPPxBo2wVVQZckXIo50XsRTvi/ofXepe34WGijsu89K5s1ZiudBftgEuxbHDKNF6xAx/3f23HM3OnYOgpdC8qrYsK6feTNWokfGISQNwy3hUcTBBSXLXqtmcNzJezBtejOnn34c0UiQaCTM6rtv49bbbqCY7eGFFx7hnFOOZP1X6xBCYNv/s8y7ChUqVKjwQ1FRIlWoUKHCD44FCLwRu5Cfx2Hz4D2r6dj8JWf97AR+evoR3Pngb/jo4z4+/WSQo445ktETJ7Llq3dprKslmBoNooQt9WASQDLHorhRZNlDqDmgwF1/uosjjjyOZHzEyuEJf2dSCSiPjEUjP1wmkkjhuIL0UIaqGoW+nk5SqWoULYbrgCTbrHnxbn60/0pkkjhOClmSsW0QkoUsC1zXt7Ip2hC//O10ps4cy2GH/Ia4uhiQEJ4fdnrKmUkG02lOPe53HLDblSMZRmkIb+WrzV/T3NSGXcixdcvnzF+wApxZIGfxH+6SdHa/R1NTFLzReKZLSbfZOtTDr868nmce++tIaaPEYHorDYkx9PZlqauuYzgNyZSLQwYFD4h9b3UTLkglPEvFw6ZofkkkPJLY6owFEQYpw0D/u5x+1IkcechRLN59Kr+6+Od4Nlx9zb0MZnewaNF54MSwrUEyOY+q6moK6QzhaA8oG/j5L1Zx4P4raapZxJT23ZDCC/ErCxYIFw8JAwUTEx2HXR1fM7Y5AMLjgnNPp729nZNP+ikoNeT6ykSr6v0xygpWXkJVVQaHi1RV1+AYYJEjECniF/VknnjkQq684m9cf9Mv2HPv45CV0Qiq8JD88xBg5OF9Y26YSCxJT7qXiYkaIi6AiyHZ2GioSEgjwhHDyBEKWDh089ZbbzFv1h6ExHjQPBzPQ9UVHDLceufvUEM2ktA4dOX5xANtBP3oGGzDQAlLFHq+5qbbriRVW8fPzvolrlyL60TRVT9suD/9OjffdjkTxk3jxGOuxC7HUfSQrzzx5BGFRIEb/3geTz33BMlEhL8//DIhaRw4IZCjpM1hosEk0og4LWdkCAdlJEz6Ogeoa6oGtnPL7T/jjbc/YsK4Zi469yHC8jI8S0KLjRw2ZQjT7ELTerni5l9ilZs49aSLaalb/H3L+uIQ4UAKRMG3EmFilUENVIObAEdnqCtLqi4GqgVyLyDo6ZOoq27wBSxqHugEqoEAeEFwpO9j1QIG0E2xnOauO6+lMPQVlp3ismueo7czT11TgB1bPyMkFcj1ZNi1rZdly1eyc7jAqInTWLezg4mjWrCHd6ErgqLhoCSacCyNmKPxyvMXIMtf0t3bz+YdYS69/mXSQ2X6BjpoblIZSncR0KPEwqMY6ikTi6XAM/BEP7LWhaa7GIZNMJICIWGbIRSp1r+uHHj36ft4ac1f+HbrTp78V6e/Xo3kc7kj2e8uYLsgpGGuv+Fo8kNlrrnqKRAShtmHrvWxoetLNn3bzT57no4mNYAp+cfpu4g0UcIwOxjO7OS8X5/Nw/c/B14rw2aWgK4RJM03rz7KP556jK/f/5T5ey7iubffZ+783bjkD2/6dRMxBFo/jjHRV13K4NkWlqmiBcH2QFYNCmYJTdLRlCB4I1lXbsl/IYYEoQiG8PBGYvX9lLd+IM0nHz9DOFLHuHHLUJQUHjEs00TTBJDjV6cfz7V3/pRn1zxBX4fElk1bUZQSV15xGnfdeSdrX/ycae3zufya2zGCcaxiHZ4rE03lgT48bAStYFf566/UjVly0ALNflB70UDVbFTNL4A6JSiaFnrcRS3pCAHoBYbtboLaOASgGCArLp4jITSDTHon8VgbAI6xC9spoYfGgqmCXAIvA4rLc4/+mQOPPXWk6D5ynORv2bDhVd5+4SGmzTicrkw/r737NBdfciFP/+VDTj/79zDUxV23XsYn601u+OODnHj6Kdz7wF9IJJL+/ea7xG2XEWXZ/9ZNukKFChUq/G9QyUSqUKFChR+c797V+g9JAkC4fPDum8hejt0P2ptxjWFKw1tZtN+xTJuwiOqa0chaklRtG2q4hnLJRNFG4dlj0LxmVDeEJCt4jo1QcoDLrMl7EQq14rdjG3kHLUwQac78xRGcedaZLN9zKQ0NY5FkHcn1cN1uHvzrrey2bD6SrOI5Lo5domQOMW3yNCQCQBBJ8rt8WU4BVbXxsDBNE4HO7bddwFD2K2bNmcX4MQvwqEGgYZQkVBU++vAJzj7nTKZN25dAOATWMIQzIILUJOeAVUs8Xk9TcxNQDUYKZBu/iKQTSzj85IT9OWCfY1GCLp998xGTR7VzwP4HEVIDKFiY9hCpkIaHRDScwDYkImHoG1xPLCTY1bORWKQa1wLT8HCcHIYxRDqdIRIvc+fdF3HJZefTUN1CVbgWlTQX//Z4nnjqWm647nZGj55DY9s0LLZw4gnnM37CMlpax5Du9/NUTjpjDmtevYhRo2VGt41m9R9v5LHH7qOrM82pJ16FbO5GRJ6H7ZYw7RyG6WKaDqZlE9Y88kM99HWvR1VMAqpOIVNAElEOP+wEbFvBNi3uf+jPDAx0UJUK4Fo5AlGJru4tpJIxNm1YTywWIBDTAQfbyHDLLdfRmJK58Q9XMnbqCkrDVQwMOwSjGp4o4WGA6+FhYzl5Tjrv5wy6ZTZu2MSiyTPRHDHS91vBEYLMcA/hYAQXF13NUPY62dn9EQ8+cA+bN29hyW4HkC0MIasG+UIXIT3Dg49cwvzZzRx7yHKiYR3ZNOnt6SJSnUTS8+AM8pd7buTUU05k3PgpxKqbSA8ZGCUV11AxjDzX33Qhl156BQ117UTDM7CLESRXIZPup1Q0QQbHK9PaWsX4cXWcfcbplPNZItEojjWIZWXpGuhCLpUo9PcRDsTY2TdMOFGNSRBJ1nFLJmoghYTGlKljmTRpNu3teyErKeQgoBbYsetZEuG52JlalGCCpYv2ZO6MfSlkNCKhOvLFHEIp4Dg5lFICHBBqnvc/+AcffPAed9x+C/uu2AdJFwRjkO77HKs8gB6uYfuOfjKlMqG4juXm0JXv1owCvnJGAvR/Z0+Xihm++vYdPvnsbU464SiW7bUf6z5dx/vvvcP0aZNxbYeAGmHy+KX0dH9DX98O5i2czVCxTM4wcJQwPT29lPNFcpkcnidhOYJMuoRVttHkjXz88d/YsH4rBx92Ck1tSzEMQVNDNRf+5qfMXTQVSVLR1AjJmmZkRUELB7AxeO+jD3jxldfZvH6IVKKJ3196LUt224v0cJmQFkEULUbNmMCU1moSNbWMnrYY27JxbRvHdujc1UkimUASLpl0Px79zJpdR2aoRPu4ZShyEEXVuPKGi5g2bQYzZyxGF40IynieQ7FQRAsEQLIYGtxJNKoQCUdIJuoY3TYNnDhCU3BxKRldfP7G85i5QeZNa+fyP7zF35+7h2AwwJgpu/uVEtXEzzCKY9vgugXkwACOEUZWJSy3RNHJYDkOvb0D5NIFEtEIVi5Nvm8rD9z8e9Y8/ww7dm5lfPtUipaDYRlYRgHHMHHKMqOa2onHR+EQYDhXoGAaGI6JrqmUckWmT5uL5eSZNHk2s2YsZr8V++HaJo8+cgejWoKcePzhfP3Vh/z1kQeZNHc21VX1FPI2t6w+myfW3EF9QxP1yQUITwEsLFPCcoe4697fsnnbO8yZPRvMJI6hUC4V8dQOQpEyDjJ2TkbRBXh5NC1CR08RiSAByUPysgi9iM2HPP/mBVRXJQjqOo6lkC1sIRxqACeIk3eRggWwh/nHi4/y8N13s3T+IgZ6exgY6EIOBEgP99DdtZalS04gnhrPcLrM/HkrmDpuD3RT4tvPXuCZF+9ky7ZeTjvjHO5/6AFOOPkUJEnFRUb8Z2G8UkSqUKFChR+Uip2tQoUKFf7/RoBrlpi/YA6to1tAMpm1z168/so/sHZ1kqhvRA1FcQATGZMgJSWCLVRky68LuSPNtfwC0hBff/kWZ515ysjft/9jMwGLQFDh4FXLmD59KoND3YAFksGzTz9MenAnpjFEodCDkMuoukskpABlugY6RgbtArYfaIyJwETXQdXhi6/+xS/O/B37LzsZnRpkdFxUJEmAKFGTGkdb8yzikRTbtr7Kg49eyp23XIFVlBFECQbjlHMF8ALgJEbsE7K/TznLn++9jv1+tBQtbGOWB1j76mt8sf5LwloAzwWBS1jREbhI/sf+qBq4nkFddYxtO7/k2Wf+Dph4lLHsIoZdwrJMVE3C8wxCoQABTWX+3BkMD3eSy3TQ072ZuhqJUKSG2qZJoNfQ2DKLWKINy1Lp7e1FyGWG0tspmd0sWjgeQRrPySBJCkcedSp33vkokUgj8WQdahhMx8R2TGzbwbY9HFMwOJilVLK44fqbeOaZZ8ilBeFAKwvm7s3woEHXrmFkSaG9fRzjxo9iON2FGrQxzH66ezfxrw9eYczYBgIhAIPenZtQdJ1/vvgcLzy3FtcOgKUQTjTQ2NSC41g4jo3jFnG8PJ5bRJY8li/djRMPOpaD9lmJKvi3pUXyfLFAXVJDIku51IlFP0Hh8O23HzJ7znjqagIghgiHXHRNkIiFAQ/P8/j880+YMe9oLr7kVIZyX1M/JoDndWOXe0HzOPyIo4gn6mkYNQFEkIAW8G1VMYgmk1x9xXWUy2Ua65pBWJQNAwQkqmqwLYVs2kQiSmvjLPZZfjiJWCN1taN54L7bOPf80znn3BN4/a01pOqj1IyuIZ3pobWtGRfIuwaBcIRQrIb8oMac6Qew957HsGThj+jv6QXZACUPYpAHHrmOzz9+n2LZwikpYNcSj7XRVNeGpoHnmpTLZcolF88F25RxTZXWlsnMmrmIvVfsN2IfHOLzz14m0RRmKLOd++67jXBUpn3cGHRFBySKZpYnn3yI519+jB2d6zDMXj9DSALPcQkEZdauXcuGDRu4+pprgRZOPukc1n31AX974h7K5RJbNu/k52eeSL6Y459r32PH9vWoikdDfRW6DC2N9STDQaKhILInMAplHMtC0mVsoGxBy9hGXnzlNUAiHg9TLJSIhmO8+s83uOeeewmF4+QzGT8bSAhC4Tjt7VOYNm0GGzZ+S8euHXiOwaOPPkJtXR226+IqCuZghrr2Kfz4yKNxHA/HcUbOS4vWcU0YpUEy2S4CgTKxoE51tIkZ0xagB2NYpm/tU+QAn3/2Nabh4QvMLFz8LpClQh6wSVVVARKW4zBn9mK+C+7O5IYxMYjoKXZbcQCOnOCA037F8oPG0TRxFiuOOpE/3/RrcPrwk7XCeB6gGCgBC8ighf21XNcVQnqAYrFIdXUtNak6ckPD9PYMcP211/PBe2/SPr6Nji3ryaYHMYs5ysUCpVJpZDMolW2MskU+X6SYL2CaFmbZwigZFItlHNslHmmlmA0S1hpxbZ333v2EBx/q4OiTfkF37y6EYtHZM8DL/3ie7p6dxBMBfvmrs1mzZj2vv/FPhGL6uWaKjUBDCMH0Wa188fVblIxeZM1fz8PxEGqgQNnpRREKgYQLXhZcB6Ns0lSfIBL28OwsqBJQwqSPZLUgFovgeR62U+SlVx6mr3sdOCDpUEpnQQ6y1/L9+GzdJ9x0y0U89fSdKKqB7Ki0jZpEbe0Y0tkiejBEtlCmo7OHsmUyMDzIpNmzmT5jGrsvX0xf3zaE5CLLvp7rvz3OCPt/IQ+vQoUKFSr8n1BRIlWoUKHCD43njSgJvvto1EVSbGqqo0yaM4Et697hzJ8czfFHHUvDrBWUBjwUJYirBijiYaGCEsb0IDjSYV6E8ny78UHeeO8e1rx4E4P9O7j48mshnwZN4AkHsMCzQSryzruvcuppJ1OdbCASTYFtgSjz1CN3cNHlv0FWTK68/FI+/Ph9Zs+ZjEWWvz/9CAKNlsaxuJ6EEBaSsIAcUMSlhO2WOWTVApLRKeTz1ZhuHBcdnCABXQJ2MWX8EqLxSbhemmX7L2fPg5o46ScXISvtZAZKCCwsc5Bi3iWoV/uZQZIFlEHK8PzLd7NoaTuXXXYhL778dy675FZaayegSjoKMq6VxbWL7Nz+DQ/edyfjRjcRCksIOQ/kOP64wzj3vF8Sj9UgSVC2yniS4zsfXIHt5Jk1awKLFi6goamNRG0d//rnE3Ts+AxBgTEzjqCqeQEbt3UxfcZ8JNGEUQgQj0XIZvupawjw9ddv8vPjLkEUG0lG5jBnzt40NDUQiSV5f92L3PzHC3n82TtZeeBK8BSEpyJ5Koqrkc/lMUsltu/cxKGH/Yj65GyywxqSiJBK1SLLAZAcJkyZyMMP/4VnnnuUBYtncfUNVzMw2MXcOTOpbajGM4c4/6zj6dn1DVPHpVj38ZvcfOMdyKmJGMMeSqBmRE1WwhMmAgPhOX4XJ6mGuTPm0dXbw+jqOoRlokolUMsIaYiSsR3b6+fyy8+lt289n3z6InNmTuSKK39FTSrMnnssJpWMI8kRPHRM02NoMIumhDj+2NMI6mn2X3kgrWPGsKSlU/QAACAASURBVH3rV/zlodvo7NjB1GlTCcVbGO4pEdTj4ICmQ0DzkJQAkOH3l58A0jDrN35CKhYjEUvgOAVkYRIOVwMawWCcgb48igij67UYpQxd3ZtZ9eOV7L3fAmJVQa76rwvo2vYtU2ZOQQ6FSHsZFCmKhx/uq8oaSkBCkjxkKUg4Uk0pb+A6RRTV5Ytv3mVX33Oc91+noQW6mD1nKZ7jYRg5LKuAJEuoSoigXofqCeSghGlYhMNxFDlCXW0zhpXhqj+cw+bt73PReb/l43VrOfwne/DF128TiTQR1ZsJKCE0NcDkySE6+7/k5VeeZd68WWhygJ07N5GoSiAkl8WLFrJ08e6YRpAxzcuxSgpHHLcf7ZMbkLwgMiotTWOYOWs0Pz58Kd1du3jhH68yevRo6usakcwCbnoAxbYIqSEEOoFAhF0DndQ3unR2b2TbjgH2PuBkWtoWkC/ZBGTBXvvuRSIep7dnkLlzl6AFovjt/DwsM0c0FqKxoYV9Vixn1Jg29v/RSiRZwvV0IrEUZVugRYNYwqJgg6rE/O6AkgeSjWUOEQxbBHSTUmETgYCDY6nUJKeTz6gEg2GE7DF33nTuu+8hVu13DIIE1934a3Qd2ka3YRglXv3nS1x77VXMmjOdZGIUAb0OvBAYEI4ovlMNm1CykbYx0wk1T2P/Y84gk/EIuCod3Wt49In72GPpPgjRilDySHIPm7Z+zOYtb1Jb04ysakAWQZlCySAVr0JXdHp3ddLS2MCTj95LVEpz/o03klRVqqrrUVUdVUgokoz03SYkLNPFNDzCkTiKUFAlFbNcRpNVYrEYrhnHLIbQlQSlUon9Dz2EOTN0rrr8QoKBIJOmTmXi5Ils7y4wf+5i8vkC1akIhx6xiOefe5n99zsEIUuAjaSoWFaGYAhSqWrGj56B4wheeulF1r7+JPPntaNKUSQSPP7gRWxa9xbV0WpkOYXDAJbZRSjiQMaBQBVGESa1rkCVplEc1NE1DZQOTvrZ8fQPvcy8xXsSiLVQzts4lssZPz+c7Tvf5dtN77LqgEMppCNoopbqqsk0j56GFEkzcUaSV99+lFdfXUtdfRONNdP5/PMdfL35M6bPnsTrb37IMceegW0JhARCgBCubyNFofI5eYUKFSr8cFQykSpUqFDhh8azR4pI0khWqYtMkbVr1/DtV2+yfeOnNDQ1ce5vrweqsK0wiqpTsIZRVTHS0033I1m8HhyzhKy7fPzlq7z++quce/Y5vPzMWn508GlQckGN4xL2g24A5Cw9/RtprG/BsgSqXI9TMrGGuwg0qSMh1BIP/OUhTjj5nJFBGzz2zF/58cHHoYgUuDqy5AIlHn7yj9hOiUMPOYLuzjRfrHuUQw/8IzhhhrJF4qkQOCDLLtnS28TU+WAp3H73z9nnhHnEEs0E2Y0AEXo73uTVf/6N8eOmMn/uweihYXCDviIJyVdSKf3c9MdfMHZcG/uv3AvFW4xrJ5HVIDgOSC4Iiz/eeCmnnHwUrmsTqaplJNCEf3uACOHZLumciaJoCCFjWy6m2Y9t9dLY3ISdHsTIlbji0nNIJGUmTgzTsOzXtE3cnSg6OBYBKYbsSBTTeUJVZbq617Np05tc+otLOPaYszjppMvJmh7JFoXtOz5h5cG7c9/9v2XezFlkcq1IdhWyHUZ4MrKjYVMmmoiwq389NU1Rcn0hJCdINBaiWBomXhWjv28b5/zyZyxZupCjjzkU23NAUfBsh5CmoQmbQnaQB+69lZamEO++8yKe43D1jfcRik3DscJI2liEqmK4BQQmsucguzJ4ErmBIqGqBHJQJVtIo6glQloZKPDxp8+xZs0aLrpoNbZtosgWjz9+P599/gHlcppbbrwJTU/x2F8fZMsOjd/97nYy6RLxWLWvCvCKeHY/Apl0X55EbQRT7kKT6xnszRINNKKpAW69+Qq+/vZTWkaHOO64Y6itbSecqAIhYeXBLMuEow24Vo6dnd9wwy3nMX3WPhx55Gm4joTk6sRjMfAMBgc3U9UgsWvntwi1SFNjg5/BpCXYtKmLsy67gdGTZ1L0glx10R+okSR0ern59gvIF4aIhFOcfeZlKGIsuApD/VlSdSEc8SjrN/+L/MAoFsw7GWwdxy1jugVUNYrjBsANIewsjmugaiOB2I5GqVwAKU84nmPbzi/J5DbxwXsbOP7oS3G9KJYToKo6znedDkHhqhtPZHRbHa++8j533fEEqpKklPcIRmKA4dtZCdC9TaKhTcN1OsnkNhMMKGQyOWKhBAoe6fQQkp0nb0q0TphKR08eqWRwzYW/JiApnPqz82gYM5OCBwN2hri2ldW3XUBHdy8PPPYB2VI9EiESEgjVwHazKEoQ0PFsgVCUkXXDwnMLCMkjN7yLaDJMqThMMFSD48UZGjTRQzUI2aZo96BJElHXt6G6SHiSjaIZuFYf6XQ3b619kk8++oprrn0S5NF+RzUZPKcAShYB2J6MLGrJFD/ksYcfIZ+1OP+8K0bG43D55b/n4otvADfiCyotIJjFD5S3gAjFskMhL4gmUwRkwLS58Q+TWfPKJt58ZxtOrg05mga68YCHHr6W4489G8dxWP3n28gVDY468ueMaZxKIe2QGegiHtHJ9nzLdf91OjffcS80jqY0ZOGoCRyh4KKCJyEBllHGKJVwXZeW0WPJZTLYto0QAs92CIfD5LIm6XQaXfNonlDDlq8+ZFfnV+y+xxzuWv1Hnn3mGe6650Eaxy3BMiVyGROkEkLJUZ2swbRdHDNKMJTE736nUMpbBIO6n1lEluFsD0898Q9OOfk3lIsSEjZa6F3OOeonTJt0EKeetxpCXThiiMsuOp9f/ewqvFAbqWQjZg4cy0LTQQ6plIZ60ROf8+7H97F0yZUUMs3IrkKmfyvhyDYe/fulbNmyhfPPuZea6gPZsaWXtLmNJ567j19f9hOiqkRHbgu/OecP3Hb9PRhDMUI6vP/pg6z+0x189kWRzk6PTMYlEpOQJL8oCMNAYmT9r1ChQoUKPwQVJVKFChUq/NAIZyTMWRppdiPoHezmkUce5vPPP+K4447h6ON/QSf1OCQwPJAlCMoF3PJONKWMQhHJskAkKGQd9FArjjWG/fY+Hckbiyoi/P6Ck9DVDGMmLUJ4CQSqv4kg0UgSPB1ZJMAJIEk6limjhkM45RKSGmPjN11Mmb6EYt5G1SJMbZ+JIoJI6EjCz9oBh2eee4yzTz8TXQpw9733c9ABy4kEJmEbKqGYiicgn4NAQCApg8iEQXHp3PkJh5x6GR9vkAnULqG1QeOWWw+iZKzn0B8fD0qC6247nJqGHJ7RRDjchmdGEWqUob4hxoyrJ1UdQhETkcRIG3Vhj7R0krHyRcZObEWLBLh39fUMD7q01Lcj2RGEnMDMFRF4SJ5DWI+QGy4QDkZxLEEsXItwQtimwhmnn83FF19OIlFPXd1Y7n/5VT7fso58uYPGZCt2uUhQitK3y8Ey80iyyurV1/Pbi6bz2NMP8fSLj3DkcafiuAkCWgvHH3kOYxuWIZltOEIDzyOb7qO6qZbOzV8SCUtAGQsXyxXIsoekmFhuHoRLuVwiHE4yf/7uTJu6mIBWi6bW4dpJFJIIV0W4Nqom89zzj9A7sJ7DjlhBNt/FOx99xMOPPUNP3wBzFy5neLiAJINjO+hKCMeQKJa6ufWeQ+np+hSr1E/bmEaEDCXPQRNBNn2zlZOOOQvTSREOVaMoKn09GY498nT22etwdLkK4aoEAwGWrpiDGvDo6NzIdX+4hldeXsPCeTMJRCM4JQgl2sDVcBwZx4yjq7UgImRzw7z/0UucdPJBwDZeePkOQqle3nr3cdqamwkFUmjRCHgZcuVPeOypKzj21MmMnzidhto2HM8gFvYVEblhA1kECESTBOUY559/Ph0D6xnXOIZQJMqqVYcyakI7u7q7WX3jPQSEjoaDTIbZ8yezx9J9mTl7PqqcQBJBQCUY1vEcCUmupzY4i+a6/cj3x9DUAMUcKIrAcS0Mo0RAd8gWv0KovhoqlazBs0OochRVjuG5im+5q2tm4bz9kEUS1xa+aikawg/hDzCctdl96RJmTV3CiuWrCOj1gO4rd1wZPA1BAFCQdYEQAlmOEQzV0d/7Gf987XG+3fgxg0MSsehEouEAb733Pq+ufYt77r6XfZYuYc95s5jQ2sbL/3iNSdPnUF1TjaI6VIVVli5awsSJc2hqmYmkptBUDUXyg+klRcdXe/gqEHA5+6wzePONN9hrz32Q5BB6UGXblm945tmn+eDD95k/dzdMExQtgqRreCpossel55zMXX+6g2XLFlNV14BtG2SG++ju6CA73MOJx54ObiNyIEm5mEXRDYTsjOg6dSQRolj0CAQMxo0dz5xZiwgGUyOLr8u8uQtQtSTYMgjIpoc4YN/Z9HZtYMzYRqKxJobyFvFUDZ7toeKBI7N4aQsDAwMs2W0VkoiDbGO6ZTw7yISxE9D0MpJUoHtgA3WN1dTXN9Hd3UVjUwvDfduIhj1kuYDkeYwa146qB1GDMUzTQbgCz5XBE3iehCzJBDSdoK5jFfMIz0RXBJ5jYdplypZBITtIdU2YdG4nt9x4Kbs6dnDQgUfj2TWMG72QH686larURAqlEEbZQdOipJJjCYWqAI3X1r7AA/f9jRXLD8UoKJhlh1A0CJJHf18X4XANQb2Oqe0LkJUoiqohayovPfUHNn7+IVYR9tzrCAgI8MpMn9bKL84+i+NOPp1iJo3ldBOu2YUU6OS0Ew+nsXoqjdUTaayZhhIag+KF0AISA11DhHQbXfMYGizQUD+DdJ+GrAtqRuXxlAJj2ubR3x8goc9kwvhpRKNRhGogqxaNjWG6Ovv49LNtnPnz/yIckf3bq/CtzX5hUMf/4KBChQoVKvwQVLSeFSpUqPBD8/+i9ywVLf71/sfsvsfeTJsxny+3buKg44/BBrZ3bAEMTHMQNSCDl8e3dgFukGiqCVCpbWxkW1cvhlfmvU9fZFvvJzz+4h9Ayv/3fXvyv9tP+1/737ekEEg6rhQGwuy2bF9wA7i2DgTx+C5v4rvMCQWQ0fWRlt5oHH3UcdTXTAXJRcg27kir7lDY370qErz/3ss8/tdb+fKLT2kbswgtMoEZsxsAlwMP2pd5c+bgeQLPs9B0j0y+gyuvvJLXX3kdofmvWZWTPPTg47y+9n1/HAI/90K4fNdLfe6cJTimQ2/HNt56503GTpiKGq5B6EmwdbRoFFmWKOQGGO7bRUAVZIYHSFXXIokgEkGKJcGchXsQSzWzcNkBpOom8+nnX7Ft60Zee20NVdEYmmxSzA7g2YJoNE4olMAwZLKlfhpa4OAj9sGhRDZTpL8vS1U8xWC3Rde2HK6posgaiuxSHNjOu+89z1tvvcDgYAfRUBhZCgEOnmTgCQtPuHjCw3Y8qqoaiMaqKJclZBFFcqIIJwxuENfT8dAJhOOceMqZjJs0A4sAQlKYMn0Kk6dOAuERS4TxPJtsdoi+7g7kkE6kWmXI+JREqp831j7KP198ENOxKRtRbOqYMuEAUNqR5SSOrQJR5s3fi3hqHNHkRORAE0Kvx7IlimY/eWMbTz9/NzPm1LPvj2YSq7IY7P+Sa677DR+/+zzFfD+4ETwviIevQpFliQsvuYj2KRO4/77H6dqZoSa8B0cfeA3x5FTuuP16PnjrKcxSJ0E1wc9OvJKJzacxpnkOBSND2chjmEVsxyRZGyNeWwuWQJHDHH3kyYxpm0J180SQoyycu4BDf3wIqw74ERoCgYWCiiBJgNHINBBWWvDzc0qk87tAKpE3hoAs6ze8z2WXnUKkoQAhm3DUw7IsVCWEa3vIukpVTQpZsVn7xktIuvALyeBfg24EnBgy4ymVdCSlSCCUo6YxjFmwyacdNm3e6Qelq0kg7AcUo4L9H2/bvmvDLiAYlbBdvylYvq+ErkWYO3seS5Ysomy4FAoeshph8pSZrFp1BGPaxpKMx6ifOpkpkyZx8MEHki/mGB4egrKJ4sgM9RWoSfnz4I6oKBEj6wkK/90y5DF58mTSw1lcx18r0kNZGhtb2GvPfcilc2z+dgMBRUbywDT8rJ9CJs2ime0sWzybZ558jFI2w8BAGiGCtE+axZZNPUQaxuHYEr0dHbgURnLeyiN79cfiOC6aFKMq2Uoy2UQ+mwfXb5cXCkf/23zFalLMnTOdge5tNDTXsWH9l1QnEsiAThm8Ilh50BvQtQiukcEwTSzbRJOSqGqSSKQFX1maZ/r0KcyePZNYJEpLUxM7Nm/gkot/z0033UisuZmZC5ew+p77uPGa6zDLpf92HxD4DTS/z4O2kXCQsJGFhYTFQH8PwaBGdU2SSFinoSFJbV2S7bu24aKRz0tU1U2kunEy2ZwH7kiBzxPggVn0Q9kXLpzH119/SSGTR9dUbAugH+ihpjYJbgrsBJqWAlHCo4CLYOXKQ6mra2D7jk2gS2BplAsK1fVtTJzUDnYNQT3Aum+e4I47T+Wrbx/id5cfwJ/uP4V0biN4HpmBDJLqz38qGeHll17j1+ddwRNPvMXkhUuJViu0ThpFT/cgzY3VFHMDyJ5LIVdg7Og2AGQlimmG0PUaamtaaGpqQdXE9xMJ/3GfqqRqV6hQocIPSUWJVKFChQo/NMIc+VcZsbNBIp6iULJZsdfejBo1jp+ffTZHn3I4oxoTjK9OcNXV5/H2a0/wrzde4uP3/4Wd92gdNxukAIgiHdl1zN17AoSGWTh3PN9seZmGpj4O/PEsmuv3Ai/JSI/rkScV4/uCi6fgCBh2JLSggoFBOlugrq6NcsEjPFIBEuL/Ye+8ouSqzm39rbVj5arOWS21co4ooYACICEJhEAEGYzhOIBtMGAM2IAB29gGE00wApNNMMEyNkjkKIFAQmARlbPUubpy7Xgfqo3PebsPl/Ny6+uXHj16dO1dvUKtuf9/Ttn/N4z+KPXSh/PRo0eg60EEAUKhOhQvgue1oxhZPOEiRJBszsVUJclkL1u/eJohw3RWrvouS077BTvS8Ofn/kk42M6SibMZMugYfLsKLRCkp+cQTz/1OHff+SYD20bhe4cRSp6d23fT1bOLM1f+BFVtKl2XyFNq+zGAIKoZQ2ouF198Adf99hoq60bhOSF8T0NRBMheUDPc9YfLmL9sAdde9hMCEWgbMRSn4JPNFnEEzD12HmowQm/Bw4y18NTzr1JdVcmd1/6CjgNdxMIWTraHqsoB7O34FKHbzJ19EmFZha4O5qiZK3CIkC1Y1NdXkOs7TEV1lmgsheUFsawihtrDj394Ouees4jRY1rRTYFLmEw+iKLI/vOuxBcKvoB8oYCPwHFtpArFfBEd4+ukP1+C76scf+LphMN1RKKDOHreOfR25zj7nMupqmgFEcfDJZc/hKZlueSSb/P+O89zzXUXcv5lx/Dhm1v42VV/oqVqMFlZh2bW46CTMCuhqKMEAnhCRwiQMowgjKQCRIiuI0fY+uWH5Ao2w1uPYvPH/+K755xHfYuJJvPc++cbOHBgNyOGDyMai2GadYCCJ8CTHqrq4OWTbHx3PcmOfSw79mzeeyvHmFGzufnmHzFrYZiMvYlHnriWV156g5bGUVRHFpIr+rieSixag2v7mIaG5+Q5cnAnkeogQvVoqqujrn4Qnbvaiakhjl1+OsMGDGPkiJGAJE4A6WjkcgqalsAnihBB3nzrFT79agPbd33E4GENuF6O1166iaraXixlC1de/SMO7H+bYEgyYMAU3IJBKFZJsucwHR17uP/+P7N48ULuuP1mZs+e1y/AaP1zUKE330401Iybq0CVlaxbt5p3N93GC6/dxiknnU57ZyWq0FGFjpAm+Aq+5yGUf7eO8XW3ZoEMpq4jJDjFLFbeAS+IqlUxbPgkook4mWwWzUxguQrHLlyEm+njyNaPeeWVdTz65F+Zc+wJFIs5TCtPur2LcKCCbNYj0TAIGx0QpQYhX/avBbKkgOACHpMmTmTW0XMJRSrBVzGDAVRNIWgajB8zhsYBI5AWYCsI4RMPBYkGPAYHe8jni1RWVDJs8iw0JYKQYXQ1xtGzjwdL5+DBFE1tDbzy+pO89NpTbNvxCWPHTMKyVVQlgG5oeK5AiggQQtcj9PZ0EQjq4Lv4roYQGkjoziRJHt5E+76t/P2JP/Otc77Hzh07qa6sQ/RsB7cdu3sPSqiRqbNmkuzbhWscIGjUkc2o+I6PqkVApFl97518tPlTFs8/k1xGI9XtEQvWsnDOXN58/Q0mjhuBWd3MvCXL6U0X+OvTa5g+fTalSHoV4UuEr+ALDykcFCyEsFEp0t15kK6eDuqb60ln00g3iOuAR4qqmggtLYOorx2OrlXT25MklU4SjvYLyiKNoroYehzf1fDJYAQ6OfPMc9i3t4OKRA1CzeNrO/j7iw/zwJ8f5thjziwtpwJQSlWQDgEUDQpdB3h/w0aOOWYxoaqRaGYNnujkmPmTIN9Kps9iyOhGPvzwBd548yWWnnAMp65cyI8uPo3b77qfM884A0NVQc/gFw8wbvQoDKOanl6bwUMHMGhMJfsPbGVw6zTq6mySvQdxbZuAbuD5vfjY2IUqKA7AymWZt3ARb765kVNWno5HyXOwJMj1ty7/Dw/CMmXKlCnz/5qyiFSmTJky3zhfR6l9XTxQsGD3jv3MmT2bTDrLiy/8jQljA4xprSegeGzd/AaXX3ER9z/0CINHTWD5yovwRSXZlIdiepz/89O45Krv8+HHH5Atmpyx+AradwaZPuF7GMF46XAn3NLryiLIHEir9DMhcRSVXb09nHHuyUw/ehKJijiaNNFUAyEAvFKr2NciUv+tCBVTN7FdH8dV0dUKct0am7Y+gQx0EwtW4/oJDENi5SEcruCUM0/gg01vUxVUqR6+hD1uLz3ubr6/8FSizgAo1qJqlRT9DKOHHo+KxpCWmSA9HvjLhbz19rN866wfcfTRY9HkWHwRwhcuPnnARYgQVk6Ao+CLLMGwxoSJY+l1FDQlgaaqSOmR6tzMq2sfYtTwCHGZIxhQmLf8eJxCDil1NFOj6NlY0iZZzFFEEIw3sOyE7zDn6GMI6xnsXpePN73EE4//iWmTl1DZYqOHLPqSJs0V02gdMI3OlAW6RnNDPcnUASqqPJ689wreevlBBo1ajBkIEIvnaKw3ePjB3xCK6tiOTTg6CM1owXNVhF+q9MIvVXoI6aGoDo6XJhgWuF4GRQiQRTzplQQndCCKGWwjla5AiiZGjpmGkzFQtRqyWfDII41ONCPFju2vc/mVZ/G9C85G+JNYtuBycIegGK3kfIOC6iKxCahJUIvYMoDt+lh+FseVmHoCuwCeK4gkwgwdWk9r08mkemqZM3MZrmOiazoX/eSHHDl8iN/fcAeDRxyN6msIVcGTNr508IVNMBgg3d1Lc8Mgjp+9lLaBIxk3ZQy263L0tBU0Vs1h8PCVzBh7EhPHzaWpYSCem0Eq9UiRIJvx8FwHRA4pC8RqNa649Dt8/tl7TJ0xFauQoLZpCO++9CZ333oHo8aPpSJWjY6O8CS4LlpAUHQsMtkMmqEyqLWR5kG1jB4+EQhgqvUklLE0DzqOiA7Pv7COsSPHsfXjI8yefRqeLfGcDKGISy5lMnnSdFw/z9Kli/onj1fqucED6RKJNZNKFcHroDv5KXXNSd7a8AynnH4S0UQLoVA9ploSP7KpPnRd9uu4Fgi734jaByHwhYFHCkX2oBkKu7b2MLh1Fq5TwZ5DX6KG8wiCeCJCOFZFJpVFFLOsf2MtUydP4qwLL8QWOn3dvaz+zW949R/rmDdvEb5iEq1vwkZFIFBFvxZdUi/71xgH8PA9F10PIqWJXfBQNMGnn27mzbfepK25hYAaxsnaGME4tpVn74HtfLXlbZ6/92qOX3wSoxYcx85P91JROxhdr0AqEbK9RXQlTLyqnv0HPmXy1CFU1Gpkc32oWoR4rBHb8lBVDSuvUkiDrknyGYgkQv3roIeQpUrMfBFczWbq9IEsPH4a1aZL04hJSMfllMWLWXXKfB761fk89Y+HWLj8MlD62Lj5Kf7x+s188N5hZs9cgaoLvLxDLtPN9KMX8uGGfzFk6GR8uwpVVFIZa0I4MGPa0WimjhWOYdugmkF6ejKMGTkWUBC+0i8iSTzFBWGj+jYSC5Uiq++/m3ffeYvjli4iWyzgF6rwHRPXy1BdEyMULglmhQLEKgzMCGQKR1CUAL7oQdEsDKOWnp52Vv/5Jp594Q8cN28hFVUtoBSQWgqFIANahrBhwzvMnz+llESoKODEQAZKzly2pG3cII6dNY5zv3cxS064FFUFoRW4/palSNHF0NGTKR5pYsr4hSxa/CM09RgoTqetJc7i5VHWPP0G8ajC/X/6JZs3rWXKpOm88OImevqKnHzmfC6+7kTeff9ZHr77NvYf2MRxSy4kkB9M8kgNfv/DAmFYmHqYWDBMb2cf9/75QUaMGUFzU0N/QV7pC+/fLtvf6KZepkyZMv9fU25nK1OmTJlvGl8tPRn9b21tmgaDhwzgwP49xCJBJo8fx+gBw4loQSwvz6nf/g4FGeWeR56jM+tzpLMd384RjpWi6+2CwZpn3yOdCtLaOgmfKIsXn0skMbq/Zc0F3wZh4wkPV4CLxBMennBwpc3ja//GqLETGd40BOFbSCx8Ca4EV2qkfZc0AdJAUfKf9hkcdEXBUBXwPZ584m5eeunv7NzxJQKJ45TilV3XI9/XRWUE5s+uprGpiTvuvZhn7r+WQK4Ly7PABzcH2V4LhRBOXjJpwhQ6O/aDkuPFdY/ROjiG56SQwgQv1H8R1n87IxTRjCJSy+F6FguPWwYEiZvVGJrR34bjoaphTlhyOnv39hFqHc2sOceTPpzCK3q4doZMXzvxqIJn54hHoqiqSraQpdCXI6ZH8bwi967+Lbfd8WvOXLUSIyDo7UiCo1BbU0nBllh4JOI1+EWDjvbDHBV1AAAAIABJREFU6FKwf9uX7Ni5jZGjB9A4oJZUKkVHe5pBQyYxdspxTJm+mBGT5+P5CsKzUcijYIOv46PhCbD9IoqiITyJk+tDoRdPFvFkEV/m8WWp9U2g0tORIhqN4HsqHQcPoobCJHszxOIhBBDQDYJakCFDR5HLKSiigUENk7FTAlyDg1/tJWqaBBDoeIDVn5YHeSuP64DjltxHFBNUQ5BK5+hK5yjaHoEw5HJQtH1u+O21jB47nknj5xOJDwQcDN1BiiyK76D4HhKXI4e2EW+soLPrMEQaIDyAQCxKLBElU1TRjCZIVWCKwdTWjkILVyBDRfKujaKBrgeJRhIUsgXSmSRuMUk4qmAGwfXyxCtr6Np1iK+272b8pNFs3PghxaKFwC/dmwKQxtAE8WgC11LIFSwMqaJgl5LscKhubgOrAsuOMWliG5s++Iwlxy/HyYAWkmhBHV8WqW8NU8we4bWXX6KzvQf6554ri7hKEVuxcS0IGTrJ1G7+8tgtXHXFj0mEEnzw9hYCGFhWDwCe5xOKRUFK8Gz+x0IClKpaQKPUCvnray7gpVceY+vWt/AdMLQKFD9I3gHH90kmk0TDJu+8+wZvvvM2N91+O8muHqRp0jZiGN+78IfYShQzVktVQwNgf928JvBKFYDCBpkFMpRMmj2kGiRf9HBdBy2gYHsZHv7Lar7c/gmrH1xNX28KFwPXlkhV0NAUpWVQPZWNI3j8qTUU9+znhut+zuEd/2LPFx8gRZZ88jCFbCdOvpvmQc1ksz0MahnICccuY1BLG0IITNPELoJpSMJRBST89sYrueynPyDZe+h/vFOahIgSwUsqYDRzsMMjeyDJWy++CvkkhAXB2hjB6ggUfcBg7qzFTB4/h43vvcSB/ZsBGyk1QokWKBrU1gylqqoNKQzCkTj5fJHuvgxqIEImB1GzikwKhgyeyLGLluFKF1fJ48v81/9LxRPofhGVLKpvg2cwb/6JNAwYguOoaEqCYCROrCKBZkRxXB1VDQOSeDxKb283PZ1dVFZUl6pOob/qzaOqLkBDQxhD6xemEXhksKwAkKCry+OSn1yNSxKfw4CFZ5XEQh+w8x70+aiBWiprG3F8F0UDy/Y595wL2PLZOxza9zmer6FqzZCtACsEfTB63ALGjFvEvm3bueum66mNqmz74gOSySOcesopPPjY4wTMCEsWn0BNTYw9Ozvp7uzh4Fd78aWO7/skotX4jopnW2TznXjkiURNers7WLv2BWyvNP6A/+QolClTpkyZb5RyOluZMmXKfNP0P7n3xdcfdSkWk6x/53WiAY+pMybTc+AwFVWtFBSbLl3hq8MdfPvSq3j18ReIAdX5vah6ruS4TZhdnT73PPgUNQ1VnPOtZUSwMHHIpFOEtThIDRQdFImNgtNvsy3wwLXo8C2uWfM3Th01nwVDKrByu5GmSVEfye4OSNTArFXHMWLaCVzy/QtpBQbr4Ge7kIEMSBccDWSCH31vBHfefz9OMYjQx+GLGJmUj7Q7iFb2MHvYSIww/OWfj3L7vVdw1lnfZXjbf4HTCGoayGLZGjqV4CW55po5nP2tK2lqruWU78xj/PgGLvzew9TUV4E9HtQciAylk78LJLnz3t9TXZ3gtJPPBwJAJT2WIKzrKEAhkyJkmoCPnc3hejZmOAG+Rvrgl1x77X8Ri5s0tTRz9ncuIe+H8XQDV1fw2gVVDQl2736U8y86j1gEVi65iKULf4Yer4FCklT+MEUjSDTmUkiZkGnA944QDrqoWpEzz5iOFujhokvvpWXgbOK1zfSk0ujBMKqQCNfBKSSxskmE30FV42CSHbUknRwimCQeV8gckjQm6kG0M3pIM69+/BkVVSG+2r6FhtomDCWModSg+gGEWkqsc5V9KLIaiIITIpPuIhzPksn2Eg7X4hYiKKbD6vt/SCET48ILbiDdm8eniFRtduzagWkGGD5mCgUkxYJFyIxh2T6O72HqJfNaiYfl5lGUFA4JrIJP1Mywv/0VWmuH03Wgiqp4M2gbwciBZQKDwA+xf/dWbr/nYga21TB65FTmHPVjcGPg5SgG8qQMFdOGkO0h+9Lk93/BU6/8jennnYAZaiVutGLlIaJGMEMOmZ49hON50Pp9iFBp39NLbetIIAt+N7YdKZkt4/T/TgDoYueODtpap5U8w5wcn25/lueevw9QOHnZfzFh7MrS/LW2YugFKAQopEOY8aF092apqAnx3e9Poy32OZ4b4913epg7/2wuueoqXOnhKDaWVPGFQOmLEw8Ljux9jSOHPqPz8FYWnn422EZpbngNONIETaEUflZqG3M9F0XqpaRFVcH3oZjxMDUJWp49nz3Ih5te5bXXPuRPd33Ijt1ZGppr2F/oRUoL3bMI2ElUO0PBKvLOex8w+qg5YCaoraugY/9eKuNz6EjuorKugBHIUhmaAK4G1kEIHuCTTV+x5ZMN3Hb3vfx9zd+pSAwioI1G0cDrF5cUSolfLll+euXlXH3FQ1REB7F/Xx411IurfkkkECTmj4R8J2gOn7y9hgfvu52zzlhJOBxm/cZN7NzbyabPD/LYM8/y3uY36Og6zIHDh7j88l8R0JpBRLBSEj0IqA6IPnozW3jv/Xd58M9P8PQT74IXBYzSW9jVRyEW5GBvN7XROGFVgJXjH3ddz9JLTqVg5NBFBOlPpVg8gKpaKJ7kyWd/yvoNL3D5j5+jadA8SrJaKQXBtQp0J3uJx+N0dHVSV1dL0bbI96UJFHyKXgwlECJHNzJ0GGQOxfdQi/UodpRIOMSTf/4Jr617lB3b8jz990/o9HRClSrNDbUUDwfIaBkcxUL0O1QJHxTfQ/gS6YtSZ6Fw8bQsrq2hKVEilRpwGMjz8EOr+fbZV4GfwFfyeHYFUv1PcVxf7hX2HHiTEQ0XoCuNpc0q1L9/KR7ZVApF9TBDOq5dAOHQm+5iz/4djBw2FsON4xUCaOFAqfhWzWJrKXzhoHfu5Y+/+AHbd33GzIWzWbHqJxTcRsLxWvqsPmytg68+2Yg4fIjXt+zm3IuuIxSO49suXt7BtnyKMgiKT0s97P5qC0tP+TZ33v84s2YtxKfkA9XfwF2mTJkyZb5hyu1sZcqUKfO/hfjPg1Irm2FQUyOP3r+a9evWcewJJ0KwAkeJ8urmbfzx/ueYtvBsho5sJQ9UaHE0Pw7FGrxiFBlKMn92iA+2/4n3t9zFqy8/y9zJp2D1RTHUOKghsL1+Tx0XXXgoOHjFFKomcYoZho0ewaBwBb+45Dzee38dC45fwvp/dfDs39YxZ8Y4Xln7FxbNGM/xI8YTo4ApLYTuce21V/LJnsPkAwkCNUNYuWwmdi6HFqhDijg+BpoiUGSaj9f/neHDDX5+9fepaKzELkSZdtSpQIDzL1jFoMFVRGMBdC3U33KSI9l7gJnzVpHrc3j3/TWcuuIHjBh5AiApphOougZCAT9AyWTb4/PPv+Lkk05HUyuACD1pwV4nx6mrTufZF9Zw0slL0TTwpUvaTqNHg3R07sROf8kdt1/C3j0fM3fudE5cugozOhjpRREE8D2B7qbI9+3jmef+xFFTh3L0jHksXfpjUslS0lpvuoNYrYOv7iWgGqhKGsvdiVfUSWcsHKeHjr5dXHrJr2hsHk8wHMXxXRy7gK/YOHaGeEgjlT5CTV0UOx+kt6NIPBoj2bmfymCEWKiC1KEDRGvi/PzCH3PXPXdS19xCZ/shPnj/HT791+cMaRuBoVWAMJCKC/i0d3/BPXffg+96VCZqCSd0duzczOtvrOOJJx5l9qw5pDK7yPpbWb7kMjyrAalqhCoP8JNfzsA1tjN1+lTcYoiAHsBQNbLZPkKmgaGAgo3npYEChnTwqEDxdEypocgQiXANPd0elfE2yAvaO/bz3nvv8NpbL9J5JM22r75k8qzJTD6qlTnHzKV10FC6OvJk0zqhsIknFBTfR0gLTxbRKjwu/eV3efejV/h861vkk++z/vWnqK9VaWisJ5VKs3PfPuqahpLtFXjFCE5e5eHHbuCrnf9EEVBbN51VZy3goUdu5swzzieZdJk+t55IVHDUtNEoWp507hDBEPi+x4mLv8282cvxXZNIuAXfVVDVaiia4JioehDHLuD4OXQDZkybyfFLVzBtwjKamqex9MQzMcwgAoGPgvRCqE4IVTEo5PuorK2kbuBQ2gaP5PlHnuFvj6/hn39bx/y581AiVUgpyOYyaLpA4OJ6Fr3JLtLpFJFIGCE8VKMAWhqvmCKkjGVI42IWHnMmH255kcFDQwiRo2g5KHj9JegqjtBxfJ224aMJmEESkTB+MUd1LEqys4gRkOiGS3WiklxORVMNtn66haeevJ8TFq1i4tTpLF02jTv++EfWrHmBk5afRbrPxTRL1+n7cYSII4lyzNxZSLL4fh+hgEeuO0+lOQw3V0neV1BNHcUwqKur5e7V97Ftz37e3/IFF13xS+K1gxk3cRbjZ86mpamecCRAJpvjqMlHgwjQ09VNOBYFwLYKSOkSMANUV7Vw9qoLKOZ0VC0EOLz50iP86c5ltIwJE6goYIRUDBkBEWDYpMVg1dHXLpCGiSYrUXUFKSVIi0isC0Xv47Kf3sj6t9dw4infKq1DEnzPpljI4eFgGgrpdBLLyuN7naj6l8Qbm8gkU+haDb4XRLhRpGcg/ZI/VFexl3Gzmti++z2aBiZ44q/Pcta5S3GsHVx50UlMbq0mVFWJJ/uFI7z+vaTk/eMLiScEvh8AL4HnSaSexTBD9HVqmIE26qvGEo4HQHbh040QtQjhIoQNCDS9j3AErvzpTSw6YRkYonR/QCGXQdMUNE3BcQo4jo2UklAgRGNdM9IRKKqOEpBYqW4UAzzp4woVDw07dwgRqmf+su9SO2Au0Zpm1rzyBC+/vQZf8WlqmEht5WAGt7VhxpppGjSSI4e7kVJHomAGAvi+j4pFX+duXnjhRTZt+Yzf3nQ7PpJ/V1iVnZDKlClT5n+HsohUpkyZMv9b/DtIxgdd07HTKW694TesXLacgePHgfRxUdl1JM3eQ1nqB03hquvvZMOGjzl54VSEZaEVNIQBhlFAcohPvnyDWdNH0lI9gLbmozCCpYoTFInrC6Th0dO9m5BZBJHni4/f4rbfXIGV62bG2MnE1QCbN77MpT+/AKEHuHX1XxnaNpxoIMC5J89k7uiBRMhiSA+8HAiHDidL8+Rp3P3Es3zSZTN7ZC333H4nu3cdZszYmfgoKNJG1fI8/vjtbN78Ol/s+Bdf7vyK0067HbyWkt+SupeZ02aiKgEsS0chj/BS1NZUEDAGYkTq6GrvZcqkBURCtaX49GBl/5up9KdESRAe48dNQFMNIIZblKjBIKvXvsiZZ53GD77zPYpeN4bilFqTDJ/tu3dSVanxve/M4YyVM7n4uuuIKDq33vQok8ctIBiuxisWgBzhavCzB3nk0dX84ue/YfCIueSSURw3gq97BKI6V193AVZmG6lOl0OHvuT9Tc9QER9IU2Mz7T07GTJsKM1DF2HlBbZrYTsOUhGo0kNTfTy/wL1/up3hwwZh+Rp9+Q4eefQyZHEPo0e2Qt8RLrl4CQf3v8vKs09BMeqImCbhoEFbawsTxkzGKYpSmpdUkNIFafPD88/hqp9fQ2NDE6F4glT3YU499UTmz5vPqaecgmMXyRdyTBg9l1y2hlAoiFRVDnXtYemJi5k+9jgMrQ6PMNlkD7oqCARMBC49HfsR5DAND0UUEeSQCITQKFopfNGJlH0Egwbp3j5c0cUdd19IJn+I5aecyYRJMxkychSdh3fxzxef5pFHH2Djxg9ZtPgMguEa8qIkeARcB1exKGoWOwr7aC+0M3zUYLLbdvLtpTM5fskyaqobsAsanh6kK9nFNdddQWNjJa2DB+AX81TVxJh/7MmEjFp0o4r9+/ew4uQVPLvmEZRAJxde/G1i4QayuR7ufeCXdPd9xauvr2XhMWdj5WK4ToB4RRU+Hq7tgaUj3DCYUXCzeKIHwyhVBaluBcU+BdVooqVlLKGaGjw3gxAOEh/VCSHdAK500EyVYsbGLQg0rZJhE+cQ1RJ88dlnbNzwJtPmLkLRDKQUSOnSl+pl1bdO5YNNGzjjtBWAjY+J6xkIoSC1JIoaovPQYd5863k++mQNr7/4DuOHLUCVJQ8DITRsGcCSESxfQ0qdgISQb0Mhg6kIfFvB8Qvk8im0YIBQqBohBbUNtYweOw4z0Eq2r5ff3XIVH2/9iKuvuYq66sEgNNKZJC+98iJ/fe5m1q5dy8L5y1HdZpy+MNnuPNFqjcyRHSTqqzF1lbyv4zhFCoUcvnBYsXIlO/cfYdMnX/Dd8y+lecRkWhqH0XW4i0RdNTU1NQjXY926tYyfMJVAKILjSXxPohoKQgo81ycQaMAtBtGMGIVcDtVwaB1aS9zfxx/uuZeNmz5m0aJVCKkhHA+3O8krz/2dRx54gMlTjiJk1uE5RYQmQBS544/XsO7lzVx5+Q9Jdvcwd+Fp/YEDLr5nUSik6Ut2U1sdw7ayGJrgnXee57k1v2fKhJk4rk9FrA4rp4Ov9s8VF4GLE6il6CaZddQk9u3r5uxVl1I3aAiak2PZgjn87rLfsGDZSSDcfiGwJEmWzOlFSUAS4AkV/CCesJB6DtOoxNQi4EE4GsOVPdx1//XUDwiSCDWBEAhUPFdBURx6ervZteMIR8+ZBdLFszSEKlH1Uou057kgfIxAAM91S55ORYn0fLJ9R7jvzt8xZvQg9LCKJxUcEcD3QxSUHNVNY2kcPJN0PkJHzyGmHt3KkKG13HDdr1kwcyVWTgE1gmbEkUoARTEwgzEy+SyqoqCLIpV1MaIBhU2bPmLDB1u48KIryNsuqmJQFpHKlClT5n+PsidSmTJlyvwvIfz+MCMA18VzfOyiw7Qp06C7i117NqGSYfzIQcybPpFnn3iYVStP5ne/vhCAgGmTz+0HtQgOqLRwzKRzqdAmUl8xGPw+/OweXMUuaSuKB+TZ/OFrvPH6M3j5/Wz58DXGjh7AycsWQKYXsik0zScWjrP66ftp7zhEsZBl9KBGnnroz/zyqsuxnQzggpRkrSztPZ385YmHENJhQEsNqXQBz9OZOWMu3cluJC6ZbC/gcuDAAWrrGuju7eOUFWdCIUGx2wAMgiGNnJUlm8ujaxGEqpLJdVLR0Ey6pxNsl/POu5TG5iEIVWIGgv0pc6W2nhIe4FG0MgA4dhbHLfn3jBoxmng0QpE0UU3DwCVX6MYtZKmMRQkFTA4eKHLBBY/SuW0HX3y5k3ETjkKRBjhFBEUUmab9y828+uo/aahtALOWA1/sJ2gmQGpk83nS+Rw+CiMHj6MmUUWmL8eIIaMZMm4QRzq38eAjq/n0010c3LaPULACVYZwLYFnQzZdQPEkRw52UFfbSGV1M7V1CXr6dpHMfEJ390a81Jd07N1MNJ5kwwdrue7Gi6ioiZLpTdLb2UUwXkEhWyAUKHkeSZ9+U3SHuXMWEq9sJBSrBh98V3DxhZczdtRkNMUgGo7Q2Dic3r4KVDVCss+jvTNNQ81UDH8GMB7BAIoFH0OTKLrK3h1fABbxaJBAUAVswMYq9iCwkKSxnR58P4tEIV9IEakOkMruY8asiaw6exX19SOwi6UIdjMQoacnx7BhE6ioaAI1gDAEjlK6BzwP6Us8ofCLm25m7YbN7D6Y4pa7nuLw9j66v+gEvQYnX8o+fPKvjzFp6jBy9gFy+e1c+vMVvL3xwf7RkgLRwcU/+QNzZ36fS39yM1MmLqQuNp9Rw05gSOskxo0bw9RpE7BtGzwd3YigG1HwXIToQTVTSANKUWWAKvBI41gZVD1IIJxAC1SiRetIZvIU030IUUSIItK3kb6H6vcb10uBakRRtQQQgaSL4+jMnj2XzR9tRBX9xupCwXZs0pk+Tl6xnFGjRgAuLgVcv+Qt5mEAOrlcN5W1BlOnj+NH5/+Y3Tv28PknH6G5Dopfqttw0XGEQSBcwZHOJH29SToO7SfZ0Y7q+diFXqx8Ctey0dQg4OF4NgW7SChUS/eRFKF4HZ9++jlDhrbx+OOP4VFElYJEPMZJS09i0ZKZvPjCs/R2d4EHnqUQMky2bXqDM08/nm3rXwYvC46FYxdwHQvfdQhVVzN18hQWHX8C2UwOfIkUOvFENaDi5vMMHtSGqRv8u8WvaOdwXQ88r+Rfjgl+AEUL4hTADIXw3Dw4MHnODxg/YglWJkreVyjiY6kWaqPJ3AUjcK1DPPHI/eAW8F0PfBXPcjl24QpGDh1ATdVAutuzAPjCg/7MTYFDIh7m0IG96CoYmuDYhQupqx5KT08PUEAYHkKmkCKH6G+l9ASElCCFLoliJ8j1aFTGhpA66HH4sE++UMnwUceCL/t9xFyE75Xm+debi4cvPHxZ7E9Wy4OvlwapBMf7t0e/g9Rgw4YNuGQRKICC8AQQor56DJf//NqSEuO5SKV/jfVK662maV+/pOeBFBpgYBdcAobCtm3/4sV1z4LMg3DwkXhIunochBLEFxBNBPni839x2403s3/HHgY1NFJXE6a2KkLO0dH0EHauQDgYwvE8fKmAptDdfZhDX35CPpvlW6vOJhyO4ngupmb+X+2/ZcqUKVPm/x1lT6QyZcqU+aYpRcf8J+DMBywHFHj23rtYcdpyzjtrCcvOmciJp32fzm5BrHI4ncTZ3d3LwMoEcTpZ+7ebqI3AUUcdjxGeSiEVxAz3JyTJLnCzgAdqM3v37qKhPkY2u52PN73I8CE1/Pr6a9m/I8Ojj95GdMBo8BrBTYCW5JpfXUDrlKM46fjrUdGI4nD7H37AMUuXMGrYVFxUJHDFLy9h0MgWps6dzU23/ombfvcgTdglryVUwOi/SwtIgX8ERI4X/vYEs2atIBo6HmzIu90EEnuAqlL7hRtFqh3ccssPaWsdzokrfoSbc1ECCXbu+JAVp53A9757Aef+1/dL1TaoX1cBQBIoAA6WrSGJgFbLfgeqVIdC/jDVAZfxgwZy3rnf4r++exG+GicYMbjsxytYfuICZkw/jsf+8jdWnXEpItwIVjf43Vx5zVl8uH4TM6dP54orrkUzG4AIqjmAZLqIraYRWgHh9ZGwXKSp4RYhm08RTPTywEN3MWnSfBqqplLf2gZKFd2HO9F1iWUXcNwimlYyB06l+6isqSTv9vHe+38n0/MSW954l5njl2DKCm689z6WrxrDsjMuQ7gT6d27hw8+fJcvtm3lV9fdSMES6FoVeiJMunc7kaow+HFy3RkURUGROqoZBFWCUwTdI929j0hVDZ4fwvckigiTz9tYBUkspn49dosFCyPcScf+A9x/3wOMHz+RxScsAkPhkh+dx8hRw1BUl++cdwelRECbA3t20NQ84uuB71uHyRYOohk6QomBF+DrhC+R73fyVcGN4ggDy7QxsnkCeQ8rrJEzJVc/vprTli2nqqDScCDHnm2P8/qGDRzuzPL7x14kl02iBQWaapHOtRMJhihmPfxCNb7dStHtId6g4xcSCA1Q9wF78GlDuI14Xgqp7QHyQAInPxBV1ejs6KW60aPgr0cIMJiKlYyhR32QSX5w7gk0VAzjF1fchFVMEKhVKOQsOo4cor4hzL79W7jr7tv40fd/TFP9GFQZI2+Cj4pwAwhfoHkSLaj2GyOnQKRBtpTGuqD/mmygSFeyA1VVCQQCKIqkSAaNSnS/Giw4svsr6uprybTv5IYbzmXYiCo2f5ThjvueZ9veA4hILZY0cPMZIoaC17WHu2+6lnRvN4Vcht/dciuBmkZsDELV9QRDJg42EpCEEY4Kqo3DZ3z08bu8tPZNrr7yXjqP5KiuS+A5fUjVBkpeRG+/vI6nn/kV69d/QlM9dOyE2RNXcuO9j+DoSVTDxU51ocV1UFycIx2odU1gCXADoNVh5bNAEj0G2Fm62tupqGsj70gMsxa/KNF0wC9i27mS55UvSXZlcPwkVbVaaSxmYniZLLK6EksFBw+fAiFSYCXx9u7n5FXnsOadzRRSLmZFFSh5IM9ba19g1syjkYE6UFR84SOEwHVypHq6UBXB2rX/YMP6t7nt9lvpbu8lqNUSqFIopo9gRBV6e7rR1ACIOLpeg1QM+vYVkYWtJNoi4BqQHsBh26MokmiKR2NlG4gu7rrlWjQjzKqzvk9Pb4qqumb6shlCUZNsPgNkqaqwKOZ1sskYNfUtOJ6Fqtr4dGOTJOfnuOnX1/Obq/8I/gC629NUVif6y9Q8bLsPTTPJpbOYRgipaWRSyX4Tc53/mFh7CE9FyhAU+8A5zDnnnkjRznH3fQ8Sqx6GUBrJFQSqr2CYFtn0YVz7EHu+/JS1z/2Dy39+FWBxwoxZDJ80gRsf+IDfXHUR+VQ3p525inBjG+gqrpUhYrXz3KP38uw/X+MPd6zmlrvv44EnnkPVQvj9im7JE8mj/Iy8TJkyZb5Zyu1sZcqUKfON0++s/e86ewGOC4qmoBsaFS3NjBrRQm/HZl567jHeeGkNf7jxKkaPHcL4tlaE20FMZnjmkXtYeda3MMMN9HVYhOMV/YlpEpwwOAlwKkCRxBMKdqGTcNShtUFy5c9+SECDhQtmsH79h3z49gaGDpxIINLIXb+7ll27PuOyS39Bb1oSM6KopJg2YyiVVW04xPAJ4gFrX3uR555+iI/ffZMRjY1Mam0lHm8CgvC1rWkp8nvH9s959OGHmTZ9LkNHTMMwx9BzsIgvVAJhG6Hq4NaAFyppFUqaV19/hrNW/RDNMJCawC7ASaccy70P3sy0qfPwhE1AN79+H0tiVZZrf305b7z9MguOOQGpaAgMQlIhYPcR0jy2vvIch7/cQnU4yNELlqB5YRzLoJhVWLjiPHq7LKZMnY9DgGR3Nz5JVCPPh5te4Prr/8C8BcsIVg/BzgewXZ183kbRwZcWrusifYNQpBmcDG6ummBiCD/72Ym8/+F6Viw/kaZBM3BTB0llbUzlB22qAAAgAElEQVQjRDaVRJeSSDCIKlSKuSKVlQ1ksi4RNY7qhghr1cQCI1l88mUMHLWIY+YsYMpRp5PPD8BQW3jwwVuIVcQ5beWpxOMJMn0ZwrVVeMn93Hnb5TRUShS3jnBVM6pp4BdzSM3ETbtIM8aOrZu5+eZrufqX5/PprocZ0DiMmpo2fCeFNL7CU79EVfvIZQQBM0Yxv49bb7uVn152GSMnTCGfyaEgsCyXE09awVEz5oAbZvtX7/DwQzdz/+p7WLniuwDk0+1owQy9vUmEDKLIekqlPFqpYsIPlJL3/BCg4QuPdLYLUwVNU8gVchQKReZPW4STk4SVBFWJZu555iqqB8dY/9EGamMR7rvrVh5/8AEWzl+C9FvJpqoIh0dQzLUTrLERvoeq1CJ0G6QDfiX5bBOaHsItShTdoFCwULVqivkAuhHBsSAS10hnD/Piuj/y7vp1aIpGY2sbCJfPP97E9ClTSXYmObh7F6PHj6Avv49wIkCsMsGhfbt4+ZXnSVTEWL36Lk488WQ8z0HR1P45U5JmXCnRjdL3SK8/pjzcv3Z4lKpuAHwCZoiAHkaVJh55THK4dgiFMJn8Tm74/UW8+urzzJiykCXL5zFoYJiOtE7TwLG4CKQqMVVJUAdTdQkFVGYdPYPjjj2WVE87D/zldk498wxMM8bfn1/HE8/9iXc2/JPZs6dRyBt4jo6igSIsGusGMnPWseRTKvGKau68/Spuvf2XLFuyAkUzwc8xYHAFTXUeqfSn3PDbX/D8mtdZMG8J40cPRwnB3Tdexx033cCuLR/Qu283r778Gkd27mHYxOkUkhapgk+4IkEueQQjoJFuP0yiaQBCBnEcSc4BFRNVLbVxWnY3Aourr76SOXNnEK8M8fY7L/LCP57kk41rmXTM0YCLgoqQCj4akjDSiyECFZy0YC5qjYPIGyS7UgTiEbBitA6ajNAipfVWUfCFQAiB73oUC1n6kn2MGj4E6TjEw2Gq64ehiQa++PQ97rr7eqprkmzZ/Dq/veEqXn11AyeedBaOI4gmLLa+cStP3vdz7rrxNt7Y+A6jjp5IS1sNMuqxa08Xbr6DeUuO49EHHmXyhGk0tQ0F2yafTeJ5GTTV5umn7+SNV+5lyoRJxAKtSM1EqodIZj/lt7ddwuDhY6gOtjFvzkK6OncSCjUQDEZAKQAa3e0u4ZgBvoGmBxGqh+/a+L6HEKAo/17jRWmcColEBU2An2fmzEkIfKbOm8fpy08m2dtLQJc01raCk0YP5dj95VpGjRrJ1BHzUOwQaBpu/iuSmRRzjz+D4TUGTz1wC2++vo5vX/BjCIRQFGiskmx5cx2WZ/DYk/9g196DXHTJlbj4/RVV/NshCspNbWXKlCnzjVKW6suUKVPmm+a/1Xv++yholXouaBrcBlIweMJk6uvbGDlsFJ99/Bmzp46jpTqMRp64YgAKixauwAy0AEFilRVgF0qHTWmXPjP7/S/Q3wJjhsL0HNzFzy7+Cd3tsOkDi5HDJ/Dm61swg1XkhQDHYdf2ndQkagigURep6N8YSm0itp/9+k/3pHvZ+P5mlp94MpXRBGOGDqdlwCC+FgPQ+e/byueff8Hs2ccCYax0qcIkknAIVhcQplsSDTyzv9qldPHz5x1LINKIXcgCPpoRYPzEiQweOoRYvA4zEKVU8dR/2O4/0Dz37BpOPeU0QOK6DgJRslr1S5UbR/ZuR8Giq/0Q5PIgNYQaYumSM8ENopkx0kUXPRol77q4vsRxJE1NQ6gfOIxQRRMUJb7QkYqKHlTRdB/PcfBtHwWFdOduPtz0PggVL1ny6Vh4zGQGDB9G9tBuujsOoqk+vX0lA+1YVRg9rGGGNIIBA9/36Ozsprezg5baRsZOO4npM0+lkFHp7chS23gU4fBowkYzAT3A0pNPZvqMo2kaOYJdO3dSURmFYgaZMNm4/hV+/+ufEamqoPfgfpx0N8giqB5C+GAXeeWVtezdv409eyAWdShk+sCy0TWAI6z61nzuWn0hwahNIZXFCEe49je/RVV1cD0C8UqEMJg1ewHBWB3FtA1qjgcfuoHPvnyFcDxPPtNJT3s7/4e9+4qSo74Xff+t2NU5TM55RppRzkISQkIJkEgiCUxmY0w220RjtgNgm2SSBTY5G2FykMhJEgpIIIRyHE3OPZ274nkY2Wffc+/j5ZyH05+1ak13v0yt7n9X+PUvuCPw9HP38vpbzx7NFpH/H2tlJJCkHn0dBCwCbi+SooACbo9C0KOSGewgIFgUhb20JQfotAymLlrAHffczVvvrmL6hGbOPvkEnLSJSwgT8BYxPASqHCST6MV2dABi0VYMvWvkO2lIRKP9SO40CAlUxQe4calBACRFR9cT+P1hpk2ZT1P9BPr7+7DMGHo6RfO4qYxqmcbJJ53IyeeczAN/vJ4///kO2g/tBMugor6Jy6+8gUULl3HZ5VdjWRZafh6SDZJjjpQ1CSaOYI28JRKMpEm5+f+6THMQ/lszYQXHcpFJ2ciOAqLBK6/9BVPsJJrah+w2SUYNsCPMW3gKhiBgY5FORnFJOsmhLtKJIZKZNGoghOoLsHz5cs67YDnJVJQ9e3dzyimncPHFZ1NY4KWv/whetwvTBkEQsJEADREvXk8EgNEttTQ2VXD7r28EdLra9gM246Yu5MzlV1NcOB6P38+sBRMR8h1629u44hdXcdvtt7Nn336WnncBhcXltLZ1Yw0n0QqL8QcCZNMJ/KEQR3bs4Mm/P8XuTVtwTBvHAVFWEIBsOslwtBe3W+L77V9RVRviw4/fwDQSNDePYtqsKfQbB8DqwOjexfDh3cjOyNFrpLhMASnA3r0HeObPv0UKBYiUl+KYaZBltm3YxXv/eB4n2nX00xgJpgiOgOCIVDY0EIzkMW/ucRQVFTPY3kEi6jB6QjNTpoxhx49bqa6qYFTjaAzdpq+vj3h8mM5tm9mw8UtMK4k/ANNmtHDvA79l7ZY1HOneiS/gkDUyWKkUM2fPIWuaJAYGSCWSOLaBbaZIxvqYPK6Zrz7bym9/fRPpZDc3X3sxkCTkDZAXzufFZ1/BRkBE44knHwbS9PUcYHj4MAgm/uDIxDnnXwd9wHEcNK8Xt8/3/1qLOAKWY4EokUxmKSisoKiwnFR3Dx5VZtf2TTz5t3txEgb68DCZvgF27dzD6nfeQykvpaOnCzuZIb+sgd6BBK37f+SGKy+gbe8gA12dxIf7iScTJFJJrESc2soyli5dyvTpM6itrQfANO3/Zaf+1+c5OTk5Of9/y2Ui5eTk5PzU7KO/jAojl7cmoIsCBpCxDWRFBVGmrHYC773+Fg2NVSRSaU4582IkAnR2DRDwllNWOR5ELxAglcygeAUQkyDGQLSwHA1HAFEE0imQBZ5b+QBhr8acGdO56T+vJi/SwllnX0trT5qJcxfhpEUCqszpp5yIKxRBJkR/Xz8+r8Fdd11O256DTJ48HQUFl8vF3t27ufzSS5k6cRbz5p4EWR9Ifhxh5O5XONqjyDYMRo0eQyRciqyEcYwgou7C8Wzg8aevJjrYT13V8SNZVAI4Sh8CaSoqGiFVjuQGx7JwzAgnLV2EI2RxifXIgh8B+WjwSWOk1EfgnHNW4POGsAwNzV3MQHcSj08EMc7K39/MlnUfsOyUE5g5Zw4FDRNICyHStodkwsDj1UijY2CTti00dwifJ4JlKEwcN5OM4SGTdaGbGqLsGtllMUMq3Y8qq7gVH5rL5Ll//oqurgEmTzwOQYpjG1EWz1/MmjeeZcv69fjkCGVNVRhilCcev4c3X3sGPdFLbVUpimoTTSYoqajg26+f5IetH0M2jOMNkFdTjOmBlB5gaMgk4FPRAsNILoWi0kL2795Ow6hR/Pqmm9ixcS3jqwJ8vPpVfG6D2JDClAVzEN0ZsHoQXDJWOouo2HzwwXMUlpoUFqW48er7GNWyFCwVOznIeefN4y/330xRYYSiokr0dAzF4wFAlFQEyQcomKaE15cPtgtZC4PdxcYtT1NRLTN/3hyaxixAdhwkrZf9h7/ioguvIDacRHYV4ogpHDGLI1g4wsjkMkc0ccQUopjBTILq9uOoEpY+iJSOceeVFzPQtZPt+9bR5u1m/ZFhTjvtKjyBck6aOYe6PA/vvPIc0yZNxR2pJ2O6UL2g6gHSGQHV5aWvfz+vvvUgHd070Y1hKqtL0YW9PPH8L/juh4+ZOumkf2dEIWYRpCSSIoDtIhQcRW31LGprx5DJZtHTLkTTi6REuO/31/Lyc38ma+1h4vQZrP/qa2bNOgU7qWJkJArKGqgqr0WQ3YhISKaDhIMtWjiigSEbiJIycgssuBD/VRoqwNGUQ2CkETKoOLaKIGhI+HjtyZfp7tzLfQ//gp9duoRJ00dT11hO49gGjuztpaRsKlECJIwMHreKRho5049HtsiL+MkYJilBwesP89l7/2TX4XX4QhEaGifj9eeRl2dQ1xCkKJwPRDAFCYcslm0giyEEQmDJYBvUNniYNLmUaK+b8ZOm4Q+6efbJh3hj1Uecf/6tDPT5Of2sCymo8CF73bhcxfQPRaluaGLG7OPwlVQxavQUGifMwJtXQzRm4AgSsmhhpofASmHqWVav+Zh5J56OqviwRY34QJpAWEHTDK765emctWIhLWOrefDB+1h++nJEGYrLI6w/8AZzJk9i6MAe7rr1v1h89lmIooOOgCM4SLZOUW012ze+jt9dhc8bQPJmcWzwuBXaOj/h74/fyaJTLsTGhSjIOKaJnkqjCSPH+UR/HxIC/qIgajjLxnXP8vXat2g72Mb5l/2BqS0LcaxiJs+YiT/kxrA0RJfD+6u/5MZbbmHi1NOYesyx1NeV4bZ1fFmVYCRMLJWivq6F0oo6MsksAZ8btxuef+ZhHrn/bq678nJiXYNsXLuB519ciW508u3GLSw84UyaKqfz8vPvsPy0cwCdg0c+4rlnnuX0M05g1Tv3Ul/fjNuVjyNEsfGgZ0GWdARJJB4dJp1M4nK5+O/Be1sQiBsZRMFBc6kIikpdUws9hw5x5+8fxe0aZNqkRqZOPwYpmI+sBSgvbuDTtd9QWBLGXxqmL+kwZsppHHv8GUTcwwzs+ZyIMkgsBuPnHoOphchkkvzw5Tt079/B5GMWc/rZF/HmO6tZsuw03B7/v0+1I3v2ryBSLhspJycn56eS64mUk5OT81OzTUDGEcAS/lXsNbJ9+uXLnDB3CVnDRtU1XG6d1OBePPkjfX/ae+OUF9YTb8vij/i474kb2P79Tp579k0wBExdR/aogAOWNJLJIbhxklEEyeSdVY8h2AMsu/QiyDog5RPv1PFXlpIS0nicABefPAFFHaBp/GSuv/EhJLePrVveY+2X73H1ZdcgiiXgG2mGresGqjrSwDfeZ+IS/agRD5YAIjYCWcDAMnQk5V+ZSdJI/5ss4P6M6286h9/d8RJB18KRy30xiyMNHP1NXwazkFSmC49PwdHzOdL9I1WVeejpEgTBQZH/W4MpkaOlGCagg6ng2DKC7MY025DlFKcdO403/vE00USWcNN4sCMMpjSwXUS8bn55zYXc/JtfUlxaSl//MLIYwu/OZ2hgkIK8IMN6AkESEZGwLAMBC7fLIjk8gN8TxsiY7Nr/OR2xFzj+mF9ixCoR7CRuWUAOK1x02iTu+M9fUzv+bExNIJbp5a7bb2TqpLHs3PE9u/Yd4tRTz2HJiRfj2HmsfvdX2FaSs1bczZFolOKqAI5o4LFrICuwfdOHfPnlK9zwh1fpPLyfwoIgRw4c4tMPP+Kyn61A8KT5dNVfqCjz0zjzRtqHevjw49dRtDSnn3IxvsA4jHiKT758hYUn1SBL+ZCZC4kkBIHUID9u/4Jbb7+exqZaJkwexxlnnc2Nt/2RhvoxaEox/3HpdYiaZ+R9Fw2MdBrF7QbHAmE/ltlHNubC4znuaGLAEA8/fDkdHV38+Z7H0J0iHNHEhpEApCONrGHBRBATSI6NKhfw5BN/Y8ueLdz484uobWiETBqGO6GkgDPuuor5Jz7MkokzGDjSzdRyFy/98Romj29k1PSpOK4yEqYbX6SBWE8nwcJi0uk2BPdejKSF31eOpStIahFPPr2SaXOztB3uZvbkawiGGsBxgTCIrkdRVT84YdCP9omS4yBnSMckRMuHnTZxe9uwjVZefOVPnLriNgKhchBqwHaBYRKP9SIJcQZ7O7n/vvv4y8NPjlSiSiaW4GBKNm41gIiMgOvo/wfn6NFCOLroDTN7dBIh2I6D6FggDoLVDZJAygjS2zWA32sx0PUlGz75gs5DQ0w8/QYqa8dQGAiQ7upg53df8s6bL+MN+Lnp1j/y27tX8vnHn/D2iw8i+Aa58LIb+Oc/11FU0wzCXla9sZKNa7fw57vfwNKKkMkgkSTaa7D2i0385d57mHFsOTXNAgsXz6aq+EZ+e+t1RFM7efCvF3L+Befz7UaoLK1m1UufEwzl44g2lmzjWDqx4SHyCiLoqTQWLtzeEBlbIZ3K4tVkrEwMsgncIR84Fo89cD+/uPHXIIhYaMSj/YRCDpDCpIcHHryPq664DlXxI0k2N95yJeV1ZZz/H+fz4+q1fPfZJk6YcxqjTjgVFBUTmZHcKgcG0qx5/35ee+c7bv3NndSPLwciOINJ4sm1XHjGhbz5TRrL0ZCkJIZhkhgYRpUsNEHin6+8gK5Hee7l+/jTg//FlDnTGTiyn59ffBuvvLSFbEbDcQVJir2oXguNUXg0yPTsQnP7cHQvQkigrfU7brrhCl55Yg09VpqElSE/XIzsuIjFYpQU5oMdIzbcxrq1n5AX8jPtuBNJtP7IR1/8k5defYPXP/iOxKCNL1TDYGyQSEEY2EcqvZG339zBKaecjcubRqICKMNhmFQ6iFfz8fKLjxKN93Lllb9ANy0Exw+Oa2QlCgaOmEWSZGzLRBU0iPeDT+GpB+7grfdfJRDw8/hfH8NfMQUnE8DBQ29vlA3ff8iseU1YloFp5EO6HFsfhuj7fPHKw2xZ+wPT5o5nzZ4Yl/zqbsa3NCP1H+Tp++9my54Yjzyziutuup3nX3uLeDKF2zuSJTVyDrGPzmnLycnJyfmp5DKRcnJycn5qggGICLaAIIAodOHCj+rAqy+dD4lhRjW2IEsqjhXE8ZRgCS4G04d4+uk7ueU/L+XKq2+AVJwtO57nuqtX4AuoIHkY6IzidZfBsHY0q2fkhlJQFCxbpm7UbJqnzicRy6L6C0DyoCghjFQWcyDG8pNOJ25vZtaiIq6/6lf0de5m1Qt34VNMzvrZSoblMFErn6tvmI6VHmDs2ElHx/zYuIQSJLcCchTLjmPZGSRx5DJelGRAYCg2gNslgzAMSi/Y9cydegU+/1gc2UCQdBDBscKIgp+MYWOLSVyaBkg4VpJwJA9jWEd1OUhCFgwTpJFSPGSJZCqDqroZCUKkEMQ4yZ7tHNi7kV9ddiGzp81k2sxTcZfOwrAKSZkePEIWnzRIdng/3Ue2c+zxs2C4h1TnYXyagxpQ8QZc9KZSWKILEzCE1NHPEjIJgcywjpXpIja0lycfv5nJY+ooDpYh2dWYVgG2EEOV07z26gvMnrSYkKAhF4zDLbj54as12OkBDh7axI13/CcLTlqExwry6YufM3vxacw+YQXx4UEG2g7y8etv8NpjK6kLZujb9yV/vfNWqvMjdLeZlOQVI2hhBG+ElqmzSKOy8uEn2LLpEHl546lqPplwaSnvrHmPi35+EZJchq2X4RCgpmE8tiRhOyp6KoPjWAjpNNg6Dz14Jy3jmvj5VdcwaeoCNK2YCaPKWHjcSUwZdwJ22iAT7eHF53/L2q9fJJU8gk8R8YarAR+iGEARJXASEO9n26fvI5mtXHX9dDoOfU3APwZRjNDZniC/sIK0GefuP13DCy89SHFYoa7cT/v+9+hr3cAVPzuX4qJ6yCqglGGIxehpL8c2LOT40eNwhgaoyPcRjSWYsWg5+Y0zSeka111zPScvWYjkNknZBsNWAlsJ8tILz5NNfsWq5+5hetMKRKGCSTOaKfDOoKF8MW41ODLiTtRBN5BQjlZ3ZsFwRhqT632gmkhWGsWvonh8ZKwACbuYGXMuYXBQYnDQwZEcnnj2AV5b9SBdbVsZPrielbddRyi7j319OhVNzYiCzkBPGwV+hVefepAXHr+fTZ+8S1OJHzU/SFqwMG0T23SwLAtVkfhq7Qc8+MhvaO/cRl1TGS6lAVssJWkVEUuaeD0SimjRs2cn1tBBagtlfGVlBMMNWKafdCZMUXEBzaP9OJlOPnjqEQ5/sYGm4gjr9+xg0cIrWbjwEspLahG9aSDD6FEtLFmyHFFW+NMjv+Wfb97PkrktSLEYoyfUEhC3cdWtM+nqGWDVKxtZtGQ6U48PU9OgcunF1/HoAxcxcYxAxBvj9hvvZOv6d9n27VrKa0rJLw7h8Ur8/W/3se/Qbppbmkim4ziWgWBkcdkpYkODBItqcfAiSF6mzj4WhBgYfWz/6gVeW3Mz9z90Iz9s/5qXn/2Ue+98D1WqQ5JCCEIv04914+hxWirPp7qygsFMnGNOPZGnH/87XsVLQWEd8c5eNL8X3DL1E8bzxfpVvLTqr5x33lUQc/HuY0/x1lOvE3RijJ91Cd48P7awE0GSMRwvCT2FpXuZMmUelh2lvKqbH9e2c2RvB9Nmncr0qcuwlEIczUNWNnDnCwgunXQigZ7QEKwijKyKaXWgBDoIFkokoj2MHjeJlBBAUILopo1uGQiSiCOOzGiwJS9l1eP46NM1vP/q79i8aSdnn3E3c487j1CZhyH9AAm7jXCkEQMfLzx1AZ+v3sQVV/4DRaxGpBZDEHGEGDgqLjsMJoydXEFW34YS6EZxZzDNIIaRh2nJmFI/ltzK0NAhNFvnurMuYPbEcZjxPmYsmc77677GEctZcuKlKHKAvoEBjnS1YksO4yfOYLjPgYwbJWujWQO4hDjh/AJeeut9bv7DzdSPaSEbPULb9+uYt/g49m7Zy8qn36a2fhQLFi3h4ZWPcekVV6Gqrv9ZyT1yws2FkHJycnJ+YvL/6R3IycnJ+b+P+O/qlO6uPkavGIseS+EoGpaTHulHIWYp9BRw6GA75114Kaga+ANIQhmff7aTFefPAtOgoKqYIz/upLjQh+oMsX3rBhRfESUlLSTiBjgKoqzjCFFSmT7272ujqX4y/b19BF1umpuaeeXtLxk7LsmunT3s3nWAgweGOHnZDI7sbcU/upK77nqQ/UeiNLTMZM/uVvxqGEEUka0gljKILSaxnJGRz4ZhEIsl8Pv9+P1e+vr6GPbHyaT6qCwR2bJlLcfMOJ79uzYzEO+jsKQA3TCxDI3YcBZvyI2siGDZYDsosoiRTaMn0ziWTSgYZDhmoqoebFFAkCXSmShBn0om2sFtN/ycXdu6+eWvTmfL7r0sWrSIssJiWo/sJ9OTwhA9OLIHl5NEteIk4n0UlVbQu/8wqWSS99/7gK7+GItPPZtQQRmCFkBRRnrjCEIaybEACTIKggGJbIp4PAlikIN7+lj7ybOE/Ec4ZfkF7OvYRSzZTrC2EX/zeNozbjrWfYNb6kPSUowZ10JhRRVh72za9vg4sGsr/3j7HkqmXcvOtmG+2/Itn3/yIVOnTGDBCZN59pWHMbMpvPmQFZNEykswFJEf9u0m6ThUVFby4/bv+eHwYU4/5RTKqyrYuW8bwaIQ48fMof2QRSbVBtYwI2WAGZBigIOeGUCyFWTbQSRLVeMYps2eQLiwnH0He8mLqOhGCW1taQQOoXh0LIb5ft8Grrv2VwwNmRhWJeu+6KKwxKS781s2b3iKLz/4jKmTxhLrM7n7D3fS39rFc89+QMbVyY2/ugevXyU+PIDmMoh3dTG2spqPV73Bhy+8QGWVh1lz5pHNmBiGyM49+/EXgOgNksyYJA2VgR/3M6q+jujAEAG/l+3bthEO+bn1pmsoKy3gsisv4t4/34fsimBh4/F58EoqYxqbyQ6mUAuKsQ3oGuimLK+QdGwQ25KIx5P4fREEQfpv31sDj0tiqP0Q4RKF2355Df5QEfOPW4YsFRAK56G6ZPbuOIKMhqKq2E6W2uo6Ih6wU3E+/XQNoUiIqqoKpkwdi9dlsumbr6msKGXL5l288dZrJOMJFsxbwhPPP8MFN1RhiAqCIyLaEgIOtp4mMRzj+OPm0d5xmPaD++k3EngCAWKmQ3FlOT53AcmkzcQFp+Hze3D0BJXjziZjluL1QFKCkN9L1SiVCVPHcunbJ1Dd5GYg0UE66VBU00Be3I0k6kA3xy8cz8KFx3LLTY9gOyKzZo7h4F6L3/3mHv7r2vtALECTmyE2lRnjFzF7YhXDsWGCgVqKC7LkhUBzhdFcfv75+nccM7uIGVNnsnt/lM4jIoHAIJKapKbBz/tr3uakpQswdA9Gxo8meelNH+L5F57g5OXnkV9Ujqa50FQTRcuCYtPU3MDhTDmRYoXJk47h7NMfIpbYRSBYjZ3SiKciZIzpaHY+fQd7KKjNY97cJaSjw/T29vLNN+sIBQt49tkncdBZcdZ5BPIUDN3BsRVIpUn2ZahubOC7776mZtRo7n/gt/zi5ht5/IWbOOGEM6gsnokkKCiKH5AoLq6lYdTlJHplHnj4Ac48J0lJWREGMkPxGJ5QgP6uftw+AUmSsOwkgmGAfXQbiNPWfgBNySedFDBFC1O0ER2wBAfBga6uIXxuDQEbWZZYsmQBb732Ebu2HSaVkikqrsXQd7P6w5do7Wrj3DMfpCA4mfPPv5ifX3w1A13tDA5J1DRWknUMBMFAsEUkQ0d0QM6kqCiqYt0nXzBr1mIGeg/hGAa2YIPSCUoPQX8hfZk4oVCIP/z2D9x5390c2tfPmSdfREPVWCLBIN9tXk9+UTGaaGMaCQ7s3Ykoikg2yI51tDeYhebxoKg+brvj99z9+zs49dSzaD3Sy+71GxnVPJUTT1rKd9t20Iwr1ygAACAASURBVNnVhcftA8chqxvILuXfRXa5AFJOTk7OTy+XiZSTk5PzkxvJRPp3/x8hi572IEvQ07uFubOWE0uIZFUZTJANA9HUaW8/SO/gMItOOovDfVnCheUUhP2UllejugQkTDra9+IICfyRDN1DW/n7c3cjykFKS+rJZjM4js3AUDs9ffv5ZuMXtLUfZPyEMaRTQ2AYHDN9HieeOJHj559OYWQaPk81EGTy9PkEikbxQ3s7b3zwBb+/6w4iodFo3mpUOR9HlEgbYAi9+FU/dkYgPhhDQSbiD1EYzicxFMclusAQCPpcrFp1Lz3dnfi8Cg31RahKlJde+iubN35KeWkBeZF8FEU72hLbQRIlNE2js6MNQXIIhQIMxwdRI6UYooLhWDhOmqBmURJSufuWn6NluomoFoVhmfYhiRuvv5I//+l3uAMyeRWlOLKF6vahiS5EW0DQXBSUVaJ5/JiOyKdfrefscy+kqLQK24Z4LIkmeUd6l1sZsExE0wFDxbZkDFtE9QYZNXoM6z/dyOzppzJ35mmsXfs12w5spScdRamq5a5XP+Ll9Tv42WmzMYZ3M3/WbFSliMqK5fQN1ZPWC3nuxQe56PKxfPTZV2TSErNnzuXkpcsZ2zyVcLCc3l6D2obpZEwfl1x9Bz2OjOGS0IoKuPr2X/P8m2+wYft28qsqOeVnF7C/b5BIyIuREgl5q7CzeciihiNEEcQEgiMhmMXYdhC8GpIcRFI9CKqGL+LDmxehZyhBqKiBtvY4quTCECSyooEuRjEVnXFTJ2JJBSTTQTT3GLKZHob6trH2q3dZvOAYujuOsPz08zjzzEvJWArX3Xgrxy5ayOjJjeRFCnG7ZLLJGG4nxbIzTqaloIil809kzT/fIZmMs27TNuYvXkGSPKRgOQN2gKt+dx+b9rfz5e6DnDnnOIbbOyjOy6O/p52amhLSqRgTJ49hwQnHMXbSOLweN/nuPFLDcVyih5ryED6tl9ENzaBXIbiDxKzDvP7PR/nhh/WMHTMBny+IIuaRTgpYpjiyWTaDg7t55sWHePeDZ6lvKkbEZNfObUwc04wippCcBC4xRUV+EZGgmyOtB6mvrcEjadRX17N00TJOWnwKZeWNDKZ6eOWVvxHyS3z22XtEIkFuuf3XJDIZzjj/IiRvgEh+JVgi2ALYNo7toMoORUUR8sJ+6mtqSPX1cvOFZ9LXto/jjz8OyeUmaUt4PMUkbA8FFdOIVM1EVTUkNY4i62ieJInBGKpcA04tp5xwCYsWnsWxxy6kW48ytnkcZ5yxjF27NzN/wURmHjMOcPD7PQQDBZREamgsPwZjKMKoptH846m/cfLpyxEjY1HlUjwhL0Y2QHzYoKCgnqUL57J102bee+cjps+oIq3bXPXL66mqrSWheykpLUCSFRxTJhKooKF2HPGhFJg2thVH1TLUNVVy2+23cOKJxxPJ87J69Sr++pff03ZoJ0da97FmzY/8168fwbQcduxazaHW7Wzc+ClNjWORKCTsbaYg1IzbpfHEY4/y6F//SnV1Ncceu4A1az7imFkzWXjqAr7bvJYN67YwY+YcFhy/CLc7REGkkkhFE0Xl5cw69hgKyouYMW8aBcUax8yawMq//55zTjsH2/ZiZQNYVhpZdREI1uEvLsURTBqmTqanp41N337HD9t+QFN95AfzCAcKSDsJbHRs08C0UhhGnJ6uLsKhMiaNO56hfhnBJfOv0QyCMzL4oKggQnRwANvUERwTRZYZHorT0TPAhMkNFDdGGOwfYMrEY9mwdiczpkxFlIeRxIPs2HGYxQsuBkFlcCiF4rJwLHukLNrQwHRQFAuv4vD6K6/TureHCY3zcDkhNFFGkywU0UXbgRR57gBfffgm1117LV1dQzhOOaUFTRT5XHTs20pYTWFlh8gLqCRiQyguF6ZlYeNgCg4WAiYSjilyzKyZfPXVl9iOTEV1Hdt3Hmbdxu9paJpMaVk9u/ftZ/GJJ/GP19/mov+4AkmW/l3dnAsi5eTk5PzvkQsi5eTk5PzkdBCko31fwBF0VHFkKpnPF0e1C/GHKkgIBrJt4bJ1VNvCJascM38ZojsPf1E9Sy44i9OXNFBQ6uY3/3Utc+fMwO128cG7n9HSPJ3WtiHa25MsXLAcIyuhZx0yGROPV+Gtd15lcGiAyy//OXt2H8brdpEfkbBtEbcnj2Cwjv4+CUEOUD9qPP1Dw9iKRjSVoKgoH9G2CSqFFIZKSQ6k0WSTsF8hld7Lnb+5k5amFiJBH0G/C1OPk4j143bJ9HV3UVpUSG9PKzt2rmXFmedyYM9uXnv5WUY3FrN/3w/MmDqBcc0TiQ9n8KkaflnELdpEe9r54M1XmTphNP0dB3lj1QsMD3RQVFhINjVE2CugWnFcQoq1n6/hzVVvcv89v6G37xBXXnMTk2cvxzGG+HbzV8yYPQl/UR7I0siIeUtBsCUMQcBAJJkxCUQKyWShvn4U6UwWyzARRVAdB8FOItrDiHYcx8riUlRSaZOMY5K1bWTNxaTxU3C58vC53GBGqazLY/6Cedx4972cdP71zFt2Lru/fISv3nmf6WPPIz5QSNYpJW4nKKryUVPrZ0zTaGqrpzKm5RiefOwFNq3fyaSxc8imPIxqno8v0MC4yacg+ypoH+qkvLqWlGXx2dq1eAMBrvnPX3GwvZud+w5jCC7KgkEkS8BxHExdx7bTyLKNKAiIgjTSg0qy0Z0MWCBYFjgm/qBKQWGEzq4eBvqTlJXm4ZJ3Yeh9+NxhUjEXmbgLVSzBpYYI+oPE0+2EFBGfqjN+TD2trVuxrQTfbFjL7ONOAKWEBYsvZdLUeUTCJpgaPd2DRML5aHkRuvbvQ/EFkbUCwsX1TJ97PGeeezkpKwCufFKmAKqbweQQJ550PMtOno8v3kHn/q38+tZraawvIxLxY9lZfMEI8Qz4I6VkHS/xJGgFpfTFTTSvxT9evpPNG9aR7FUoKK5F8rUzeVIzFaU1qFIRihTEzHrAkRBlE1HJICoJUnovNQ2lrDj/HBTZZOmSUxBticbqUax8+CHeffs1SvI9vPby39m6+UtmzJiI6Fh4PW5UxcXKRx/l63UbePOD1ejpfm66/moCvgAzpk6ncdQE9rb2MOvYxbT1JimrHQ1pkEwHwbZwnCzYOpaZ5IfvNyFjURgJ4cYh3+8mlU1T1TAaxRvGHyzBQgRBI+OoDGdUPIYLWZb4fvMX9PfvpbyuaWRUfcLgZ6cfz6uv3cn2/Tu5449v4iocpH/oI3yBJNPnnIuSrmZM01xS1kHmLl7ImUvnk1fUQFP1aAZj6wmVDHP/Y7cxZ+48VK/O3p7PCLkb8LvDCJaI5NGoKiommbQ595xLUVx5yEqE4rJqUB0sS0RTwjjZPMaNnoORFsC0cGlJJDmJ5nWjqB6mTZlGdV0t2WSU+ppqIqEA277/gRNOXIqVHUfAV0VZ8ShOPnkpEyZMwrYcmppGg2DhCAmSqX4cTKbOHMPUaZO57fY7OOfsS6ipGU1hQQVd7W00NY4G2834CTMQUCgtqqaoejSIMv39fehApKyCbLqfSCiIZPsR1E4ef2Yls2eegiL6sKVOJNUhFQ+RNjK0TBqNIDq8+c5rrPrH6+zbs48vPl7HuWddjGyrJB0DBGkkOCSYSI7J8y+8wEdrPqWkuIbq2nrSZgpHsJCwEB0bEYfBvh7qa6sY6OtB0xQC7kI8WhPLTl3KA49dw7r1nzBh9Gn41NHMO+48fAGHQ4e+4MabLueeP/2NWMyFKLuIxuP4/O6RIIwtIzoyAg6y6iBgk0lbxKIGTfVTsB0VR3CwRAMciWJfGelEN+2Hv+a9995hyoxjKSmejpUV2PT58+zf8THffPw6H3/4Lp99+B62YzNuyhSiiQyW42A4AoYDliOSSpn0DwyxdOlJKC4vt9z8G86/6AoGh7O0jJuBJ5jH9OnT6emP8vm6DZx7/oX09vbj9Xn/HUAS/lthW05OTk7OTyMXsM/Jycn5P8Q2QdcNUskMtjXSJNfBRHAMBMfE4/GTSVv0DSTYdqQVR5HIL8rHsAwmjB+Lx6thWzrjx4xH8xdTWjSKs8+8Ett0YZkiXk8YlxJAQGP8uCk01DczHM1QUlyFJLt49LEHeOnVJ4gnswwNZZAUFwNDUVSXG8Oy6ek5RL5PpaEizPzpxxByu+nv6sDKphFNCzMzwOq3X2ZsSyN1taXkRTzYVhJRSKPIOjt+/JZnnl6JJJi4FImzzryQ3p4hPvnwM9yaRl4wQDaRIB1PEhuKUZJfiJBJog/307F/F1vWfs4zjz/Ie6+/xKa1nzLU08rcmRM5uP0bOvZsRo+2IxnDOHqCro5Wzr3wdPyFFdS0TKE/YeHx+DFNi8suu4xnn30a2zax7Cy6kUHXdQzDwOfzkcnq7D/YSjJjUVldh+EIaC43gUCAgNeHolioioFL0XEpGVxKBkgiiBlUt4LkkjBFEdHjwxPyk0j1kRdWyPNqdOzby+GdB6kpKiUgqny0eg3LTjqNRMyhpKQOxS1gioMMDh+kaVQDsQGJgoIiuntb+fKrj9iz+3scMnz19WesXPkoO3ftIpSfR+/gEG5ZIxNP41M9LFt8AicvORG3rPLtN5tpqG1i7pz5SI5GdLiPRKqLofgBBCmFrlvoGQFd19GtPkyzD0tPYmeTI38zSQRDR7ZNwj43xfl5CFaKB/58M4899Dv27dhCWPNSFChGtTw4GZvernaqKgIEQyKqIlBVVcEP23ZTWFTBscctIKMbdPb0k0jDA/c/xp133I2ddWisaSSZ0Nm9fQ+mL0xK9dNjKxS2TKGyeRr9MRtvoBDN5UOTFAQjzpLZE5hYn485cADB6mXzt59QWKiwfu2HJGMDyI6DnnVwa/lksyqmECTjDZNx+enPOtial8FEjHETx1BU6EOTUySjncQGk4SDZVimPHLTHIuBYIKYHpmCKEUpLS+hrraRnTu389KLq3j2mZeoKK+jt2eIwd4hxo4ex4MP/IX2jt0MDh5h9erXyWSixOJDaF4FRxapHzMadzjMoYOtbPh6I44poYheurui1FaPIZ0RcbnCCIIbRVRQRQFZdFAkkGQHUbLY9v0WvvrsYwa6uhEch2VnrWDBScuoHTOe6FAMPWMgA44BHgG8soDkwHBHF688/zx/+9uDkI2CaIOTxZITZIBggQvBEwHibN76DTv3fAOxNIHCeiRPGUNDQ4wZC9dcfwbJoe3gSeIOZWiYWEk01c3v7/4Dw9kYtcU1eLwyogKWORJsGBrUKcirZfrMC8iL1FNcPIpo1CbgzUdwBCRZADHL0GAXsWgfpqmjpx1MXULPSMSiWerrRpOJpxAcGcdymDRxJuPHzqCmfiLpdJq6ptE4toKmFhEJ1rDo+LNwuQvxBnxoAQVfCIIlPkTJxO2RaW5uxucNMXr8DBxLo7J+AqVlDZx44jIySYNMyqGwrJ6O/a1Ee3vw+LzkVVWhhQopLasCQyIVE6mtaSI+PITgmKiaRdboI2v0YdoGibRNIm3S3tnFuIkT2LFjBwcPHmTt2vXoGYNMykC0tZHSYwFEwUEUYdasWXi9Xl5/exX9Qx3Yjg62gWNZIycP28Tr0dizayf3/OmPvPDsM1iWRV1DM4apsnz5JTz95DoKC8pQfX4GOoeI9kZpHj2TK6/4FQ8+/Bj+kB8Ei9LSErBBsCUExwHHwMZAFx2Slk1l7cjkvJSeJaOnSBmpo4+zDPZ1UlEcYu/e72jt2M/9D96LL+BHU1Tqa8uYNb2FPTsP0NHaw/ZtbbS3HaLjSCuqKqOqKqrqQlE1ZFWjpLQSRXVj2SrhcAlnnPkzguECpk6bSVrXiScTdPf2I8gyyWQSURQpKioA/ufMOJx/ja3IycnJyfmp5DKRcnJycn5yBnA0E0kAR8ggOhqOA2evmMnPL7kBxVeIaVtkY30c2bcdl1tC0fyIngISWXjoqaeoKK9iVuNMSkK1tO7bS2VhEW5RY+uG72gaP5mfrTiHrK4zZfIsYkMWelYkmxZwqS6qqqrJzysllRDJC9XQ2trOtzs/5IwVy8lmfYhygGRmGEdI4/YohCM+JKGfRE8H5SETzQSXkyGggaBnIBNHcjp59YVHueDCK0il4zz8yD18v20tU6aOJjrczdNPP8bVV/8C2zawBAFbCFEUqUKT/Sw+fi633nwDTY2NtDRPorpyEk5Wpu/wbv7+4N0ENPjo3de47PyzOXHhXD7/8H3GNNbS3FTP1k/eoq7QDYk+Og/tobm5hbffeY+lZ15AVisgUj0B21uGYkl8+uGbrPzrQ9x06y04rhC2oKFpBegJg4JggNa2AxQU5CMrKi6XG8XlAVECxwHTAccmlehi1aon8XhTFOQL/OPlx1m16mUKi4spKC8kqcfRggr9fYdY9frzbPv2M049YQ73/v63/LD5W8477VwmN04hX1RItPYzedQkLDOF6tN54PHfMXnOGMIhH3IK8oUgXYnd1DTlMdB/gF/ffCW63svmTZ+wYPEs6prKGUz24Qt68Yt+BN1GT6WpKi2lurAUTZA4buZcSoIFmAkdEjDQv4Mv173KD7vfYsa06UR7VTxqES7N5v6Hf84P2z+lqrCaIn+QsKYS8Ug8/sgfaT2wk/xAgJKCUr75+BNOmdNEUJXpa9/PU39/GEePMrZ5NEYqiSYKDPW2ser1P7B2/RoSsRRTxp7M7OnnkR8aSzi/kqyQZvXnrxOOKJy/dAWRYC3ZtEJW8BKTROTKCqIuP622GydcRtCfTyJhIkleXJKEnhxCyfSRL/aS5/SR53QwNLAHxZVm7+4tzDtuJmWFJQQDYVRXAWk9gGEFSEsh1OIgt/zlYT7ftI3PvngDyd5BcWGQN15azYEDe8nY7UjU4FVHYelucBQkWSAQdpC1flzeDI889hvWf7OT4WGT2bPnMW3yHCaOOY7OthT5eXVMmTaLlpbxhMIe6upDDET7UT1uvv5mPWs3fIMtWsxfvIDGsU2MmtDC9xu+46UX3uSHH1vZuauDcROOw7C8KFKQvoEU4KLUo2ElY1hWimiiG49HJJnq55hp4/jum3Uc3ruTpsYWEu48fMWV6KZMa3sntZWVKAJogJROo0kiSDEuXjEVlzvK4fbvOfXU01G0MGgypy2bx+4Dn7N+y07OOPcWFFeGxfOmUVM6Cp9chitYBFacghIfpy2dxr4jX/D0U0+x/NTTWbtpDS+++Cx/uvdpxresQJPrcYQQsmSDmEZUDbCyZGJpGpunMq5lMisfe5PmlnnkR+pJRQUiITemMYAgd/H+R8/z9ruvM2/+AjS1Ck2pwrBd6KaAJIj43D6Sw0m8wTwEXaGuZiyyEGLijCospx9BMLF1P3amlEw8jCqEyeqDZLKH8PhFsule/vbkX9j6/UYu/49rEew89KSASJhMwsIwbSRBQpXdSIIXPWHi9brp6m6luLqS5HAC3dJQ3R4wVFxSAfmlfpadcAbZjIAgJXjp5bvo6txJQ/14HDlCz0Abbo+bqqpqLjzvSmqqm3nvnc+49JJLsW0bRQlSGAkjGnFaD+4k4Japr6tF0VR6hzsZP70Wj+YDy8HIpnGrMpFwkOHBfsqKi+hqb+XA3t2MH9dCOp0i4M1jqNvPmadfhMulMDjQTl6BhuYqIhMPUlCUz74DbVTXjCMUycMwQHAEFFHESCXobj/Ix198QPmEWmwcUqkM2ayFkc0Sz8RBtfDm+Vi9+i3avv8UnxbjhJOms3XHXoaSWcZOno/H66BJh+lo3cRwdIips45lztyZfPL1JqYftwjJFcBxBGxHAMdBcAT6uvopyA+DqaPKCqZpUlxSQjAUIpFME87Pw9BNJEXj48++5PyLLsY+mngkwtEAkjmS+ZvLRsrJycn5yeSCSDk5OTk/OWskgOSII62RhCQiHlIpaOtcTeeRfppqmvH7C5DsKJ9++TaJTJyCsjo6+pIEw3mcuHABk8dOolTMJ9bnZmxjDYd2buaJlQ+x/NRFPPbwXVQ1BhGUYUpL6lAkH263F7fmxTB0XJqEZTrkRco4fGCQ519eRe2EGsprSigqmohpaQjyIF6fgMflJhlPsP6LVXz02utsWfca+YF8Coo9DA+3ochugsFiTPoZ1TQGf6gSt8fLvkMHuODi87AFA9uy8HgDtDRPxO0OktYlohkXPtVPKBBhsO8If7n3BXp699E3ECO/YDSlJTWctfwExjbXU11by+y5c7EFmUhhKQuWLGM4bVBdN4r927cytrGeD957nxkzjyEQKmRUywQELZ+47QMtj7Sp8MyjD+CWHS656GKKSmrJEsQRAmSyEmGfn64je2nbv4PV77/JwgUL0dMZBEFGQERwxJFJeg74IxopI0ZTYzGv/ePv7PjhWypKyqlraCEQyUd1aWTTcT544zlcksV/XHYePd3dbN++n1GjJ7NkwWkY8RRCPMaiORfiUgx+98cz6RrYyIqLzkQVKqkubqZz5y6euf96vtq6H6+vjsVzT6bAW0LIVUhNWRMtTTPp60kSjlQTH7ZRFTeCIyIBkmOh2BboWbyShEsQEQ0Ll6Xw9LP34NJ0zr9gGYN9GazM/2DvvoLkqs/1339XXqtznBw0M5JGaZRzDiAhCQRI5GSMcQBj420bnDbGYMz2Bm9jgslgbLIxOZskskBIIiggUJYmh85pxf+F8K7ap+pcnDrFPhenPzdd1TfT1V211tS73t/zRNEUPx5ZgtE88+fPoq1pCpIj4ZRNhgf7MDSB41avoqmxheGhEhPGTKPUnWbPl/t4d9OTqP4RFCOL67m0t0+hXBGRxThaopsN609jTMcs3FIrw/0iiUQz6Vwf/qhHXXOAlqZ66qOjKVZUihVANVBiQQZLBfrSOa658Xb27j1MYbCX2V2TyaYySLZDIhJEMNOI5hA3/eFqSqlDvPzm2+zYtYvzzj2PA19+yYyp03FdB0UNYgSTDAyNULTLDFS6mTtrKtMnT+ack5ezZE6CqRMnsmrD5cycsoDaUTVEfNMI+VswzTKCaCPIeVxhGNtNk8704/NrSNTwxe7D1NfUoWkRECOUyirDaRtR0ynj0TCqnvGTxjN24ixmz1tB57gZjJs4lcamdmRNJ1cxUf0+zjztG0yevgDVl0BUg3SOm4oiG/Qc7savK0QCKk/f/xc+/uh9/vbAnRy7eiGaz8G00tx925/YtPE1SqkRmhubGTRh3LjxjAwOEDJUoiE/iA54FoJdAtEG6ROWzmmmXBjm888PcM63f8y2Te/zlzv/TGokx0U/uZZzz78YOaBAKY6qTyNCE+edt5pHH76KF164j4bGiTS1rGPWpHNYvuhi/MHJtI1ezPzZG5CVGoqFIqqoYhghEPI4lSE2b3qLq6+4ggXzFiOj0dg0jrXrzqRsS7z/3ms88fBvsCpZmuvrkAkxa/qxZPMuo8dOoOLlcSQTy1NQVR9mKc/rLz3DrTf/id2fbWfO3EWoWgiMOI4pgRMGJwp2EhwDz1ORtQLvb7uX516/ht1736GzfRmTuiaTyRaYNHEuVsWHLAVxXRFEC0+oUHFKOI6IW1ZQJQ3Jq7Bq1QI+2ryJDetPxzH93HfHDWz96B3GTZqIh4/hkQKeY2OW+2iuD/Lmqy8ya+Y0BLWVRCJEPFrD0ECOoUGb9o4pnHfehbSMbca08ziZEfxSgRuvu4wXnrqfBXNnoWphWkeNIRSPUdeWRHYUrLLNow89wIfvv8vQQD8LFsylv/sQYzvamD5lMolIlNraJmzTpK4mQTgSxPZAMwLIapBSxcX0PCKRMDNnL0bVAgwOjaBrPjzbRZUVcqke6ms1jgzs4T9u+j2rlixDLNrEgwESQY2hoQMIlMgV07TUh9n49z9yaP92mpvHkDH9rDvtm+g1SQJhj/c3Ps37b7/Fjn0pzv72TxndNZumMVOpax2P7YgIiIh4yJ6HiEcxX0SToJAd5NNt29i3ZydNTXUoqkR9Q5Lu3m48NBTdz7Mv/pPzvnE+rgBHR0ZfbSB5DghH20Grqqqqqr4e1SFSVVVV1dfOBWTwhK82kXKIBHBsiw+23MWF3/geI/1Fct1FjKDJixsf55wLzydbAV1LEvAFkJ08YjGFaIYI+AuYhU948ek7qIupPPWPR/n3X/+WF198g2lTZlPfVIduaHhYiJJA2cxQLI2QL2QJBeOUS1CouLROnk0o4WegVwU3gCD0IWGjiT5ivlqeevx2Vi9ZQ660m3Xrv8H5l5yLrVbomnUsRStGkTyuXEck3E657DJ56iwkRcEfDKOpQeobRnPkcJ5CQUQ14uAL4DgVSqU0sZBLTW2BfCnL9NmzmTR1MZmSy9zF83l90ybWnXU+aqSWeMtYlGgzOw4OM2riXEZMg+XHriJriezrTRGvaebHP/05za0dNDe3Y5oOVtlEl0RqYwbjOzpoa+mgUJAoWhEQwyhakPpkkO9feDpNcT/fu+A80qksVqWCabnIqo6AgOAJCLjYSNQ2NBOL6vztntuY0DmRcR1TmDhhHmVTIxiMM9zfx4FNG/n0o82ks3lijWNZtPYcGsZOJ1URcSURURMolwYYGv6C997ZyPJla9CNejTJT8Sn8NaTd3Ho4xdpm3oyyYZphLQoVrbI/i8OsH3zx/z13ofZ8uE25s5Ziqz6qSgqjgie6IBggWghCA5WpYwoCkiSh+SVmDBuPHNmLkFwooT8TSiKSCY7gM+nEfTVMG3KMg4PFdF8cUqmSGvHWPyxCILhI2+LyMFGVCVCRLOJ1UV588PXWXXS6XRNP4aOCasoOmFsSSZQ60OV20kP+smkXRqbdW6+69s8/fLvGUh9woTOpbiFKYwMaoixIp6kIijy0SYqJ49P8WiORpk2pot5nROY3l6DX7QREalULAaHUwiqQe2Y8YzqnETd6Im0j53PqmM2EPTXMHflGn520XfYsf0TuvsO0d7ZjO63CeoF2sUepMwAs9pGc+3PLkEzj/Duq5uY1HoSGbeRa5js6wAAIABJREFUlFdCE5KUiyU0fxl/0CWV3YdmgOOISEKA2uQ4Jo6bxuKFC4nVJhlOjeDgo2SCK+l4uoMlWog+lXzOwBMTFMsGopQgHG3GcjRsT0UxApiuRG9vL7FELS0dY+maMgUPG9wikZBETVhEtFNMaGli3uxpHHf8Mp55+RHe/+BNtu/4gMVzZnDcokWkBnp467VXeOet1/nyk02smD+T++64ldtvuZmXnn6KE047HQSZ/t5+fv29CziwK8t3fnEnx845C1+ihvoWiZlz29h/eDudk6czNDSMEIihEoGShBJMcsra+bhChu07dvHcC5+wYd1lqFqSYCQJkgSujmtFkVSLSmUnoWgQO1NkaGiQYCxJU/MoJEdgatdkisUykibTN3yE1rH1NDaq1Pi7uerK6/Esk9aWqeQLCmMmTsYVoSJkKbp5RElHFB08e4SZC7tYsWgWt99xIyet30A6k8bzQCIKKIAIovnVQKiM4i9TV6/gkOHTbQdYueIXqHKAcZ0z6e/LoigBECUKlSH8kTLd/TuIxiMoYhDBktE0P1ZukHUnLuKVl15kzTFrKGRUFq6dgBHKsOfwJxjaeEQ7RE2tgT+i47N8xPwxfnPljzj1rJ/iWBYD/YPU1XQSizWwbes+xk8aS7Y4QNEaIeb18/MfnMDFFx3PuDFJXn7hNcaPW4LrBtBC9diSxnD3APFQkIkTxvPKyy/y6MMPsGblMcQjIfbs3s3u3TsZGDjMzTddTcAnUVtbS7i5gYHBPURr/JhCibxpYfiDFDMVBvpH8IdCmKaJ7YAqKSiKSDgkc/jgNgzDZXjgCCcsWsEDN93By489zqTmGn747e/w2vP/4Iff+w4NEYNrLruHoJ5h06Z+vnXpfxKp64CITs/AAVprmwhpDcxfczZ1o6dTFvz44k3kig6SpCK5Iorrobg2suegqCLl/Aj1NWHqkhGe+PuDNDTE0TSB31z1K1paWgnH6lGNKE8+8zznnn8+8NVRNs/haO2pDUggVBM7qqqqqr4u8v/XH6Cqqqrq/39cEMDwK2zd9hEeFo0dnWT2OrhWntqmOoazQ1jUENBkZEnANS38qokr7ccRszz+1M28/tobTJ/axPy5C8D287MfX8f+g93YjsnA4F7wNJobx1EspRjb2Uq5XGbfni/pHD2H2d48ymENURmkuXkMdlHCsfagiuDaDoKtoMs+ksl6unt7ONTTTTgZQQ5oHOjvRSGMP+pH9gKUTQXTUrArZQJhla1bt/Pg/Q/wg0t+SmvbOAb6csiqn6KZQRZsLLeCqglkiynWnbyG9jGTsamQK4vUd3TQPnEagdpGcoUSkmyQNwWUUAOpioqDyra9h2lKtFHbNon7Hnqcto5ONEVH8lxUxzq6neMJTJ8+jeFD++k+MoARrMHwRxgplqiJBygUckyb2sVg7xGCmsqh3l6CkRocxcD+v/xaguynlC/TX8oydkwXSxctpr15MpmCgKL5yKVLxPxxZoztwswXmTtnAYIRYrDg4goijqiAm0MWXSS5hwcfvptkZBJrj72IntQI99z3Z4b7DyAP7GFGxygWr1uCF0lQGenmb3+5gf5D+wgHFMLRAFNmzKGh0WbfQB+22HL0Sb4AguAerX8XHJBdBNEFz8O0s/jUICG9DkX2cfDQHp5/8R9s2fohf/yvm/ErjWzZfJBwWwO2bZA1C/RnivQMZ+msGUOxVGGwb4TmpMpjT93F8EgP68+4gIWLT0FSEuw7KBKrTyIrZXLeXjzJJRCJoCDjIfH5rv0sWz6VmTOnkaiL4wTjxOuDDLvbwXaQXRfBc6GSwycZWJUR2v0xbNtBKA6TypSR5RCxRCM+02ZwZJhPdh8kHm8hEFVJVjTEchnJLbHzzfd4883PWLVKZcWYRlwvhWk7yI7NP/92A/sGyiRqJmMPDTJ+1GLGNHWSzQsUfWHkYB1OGVTZRjc88sUhXt/4Ijt37uSKX/0ewdPJZ10CCY2+/kMoKiSSMUzLoG8gA5JBqVJAVG1c10YUIuCALKqoapBSsYQoBHC8CpZlYTkyyfoGXNOinCuhyipO2WRooIeNr/8TSShy1lknk/DXYJplZB2mTJ6ILdl8+tlm6huSxEUfk7sm0lLXwFMvvYJYTuMXLU5ccwwNja1s+WQHdrGEHEigxWpYesxE9mw/iHloF7fc9Aj7B/dz3+O3YPg11p14MVhtxENjsP6VUKwAxTxSbTtnf/+3dHQs5JW3dhCIC5TNIrJcAsqYZhLVpwJw3fX/wfmnXM64rnXUBGvJDhxCkiTWnHIG5NJ4okfRzKAHBHbv/RinkCaitzK6tZ5YRGPfgbdo6ZyCJjbjCir5vIamB1EUFaucwXOL4On4YhorjlmIS4l4SwNDPVnUiHM0vwobBA9cH5l0AT3SRjFdx5I5P2PJHA2v7KdYzKPpErJkIIoiougiSiaWm2PX7s1UTJtJ7UswBcC2EQWPpq4ufn/tNWiJOOmURW/3Dlw5TaxORVP9SK6PQwe3Ucruo3PsAqZN8TNx/BPkc2kE0SMciGFWPEaGTR599GlEVWT+4g72ffIJTQmL+XPG0Ht4B+WKSWqkDwmVSkmkIqkgQyAQRBAEXNtkaGCQwf4M3YcPUxOLcWDfHjZu3MiR3u10dKoc2LeNSZ0nUtw1zHcuPZXZizu59srryZYSDAy6JPwRwiERSVRQVRVZ1gj6I+SHByhVhvnd767CFcpcd8MNYFt0tXVAKo3Ps1m9dDqf7tzFx++/w+iOJk46UaO322LajBUU8jLRRIyhYh96wE+IMNNm1CAm68m5kC5mKZsekqKBJwM2ggeS5+EKoMgisdo4TiWHIolEoxF27viEuXNnEo+GePvtjZw5ahqSJP3f31urqqqqqr521U2kqqqqqq+b99VqvXC0qdtBxsKjbJfwh5oZPW4hhbxLpL6VnqDMIb+Ph159lxWzVhAte8ilEiW7QiAMmrmJt19+lf2HD3DJT/+L5jHH8cRrW1l14mkM9CXIFwUSWj8v3H4r5oHP8fo28vwTd9PZuRhJ8LjmF6eypCNCW0whW5EJKX5Sg8OIQhlPEHEQUQyDkpNm9rzlqOEJzFxwJvHadqZNm8aEjons27GVKR1R0t27+HDjs4SbGrEAz7LxOTY3XH0Zsya3Mn/BWFLlPEXBh6Ab4FWIBFSGB/vwGT4mTphBY8skhoZMahtaGRjOgB5j8vhpVPpHCLgSftFPOFjP/v3dRPwB7NwIgUoKPxYPPXAfqXyGS376E9rGjSNXcalURColl8Zkkuuu/j5rjl2O41ZQdA1J8dA0AdO2sDyZCTMWMWbGEkK1rahGmHShgilo2LJOTTSCWUzRFhV56rZLeOXvNzB/8QmkvQl0TN6ALbWgSQJ//P2PSPd9wuSpo5BGzWbs3GPQ4y2oWhzJE5EFMHDRBQnVUzA9kw/f3cYPfn4FWw/vJxeSeenRRzl+5kJ+9O+/Rl0+j1C8gb4D+9ENP39//GVqmsfz7Ut/w4oTz0IMJED3o2gyilCilO9DFkrcdffNvPDSsyxftYKRXAElEMJEJKRHqQsGMLPDyMVBPCvHQCrL8SedihGIYOgais/HF4dTJGI1lEsFauoSlPMZdBkaYxE0J8enbz3Bln8+zCmnnk/zpBPJ2Q2USj50q4xkplAlyJcNLBEM08aoWGipMseccDwtk2fh7xjFcPd+rv/h+Xz6xiOo9DN1SiducZh0Kk0olEAUj9aKS56FaPdy6UXHMqolwHPPvsj8RUsolwtYdp54OIwh6mR6SshigANDQ0SaW3j0tZdZe/I6wjWjaKhpIx5tRZGClMoi7U1TmL9sPcmGdlavPxsjMR5ffBqeEcNTRRRPRsq7hMIhBosp9vYc5kjPblYsmYlnljFUA+QwXsnhycceQ1EzvP/OZsaNmstIXwZ/wMa1bbyKjiGNwnL7UJQyhlKg4mYoy1ARBWxRQfAcVDxUE5x8mbhu4BULBHWRZE2YzvGjGcpnEYJBQqEGgslmbrv+P3nlyWf53nnfo7FpEorRSG3DKDonz2TS5Kkcd9q3mbd4Nb39NqM6JvDam69x2lkbqGsfBaiUiiZT5x/HvGNPR4o10Nk5luHMCFMnz0XWa4AklayHbIj0f7GHYMIPch70ChesPY73X9jIeWd/h6UnnQ6SgyAfweIwMiKSV0d+EFRDJB4Z5r5772TV2g0gVNCCDhIVRCnGyJCLJ3jccctF3HbNVfzw1HPRyzpS6xTOPOtUYoZKuu8Ar7zyGguXHkex6GFocbyKh+M6iG4JWTLJ5GxCsdFMm3MyVs5DzGf56Lm7+OdLLzJj+ioUKYKl5hlyPiGcEBkpithOM6IYwjRFXDOHgIcejCAiYrsmsgHhuIIjlMC1GThwiI4JnciCTSrVixoMYJcl/OEGSlkTTVfQ9AiR4FiivnHIgoGoZghGPbZtf48xY9tIlXLMmbuMf9x5K3/96008//yjrFxzOrYb4LF/fMD119/KDy89C8dJUxkyaB87GzXaSLh+El8edpk19xQkKYabLxKVbQxZpVxwqQk3sGBBI463nYceuZcdn73P+d/8CeMmTOGl119j5cnns33/dpo6xtDe2cHydQ00tijU1HbgFGqJRTwEt0jYpyBJAoP7DhDxB7DMYQRniHNOnMqyiRXGNIaYe+z3OdSdxgokeO6dzSxefQK7P/uU3Z/uYuXkRn5z6TX85z1/4+2te1l15gVotQ0M5XNIioHkybiWgCkodJs2lldB10XswhCGpiBrPmrqGzFLeahk8alFPv/kYf7jios58sV7PP/YXSyZPYGnH3+GzrYoK1cu5M1332LU2GnYosq2j7dx2imn4Dk2ong0b/BoFpLy1WtVVVVV1delOkSqqqqq+l/y1Wk2QEIELMdkZKRETbIBwRYQyw5OIMEfH3qU+fNWUkeMmKngliyMZIRLLvs277/8IBdc8Es++2IPC5acTUP7DFatXcPBg59TGNIo5ofwBUrcf8dDfPjuVj7aupv155xM2/g1FE2HPZ+/waIJk4jU1pMtFvHpOqJog2iBIIAgIKsyHjaepFKsuBj+COVSHkPVsYomLz77JBPGNHL3bTezfMksQg1jicQUXLePK39+LsmQzjmnfwNdbaXsRigLUK4UCOoyol0Gxybk95PNl/j3K36Lg0IsWU8onqR3YIDWuig3/vYX/PaKn3HOGachSSL/9V+/45H7buFHF25gYLgfPRTBxuOMs84lEk0yNJLDH66jaMskGlq58eYbOWH5DPyhMOlsnlAiTt/AEK4goPv8mI6ApPqQZZWhgT5ChgquTSqbR/WHGOzvJhLQuPW6KxkpDnLSmecwad4qDEHDj0OrHz544ymKpTxLj11FTgiQc3RsJDRJO5qp5HpIHA2MPZraIWIFgkycOJkEAjFXoHT4IO9t2cTMlcsI1dZxZMcRnnniOSKxJIFgjEVLj2POgmX4ggmG01mStfXs2/clfl3HJ2v4FYU3/vkS8UiYC889D8o2yVACyQShVEExQoBJW2sdIwP78Mci1I+ZQLCmDtMDyylimznaa2L0799FR3OSXKoXzy4T8Glkc1l8hsZ1v7+CczesYOr8JRzMyjiiD9cz0cQ8sZiGoEgMV6CiCGiOiOzKSJ5MTtXJqj4ymsZJa07i+LmLaKyJM5w5wq233M7L/3yVtrGTCSYaKZQtbNdDkkGTRVYsWcGopsnMnns8I+kCiCb+SJF77v0NW7e+wJLF4ylUFPb19HLjHbcyb/kSZs6czYTOLuLBeiqWSMWSscUAoeQYUkUXTzYQVANZDBwNz8ZE84qorkNAN8iWS5iCRyweZ+aMqcRDEcKBJKLso2QrhKQWxrS10zx6hKZRErJQTz4j4lOTWG4BSTSJxCMczDgoWgBVALNsIkoqAqB6FhErS9ApEAqFOXToCLfc+CcefeQRtn38MYuWLkXRfIyeNIVgoo5ErI4j+/ayfesm7HKBcChKbdM4vjg4yMMPPcb9f72fcDhKQ8dESqZAuQyGahCK6jz/wjMsOuYYsCQMXwjcIDgSCArBRJy5ixch6wFABRRcz0NSRZRiGjmsHN3qESxWL15Ef88QL770KouOWYWneGza8gDPPn8fH3/6HjMnz8Mjx6MP/5atOx5h/75drD/9NBAUECxERQEhwsGDI5hWgfraAs1Rm5t+fTunXHw5Rl0jI9378WkaTc1t7O/NMWrcXEomeKZNUAG7MMjN1/+SPds/5Lj1p+EUTWzXj2zbyBEf5t4t3HzTrZz7k++C2cNll13AtKld1ESSBFSFgC6gyBqq6+B52aPHPT0XVVEQcBBFl127PsPw6USjUbZs/Zj21jZk3UfBcTEFHUkPIukyeTOHqFcQkMHTwPWD4IJYxHFtPv/8S2pq2hClCD41yaxjp9D75QhbNh/iD398jGXHnMJFFy1n8wcfcNoJq1AcGREJLawTSISJJOsZO2EW6WETs5QnGqzwwtO3sm3XRjS/R9Boxq+FWLp4Be+89Tp2pZZ1G84iFPNx3PoltLYtZ8r02TQ1jwZRwvC5HNjXRzI8kaDWimPZjOSGiYR9UM4S9qmcuu4EVhxzLJqscdLqY7nnlr/R05uja8HxJBtH0Z8usnb9BgaGhujqbMc1c+zZ+i62WSQlBfnGty4i0tBKqmwSCAexHA/JBREPBA9X84NdppwdIelT2fflbqZMm8bLLzzH6KY4qpXCLA5hhCTMkkkmVaAmUc+iBcvZ9eUXZHImb23awk9+fjVaoJZs0ebJJ5/k5PUnYxj6V3fYr/rZhGoWUlVVVdXXrTpEqqqqqvq6CfyPjE+RoyGiZqVMIZslEgoiI5EbTlOK+vjky70smrUIX84lgYYcClIxM1x34285Z/0aRs88jtpEDL+/gexIAVGqYGgOqX6XtpYkJmk+em8nOz8/xIUXraK/4NExYSW24LH5vWdYt3w1B/ceRk9ECQVDDKdHqKlJUKpUEAQPRVEQXA9RFHFcC0F0UCQPq1IBIJ0eoq4mzj8e/zsbNpxIUYjjC7oUC4fYt+ttfvGTXxKNj8a1GhkugOATUDQJXYBSPossi5TyGcxKhf2HDjN/4ULqm1qpODa1tbUc2ruT9197nlnTJnDcurV8+tln7Nu7k/Gjm2hrCKAnGsiYNuM6xyOLMqmhND49iCso5E0X1e/no48/Ys7EVmLJOhTV4J6/Pki0pgFBVDCCIVwXfLqKKno0J8J8ufMTzHKR+oYWRrI5DF0jqCu898ZLjJk+g6bOyTgVUKw8SnGI+264isJIL+d89wd4Wgz8ddx2843cc8ftnHziiVSKZWRFPvprCwIeAp4AObtCMOBHzmSIeB7vPfMMm3dvo37iaFxZ4fA720mVKtS3jQJRIhFP4noujmNRrhTwGwqeV2FkaIjhgQx1dXWYpSLN9XW0NjSRG86gCzL14RrcYoW+XI4jR/aTy43wwN/uYSCTpbZjPCXLxcZGxEb0TBoCKo/cfw+iZxEK6CSTUSLRKEPDQ2h+g03vbaQuKjJp5jx6cg7+UIR8dhiFMkd6DpOvlHANA0sRUBwR0ZUQPZm8opDxXO57/DGcnMnVP/kVH374EUZIxHJVxk2cTsGSGTNuMoKk4Hog4OA3ZOIxP7oR5sDhIcLxKHpA59Pt77HxzecJhPx0tLfiC47iP/90IyPZDLv3fM68mbMRbHCKNpYNnigj6gGGRtJEonEEQSSXSRPw60i4SJ6NhIXkgesKuJKIi4tr25TyBSRBxkOhbIu4gkpuyCPeUsvV157C+K4mVKmdbEZgcDCNEbDQDI+h9CA+fzOibaO5NmEjgGl7CAjInofqlVE8i8FMjngiQWNTA41NTdiux/SZsyhVLCquh+V47Nm5A10RmD1tAls++hDdMBg7ZRbJhhZGjxqFaZrc8qcb2L1nHwFfgFnzltJ3aB/jpk3Ar6nUt7WRHS6i+cNHB0iSDKKAZ5UxKxVEUcCxPERZRVIk8ED2K2DnQXGhlEWyHMaPm8jSlashHMUVBFobokyfMZU333yXBXNXIRs6k6eNoq/vM7Z/coA5U5by40t+xuYt7xGLRqlr6EQRAyiSg9+X5rrf3UYp7RIyYrRO6cIt5QhFozieRKiuHSPagGmCKor4JZOIz0NxMgz3HmLOzDmUSmUMfxTRtcAu8dLf/8Lrb+zknNNmotRLtCYDPP73fzKmfRyf7/yQe++4EcMxqInGee7Fx/nj9X/g8507mTKlC3AZHOzj1df+yaJF8+kfGqCzayLxWBPpokOhbKMbUQqlPL0DB9F9IsGQgGP96+jUV1svgo1lmSQSCRqaJ2L4ajBzeRRpkL8/8CYfbT7Ewe4y+w7u4aST1jJtSgeyY+KVXQJhgWf/+Sj/fO15hkaGaWsdR33raCKJMNnenTQ3qTz9yhN8sHULG064kHSqgFWx8PnDJOITaBvdiStZ6CGHQi6IpgaQRB8eLsVSjva2iehaHMGLYPhClG0bwSmiemUI6Gx9821O/saFOCWbYtaiUvI467zv8/xrrxGvbaBiuoiSRHZ4hPGtjURDfra9/xaaLnIgVWL23PmIRpiKoFIul0GUEXGRcBBxsQUZTRTwKkWoFHjuuecJR6PEoyGs3CBXXX4J+/Z+wYQZcykVXSKRWiZOnElD02hax0xi9PgpvPPBx4ztmgVKAESNt99+hwu++S08PIR/DZCqqqqqqv5XVIdIVVVVVV8z76tXgaNRHV+NFMgNj6CKIoLnEtRVQkGZgWyO0R1dtERraDGClPszaD6VfOEwsxZ0sWTlKZRGVGLJBMPDFZK1jfR17yCeVBALMju2v8vFl/+Y6//4MMtXn0Rr1xi65q6gp1ckHg9z7+1XcfKqk4lF41z6b+fzzNOPMWpUC/V1CSzHQRAEZEUFT0CSHBSjiCAUMHQD2xRR1QChYJSOMe0sXbYEWXPpS6voepFS6RBbP3qGpx57g7DRTk1yCWhBik4/uEWkSgVZcImGQ9zzl3tYtGQZ47umEghHyVcsdN1PIhmhONTNwV1bWDh/Oldd8XMuuvjbPP/kg2xYs5j3X3qUD3tSNE6cQl08SbF3GK3i0pSsJ58r4OkqmXKeWfNnkdAVyo7AULrIgZ4Bps+aTygSwzD8uK6FYBeR7TwP3nEDn295l1ENNUTicRRfkKHhEWTRo2vcaCKjZ6EmWihnR1Aye+ne8QbCwGfMnzGVK35/L+OmLuPNzft59oGb6GxpZfVxx1E2TUTFwBUFHEHEFkU8UUBx/aTsEj6/QF3Ux8Y/38qVv/oZyYY6Js1ZzON/fowzLr6IWEsTsmqAAJlcBs+rEA/raIqHVcry51tupmvKIsKhKAGfn/p4nN3bd/LI3ffSHEry60t/wquPP8G8tcej6DKy6GFVCqw9eQPD+QquKBHw6UhuiYBocevVl7NkwQwM1UV0Stx+282UiikqpRzxWIi9X3xGU30AQfURiMZx7AqJmA+rnEIPqOgBA1cAU5KQ3KPDM1tQKCgaPbkim7d/zp//eAcxo5b2MeOYNmscx6w5jVmLVuIKAWQtjD8QQpDAb2js27eFdz94hMeevIv1p51O9+AIFctCUAxWrzyDWTNWoUmjyJcdFh6zjDkL57B23TrsoomKhiHoCLIPW5ApWzaJaBzbKpPPZFE8h7BPQ/QcRBwkXFzBw5IFbNdEckETNQJGAlGJYnk6jqCgqBKJmiSb3niaSdMTvPP2hyxYcjaDvQMEozYuwyDYNIabUHp7MfKDNOsCqu1QdiRcQaEs6ViSSEXS8IcMhlJDxKJJxk2azNgJXahGENUXQVIMbGQK6X40HfZ98RnPPPMkpgMz5q+gYmu4rsjyZatYPH8+PX3dvPfOJsY1txHyG/hqI9S3t7Jn6zbqR086eqRW+CoG0xNBkZE1HUQVUVYoVEpIskK5kOLaS7/D/Q/fTU/3Hi655Lt8+1sXIiXrQTPoH0rhyRHESi0KjcyashKn7EeSAyDKTBg7h1NOv4ZwaCazZ84nlT3Ck88+xcJFK3AcH5ZjEo17TJ7UzCsvfYKkhWkdM4Yrr7iCTZs2s2DlOkpqgr6RMr5gGLlU5IuPXufaKy5i7qRmrHyWSbPmoeo+PEHGtMrIqkRTIkF/7yYOHnkR2TrE3bfdy+/+9AJBvQbNPsLfH7qBV57dyEnHr2Hygmk0JaNsfP0Vpk/tIhGLE4mE2bV9J489+g9OOeVscoJLxgbXCwJ+VNHPyFAfyaTIs8/ez/Mv3M38ucs4Gi2qHL26CxaZTJpEIoaqx8DTyQ4PceXPz+VHP7qVn/3yKpYsPZ277r6W7u7tnLl+HnYmg1e0yUu91LRFyGYK3H77XSyYs5SwBKXUIZ5+4mY2f/gEFS1IyTaY3LWchoYkn+/7mER9gnnzT2QoA6FoLeliBl2OgJVARCEUFgj72sgMC4QicXKpNFY+RB4FQ3VQ1QKp7R+w5YONLF2xBlkN4G+YwPjxxxGuHc3krlquuOI3rFy1FjxIxpNkBgepSST58MNNHO4dpK5tNHMXLCJVqGALR3vSJBFEz0P8Kv/PdVUk20R2bFoSQRpq4vz0Jz9k+fyZ3Hvj71i9YCLPPP0mJ37nMtrHzmRs1zzqWidgS2Hq2ibhSBFMIcCsucvIFE1K5Qr33/8AJ6xbRyAQQPzq71ZVVVVV/e+oDpGqqqqqvmb/6oz5764Y1wPXIzUwgCyLVGyTSMRAkFNEIxHsikt5JIthi4QjIm6lDyNaJlEbon9AJhjuYNvHW2hINqNKMqFAhct+eA6qE+amm67h4ou+TUvLdKKxWmpHJSkWywTFMAd3bSbbs5kn7nuYd9/cSLLBR9eUycycO5d4PE6h7OKhoCoaniciyg6lcjf9A4d58G+PsWThajKZEvU1zaQygyiGwrr1a5g993giwQghI8o/HnyK73/vcqZOnYOoyQxkuvHkEqokINtHvwnHcfj448/omjody3URRRld9+O5UC44hMnlAAAgAElEQVQ7qLZDWJP4wUXX8a1vnYGi+lm2cBExQ+ej11+lZuYcRndNQsrnueWKX9G3YzvFwV6CPhktICMrFoXiCEbZplSyMXxBYrWNKLof03awHRNDFRGdMk4+xStPPcLPLr2IlsZaVM1gMFtiVHsHuUyaZDyK45iEdIXUUA+/u+ZXaLrGmaeu5+577mf+ohOZO30Bv7z8V/zootM5ad06AoEwjqDgSRKOIOIJgODgCQ6S66csO4zYQ4zYGWI+kU9ffIMdb37E+K5ZBGbPxNQUAqEoCCKqIpPLjqCrEsX8MD//+eUsXTSPGXPnkxECaKEQyAIPP/IQW7Zt47xzzuZ7F17EGaecwjnnnIW/ppFkOIjiOIxvb6O7ZwifEUGVZBSzglJKE9IUps6dz2133cuRniPIkse3zj2dCR31tNeF2fLmc1i5AV5+YSN2yeK4ZUtJ9RwirErcecftaIpGwOcn4vfhemVUz0T2bATAlgQi4RCrVqzEzpbJdA/S1NzAwd4DIIfo6c8gqCFqG1pxbQtZFDA0gW9+43RU1WHx0uOoqelCUhKYloSq+BEFHVkI4llBbK9MqpghVpOgv6+fiBFClzRkW8Rxj25/iYJNrc/k/Vde4O/338PLzz/H2uNPwBVkTEmjIOsUZY2sY2KoAlHl6NaEbUqUbJ2C5SGKEgHVJTWwl9HjmhCFCIvnXkh+SOCJZx5k575/cPjwXioFmUm1y3jipu/z2ZvP8Ph9N9FzeC/jZ87GFj0KikJZcSkrHrJXPnpNkBQUw0euYKMZQXKFEp4ngifQ3BIFoUIu1U9Hewd9gymWrFpP0dGQRR2rYhMO+Ji7YDYzp82itbmDUj6PL2rw9jNP8+DDf+ejDz5l0bJV4MlHN70kEEQR2wUEkUKlgqbplJ0yAV1l6fw5fHHgcy79+Y85/5yz+d2VV7HkmOPA9ggk6hAUDdUTQVCQlACS7nLLn67hpRceY8kxG8CqIdPnkqiJMHXuWJYvm0soFOfAviFEQNXK1NXVcN75/8b02YsIBAJMmzKF3r4BGkePxzPilEyPUDCAWEwzoT3B9Okd/OXOu9DkKA889BSrTz0TS1SwZBXbhlDdGBYtSfLG+6/R3ZcjXwjz9IPPsXb9Kfhqmzhpwxl0TRpD45RO8KChtgbBs5m1dCmC41IpFJgxYy4tjW0MZbIImkEhaxGW4hiehs8WSeoiBmmmT2nHJ6SorZ+O54a+GtC5IBWo2EMEwg6XX3YxW7e8yfwFM8llMjz65HNMnj6TpvZavnn+6ZxyxnoyPXu5+pcX8eRjd7D81NXUtozm1Zc+4Kf/dgVRI4ZdSqNKJgHDRpLKTF14Bhf94CoUVWckvw092sczL91Fsr6TWHQiuaKEosl4bgrBiVKp5PGH85TzPlQ5gCAOomglDDVBUZTBqeDL7MUIwfuvP8WTzz1Bsi6OL5zEVhUqbp5QTMSsWLiCgiTKuLaL61hkszlOWHs8uWKFU84+C58/SCqbx3YFNEUGQfrvhyUCHhVTxBA9QppMdvAw8UiIY5Yto7E2gVMc5KmHnmbmvLFExi9G9vnpHUkj6X6KDvSmMvQMjzB99nwGhlPIqkIwGOTuu+/hkUce5ZJLLqluIlVVVVX9L6v2X1ZVVVV9zf67L8b7n+/btk3/8BD+SIh0McvBPZ9SKQ+iOFnGNMfw6SZ4GcSgRyrdzQ1/ug7DHyOf9xjbOQFJkKgUi9xw/XW0tjQxffo0Tjr5eMa3N2AW0siicLRSW/Coj/p46K5bOHbhLArpAlYpj6rqtLS0YOh+UiOZ//nhvKP/kLuuyzPPPsXUqVMBAdeBweERsrkShaJJ1+TpTJo0gUpeQnBqWLLwXJKJNrSQjh7OEE066Kr032064UiMoeEUS1ccg+16KLKGJCrks2mSiQSKoCPi5847H6CtLUBHRxfhSAOxWCOJWDO7Pz/A5PHjGOg+SO+hvRQyA6T6DvDg3X9mbGOcwsBB4rqAmx0iEQoQD0fwHBdRkImEY5TLZVRV5cC+/biOTWtLE63NTXiORaWQI5cdIaArdHd3I4oirifgt7LUGy7X/8c1ROrHUDduJuVAIwXPx4SxHeQGDjNzbBON9Q20tY4im80SCoVwPeFo85EA2CZ2KU9atvjwww+59Lvf5/bb7yQ4voN9uRQLFixCNqHil5ANH5lsnlKpQj6fxx8KkqxL8thjj9HQ0IDluDguhOvryFgVlHAQKejHiEeoa29j9YYTmDRrOs2jR+OaNhoyqivwtzv/QmOijpAeoDSc49Dnu/n1j3/CX+76C5YWI9Y0mnlLVzBq9HgEXN548RmuveJyHrzjr7z14jusWXUSgi3y5bZtPPHXv7Dxxedorm/ghLUn4lYsFMsmIXsYbhnFKyJ6RSK6gGQWUEpFNMeiJhYhnRohlqzHQcEfjBAKRRjqHyCTHsG1LQqZNKetP5t/u/gPTGo/gdxgCKccIBZqRBQFNK2CKwyD1IOqusQiEayKSTQcQ/AE/KqPYqGALHlfHVergFgiM3CAmF9i6sROyuUyoqTgj9XiBhMUJT+BeAPIEm4lh2AVMHSZQNCHJEnUxBMU0sOEglHyeRdVTVAsKAQCNaxYuorJk7ro6+mlsa6FfNlmwwUXcvq3v8Pqk9fR03uQ9NABSqlD+LwB7NRO7rzu37DNNI1N9aTTWSqWTSafx7ZcVEVHEI5m9hRKecpmhWt+dy3jJk7knHO/Qals4goiCBKWDablksnkUHQDx3IwLYdK/xCL1m/guDVr+WzHbjIDwyBCqVzE++o65DgOAIZmAKBJRxvWCIe57DdXgaCg6D7Wr18PsgySRDo7Atggl0CqgJTGrnxOrCZLhQNAFuQCobgJunT06udZQIVoOPBVBpFKvmTTOziEHvRTrJg0NNRxxumnUpdMILgWzU11DPT3YDsVUFUkw09tcwff+t6PCUbqwZJI5wsoRoCSI4AcwfWpLFl5Bu980MP02WvYuusTvEoWewhQWvjki11884wTGd53gJG+PlauXEnvnj1Y5TKiKFIpmTQ3tVFf04whB0gGY5ipHKXhEVTTxBwZQsQjc/AwffsOIroquP9qGQOECvGEn0z+MGtPnMuhni3kij0sX76OX//2MkR9hHCNh6gI4IlEwvVceeVlROM2P//FL1ClKBde8EOS0WZ8mp9HH36EkaFhJsycQ093lrvvvY3Lf3EJglQmngih6SK19TEGh3pQfRK5whBXX/MLCoV+JMkkEBBJpwbw+URMM4vsg0KxG4zS0VuRKxw9ehaN0tpSi0COu+/+A1dc9T0s7zAOQ6BprFlzPIlEAsMwUFUVQZKpb2olW7L5Yt9BXn19I+HaWiLhIKrkYegKEvbRLSTAQwTPoTaRJD0ywn9d/wci4TCaoYMoEgzHaG42aG0ZxY03/wlEj/qmejKlPLbk4gv6aGxppGyW0AwVw6eRyWTw+/1897vfxTTN/5d36Kqqqqqq/6eqm0hVVVVVXzOHo89IRfhqkORRKmb56LOP2d19gDHTJmELJg/ceyOdo8fQ1NjI4b2f8MHm13h141M0tca59vdXcsG3voPqH4Pg+pCEArInIHlw0w1XsnrNIlqbZ9E0qoGWhIBIDN0fIuvlkSWbwqFeFs0YzXuvP8DyRccwceocVp5yJk1tXSj+BKarYgv6V9sFGngekgiq7PHeO5s56cTTqZQ9gqEQiqagqAqBYBhFM0gmRuFVQhRTIivWnokqOFh2hv+88WfsPfA5k6fMx6y46LqfoXSOQDhBrKYWDxFFEhgZHsDMjvDME0/R3jb1/7B330FyVdei/78nd46TsyYoSzPKOSIJJGGJJEzGOIATvraxDc42DhdscMJgwBjbCIPJSUSJnAwmCAlQHmlGmjzTufv0ye8PYfv5+lb96vf7Xdv1Xs2natdUT52u2jXVvc+sddZeG8GVGDh6jDkLlrDhtHMoOD76+zP85jdbaW9qY/KiBYiSSMjzqA74+dOz20mlDVasnMNjjz/M0LFuHvzjHwjoBrZ9vIl3VW0DA6OjRKNRjHKRqZPbuf/uO/nNb27l61+5jC/9x6d57733CEUr2N87SMOEiQRDQbLpFFF7gF9c/W0++YWvsXjdmUzqXI7fV8m3v30Vvd0H8fkkLr74ItxIEMsTcFU/ZU9EVlRy6RRhn0yVX8ErZXng6Hv85sqruePL32XZtFl4zdWEpnawYN06jhzuJVgRR0BDcqXjz9UFBxEYGhygv3+QLWeeA4JGpKIOXdNQVIWyVWJCezMLly0lnc8xf/lypHCErOVi2wLlTJqLzjuP2V1dTO+ch2F5hEMhvv/1r7BkRjsnrDkJtW0ucxYuIRSOEosluO23t3DfndsIaBZnnb4O0yhzzse/zezOOXzrss+Ry4wwMjzCBZd8nuGMSXNLB/09R2lvrmDo0D7KhRz1jfWInodrlIjKKoptIosurmviSgIuKh4KgicjCwK2nqG+vgo9fZQZUzqIhkJocoR8AaKRBI5lUiql8CyDmkQ1qqDimA6uIHzQdkzAZwt4pTJhUaBYGEWQTHwBD79k0FTfwMLFC1iyYjWuKKOGI/RmM4yWDVZv3sSPr7uBZbOm8NCtP+b5x+7m0QfvZkrXHBobm9BTg0Rlk8xoFY5XQSCs4wllcimHcLACHJfZXXORPAUpWsefChLhti5iFZXUVMV5+ol7uW/rdbz8wK1U5l/i5Ol+Xnqzm3CiBdUfRtct4vEKSoUSouAS8onkR4+RrK3gvT17OfO0zXz7W9/h1NPPwlFjWIIfTxARhA/6zmgSshSkfzDN97//fW7ZeittjU0s33QKp24+B3+0EiQdx8yh+I5v/ZElCQER8YNqEfEva5QtYNkWkqxQLBZZNvckls/qpHbiVHyBICI2gjgGpkthNIsv7jGjcwK2bdHethLcKJZhIlku+NKk+vdy9VXfYeOaM4lG4vzyl9fwxPZHOe28SxgdzVLQTfRsHzueeIB8uo8JLfWoqogsWBjFNJ/4+PkcOtrNZz/zVWSvknVnXgSBCMGwxuBgH1XRKq7/4fUs3jiLRNVctnz467S1zePiz56PJ4nI6kTschhCJWLJKL/8yW8551OXct211/L4E0+yeu2JuIKEi4IrHP9M+tUgUtnFzWbJ9B3m4nNOIywaUM7w06uvpvtAL2s3XYJLEJBANEHK8rvbfsmf/vwE4YjCrb97io995FxUsYOymEXSLPpGh4mF2ylkBYLxKP5giaXLJtMydRnhUBtOUaCcLxMJSOx+5zmeePJhVi1dRVvHQn7/yDV0zm9k+eINjPTnyGdM5s8+kba2lby/521CCQM52MO9d9zB4kWLKRbS1Lc30HPwXVSfjiQf4/Y7ruOFZ7YxoX0ejXUJHrj1F/zoq5dz+umnkDHL9PR1U9ug4JP6qEpIBEPtKFqIkXQWy3ZQRJnU0DA/+em1NNTVM3tWFzffciMvPvscp2/5MC4iI8ND+DUfnnC8OshFxKf5MYsZ/D6Rna+/xn0PPcqqDadQtkWam1tZMHc+BVuiY94i6psaGE6NgOgiyCII3gf3TxcJj+HhUaqra3jkkW1cffWPiIQj/EPjwXHjxo0b9081nkQaN27cuH+yv0siAeAhqCKPPrud3z98D/1mju9dfRVxIcTG1etRNYlYQOXRpx5iy/lnU1vfSlNjBxWJFgQpiugEUYQMiisgeh533/Vrps6YSDA0Gdmncd/Wn/C7P+6gbeYC5Jo4eb1IfbSagf6DvPKnR5AjLXQtXo8Ua6Hshih7IWzRh+OpgISiHj+GXBZFHFuhpWkK4WAcy7UxbZ1AyIfq8zOaylJZ2YxPjuBTRYIhCcnNYXs6pgVPPvUyp556Lv5AAMd2yBZB9oWxPBHbFVBkmYqwH9EyuOHaH7Bw3nyqGtopWwbzF81m5bo17DxwGEsLo4WiGI7LnK5ZEKvCdI73IpnQ0cGjz+1g2frVTJ8zh56jAyxdupJnHt5Gofs9jvb08vOfXstwOs/8pUspFIuEIkFct8zdd9/FeRddTDIewy4XaGhs5PY/3kNDx3RaJ01H10uoooDhFEnU1lNdP4mwEmfsyFH0gUE8q8Snv/JV6qd3ccx0sBURS1TAF6FoOBTzeSY0NpA6vJ9Htv6aFx97ADegcuOVVxEoeITUKFqylrwsI4dj3Hfvndx7w3WcdOLpgPJBT5Hjn55gOMS06V2YlkgkXsfIaJ6AKlJKjxHUJFRRIBQIks0XsTwFw1MoI2I5IKoi6z60nkUrljBULJG1HRwJioURzjrteFNktAoco0woEGRsLM1DjzzBT3/1S9affgF1HbNYccpF5ORaXFlkblcH1c21dC5ZgtIwFTdeR9Z2CYRCXH35ZQwPD1M2HRomTiZbMJA9iYAawHVdXAVsHERBxENFQEDwBNxygeqYH8Urc9V3vkIuvY+PfOxili6voK4ugSfYyJJBKOCjnLMwch6xYDOWngc8RA9ET8DnuqCXiAUl9OIARX0YSxNIqVW4gQSeP4JpOfg0meHRYwT8Lpd++jy+csVlrNr4Yb57+eeYGi8SlnPU1YT48673WLJyNebgMT5/6slsufBy/HEJ3R1B8MrIYph9+94nEDKxzREaG2rpHS5gV03k0MGDLJ42idxAH0vmzkHyBE5eO59nHnuF4aODvHVgmHM/cik+XxSjbOI5AslYmEhQ5dVnt3HTdVfx8tu7OPPsc/FJEmecegaxihqyhoAlaoi4CLgIgoWJQDprUJGsZ92J6znvIxdQVVeP4o8gqnFMGxyrn2987VLe2/UmixYvBk86/vcHRMH7YH2SMXQZKRjCckz8/ggzJzbz8x/9lC3nXgCSgiCafOaC03nhqbfYeNpFIHog+GhvWwxWHdgikqaCqHDxloX8+te3UJUUeWHHLtqbJrJq9WLe2PkKFfFKfOEYpqfw5osPs++tF9j54oPUJP3s2fc+1ZURahoaWLlmNX39x9jx6HOs3XA+aH4eu+k6rvzupaxd2EU0HuOF2+7nhq138OELPodgKWihGG6xiByoxNUd+gf6qKqtZdbMxZx2zic4ur+bdadt4eWXX2bxspW4goQjKMcTSagoWgC9lCeolPEpZe7Y+gv+9OpzfOGKr7BgyQm89V4fy9ZtwBX/tqYjWHR1drF71x6WLtrIFy79IiP9IhLVaIFqvnjZVRw6XObc8y7ljTd3M69zNslEHC3agOqrRBNC+GSBgObx4x99geGx3fiCHouWnYjp1LJg9QROXb+JzLAPyYrjl0PoOciOCtQ1ViPJJapqBLrf72PxkjnEI7WM9RV4Yvvvef3NR1m6ahFHuvey49l7WLJ4EX6rxKxZs3j7z++w/1CaL3//56xavJpbr7sGxnZzrPswLbPPpGx7lHSDUDCCUSoxoaGe6mSC3950I+tPWseu995BECRy+TwlXWf2rC6KpRIeEp5wPEWpqDKjQ8fwKQKJeIypsxcRrG4HLUahLKL4YlTWd1BT10hZN5EEBQEFWVCQXBnJFY+fYueJBENBCqUS27fv4MILL0RTNcaTSOPGjRv3rzWeRBo3bty4fzKP/5JEEj36MyM8/9rLxNsb2TfQw6y5i/js6Z+nJlZJcWwIWRbYd+QA0+cuYjRbYkLjbGxdA9lDcnwoYg7ZPR6/lcojLFm5lGBoCqbr8tsbr+TDH/smOSHEU7veJlZRgagLVNbE2N/7Dude8i0I1KPbMQx8FCwJ05YQZR+CAKoiI3gWMgqmrlJZUc/o6CiRWABFFdDLRSRJpVAw8AWSDPWO0TY9yd59O7jsq1tYvHA1lhFh6byLaGyYSl7vY2RsCClYD7KCK0joZRNVAjufQsYkO9TLvNldEIgQjgcw7Dxj+VGiDbUUkcibBi3tLfhUAV1JojtBykiMGjpOIMTaU89Ai8SZNGkmhgHb/ngXdVKOkzdtJhAIMGP+EmqbWylbBqqqksmM4roCsxeuIJ1Os3rpQiZPm47pCixceRK5koleKpKMR9GDEZxoLbKncdXnPsfh115g87zpNNRXk4/V4WudytupMmFNwFN86DYIikZAURAtg5BT5r7f/JIZrY1kn3uHI6MjJJYvwozGkIcdJvtrMXMFHn3yPr5+6cdQg3W4aIg4CDh4Aiiqj2yuTLKyjsGhAn4lSMjMk/Bp9Ozfz1OPP04kECQUipPN6TiegqwG8VcnGC2OEa1JMJQdg2gUIRZDF1ymTmsmk+6lVMrx4O130TV1CoIHldV1TOpahL+mg4GChBVrJSXGSaOSKWWJJwSe/fMr3P/M8/z8/ifYly6RbGkhWZVkdO9Bzjr3QmpbJzFUtJDVCI6n4tdCGICpypgCqJ6L6EmICIgeYBuY+TFEp8TKhZ2888YrrFkzk+bGqUQj9dx44w08/PAdzF/YjMBR7rrrZzz1xC0sW7gaFwX4oBLJcYhpGj/42he5597f8PiT97P27LO56LrHSNS2kqifQN/hw4Rlm6qGJOWh9zjy7rO4rsHsVWfxzc98lmUTBdxCDw888Cyvv/cOExtbueGqH3L6wrkMykXyYgmfEiSgth4/xc06yE9/dQavvf4k+/f1MKVuFY3eUVrEDFu//1Xu+d1WNp35SbqWb8Kr62LJhz/GlLVnMbNrEWXdwjIFHNcjncpQFQ+jSQ4dzRWcuGo+U+avQAvEcMslPNtl9/t7CCUbsEQV8YOTr0TPRgxEkGQ/eBqeIBBNRlCCQTxRwRE0PAlURjlhxRxsu0xtVT2SGjq+KnnC8Y7/AJ6MhYgrC4iigmWW6ZgylS0bNkEwDIKMXjpEx9QxDh3eT21FA7+6+cs88PBNnHTSieDGKZsWjjSGnNf50IeX0TkxzN1/fILrfnwTFYkahkcHWL12MeFoEsMGA40lU2voqAmQ632bRx98ksmdHfx+623MW7EWf9BPIqxx+gkfYu/2P3PnNVdz283XccaH5nD113/A2aeeyOJNZ3PaSZfQN3iQYq6PcCLM03e+wG9/8Rsef/xWtnz0VChEcMthPM9BCwbR8zoLlyz+oHeZhIeCi4YjSuSNMrLiEPDrBOMiG05aiCNZzFywHEMOsfHCz1O2siAYHxwpL4InU8jbFHISS5acR8/eMh0T5lLWTX527ePc8OsdeE4LM+bM4JEH7uQP9/yeT3/8q2SGYySrImTTg6iCgeelaZ0gsf3522mdWM+SDeeiyhOoq57M7p3DXPThr7B8cRfVtSLf/OanqYi3Eg40E/BVYRkSq5avwLTTDPe7BLVWpnYFOXD4NerrqmhsaGXB4jYevPc29ux8g5bqdtaccBonbL4UtEZUU2VyTYhHf/csq1Z0IbWeQCSWIJXKYFk2nmlil4t0tLYgehbTpk9m+oypbNy4garqKrbedjs7tm9n0ZJlx6u7BAkPAd0oUl8VIxmPIKsqSqgaXYqTNY4nkATRh4vKsQNHScaqCIYSOI6I4CpIrorsKKj28aSzJ0HZMtmx42kuufiSD26q40mkcePGjftXkv/dExj3f67u7m5uvvnmv75es2YNa9as+Yfr0uk099xzD93d3QDMmTOHLVu2/MvmOW7cv9vfb2UDEKlKVFBXU0sp1UNV2EdTZYxJk9vJDB8lVtfAwfffZtPGM4goETyhTE93HxXxChTPAMHAFhQEUUR2XU5cs5baugp6enNYose0RSdz2Y9/StvsFZzxyXORPYlStoTPdVFCDfSP5ggGwzjy8S67og2IAq7gIggfxJRIeIJAKBahqJewAb1cxK+JYOWRNImgJqJIPtpmTOTtV7fz/HM76Jw4jYbqKvS8n3A8yYH9u9HaQlhWieFUlpbKOMVUigl1CcrFYWw7RzikseW0U/EH4wxZJulUkarqJGXDYixdJFHXxoGRvSieQlEvIsgunisg+VRMFKbPmouihUiPjDKxvpYje/cSiYaZvngJU9etY5cFQjhIIZ/FJ4q4pk7YrzKluRm/blEZq6b3WA9+v4+V604m7yr4VIVwMESpXKYguQTCCXxlm6pwhNltLVz/45+gqwKbv3YlfQffp72lDbKjuIaFZpQJSjYRTaK/9zBVfolSpkBFtIoxMcvqDespOGUU06VG9mOmh6moDrN53XqqWzsY0sER3b8c5QcImKaJJAnkCxlCQRlV9JB1A7uk8/afXqCYSdPe1MDAaIbayjpGMgZ6ycCybZK1tQyPDiAaBtmRYcJNAY71H2VK0sctt/+ew4e6SaoNiKKITwuRzhTxReI4qkygMo7lCWSyBVLFEtObaikc7eXtt3YRjMU5cfZ8yhhMa6qk2NfLptPOwJFDFMs6iap6RoYzBDUfjmgjehYAkmsQsF1M0cPjeN8cw0pTmfBhlIv4Y0nCdW2cfOIqwMehQz2kU6PEoxH8Ppmf33gjhw91c8F5F4JgIaIheYDgIgoGAtBzdD8Tp01mwuQ28gUdBJ1nX30eTYG57ZPAyuGaHk89voMlnTN5+9AROuI+env3MaVtDjVHjrByQxn13UEWLpjFkjnzcbp7Sdc34Kuto1RwKVkCogihUIgPbTyDXM5m55+HqamvQx/+EyFNxRVsZsyZw1ev/A7f+s9rkMIJ+seG8fnDJON1RMMxRkaz/OaGX2NZNmduOY2umVMpGhaaP05dZTuvvv42NWGFac3NdNRr6B7Yknl8q6Njo7kWupUBV8SyTHyKhus4iD4/OAIIIIng2ipSqJ7l65rA9oENqAAu2BZ4Dog2fs1PwSwTVCUENQh2GSqToOeZ1FjBvrG3aZ4wjer6USrrI3TOncGhHnC9IqaZwueLg6JCSAUpStes1Zyw7l3wRRjJ5Kmub2UoewjXNdECcTAd8AVonDaL2TMWMXD0SYJqCFn1MTQ6RmU0TkNjK7f+5NfYh8YYOXaEE5bPp2XqdDacJUB1DfT2QWUV9W1t4GX51IZ1hL0aNm/+EDf+YTtedgSbFhQ1gCUalPQiFdU1HN7/DsmqJCICjnC8atQRBBNuF8QAACAASURBVJBFNMFDz2YpugViDQ1s2/4cn/niNfjCQfSxUVDAFfjbUwJUZCnI6pUbGevL0NDUQSpdpLKpgsaWTjqaFvLOznd57rrfsev17Rw69Ba6blDdpJEv5pFFh2DIx+CxMerqWlDUanr7SgwfGSSbdnAEm9bmLmbPnMH2R+6k9ZLNdHbU8cJT99HVtQzXcomE6nDsUXRdwBZlEi0JhkaDBKMt1NTPANvBGywiejLZXJadO3eyeGEVKCqpY4PEo1FaJs5hzYaZPPzgM1zzsTieZWFncqiqD8GBTLGE50pMnD2f3rE8liMyoaqeTLmXnGFhmPYHSbm/JXUUzYdeMjF1k4KroPhCyMEA4VCYscNHEH2gYPHg3bfwxa99E0WJMjRWwueP4iHiCS4ILp7gkndN3KBKxtBxELEtE01R+d+6DzLe8nXcuHH/DOOx798Inud5/8+XjRv3j3bs2MHatWv/+vryyy/nqquu+rtr3nzzTdauXUs6nf6738+ZM4ebbrqJOXPm/EvmOm7cv5VnHz9W+297HzDLJZ7c8RDdPW+x+92XOPvs8/HJjYghPwNDg8T8EYK2iGYfD1TKsognWtT6VLKORlqIongWPrdIhTvAHbfdyokXXkqkvpWiV8faL36KWSvnc+7atUzrTZPdvZsHnnmEj3z1Uwwe7Wbf/oNMWbKKsmHS1NwBnkA6nUdT/UiiSLmkE0+EGc0MoAUjFPIGVX4Dn1hg50v3Y5sCM+ashdBMMtE8La7GDd+7hnM+dCqJ5hB1lVF++IXPo7RP5EGK1E2dzcmdm3ln6y0UDrzPFy44idse+i0NMyYxecp0wl6MW2/YyvKT1zNr6RqG0zaO5CcYrSGn5zGsHI5RwHVyhEngCjJlNY8jWQRMGSlvYx0d5NVn7sbxcsxbOpfKmZvYVjrC+73daIeGqB0u0Hf4MJ+6/NOkR/t5+vf3MaNuGjOXr6TPr6CrEv7KakrpLBGfj2KpgCe7uK6FWSpS64/Q8/ou5k+Zwr2/vYnzztrEUKqbQz37GUSm66JvkQCeu+nnVNl5FsyZTt/gIHt6x5ACNZyyeQs7+4ZJNfmZ7roEhlL8/tofse7rn+HI4aMUenPEN6wiWduIUzSJxGOkUqOEgwHymTEimoBfEXn+qSf50Pp1RMMhHn9sG3t2vctHLrgIy3YomiIFN4guBsgWDKaGajioDGN6RToFkXJeJ99cw9jBXvbcfhevDB2gcWYNp27+OJXBNsoFBUFTKAV04k0hXM8mJoVwTY2U5MPnWFQLOW78ybeYPmMiy9csJj2W4f03diEXPGZsvJCiFMATwBFEwCUY0PCMFGamn1efe4L84DBixuXir19BwTE51L+P/mN7cRyPpatO4nBGJRKto1IyEPU8z7/wAuvWbyCfzyOIMtlsFhCP97fKO9iijCcJBCISY727eOXpx+jet5vrbrmHo8N5vGQVO/veIF4znXTWxrSi1EeT+D2HSnOAKneA6350JZYaZNMFX2LigvXsen8PAb+ObPYR0fxISpzRXAQ1XIHh2JTcIh5looIL5TJWvoQUDjGSz6F7Zao0G7+mMtDfT2tjI8sWn8GC+c1cfNEnmDm9k0K2QDZXpqYiSXlshHDQz66db/PaO7tYf8oZ6GqQMctFCWokozHswREaRY2AKvNe7hil1jCjR3vpiFdy2zevJDExxMknb6ZcVNj2yPNs3HQ2sUQlug0l20aUJAq2gC37kBAojKbxJ3zocgHF1pnk2YzsfIt0OcWfRvZz5ikXMzAq0jZ5Jhm7jE8pUBtVuOtHX2H3awf5jxu3Y3tlhFABya/z/vvvMmPqHDIDLtWhyaRHSlTHsoTjGvmSRdaSOTZWQJQ1PAEkz0H0bCTPhXKRytYkqWPHqBnJkDrWR3j+TN4+2kPFhMnUBarIZFNM8lk8c9M11E1o4uW9h1h/+Q85kirSlIzjHzyMNmkepcwYfrNIYLCb733+CoJB0P0+vvX7O9k9ViBc0YBp+BCMEdqaKpjUksS1dMRoHNdS6c+BEooR0GR8Rw+heAalch69sZYDL7zPHz77bfTCGLe8fg9mvB7LVRBFkbJuMTg4jGmauK6N45q4rouNyOe+/FN2vh3AtTU8811efuwG3FKRP9x2Dx+9/AyG9b3EAnVIhTK//dnVNNbX07lgFVrlBERfkNrKCsqZAXpGM1RWJpGzPTz866s597STOfj+O9z20PNcf++T9I4WUeN1oOcxAR2FsiihqjLlUoGI4mJnR6mMhRkY7EbD5vvf+Daf+PinWX3iFnrGDPKFEm3NlXzva5/B7xicOH06e7v7SZVVTj/nQkpKCF3zgSqTd8v4AxpiIYsoiqiqSiqVOp6M9vn+7hboagGCWZeCZZCq8BNOlahurqHPSNOQKxOoDhEM2bz0x2tZsOZMxpxKTMJIwRrMUhHRNYlrNoZk84tt93MslWFw31HeeOIFZD7IhWIDDh4WAj7Gn5OPGzfuf9r/39h3+/btxOPxf8lc/9nGV9hx/5+tWbOGv+QgBeEfy4jT6fRfv2h33333XzOwN998M1dccQWXXHIJb7zxxr9uwuPG/bsIgCAe/+kdH6qq0trSxg3X/4Dzzz8FRQ6gBIKECg5VWg2FcpliwsegdjzxFDIgYioUzBKyP4QqSziGiSuKfOWr3+PLX7qUQlkn1dNDeeQ9vvux9YTrEqhDO2kWA9y87dckAy7V0hCvv7aNyRNnoIoCldU1DPcdQVVVFMmHY1iYtktlRQXZzCiCXaY0UqS+opp3Xn+eob59OOYQW879OGUryOGRFJLsUbTgM5/7IvFojKOlXt4d6mdf/yCKLZKYPomju/dSs2Az/vlzsCY0ISVb6Fy+icqWWqqqanhrxytsPvNslKp6bDGA328RDIYYHOgmFA3i2PrxShNfiFLRAxwswcN1HCwLfP4A199+B5/66Cm0t9XSf/QgMcNjads0nEyBfcfeJzOSZ9ncRZSzRaZMaKdnUjt1XdMZqJHJhX2URZFjmT6Crkh9vILR0X6qqysYG8jSUFPL4OgwiUUzOWCZLPrE+XzvqqvokESSqsZZp59Fz7BFiiJ9QZl9+47yp5++S0yEletPRps3jz2iRaYiQEO8gp989j9oCvipmzuNm269kQo3wHcvvpxXfBB2JXJZAyhS4wuhiBJG2WT6xBn85qYbmT9jBmO9ozz45mPs37uX5YsXUypauJ7A448/QW3jRNRoFfWNLfjtEd576g5MPUP/wT4m1UxkT76ImrOIdh/gS1PbEP0tIDagpwT8ogqOg4hD1PWTLelYwTj4IpRKKeKxGANHBtjykU+TSETICQYPvfAClZFKtnz4VIaLLjIeLiKi54HgUc5kiAZFLNujnNc585wLqIjXMVIuI/r9aGqEWW1daJZHOO0wN9zI7oOjlJri2ILCrFWn0JMqgaDhOTaiGgEgXXIIJpvJ5Ms4nomuG+zZ30Nb60Qm1VVw0ekb+cRnv8Rjz72OYeg4wqOcde5HSVRHCEsGI8MDBJIqTz77Omd/4UuMZHXiHe08/vorvP72W4wOHebC09cihiKAhlJZScTMIXgFLM9EDSgM9vRQLpRomTCRXQe6kUJhcqPD7Hr7aTRF5YWXXuSyy77MXXddg+vA5ZdfQWdnJ7W19Zx//iU8+/QLPPfkY1Ql4nztiisI1jcQiEcYGM2CP0htpcx7Lz3Bu3du46V39hGqV7nwS5/ije88SUiWGKxOcurnzmPbj3/Oj7f/iG9+91ssnr2AG67/FR/+yIUQiRCqriCTzeIGZWqHskRlP6mogO4UmKIF6U2lGUh41DY0MvTmCMd2DWOtkmmsn8jgcIFQfRWiLdBzsJdV89eTNF/DHhikpb2JEd3AcGFaxwLSOR21IsFIeQShUiaVHuXqH/+SRFUtqzacgmWKRGKJDyodXUTPQ/AkXnn5Xd76z2ewBIPzvnEJic5lKGWVGW3VuLZGPushZjX2pjJMveTTxGMxONRPoBSmM9mCLhiM1blono3Pr6JEVGwzwpU3/ieOafD17/yQ4b09TGmaRHosjeSzKOf7ePWJx7n26W3MnzcHy4bzL/kSDQ3TSOezlFAIV1dz3y+u5sU3XuWib3+ThatXUfGlFPfes/V4VYzjIogCPp8Pw7AYHRtCEAQ8z8PzHDzPw3ISHDlch2MXmbN0Pnt2D3NkLEXHhGrO/+J57BsaQQp3oLkSfhxOPuUU3nr9dZatWsIb+wYQJBgYHaYuEaExlMT1bNobZrN07cm8uvN9HMOmddoMjg1lsCQ/hWyRgKghSBDSJCQzh0/0UdbHKJQ9GhubGB0eJlk/mbDs8eXLvsGxI4f5yIc387Urr6autpaDB9/jki9cBmaZW6/9T8654BK+/cOfstzMI2sKsk8mU0gTrYzhumUMy8LzPAzDQJZlRPEfq4DCkku1XyTjeWTyKSZVN+K4Bh1Vcbb+5Bt0LZ/LynVLKcsxBtJlCKsIkkI2nSEeDmDqBgAvPPcMmm0SlyWOZjPHgxj3g3ss8vH77N9axI8bN27c/6j/N7Hv9u3b/1qldPXVV3PFFVdw5plnsn379n/dhP+JxlfZcf80O3bsIJ1Oc9NNN/1dCd/FF1/MxRdfzJtvvsmOHTv+jTMcN+5fw/vL+C9tG4J+P2bZIhmvPF6pJMsc23+YJ+5+iJ69h8hbFmOuQdo1KFkGtm4gKyqO52LoOrpeJFcqMnHGTIayeURVJZqIU11XwfQZU2hqrMc1DVzB42DvEcqeR1bXSVbX0n2kB7+qkMukSIZDJMMhBLuMTwS/DHoxh6EXiQT8iI5J/+F97N35JumRYYKhCL0Dw2T0MoFwCCwB1wLXERnM5UnZFo7PR8vkKZimSzFVpKtjCkI5R2dnJ9O7ZpN3ZZqmzEYKJHHw4QtFKVseybpmhjMFHNcilx4h4gPRLpFPj1IsFjEsD8sFy3VxbQcsB8f20C2byZ2dpIoGx4ZSRCNJSqNjHH3/ALPaJnPG+k001TYyY9oMbNvlaHcvfT29BIMBCsUMQ4P9ZMdGkCyLhCyz55VXef/FV/BGxqjQ/FiFEqLPx1C5QNGn4CbiZCyHOV2LEEoeT97+EP37j5CMJahob2PMsWhtr6cyWYFesJBjcYZw8DVW4xkWMSXIpElTeHH3LhYtWkRnWxu53l5kz8ISPIquhWta+HWHntffYdvNW7nvlt+T9IdQAiEiNTUc2H+E9o5pNDe3IkoqTz75FJM6JlJXW83ECU2ENYk3X9rO6L7dxG0DMlmWze6knEoTCQRJqhUsmLeQ9rYpZEwFQ9JAlXEkD8PSKZXLuIrCmCdyrGgyPDSAruvYLviCMXJlG1cOcNKpZzFn+RoGchaW7eFZNp5lfjAsHKPM3X+4k8e2PcrM6TOpr2tkIJuhYHsc6u3nzjvuZWLzRJoqGtBMkfJwluntk8kWHHQ0BH8MV/ITilUjyH4UXwjVF0CUFAbGshiuiOEpSGqYyZNn0tY+mUwqy7RJE3n9xecxszk2L1lHSyhOSC+jZscgM0xzIkA8GqRl8jTEUBIlXkHOMtlz5BAjxQLhyhocOYQrBTFRKdgOufwoRiGFaJewMyO8sP0xfnLV93js0QdpbqilsaqC2e0dvPvQ47x2x71MUiNM0mLUWhJza1u49Ixz6YhWkjt4BMeyqW6sZ8XaNeQNg4O9RzFdl7LtIGsysUQUY+gY1bLD5g0rmdAgk0j6eXDrb/nIhpOZOWECr7/6EoomE3Q1lnVOpTKSZPbMWUyaNImqmmoMx6LsWqRLOWKqh5qQMZQSo+/tJr9nHwOj/Tz08P289fSLJCY0UTN5IgumLWDb/Y8RCkbJ5IqksgUQFSKhBH9+8W2ee+x1eg/sQc9mcU3IpQxyGQvblnE9D3wWWsyjoiqO67oUchnqqqtpqqvBs8t4VhnXNnBsA9eymTK5EyNVJjOcI9g2gUG/TN50UAQfiiVjezLBRCVyrIqRMuTxkWzoYCxXomTajOV0XCWMrhsMDw+TzufwQiHkyiRuMEAqb3L/3fcQdAS8bAa/UKA6JtM5pZmOCTWogkX3vt0c2bcbrBIaLq5p4ZR0Tr/gPFacsJpXnnsOHIv21cuRNJkH/ngnkiTheQK2bQMuguDhuvZfE0jHF38/6WENTJ0zztpMyTL49g9/iO5YSGGRn1z/W351y2MkK1oZGBrmWH8/ldUV9PQcJhjS8AU0TMfEdj2y+QKmI2C4MG/xClqnzKR3KEXR9OgbHsWTVMqmiyPIGIaFaxUx86MY2T4K6WM8+uh9ZItZ1GCIsZzJ0f40dfVNLFq0iNaGana99hxuMUUiFiZVLJO1XJo7O4k21NM6dRJqNES2lGFstB+rnMU18uTHRlFVFVmW8TwPSZIAsG3778axg/soDA+iWAaTGutI9R3ByIzh5jJMm9DMs488yNcuu4y6CdOIVzfiISNICpLgIQkg4iEKAiIefQcP0VJVhWgaSID6d3GcCEiMhzfjxo37d7j55pv/Gvv+79vcLr/8ci6//HJ27NjBm2+++W+c4f+c8cba4/5HfPe732Xp0qV/94XZunUrL7/8MjfddBN+v/8f3rN161amTZvG0qVL/5VTHTfuX84C3A+yR54AogDlUglJFPCpMi1NjchaiFQZrrv+eqbNn8OqU05moJBC9ECzIGS6qI5HCZeSaeALByhbOrlyjo6pk2lun0ymZFAolsgrFfz8/kfoTpVorJuMVNSYtmwNE9dvok8JMm3OaoKJZkqlIpJj8+iD9zM6cJRpk9oYONZL2K+B51BRmWA0NYzPdfjF975FVUQhEQuxdvMp+KqaKDgK6RKEVBW55KHIAbKSQMpnE0jGmNs+mdamSaw85Swaq2qpxqD/2ACmJyLFqyjiAzlIKl1gUmsH/micMSdAMJJE8wxUTCQjjV8R8CQZy/UQfGFcV0UURFTBQsNFFGSKukFdSxtVddVUNTZw7x1/JHVkkBknLENEwm9KLOyaixQJkVdcbrruZ7i9wwy/e5D2RA0JLULM8KgXQlTlHfY+/iyToxVUuiJ/3rWTRGUFDgK6ZaMpGqqssbBzLlElyDvv7WPNpjNIds7j9rv/iC5aSI5H9ugInXMXs3DjJnp9GoMS3PzAH2kriaxqmcTKNSvoDpbZuOYEZoSqSe3tptASo8fvJycKqLpBIlvm4V/dyuRoJbKk8Pae97n3rVfoWLaIafWT6WifQiAYQxJVdu3aw8IFiygXi4Q0Hw8/cC/6wCEmJIO0JuJYhSzTTzoJr3M64bldVK5ZTKolTn5CM/1qDNcvUXIzmEIWNWQiV4Zwon6ufehxurN5ZkZcKv0qTYkImiSSKxZxNT9DY0VsT0GUgqiihCQISIKILAgouARVmbHBftauXMX0KdPp6x/E84V54PGnOdTbx9oT1hL1+7ENi1t/+wd27+thwow5yPEYguZDEAQcy8Iyy2gS5FMjWHqJqN+HLGsEgiFEz8GzDYKiQ1UiSV1VFZNmLGD63CUsWrGBoKCwaf0a7EIaPX2MoOpgldJ84StfZvKs+VhKkHzRRghGidY0MHvePCa1TSbpS2DrYNsSgqLhyB5qOIrnivgFmVRqmM5ZnfT199A1dRKFsQF8ZpEZXS3MnNdFsDLB1AVzSXsOKc+gcmoH7QtmMnnZHIqWiKL5aW3voGvufKRAAFOQKDoWBdviYO8R3rjulxQO7qd23TzqZ00mqQZoSLv0Hxtg1flnsWDDiQhITE008eTTz/HgE09zwoYPUdnQhCuKlA0DnyIS9wfwFYfJeWOEQzJNGYPeP79BYEodM2dOo3hkkEJEI9HcyORgHTvfeZ94QwNSUKOyqZLMyDGqIwGqTIuQ6PHnkQGmzpyB4alIagyfL47nSkgYYKcwCsNojsCSxUvxBJFEIkY2m0KWBEQcJFxEPBBE4pEaZkxspbaxmmBjAse1iBkKguFQ0i1SikCio5FPfvxjDO3cy0nL1uC5EuVkkH6ziO3ZVLgqjf4g6CU820IOaJiqSMq0mb98JY9se4rlS5YTjvkxpDGefXob3QffZ+b0qSxYsBDbFrjnvkc5ae0mtHgVgqTgC2o4ZoZILMgJGzaSP9CDmM2y7KPnce33v8kpF3wSxxMRBDCtEj093aiajCCCJB7f5ia51ex4rJ+2OSIfvXgt7RMqOH3DCUQjIkcHDqKF5vPgA0e57Xc/49MfO42OxgoaG2rwh/2M5EogywiqhqIojOZNFM2HLHoMDQ4Tr6rh3QM9zF66jinzllCyBfyxBIaeR1YcMPoISKNocpqWphieaLJ77x4q6yoZHjJJRKrBKhMNBjBTx3jhyft45fkdhKtqqJ3UhacEaWufiD8SZ+qUqZR0nY7mBrxykY76Wo7ue5fmmmpKtogoiriui6ZpOI7z14qkv47cKLueeIIdj28jUBniB5/9D8445SRaWuuotS2e3v4IWb3IoRxMmrEQ11OQBBVNUSkXs3iOgYhDc1MD5VKemR0TOfDuXk475Qw09b/8fykI4y22x40b90/338W+27Zt4+WXX+buu+/+b9+zdetWtmzZQmtr679qmv8049vZxv3T/Xd7P//SC+m/7hcdN+7/Tn97KvqXiiRf2E/ZLJIv22TyNpGkj4JhkZvcwP6WEE9lepiihmkyJEb7B8nYJfztTWRTKSLxCH39R7jx97cyf9FC2idOJSL4kRSTeDzA9jf2MXlqF8tWLMXtGSIcV3HDEYZlg4Ls59iYjUeIcMjPz3/8QzasXcX6k9bw2muvsW//QTpOPY3RXInB0TFMJcCEpgq+eOknaa6N44uG6fNgOGMiiCFCoQCCayJJGrphUZTAEASGMmmSwRBVSZEDA6OEY2GEUoFIPIYlKORdEctRCQoyQX+SouMQSFYxMmIS9vuRPRlJUdn+9HPMnrsATw4BYNsuvqCGZ5Rx00Vkt4QWTiJFw2QMF9Mn89aeQ7y7/wifv+jjDKdHkYMRJFklq8iUBOgtlgjWViMfy2N2D+DvTfPGO/uoap1Ay/yFVMcTLFi6kMpkBT+//mdMXDqbqqifgf5R5je0ks8WkDQwfVHcGZUsnfQVRlSVo30HOdJ3lI2TllC1tJ2KUxKIisqbZhkCNdiDQ1x04fns+u4NtE/r4kBfP9NWrUA34aHf3UmNL0zn2StJCyrBgA/PLiAnAjSvmE3nzE4eeuYp3hs6xqeu/A6erRFPVKOqKoVcnmDQz2nnfgQ9n6e2oZGeI91UJKMs2XwCqV072fnySxR1l1uff5nI0hOwY3EIKgTLBZJaAF8qheUYqF6eZESB7DC1RpASNhdsOAE5UsGff/Y1Dmt+3n7+Jdra20FVWHH66dTWNmEYNn7Jw9DLeJ5LRSJJPjPK7b+7haO9vdRVJTn/rLMYGRwgmajFRGbTxlNxZQXNJ1IUCuhGkdMv+zSHRwyGVR2prCN5Lq5nE8BCwsEtF3jz2cc4uG8vH1p/EhMmTMA1wthlB2QVn6oyNpQmGKjGkML0FSwcU6Cy0sedzzzCrjf/REXIz8YTT+JIbz9LFiym/8gwK9rmY2kmJUcg6ZPxbAfF04h6AUzdJpoI0zPSw2BNBwP+KIHSMBNUhyVrTiObH6Zr4RyGD+zhN9fdQIs/RGr/AUplaGht5YDSyNv7DvDazp1cec1/4moC2UKJQkDE8WnkHQ9RVhE8cFQVAQj5VdqjQU666DN0H9xHv6hR37mA9upphOpG+d4Nv2CGDm44RKQiidPisvGSS7jrwcfoK+m4gkhA9lGnOMg5E1UWuePlbVQXLXYPZfnEeR+lKBTp3vYcz+x+i0/+9Id4JYeYGCZSKXL2WR/CCFnYIQPT7KeqSsYy0tQ2Jzl6NMmJJ25Aj6soSgzZC2AbNj7LJCzJ3PyLG6itjXP+x77AwFCaEzds5PY772BwcIhVq1dTXVfP6FgWnz9AoZDHXxFCaw2yYuYiXvzDHYz29zPv8i/RUxxDa2wgZDgc6n6DK7/5Ja677BtU+wIcHOghGkmgRCDui5B5rw85FeaWq65ipJDmBzddg+H3Y0VklAis+dg56FUaGbNMIFJJuG4iej7D8k3nEKhu4MypK2iZvR8xVEUuUyaSiJPT+9DLY9S1VMHQIOFIBJqSFHuPsGTFGlzbQRAUyuUSqirhuDqqFkAvmeSyWSZOnMxof4Gu9jIXfH45AW8X86dEIKdTrcXwAnHOXH0yfbvaefZPh0lW1HPX9b/Cr7msPelEJjRNZOeew8SqmhlNZYlEkgCk8jpquIKy53D6RZ/FFhT+F3vnHWVXXe79z+5nn16m95ZJ772SQAiBUIUgCHIBITRFvKJEUBG9ighKUdQgWCjSFaWJCQGEUAKBQEJ6m95Pr7u+fwz4el+9V++79Hqvzmet35o1a/asfc7M2vt3nu9+nu83lTdAlDFKecIRgXQqTn29h8ceeozTTjmWI4df5f133yRv+ihMqGFa27F0HB7GE44wmImTKxawcyVkSry15UWi4xcQilWS78niFV2S/YlR364tr/Kj792Bpso01NRw6VWfwRZH782iKGIYBoIwGgRQLBaJRCIYhkF5KMCyM87g6uuuZdnCeexatAA7l2bL5o384hvfYvnKxUxefgwHpHJcV6E8FEEUZaxigZIqgqBgWgYicOIxqyiVSrhFA6/2B95LHyhHggtjKtIYY4zxv5VEIvFnu5Uikcjf3Vd4TEQa4+/CP4qp2Bhj/CUo/N/cmA/lJMO2CJXFqGkehxQIkisKNNa14TZV8+Mdr2I/9yueOvfzPHLT3by2+SWuuvPrDOXTxMIVvL/zbR557F6GUkl2vOfl7b3dnHj8iTQGvWSG4rz1i7s44eNnEOl6i0Mvvs6VX7mFr9xzO5XNlUhGnqqigqppGOFKLrnsU9TEfHR1HOHhB+5j+tx5xJMjoPhAD9CdKVLo6kcpFnnggQdpnTyZ5uXH4Q9WYRoOcsnFFtwP0nNEZAdUByiZGL8T4wAAIABJREFUhLwB9IjG3kQWSZDB1bAEGVMCwS3hcxxCrkwub+CENbqHhqjwhgiLRfqSg/j9PizFixatJJ0uYtsmQsmg5ObwSQIzJ7Xzres+z7SjVlA7aSolWcKQZCrqm7nwkssouXlSmSReUSGoBEm5AgVZQikvY8XRx5ItetAsGampCsNrUzZ/Gu+WksRcAWFyPXlZoP7c1Zw0dy7bX3qFA+/uY9P+n+PTAqw5+2NExjdxQMpDhZ/+TILWifVcWncxL937IJ2yw+IzT8LxqcQ1F5/tEFO9ZPuGmNk0Di0SJiWIWJKPZH8ava6V6SuPxlXDtMU9CJZEPuDnXYYxl7ZzqC7ExMoTmJRfTYXp577b76ZlxjimT5tJMBqj4Ai4roCtaCQySSqamqlpaWF7epiW8lZqalOojsXshSdi+2vJSCp9Q0N0PLqJjZufZ/0NX2SwlOcXj95Psq+D9oBKKV+iqn08J173dYayJVL9h1iyfBVHXpc4/8y19CVTVFVXkzAKiKaN4EqoPh+FUomh5DCxoJdiKcupp6yhubmZjs4ufIEQHV29vPXaGyw44VR8Xi8Fq4hlm9iKQL6URq6OYMsOaraEx3YQsJE+MGEeGBygrjzG3CmnE42EqQsJ3P3Tu9nf0U/7lHl85MQT0ctquOeee+jMOVQ2jefoU05mYGQ3E+dNpX58PV5JwV9WTXtlIwsjdcTjBsWRLF6PD1ewsMUSrmCiWZDq7WFiUzXdvfuRrU5u/MFGYi3T8R06zIZrrqSYMek8OIJhDLLll08guQ6fvPRy3uvaz8ZNv6Nu0mx+/uqbnLPuclZ96l/ZH+8jEAgwZJXwihKCO9qX4wII4GKOpiS6DjImRyrCVLadQDiTwx5yKGkRsuUO8xev4ue3/YyPXnUph8QSTXX1xGIVfKyhFTEURLVF+jq7aYnGuOFfP4ORy3H5hi8hD8TZ9PivufTTn+XKz16FoofZZxTJlURCWogjA0MceHUjW7du5ZSzz6SssRY9HOVw1yHKvDo33fQ1smmLz154AbYtkM7EEa0sYV8In09DyGa58oIreGPLy/QNZZECEToHE5xx1sfY+tqr7Nixg3CsDEGRERQVf1ih4GQxwi77Duwk8/o7tGp+enbtwD+phW5zhGpXp9wyUarLOffrn+OgNUKw3MMPrroS0RVQyyo446ov4CZt1l/1WX766IPIgpfewSQ5x8Ib9lE/YwopL2QNE2EQJs5ciaJIdKYUQphEIzXMWNaKgRerkGWku4MfPvQdZs9uZODAQZ6+435uv/MBolNn45s4gQs+/2UMS0DzeshkEsSCXm67/WZKpRIL5i9l5vRFdHf3cskFV9Bc3UZlbCpOMYFQKvHMo7/k/od/TmWkgcYJbxGNLWBkYJjB3iRrVq7GMeKs/9dPctFnv0xD+3SGUlmCgQiOawHgImIKKqIwuquM9nSN7iySa+A6BXCLDKWK4PXz7OYXaG1u4aRjjuHL136XcaEQP3v+Pq6+/rt0jGQY19LMsjWnk+7bxyOPH2Cq9xAV/hCCreD1VXJ4zz6a6mvIpOLMmTmHRwJhFEnm4L4OhofSUOn/oz1P0zQCgQDpdBpBEIiUVTJyqI8zzz2PZKbAJy7/JN6oTjalUFvfzFnnnMfukSQtta2IJQPNKjLQ10c0HKZQKKD5vRQRkAQJI5cdHSWUZGSPTiqdJRj0j4pHY4wxxhj/i1m/fv3vR+L+HC0tLXzzm9/8u6W+jQ0NjzHGGGP8jRFckD5YH2I4NjYiiq4jKB4MBwqZHG2t7cTjSdrHT8QfDrP5dy9T39LA/KVLCEUiqKrG4X0HCHlU4kMDyKJIuKwCzRfC5/FSyuapj+pMb6xETg3y0mMPMqu1Dj8GiltAdUpoVhHZMilaDtU1dWiahmlYRKNRpk6dSqysAlFRydkO0eZxyOEyduzeR0NTC1OnzUKSvWSyBvmcgWhZOIIzWvjiILkOiu1QHgjSc/gQ6WQKQXARZQUbDVsQcAEJk4Bs43MdKoJ+spk84WgEXbDI9HdSyOcIRsK0TJqKo+pYHxRKiiRQKmYp5NP0HzlMSJFYOGcGkuiCBJlinkKpRCgUYvNLm+np7sYxTBRJpVAwEESZUtFAV3WWLl5GoK4KJxrE31xHMeAh51XoLmToKWYYdgza5s1ioK+L3du3oksiOCb19bWIikw6n0eSJEzTplQ0yecy2LZFziowaeoUQMR1QBZEcCxkTSWieQjpPu685x62vr+DfM5EVQKUt7ajNDaQTJcgZ+GxBcxCAVcUUHw6SsBD12AfM2fPwS1aRH0h5s6eQ1l5lGw+hysraF4fJVFE0HRyhkk8m6WufSKK6GVcQzvHzF+O3xZ54/GnOPi712hRPBTfeZ954Qp8tsU7b7xJKl2goa6dqkgtflTceB5nKI5u2cyaM5e29nYWL15GOFZBc1MbpmHjOKAooyM32WIB1aPhCejYrsXixYuorq2mtrYW2aOzY9duXnxlC/0DvaP+SoaJKsqEfH6qYzECHhWxVMIni4iu84EBM6N/S0EkEitnyoy5VNc3EYxVYlgOgyMjrFmzBtd28Hp0Xtn8PHvee4fd27ayb/s2SvF+KjwqFE00UUXzhbEkHVPSSeVNHEQCPj+CIwMuomAiYCAIBtWVZRQLKRrqotx26/XUVnpZPGcSTZVh8iP9ZJMJGhrqGEpl8IQjpHIWiidAdVMbS487jtaJM1h0zGpM0ctQ2kDQAqSLDnqoHBd51AsNEQcZEMEVEF0RyR01n6YyRj8mdrJIpRoiqAex/Toz582huaoWsViiq7MTy3axXZdQrIy8bZMsZPFFA6QLWY5fs5pp06cS8YRwgkGaZs0iWl7OL371FJHJbcxbtRInY4DkIVhVw7LVqynZNgf37sPK5wkoCuPb25k2cxZZxyFYFSM9mEBxBcpDASRMbDsPuDiihO4vY+K0Odiiii1pFG0XQZQJhENU1lSjqB4UTcN0oWQ75PN5ZEGisbGZtgkTGUqlUGQVVR3tMjELRUKKxtDQEOPmzkEI+ckUS1TrHqKOS1AUOdzfQ1YwiDXUcOa55yIrOl49RNAbRkImEAiMevYoMj5vFEnyUSi66L4okuLDRiZfMMhm8yiiRCzgQxQsXn/jZb5/5w+Z3D6O66+/Hi0SYiieAEGjWDBxHAevz0MymeCENas488wz2Lt3DzW1VZSVlTF1xmS2797CSLJAwF+Dg8KyZcuYM3kGEjrZzAArVk7Eq0soooKIgK6o1JRFefPVlxnq6cIjK+AISK6DyOg14QoCtiBhCxKuIIxeJzhIrguWiyLreAIVTJy2iLmLT+Dg4SHamyZR7ZXZ/+Y7dO7axxtbXsIbipApOaihMlLZPDMmwpxp0+jYsxevotHTO8DP7v05LiL5osFQIk7L5EmsPvUUYjV1iNofWxUAGIZBPB7H6/Wi6zrpfIFfPPUM77y/BwOBVL5I3rCJVdeih2K8svUtXEki6NXp7+wiMdhLMRVHdi1kwcG1LFzXRVR0JNVLIBgFScYGfEE/Dh94DgLgjLb8jjHGGGP8L2L9+vXcdNNNtLS08Mgjj7Bx48b/cG3YsIFEIsGZZ575d/MXHutE+idg27ZtrF+//r/0O7Nnz/6jyMK/JmNjbGP8U2F/8PWDgDZbAEtwKWGTsS0EV8BxJZKHejl9/nK2vryFY6ctYKCU5Yq7vsXvNj7Htp4DjNgm5XIZi+bMY/n8dj5VXc373UM889ZhaurbsPoOUh2JUl1Vj5G3KQtWEPFV0lBRjq+iiW7ToCgp2IJMLmsxRJ6UncNjpwiFwlRUVKFoOsPxJEXVhxuK8uDv3qRRs+nr7OLsT12GiUK2KKH5IqiqS6iUoVcsYosisg1eE1zZxBiJc8+/fYNT1p6POncmOdtEEMJYQhZXLKBZaRgcYsur7zJnyVLKGlt4492tJN98noCicMxZ53Gku5dQ/XgSjkjezSFKAl4JZEVGsgw2P/Yok2oqGTi0DzNchhiM4uBiGaMOVN2HDnHROReSTluUqT580TAFDwwmu6mT/Wx6/DEqFs4mE/ZTEaujp5AjGK0g0z1ASPJQrkXpOnyEjQ/di6eUZ9qKuejVlVQ2tDDks4joCmWOgpkxqRQimMUsObPEcZefg2y7qEUXKWuhCApJn01RF2nX/Dz90gt89PJ1hCe30mkWEFGomDGXPSE/br+F41WwAl6ceBzrnUMIiWESb+zlwtPP5s1X3kaP1HPCZZ/AZydxBRd/OERRlElm8jiih5JgoYigaCpYAq88+BSe7n4mnnc6377pWyxcciwxbyWF9AHcxCEmTJpI3OvwdiGFMXUGg4rKwO49XPOZ64hWlENjPSmhxPxjTgHTZfXaT3DgwBFqWppJFnOIuo4jCIyk86jhEIIq0nlwP1tf2sSsqRNpbm0ikUwiKDp7jnRhyzIfu+AchEAEw3GRSib73niDJx/5Mc3Nzaw6+UyEJEi+MA4yjgDOBwViHgEkkFwRu+jiE7ycfcU1aFqQyXN14n0dvLbxOc46egFVDU2kSwZliSPs2vw0r+85iF5ezerzLkYZF8FSXNKOgCSaZIwcqhzElBwMuYQrjIpXI8kcXjHHw089yBkfX8QX7r6NT562gLuf/zEbe7Zywjmns6u/m+bJU5jUPI3IWh3LlnjinvvIZEu8s6ObH933BG/v6eDl117g+LUnIngcIrEQcbsPFwHcD94jMlBAcG1EXGTbpdvIYdsuk+vree7u++gY7OWk80/HrdU5qX0Vvf19HFVXS364REV5GZ3xBCVJBE1CkxQKks2klYuYsmI+2RGLUqCC9qNqaa5s49V332K3WUCqrSWQ9ZBOmhiuQUjR+eS/Xo9mljAKeYKml/5kgrTm8IVbvsdIxxBNlp+n7/8VGTPPORdfSKZYIOMUEHWFnCVAeTOGP4DlmOiRCrqHE1TXNRIIx4hns7iyFyQZyxWpLG8jfngfiWKBypNX87KZ5uSJ00llSlRoYZJGnC4rg6esikOdCeqDOlHFzwWfuoLvfvtWdu3YwdqvzqN7uJuiXCCuQ6BkYBYcNEUjn0kQjmjkiwmqw2Wk4hLpTAavT0dGI+QL4zouPo+CIqoU48Pg5PjMlRdz8+3XcfzqBdSN6Kz71KfpiCcJR+uxMnmC5REGB3ooq/AyMHSQadOmEg6H2b17P6IoMDDQx7XXX8vm1Uu54eZn6O1L8f1bv0Rta4xPf+4rFDIiP3niYRqm9eAP2Gh48IkKEX+YqMfDC7/ZRGPTJBasmEomY6F4BVycUblIGHWVGt1WHETXRsJEcsHKyIhiiIFhBykwhyImuVInnbsL3Hb1zex5cxs9W+/njm9+g3tf/zi7Dx0mLhU47uQzmd3ewOWfvJZnt3Rx3dfqmTJ7Aftv+BIZQSCJQ9G1OeGCCxgZGeHsa2aQtF3UP7Hl6bpOMBhkZGQEWZZJJVPoFXVseXMryxQfNQ1B9ncdxKtFWLbmZG787k18+Vs3UxoZpsKvsHfbFt56/Q1WHXc87XPmM5DK4PrCiJoPQRDIGDZZwyFjGSiyigyoOCDY4FogaIw9Jx9jjH9u1q9f/182sf57JacdOnSIm266iZUrV/7Fr2Ht2rW0trayfv36v0va+ZiI9I+I8++HwWfPhI3P/T/HiP99j2kSicQfja99eFH/IxiLjTHGn0Xg/z4ZdUEUHHRFJ1PKsnPv++w5dIB0osDn1q1H7ErwtTMvwJZdsoaFWB9l0RUf5/IvXMW311/PyPAg48a1Mtz9Pr7yMpR0lqcefIDxSpALzjmeHVtfZvGqj5LVvJgGfOFbPybZN0yv7ZBVJFIeiQHBA3IJnwpy3kbyyyQkh2UfPx8zV6DggmUXEeUS6Z7DTFt9DJd8/ZsURvqxEJFlmT3vvUPPwUMsbq5DG183+tZEB0scLYYraupxUfEGgxhBPynLQZZlHEFCdkS8psPXr72GW/7tZsJVUXaZBdKlEkcOd3PFpRczbBgMF4oEAgIlScYVRDyWjYWBJxbCyTtYikJNaztyMERRU7BsA8WVQRQomi4z56/ALrmIjsH+vf088+I25q2cT1VDjHzfMC0tM3BiLUQitRSycRq8AQa7+2kOVuH2DxM00+Sff41prZOZPXcWB+NxWptaePaFl+jsG+ETH72AB+/4EUcvXMKy+fNxKiMcTA9hBD309QzQrkZxswaKBLYikRYt9vX2M37GdMqrKykYBlHZQ0l1Kfq8FAUFCZ1Or00x382iQIBHbrmHabWNnHjGaYiHR4h5gnR4RTbc/QNuXHU0alU5BcfGRMD1KKRtg7DPj2DkKQg29BTI9qWYVNvEDzb8AL2ujAVrT2ZvfphObZhDIVADQ1T5beadfy59GZew5qV1LUiNFXRkRnB0m2FbwJMyqK+o573DPcSa2ukpmhhyAEmScU0DWdQwDIuRoREef/QXTB1Xz97dexjX3EJ5dR17D3Uyb9kKyiuiuGYCR3RRBAEpZ/GTO39IFIvqthC/u/8JPn7l5xmyZNKqDIKDZjnIroONiuFRsCUZ04ZMskRlWQUDw0lCQQFJ83H+5Vfw+F23ULNvB5qisr1nEDGRw6/4qGqI0FzfRsKWsWUZV7QRJTBNC2QHS3R+f6k6ok2gKoqRLXDmheexr/cFHv/hcdiZwyydVEad3+WsNaeg1wZpXLyc0075OJKsMKzpfOSTl5FI5TlVq+S1jkNc/c2v4Q0GuO2ZB3n86UfYvn8Hs6oCSA5YAgiuiOioWI48ersQJWxRImKAIGkcLCVYctoJTDzQwcZf/Yoll56G7ZrkjRS7fvgiu3IWn1j3CVQjjz8Woic1ghQOYqoiku7FKhbJ6BpVCQGMIu6MCUyeWIs2mCcUizFUJlDeU6AhECCrKriKw7Y332b/np0U7ruf2+/+Pn0jcXR/NRUN5ehDRa5Y+y9cd/uNxEdG0HxeFAmKZgnB40GQZFzbxnVk0nmLskg1B3e/Q8inE/R4SJsORVdA84fo6x+iVi9Hjogctoc49qpPMZIwsdMmvpgHob6VfL6fkZEM4yLN5IcH8dRGSYVkzvi3G5AJ0r2rm3ybl0LJImdalAYS1JRVUkpniOg6ueEhfvPw/QRDERavPp2oR+W1Fzey540XueyzV4NlYTkmtmngjYRBFEEu8bmrb8SDwusbfk71+HpKUZ3DI/sQR6A+Vkt5uAzbTiArLrKqY1ga6bSHa79wKzfeeBPZfJ6ps5cRKjuLhx/9DZ/6/K386DtfJC26xGo0Zi4K8JUbVxLVx/P5z3yaX/z0a+zZ+RqnrD2ffvMXnHraRznQk0ENRHGdNAImiithCKP3WwcRzbLRnQwIJRzBwXR8yB4fiSJowQi2lWfVMefhGepByKXZub2DYhxOP2MFu/buorJpHBEnzYTgPLr370LMuUwYX4GVK7D0hHNYffxpZFUv3ooKDK9NxhUINNWTzlk0+iNY3YdwBBFLkEc7TQWXgzt38e77Ozn9rHOxESivqqQpVk+va+GPRskOjPDN279DeVs9N1x0KZdccy14/UiOxWsvb2bv9m3EomEeffx+blg4H8vI4y2rpJjP8MDdPyCXy6GILsLvIyvAwUECcB0QHMZEpDHG+Ofh94mYf8CNN974774XhP/ZZmnXXHMN69at+4uPj0QibNiw4e+W9jZ2h/1HxPkL1n8DHwpEf6rNbkxEGuOfCVcC94NpFT4oGGUccC0CfoVt77xEy4xWUqEQ5HIEZROrkKJajxEJV3HzHd/DX6Vwy5cuI1rupTeXQPFXsD+bQqmJ8ZF5U/lYVRSdBN4YhAUXn20SkAS+uv7TpIU4VQEB/0APkpGi2+gl7ymS7OgiLHiQy+v5bU8/F/z45wyrZURr2ggGRVzjAKvLBYT3trLr/R0UNAVTV8mkenjxifuR0720VpfhL0kotoAtiMR1kUGvxu5UHm/dBCrrx5MpFbFlm4KYxqtq+MUAckFn0ripvH9wDyP5BEWhyIxFS2idt4akr4lEMIKnoQ4rlSCZ6CKiKQQSBaLlNRQFmcG8wbxTP0axrp0+PGQlHVlSUUURUQTDE2DqSefihqP4Gv3c9cvf8dLbJmVVS4j3Jdm1v8iW7hyl+ql0pW3kfI6IaBEJSnSURsgEIGmP0L3zJQYVL+8WZMKNU/AZXpyOJEtjjfz65tuoUyWqdBmfJjHcP0zAVVGHingEnW7HIldfzqvpfh587llcSWawPMyMY1chFIqkDx1GzA+zP32Yoq9IYDCF40CN6qHWdMge6SJdyvF21wHSjWV0hkR6FZstL7yEtfswz33v+0QDGmk7hU2JrJkmq9ootoOUzFM0Svg9jew1JO7dv41hr4e1F32GEbECW6hHTvqJNQTwN9Tj9/px9/bx7vd+ztY7f4ovM4Lsy+OLSViFHGWOh5qKSrr6ewm31pNQHdIaGFgIpRw+1yEkOgQtETFt0BCtIqqGOGPN6Wiil1y2RKSyDjUcIWO5lBSdkmuBbFOwMpx58fnMWb0GqaKOCz97HcPJEoV4ESSRQEwjVBih0clz5MWnCcg5iqUBNNlkeriCH3z+y3zxwovp7exgWJEZ9IepXLiSNWvXsWLxKXitAIWAnznHryQumvTnhvBEVAwxj6KBLEtEQgFk0UKxBPSCippT8KKTL+awFB8DSYmAfyFmqQo91M7K8y6nfeVqFi6ay6q5RxEczKIU8tiSSY+TJJcr4DggCA7RqgD3PvQj/vXaT3LlNevIuiPUT6jA68TRjEH8Wgmf5uBTJUqpPBFvjFTWJNDQgifvIA9nGRjO8J7kMjC1kcbzTiYlCwT1ME0Nk5my6FiGTQtP0E9IyuNJd1ElOwRsi7AvTDyexxcsx1FHjcez+SIZXSGtupR7PJBLUTIG2fzkT/nixWcT3/kmkmIwc9VCpi2ZQar7AD+74ctkdu1AF2VEb4CG5jZ2Hu4g3NiGFqplJGHgJExiRpEHvvNlUodep04xsdM5dCXEcFbCwodfD5Af7sHJJREklWQ2gxMskfDlSIpZwqZIfUpk488eoXv3AUqFNPHeLijY+L0ayewAWthD0jAYTElk7QhJW0UtD2N4dAIFlRn+RhrlIJph43UcfBEPTlDg+Pmz0bMp2toryA7sZ1pNgL0vPQdWHjeVQJZ0sLxgabiyQ9Lykyw2kLOamHnyWVAF37j2dJ657+u0t1eAJSHIGrLmIigWrhQmmQrR213JkUM+hoeDpEegUoqgM0BlrETGMLn1nt9Q0howtRLHrazjy585kRpfks7OXezsi1M+fRlS7Ww+tu6L7O9M4Xr8JEWLvFCiaOawUiNkkgMIXhlDcfE5RR6/4wa6tj3BG6/dRbz0LhU1Nka2D90xcLIZCtkUJdGlEAhTNWchniCceebHmDG1na7Du3ALBgMHEoyvnIKWVzn3lFPxCDpJowmvbxKDWYd81oWITtHM0H3kAKVCluz+g9x/zSd58qavcdeXriV7cD8Nukp7zEdIKpLJjCCpEknDwKmMcPL5ZzHc18FQpodjTljMQO9hUopFpLkJV/UgCyIrVq1CDQdYtHIF13z1ixzqPkA4ouMRSoTcHNMqVKrcBIFSkqAooPGhj7YMSCB8uNmOMcYY/yy4rvtn138HH9a1jz766B/97MPa90/5An/ob/Sn6uJDhw6xadOmP1rbtm1j7dq1f9PJof+MsU6kf0TMv+CY/4b//Nq1a1m/fj2XXHIJkUjk9xGImzZt+v3M5x/GIo4xxj8q5gfK7ajjxSgSkBse4dF7f0JDeRQjMYxiltC8ECqU8BVc8mYCvDqevEVLOMTaq06mIIMrCKRVjXB+1DfF61O48q4bqPiFj4aaGo698Cr6Bnp48/FnmOWq6HaOwUKRcK0PS4WajIhomgzMqqPnYB8DPSl+88qrfGTteYQdP05nijefeYxdQ+9z9qkX8ZvfvMhlV1/FUDaFZVnUlZdRGfURH+lD9KmkJRHVEpEckG3QTAnV1fnidV/jUGKAQb/D7oO7mK6W4Y/WUcgVCHv9RCsr2bTpObJuiYVrz2NX5zDHHn0sWbuILDgURoaZowcYUgQe2/Az9j2yiY/d8XUyQY2g7iOVy6GiYokiIiKy44x6yXwQgde1az/QT6xCprPrAN/4zpMoQYOgVsG3nv0ms6dPJ68a1OrQ8fZ2Nr3zFsecfS4evYJEPMObr76OLoWZsPAoSr4AQ8kUFYqHoKoxo6mJg6++zuxFi5g3dxY333k7en0di5Yvx6eXU/Ko5DwKO3s76ciOsPToZciCiLRziO8/8xzLLlxDJFbG6zduoKyyltAxAhPrpnHrTx7i7X2vUB7wcMHqE2lubmPqvNkUfCojpRzegIfZDbUExo1j1dyJpEUX2RZp90VI23nyuh9xeIi0bWNpMl+99et4y11WLTqB1QunEC9JuK6P7kQejXKWnHQBE2dO4JCtcc+3b2Zu4yzOPuV0VArYroiFSNATxk1LeLIJ6lWdkZE43soq+ns6KZVKVIeCWI6NqIqksjmqm5o4ve4sNLuEYRaRZQnBFVBcAVwRDZD7stzz0w2YtsHNt99EwK9TFEVsQeadXIZgXRTiBsHyMPs73mOhR+U7N1zP/Pnz6e/rxF9XQyGVYIdps7dZJbrieD6/+ykubFlLWUlm6UlrOVgYxDO9ifYFDRyb97B55/ucfcwxJEQBUXLwaQqZeJKmikp0QaRUKCIjoIj6qNeVZWELfOBdJOM6OlahSM6UEEQ/npDKNTfeRG4wTteRPhSvn7RZoqBr5CLh0XQpU8CxHDQzQ3NDNZNbazGyaaxUkd/88iEGBjs49sTTmTZ9Dvu27+CRu+8nGivn7M9+kiOdh1Acm8amBvwZB9t26e48wPQpDaQTcQqCH8QyhLZWPvv1lfQOdjCxrpnPX3U5VeOmcPSaU7F8OoIUIpmyaNVCCCGb8kgLB3t6qYuGKfhtciMjhJMFZs+bS1k4yquvvs7JbZMomS4c3OUSAAAgAElEQVTNE6Zzwy23semJX/H9H/yE7z10Bru6h+nzFTncP8CWJ1+gqaqVWQvnMJzrx3JyTK4r5+DmjUyINhESo3g9EomBEWJehQ3fvpG6gMtHP3EJI2IJv0/CMCxwRYr5Ik53iq7t+8l2DvDMu7u4av5MXK+PolnAFRwc0cEW1dFIeaQPPKUAyaAk6XjLIlgll2LAT8dQF81lEVJGgkIQqpormKLN43D3IA31zfhck0fTw0wqa6KuTeWqL32VFStORfGWkSslUYUyBDtKJl2iKlgDA6/zxQvP5YGHnwK7hO5RAZN86gi3fPtaTj75Kmqq2/j2Lbew/KgV/MvHz6axXmX53Ol89JJLqfuXY/GG/bz11mF2HTjA1JYCHtnA7wkxf9Ykjux5iV3v7UKWVVzZS3V7DYVSAawiWjLHUCLOjjffwjzSxYVXX0lWgIMHjzCzoY10X4Lnn36BM6/7OJ+57t/46g23gR0hOZilsiyKVcpQQsHyhgg0TsQxJeKdQ6iVQ1RGQiC6eKuqSSsiZbOnka8M4q+tJD+Q5nu3fIdHTvgevoJDMZFkvB4hrrocyZfw6T7qqqsYyRmc9y/n8/17fkRNXSXrLjmHsoCGRzIxiikKKZe0J01/bxeN1TEmtDcjGHk8SJimSzyeory8EtHrw3UdonUNtEyZiqzAhMpyHnrwEfYf6OCKi9ex5tgV3Hjj20TDEWzDQlC1Mc1ojDH+yXGcP98hIYp/+xvFh7Xvh3Xuhwlqf1j7/iWpaolEgksuueRPilEf8l8ZfftbIH3lK1/5yt/t7GP8bSje8Oc7kbSv/FVPecMNN7BkyZJ/Jwrpus7KlSu57777uOuuu7jvvvu44447uOOOO9B1nSeffJKampq/6usYY4z/idgfDMhICKMikgN2Loto27z60ma+dPXVzGwZj98USZpDtFoK5ZZC2iMj2TbnH3cC2372ILNPOpaUJ4Zqi6Q1mYakRFleIjBtHAdadJKbt7OgcTLlra1Ex9WhKgJKOsO4eVNQSga/e+BxXtuyhROmzadYyLDH6mVOUyPFeIKjFy5CNyQmeCKYg4O89ptfcdnlF+Fqfra+s4Mp4ycx3N1PbiSF16Mzd9EiItWVJFyTRCyA7AgorkvAcPHYLmFXIn6kC6PSzyfu+SaeqJ9l/jIK+TySAqrq8uKmpzhn7WmEvH62btnKsnmLcQpZLDuLaWVo9HvZdOsPObhnJ6/8+mkm+4LMP/VobMEkpsgU+wZoiEWJhcOU8nlcQUR2RCRXwGsKTI36+cn3r6NzVydXXHE1WrmPoVw3RTlNX/p9zjnvPEQ3RaWb56UHH0TOGJxwzKmIYhlbt2znjZe38fEz/wUz4qNgG+iSgCbZ7HjvHfr6uzjc1cXezkM8/Otf0zMyxJkXXES0ooKRXBYtHCSRydDU1ER3ZzfjWlswsnl+8vhDNE0fT/PCqZiWia8/S+3saTjt9ex5dz+vPP4MExuriXg1Prb2LCoaG5i4YAF5j4LHq+GVBMptm+njWmFCG/tSKdpC9Yy8uJO9z2/lnm/dhtdyaJ45gQE3z/jZUzjxlMW0TKqib7gbf1kDt3zvAX755G9J5fIsWLSEjqEUQzmDTG+Os047i8d++ThPbPo1C445GlkNUMpJeE2R1x++jz3b36G5pYVEqcCP7rmb8rpaqhrrkXSVnGkQLIuRSI8gyhI2JprmwXZcZElGcEQUBzw2PPqDuwj4fDQ2NFDf2kSikKeAiyNJ5B0bGwerYJCQDGINZdx363c5sHsPR604GrGmEsUfpJQ12eukeX3fTtpb2jht2mKmE2KiJ4Zkmph+ibhZAEXgJ5+7geFckUNdPcRqahFFhYCu4xVFCsMjlEfCZHI5NF0nXyggCAK2Y8Mftr8L4Bc9OCULS5MpCC6oHo4MDqMFQqDo2I6IIHsoOCqmLeAI4PF6cB0LbAs3YxBwdUKSn6lTW4lE/bz60kY6d73Ni4/fS7lk01YbYersqQg+DSMS4uBAP3VqgM23beDle+6j+4XXOG7ZSRxOhnj5/REu//Id7Dmym1Wrjmekv5fpM2azr3OYabMXkS65CJaDmc/z23vvJfPGe9SpXipaGogPj/DbHz3I26+9RfucefjyMjMmzyYyYSIyITQ5hGnLKNUxpi1fyvQFy7j2ki+xaMoCDjDI9PbJbPvFb9n0zHOc+tHT6fIUcHw2sUKRN594liVHryILuK6FKlpoRpJjl8xi39tbKOWz1NdWQj6PX/ARVHU0V2bj40/x/BPPsn9gP13pQY5eeTyhynJypTwIAq5ro6oKkgwu9qgHjmCCYBFQJORMmsHEIB16nmh1GHOgn4jrIqsuUVmhfeIMutIBMCwsw2HC5CZe2PYi9z32Xd7c9SKLjp5BKXEERZARzAA+OYBqgixZHNM+nW0vPs97r+/i6Lmruemm66mrVqlsCxONQLHg4FgOQwMjrLt4LYc7tvH21t8iF/OccPJKZNlg8rSJLFw4m76eA3zpuqu5+MKLcOwwU6etovtAH317DzB76lSCNSHiYhpDyBNxTMI9g7S1Tmfh9EW8/NBjTGppwKvI1FZUs+eVdxEEjYzgof3oY5k9azXlZW3IUhVePUYqk8J1wevVKRkOZWV1+NMpNr74EtOXr6SyuoZsPoXHJzBQTOObPI5sTSU5QeXoppmEowUmzaqkRRLIdOxn43d+TMhSaFq2lN5slmnTp1AzYy7+5nGYiszsRfPQNQcoUlVThWMa1ODD7B9iUl0d3/3GjWzf+harV55AVXkNti1hWhIBf4REzsGVFaZMn4qoqvzy8cfALDF3xjR6jxxgfFsbsh6hetw0Nr62nXMvvoyiDZI4qiOJuKMbrCAB/7NHV8YYY4y/HtYH5vv/2ZIk6a96zv+o9m1pafl9zfv/W/suXbqUTZs2sXbtWk466SSWLFnyJ9dfIkj9rRgTkf4Ryf0FIpL+lb/qKYvFIitXrvyjNryamhrWrVtHS0sLNTU1TJ48mZNOOol77713bJRtjH8a/pSIJDo2219/nd/95lmOW3YUZT4f2VwSLaiS7RokFI4Qtw0kw+DN519AKRRomTObrBZAdEQMScZnyqNdElUhnnnjFb788ctYvfJ4vKrOzpFuqlrraW5toN9IseeVrWx/7mVmrR710ZFUgWZR5KfX3sC+l99gycTpyLJOXyqOVh1h4pKpEFQpCRrTp86mzBfmezffRjaeZFz7eCxVoiRLpGXA6yNSEPCN2spQUCFtFFAUhWEjS49QQImn2HbjnTTWNdBU30i2lGbpigVYdo73dr/P8uUr6R6Ik5cdsqKFIbqEZJ29z/6O404/je7uTioUH5El0xCMAs7IMBsffRyfK/DsM08zZdIUbFFEQBzterFFlHySA/tf59jl59I8cRxXXnslb21/m2TS4bTT5mKlZYI+Fb/l8t4Lb1MZqqOmpp2CK1EzvgXZpzFp8RzSmIiqiuhaFPJJBuL9LD9mOVvf3c5Rq9dw3icuYcaCpQQrK3AVGUuRyZQKFIwiuqpSU1mFYJhQKKIfNwOtJ8HkQBkeV6Js1iS66oJky4M8/O17WLj0KOqqQyyeNxc5FqVfkhgWBeSqSopGnhu/egN9O99hwbw5dEpBEDTkpM3Dd/6Yga5e2puasUyTg10d+D1+tGiMbCaOKItUlpXz6MNP8dab79PQUMtFF1+A4IGMZVASDE5bcwLf/Nr1xGoiXH7NlfjLowyPpPDpPt5+5UXEdD/BSITGSRPRQhGC4RBtbe04BROKJkFRwRiKE1ZVsE1cB1L5LLKm4aoqtmBjiy6m6tK2fB6eunKqJrURqixHdkDMFMl19DItUo2eLVFWXs4nv3EdD/zqYea0tnP6aacTK6vCjAQYiqcIa0Ea6uu5cNHxrAg307A3xV1XfpGuN95l6Zz5CMk8ZVkRvSdLY0MtsxYsobl9AnXNbaiqh4GuHtrq6zi48z3WnnIyms9HS3s7gigiCAKGaSDKf/ChUwCvo+Lz+OlOJ3DDARKGSdERkEQPriMiChKegkP9oIkykKS5vJxSMUnByuJKJoIukXULpO0cliij+Pwce8xiIgGdtooQQjHPlMmTCNY3k5BUjqRzaLoPT6ZA9xuv46ZTJPsHaZq6hN2pEM+8cpAhJ0qZP8mCWdOJeUTymRQLFy9FEiTsYgkzMUBYcpjRXE7wvf289eSTvJk4yLRZU5krRCjmsgTmTaC6JKE4IgMRFbEg4VUDFAUHsTHMoJMjXSxyfPt8rr7iYtZceg6Z4RSnHL2aVaecBF4VucJLMTeCJxHHjCd5u3uYKfOXkC1k8XkUzHwKs1Rk8pSJlCyXzc8/T2tLKyVDpWhYSIrK+PETUVQNy4DZcxbQMnsK73cfJBgKAuC6Dqomj0a8u9YHItJo++FDV36J7s1bqPZ7qZnZits/hPvOPp6/8Q5yvX08+J076TjQR2jaEjQEVFVh/jFLuPgLl6LpKqZoYeZTfPfWOxnszTJ70bE4poAiCwhGhqhU4IH7X6WtqZ4z1n2aPbve4nt33sJZa09A1XUkIUAinqG1qZXOzr2cvOYonn7ifmSjyEfOWIMolkAsMjzcR1VlmN88s5lTTrmQUGgKHUmLU9as5bRVJyJJCofSfXS7aUzJoXikm+9f+jlWn3omQV1n2y8fppjsYty4Wu6//wGee+xZPnv9v9E0Zw7ZshhVwUo6u4aprGxiJDFEKCRh2Tm8fplMPo8rS0xraOS9vQeYs3wlAwP9lMWC4JTImQW8lXUk0PFIPlZMbGfu8vEc7HuXgy9uZmZjE90vvcPLz79CaMUC5LpaDNsmq/nJqjrtUyYgyC47tr3CM08+Tk9XFwsWLqBKCbDhO7dzaN9+Tjz5FJ7ZuIn5y45GC0YwJY1AtIx03kLxxcgUixiWRTaXY9nSRfzq0Yd5+le/4oKPnkHQF6YvB1Kknkef3sSF6y7CtEGWRhvshTERaYwx/ikxTfPPikiy/Ncdw/mPat/Jkyezbt06IpEILS0tTJ48mfPOO48NGzb8RbXvh11L11xzDRs2bGDlypV/cv09BSQYG2f7x+TvEG36n81jRiKR/5JR2Bhj/FMgK1SUlbN8yVJUGwqZNK7o0N81QMfufZi6DzUcBMdCUAQIBRFtBckBWxCRbZG0KiLL0N87xIlTFqIEQry0czuxyhpqauoY6O7g2Z8+wkmXncP2gR4yEZ3xRy0mnczj07xo6Rx7t73FR04/h4grUJBkMn6Bki6DJKOKYOESCQQJBsNoiofx4yYhSx7yroiie5FEE9UcTWXzmGBIkFegsr6JwpF+tJzJigkz+Mktt/CJ9knMbB6Hky8SjIYZjB+ksbYGa8cOhrMpXE8EbyxKIpOgJFgM5kqEaxrwl1dT3z6J5Bu7yAkCimOzY9tbtNXVkhgYwMjmkV0HyRk19obRuGdD06htnUCkvIF4fJjDh3fjCeTp7coTkWKcuOQcevv34tG9lNW0E/KHKatqonukm/Z5c+nP9xEX8+QMEw0BCZFILEb75CmooSA1rW2UXInKhmbEeIakmcXBoWgbiJpEXVU1I8kEuseHYJlEPD463n6DIz97mEVX1xGpKSdplMg5RcJ6ELVkM2PFYqqUAvXlZRxIZKicPJXDg4PkswZS0aJoupyw9iREj4plCoS9YcxUiqwEdfU1NI5r5dWtr3Hh2ZcRa6hivyuTL3oQrBxHejo4sHcfV11xEbo/RirVR9ukOnpSXVTURenqPciFl57LkqOWsGXnW1RNbMBrGuhehZa2BmraK/CXVZCSRTL5DPW1daiuiyZIaIKEki/hd0R8okI6V0LwasiBABYuovihHZ+DK0NJFakc34YiwM79+5lQU8/9P/oxnXv2c9UF69j27k7eHRigcUI9E6onM3fiLDymSK5koKheJNUiGAwyuL+HkmEhFS22bt7I3OVLSIzE0QQJCha+cIhHn3wIMzfEMadEGDd1Gjt27mLSjBmUR8Jk/w979xll11kleP9/crg5VM5ZoZSzZEu2LAcZZ2MwmGCiaZimmx5oumFoDA10Y0KTwQa7AdtgwAHnIFu2LDnKsiwrx5JUUuW6OZ08H0Qz/b4zPbBm1uAZXL+1zrr3w61ae61b99Zz9rP3fnJZtj71FNe+/Rq2bt3K8rXrSNXVIUnS/3jBGQSMjIxw0w+/ycDZS7jyyivxKjY120a2AzRFRcfnkZt/wiv7dvPRL/8damcSQxVBlfA8C3AIR01yWYt4NM1kaYLm3gEOPL+N8WwW4egQ5ZZhKq1dyIJEKhLH8C0ufefVbH3oEQ7s2ctIIctNN3+HqVoMBI21Vy8lsCsYUZnGdJKR08Po4RipkMldP7yT+kSYCxf10daR5sgQTBw7QGH0JEtm9aM0xRgiIBQx0EyTopOhPpLAtmu4okvOKuFRIxLViEUkFjT2M3byFMvnLiE/NI6v6gQS6J6AIKg0tLdjnHMW37pvK1cYBkKlghd4+IKEoJqMT+SIN7QyPvkMASKSZuDIUPJ9RFng/KsvY/k5Z6OaOpOBRXt3F77rnGlT/Z9Y1NbJy48+yfGmOgbXD5KUZeKpNLsdmNvSyVhdM4/e9xh91/8NlVrtzKlijgSOgKwmWb58A4YgMtB3gN17D4EgYGMjiwKqGLB+4yUsXrCIlhVngZlGQEJTQwiBgSLEGDl9gpDRwJEjh2ioS1AuF/jMZz7D43fdy+TEKLKpE2sL0dvVyPFTE1xy2aVUbZOpnIwSbeXw6REmKgWaW1KYsRQNdQFWrUIymWbWrEHKxQwBNebP7cYih1XJsHHjuUwfmQZZwvIEqq7PgUMHGeifz4mjRwibOoguNTuLG8RQQwqiKBBqrOc9H76BTD5PS0Mjp08dob0hii5pVGs+eqASj0c4fGIvFb1AJG7y4t7XyZ44zuzOTg6PTYEsMVXIEfdFYk31jE4X0L0ASdUQFZn+/n7ylSqe7TA2MUKpVubYKy/y1uvfTffs2RRsm0jg4ykSiqZSzRbA8Qh8kWgyyfhYmRPDozQ0NPHay9v5wuc/z03f/CH1TR0cGitihGMEgDRzJzNjxpven2rm0b/3h+59P/3pT/8v/d5/myX8v/rzfyozlUh/jop/RCVS+MY3LLwZM95sgjMHeQMC4r9tjlbKvPj8cxgi7H99F74KVtrk6Ye3sNMqsSM3zkVLlmMIHg19bQitjSSFKDUfBFMlGih85eE7efrEPl67fxPzT7vUr11IOWVSNsMcOzrMvT++k8hImQcOv87Zf/cXbC9nuHP3yyxsn0fciFIrT/H4U5u4/rr34lgeo5ZLcsFsSp5FkyjT7uvkyzbFqoPr+JSKFc4+5xwsAqoiOJKMryh02Sr1OY/axDTp2Z0cNi12jx+nKZZgtp4kUXR5z+I1pEcnKduwffurJNqbiNXFyFVzDC5ZAuEojh7C1SNUVA3LjCAqYRZ1LWB3IUu0qZXFg0sZbwjTEU9QnZhifu9cnnjoca5829swQlEsWcYTz0wvd0WJnCzQOTBIoRRFCLk8vXUbExMVUuJchne9yqzmOWCYhOMdfOPHd7LzxBirL7iInFTgZHUIoi4FtYpb0jHkJJKqUiyXUKNxAklj3tKzaOycx8nxCtmqjyVbiKqKGgphOQ6JWAynUkOwLFpiKZxsnnVSA/GjGVpXLiIfOBhVkYd+eAeFwyN86l03kE/p6ErA6PQUN/3qHv7pl/fz+Et76RhYRHtDGytWrEHVAxxV4dSoS3eqDTMa4Wu3/4RKROGSt1/Dd399G3WhRiJVhbExl1S8DdGWOXnkBK8//wJvOe8sGpIaakxg0ptGishYTgVdqmGEAqbyo5RwqWtrw3EcwqpApTKNUp+gJAuUZBlfklFlhdzJ07QFCvn9h3n2Z3dx69e+we6XtjN2/ATdA31oyQSZYhElaqCGNabzU+QLeUKqgW87OLZDyAjjVGo8+9Rm1p61mt72ViYmx7j6bW9jycb1tM/tRym6NKebCJDJij6CrCOUbaI1sOrC5JtMxuam6V6/nOUbz6VWqlGJm2TiJnudPG89bwNaPEmxZiNrBqahUc4XCEsC5569HFPXePt73kcsXYfreei6TjQWpVKrIooiQRCgaioxPUQ0HueZXa9w4PQpvECgId2A5kuogogv+Ki+w+KWFHpE5RcP3MeGy68iny2SMEI8eNtPePK2H1E6tIe+1W/hdNkhkk4wnisyZ95i2nsGKYghYn3zOGUJpPUI1uQ0kWiEiuzQsWwea669nGlRY9f+KSZGx3jrNddx9VtaCUsWO59+kC1PPMTSZUtQRQG3XOCcJXMYaEvzm+99m5pWxYoK9Hd38Oj999O2oJ+W/g6euPtudrz+KmKdQTkqEVXCqJqGJdpodSqqZmMKPvd890ccfX0Xb/3g9VhBQDFhkJcDAllk4vW9TO3Zze6921l9wbm0LT+fsXwRUYJENMLxsQmau+eQcWSUaIrBwYWkm9oYtwNygs+x7CQNfZ1kaxUEU8FSRZyQSlX0kH0BEf/M+6BoSKJMEIhkM0Uy03laWzo4t28Wpw7sQ4/rdJ69gLiuIE8XmDg1yuprryRbsbn8uncS7myiMHaKplSKhq4+KpUASaujZkfRlS6SRhuSotM3fw5Zp4Kr+EiqhBFNEG3rAUkDIWDpijWsW3Uu4fY5WEUZxwnhByaioIEAiqySTKVoa24llqojQMYTfA4eO0hndyfzFqzh5lse4XNf+AGPvPAyp8bG2fiWi7FlielqjpHTp4lIOnVShCO7DvHLB3/Oyy9sQilPsOnZ7ay94mySXb0smreKiXKZU6UMQb1OTzqJJIFv1xCDPLGoi+tmsZwiHhLlmk1VAN8w0TSTSj7HN//x86yeP4jiitSbLTSoHbhll2h3nIpVoOaWGIjXsf/4EB9474foWDDIVDqC5weEVYVSzUEzYwSOhWdb9DSleP3VHaQb2ujqm40bSPQvnM/yDecSaWlh1soVEI1R8lxcWWAqnyEUDuGWHCRZACHAsmwURaW9pYW3XHIJp04Os+fgEHW9Cwn0GJs2beL973sPASALZ+YM/n4XVfjdKRYzZsx4U7Bt+w9WIqmq+kaH+Uc5duwYDz300O+rmf5vNZNE+nOU+yOSSNEb37DwZsx4sxF+Xx545pkoAKrEj3/0Ax647ze0tjYxb9kSMkrAK68eI+ibzaING0i5Hr5dwBZ9yqqO6RuoGoxkJ+ipb+GZo3uQQirWwWE+fsGVjMYCKrhUxjzibT3oqTq27djFwJUXkazvoC3eTnrWPEKpZqqqjNoUITWnm47+flxZwY0mOFLKETIMKk9v595PfwXLNOlaOJ+KbdPc203BsXEVBf93i3TJFzAyFW757Jc4vnsf81cvI2NCuVZhYV0bB+97ku9/8h+YPHCQgfk9fPH7PyLZ3sX8VSvJZqZIxaLs2rmbp559ntmzFhJkqkSMMCUBAgcSUoiM7BELhSgeOYnSkWJs+DQL5y5G8hRuv+NOrr3uempAVZZwJIFAAEcKkJIJ8tMiiqaTK53i+e2vcdH5V7H+7HdwYu9JLrvsLFKtaYani2x56QjJ9ln0LJlLJZjGFYtIqogka4ToZsfLh9i8eQu9c+ZgeRJqJEm2JPHXn/wqTz6zk20vv0ZTR5R4uo5SrYogCuSnplECMAWRkC9gChJBENC1aB6jMRFPkUlURb751INsV/Mk5s2i10yRHx8h3tjITx/ZRqESwh13mTu4nnojTWBDuC7CsXKGVPdccidOc9PXbyLS18pl73gbtuUyVLW5+gMf4mc3386dD9zN2rPWE45E+Kd//hIf+/D1zOptwscmIzmcxMU1TUxBQ8FCwMKXJdCSiGoaUdBwyyXSyQglIcARVdzftYrIQcCshmZyBw7ymU/9Z/TpaZpbGumbP4dV684m3dlO0XUJhyOIro9YLBFMTrNm1jzUiSq6K6K6EiDiynDxVZfS2N+BEJM59+LzCAsaE1aZCh5pOUxYCVOp2pRUCU8QMBwRN6yRcysQBNRHIji1MhPlPGJzmiG7hheL0tjcSjSAgu2ihkMcOHSQz332s+zc+Qo7XtjG81ueYtXqlZyaypFsaELTdXzfp1gqofxu0SkIAoIoMjU9jif6DC5fwqLlK9n80BMsn7MQzQsQcPBFn5pao6hV6V63hu51l3BsQqCjaR7FUxUi4xkWiXDg0edQe3ppnT+PsuuQtzwcNPRoI+F0K64ZoyqI1IdNnGoF14OCZeNrCpXARlBlrrz0rVx+6VsY7G1Gko7jWXkGupowTZ1wqomi5fCFL36R0ycPs+7ssziUOc3QjoN4tsCit11Bx+B8Hv/xr3n+hVe49u8/SeHYKPf84tcsOv9cZCmGhUzNsqkLm+ilMglB5rKNlzKeL5Du7kSNRph0a4SiUaxymbgo0lEXZ3zqJN39PQwXPVobUhzZ/Qq/vuMnLFm+ipPjWaIt/RSLNUTfplSxsEMxTpXy7Ds+xN6hI7S1tiEGPp4IgRAgCD4SPiIBQQCqaiCJKtlshWS8EUUOY1tQ06p88xvf5NWDh2me105zZyuu4zKiQnF2BwOrz0ZPp1Cp8Pcf/ysef+BBrr36bfhaFEmLYnsmflkhHW1g1uKFVMpZMARKVhFBUBADHQEDX1KoKgKqoONZAnq8FT1Sx969J0BScQIX13dwAVFUaO+Zg6ikCEebOTE8SldPF+MTk4hmjLvufoZ0cw8nX3qeY9PDvPsj7yRTHqdRDrj3pm8wN5qiu6mFlkVzOfv8pZw6fYix40PEe5pZuPFSKuE28lM+RihMLXAQogJSqcTk2Bg9La0UMiPouodVyfP05m0YZhO2rWDpKqWajSHI6AIc3reTpcsX09DYTCEvInhponUt7CuN8pGr3klzLE23WceSqy6mKghUVQnR0BGOjxNRBGTXw7FclMDFICAsS7S3dzFr0RrMZBvT5TK2puGqOp4ZphKIWK6Lqmr4VpWmRJyIm/gAACAASURBVAS/XGJ2czO5zCS5UgEEAUk3cH0ByxFQtRBvu+56pssOSDKbn9rEh993PaIfIP9+dyb4XQJpZtL2jBlvJpZl/cEkkqZpb3SYf5REIsF3vvMdRkdHueaaa97ocP5DM0Wgf47+8ID6GTNm/An9u+Xt7x8FAbY8v42IIjN7cC6lUolEuplF69Zz7649NMVbsIsTxHQNx3dQPAEhGqJSGicVDjE6NcpFi1ewa/9eVlz/bspmCCuXJxwzEZQY3/zZLxiZHKVzcA4nJguc7UdoUBRe3LWdvnN7UUyDUnWYxp4+ikFAIAmcyE0ynjAxxCg//da3WFaR0AQF34PpYpF4OkXZtdElESEAyQc1gJrvcvjoIea0dVM+fhopMEkBp/fs55mHH6VcyRIKzSHa344TMQg112PZHgkjieH7PHn/4yhmlKgnkjIMDh4bItRWj1tzyE5kaexJs3PTE0xtfYllc5NgxhjNFBDzZbq65jCVLSAnwgQCBMKZL8BA9PG9GoocRZGqqH7A7MF+Fq5YQFRtJmsJnMqcwBRkEukOalJApLEOIRQmIiQRRAHfg0pWJBxOs2/vSfKlKo6vEApHmMgUETyDrOUg4CDXbNKNDUTiMdx8BlWVUQUwZYWwKJEZGUMEis1JTGRqXo2QplOSPZIr59F+zgIGVi3D3z5MS10DvqiycHAJI88Oge1z6z/fxoU//TZmOMGRU1vIGgLT5WnMagFJklg6fyGzu/sYPzTM8gvOZ/PQEV6eHGd23yxUwycUN1h61gq6ZvdSqJUoWFXE5lYK1RqWq6OUqhi6QSC5uL5CuSbSpqYpF/KkEw2UMseRDQUfiUASIRARAx/XrnHbv97Cpeeto1mWUdqaSQ3009jbTtG1EDUd33FpS6bZu3ULj/7q19gXbmRg8Up84UzbYYBAOBRldHSUwK1RF1bY8cLzNKuNRDsaqKoCVqZCzivgI+Aj4gvgCyJF0SWsaOiWRyTvUnY9ku2tHCkUqbkeUydOMb+7F9F18R0P2w+wHI93vec9lPIZNj98LwlD5sYv3kjfkrV8bNEySpUKoihiWRa4Dn4QIIoiMgrpxjoyhRyqblIXCvO+a69D9UD2fQIxIBBdXMlHjobI+D6f/9oPcYNm9m57BdHPsJAiy2NFOtrivPrcZhZeeh4np8uIqka2XMH1fXw3QPF9TDlgIjuJLAm4rk9nfRu+XWNiYohwOEmtfArflVH0KJbvossSjghNPf1MVRxa2rq49gMf4bZ/+SeGxqZZ8/Z3UlCeY2p0AiHVghp2SYlptu3Yw9Ovvc7CvkV4+QCqImI6gu8qyLJIxNYZPTJOfXcXjimz4ML1KMkITuBjeAIRQaFiO7TM7oX8KZb4i6lO52hNdROWHRKaz7rFsxHcCpFQimKxSKlYJBVV8QVwJYV0uo7VjfX86pd3wJIViAGIAUgBeAGIgs/vEwPB70Yo+yLpVAuu65HLFqjIRVasWcy+V3dy/49vZ6C1nZAlMLBiKcOaylTVgmKJuOqxdHAu5UIVx6qhKyKe7xAIIqIiYpWKaIaB5vnokomvuVgVC1M0CZAJ8PEEBxSJG//xi/zlJz6LHksTS9VTrGQQ5QDPdfF98EWJ0XyZ6fEq3W3dqGqKStnCcRyShsro5Ck8r0zvgrmczhzk1OQxVK9EayJEfanCI9/9IZtb6/jIN7/MxOlTzJ67gHs3v8SiFWs5mfdxA5eF/YsIrCKnh6YxRQ1NFGlKR7HKFnIgEVgB9akmAlchEWlGVpO4RoBjF6hUKkhODSNsUA5chvNTRFLzOH48S3Zqgr7z5mJNO3znq//C6II1XDHnYwyNjNGQSBF2fDrDKSxdIFt1AI94NEp2agxfE4gnmqgKJpmig2RGKBYKIAoomongBXhWDV0SqVoWsiUxffwYbaqJ5NWIhcJYgY/tgalHMDWV1u45ZIs2AiAHNnJg/+7bwOPf6pBmkkczZrw5vRHtbP+ndHd3c/PNN3PDDTeQTCb/w9lHS5Ys+Z+21P2fNlOJ9Odo6o+oREre+IaFN2PGm8+ZdrYA4fcfQVHw2fbcVpYumc/GjRcyemoEWYkyFmvkyd8+S3e0AT0eINayaLZLq1rPMbdGKqEwduQ4JMKsTfawNNZCqL+F7WaBPk8jWfJ4tQLPDp2gt72fv77kXbQNzuXg8Bh33XkvoWgDlzQuQTk6jVzMAT61Qpl0qoEhReTvHvg5OQ20TI5+LcJVH/0Ie06dIN3VRsapERgangCKL6B6Z05Bq4Vh670PE/IEhIk8/Z1dqEWLn33pGwy/vpd/+NyNbHjHZUx2aCy6+FLmr1lHLlcmHkjkDg1RHJ5g49qLUDNVNn3nh0zs28uaC9ZSmxinP56gbBf40sf+kqVGiLnzOimHkkzmLcq5KpnxKRatWoktiVQVAUcOCARAsDFFD7VUh6ZOImpFFqw6m2RrMy+8PsTLrx7nsuvaiGhFsvk8i9ZdyLqLLuKe++/jid/ezeKuOSTFOsJ2IyNjcOcvf4sRMmnpbEcPhfnKV7/BspXnEza6ODGUIxpJ8parlmLbDp7vU6uWccsV7r/3Xn7549s4ffgwQdUi3NVCohTgaDKOImPLMjFXZmWohaGv38ULL7xAU10KMVDonLWazc8ex84LpIIWHrn3Nzz14CZWnr+Chw+9xNOZIfoTjXz4smuY39uLNZrhxU3PcSxuIK1YwLlXX8N5C5sZzxzB0W3mrZpPtjCFpKm4ms6wGOGhQ5MUnRAtnoEhBgSegB+YKGYXX/v6z7nrzge5YO05RAUB3RNQfBHxd8eqCwRUctOMnzzCnNk9XHLJBuhuRmiuY9qv4uomhhZC9QS846PceeNXOKexi6ULl3C0K05Bk6goAq4kUs3maZFU+qJJfvXlmzi65WWee2QLvauWY+sqYTTqo0ny5RolVSAQBAwXir6LaCi4eCSQiE1VeeBbt3L3T+7gQFDjyZOHyHfEmaeFEVSVimXT1FjP1VdejmEofOyG9zO7r4MLN26kpWsWaiiC7ThUq1UEUaRcrdDY1EQikaBmWYxnRwlUMCNRvKpL2JWQazaq7+FKDq7k4YsuwakKIbWZ7jmX88Tzk4TqBvGkNNOlEd51w2XMP38FgWDR0tYApo4fgKyFsS0XXVHx7TKm5lNQfHxVJuqFUEerFA4Ns+P+h/nVz35M50Aj6SaDjJ9HjUaxPQ9VU5muepiNPRwYmcZMtnD5VVfR1NbDdEWgfWAplVCSRGs/QVWjs3OQPUMj/PpXDzLYu4iu3jno8XrueeIF/uV7t2OXXIzRIt/7hy8il0WU1mbMBbMpihZWoUKba2AKCjXbIhN2EaKw5/HHOfDkNg4NHyUqlTj22lZ2bHmYK698OzXHAy2Gho+TPYnguVT8CBY+jmOzYN58TMcn7IDmBegeSL4H4pnPdRAIqIqJJOokE01851s387WbvsuCeStoawtjHjxBOuvgHxtlzws7OPDcThZsOI+cohHLS6QFHSs3BmWbar7A5e9+J1JIwhKqBJqNptTQJB/yFXY9/xxj+RFaGhoRfQXNjyD6KoEg4IsuauAwOT7Gpz77BT740U/wyuvbKbsl1LCHpHoguQiSTlWIc/Wl7+WOXz7C3/zVJ5nKjtDQ2sRoZorHN79EIKr8/Cuf5eIr19AxO05DXOSJb3wV64ln6JNVDo0eQV/dhySprFy0mgvOuxKzcyFuug+zbTn/6d2f4qkHH+aiiy5CCUtY2SpbnngOt+TQ09qBJilEzAT7943w+KO78d04yc46wqpKYyhMQzrJsnVLKEcExj2XjBrjxUPjfPy//AMHDx2jv2LwN9e8D63kUO5L0jmnH6dqMfz0Kzz5pW9zcHQfDbEEW7e9xNEDh1i+aDG+61DzBMpCmLKnUCjliMaTKIqB44LkS0g1i7Ao4E9PoxaLPHnf3Tx0z11cevnlaNEY45ksoUQDhapDoeoQiiTwEXBdB0XwefrJJ3jv+96L4LtndmV+Vx0bMNPINmPGm021Wv2DlUi6rr/RYf7RduzYwXPPPUc2m+XYsWP/w8swDN7znve8YTHOJJH+HE3+EUmk9I1vWHgzZrzZBNh4gIt0ZhAoIHkiETegRQp4+bd38+LjzzB/1WW8/cuf4NpPXE9XU4LGio+pR6gIGgXfh6lptv/iDp584H7O2XAuh44cxoiFKRSqxJU4+aLH6YrLp370W1rae+lta6cxaSAVy2y551GO7zvMpevPQTMdCDmcqowjJdO8eGSYLXsPMnvRcrIHhhkw6pjT0Mk3fnort/70XjzbprM9jVXJ4VcrhJUQTs2iZhUpWxPIldMc2L8PP2yy8V0fQku3oEajDOXG6F27kviCuRwpZShg4/s65WINSRQpWSWCaJxE5yCpzjV8/NP/xIET+3nr+97JV7/+Pe7+1QM0d89lomBxdGwcob2djpWruO1z/8iWu37D2eetp33xUk5XPRzJxBc1CpUaHhJ3P7aV3SdUku06OXeMQmma/JSFW/I5uP8AaqxCQ3sEUZSwbJETRzPc96tH2L7tJEsWXUz3QA8FL4cbPojoyyiA7/msWHU2vgtHDu3i3FVz6UsZTBx5lYHuMHULVGzXwS0Z6H4Dn/v0lzlwdIgPfOij5H2BzsXLUEJhqp5LIIkEjk2tkielqyQ0kVd2P8dZl68jFvHRTZiuipx7weXUNTXw6s6nKQZHmLOglWXr5rLzlRe4fHAxbaaGYBXIjU7hVB2e2fQiSzpn0y0FpPKTePZJQmGNwIdCpkaARMkuUbDKlAsZGiWZJqtEj66wY/9Ovv2L37D5tSMIyQE2P/EEH/qr95OuH0MKT5IT6pHCYUxNQql5jBw8yX/5xFdw/Cjv+dgnOVwqIcUiWH6JUESh5k7jOjY1y8YNYlx41fuJdg/SOGc+fq6AGtgoWJSDCTAtxqsFMr5D54JVhOuaOHzgZZqTYUwhhCQlGR7JUvElQoqE4bkIVgazfIBStsRE3mG3X8/tR07yug7m/DrWrZzF+rk9LJBN5GmbaC5PMxK/vvVOPvftW/nyT37DeHqAR49k6Jq/hnjIQPfyZMsTCFGFv//pnbxqazz46i48U8XOHSMdSJh2gGS7yK5PSFOoVvOAixL4aB6EHImEnqDiuUgRj0vWzuZ9K7r46Ib5hEYOcvrQPjY9sYVLP3cj475HYJdJhlXsaoFoKo0tejh+Dckt4gdh8HUED3xJRYrXMWfVlewdD/jBrx/lxX3HWL9xA4bj4BGQd20Kk3n+9h0f4Oi2l7h0zRqIKhzNjOErSapCgNEQx/VqBIqIXBdnzYa1zEoZnNz+KPbEUbZv2swH3v9hdh86yI7XXuIjn/ogh8b28fSebbz7Y+9iNHuKSMzEnsxQF2joepixbIZSSMARHcyyxeHd+7j/iW1cef37aR1cw0k7SaShj2qpQiMl9j1xD0/dfQcrL7yA2ydLHNh1Gs1sglQdmuSSGDtNiwYFNceOiM1IOE15Gu4uHyPulqiPS+TjFXrau7niqmv5T1/4AZdfsY6WjjbmrD2Xy659F4sWL2LfwQOsWrOKtBnH92RqThVZLtHS38eCtWvQ4ylsUaOQrxJUXUxBxi3l8JxJ1LDLX/zFB3jHNdcwPV45U0Vkuwi6yFR+mBPZKDna+c2Th+haegUf/cz3ueM3z5MrCbQ2NWNbLq+/+AjO8DOsW7mWocNHOOeSKyhrDlm7SODleNt5q7nqrPlExDIxsYIwehp1KsP83j62HzvGixOjNKxYw8Dis5ClFrJFAzsSoxjeR5kjDB+qkI638tQLt7H+4mVgBdiTx+jvquPx+2+nuT5EzQZJjrH3pMsPfrmNZ3ee4NqNi5CsSfJWkYlKnpFqiZIkU7RtpvOjxOsCKsURNg6exV984EKSMYfDR4fZ+vAtXLy8hUQg0dWwjnuf/gZtcY3XXnqG+x97jvGx3SxaPo+yKpLTNCY8B9tQUAUJzTOQXB214hIOpknGSuTyJ/HUEFNOAw9t3oWkxWmav4Bp36ZQqxDYVQzAt6ogq4zmplA1kVwhw1PPPM0HP/RhfAIE8b+doijMpJBmzHjTqVarf/A1hmH8CSL535fNZrnsssvo7u5m27ZtfPvb3+bGG2/87643MoEEIAR/TvVfM87Y+0f8A50787bPmPGn4mHhIeKjAGf6iJ1MnqE9r7P90Xt58bH76J01n+Syi9gWTDJSziBkSgyG6xgYGMDBx7aqtIsqD3zv6yTaWpiz/hzC9U0MnxwhFa5HFHROFfJUXJd/fWov5563moaogpA9SSwQUVwNy/VQYwoFN4sgCXiywuObt3DhFdfgOD61co2EbJAZGeGn3/oOi3rncuroNFe/fSPJNhFLKFG1bCBC4IpIAshCDcPNEZITnDg5TlvHPCpehWI1gxGTcPyAUhUK5QLxtIIQhCCQEQQBSfbwXIF4rIH7frONwmSJ6685h2ohw8R0gZrlgarR2N6CHlWoORZuUKbudI6Ro8dpXbaUcT/gngcfJxWNc/GFG8jZeY6dOsbslet44IkhchPbuO7a8wiJVSoZAbumUPFDTFkZZM3GtBwkVwVaOXwkw2s7snhIDM5uYNacGKHECUQrhFsTaW2dze49B9F0EeQMbU0xDFFn766D9MwaJKOXkQIF3RMJrCJToyeQJIm6hk6qtTAnh6dBGaWrp54g8LAdD1ULIclRXEdg8+YXaWjqZGFHHtvKY5lzeP2ox4kT44SEgLNX9KDpPhOVYVINdUgVB6uWxxBd1EAlcCUeuOdJrrrmrRhxH1FxyTs5KjUJITAJGXXU3DJIOQTRBUFECExkTyXshPn+PbdjJZuJNwwwf9Gl7H95D8WpYRb32Jyzopm0mqIpHSPsO3z7xn+mv2uA7a+9TlRPE0lG0JIyPSvPItxoEkmoOEIRQTYQA5PjByeYPD3GS1ufotGQaCqNYtR30Tl7EWpjP1UURNki8KuYUpHnn3qM1mQrbT0D1EwVs7mRsuviByLPbnqG/bt2M9jVx5KVrWjJTsqeyRRxykoNM+qDNY5ZkxCqInG9DlebJFnKQSHPVDZD34YLOFEqEukbYGJ0hEZR4dlfPIRcnCLZHGHh2rWMmPXkwq0IlkvIKzFLLeJO1c7MiRJEXEVCDYfp6elBDHzkIEDyz7RhOa6LYyrkVcAJ6FXCBKUyHckkLx18DSVuMi13YRULDDSECOwaZizF3qNjVGyHVDhMbeo0fkTBEx0kaQJRqCD6CqrUT6XUw9e+9Vv2HjzJwnntfOZvZmHhUw1c6rUwuZ1HeerhR9nx+m6+eOcPKakilbKH7jlIWEiBjSeoxKJpAstCOHWEPsOjUCjwynCR5LzlRLrmMDwyTNz0qTdgcnSEeDyFEItQ8LIMJFp44od3IZsxBlYuJteoooYhMZlDzRbZv3sTSzdeynjRx2xZQDKexC3lCVsFBLvGgw89xoZr30G2Y4DP/OXnueiat/Pk6B6ciZPc/5G/YmLfAagLccgUaNSbqe0Z4Vi9w8/+7pMs7GyhaXY7n/7ETeCF+drX7+Ev//5qdBGwS2Bn+OBFb2f8VJ4HX98HOgSaQ6U0yt++9xrqWrr42Mc/gR5J8/TmbfT393PL976D7Dmcv2E1oYTCXff8lP45/cwZXICktKDqbUxla5SrRWJplZLXydiUx8f/+h9o6l6MrBoQWIwcfYl//uy7iRkeLdI4u37+LRZe91n2T3s8tmuIZYt66WxN4haG0WNRSpZLqxxj/PAQv/3lz+lsbuDd77yWzVueoaN/gGhzO7amUygVqNZ8BCmKkXIplSqUM93UJxoZHnmE2XOaESwHNz+N6Ftsf/4Z3nLhBTzzwi7MaBPtgxfy4b/9FyLJJv7+L85GEXJ4gogviPgIaJpBoVAgEgkRuB5GKMXJY1XShkNzpEhcbuZff/KPXPPONUSjncAyDu+6leGf3kuuBEJMICdpHJmu0bNgkMGzzqVnwRKmsznEpILs62AFuIUSmpjliafvI55uYOnqd/GZz/+SwHX40PvWkOyqpyqUkcSAmCAgW2eqCPKOS2BouDULWZa59dZb2b9vPzWrhq79/ysMZqZ1zJjxZjI9Pf0HX5NKpf4Ekfzvu+WWW7jhhhvYtGkTGzZseKPD+Q/NNA//OfpDVUgzM5NmzPiT+rcxn/+W3vUB2dBQQgY1PLRknERLI5ICyxrbEE5NMnbwCMfHR8hVS/i+j4JIrlgi0dRGoOjIhoGi6WimgefYiAQYikQ8bBDXfQyvjOyVCGk+qbiBLLskIjq+U0WTPTTFJ2oaWOUKUUMnFYthKBqBY+N7Lr3dXXR39xCJNyCpERxfQNFUHM/D9wNi4RSJSD2KkMAN4hQsmVRzL2OZaSRdwIhqaKaEG7joWohENIEkSYiiiCieeZRlCVHy8Pwarlemp6+TQNYoWgGtXf1kyxWefHorIGBbLrWqRdiMEK1rJtXWhSNqxFL1iKJIV3cnvm1xYNdOxk+dQHRdTuzZz7zZg9TF6ijlysTjSezAI5KMsufIQYxImGQqjq7JGKZIMm3Q0BBFFdQz1UdCBKdo4hOghmROnR7iyME9FDNT6LKM7VoosTCp7jZqqoFv1ZGb8vB8m1DUoaXLoLMvgePbHDkyxssvHSQZS6IrMrquEzJNDD2K74fYu2+C0VGZ6YkYsp5E0AxkXePg0cPkJkdZtmwBhg6y7JKKRXDtGo7jIEkKZsSkVC0wOjWCaMpMlzLIYQ1HDpBUk/p0G6lkMyEzjq6FUBUdVdHQtDOXrusoukF7ezdrVq5m9cqVnLP2XCZ37gVPx65E6ahfgOq7lCanKU1M09/WyTkrV9IaSrFo7gBz+rrxKhVk4phqI2IQx7LVMwOPazaJdJQdrz5PY1uc/rlttLQ3snjZUpKJesRARcLAt2XsKiRijfT2LyTS0IerxsnZNiOZU0xkh3G9Eq5dpaO1g8G5y9DiHQhqDE01SMkerapDg29hWj4KMRDqKJOkKIepGUni3bMI1TUgiT5NiTDW+HEaVZf2WIiWdD3vesd7Wb/6bJoiMeolgTrfpT0SIuKB4kioRhxZjyFoJoJqIBkGrijiiDK2KGFJEo4oIJkakiJjBy624DBuZRm1s+wcH0LsrMdtjqMYGj0dPThli8D2GBkaQRU0ZF9HFkwETGSiyEIYWVSQZBtJqWKaNarWJJdfejGXXPgW9u7ahyqCKgvguHi2Q31LE+svOJ8VZ63G9QTy+SIE3plp9b53Zq4PHvlimanpLD+67TYee2YL5SAg1NlCqDHFaGYMX3BJRiOookxnaxcNqS58R6ezs5sTJ4ZZtXIFO154lpipEJIlfCsgkE2MRDOaDFPDx5C8KqrkUyjkyWQy6PE6HD3Jkg2XUXMVUlaZy9avZHZvA5Lu8+qhfWR9iZpsYpdlxDGLRLZEc9ggmanx8tbXeOiRJ1CKFhRz4Dt86mNX897rvsQzz72GKwFBhY1vfSuJ1tnc86/PkJkCC5DCGt//159x4sQJPvSBD+LWqsQjJoFV5vKLzyc7MUIiGiaZTFJXX4/j15jMnEZSbAKhRjwRQZIkTCOK55RJxCTOXreE0T0vIYtVzlmzhP7uFjRZQBJA8UTc8RKO49A1ux9fgUP79lObLqA6Z+bJlZSATLVELJUgEAWKls10sUBdawup+gZcIcAlIBKViSZEVFXl+CF4/P7jvPLSEaoVh7p0O64jM5mZxPYV1EgdA4OLKVZdXNfnxMkh8plxBvtaePsVFyJrMqJmoqgGmqJhSiaN0UaicpTWSCtCWcIueGzZ/iJT5QBbFanIHk0986lKYSqyQkXyGJi/nPpwlI66CHE5Qmu4njTgTBQ4uG07CVcg7oiENRlNF1ANGU1XkJUQixau4/ChCXw3xgXnvZVIuInW9jYc30MSRSKGSUM0jikK+KUSHXVJrHyBxvomEvEGXAdARpZU/vvbmZmF7owZbyZ/qJXt/6WamWPHjgH8h7OQ/m8x08725+j0H9HO1nTjGxbejBlvNgLB7+Yh/beFrqTIjE6NcWToME2dbej1dcTq07RnXDbf/mtCIZ01116GJEv4NYuEZCKIIoNzFxBva0dJpTl26hTpVD2S6xOSZXK5SUTBZ9GsAQw3h+5kMYMylekpNFGhXMoRiamIQhUxcCnnbXRVZ+jwMUrZAmFZQ7Zd6iJRBjo7aKzvYu7gemxRxJYKyGaA63tEjHpKU3Ds0ASvPXeQY6d9Xt03wQuvHGLO4nmM546ihqFi5c5UupDGtgL0kIJIGBEdQRCwnTKKCuVyiSVLlpKuayJfdVGi9QRaiMee3ELf7Nk0NzeDAKoiY1sWAlF8I8moU8NWJEr5LKuWLsQpTpPPjHHOOauxaz6FKYn1qxeTm5hAkyUsLyAUi/Prhx5k7cbzyeXHUd0Cteo4KGXCCYG2rnqKpXH6ehtIxCRUsYwSCyjUMjz2wMP0tbQwf3YfsmwRmAFZRaCoK5wuBDx+56tMT2SYMz+J7R8FuYDt22haG9u2DGHVDDasnU2tOnXm70JUsFyVO+54Bj9oYHIyjWP3k26eJpyWKQYmR06OIKoB8/qakPwpfLcAgoUgSWiKiSh5IFoIooCkqoRTTXTMns94ucRIpoCupjh1osDu3ccoFnySqRgIDgEenuvg2z6ua1MuTNO7sJvAFBgaPsj+A3to6mymv6uBi9adRa2UparlEUIhXEmhd958KpLIwIr5iHUm4dY6hFSM7/30Qbrb5hGNpjAiITxPQBR1qlWLUmmcy646B1+WiHSspBA1yIU8CuEi03IGLxLGCcd59bDFS/tzPPnSXkZrJeSEgRwWERSBaNigra6N7rYeupp6GUdmulxDAMJCBcPOIZTzyEEYWe2l6iQZr8YpKUlefn6IQ0erhI0WVClK3KxHqUCTlMKb8unrXUCtXCEkBai+y+lDBzmxZw+m5dAdSxMWNcq2iCUp2IAr+PiSQDyZwBfAEwV8QQBEWnoWlAAAIABJREFU1KqFbVkYckBck0jHDPbsfo2m/naKEtxx3z00pxP84uavIpROsHvn0xw+uIvO/m40XcSySkiCDX4zeAnEQEAMRIRAo1x2MEMaqQaPzh6fK66ci2znkCUwZAlsD7tSo6u/j655gwSREMNj48SiBrpgo0g+kugTSBojkxkkVWXJonns2vkSx3M5UqtXM5TJ0trRTiJiYHgWmZOThI06ArkFR4wzOraf7oYWqidPockBzY11YMrUPAlZSeIEIZLSNEeHjpIrVqkh01DfQjKVZGRsEiFaT0FKoOhhpl97gaWrF3I6d4o556wgmy/RqKbQlShiVaItmiRazDEkFemNtPHIsV0cLkwxK1nPxrddCWINp1SgbWA9a89aQl1LnBWr5zJn6UW88toIf/elW1l2wbk09cbIVzNEtST79x3i+7fcxrat25DwEAWfiCZRyk3R0dVJvuLQ3NXCc9ufpqWjkYcffYjZg8upVSW++92bkeUYra0JoiYsXzLIeG6Cqy+9gPaGMHN6GojrDr5dxB0/jXh4GHHOPEZdFzmd5viO3Qw0tFAfMqlqPlU1IKlGEByHsbER6pobGZg7D09RKfsu5cAjb9UolU9gOXlUuYGkeRWlqTa2vbCJCzcuZHR4AjHQqW+KU7R0CmUH3QzjegGiLFNXX08obHLW6sU0pXTKbgE/8BFcEcGTkFyF6dEimx9/jnJBZHDOKqZyZbKyzabH9jN3aRwtFqWxbQ1ENcqCxEjZQVbDjO3dzevHTxPr6GTDFVdz3sZLGMsVqfiwbNVqitUKFbmGH3j4roPnukiizAsv7mPR4vX87Re+zev7JtBEhbdcuYhcNYuugmBVUUpFon7AY/f8hn27drJ0+XK+94PbsR2ZbKbEDTe8D1GUzsxE+n3iKOD/u20zY8aMP3elUukPJpFCodAbHeYfJZFIcMstt5BIJDjrrLPe6HD+QzNJpD9Hw39EEqnlxjcsvBkz3nwCxH+3qA0AN3BJ1iU4cOQwNd9FS6eYHJ/i2a/+mAtXrWXOikVsnTxOW30zEVlDKjt4ssR0vkKqvZObbv4BcxcuQPDByhUIKxrZ3BSSEBBkChieRYgAXQRJMPjlrx5hfCzHoiXLKRVzyJKGZ7k01jfR1dqJJkh4FZvnnt6MHATIQsDWrdt5+vmD2KJPQ7tB2SmgGiaiF+HZJ/fwygv7CUl1zF99HZv+K3tvGm3JVd15/mKOuHHn6c1jvpcv53keNM9CQsaWKQwCbJcbu7pWlYtuG1WXy4Zy02WVsTFYxkaGAiMxCiFhkISkRFJmKiWlUqlMZSrn4eX85jvHjTmiPiTY5bbb6EPZcsP7rbVXxF3rxLk71l0rdtz/2XufPUcQ1QLl7hLFTpNIDNE0HauqooTdSEIGQRaJgzRxZBIFKoZhEMcRmpagbYXs3v06L77yBuu3Xo+oKiRzOVasXIbjWqiajKoohL6PL2YRknksMcTFYWSgC1OT6MqkSZgGsijx3PMvcfLoJJvWrUGKJLp7e6i16tSsOpmOIjXLIqHpxM0mZkLGiuv4YgvUNoUOhYzZRBQnMLQZfDWk7XksGhxhYe8wjco0hikRp2RONyvYukIi24V7tsryZf0UyzKW1UIQiwR+Dl3ro6enjxUrR7CbExTyOcIAXC9A0TJcvFIllSkzMzGHmu5Dz4xjFjUuzjXZsGUz5VKKtGIj+RUk0UdUFVqWi6woCJKHH7aQFAM1kaejdx1HT7T562/u5vQVWLNyFROXKwSuzJrVm7HtFghthDhAEkASZSRRIJmWmWpNke5KEgl1kGa55YaFyOIl+jsjPMXiP//pp5nJlciMrUFfsIAD1VnOxg2c7gxhfw/HbJ+tCzexbsVCgthirjGDkcrgBzL1mku+UKZlNYkkk7acJNJFPCHGF0JkLUXb1iFOs2PHYdqhTHLQxOzMkC8PoIoFFKFA2BZRYhHDkLHa01iRh2JqRIrAoXPnaQoJnn31CHp6kNf3HWfXCy8xfvII9dY0y0aXsnhsKcQxxXySKPAwlAREKb72ref40jcfZXjpQgqlPE4Q0NeZZ/FQP81qjf6eXs5dqSArIorgYygxYuwgxQ4dhRQi/o96scSIgOqJSH5Ap6LSPHuapx9+hGQQcfjVN9i6bAMrukd5Zs83uOHGIfa/8i1uuH4Z9eZFlJREqSuJ7ddRdZdYjBAkB0GMgQyEZcKgiCCIIE0QxmeR5IskxSyh56PGIrEfYiSTTNfmaMUBc406fQMDOE4bMXaBECGO8FERtCRBLJHJJlm2eJRyfz9ytoNcoYM/+tQf8frevSwaHqKrd4iqHfGbv/8ZXj9xlvfdtYXa5DR/8slPYrVq3HTLDTiIhLKJ5UkEooGp+/hKgt1vHOOmO3+eyHOIvDaltEG92SDf0c1co05hdJjjE2fJFjMITYtVpQV0alkURFRcVMOnqrhseuB+Nq66mZP9efyhPn7vNz5KvlzElyS0pEF3r0nbDvnYRz+KJGUBgRtv28zyNcvJlBS0lEE+WeTeX/o1PvvnXyBSTC5NVpBUg5m5Km03YGzpMrRkEcsx6R1awIKRPvLFMouXraZeFRkeXM9j336Grz/8fd73r65DoE42pbNm5RJalQlCt4oSWRRSGl67ST6X5dD4SUY2b2Nqdo5MtsiCkVGypQLNeo1OXcWoWbRaFqKssHBsMb1Dw7Rsl0hVEY0EatLEiyLEOEBVZYJApTbTy9Gjpzk38xg33DLEFz73ON/51jNs3LQOOZlBUDQUSabZapFJpYniGFmGqckLFPIqQRAho6KgICMhChrP7N7LC/sOcODKDJlFKwlTGmsWD7Hn2XNsu64bSdBpVbtxBY+m46CZeeasiOFty1h4+02kVyzDymeY0WT00X5W3nkTJ50q7ZSGLCrIgkQUh/hem4iANWs3cGV6mhtvuI1zZ47z0d/+FcYvH0LWBDqLKbxGg6TncfjlV3CbdaqNOiOLVrDv4FkOHTmDpul8+MO/jKL8OLT+WESKuNp5cF5EmmeenxWazeZPFJGSyeQ77ebbwnEc9uzZw/e//32q1SrAP9hYu1qtXl1kfYeYL2f7aWS+nG2eef5FIvxPR0EQCWMBP4oxcgXqLRtZVpEllXKhTDFfYsnoGJ7j4FhtwtDHDXyMdJrDR49RaVgUimUqjTqqphOGIZIkIUkCkhOQk3SEto9rBaTTZVQ9x9IVGxkfnyZf6INYI6EbV7dpt11MVed7j3+HOAgxTZNisciht97k/OxZhkeGcEIfSVGw2i6xoHDk6AmSqSxNy+HoiYvoWgcdXQtRtAKyliGMdHxXJpvt4spEk+eee4XJKw1SZifTE21+8NRuKrMOcaRTrbQxzTTjFy4QhBGWY2PZFh1dZWzHIgx9VE1mcvIKhqrxuYf+khdffhk1YaIldDzPwW63aDQayIpOrtDJ8ROn2bZxE626jePFzMw0UVUdQ1NRpBBNEgltkUxiIbLQh5EYpNXWqFsRZjKDIAsEuFe3wbZbpNNJYkHADVzMVBLbtlANnQuXLqEoEmHUpn8wQU9PitnZCvncGClzBW2rTLMpUuxKoqVbqLqC54Ioa+QKZfSEwZbtG8mXDcSUhJqoUujMY7kBbujT2VlElEI8r4GqigjEKIqGkcwQizG27xEi4AdgtQPOnJ5m584jYCymq7yJKNKZnJoliERcP8JxfOIgRlNViGJ810OIRIIwxZFDl4m9BLqUIZ9NEQVV+gczhOEcXtSA3hHyPSO0wgQnrzQJE3nkYhFH1Th49hz7jpwlEls0rcvIqoOmxzSbFlEkEIQamlaiWhPRFBMjmMJo+xgNGXO2jDHRgTaRIGsl2DI6xIbl3Sxd0ce67RsolAewmwaq2I0mdCIKBhEQyi2U2KbVmKNpt1m87ToOztrUtA7O1TwSCYOhvizvf/c63nVtN6VslXb7JLJepWtAw2UST6ow51d46ch+2lLM86/tR+/opR5fLVGzHYuu7hKz9Rm0XIakIeE15ihnE8h+C1MMiawaauiBaxO5NjEicxL4SZPZRo2+7i4WLVxAX08XkRtAO8SMNG6/827ShTILRhaSSCW54853YSbTXLw8QWdXH5cmKkh6jaZ3Ai3VJKSJYojE6EhCkaCdxVSGSKkDRMT4jssffPL/4blnnsWLQpRkAkmXkUSYvXwZ0zSRFQNBlGk0bRRZJ4hFREXHcn3kZAozlaE9XUFyY0rZApVKDS2VpOG6CEkdNZ/m4KkjXBg/R3dXL8vXrWOqUmOu1UbXk9iWg6onCAURXyvgGyUWLN/AxMwcdrtBzlQQ/CYdGZnQmkaQQ/7jn3+RS5aNkUqSqLVYmixQ1E1UWSAQ21yYPkNLE9ny8z/PX37rcZZvvI5Fq7awcGw1IiZgIKAhC/B//dZ/QJWAqzvOYzsx268bYNniDnoyBhJQ82RsoOaAi47lC2iZInIqTytWmLMiUrleTp+awvF0BDGN1YRCrpfz45O8+857ccOrYqEQu1iNGdr1KWRsMgkZQxWwWg1kWaZJzIpfeDe1dotSOo0RRaQ6ipyuzJLp66Vby9LRDMkpGrVGHSfwqNWb2H5ALMmIskKj1QQhwtCztJo+igrJrMPY0jSJTA3LvcA997wbWTIQSRFFAVEU4fgBZjJD3bIxU1mMRIJkyqDeqCCGMXIYo4simqzQcm2WrFvN2uu200yozCU1onwWIxL51Q/8MqaSwm6F/Nf/+9PMzbSRJZNGtY2smjQNk8lIwEumEfNFhEyGZLnExeoMgSqBqRChI6AiCBKCHCMqEe2gQVdfDi+c5Fd//Q5krUJndwemaVCv11EUhaeeeoqZmRmy+SKZQoFcuci2a69hcHAQwzCwbfcdieXzzDPPvyx+msrZHnroIfbv30+1WuWBBx7g5ptv/gft/vvvf0f9nM9E+mnk3NvIROr/+Dvm3jzz/EwSi4gCfycfKQ5jDr55CEFSCQKJHz75Iq+/8QbFoWGidArB1FHDGCUCQYiJRGi2PB576rus2b6FSqXC2MIxIssFP8CPQkRFxT03xfjRoxTyWT79uYfoGF7BD148yPjlKouXryaRTlMsl2k1pxEQEWMJEYHnnnmW66+9lp7eLuqNCkOjI6STRfpGyohKG0FViAKVOMpgaiVSmTxTUxNcnHHI5PPcdttNHDywh5nKOcrFIoaWoN1SeH3vKY6cPcKN11/D7p0HeHbHTrZvvZ7OrgKe10YQJCRRo9zZi5Yw6OoqIok+shwgCG0C30JXRCRRwHc95uo+nX29ZEoJkG0M0UcMfSQkYiVLw5NYsGwDHd0DzFZbnDpzAcM0UcyIIHJwHQsllFG8Di6c0Dj8lsuuF49RbReZnjMgKmMqGRQhgRaH+LJGs+VSyHQzeXkWy7MxMiqeHNByPQhjJM9ncYeKmQrRjCQH36xz8HWfg2/M8tLLu1BTcxipKqZuEsYqsaTTtiNefu0gAyMLCCKXC5PHWb9piEwuIBJjpqp1wtDFaVUwJYeEfHWL86ojcezsHNMzNZLJFKIcE4ciupZl36vnaFsZxkY341gyV67sZfu2TSwcW8I3vvZNjh59g0WLepCkGIkYTTJQ5DxWo5/z52R0fRFxUEaONHrLRcQAopZHWi/Q37eSkcwCXvrufl577mWsqRk2rRzhrX176U6WqY3bvPDEQ5hJC0nzMLNJ/EAjaZZ4cedB3nzzBKtXrsMOI9pGiBOIoOhoSpK/+vLXOXf+MpbrI+lpfF0k0W0gqyrtuYhvfuHbvPnaMUqZPNlikobdINBs4pZIKtfJywcOog2MsuetS7iextRknbuvXcn6pZ0k/XOoXgtFThOFCpGgMDzcTQS4gUJbHGTBimu59oYtLF+9isjM4sgGThAgcPW38ESRtmwQVifoLprsePIx9r/2EqMDvZi6RjKZQxKTuI7A+brNqazCTOAy0FskxELM6RjdJVKDw0RGAT1dpJ1bwFQlYtHAaoiLEPYQCMPIyjCxMER1VicKuhga2MD5KxeRUj5nrxwlkRGxHBtDSSORIvJktKREPpNnQU8/r+3dx96jB+gc6sHHw1RFUpKAUepDTaSxmjaSoPDUc3vYd/AYCTNNNpMkk5DxHY+0nGa2FbBi641IWpKnnn2WW991K7P1CttvuobKzAWuWz5KRMzCFWtYsmkbyY5+XEHFdnxUQ0aUfKars5T6hkFJ4LsWP3z8q3zlL/6EAy89wzXXbKXh2EjpHOq663jy6a+jhzbX5Xsw5iIcPUETB0uYpaucBD1H19Bq9n53Dx//tx/iwFP7+OD61XgzFmqoIQkKyE1UI8GRwy6//Vtf5u73rCFSPJKJaRKaDI0EsgQHzlUZHVtFLiPw1pEzSLJELEgEgowragSCgW2LpLI5bNemaXloWonASxJ6BosWLWHLxvVksgESAZIg4nsOttVAFkLcdpN0Ko2ZTDPjtZnIKCQ9AT2ECIl6OsWbl87xxoEDrJAUxp97kQe/8VWuu+MOvvb1b1FvWixbtYZaw6LtuphJEz/wiTyROFRQdQnFjEhkGows1RGJ0cROWs02K5YsQhRnkCIXXZF/1DD7qqjXDkIiEWJJQJWT+G2XhCzQqM4SCZDu66Ilhpy0mlzC5/XX93BNLs+ffepL3HrrRkIvS1/3Gj71mU9wxx13818+8aeMjS1gbHAETUyhegqnDhznCw/+JUnZYGx4AXHgo4oikpdAEmIiPPyoDmLM5GyVweFhYsnGCy+RLah4nkAsBoiEyHFMd67E8RNnaPgBN7z3vViKTu/AMOs3rOPZZ5/mo//Hv8H3Q2RZ5G9XSK+WlM5nIs0zz88OjUbjJ4pI6XT6nXbzbTE8PMxdd93FBz/4wX/U7rrrrnc0E2leRPpp5OzbEJEGP/6OuTfPPD97CH/nTBQipFhEiAQOHTiELKrEnsz3v/08Z4SIrb/4HsxcnpQnIEcRCDG+HCEgUO7ooNzbxY49O/mFX7yXC+cvYggKsqRQt2xqlsO+7z/ObTduZaoywZTTYnTdZtK9I+j5Av1jQ9hRi0sT50koIVfT/q+2/l6/fiMdXSXc0MPxbURNZHCoE1Fs4sdtglDF9SVefPEgHZ19dPV3MF0fZ2ruHD93zw1Alaee+grvf9/deH4TSQgQRAlJUSkVUiSzIfl8EVkWGBkdRNE8IpoYCYm23aJYyFIoJFFiG1V2USQHgTaaBlHoE0Qhup6glC/R2ZFHVF2CoIISecRBSBAaeHoHR87PEJgFGnaVvfuOkMp2sGjpGKE/RxRYYLdIBDpqkOPMuRnkVI6mpBIqSToHVzM90aYjX0AVZeS4jR9JJMwie/YcpG75KCkTI2cgSgGdmTzJUKZTTyGFLWLBBUXkueffxHM7mZsLiOOYdRv7SedFkFyQFQyzhO3JvLLnBEuWrMd1QgqFBFFUxTBF5qoVsvkCqaSBENjouGiCQiAoVG2DI6frrF19MwkjhyR6CPhAQE9XL6MLRjg7fohU0mf7DSOcOXuCw0feYnJiil/7tQ8gizaSGEIYEvsQBCDoWdLZUXbvPM3EpRaH33yLpaNDZBNptEghakX0mFnmTk9yeNdR3nfX7WxaMYYhTtKdUUjFMs8/tpPf+PA9jIx2ks6kQVGJxSSVaps9e/axeds6ZMPnUrPJhVQ/NdGmpdv4yRl6lubQestMRx57dp/mTE3l+P5jdJf66Ewo9BQk7rlrC7rhIJhJBD3HD3Ye57knT1AsDbBt6zXg11lQLrCgUOS65UsxwwaBNUMxmyJu9vCtvz7OMzsO4UZFFg0sIKMXaddl/vCPn2Dv3tP0ZyNUXeWP/vJRLszYLFiwGBkPEY9IFPBEhf6OEufOnmF6rkJHVxcDQ2OY6TJ2YKKkBnGDDK+fmsDSFGTb57XHv8Oi7hIdA90045imkURMdhEqKb6y+wTHx6dZtXgluWw/lVqMqA9z6lyLj//+n/P8D99g7+4Gf/bgU3iCjJiAxStX4UYOnm+j6xGSbBPEFjP1Nr7lkUTjhpuuJ9VTJNdVRFAiioqM1Gzyue+8yJ59bxL4EguGxlC0LLte3sfsbI3rr9lIuz6FJAKyypyY5Ew9INc7xPU3XEdQmaQ7raM3Jrhz03IIfaaqNSqSzqcf/g4/fP0IC8aWo2siqtDk2JFX2fXU46xdspBSJkHYmkWwptmyZglvHtzP1tvuwegZ48pcm6HufpqNwwyWVNK2TaY8yp+++DLPnzjB4iVjlBGpVWw6myof/JUPY062+JWbNoLno6YSSLrIOQ8EVeOe9/8nvvvMq9QDld/5gwf49f/9l4iICYMIVTHxbLjxptWUTAHBA7c+TWzXEAkQhKvP2kgQ8DwPP2iRTGsIokwQSCS0HK12FT+qkExbiEIMKAiCTOB62JaFZTVZunQ5Fy9eZrZax0zniSIJLfJBCLFUkaaeom9kjL17XmHr0iGyeQ1HU1mycjWyqPHnDz3EurWbSKYzxMTUahVkMUYUQ1RVwQ/Bo4as+bTrJQxxBEmy2bJ1OYE7SWSdwpQjRGJsJ0JPl6i3fWIjhZEr4QoqM/UqyYSKb9WR44Av/Oln2LxhPflMlrXrN1GtVqmfO8eWwT4OHX2L9du3UasmOT89xc0/txUtU+ToyRrHz+xiYdciHn7oYSbOXObaDVuYPHeFrlKJ0bER/DgAYgRfRZQcItq4UYNYMAmDPF/84qMoUpLhoUGajSaSJBKLIYIQIcQiiqJx4vwVBlauRugdoK1r+I6Fa9V568h+fv03PoKswNUi8fh/irIC8yLSPPP87FCv13+iiJTJZN5pN98WuVyO4eHhn2jvpIAE8yLSTyen3oaItODj75h788zzs0bMj19no6ufIiAWkEJ+JCIpyK7MYN9KnHUjDGxYgR7JlGo+iCGBGOEoMUoU4jguZsZk2frVXLhwiXQiiRYqSMg02jaKYRBcPEY2J1LsK2AOdpIZHETOd5DuKCCbAo9//5tcuHiaJcMDxIKAEF/dDtn2PNq2TaVWRdJldEPAcWYJoiaCJCDIKTQ1x+49hxkZG0MxYtZsHOHaLUPIUgOBGuvWLSFpRoCFH9WJ8MnmU/QMpNFNi4RpsHDhIG2nTiw0kFULP2ygqgKeZyNHHqLgoCo+YdBAkUNURcC2HXRdI4oEsmYGRQgIpTaC7KBJEpIgYpidPL3rLQ6fnkTKdtA3mGP/GyeYrjQYGuhBlZvgt8FuYAYmsiBQHpNIDXvUmUTORJy7cBojrdHfLSOJFQTOE2MikGK24lLu6yff1UGtPYOpCqRCiUysotkK9ZZNMpWg5kzT0TdId88KJqZm0dUUK1YOIiLgSVeIxZB2y2BmxufwwRkK+WFUKcP4mVNk0zqKAbMz03T29ODYdVQxJCEERAEEsY6Q6KfhZDn8+hQz01WymZiE3iYKLTQ1oFSUWDCSoFz2cIUGJ0+exXUc7rjtdlyrgSQ5RJGLKoiosoGoujj6MRrtNp4nMDExzi/cez1DAyoSLYSogSQHXJ67xBtvHmLd5utJlnV8qUqcmKAVTJLImNx8yz10ZjJIkkgUSzhhjO2L5AtlSp0lHH+apn0OJRmBDB2qTsKRKPlFuuV+jrx8krgVMrZsMdWZOvnUCoQ2DPYEdHVM0naOkcgEtLwEBw5N8sYei0z5ety2RYKIXmmCXn+GUSVErFSJogBkiSuNOVotj9NVh0z/EAuX9qLF4xSzNoNlGctt8x/+3UdY05vkO9/+Ph1jm6g2Y3q7e8hIHkbkIgKBIHHx0iSFzl66+gfIl3twI4OOvsWMT/n8xcPP8OiTL3Hi+BS/uHQVW7P9vPWlr3LimWdYs3IZ5VwJtAJnTk7zpc9/laOxw+nJo7zwzNcwUgJr1izl5Plx5KTC8NgIguTxf/7n97Llxl76FuZ5ed8RjMQA+16t8qlPfoWN67YgyxqKBnONNoacoDubp9lq0BI90AUcu8HeHzzNif2vYYxuZ3yiyvnxiywZWUg2XWbN+s2MLVpM2pCRgiZO6GAbKucDhSdfP87+Y2fYsmY1+fYMcnWaKzuf4sn//nnW3nwrSjrLnJKmY8lGXj18kp7OHnJGTDHt0d+dYmWnzmNf/gve2PUMjanzvPfdt7Hv1d28975/jTG0iglKxI5I14VTLFufI5PxeG7HM4R9yzmV7+VCJDGY7yIxUSFRzlKYarLXHmfbyABELpcTU7RljQuCyO2f+W/8xYM78P00jqrxiT/599z6c+/lK489i6RmyaZzpHSQtQg1EpEdC0UOmTlxECloocYuYhwiCAGxEIFgU2tOYGZUECPSZpZ6o0kyFRJGs6SLTVxHg9hEFGR8z8OyLModHfzJZx/ED2Fk4UIaU3UGgiS+YmNpAVVd4tt//UOeeuJp7rzhJkKzjVOU2LhuI3MTFXL5DiRBZuOmbbieSxhECAQUsmnCeBpZBd9NEggOTlvi8MtlPvPpJ9h2TZFUrkU60ebIq08xcfEMvf0LiCWTyZqNksjiShpff+x7XLgyx+iqhcSRTVqIaM5M4k1NsX5sCR1GAmfOonphkutWriYKmizbuJhHv/sCX/7aLk5OHeOau9cTqWnq7Rzb7+ynHSQ5OzXJ6JKlLFuzknxfF51jAxyaOM2Lx/bjmjIFPYUsWkRYeKEDcQ5DHmPyUsQj3/wel0/Psm7tZgSpRShGxMQgiAwNjSGksuQGhjntOnxv1/OUDZWugsnRo4f5wAd+CVkS/06U/dv9UOeZZ56fFWq12k8UkbLZ7Dvt5v8n+/fv50Mf+hCGYbB06dK3fd3999/PAw88wAc/+MF/Qu/+Yeafsj+NzPdEmmeef1EIf1OKLV59z5UAKSKUAiLp6qprLPqsXDPGL7z7ViYvn6XemCWQfEIhIhTjH8tPlEtFmtUaWd0E16WUyyOIMX4UIAhgmiZrb7wevVxm1nEodXYxNTWBa7ewWjUc18cJJPoHF1991Y4hEgIiMUBUIgrlHMmUjtOy8F0HVRPQlRhKT3CSAAAgAElEQVQ5CvHsNm3fJt2T4+D4W5y4cg5fhJnZK4iiR1dnjlKpQLXZJBJFojjG9208r0EY2BiKxMSVcSxrhrZbwRdDXFGkGcaERgJX1qlHOiEGSiQi+RFyFBPGEk6sISp5HFdFCgLwHaI4RhJ1dEwEX0ExEsw2polji8X93VTqDvnOMqNLRklnTMQoRowEiGUCEVzFZ656iVblHAY1lg4mKWR9DKWGIlmIgoUYuSS0gCio0dHRSSRmqLcUAjEJikYkRIgKxKGH79kQx7SbbXp7OkhnYjS9TVePTjatIRKhxBq6ZmIkNFJplY6uJN29GVTVJZ/RGegu4zWnkGKbge5BhDiBHwjEkkIUKhCKmEpMNhWiGpDJJ0hkUniIOEGEoqnY7Tpi1KKQjJDQyOTKTE3XeH3/ftI5E0VVr5Y9ijGt2Kfle9iBSGdXhrvuXMealWWUsIrgtZEiH1mW8fEo9RVZu30NqzYvpOpMkCwaVBt1VCNJtV6lbk0z3Z7GwiNWJRQtQSwqXK7MccWqURfhXLXBjj27Eb06Sdcn0fbQ2iHN2TqrVi/lhuvXs3ZJJwt7NIZ606xdMYopRWiyhKaohILOyUuTTFo25ugI/Qs6eNdd2ymVdZrNJvga1apNtmggaTaxaFPu6iZZNNi2fTkbN4zQ05VEM3V8JN48Oc6zO3fy8t7dTE1e5hfvuYPrNiznzpu2UC5liQSZEI0oVlBDkUWjG9j32gSvH7RJFPqZnGvzqf/2Vf7Lf3qQm2++no/+9r9HUlNYtWmisMl9v/pe9EwCqx0hk6Yx49Oqe9RqDc6cPEymmMfyXa5UZnj1yGsoiofszrF6qMjtt21i1jmNmK6TTsbccvt1lHvzmLLDkrFunn3+BWZm28RRls9+++t85bmnqMQgJlIk1TR6pJFSEmzZtpnhJYtozE1STiaQfJfOQgE5cpFDm7ypMTNxCc1IgCAR4JJMmaxZuYqOQg5DCiGK6B8cITZ6iDNjXK4JeIhEnstwf4l/de/dtBwRIz3M9FydmekaLTtiy9ZruOmWW/B9n0SmyAd+7d/St2gVQSijhhEpSSSlqjSn6zQbHqNbtlMxVcRiljnP5cSlaaR8B81Wm3bkomdM7nrPu/ijP/wkrigxSx0JidWrFiGoMroRc/jZb7KsD5aMQjGf5uX9RxBMnRYBbmxD7BP7NhBhmEkiQSJEIUa6WnZMQDql8NST36Zy6iSpMKbptPCJaMpgRz6RGyJGCmKkAAGx4BMLEAUCsavwV3/5Fb72xa9SzmbxRIUgThGhQaxx4zXXs2HdKhBsjGSGTKnEuSvnQZGQkbj1mpupXLhE3Kzz5iu72PXMDhQxRRQbxLFCIMnEYg4fjVVrRgnwOXWkhkwPTatNT0cHrVaD2foMgeiRSGkEeMiaipA0ODM7SSAptEKZK5bI068c54U3L+KZHVyca6MYCl15je7ONEIqRb6YY/euF/DqF3BqEzitJulUgptu28ZL+/bR21fiPffezfLVi5ioXAZDxFEixFyWc40mJ2bnCMQfRbBYRIhU5EikXZlhtLtMv5rh3PFDVE+fQw9Ajn4UK2OR08dP0VnsQFFUzGKe8mAfR48fQwwF2paFpmo/jrJ/G2PnmWeenzn+/94Tae3atZw9e5aPfOQj7N+//21d89BDD/HAAw+wdu3af2Lv/mHmM5F+Gjn+NjKRFn78HXNvnnl+5ggBAUIRAmJcIhw8XNHjzcOvEWFjBzXcYBJx9hIlMUKXPaKywcXmHIEqkkgkuTQxhRYI6KJM1LDIKTphy0IkwgtsbKeJ57RoJBPU9QSufnVnLE3U8C2HlK7TdkTcMMOikWUknDooEk7cRstqOKFFHPgErksCFTmGQA+Qoog0BoEoEuoCZ4QKy27aQq63E6Et0WkqSLFGvRGwY/dBUqVutFSOeqtFMpFCCGUMRUdyHRRFRFElHCkiMpPMeCqTlkBDyeCn+9l/1qcy0WKBqaN6AZpmcNk3kEsrGb/kcfqtGovyChIOtpFAJo9QkbDqIU0lZGQkz4KSzAJN5SvPnSSSPZasGKKzIDB56jh+ywfJpG4azErQqnj0azn6NYli7NKXkegtmyTVCD32SIYxYXQJSWrjBv1cmS5zcTIkTsokiyGS6uEEHpIkkjIdoiDAUDvwHRFDtTGNKl2dNrmUhRi1kMISgm/i+RaGGdM1IKFqE8ThBZJynZTkkkzO4fsNZmcLxEonthegyjGqmyR2JMRoBlE6iapLdPSIyKZPICgIahZd6kQJDRK+jxp4NOkBKYvreyxZMoAke0RyiOU6BKqCmDGZqMHRg2l0KUTzzzJY8hGtaUq5Mp4DZlcHkanRblkoOrTsy5hmiOc2SEhplMAkIZqosU3bqNOyLdqWjSrlaYsmUq7I9w8f4I0Ll7nm5z9E1/BS0p5NstVCs1uochM72cDKNLHVGgpNRvqzlEc0BOE8ijNHfTbCC8rMCYM89fopHFVicEWJ7QtjVPUNpOQcRy95fP+lgHMNE70vQEpdQdY8gnYSV4jJaAFlE/x6lW9864c8teMI33t5khve8+sUOzrQglnSiTaRd4WM1oKoxiNf/zpf+NI3iEKNdUvX8dBDzzI328n+Q3m6V4bEYcCyvvtIxGUa8g8xyy5yaoCX3/xzXr+4ix+efYH/+LnP8cF/96f82Vd3Mrj0VlbcuJW+1cPMZBJIXszt19/E0VPjrF2/it4wJDk5Q78oUIvrXJBDzlyZ5dDuvZg9IYVemwHzCOXsNFeaLpfON8hm1uDcNcSECNnOPmhLZD0VpS2gCzJeQkIoZejL5rht4zq2rxojalZICi6m6KJGFqoh0o5ikAU00WVmLsCutsjEFosKIWlD4uysjbH2I3x+V8T0pEXnYIreooLoXkaNLJ587CSPfeMwuU6PRcvWEif7KfSMgpKk6fn0LN1IlRyVMAcuZK05zMCmpSZBSxPIRf74ez9kttjNky/uYWpqilqtRSaXZkFSQSrlCM0Ozus6//355/k37/8NMshkEdje1c/uXT/gu1/4BL93/69SpIkzO8329Uv5zs7nGFyxHE3RiQSJhGgTyiqWG/LW+Cxf/tYP+IPPfIElqzbR0TuAiEt18iTb1oyw6w//gkM7djJ8+y28euwiD+7ZyfUbbiGadsinB3G9ED0VUGleZna6RbMaM5BfyviB48yNX6Q8WOJ701M8+70DTJ8/w8Yl20FWOH3+TQaGNHJWGb3exjHaeL5EPiiRCg0e+7MHuXHNAt56ZRdHj5xh1eq7aNgppqoeX3v6CQ4dj+kfWklP/zlyksjT365SqeQodkd0mBKhmqB7xTIutGoo6SSe4DPpWZy268QdGRb3jfH880c4WU9zvJnhUtRJx/V3crTtsO/i63SOaniJgD/5s2+xZsESNiwd4tRrP+D3fuNDdPf30m7XmLUvMT4xxYaihkELNahD3EKQfdpiREtP8tcvH6ARGWwZ7kOPBOJAQnAkzDCmdfYQFw/8kLtXL2Ao8pk9cZiB4QFcSUQykxBAKtTwmy6O53AuqjHRnOOGkZWUBJOn/voHfOj9H8Iw01xdoBGJEYgQ5qWkeeb5GaNSqfxEESmXy73Tbv6jbNu2jYcffpjPfvaz7Nmzh6NHj7Jjx46/Z48++ii/+Zu/ycMPP8zatWv5/Oc/j2EY/+z+zotIP40cfRsi0qKPv2PuzTPPvxTuu+8+fud3foff/d3f5YknnkDXdVasWPF3xoyPj/P+97+f+++/n09+8pM88cQTVCoVtm7d+hPH/b/nEwQQEBCIrrb9DEMO7z+AGkuEQUQsGYSCii/q+ILOviMnuFBpEWhpXNVET+ZJBd7fuw9BEAjDEMdxAFBEHy3yUWMfLQpQY5+EBJrgkRBiuvIJDDlgfHaKbKGA67gIPkihgIKE73mExDiSQtVXUOQcdrWNpEi4joWgSuTMDO25Ki/v2MOirjKaauI4Ii+9+iZ9w6McPXaaIJQIwiSHDk+QzHSjGCJ2IKCnCzQtl5bVRtVU2o06/V0dVKanmJ6cZLgrQ0dBxw49ZsSYGc3ka098jxOH3mDzuuVoHQJt0SPlStSaFs8c20/bEMkJMl16AkWUuRyDYCxhZOEIiqyy65lnMGIJGYV0Mku17XFpqkJnuZdEQiWMgquZFUaSiYbLbKUJgogUxjgJlUagc2VKZP9rR1ElnyULk6TVOprvIwQiYpzAk0RiZBBAjkOEyCed1MkXMsw1mniChJIr8c3vPMHpk6chDBns7CByHcQwQlEFgtjjUqNBoXcJbxyqcfToEWYmjjPSlULBxEwVudJsU+7pYTjOkRUgEXs05+aoz8yhSBqqKiMlYiI1puHOkU64ZIw23QUFLWyTVhXCtktCNsER2bPjVawZi8WjRXTTJxQjlHIRN5+jmdT40q4ncRUYFhIoEaihgBqCGoICKBHIkYAYi7gVncWlVWTCMo3zDdJGmtB1EUSHRcMlwtollMo0vZ5OaKj4KY1I00gGOqm2QSZK0YhUXjx/ju+9ugu1mKBpzZEtFrDDkLYXU52bY0G5wKJShtFkB63ZWUwlw8nDFQZL6+kr9NKR1ZGcCMlN4TtZ3jh/Ad+LMUyDmalLLBnt5eZr1nH3zZsYKsp05iLUVIyvRERICALIscTi0YXcfvvtdA8O0CZk6dZOFq/PsXVzN5J6DF93WbptLR1rcmy4qYtMOmJhwWTLYCc3rd3CpWNNDGU9pb5bMcor+OJzT/LilZc4HVzkf7v1HhyvhaC53HPnTYhvnSFl+2S6y5y3W+iCDokUM60WL50+yfWrtxPXAj79tUdIdwyzvLCG4wfP8uXvPoGxsANntsm7t16DMzWBIYcgRThyTKAaiHoGJZmk4TSxIhdZkwmUCF8MCUTwpAhfionEiEw2R8NTuXR5ilNH3uSWa1biWFXMVIYdLx/i1RdeZ3VKZeWGLuZUB0ewUWOFqZemGN97jHW3lkkPlwnmbFJxhBqGrF65BPQEHhKupBKKEAsRvghGKkWlcoVSJslQ/wCP/NU30WMd0wv5ueuv5/COp3n3lvXIsYQdq6xft577//Uvk0JA910E16WgprnppmtxYhAkiRkrpJgtEuNyy6b1BIS868O/xplLF3jXxrWIooKmGrx1+CjrVq9l4vJlPv3HD/DBD/wSWE16VJFvf+qPmDh+hg//yq8iZDsor9vEhUqN3//4J3jfB96PbZ8jkYpoNiXa7TSqmkDWQ8qdIm8dOkSIxIXJJqtv3cSZ1w9SyngMd/WSTOUoZTPk0kXOHPCRxTS+GJDRy+h+GilS+d5j3yKXS7B56zZ27n6F8+cnWLPiXXQW+sn1Rnz7849TqadY0DXI8qVFdr7yHc5N7OVd77mGhJFEL/YyHcmcmmmx8/WjTFshie4hgmyBWixy4ZV9DGSy9Hd3sW7lYk6Mv0XPaJELs2eZCufYc+4Ys/UW1VdP8IPHv8lH3vde3n3H7ahpjZYcUQ3b7D5xgK6BTkZ0/UcdiGLE+OpZy3EJIpHenn5a1Tpr+npRYwjjGD8IkBDZvesFzl08j6oILFu2mJrgI68YRkgYIIpEEThCjCsJKAmdopZkRbEXodGmo1hk565ddPX1UiwWSGUyf5OMFHM1H2l8fJw77riDj33sYzz44IPs2LGDLVu2/L0/kjt37uR973vf/7Jx88wzzz8/c3NzP1FEyufz77Sb/yjd3d3ce++9OI7D2bNnefTRR9mzZ8/fs/3797N27VruvfdePv/5z79jz6B5sf6nkX/GcrYdO3Zw//33c//997Njx47/dRPPM88/IePj4xQKBR555BFOnz4NwKuvvsp9993HHXfc8Tfjdu7cybJly3j66aeZmpoCYO/evXzsYx9j8+bNfzPukUceYcGCBX9n3I/nu++++/7e94v8qJ11KCAEIEUiUnw1fT9GJkIiQuLs+Ulmmy5dgwu5XLE4fv7S27o/KQIxunqU4gg5CjCEAD3y0MIWGdEl9hp848lnmGm2ESKVyAc1FJGu9pYlFMAXFbRkN4GQRUvkSCk6GU2lpCkoro3seWTTKRKmTuB6CIJANp3jyFsnaDVdevvHOH56krmmQMORafkSMw2PthsxO1djenKGYjpNIZXCb1RJCAHV6XEk0aft2dhEqNkys7bD4jUr6Fo8xMzcWao4tIhQEdFVjSilkuotkdANDCRURaESuNSqDU4cP835C5cxEml6+wbJZotEoYgq64R+RMLM4EYSoSgTCDIeMtWWQ6QaiIkM6CYkSkzUAy5MTpLJ6axaNkRSClADHzESkGMJYolAUAkEFSGOkGMXJbaRQhvHbSMZJqKWYqrZIpAkNm3ZzNrVa/CabWQ/IvJsgsDBx0dJl/ClNJYX0dXRSU9HGUWIURWdlhtw+Mwkl2dsFDdA9gIk18Ot1WlVKiiySChGuLGPTYCs2OiaRT4roQhthKCNHAVogBZKRJZPc6aGJvokEwp+6OLiM2M1qAsR4/VZLE0i3deNHIk/suhvLQQxEhDiq9bq7OEHlyfZcekSu8+c5tSVS3R2lunQVPKtNj0ti8VqAtUNCSUR3zCYsGwqc200RyMRJ2k5MSempkgND7Bk01o6hnpJF7PkSjmShsrasQWsGVtApwauNY2hQuC2WTIywMqlA3SXTaTQQ1d0TDWB1bA4efYKc80WzbZHT28XCxf2MzbSRSEZEDTPoytt6n6TiucQSyKSJKFLIuV8HiQQVQkhqTPbnmKmeQbPO4bkxwSSyXn7Mv/1K59hthVy+dIseUXh1NEkn/n0Dvbtu0DfQC8r1g3yi++/kd+6/yNs3rAZLdIQZ6rE7TqvvLaHF559lse/+FeceusorhBTEwMIQmi3EYUQW5XwbEgpBTZcezeOlGL5wuVcu3Ur5nAH167ZwrL+UZpzc2i6AJJPJAX4cYQTgBtI2KFPG49IBl+OceOAQIwJxIhYiEGIiRHxEMhkMvR0lkhoAlHg4fsusgIdxf/B3pvHyVGeh7rPV3tV793Ts4802iWEhNiFxG5sNi8BAk4cGZI4hpwk18HY50LinJzYuSfBPrk4BJ841o0dn0BuYoO32GYVNgKBBGhBElpGy4w0+9p7V3Xt548BEoJvwj04TmLP8/t9f3TVO9/X1T1d7/e+9S4pehbnOV0dR5Zi0s2QpBORVlT0rhSDTHDWWevQWz65ZJo4jlFVlYmJCQjnNx+RmB+BND9agUtSVcG2aU1MceGiJXz0Azdw1qJFaC2HD910A0cOHKRZq1MrlVlUSBADOmApOgk9gQy0GyqPP/kkz+47jJawqHkeJhJmVKFdNVlz1vnsPnjstfLLEn7gIuIYx66x9oyVnLNhA/lcDlWAcFzO6VvKqRKMTYyyrK2LVw4f5tjBY3SuOoNqKNCS4Is6KAbP/HAvD/7t13ECm0Cu0YzqpAs5xsYrqEj0dbVz7XuuQI186lOT5PUEQS3iicd38f3HXwSSCMmYTyeMQkwrxfe//xhDQ0Ncf917OHX8AH7VxZAMEpqE1t7B5FiJ8mxMiMP6cwssWWkwU5ml4gjsUCXUUhR7l/LiK6+ya98Btj33AmdesJFCXz+9i/pIWhpdOYNFRYsP33INi3sydHfnEQkDpdCOq+isXdlPRz7L0PEBUtkEZbsCBBTaMphZg90v7/on2kcggLSepDObpT41SVCpIMWCGOm1IQgkaOvpItvexmyzQvuSbgr9nUSZBKEQBG6AG/iouQy+qRBrClrdRZmq0ZHOEUYRsYDzzjuP7t7et+jX13Xyrl27aLValEolHnvsMVatWsVDDz30huyHP/xhLr/8cnbtmr+O1+WWLVv2vyW3wAIL/Nvwk0xn+8e279tNPXu7LF26lC996Uvs3r37n72Wp556invvvfff1Im9EIn008jBtxGJtPYP3vEyd9xxB3feeecbntEHH3yQiYkJ3ve+973juRdY4F+T6667juPHj7Nx40ZOnz7N3XffzW233cY3vvEN9u7di2VZbN68mUsuuYS5uTm2bNnCvn37uPvuu7n11lt58skneeWVV6jValx99dVcccUVtFotPv7xj7Njx443zbdjxw6shMXmize/0XhYAuQAYjdk/+69KJJKHMRI8rzTRyAhxdDZ08erA8fQEwlm6w0u3rwJvTT9luv5p5FISDqxUIhfq/MRC5kgiomJEXIEoUuka/zg+AgXnb8JI4hR/AgrAkkIXN+nJUc05QQjJZPde46zqLNA2CphyDF5SydotkjrFpVSjY4MyCJGVRUWL1tJtpAhxCfXXmRotISR6iZT7GBiegRZT6In0xw5fITerg5SuowlCQxCkopEb0eenkyS2HcIhcyc0HCsDIW2LG1JiUtXd1MXIZGmg+szWSkz7lXp6ulBsVuIKKQe+ewZPMXJk3NsuvRsLrhwPYqwKVoakhTSajWJNbAyaVqBYHBoiEQ6AYpGA5WJmku+vRckiTAMmAlURkouF5x/OTlLpy0jMMQspmxjqRaqMPACDUfTiIWEFrvocQtdCkEEeEIjNPM0Q4k4naDarNFmWshhQNE0wHMIQ5fYELhygJfoZt+RScaHPS656Cx6ixK0pmi1dE6OVigZbRSXLybVqhGoAa7iEihgWBZt7T2ExATYhMIljCXiWKDrBkQxqqIgCRnP94ljGSNhEQUBXR15UpkQWfeRNJlmKHF8fJKq7ZDr7iCpqvS4MoJ5Z4MQ8XwNGEXClyUCScWVVb5am2Jnc5b9w8c4410Xk+4rMtKcAx18u4HkuEihoBXLNCydadtmaHQGVUqBnqYpm8wqGiKTJp9K0mWp6M0aWhwjI2EaSfTAJafFSNUJYqMEZo1QdrDSGlV7gkTeAbVCKOq0gjqHBo9x5rmX0JZPI2SIJY98MYvtO5SbFQpdbZyYHKNVzGILQcFKgBdAw0EWMZJl4ikw1mpghzIJK4FpVzC8tUyxnGeOn2DNNR9g5BWf8/ov4aYrr+epl3o4WTIp9i/h6e3f5sLzO+kqeFA9xhVrejivqw2rYmMkZDrySSqnh9nYt4SBw0foXLKYRhQR+zGB3KKtM8O6c89GqXiYwmTFuRcyN14iLyksWtTFhovXk4xhdbGNXFghK9cI7GkU2QdJwg0kiBXMpIIkh5imRtOpoyjKa9/nfPqPHAkiITHjhYhApbstRzFl0NtuYZgKpWqZ9u5FdC/t59GXnmDjxcso+ApS4NIKfTrPvxgpn+e88/ME1SbD5RqhGhIqMTue/yGLlq1CUS0iDJRIYIQRCEEDn05LpT4+xte+uJVf/9BHSKLTpmpsWreGoDrJ6iXdTFUbDM1WeeTbj7JkcT/dmQSy583vaQIFWa1Tl0227x4g0b+KoiEze3I/J1/4Lt/5wQ95dP8Ev/t7f8i6nEYcRogwZnZ8Eg3B5gsu4MrLLmZsbJiOXBq/NI1VrfHIrv3Ips/ff2Mba95/I9edexV6KsOjX/8GF27oQxAg5DzlaotSbYY/+x/3cdkVF7Pxgou57rqf49Irr6XSFBzbd5TedpOMblJI5THkCMtM8cjXX8aLfC69YgNS6GHIMqXyNIYeMT5+gkzOYnTsBO95zyY6ckUM1SPSW1x40fUMHpuku9hNLuVzwaYVnHvhGeiahm+Dlkgz4zg4EZx97oXceONNjM/OcmR4iMmZaVLVMpvOWEFG8fFr46RFk65Cgu1PPcp7b7gJLZln5tQ479mwlkbs0JfNoeZMrPYsTrlC6DnIxQQj+w+wcfUaEPNRSFIsIcWCZq1J0PLp7+5lSbGdtKaBJAjjCD8MiOQIIQkiKebq916DpMsYXUUaiRThXIOcmiIAjrkldg0exQl9FosEnaHGbLOKIwKOHhvgnt/7PRzHQdXUeV0InBoa4t3vfjdRFPHggw/yta99jU996lNYlsWTTz7J448/zoc+9CEOHDjAXXfdhWVZPPXUU/z5n/85n/rUp1i+fDnf+ta3+O53v8t/+S//he3bt/9IOcuy2LZt2xtyCyywwL8ds7Oz/6ITqa2t7R2v809t361bt/7M2r4LTqSfRl55G06k9X/wjpbYtm0bd955J7fffjtPPfUUd999N+Vyma1bt7J27dr/X5XlF1jgJ81HP/pRent7OXTo0BvHcrkcN9xwA3/2Z3/GkSNHuOuuu/jEJz7BmjVrePrpp98kd91113H//fczOjrKDTfcwL333svGjRt5+OGH3zLf/fffT71e51c+8qtIQrzWhViAJDM6Ms7Le/bR3beYWr0MbhlNRJgKaPgkNJmVy5eS1CUsS6U6PUa7JL/leoQQBEFAq9VCkiRqUYo40c6MHWLke5hoeNhCRskUCFSNdLGd41MzdK0/j5xhkhESOcMgatkgget7OHKMJ1ns2T+O48WsPXMpdm2aOAowohBVKCgxFDs60KRZhGgR4YEUopkR2YKK0AJs16UVCmyvTnlunKXLlqArKrKIWNLbhfBbxIFL6DRIJQws3UT1PeKWTzZdYNeBo1RaIUu72+nUFcTECcJYp+VHvDw+SLG3nRXpAnorQC+m+N6u57ADn42r12PlTBS9Md8FTm5iihaS7GO7FUI9QE6aOC4kDQNViQlFzPD0LEahi0xbkTiMiP0WlZZEjIpERCYlEHITWdikUhZ208f1YlQrjR1HqLKMhofARVEVpuZmkRMZqi4cPjZEtiNDb0cbed1AlQUi8AhDF9f3EIaCHTpM1ASm1YHX0gndWUzTJpsIqNk6B09OoPauoKL6pBdZHG9OMRWWiXSFzv5+FMWCMCLybArpFLsH6hiZpUQig25lCGNwQ59YlQjUEA+HQneefFsWSXcRwoMwRotN1vWfyZJsO71mgqQfoKgK4XzQFaES46vgqwpVZBqShK2bpEyNjb29bFi0iIIq4asRflJjTIv59r69nFIMnj4+wK5DL9PXvYjFXYuo1RzUJUt4cvAIA3aFvftf5ZKVa1mu6uSrdVK2gxrEyJFEw/XQVBmBg80CWMIAACAASURBVKW2qJshnp6iEagEikqo+viyT6wlqLbAzHeQzKVpNxJIckjg2whLJzCThMksXrqTV0brTAsNUUhzauQ0Xak0UhiQEgLL0JmslYl0jf0nTzA9FlGdbrAopbJ3p8//fPwgQ0de4tXJCsdfqjG0d5Cv/MnHufGTv8LFl55BUk0xc7rOV/7s/+H9V13D4jaJqHGInFKhHAh6852kI1jWu4hVF2ygq6sX1YvpzbQzGjZJZMEKbdptF9nSCbQIq+bRl86hZGMitUGyPkkqCDCdORJ+idr4MZ7d9n2atVlWr14NAWRMA99poAsBvo8cCWRkZBQyVhKn5qCj4kcSRyt1urJ5FLtOQonR5ADF0IiQkSQVKYbLrr4crRs+98jf0UjGtPf3EU9H9BW6mJRPUksneHbgCH3LFyMSMkocsKh3ObqeJHYkEoFEXshIETQ0kKpl2pMJEj50FnqwzCS9+TxyaGMqAVbGROTyVFGYa9TZf+AVrth4Aa7bQDN0JkoVUkkZK9+FnF/EoZMV1vckWFyw6O1J8eDffJNqYjF//dW/5j9vuYGWbaObJscPHOCB+/47O7b/gPdefx1RGGA7DkrCYMeOF9hyz6+y8ap38dIP9vHA332D33zPL0Icc/mas8haFrYTMlM+za5923jq6R9SyC/muqtvpV5tYqQUavYsD351N3OzNi8deI7rPvB+4iigVBonnVNRzBwbNi4lnw2R4gZBUEWxQhb3d3L+ReexYs1yavYU7/3AxTTr+ykWIyZnVcxcGxvOWUwubfLfP30/l226jLHhEbraLXQP4sgDNUaXBSkpJqiWMOSA5Us7yVsyY0cPcNbqJcT1WZKST9p3kKsN1i/qR1QDcnGSNV197BzZQ9fZq6meGMPNWMjJBCv0PLHTIt1dZGP7IoQMge+jSvPpwnEMqqy+dn8LyFkaigDf80ikEjScJmbaRNFV2nu7iGWJQBEEskyrCf1WG7EboCYTzGgRFFIMjQ6zvNhNUG+g5JJ4ImLHCy9w2223kUgm39CFURTxsY99jFdeeYUtW7bwj02czZs3c+LECfbs2YMkSXznO9/hxIkT/NZv/RZ33HHHG3Lr16/nxIkTvPLKK1iWxRe+8AVGR0f5yle+wvvf//43zffiiy8yMDDA8uXL35IKv8ACC/zkmJmZ+RedSMVi8R2tsXXrVj796U9z++23s3v3bn77t3/7Ddv34osvZunSpT+mq/mPwUI6208j8dsY75DXU9dez8XM5XLce++9AD/20L4FFvhx8rnPfQ6Ayy+//C3nlixZQi6XY2xs7I0Q9Uwm8yPl8vk8tm2/4Thavnz5j5SzLIvjx4/PH4j+4cfne8F8Woes0AojPCHIF7MYhoYc+AjPRQ1c9KhFkoCsEpHV394tO5VvZ7YZ0Na7koHxEt2r1nNsoszBU2NMNlrMegGSlUSJIuQ4JooCvHC+u9DrQ4rn0+HWrVnJzOwkB08MoOcy5Lu6iZBRIlCiCCn2iSUfhI8kXGQcJNEkCiqEfgXPL7N4cYFzzlrJsmV9yCIkjjzaiwVmZqZQFIVMJoORsJgrl/D8kJbrzzuaYjBllf6ebupzJUpTU5i6gRqCIqnk+nsQlk5G1sjJKnXXQS/MdzsyY1jWlyKbBl13KZXHccIGXtBEqDEBHi2vie82CYMWiogwdZVMJs3Q0ElKpRJz5RLHjx+nmEmT0nVC3yZWAjzhUnZbzNZtrEwe1TQwTQ1NEsRhgOO5eCHoqRRGOo2qGRi6TkJXUKIAKQ5BRMQimk8bFDHCULFbDsQSSUOnXilRbMvT3duFosmEUkQil2Hxsn4iYlLteY7XSgw1K2QW9xKbBqcmJ6k7DoZuIiPTqDVJpLvQkl20YoPRqSqtUMKXwJcglEJC2SeUPEIpIBLzTxkEoEeCRAgpX5D3IBNAIEkEkoQvx/hyRCBFNLwWgSpD0qIWx4iJSTobDXo9l6zdRKlW0TyfhJECT9C38iwo1cAp88KunYwNniKVzFAXAVPVKcbGT7Jm7SqkWoN8KJP2I4wgIvYCAs8nRsKNPNzQI5Ji3NhkpmpiezkC0YZiZrEDiZdeOcWeA5PsOzxNrr0XybdRIhdDl3FaHpPVBkdOj3NiokJu0SoKfatoIdPdu4hyvUFITMNu4vouuqri2g6GqrF65RosTaflOxw7cZSOzhzkE+T7OvB8h+OnjuPGc7izz2IGx9i0YQmf/NjHuPGmX8DKFCm3QsqBRslXqUQRUijI6SlWLFvB9lcPoGUzZBMZZNcjUgWIAD0MyXgOQmoSyg6NySnCSgM7tAlEi6IhyKgBeVNGuDYp00JTdUZOj+LbLaTAJ2g1kYIAKYhQIxlDMzEMC0XRmC3V0I0k9ZrD4YFBRqZnKJVKiMDHUmUs3cB2PEBCE4J8xiLUoBZ75JYv5dXTpxGmgakpJFSFUAJHinFkqPgtGkGAmkigaRp2s0XkBliagV2zmZ2eQaAiKRpIMsuWLUORBXIcIcchUughxT5HBo4yWykj6xqLl/Tz8p7dlO0KRiJJKARGLo2PRAQ8+uijPPTVL6NKgB+CkeTXfuXXOGvVckxJ0PJD4njeod+ez2PpGilLpzI7je+5uEHIjB2w6X03orcVOV0qM1evIjsusuOSRVAwTeTIwNRSmOa8Y7mru4M4UqjMRehGmpbnoJsBijAZma7QuXw11VCgpDOoKQs/aHD2hmWsWt2OJBwQLqHsEskunhxQ8TwaASSyeabLM+w/+CQHX32GzrZeZmZGcPxRksmAhJFj8Og4PYV+WtUGSuyjxCFqFKCHLazAJRV75KWQdOCSFz69XUUQAXHoIqIIDdDDCMuPSLsheScg4Ye0L+2nc+0arEKBoZlpXElFhBJ6rDE9Okm7Nd8yW5bl+VTIwMf3fVRVRVdUNClGCjwyCQtNgcBrEUY+07OzxIqErOm4cUQrioiEghopRH6M3WoRBAGFbB7HtqlUKrSkmI6VS/Cl+fumnrCwkok3trRxHCOEeCNF/cEHH3yLbvzMZz4DwM6dOymXywDcd999b5Fbt24dAAcPHnzj2JYtW94i9/o+Ynx8/G3p5gUWWOBfh59EOtvg4CAwb/vC/MPiu+++G+BnsqSL8m/9Bhb4V8D/yS31enEv+Icf1wIL/Humu7sb4I2N5o9CUZQ3NoU33HDD25r39U3nP8UwDAAkYkBAPJ8+IjSFqXqdsUaNRBTiplJMuCX0SKDHoMkqkR+QlGNCWWBqEpGkQvNfLmr29e8+QaprES8fO0Wj5dBIpJmSTLryRaylXQycPk4unaEwV0cPGwSBQz3y0ZQQSZKIRIwSShixT161Oe+CJWz+wLs4cXA3u/cdZPOSpRhBgEyEShOASIh5xxMueuwjhINqRnSkPJzaEHPhDN1ZBVmqQRgTBC49vR00qlUqTYeklUDLJhh2QvRQsCShUW81MNQIJXQRIkI1TAIEkmRRt22SvXliu4UehYRBRLPaoFAoks0VCGpNdNmhFXu06ipB1CCSDWwvIlA1GoFDLIUUs2niRg3h1ZGlFglV4T1XbGLw5Cli12bzxvPw6g6S5ONIHqEp0woFrpwgU+yk4rdQDBncGbQAwihCNk1iNc3+0RlsxyXpl0glcyzKW2Q9h1iEIMBTIJAjQkXD90BGQWm5FE2faXsML9YQSgctKcYydZxmgJ42MEKf2dlhUCNWnH8h+bRCxR/FsFR8R6JcczBVE80QZNo6mZwtUStP02aGqEaK0G2CiEAECCLmnyfFSPG8A0mOwEAmEwFRhBJ72CJgDpPoNQcjRCCgGXg8v2snZr4Dq9jD+oRJl98isFtIvqAjk8VpeASn5thy5rsIJyUGpSI3/dGvEJ0s4c42aAYBL7y4g/4NK3GqdVZ352mbtZGaZaKoiWYqOOp8ulxgzrc5F6GE7Teo2nm+8a0BDDXNiv4Cmy7tQ5U8CpleDk1OMFd1iP2TbO4SBCIkmUhQajbp61lNK5R5avtejmz9Oh3rz2BqfD/nb1zLDRdegFurkMwazFRmSBd7aNkOl591PpOjDsvXr0PyB/jlT2xmz1iZy26+gS9/89ss/oX17H3uCRrmOIu9AD1fYGS6Spho4xc/eS0Hhg+R7V/Gsy9F7N07wMj4o/zull8iqUjsfnEvw7ZDZ7WOISyiRoNEh4buS1iejxU4yKIGko6MgiobVD2bSLTQhI/tuphqkkao0N55Jjf94npe2LUTJzJpOjZWUiWhWTh+QIjAJ8YNPFo+mMk0jVAm0buIs1aspDIxTHt7G0wMk0pZ1CsOeqFIqVLnjz/9+1x2/Q081ppk2WKNn9t8E4997St4JYfHnnuByXGX935wFVlMLj57M6Zso0Y+ufYuwjAmCGJiTWWsXiWtK7S191OSBV4kUbJt2pcvpeRCqAqQfITvQuSzuLeHY9MVQk3m2isv5YNXXUoCmKtPIyQZM1Hg6SNH6FuxnnvuuIkbf+E3SAhAS0AYc+75/fy383V+/9c/iArIUQwxNGtzbFi9gtWrV2PJgtlaDSmRxUj34mc9nGCSXFeOj//hf0X+woOkk9AZQyyqtOwAoYekLZ0z16zgzBVX8PST+/DdkERKEMctFMXnynefz4GZAS78hRsY0jW++fiTWKLG+y5dQ8q0UfUmbsshFj6hHBAg48YZWmYaSdHpXXMJjbhCEAf89f98nP/0O7eRyvkYKZvqqMfZa1byjb/+S27+4PUsWdaGbETIUoQWRShxjHCaJEwLS4JWs0pGxCw9YyXCaRLGglhWcQMJBQURS5ihix4FKEJiolJnXB7mly+5hufHh5hCY64U4AQxSmcHlaEZ5LYYWVUJ3QgkBUXVaLQcJCnCMGWIAhpz4yQtE9tvYqoCSTUJxXyLCUmxIAYpVvH9mFbaRE6oRIqENz7NukQHS89KYeaT7J8ZQZMElmG+VpxdwgsDVFmeL+4dv16Vab724ZIlS96kG4eHh9+WPn+df26fsMACC/z7IYp+jAV//wUWbN95FiKRfhoJ3sZ4h9x+++3kcjluueUWPvvZz7J161ZuueUWcrkct99++ztfYIEF/pXYsmULQgj27NnD0NDQm8499NBDlEqlHxlV9E4RYn5jG8cxQQQeMNewmWw5/PDVfTx14AAH6xGVRJGakqUcWQRSCmKdOJQJWxGB3Xpbay1f0kXgNbFMBTfyGBofRUknqAUu331mG3NeE9UQLFJizMBGqC6R5uOoHp48/5RXCyUSgUtRLRE4Qzz24hNMK4KeCy6iKSeZf3YNCi3iKEkcZiFMowQmeiBIKypBpcSyzjxnLG6nO6eSoITszaCEc6StiEp1hlbo0wpj7Fjh+aODPD9Tod7Ty2jYwjEFXUvaCIRNNXJpKArTskktk8C1NBgtkfAjqmZE3QxZliuyQs1itmLCpEpRlUgCOB4pM0ci1YWQc7hRhoaXRrOKKHFIWvYw4wZq2CAhucyOnMBSItJ6zMzoCRLNOZaY8y3iJ+ozjLVsjjkRk3KCAyNjTDo15mpjmEENPXbwkTk228BPdVBcvo5MWwemCFjRmSbnNkj681EHgexRMyJeGj7GnlMnsH2QAgOtOcVlZ3WzYXUfsR5BQmesUeXk2CkODRxgUY/F5OGX6I3SRKerOINzxNMtoorHySOnsV3wdZMp1yedrlGdewn846zsN/BKpzFDn6QXY3kqlmtieTpGAEoEUiwRC4EnhzQUj6bqUVebOLKD4QtMH8wgwvLB8CGnmHTn2smaKYQvY6cyzGoqdtJCzluUqhN4TgnLrxBPDbIqAbdevBFOjFJ3qngpGVfx2XLp5VwY6by/vYdscxa9EBN0qZTyEhOJmBOhzeFmiSNzs5SCEFcoCEknbUlcduE5XLXpQs5c3kFsH0F4R9mwOseZK4r83PXnc8YZWRRVRQJcu057Rqd04gBmY5zbr72Iz939UTZ1Jtny8x/konMu4qU9uxG6zHSrilVIU5qbRvUiSsdP8+U/fpBPf/zPOTksse/Eq+x+9u/541//GNf2r+actd387h9/kr3NiGltKRNSHyd9hS9872/5mxe+xl/98K+45/5PMerU6Fp7FrpW5JE9L/OqLuH39fKRWz6KjEpFl3CKFrrtkLbzSH4HM2YCOY6wggi7mKCaTNOmdpNXuxiLVRxTYS4SNI0ujsxYfPLeR/jGD0d55KkjNNUMnp6hGQuaAhxVoaqqnLRtHvjWI3xtx3OEPV0MODY/GDjG957eTqtlYwhIGxZ93cvQlCzLlpzJqiVr+dwf/iHX3nIDxUIHuYbB//G+X4VJm498+DaGT56gO0iyKbuSpZ5JrhySrfp0q2nkWCaRyaB0tjGZlDhmulTakviOIJR0RDLNrBxRt3TqakxDjghEiBGD1vDoMzIsMrO4Ew2SgOS26EjlKCQyxMDd934JVYEggi3vOgsTiNEJ5AIBOjkCckELN4znI5GikISism7VCg7sfonfuP3XGD59ktiXKGqLqTpp4rLK7EgVilm+ct99HCofRzY9StosqWINTZpCDZOs6buSbKKD6665gv5lYDsTJK0ETiNi42UFVl+1hAef/xp/+eLTrHj3dUzGJnO1EKfaZObUMFqgI4c6ITq+MLGlNh559Ai/84d/Ry1aTjNazOhQATnI4oUeyCX8oEkmWeDnbzyblUvneObxL1A0FtGSTVzJJMCEWEeONIQdYXgCoxFitSLS9QZa3cEyMwRqkilhMmNYzFgKFdOjbtYIlCY3XfRednzzaYZenWRipsWX//4pzN5ljLjw7Vf3IzrbEVGM57SIJYGs6YSSTCKXQTFVml6DFi3sxjRS1CSbUGnWK+iqTBhAo+lhu4JISuArJnJfJ4+dfpUXJoeYi30y9ZhFMwEbyKK1QgJDQjI0VEOfr8kGyLJC+I+iDC7aNN/04kMf+tBbdOM999wDwG/+5m/+b+nxBRZY4N8nURT9i+OdcvPNNwNwyy23sHXr1p9523fBifTTiP82xjtk6dKl3HzzzQwODnLPPfdwxx13MDg4yM033/wzlxO6wH887rzzTnzf58wzz+Suu+5i+/btfPjDH+bWW28F4Itf/OK/yroR88WIA+DAwFH2HdrP49ueoN5qsHTlCp5/+RBzzRhfsfBkgxYqgdCIhI4imxhKAjmOkV/bMAeSgicpuLL22ph/vWHVUjauXsLFZ63CyEqYeY2z1iyjM2chgiZre7ugVKKoKSiBj6rKqIZKLF5XCYJIvPaOhcf6s1fjOg0OHz5Es9mcT8OTXkvHkgJ80sRRmii25gvmRDqtBiTMdggVgkYT2XVRAh9LU9A0BT8McEIfT5GIdA0jm8EG5o4fo2Wo7Bke4nSjhh1H1Jo1UqkEmUKeRiR4bugErVSSpW2LUDyZyShiRpVxbI+iapFTDezQI2j5JCST/kIPicjAq0a4zQhdThJ5Co2aT4MQV1OwFZWaJFGRA8ykRpaIvKKSy2cQsUelMceB8ghRe5psdxf9Pf28OniKMzZdhJFro5AuEAqP0G+hKgq5jiLVah1L1kmHKq2ajWJZROIf1G4sYkIBmy++nJ+78WaaLUhmOnE1necPHmTf0EH2Tpzk1dERxmbqrFy7kg+8/0qMxgzruttYoSfITNcwTpcw6h5ZxcC3W6i6SWAmGI8CxkZfZf2aImtWFmhURtCTKmo4/x2bnoHlmpieihlEqOF838BQSNj4NCSPuuxSlUMcQrQoRI0ilNc6/6kRmEJi3aIlrGnrYkU2R0rOs2PfcR7dtZdTjQZhPsGU4fFccJrG+W0MdTSYksp0VGJsYvyMQaBKVE+PskYkWGxLWAhGVIfjcZ1h0aKe1JDSFmrCZO2qVViaSRTKhHGKBNOsXuGRL4yQz4+TkobpSs5Rq+ykvWeGQDpMbMxS0ixcWUdWLAw3otvUWZwysUePk7Snufa8tZzZ04HbbNC7agWPvrgTva8XX9fRFYPeQhtm0+GP7vkjfu8T99LVfgEdHYv54Adu4tdvuZ3Hvvxt+hIFdj+3jyNDNvfv2MnfHj3N//XQDrbtqLNh7c381q2/z7KMxnvPi7h0xSBhXOH5iTF2jgyzfd8Bju3YR0HPUHU9arpA9kEJVHyhUzIM5FDH8hSe2fMyO/bvwy95yK7BuB3gBxplLcFwqoDUuYoP/eJvUSwsY/tLB1CSOaJIo+VEECvIuoFk6dRFgJJLcXxqlCOnB0m1tbFq+TJmfvAk4uQIkSQ43qwy4rh49QBnpslNN93E9773Pc6wYWLnAaSCySvlCaS2PM3DJ8kdOc3wSwc4MXgMq2qTiCQMYZCWklh6gpYmM9MsoygKX3r+cT7x5c9jINAVDb8V0/BiGhI0JXAECBQ0ycRrRSQTWZKpDBddsIkN6y5DsoFAYE+XMYB3X3YFOqCKkI9/9Jf56jf/lu3HjjAVgAvIgYsVh9TmSii6ChGUbYfi4n7WnH8+hZ5e/vS+B+jKdfKZz/wJN7zvFkJfZ/nSddhRyO79L1Nc28d0XCPoSDPbHKXVKqHKaaS4gCJUejpTVCqHKXaYNOwmZiLHqwOP8wtbruCc81Zz4eaNfPE//5/sOXSSYtcKQicmKafB7yIOOgjjJAEJWiLJBe/6ID1nXMFdv/MXDAz43HjD7/G7v7sVN2ogySGNuk/ghZQbh1myxuTGD15Bww+paSqupCJHKsQaerpt3kETGRiygSR0koqJJZlEkU491Khm2zidTjCSmnck2WpEJEImdh/kjI5+NpyxmmVd3Szr6+Pw5DBGZwHb9WgZGjNSjB3FpLUE4zMz7Dt+lIPjwwSaiheCH0qUhgd5YftTlGbH0GWJuOaiygZaKsfB0XFOT5dxJI3HjxzgtAyPHdjPy+NjJPJdHDkxwst7D7HvxYPUHZ/n9+3l+89sY7ZW4aV9L7N7/17E6+kqQnDf/30f+XyeXbt2cdFFF/HQQw/x0EMPcdFFF7Fr1y7y+fyPTE1bYIEF/uPyk3AinXvuuVx11VUMDg5yxx13cMcdd1Aul39mbd+FdLafRn4CEX333HMPW7du5fbbb3/DM/vwww+zdevWN9VHWmCBf4/cd999HD16lMcff5zPf/7zfP7zn3/j3MaNG7nssst48cUXgTfXRHgnPP7oEzz6+GOUKmWmq1X0dJJW6KMTsPOpJ3jm298mhco3jrzKmmXLKebydHYUUWUFWZXQdR1DERR1jVBIBLKCJ2v4ksJ0ow5IiGSWOAgxGk0KsYRdK9G2sovtO3fQKwsCu0F1ZJSD33mSZW0dDFkmia42ZqZKtLe3I/kBdt3Bc11m7Sa1KGa66lCXJSpejS5Dxx86iitUGooAVeCYEZKmY6YsgkaVVEqh5kg0WhLFVC/VsVHsyjTdbW14boKR8WkCRdCII+qBx6bNl6ApOjMTk4SNMpw8RGXwTK688jpmJieYHh8jCgJmSwOYXZ2MHR/ghBfQccZ6phyJMFA5eOQwuc4CVn8/9dkK7ZpKuh7hEBI0bTQtRdLxSQiXTC7NwKnTdKSTRBmLIafK4kIf0zMSmUUd/OCVnazLa6zzNCTfp5XUEaksx8qTmO+/gmy6yOz2V8lNhCzqzbPv5Cm80Ql6Rmcw+xWkhk8xkihHDu1yCmV8lI4gTSVIMOTJeLJBbWYS1dIol+dQNB2tITFRH8Eyc5yYLLHb9ug8YxNDpybIn9lP0m8RDBzm6InDJCOZHk+hLSWYmz1MVkDaFUiGQqNZxsrIVGdGGa/6NNIKXZ5JvWWiSCavHtrHUHWGCwqLaWqwSs+jCxUraaKqPpW5EsliHhBYpk5CkhFCoVW3SaUK2LhEUURMiOv7BEGA32rgewLfD7GbLvsE1DMKqy+4EDuMoNbAR5Do6kXLFHGeHWSN2U1aFoRWnXKtybJcJy41hsstEig4xTb+/vguViezJJsOzYkSOc0iJ2u4A0dQlQSZTI5SOaToS7j6NDV8MlaOcDhNpq2dCdfHKUgouTSjpyto6QRpH5JBjOaEFAs9+I6CsCzKssbU8BjpzgwSLvvHhimsW89fPbmdJZLBajVFaWicvKJTbe3HkzQCx0GRHXw/JN3Vy003X87JPc+Qj0M8T+Jbe17loP0KF555IXtLhzi87bskLYVbL7uBUy+dYGJ8nDVXX83k/oPUh6ZYmkzz3NM/pNfQEbrAyJpYloGeb+JHPmG5Pl/g248o+CEJ3ea5XU/Q0VnkzFVLqA+O8oR9mO++8CJ/9Ud/S6o+y20bz+LE5g5Eq0abkgSRJNAEthfihA5LOnM87zfobGuj19RJN5q4lRnu2ryB5sOPkv3Ur/LAi0/xc5d/gPPKPjIuQcojTqnoc3NsOe9S/JOHOTR1nAMnj3LV8g30Ls+y+/EnuPKyy5gcn2WyQyGMfMxpQdQImepK0aXlSU3ZSO1Fdh57hp3PPEpGkmjLZglNFbo7CBJgSirNusfs5Bw1NWbfq8dp6Ekyq1ZSn6vwjW8+ybLONJmONGZc5cYLVjNbmya0baZPTfG9gYOM7NrOlk3XsGZ5Pxc5MklNo+OMPggD6pUq9VjlqZf2Yts2R8bnyCYLlMtlgt4U9BWZlmMGXnmF7g6LWHapTE4gpVKU7Iguv51MJoVDTGRWCKISUpxC8hVmWxUkzcRMKqxdsYqByUmaB0dZlj4LpJiUqqBaGaxcFSUy+G+f+Rq3f+xWRK5GyZnF7OygJrXwNQ0hZ3nmsT2svOUcIhp4yZDQVZARtNxh0sk0F15yG8lUnoHJCeK0CXM2faSpxBFVERISklU1ynaNihVzanQc0ZKZdMA1LZ4aGmTFxedB6LM8itiUyjM2NIjSluTSvnaee+E7VEXIxN6XmTDnU639H77MvpZCY0OGPk9ikQNtXR3U0zo/OPAyUSjoMBKEksZ5S1fy3Re38YMXnmbt2osohDpaOsmpZpXEuhVse/hJVq1Zw9JNF/L/PvIwK/vO5FSk8MVdL1H1mwwfPYIYnyX7cpby3CAoMYxP86dfeID6Rv75/QAAIABJREFUXJmEotHX1UNPXy+33XYbu3fv5tJLL2XXrl3s2rXrDT0shOCb3/zmj0WnL7DAAj9b3HPPPWzbtu1Ntu/rEUk/btt3cHCQz372s5x77rncfvvtlMtlbrnlFrZt2/ZGIMe/ta0t4h9HpakF/n3xp+JNL/eMwD3f+ycyi676Z6c499xz/z//OQcHB1m2bBk333wzX//619907pZbbuHhhx/m5MmTP5Ne2QX+YzE0NMTDDz/MwYMHeeihh7Asi2az+ca5pUuXsnHjRnbu3PmWv00kEhiGwf3338+HP/xhrr32Wh599NG3yEmSRE9PDyPDI/MlkQAn8AhEzONPPMEv/fKtKJqGoahI9RaO4+B5HlEUYRjGm4sCioBC1kRECiE6Nc3EUWS6Lzib8cGTLO1ZTN4w2f3It9GjGDmdpfvW6zg5PEL8/CFE6BFnFDobLqoTECQsGnKEE4dIUYzmBGghRAICQ6FlGAS+yubrr2ds+DgTRw+ieC6ZIKblucSGSlkKIL2CtKnhVafR3Ap6IkWl6ZPpXMzswBGImvMXHupgaBD484V1JFh03rnMzs5inz4NSJDNQ8Pm5++8i0ceeGD+Q5QFyVyKxtgopibj9C9m0TXXM/ytx2F8his/eCMr16/hL+79A1A0FARa00NJ6vi+j6boyLJCaWYOoepkC3nKs3Osu+JK+jdu5Ltf+jKLr9xM1/JFSAmJ8vP7mHnsOSxFY7gxiZlqJ84l6b/hXbgHhyk/f5BWFNE6v8h5v/YRxp/eA3+zjWqihBKBEzh4agz1EClUWZRbzClNkHvXZrLTkwztep6UZRAEHmEEniSBYgIKq66+nkHf4ZprruG7/+MBOHsRjM2hHBkkjBz0lkex5DCSmA8pLbRkkr7MVFKlpcisXr2ek7sPw+IO+i89n+PPPgteBYrtrFq9nsTybvb+yV/AmsW0ByqzkxNErRapCEJFYDtNCEP0TAYpiBBBhOxHKAhaLRtZVUBT8KKQII6QZRU5AjmOkKKYupllxQeuZnpmnOozzyMaLZRMGr9NBTWNdczGjARzWY/eO36eyakpgoFhPvobv81X//h+/Ikpsmev46yfv4rtD3wJo1wjatRQwhAA2w9BVkFSWXH9+5l9aRfl+gjk0uBEdDoWkhswTpPkxWfjuD5JM0m8dBG14QEwdc47+xwGHn0Wp1IjmJiisOVGrnrPu/n+f/0jGidPQjYHqQzM1MgJFbVexfccEB6RnCAUErEIiSQPiFA0lSiUMLQEsqTgxwrlRhOEBAIUWZDJpJkrz4IqwK1DMgmpdkhmYWwcGnWKbUWi8ixEMV4c4oiITFJDiAhJkpFkFSEEddshRiIWErbjYDYD+pQkx5bkOOPj/wl5xxHuXHE2yaTCyUwTqb2TxniVPjlNNpdkqjJDlBAMDJ8kk0qTT+cwY4OoGSOrHmZjiMEHnuTJM9s5tCKL5kh8su0cipFEKxUwE5YxPJdCaGD7Mad60jQ1iZEXX+GyMMnEwFF6169kaXoJh9PQMAT9Wpbv3P+XzNpNDk2cxkqlqbbrUJ2hN5PHqTRJGiaVSo1YUUFWiIMQtRWRymSZ9B387gIda9ZRTBQZOXCU952xjvLpo2TbLUadERpmkrCzDbURcH7YzqGET/+6NUw+v5spf451jobqBzQ6dWJPRlF0rGInRybGiAToYUhnINCNPKf0DEa+gN6YQQ5spNYcsqEw64dIySQVIXO2E6M3GjSVmEJnO+esOZOg4WAJBTsO8GXwLZXTU1N0L1vNwNBpar6EoZsQBKzuakdpVigkLe79/B70pM2HPrKB0xPHGW8qiMT5TI25zA2OMX5gB7/0/rMwjABHC6m6FQxJIoOKcCNcSaVFjJLL4Hk2DdthwrF5dvtOirUIzfXxA5tppYmU0JFdD4sEvpxFyeRYef21NFIKSxcv5nu//2nyZRspdHG0FmakkEikCBWFIJeiHHi4tRqmZBJaGms+cjUD39lO91iLpqUyjUvhf7H35lFyXfW972fvM9epoat6VGuebEueLQ/YBmxANtghJJBrCGAngSR2VkJuEpIHJLlJbshd72Huu1xyc5MXHEIIMZBYBDOZGFuAZWzkQe1BtixLtlpDt1rdXV3zcOa93x8licEOcAMJw+rPWmf1qlO7T51Vp87Ze3/37/f9XbiFpf1HcNsJJoKXeh3mrQ6LSUK3plgdVmjn8sy5mk1XXMyhux6gUChgb9tAnAgaB2YYu/Ji+jOLvOKtP0vZd/mnd/4JUdZHDtm85MpLqB6e4YG77qHilwYr4qdsBwd/ANi1axcPP/wwH/3oR9m/f/+39NOnIpOmp6df4J30/ve/n3e/+938zu/8Drt37+ahhx56UWPeU+1uvfVW3vWud/0fjD6WWWaZHySPPfbYC/b9xV/8Bfv37z/9ulAofNfj3HvvvS+6/9Tc9+abbz5trH2Ka665hp07d1Kv1ymXy/+HZ/5CGo0GGzdupNFo8KEPfYibb7759GfcfPPNTE1NMTU1dfq9HxbLkUg/iXxbutq2Cbj3V76tzf/14jfJ98IpE7FTKuw3c8MNN7Bjxw6mp6eXRaRlfuRZv34973rXuxgeHgb4lo5h/fr1CCE4ePDgC/5v165d9Pt9zjvvPG688UZ+4Rd+4XTk0re301oPTLdPjmoF4Jk2SitG8iWsWJH2u/SUxrNsPM/D8zy01kRRhJTfSH9KpcGCTPET8CODTMXgGlx90+v5+uN72CqLeI2QgxMVct2U0FCcNTFB79hxwiQFKWnEfbpxiNQKpEtkCa546VU8+egUcdgYVLjRIDKFkWS4Xo6Z/U9RXTqOoVN0EtMLU6Tr0+gHMFpm9SWX8NPXXsWOj32YxuFnaHe7IBx+6w//C3/0tl8AvwS9DngGRKd8nQxIMo7t3QtJBL5DYfV6Ok8dBNPlU3/1lyA0v/inf8zf/z//jW63TWliBbkwRE5WeNkFm/n4R/4Wb6jIQ/f8C1+95wuYE+NURsq84fWv56//+//k/JdeTSI0z+x7ig3nnE398SfQQcCGl1zM1H33064u0Hj6AAQtUjNj4fgMhz+5A6wclYJLLAVjusxSolBLHZ792OcY6VhU+gFxschZb38bO7/8Rdj9NGuFgh70cxaJjLn4qlex54GHUHHK+C9cz5HHpghHchz+6hN4OkM3W4g0JlcoEPcDzHXDpFJxzOtQNBSf/5s/xzbgjddey+2//QdkCz20o0i0QDHwHhFBCEoTSk1oa7AUN77jV/nAO36f+vNHeS7qs/Y1V7L2snPp15rs+cc7Yf+jMDzE1isuIzwyx2L1CJgJHeWAbeOtX8OWMzdz7ODztOcXEElCzjChl5FLfLTWdPshRt7HdU1SlZKlIaliIN5FEc994UuUSgXMVLNqqMx8u0U2MoYKIkomdOI242s30vzHe0nrVcRQhc//0a0wW2V8bJTqnqf42v2PUPYdhEpR2iK1DBIJ7mSZ8199DQdmZsjWFGhM2XDeFbziP72O6sEjPP2XtyNMBwolXvMzN3Ds2FEe+ZednLflLPYeOAELS+z5/NfAUZjnnMX5r3oDzz7xDP/08S+ywsvRbcbYOkbXqvjCxFUK4VhkvkFNdvF7EjsbmM9rJJkEiUCbBu04QCsQmcEIBkpndHoBOBZB3mP9eecw02ugix7KEOim4g9//9188L1/Qi9uUz3+PJ7tIoXAlBYFYWFLh4yMRCuSOCXTgiBOETkfw3FBSgJXcLCbgeFweO9e7KUjpFddQL1XIwhTuqnmnucOUD86xwWbN3PhuVvx0oiz1p6B6gfofkYQtshSaNoJj9Rm+cUb34i/dS1lo8n0/AJVHIJGj0onxOp1kSuGSCOJJ02KzRjHhCgxGRkdY8N1a1mI2zwiEnL+OK2kzXufe5BqexqqEawcoXXpanhgP0VvjPm0T+ok1EzAk0wmNnY7xTAd2gWLo90apDEc6fHad/w2zzy+n/PO30q3H5AfKWE6Bn7mU7zkQhbjDKlbxAspm7wCx786RVFAUhliqdNFximW4eD6LmBS7bWh4IEpsRyLNEzotXtIbeLEBipoEAddXCNjqDjCUr1FEKaUx1eweOIwJcNCeB6zrYCtwqXT65MCXnEITcr8QptycSMPf/lh/LzLRVs3YwhFFISkzcWTJtQZP/3Lr8awGgTJQVw7xO5GGNYSqzYOMbZ6JcU1Z9Gt2NSDmCyJGS2NYiQpdqxITU0XONqoYqYJW9wJOobF0qVrUdVZsrsOUDFcahtXoEohat9hSmMjJN0Yx8joLs0zff8ulpIexZddCSRknkalGt/MkYsE+USQZJpqvUWaN6HosvLcc3n+qSdxegkyZ7Hk9aHbIZ+zWXrmGYzN6xnOXCatPPt2f5GWE5NIC8fNk2YmnoQJYdJ+bC+TSuFnAUeeeADLzDEZmyw8+lWGpcu9H/1zRBZTTqp4pQKBlDx691cpez45w0YnCZgWwOmUtlNcddVVzMzMsH//fiqVyrcs9JwSkf74j//4BZXc7rzzTgAuuugiqtUqDz30EDfddNO/2u6yyy578UHGMsss8x/Ci6Wrfbv32cUXX/xvPv53mvtu376dnTt3MjU1xfbt3zlI43thx44dNBoN7r33XrZv387U1BQ7d+7k3e9+9+kAj40bN7Jjx44fqoi07In0k4j6Hrbvg1Pi0NTU1AveO7VvWUBa5seF66+/nnq9znXXXfcCn4TLLruMer3O6tWr2bVrFzBYebz++uuBb3RQp9pt3br1dLt3vvOdp9udKgEKkCQJ7VYLQ0h8x8XINHnbpZjzUUoNUoSSb5RJtm0bx3HwPA8nn0NpTaoUMskQSQZpxtOHDpIfHeLRRx/hiUcfBQOkDQLF/OEj1GePkzctCpaBMMAtOAyNlmnXl4jjiPMuvIBIpViOjW0PNseycW0TT0rmjx4iaNYw0Zimief6SMNBmA5nX3QZwysmCLWmOjtLulSDIET4hdMrQ4ZpA5J1F1/I5ou3IXwf27C/8TxyPRgd5vrXXQ+ZgigZqG1JhOU6UCril8uDyKxM0Zs7wb3/vAPSCIIeBVPiaUV6/DhnnXUWhmND0MetjHK4WocgYNNFF0GrATpldNUkTs7jxJGjzD37HFSGOL7vKQ4/8zSyWKFs2sQipdFv4wkTr1SCoSLYJqrggnBwlaD5xAF47BnINGESYpg+Ml+CyUkuuPAy6ERQrrDusoug7BM89TSEXYq+S962KTgeRcuGLCUNA4pbzyTotwkbi3DoAENSUz9yFNpdxvIFCrkSRS+P43gYpo1vu+QcFyvnQs4F32Fq72M06zUc26Fk2NSPzSJ7EcF8FU7UYKGOm0D/2AlqR2dAWjA6BqvXwKpVnHn+BWy7/KUsLVWJGw2iRoN6vU6j3SJ1csR2DrM4xPotWznnwouxvMG5mKaNaZqULJuKlAzbDjoMyLIM33Wg24d2ByliLFOyMH+cbOYEXmqgFxdRzQ6+74ClUb02m0ojeLHGzMDUBmiJ0oItZ59NebhCc6nK9ANfg14fmR9isdXh6akpiitX4/sFCCM+9bcf4ZHP3Ilrmuz9u0/CkUVysaSSKzG28Uwu2HAGq4plCp0Y2Qox+xmjpRFGKsMU8wVM2yTTKUmWkqoMMo3tOoP70XZwT/7t9/vEcUySpqQ6AxOEShBZwlAxh+vZTEyOc9bWLbzq2mt5zWtfxyuufQ0cOMBH3n8rroqg12Zk1QRuwcPzXSzLwhQm/X5IEMXEiUZhoA0DbAcNpIZElocGAsuGVRD0+cW3voXW/BEavSrS1ox5RaJ2xOazzuPVb30rX3/+Wb708EOcqDeJgwRTQdoNkEpj2QbaMjgRp2SFAhW/zJCRIxOwqENEJc/Q0BAFL087jqhHAVgGZqJwwow1oxMEWULfECjfY37IITMsykOjGGsnsW64FufczVD0OP/nXgdDBdr1pYH/mmNB0YcoJEsydJoQhgHVsANmCgUfLJshP0d9cYE46IMtyZUKpELj2h5Jpmk32rTafZr9PlE3oOIVGSqWMDRoy8As5AbPkE6Xfq+HFIJUZac92gIyhGXg24K026Dg2eR9l6FymcWlKoVCiXKpwuLCAqIyhBgbZV4ren6O41FEOlQk8j1OBH1qScbwqrXYZokHvvogX737HjonjpO169hZH0dmGIZBmKaUVw6Bp1AqxbEswnaTTmuepaVjHJ1/Hm/c50S/xVy7Sb3TG1RBEyZpkAISXBunPERkWkQapHBIHBc2rkHbNsqyMccqbLjofEoTEwRRRIrGMiSeZdCYmcUKImafehqSPu6Qh5F3ULaFaVvkHJeSm2OyPIKKEuxcjg1nboYs5sSzh4jCEOm7lDyfIdOFDM44/xx6KqHX6zE0NonjlLAtn1yugDYt0jTFEQLR7ZFzJBYpBVJKQmGFAXbURXdbhLOHCY4dZsh3kFmE6vcZLwyR9kIcw8QyLcKTEcRCfGskPsAtt9zyomlsH/jAB7Asi49//OPcdNNNHD58mMOHD3P99dd/i3fSe9/7XoQQp9sBL2h31VVX/RtHIMsss8wPgm+O2v/Xtu+HUxFGO3fufMF7jUYD4HTFtu+XU8c7NZe+9dZbAb5FMPpBRDx9vyxHIv0kkv37Hn7Dhg1s3779dK7mN3si3XrrrWzfvn1ZRFrmx4Lbb7+du++++wUrlKfYvXv36dXKq6+++vR+IQQ33njjadFp9+7dbN26lf37979ou5efHGAmySBMsFQsgYaC42GlGtKYWCts3yPLMoQQCCHQWg88aE52gFGmwDWxMPAzkyQ1qWaCvf/jg7BpDew/QbOjUG6MCBSm57DnS19CCptcoojTFNvThFFI2O8jh0qobounntlHWK9jGTlQJztapTGyjF7rBKZpYLmSJAiQqSIzfFJpoA2H548vkrY104/vgYUqYCK8PLrT5+47PoNwh8iqC+QnRlh/zpk88ZUH0L0uo5UJ5oM+WRDilEaJVEa31cLWGZ50CMxBytSH3/V7vOH3fpdPf+g24jDmjKERluaOEfR7iH7I5PAQi0eOoTWMrVvF3vt389TU44g1a3n44SfJT1Rg9SZ6aQbj41AqEAch0dFZhktjtJ49CIWYja/+afxUcOzJo5hJTMPNcD0HXQ8Zv+Risg0rCCd8gr2HWHz8EGvme9Q++SVYOg6egyoUaGsBhoQwZHp6HnLDsNThyecPwLE5qPaQtkmn36aQmXiGRVTvMVookyaSTfkhHv3i5+gZGY6TY/GJPXxx/xTDk5tQxxokgGbwO0jTlCxIiJKE2ByU0SaT3PlXH2TD5DpUJ2Jhdg4Z9Hjs6CLt56Y5ozhOTcGaWDCzcw/Dho1OUvpRxMT2C+k1a9SrbfZN7YN2gmV4mMLCyVKSUp6W60Cagm8yctF5bFg9ydf3PoqIEkytcKRJp7nAyPAIzZlpCiWfuV4TL+chgz5Dns9Ss06SHwheE90CbZESjJZYXKwxesVFrLrkXIxGg8P/cC9FaWIiyIQgSyWIjP17nuLx+x8EPwdaQ9/g4s0bWTcxyX6lCOePM1kcomco9IF9UCrA0Spn2MMcStv0swCjNES8/xCz03Mcy+6naxkIz0Slisw0qKYdVp+3me2v3s4XPno73cPHkbFm2HRIxcBkXJAhRIIWCqlBmAZEKWSKxJF0rQSUQAroRwlq7jjT+5+BnAemibN+HY5t03p6L27Bgiwl7LcwhUGGxBQGprZIJeiTKz9KCzI1MD9/95/+GbfeeivatLn5f36A2/7mb7j8197GX//Bn1AcLuL7krzWeNJl556DzNs5kleMYa9bw9S+pyllKas2n8V4IY8goNluYxYLWLak5I5guSXqTx3hrI2jdNdt5NEHHyQojJALLYb8Im2nT2hqyFJcQ1Lw88h8iVhonulUGV+7ikaWsfgvD3Phli2sXzVOdXNGstSGux/AfG4R+hH4Prraw7v4DM5/+eUcfOAx4ocOMeQMsZQEsGmUl/3qm5n5zJfpHF3gv7/7PWy94GK8oQLtuEuWpiTdDitHK7RnWohmB8ew6E0UaYQRpBk5FDlTolONyhI8YZAz8yBMOr2YYs6hGfXpxyHDQ0NE7QZ5U5LzbBbnZikUfFrtHus3n8lTzx9lvtZiw9kXcKRZxfcFi7bJOdvO5s/v+hLXvewVbFm7hn/65Cep1mq85pqf4vzCmbjawkpSpr56Dz/z09fiuh7Vbkgvk8SZZN/hx6mdeI5rt07SmltizKuwlAX4jkU1DvBWTOAN5SlEw2TdDr1+iMwkRdMhESaxhJH1aznS73K4lrGOAvWHnoeiQf6lF9E9scSRdo3N+Y2k7ZRIJeSKRerVJYb8EqOJRrXaLMweZXzVME7eoql7RJaLaCvsLMNINc35LuvXjlEPe9z32c9TzJVpP7yPLOuTDo8xavj0lpoMj7iMFYvsf+RhRHEldq+F5bhYSFSqSWyTMAwwY40pU/SQ4ER1Ec/xycKYMW+IwMooSoukksO0oH/wBNI2KZguIlKYpoPIFEka4uZyJGmCYRiIb4revfzyy+n3+1x33XUvKvR85CMf4ZZbbjltvn2KXC7Hnj17gEFU8sc+9jHe/va3v6BdpVI53W6ZZZb54fGDMM7+Tmzbto1t27Zx2223sX379tMRR7fddtvpue8PSti54YYbuPXWW7n44ovZtm3b6TS2DRs2nPZKmpqa+pYF6h8Gy55IP4n86QtXYl7An3x/l316epo3vvGNTE1Nnb5pGo0G27Zt44477lgWkZb5seD9738/d955J+973/u+40rirl27+OxnP8vu3bt5/etfzw033PACD4VT7T784Q/z/PPPf0u7b/ZoAAamDVqztLjIWWeciW3bKDRBEn/H880EiJyJ2UoZyXx6jkXDVFz2Kzew60t3Ua6FFDsJNdllSNhEWlMtmJDB+oZCyZS5YkI+SZBK0DN9QnNwcoaCYgRuPBCsYqlJhMZUoIQiMRSG1kgFIjWInQJ9AQwVOe/K17D33rswdYTbq+FYOTJt0o0lOuiR0yGBTEnXj8J8HcKUISdP0O8RmRJsCTkDNORrIQaSlm2BKcGyWH3JNub2P4uvQLa7mFlCzrXpxwmO42ApA6E1iZC0XUgkBJZFfmQTV7zq5dzzqX8Ez+aSq17KxtWr+dTf/j1ptUbJdDC6EXU/4uW//jZ0q8/+v/8cOWFSzykyAaN9aJ57BkG5SJLFcPAohBmTlsd81OLMbefiOzZ7dj3Etb/2GzQteOT2f4CZLhQKEHbZ+vOv5ZmP72BNfoIlPUOWReQSE1tb2KlJLehgmjlEpYTKOxBWidpNiuUJlsIWxdVbaO+fARWQGxljvB9xxOgwFCnymUlLxbRXF2C8wvrhFfTuexovhb4FTq7EbLNGycsxHChmoyabRZ6qD7lUERmKtmOx6bqfoXZ8ltlnnsEzDIxeFzfNMHSKqRV11+bM//pfqC8ucOyuz3PdL/0iz049zuH77ke0e8h+RMWwiQmwXRthWSyGPRgqQBCRixSmUvRsTSYFsgUXiwpNUg6KDqbhYGxdT+QBnRrUJVQblHM+QRiTqAypwTUtzCyBJEOkMalW9FeMkqo+RAnrIhtPw7G4SVwyKeXy9I/XyFsTKJWgsggvN0gbVWhma1XGV29iZuY4q8vjVH1FmMzBmlHI23C4ih+4DEUCvxlxxEqJTRgtD5H0W8RRQKFUZLHRRguJOzLCr//ub/PwYw/wyNcfQoQZcSvENm3QEo1JJgbVDwtZRM6CTthBGIOV1JxXQAgDoRzILDKRoGSGRpBKSSYgyFIm1q9HOg5zzx1gYsu5zO89hD2xEhF3GDb7/NFv3IQpNX2vyKefX+KZWpeq7POaKy/j6Qe+zkX5Mq+/4EKyWh2hITEgliaJIcksm/ElTcF0OSYiPpUdITMVZ1cmOKuhaTRrHDACOp0Om0bHGA8lBctlvr7E12cPsuXSS1FZxkp3ksVHn2Xl5CTZSJ5/eugrPPPgg7zlzTfxib/4a2w9iI5Mgw4tPyN/6fnEvQjzcA3djUnyLvoV55IFS1zgjXPg7l2ESrH6zDM4f9tFHF84zrDjUpQ2TqdHkEJl1WqOdZv01ozQa3Qgjql4NvmZBYq2JI4jCq6BEZtIYZF5Pq2cRVcl+JU8QW2JImCqQVqvkgolIBMSZTgowyEIU1IlkDmPbhIxec4ZPPjUY6yujHHplnMZES7Hpg/TbDY568xzGImLPLDrc4yUXdJggVe88gqEITm6sEQkfKIM2itWc/TZfVy9di3V2WOEYUjb84hsh5Y0aIUBI64NcYQOelSEwFdQTg0SIVn0LdqO5HjeoNXu87reKORyfGWrS/e5GRb2HaTWnIW9jzNsjqPshEavhWfmKLk5zFaMlaQooejbKT1b07cFrBiHA3Os9UcxwhStNT2ZkAnwPA8rSbHTjLYDqZRMdCRWBo2cweGywNEm5Z4m6bQpSAedgbYs0pJLnPSwMgUyoGenaAEishGppBw59FaUoBHQHDFIkpDV3QwpQXdjDARxljIzP4cwDJAvPu69/PLLKZfLL7pI9M3cfvvtfOITnwDgLW95y79ave17bbfMMsv8x/Ji3qXfzuWXX/59fcb09DTXXHMN09PTL5j73nvvvT/Q6KCdO3fynve8h6mpKW644QY+9KEPUS6Xec973nNatLrjjjt+qBFJyyLSTyJ/9D2ISH/2g7nst9122+k80Q0bNvxQczOXWebHhVN3Xy8MqIwMI6XENi1E9t1XUjrdPuWRUeqtHm5lmDAMuOLlL+Whr3yZyVwOSynaaYJuhXiVEsdpkdt8JsV9s4Cm5seUwwQ7g77p0LcG4pShwY/BTQYiUmgMRCQrk2RCkRoKQysMBaa26BkmfQX588/mTa95E3/7x79PueIj2ydIlcT2y/QiSRb28AiI0fQdQEtM00aFMRJBKjQIPTDa1pDLBi9DwyaTEoQFSjM0NowlDPrNOutJGPTzAAAgAElEQVTtEmmc0vQF82Ebz7TJCYmXDiZ8AxFJkqusZHJykieffBLTMHBdF9M26QZ9Mp2iajUmRsZo6T6BSBHSYDgxsIP05MQRlISa67J205nUH3mG1eURqkGHqtGE9SVe++u/xcOfv5fq7r3Iq1+KqjW58a1v5/Z3vBNWTuCPlOhNP894P8Gqt+iUsoFwh0uSaEyrQNwPMS2HNOhTHh0mqB3DEtBRks2/+6usLI5z3wf/hive/AZmnnoapvaxIHs4iaaMTavfJThznMr6VQwZDtWde3Bth5ZMiZQkq5RQ3Q5rJiYZu3Qr+z+7k14O8v1BPmEiTWLpobsBOSlwhMBOB6IPKBCKumsyestNdFptGoemoboE8wuQaopeiSHboTdXRZRAJBkpgvK5Z7Hmsou472OfYKiR4WYp88UMEGxJV6BSzdH2PNLNk2aK2DYgZ/Lz/+9/5a47PoUxM0/z8AxokLk8Kk5wkpRCmuILSRFFFMbMVVy6IgEhKCy1GbFLLHkZHRFBkGDkK2S2hyccypikzSaBC4lrEjoONDvkh1fhp4KF+jGMq87m0mtfSqZCHvn7f8ae6TAqchi1kPZkiWbaw0pTnCym4vscP36C4bFx6mFE2uthjI2RmRG0OiAsPOliRhmCgVirT6bctB1QaULRtoj7PTxTYps2ShskmGSGjaNTBIMJdiYkGokyDRINQZYhLRMngjVpgb5nMzM/x8qCxzt/75d5fOYZHra7bLr2Z7GtEtO79/DSLWciw4AVGPhBQA6QWqKEIBUmhoZCZtEmYQSPThRwn93k4NwsF6zdzHA1RJbzhKbk+focJd9hVSelJGyaKmK2YHLg0FHOW3MGm0LJ4rhDRyWs7dv88998gse681z4y28iPVbjwL1fJ6rWyemEdGWFuLEI69ZAtcnKcy/g+MEDWBefw5WXX8r9/+uvKHdiavUal12/nfNecgm79z3BuF9ixPBw5tuUfY/ZE/OoVaM8NASt506wZe0GNmxYx4nP72LjOZsJsx5OdwkntSGTJIZDz3doJgGZqfANSUFrbJUhUKRi4HuVCgOkQZYKTGlgYVIIQaUZcdljrtdk+9WvwEklRjPAN2201MRAjCTWAX7BZ9eDX2bdhrVMrl5Jv98nSVLCICYcmyRpBGxw8pw4fAQlYppmQgREwsYxCzhZRJqFJCrANwRWpvATDdqgbdsEluB4QfLMiaP8J72G8STH7++9Z+BFd2SaM37uDRzc9QDmTA2ZJtz8u+/gf//1/0YqGE0N/F6MoRSBpWi7irYjefU7fp0v/eXfUU4NiFMKeY8sS7BNE9kPcdWpRQdQQuJkEqEhBqK8SyuJBpF6pRxDXbBSTWLZHE6a+DmLQpxhqZhqPiIyTAxRYv34WoLnFqkXLEZFjg2vvpS9Tz8J+6ZJs4iilugkJjMlx+bnECeXaCSDvuM038NQeJlllvnJ4MEHH/yuba688sofyGf9MOe+09PTp4WrHzbL6Ww/ifz7RvR9C8ui0TLLfA+cGtierByjTu5KUGCb2K6LbVkkze53PZSUEu3ZUHAJhQHa4uDjT+HHEMmQrk6xLI9AxXjChNXrOOfSS3nu2TkEaiDiqMFqsS0glYNN6oGQJPQ3zlcxmLQOhuffiJISGsQgnApDp+x9cgrI8ByTCBBCo0VKJiWpzEiURgtACUzLBqVRWqGlRABaD9QaiSIx9GDSgcLM5MnvyyALIuIswy8W6NVTwjCm7pgwOkRQr5O6eUytMJTC0GAqaLeXUGGXvNAQJfTbHbyCj+U7JJ0OjFcIpMIOFUG/j3QdenKQDpFLIJPQtEDEEbq6xOqcj50puv0Oxe0X0z60l+MHj1D9ygNgFymvGaf24G6sWEHZZ/yyc9mwdhW7544w5Nh0es1BFbPMILItVJYQF3OsOu88Zh/eTenMDTSqC1S8It1mjeGzzua5vXt5zh2CUp4tl1/GseefJ1MZSiekmUGcxfimTbcb0DyxSLMfkBeaUMcEUkFqYlkGURSy6cJziVdW6NmAObjudjaorKaDDo5pIOMUIUBoSSZPplGJQXrIsc9/EVwX6vWBx9HIKDnD5qxVa2kvLLGkFoi7PSquT9yPOfvcC9CVCojB781LFOgMpOSInRD4Gaxey4qRCU7MzEO9AeUh7n14N52RHK/f9lN87raPkWUKlQ6S+SKdobKITApAExMinNLATDfL8MoTBJnGWz1MmrcJFhbJ+ikUDYJNq7HHxmgfeB6z2iJpdvHXrmXyl26g0e5xlTfJHR/+ENnTz7J7bhaadeineGaePpq0ZGJXCtCKSFWKKwzm5+cZKQ/Ra3fJNCDNgRjc7oOXx8kgCyIcYQ7uv1MTW6EwK+PEzTqpNJGmTdjpMDRWIsoUiZYYngPBSRN8/Y1HSb/dpzI6SjC/iHRsTGHSVR3mYmD1OGkz4twt2yhsWM3jB75M0TZY4XgUR0YZQZPzfdwwIOx38Hz/5PPIQGgwM5DEtN0ETxlkScp4ocCxMMFPYLQ4TNs26NcaOCnkbA9H9HENiZUJhopFdD/C7KU0dUiaKxP1A2KV0eo30a7J48cO8LOveC17H30MEpd+O8E2LfB8hleuphZnXLL9amppTLjvMFUzj+jHiCzFAnQSMz83S2V8FB2kdMOQipvDyJnYjkRZEktoiokg19csHq8Sa4NjccRcdY5zSxZSSJTWKDl4DueKBardGgUvR7vZZMRxB9+34GQlPNAqxZUWKovRaYgbWxhC0k1j8qZABV2UMijZJlnQQ0uN7drEOgFDE5JgVkaopeArQbXZZOVwhUIhT5WEoUIOHaSkaYzpKkwRgwRHCawgxDM0iYZIGpimHkTlpIPnna1SdCopxpr1nodpGqR9DbMLsGIE2iEnjs5ApklNixySlZNrsUtl4n4P6dlk/RgDMJREKrAyk+nHn4FuQOrk0ELTSkPcnINt2gStNq7jEqkEQwNaEZiD74xIkUsUnTQjdU26MiLNUgrY+KUSpCk6TjAzjZdK7MwkFZLUUFx06SXcf+Dz9DttZMljxfgEJ+ZnaZkzIDKU0mSpRpgSdbInEnyTyesLQn+XWWaZn3T+I2Ni/r3nvrfddhs7duz4ru1uuOGGZWPtZX7AJN/D9mPA1NQUt9xyC5VK5bRHzIttGzdu5JZbbjltRLbMMj/KKAa2ZTEQ6BQ8m8iR9LLvfmMKDblymYal2PTGa8DJICcxw5RyKtCWoClD0ijBw8MwHPyVqzlQXaRrWUSGCZjYqYGTGrjp4BBWNhATTPXCTkFhoDHQmAg9EH1UlmAJMExBa26GR+/fiTPs04/b2HmJcjSxmRBZCZmVEtiDdBk30aggJI0ihGehpUIIjYnGzzTeybSayBwIG7ZS+JnCy2ImS8NYSIRtEpsuiZMnrlS46jdvgU2TJHlB0xlEDSAUgoQsa7E0e4gVeZcyirGch2+Y9JOQsZdfxk/9xttoqRae1qywPXJaEziD1D0/UeSSQUqYrzTpwiLzosOTVoMgF/GyCy+BownVv72XXN2BnqavY8j5/N0f/gkv+c+3sJBWWcxraC1wpHmceS/AwcKMQBkGuDZsXEnh5dvggjO56td/CVYMESnJRGUNtSPHufBXfpVtb34To296Azse+AqzT+xBSslQ3h+UEM8UrjCh3SWcmydpdnFsk8hUZA6sc0s4i20KboGg3uKBO3ZgaAWZohgphgNFJUwpeBrXiHHMFGmkKJkSGRBY0LUHv4XCbIPKsRqy1se2PDh0mM0rV6Gk4MDcLH3HANNCJhIVpHz+M3fxhfd9AJRFPjIpZiZ2OhAMg0TB5edx3e+9g5WrNsBslSFVQhysUvvYPVx19Xbu//IuslYLsoTX3Px2rrzpTbB+gmTcpzPqsDSkSa0SnWZ74OW1Zh2L/Zj5TPCq3/wdguExGFnBpb/1O4y95a1cfP6VrM0KjByPMef6jOfG6C22eO6uXSzd/TXu+NSnIFIUehYrjiecUbfZEuWJ+wGN9hKlN7ycN7/rHVz7cz+LtiT9OGRiYoJup4MtDYqOh+N6pItNcomHtRRTiEzK0hl85yhSIyayIgIrIS44eGefS78fgu1RdEok7QBLGXh+jmbUO3kHJhg6w1Yplo4ZzTnoVpMJP8cKzyMj4PiGlNHfuo7Sr/wUC0HI448eRHUMLtl8HhsWulx2qMWri6OU603s6iIybFMZ9slkRmoMIviklhgaEjPkaDlkrhTQcSPyhub8sZWs1DbtuSX+6RM72CCLnDu6npLpIjohTpgxmivSWWzyyvMuY701hF2SrJ9r8JLZHmuPNei06tBsoO/8Knf+wfvw1qzhF2/9bxhnrSFu1MBwaPT6rH31q/jMPV8iPDSNWU2ofuEhnG5MGgYUHIeJkTJh1KUXd4nI0ALiIGHPsX14IwWatUXGLYeXFFexKXRxeoLRNRuprRkjOW8DiyKi4wp6jiBwJUnOoh73GVm/munaPKltkAkGZu7IgfE3DMTvKCAvYdiSRDIgdhNaoktalkwd38fXnnuYZj6kkQ+p+xFtp4NpNFB2SkdHrN12MQ8dmWE2UhRXrGKpWeOLd/0z99+9AxHVMEWMFjFR1gbVwFB1immTkaCD3+2T64XYSYzKIuIsJJODSDU3TfGTlFWdkEsNh67T5aDbYqyXUDq4gG2N8NqrX8PYhk3g2Shl8Wfvfd/AoFxoTvTapCejiQwtMZWJmxjM3f8ko7lhSDSm5zCx9QwWojazUZPQhb4DLU8NFiKAugdVH3o25CKNoRWq4rPpDa8kXlOmVZRUzlzHha96GSBxUoNyYFIKDHKJgKhFtbVAmgWgIo4fnebuz32aZ5/YQ86E9GTqZ4gisw0SIOXbasb8By6kLrPMMj8aKKW+6/bjzqkqbTt37jwdCfXDZDmd7SeRd34PSzAf+NG+7FNTU1xzzTU0Gg1uuOGG7+ixND09zY4dOyiXyxw6dOhHwrF+mWW+BQ0IdTKYYCDTdDREAl71n38b9+xNrHAs7v6VX2Pt5EoW5mvkcwXqrQa+7TNUKdHpNSmUCxxv1QiVorhmHXGkCdsd/Fhh65jMikmNlL6dx/HXkizVUGaEJySxZ5CJjLG+g3uig+datPN9ajbE1Ta5BFYYRRqWJDElljIoCo+aYdLrdSiRkWV1Nq/bxGxjgUBInFyR6mIN1y/gqAQ7U9gqJZFg5n1iLWlVF8mRUamMcjhsYMZgZxJTK7Rp0M8SSoUC/XYLgNQYBKsUnDzdOCUdyrPisvNYv24VD+/8Mn6jixU65EolWp7mrMsu4pEv3YObK1KQORqdDqvP2MjM/HH8ToM079Pr9ZnYsJn56RmKnofOUvLDeVpCEeRzrBweZfaJxyCLcYQmn2jcRJAJSde2cRcarFmziseSOqwYhRPzjPvjmCeW6KoeOmfSziIcawwj0yhpYE0O06mdAA1mpChrQRpGuGWb5nyNYMX4oKpWZQzaClQMF29iyxVXsP9Tn4H1G6DVYWS0RG1mhgs2beLxL3wOMClmNoQZq6RPpz3HxOR6nm7MYuVsjEKeRslg5JzzWdo5xXDTgKJHO+ySiAyvkCPfCwGNlSlSA3qWgbFlC8NScvjrD4LKGPZzJyfQksgwAIkXRSAUmVCno5RM00ZmYhBglAmavZicX8KolGjlE3jZNkr9lPD2u1iDwfFJg34SIHPjqIIFnR5g84Y330heW3zhzs9SP7EAOQGOCVkEtkV501k05qsDT63iMFQXKbVrDPsFZsoGL3n9T8HEGF9731+CVSAX64GQZqqBt1ZogSswyJBRl6Kbox8n+CtW8cq33Mizx46xd9eXYamGpQVWkjJiuqRhgPI9MsekGrYH1ewKRa75mddy752fxo4grjUZLlWohS2wNEyMwPEOhpCMxhlR1KEhQ9yxUcJGA2d4krjVp1A6g9e945e4/b/8AcWCT7s2y+rSKHnpseHmN3PXxz5CudVns+3RjFOU5xNpTTMMyRdy9LoNJApRdGmYKfglVuVXYM01+c13vgN3OE/TjhmJDaJji9imSbK2TC/uk2sE5B2PRd9B4vDUwVmeMFLOXDXONVlC3epSwkD2U6K2JIptsE06fsq+oE4ajzMyUuS+Z7/KTaPrWG96NC3Fg1bMGjWKIW2s8Cgj7QAfFz83wm9+8P3Uwi6U8pjNHmssn+mwC29+HTz6DOs2bOTIvofBM5CLPYqJxmklhELh5WxUGtKNurzuhtciHItQANrBzEzs1GIhqbGiUII0Q5gu3YUmXqlAwxFkcYI9XMLxLeZn9nOGNUaSDlJ6n/MVZ111BXf88z+woTzJGfkSotMiB4yFBl4kyLTBc5tL7KGDqPV5TWcYurPois2JIRcpclx07avY31xgjT/EhiNN8okmFBG26aDiiEZuYLxvewUWeh3MiRXk2nC838YMuwxbLqO2z5OPPkreFHi2IEkiXMdBx4o2AmFIRBIyMVHm6OwMgS3wJ1ewuNTHtl0caWGRkoQJw7ky73///4BLzoCDR3nDK9/Mp6NnQErWrNzIsa/vhmadgm3hq5io00FqkMpAKpvYkDSSlFWlEWbbNTZccRHXveUNfPI970O2exiew+KwyWQ7wEvASyWRIUmlRDkSHUVoAflKkS2vex2PfObLyG5M34J4LI81V2O0p3CzhEOVlNCCYmJjeylRp4Ht5TB7LsqtUO+HXPfzr+fTf/eXDA9VsKMErTXTR45gWwOV2/iW/vY/pGdfZpllfkS47777vmubby588+PKKU/i6elp7r333h9qWttyOttPIj/+YitvfOMbAdizZ8/3dIPcdttt3HLLLdxyyy3ccccd/96nt8wy/2ZOpZQ5YhCNJPIlgnyJNjFmTtLv9zEcl8Q08K0ihilpdLoYnkmr1QSlsLTG7YbIUJOFGcrQJFIhUZhKw7rVnLt2G4d2P0rYW8JutgkMG2SCSgwUJsLJIYyQuN9ifO1KvGYCnYzQgX4aMpIbprPUp1v00aaJIQRpBkdnZxBDHmmcIeMQX1hInWKoQQoU2kYDJxZrjKyYwDZdZBqxUG9AfiCgCQ0GkijTYJjU2x3KboEg7KAzsJCDdAXLgLhHVfVRS3Nk/Q4yA9OR1NtLDJUmOPjIHgxlYkUa6QguuPQllFdOcvjAQcJ+wPDadfTiWeZ7XZCCMMtwghjd6JAIhW60EWs3Qr+LyOfxlULokMg00AzSe9ximW6qIJH4uSJyQxGjGaIE9NOYXNGDbsBQKySVg+gl2TSwUoFKUrJOAFYOX3g0e10Kbo4gzUDAyPpNdJ86RtjtQbfH6tWrid52I8dmj3P52ARf/+g/oGtVlvpd6AVIJ0eQRAxbeTzhYPgrmGnXcAwTEWuUAiZH8SqjOF4JV5gcnz+OPVJiw/rVHHl6H0Omi6EVmZREhiI0JBddcAn7vraL3Ng4OUB3mkgG8zGpJEryjYgMBqmPoDGVwkgH114oTd7K0840VKswPMbrfvbneObL93M0XyBIYnSaQj9GmBGinaKjGCzNyg2r+P/+11+R1ucprV1Na2EBtIQogV6P61/5KuyRcf7u//4gZ7z8lWwdHuaxD38Ish4iy3jk6w8SJX2YHINql3KoSM2EwErpaklR2QNfrqBLFnVo6pgsUQTPPc+dH7+dZPY4FGwo5bn60ssJWh0e+Je7yft57Cwj6ycUpE0oHPJegYmJFaw59zxmHtuHdHLUFpYYf9lFGBNl5h66D8bGyBbqdLsBJdMgcXL0ghBch6hag0zSDqrsuOdLYAhCCxgp0OwHxHGK1W3CuWdjHjzEXHWJWhhj+h7Cdokci07UwXAMTENyyWWX8MBT+6DawW39/+y9eZBl51nm+fu+s9/93twza1+kUmmpkkpLyVosa7OFJBtvMhgvgGm7mZnuYYgmrJnonqGBGKze6Lbb0BbYuHEb2xgwlrBkWZIlWbtUJalKVaq9KrMyK9d7b9717Of75o9bGGYGmmaGDmE5fxFf5I3MjBtv5lnuOe953ucxsDREhBjCQ0YpUpjYJY+8U+R0EmK4No4LxNAPYhzbYcvmC3lh+RT7Zqa5Zd1G8rHAtBRag4gFZJooy/DNFKfkslTPKOVcCsOjvHDgNcxN2zFGikjP4IGHH2HD+s28bWuVwJQoKVGOgVkpMV5bz+K5aTAznDhgfGSYRdOCdo9zs/Nsuvxypvc/TzGKqQkHXXTpEGIoDeen+gytcDTIVKFQaAZKmMrwKL1On7xpo9p98pU87dRHSAfTFah6nU49xTINzGQQaCiFoFKuDRqNUQyxwsVEycG4KZFCxoN9O8GgcsE24oUOwf4eW6Y2Mhsvs+z7XDg8xcJsnTNhg1dfeo1/vmUvuSwmEgaG7ZGFPomlqdoFZmfOMNNuYSnYbI9jFKqcOnGC0R07UaaJcBxUmoG2KBaKdP020jHRnkMQJYhuSNIJcJWgODzC6XaHJJ/n7MIyFjY7101StSsYfkZuapJk14UkjsvKyRms911OcnaO3NQIdrVEvLSEpTSR30abkAiJAThq4N9lGhLSBNMyqHdaPPL9Jyg5BRApoWGhXRPZDtBCIrTESSXCgH6myfIWZpKS+iFnXzmC3+5hIzEcm87cIpPKQKCIjYHvmpmZZN0IwwFNiA4VUlkYMXjSpRMnUCmjkT8cuzb0X2ke/eWH7BprrPFjxo+LJmbLli08+uijbN26lfvvv58vfOELb1ota+Nsb0V+xMfZ9u/fz5YtW/jMZz7z39xh/eQnP8mnP/3ptZG2Nf7Bov/q6VYPOvgecPCPv8WhL/0BT/7abyA2rGO+57Na9lhJ+oiRYXqeTbfkspL5JJaFMCSO49Brdwj63cFNvAJDS6Q2MTILOpodKs/QakIlkeS0BUrhXbyTC6++nGZO0yAiaGRYw+tZWq4zncbMuArfCmDYoW4HOJdu5IZPfhBGDOolQeWiC+mWHNo6RZkm/X5ALVckkwmRFROZKYGl6FsgRyus9Jv0Czar0iLKFX547skkdA2Jb2oyy0CMjrAapQi7TCYgluDrlCSNWbfnStKzcyw9/zLEGbY0aPW6WIUc52bOkDkOyjAxLYdmvc5wqUTRssGUTE5OMn/6BLg5fu5jH8V0XEwhMQ2DKIpQcURt40Yu27QJ3AJ5TFI/PN8MG4yyZBLmajn8nTupqRH6x7vI0W00L7mYhdSmWNpEey6GyY0oU6Idk0xCp98jCUOyJCZXLhJLTS8OMZSBhwv1HjgVPvG+n8Ja7UOsYXaRk9/5HuPdjPT7LzAcSbIzcxi+onF8lppdZtTMYQcpphbsX53n9XyPRdsnnyuTdGP6fozbkCw/fYhoZYVzySrVi9Zz7R034Y6VMcsOkZkRmRmxkZIYCkTGqVdfwV9ZIlht0muunDdRV5gqxdIZlsoG39MAkgyTVBgD42BDEhugTOiaiuHrr4TdF2Js3sEDv/KbnLz/6yRDeeZKkqrKsdkZobQa4Nb72AEQZHzuf/lnpDqDWgV33QgYAsvPKLRTNlslXvjGn/H79/5zCHqko3keOrmfs3oRVfaIGw2i4ycZ2n4hlaFhYKBo+wvvMUMrHBXirywDBlQmUJTIuSPUSjXyzRbFWhE6ATXD5sCh13nx0GswNkSvWqJpCtqOTdfxyNkO/cUVvvIvfo2zL71KMQHd6ZO3HCra4NKJDdSuu5Ht77yR6hUX45UGvkjD2sWod7nrfR/i3f/jP8bYsg425xi+cw+bfv4u5I5x8DKikoUqmpw6eZQrb7iBlWSFuW0lbv/c/0F3RNIxulz7Tz/Gzg+/m2y8SOQojvZb7Lj8cgojw/RVglnOU6xW6PR7lMtl+nGI8Gzm0x4HFs/y1KHXiExIs5hx1yXX7jLWbrO17xMfOoISktiQ9C1J2xU0CxK/7BDlLZRSDAuLXLfBI08/xA3bdyHyQ/QqI0RumVxmcsWd1zFccohM6BVc/IrLipORjZa4+u7bWPeOvaTjZY7QJSza7N16EUhJsjDLUL6AIVyMxCDIBDMlh2DEpelJeuU8drVCFGqSSGEqiaEVghQlI041lqmLjJbQRJ5F11Sooksz7tHTAUbRwClZuJ5NmEUQReQShbHUpPH8AcRiwAVd2LSaMtWHXAJ9U9CzJZlrYS51OPXtJ5l+5Gn6KuTkuWX62sMemiBb6HGBPcSEWyFutHH6CbIfo/MWadbDK5eRhTKLQYZVnuSK627lkUe+R80xqJkJF26eolLNsbi6SGRmdD1Bq2RyJuuzUnJZLroc1QFvxC0KG9ejlYmjPYJzXUYLw1i5AlfefDPH6gu8eugA3bBHu9fG73a4fPuFbNi2nddOHObSqc2ATevMAuNeBelrPOVQNMuYmYWVWRjKxsgMnFQwKWyMVpeSa9NZWuDkM0/TDtv07YyP/sovgt8iMgeqP99K6dspPUfRdDULvTaLeZfjvRaHjh2hMSRZGBUsGX2mYkUtzNAiI7QUE12Y6EpkZYhGL0IaLpmSWI5HFEU4huCVp56AIDxv+L/GGmus8Zf8OIyz/QXVapU9e/a86SNtxq/+6q/+6ptawRp//zzwL/9yQPxvWnf/6ptW3t/G5OQkH/vYx/7OEr1bb72Vj33sY/+dqlpjjf8f/PDJqB68zARSgSHg137r89zy0Y/SzrmMjw3RODoH4xXsa64kXelxzQ3X88Ff/AWefe15VCvEsU2kMEEJLGFgG4N4e4EcmAsjCXsZiy+/Qeb36QtFMefSKliM79xG88w5ukmING1KFFgNu3ziX3+GPdfdwL7XX6V267Xc8rMf4fi+l7E9D2/bFItHD4LK6BvgVcv4nTa5Sg2dKIrSoSt9tBgooZTUhKaAUh5tW9zxiZ/n5NkZdBRgxjFog0xKMsegtvdKrnn3e5je/xq4FdI4w6t4JLGPdl3QGTe9590ce+MN0IJKvkx3fpF1W7fQ6He5/Jab2bhzB9MnzhCGEaPlKvOzc5w9fQrblLRXFihOTBBlKRvWb+TkgUMQRmk8ca8AACAASURBVHhSoHWC5dn47T5H973CmFeAIKTseqRphhaDUS4lBfHGEUb3Xo+xfwFplRjfewWLecH6ddtZOniCq3/yJ5m8ajdzL+4jOW/+jCl57099CMtxWF5cIk0StCGIUkVeufTzebSQHD5wiPxyB8+Q+Dpi9Y2jzL56BLTB0ceewPHyJI0GNbdI2uqhgoiimyPOFP5wGffDt5NmPbrHFtk8vokoUYT1PkmosK/ezXgtz/LRA8zMnmKluYAhNUaWDLxKzvvhaKGIVzuoToupagUV+lhCnDc41wOTc62Rmf5hSlhiGChpnE+tEmihQQqKV+zm0vfeQT1NCKeXYboJuQK3/PIvcObcDOrEHKXAwEViaXCkCUJgjQyTLC1w2Y03cPHuXRx/5WWU0Oy85krmThxHhQmJlqjhCS697DKa52YIF+foLNXJjwwzccnFXLR7F0ceeQIwcTONlufH7kRG1utw0U03cst738/kxVewsNBBKYmbxBRUHzvsMVGs0WquonM2qW2S5Wze+Qs/T23rduZ7AUSKaHER1zBxSiVUEJN1eoyUKziWxcy5s5w6fJjg+AmaLx8iXFohMDStvElLxOjxYY6/+DLRbBOv7tOdGqa7epbWi6+wfniM1tkZ3F7KUCRYWphj6fUTmPkqaqlFd7GHkXmEnZSZh56kkFj4sw1GcqMsn5ih3lwhjmOyNMXKu6zfuomZc7M0mnUKbo4oCslsl2S0xLEzp9jolcknGiUUo45DNUxZt2mUay+7BDPMSIhJXE1PCI7ML7HSC/DThJpj4/Z9RvNFRnZuIDnXYmJiC9bQKPsOHcUteqwafYrNFiOGgyNtik6Rbj/k5PQ0z3/7QVLbJZlbBMcjDGN2XbqLE49/DzybhQP7yAmXYleAYdG7bAvlD99FeOQomRZk0mT9yBh5z8NUAi0HKpbUUDA6jlescPjIUaYmxtEGBCqlOFLEdgyiXpc4CshLEyuBQmogTRPDNrGjhD1j65gyLArLHaw0w/dMekWXvmuSIsj8lB0bN3PZlu3EWYjhVfArFY6qiAtaNqIT8tjRV3n/3XexsyMwDMExp0tBaIJEMCdBemPkKhMcOHaSCy7YxAad8Pprz7JhdJig18FyLDp+j8Vuk0YSo0p55oI+Yc5DVXKcmp1lojKMlQosr0BiOUy3WjjVIRaWVlhdqbNuZIic7WAoOHjkCGcXz9F+5nm2X7qHg888ATPzpJmmcXyaXKSxhUUURGSGRSpswEJgIrTAzhLMVNHJCUTJJfMjxgsl+klIXHY4u7yIE6c/NLaODQhM6GQBW995K7tvvpmO7ZAuNdi49xI2X3UJ88eOsLEvcJOE0BqYcZcjAZjc+As/x9EjByjaFqQGQruEscYyDLKgRTVnI1M18EADfumXfgnD+H9pkdZYY40fM06dOoXW+r+6tm7d+maX+ffGZz/7WTzPe1Pve9eUSG9FfsSVSH8d3/zmN7nnnnu47bbb/tp17733vtklrrHG3w0FogcsLVGOErpn5zn+7H4Kw1OgLSrjUwRtn9cOHObB7zwMQUJOOqRxRuD7A+NpJCLLEBoyIYilRSQdsDLCYZd2yaZTdahLDe02c6emWThxknwpT6e9ylzHp3zV1Ty1bz8Hj50ALWieXeTF734f5ur4h0/z6pe/NpAGrfbImzl+/uf+EdbEJJlnE5uCQCoECktpTK1xUrAUaD8CNLlCHhp1EBJDmWgx8BrCMLGHhzg4PQ3bt4LlYBTyBO3OYLTEklAu8MD998NCHSeGcGWVkdoQ9WaDYrnEvv37OTE7x/DWzRRGxgiiiG5jBRH0IehRKRfx+13UapPZU6coWQ6elLimgVYpRpbhxhEVBXGzjaNNOs0eaBOFOfAEAvAsTj73fYw85ETK0a/8F0whmV04AZtqHDpzjJf/05fQtgmWgeU6lKtV8u7gKXrc72G4NqkhsMplOgIyFOQdjGIB23MHT8mkxjMtzExjxSl733kbEQpKJTpJSqlSwysU8XXMauZz+Y03cdf1t3PBRz6Cc/E2Tq0sUusKlJLkr93NRe+6mXOvv4ZTLoBQEEfIMMDJFFamsM+bqjuZIp8G5GRKs7E0aEZIgTp/hTBQIKVooQZKMUMSS4NYWiRCEguBkgbK0Oz58J18//Ofo/vYU3B6EUIfVMzj3/0ezC7i5mv4pqBvZiSmJswiRJJi9APQFgf/5EEe/Defg3IFbtiFettO/OEcKovJxTHMLvKDf/87tB55mprKUfFceq02M4eO8P0/+BrYg1StyGBgjsxghLRnw4HZk/zhn3+LR/a/Ql9pQiFJTEG326BkKWi1GMsVaC0tEq/M427fyCOPPcTLP/g+F+zZw9s/9NMwVKaf+cRZjCbDKeXoqhDfUlieDaHPuisuJ3/9ZTBWQmtFJTUZSQuMtTX0U2ZaS8zrFhw+ztumLmK0rgmfOkDRN9hkl/GiiC25KqW5OsWFgAl3Hb2DZ8kv+owlNhvGNzP7xikQFouNNnZlCDINWhFZgiRnURiqcOONN/Lwtx+kWCySSnBicP2Md117E0PlIbx8njANWGktYTkpfrCI0H2cVOClEicxMJTk4j1XoGybOE6pKZvxREJjgZ1eAeVaWPkyfl9zw+13cnR5kRFpc8lF2ymSR/YEqpOSz0yu3LyDn3jne/BfPw1GHmEVsMtVvvP5fwMjRUY2TVC6+EKUn1CxcrjaQbVjRLHCzf/rp9l44w2kpsVqlBBpG3V+kEkJBSJm8exZWvNLjObLEAzSKdOuj4xTessNXC2ZKlTxfE1mmjiGgzIl5C3iJCRnGZwTXayRArHISA3BOVtxRAa80K+TSoHXiggX65wMFlkuOjTyeZY7HXKVKjsvuogPfvD9fOex79IgYjrs0BvO0xIJWaVMM5M88MTzBJnNUr3L/hdfwksD7rz+KvJxjKqvYvghSbvFNXuupNlscubMLBs3b2NufolaLDFXujhungXP4JD2+d2Xn+R4e5X23AqTmcM7t+6i2azj5V2CKECmKSyswvAo1uYRTK8CgeYff/zj4HfYvfcqLr32auTIMG3HoeNYtB2Dji3ouNAwIqKyRdfNiMI2Fw2NU1DgWibPPPwwI71Bsh8Mms5Sg6kVWA4TY5OksWBsdD2e57G87zCFhTay1SF0UnpuRiYUsSGZKdvMlC3emJ6mv9qFzCYKFDEmmTToBH2cLMPo9gfvv8Yaa6zxV/hxUiLdf//97N+//031Q4K1JtJbk79NhfQjdhzde++93HPPPf9NcYdrrPEPmf/boadBulCoVnn2iccHkfO5KmmSwVKD3lIDkoTWzCxvPPUMhBkqSREYOKYDSpNlCVpndIM+oVIY+SLKzUPSoxO26JsJ+A16puDmn/4ZLrviClCK9uwsdrlAdXKcofFRTv7gB7zywksQK5ieZ+W5fRTcCutljmFl4wYpQlkUMHnyu48jMOgvLqEsk3qvjSEtDC3xTIecaWOlGisDtGQ4XwLDgDQhUhlZej7mPJ9n8fAbNE+f5p4P/wx0W2RBAI4DSoFlQBKB60EGIkopeXkyNI7j0FhehjTh+ptvpn76DKmUxGmGVilR6GNLTZIkCKUxikUO7H+FJAwwtSALIwzDQCXxeVVOhmkY6DTDcTwQBpZtY9oWUkr2XHoprMzT7C8Rpx3IEtInnmTbDXugt4zfWkQWSig0URQhhKDb7vDs089QX14Z/P2A5dgEWYJ2LDAFN73v3TQOHWCp10K4FiQRQadF2qgjtCLIEhgqQRKS2Ca9JCRKEzJDYHgOWbvP6995gr07dxHFPm61REmbGMUc/bzk2NkzSC+HlaQQhBQcF5kq8qaDJUxUrHCkjfIjdBzimha2bWPnPZRhEqYZiQaEQZwmBGlMJjTFahXd8/GqVTZcsAPTdojThHK5jDdcAmlCqw8rDYb37oaxMu+7+72AQ2LAQtqjbysCMyOzQEiN9kOcOMUybFxhQb3N+LYLcHI5VKdDEviUch5SZ5Al4Ln0+11c18UQkryXhzABJLbj4CcRWAZKKdJEIcomdFsQBVx1281ccutNGCM1Wt0WpeEyzW4fTUa/24E0g2KJj3z4Z9h06WXQ63P84e/y1GOPMbp5HRRs4riPNAV+FiIKNp3OCqkNkLJhcoIrL7uM2tQEAKlpnt83BbbloZNoIENUsO+RJxm2cphhSpoqVuOQxHIIbYHhWvRsWAja7HzHddS9jCUz5Gy2irhkiuLbL2fk7uvZ+7Pvx7Qc3HwB1eswOjlBPp/nxLHj3H7rbURRhJvzGLY9nEhREBZJmLDS6tJJE0QhRz3soAsmma3JOTnMVGOmgrQb0lhp0uv0GRkaKGCcFIbKJbwgIRAJq6ur1HJFvv71rxNKQVW7pInibH2F/OQYXRPkUJlDZ06w++orB4bpcYR2LG750AcpXHcV6IyVlRXGx8cJAp/lqIEpTOj6XLJ+G09+7zEajQbrtm4lUQIrl0O6LkoaSGliGAbj1SoVx2OyNowVK9KuTy1XJO0FiDijaHmofsxoeQQME6SBPVSilcY4wxVWgi6NvGA2adM3NcqShFKjywU2XXM5Wc5FaAU6wyl7PPPCs+w7/DqX3XA95xrLNP0OZ2enueEdNyJqRVZFQigFq0nGUrfH1p0XEcUpcRix44ILIU3xLJP56Wmqbp7xcg0z0xRsl6jTZ6RcZfuGzazOLbJ1dJLpFw+we2w9KgppJD79okPt0gtYzUImqlXcIKEaai7Yspk0jtBaU84XKFseNNtsuHQHRpQgTJunnnwMHJNQpVz99utZ7nVRUQDFPMoUBEEHVXTxPYu5bgtyDoyOsjq3TNwNESm4dp5CAFpYxCnkvTyZH+AowVilyqEXX+aVZ57n+Guv02q2qQZw9sl9lLVJUraxRqv0o4C+H7Ka9ginhnjl+WcpD43gt/uY0mG10+OSq67EyRcG5+w4Qv54WJ+sscYafwf+NhXSj5Jn0mOPPca99977164rr7yST33qU1SrVT796U+/qXWuGWu/Fcne7AL+/lhdXeW+++5jz549PProo2vJa2v8aHI+LUYj0SiEON9O0pIo7NM7cRxW6lCo8NO/+D/x+7/z2/gP/wDy+YGxcDxoAtieR5KlCH1eIyMUCgmezej2bbQRRM0mn/jSl/ji//brMDPN23/tX/DUr38OEUPOMCjjEBDiCUWzO8/myrUQRqSrSwylkkYQYdoW+SDF9CPKfkbVsVFOiXPTCyyvrJJGbWq7LqF59CSFShllKCK/g6MNko5PPp8n7fjQjfnKb/0Whm2R9X2M8VGylSb5UoV+owm9NowOM3PoVXCBdg90gDNWI3Js7vjQPTz8e18BbVKQFjrNiKVGxwl5N0/fdnnsqWdgbIKwF3LNNVcy/drLxEEXlWQgDQw98E6RSmErMBVIPVBPCTIMMgQCsMmERGOgDUkQRBiWpFgrsyGIORIFRDYgM8YmaizVVyinEcgQwhi13IFcAdu2kRqSOGHmxClUlmGaFoZhEMcx0rOwDAklj+nlBcwrLyV+6RhdQyGmphjfYLNwao641yE3WSMXbcSXkC6sksWDBlwmU1IjZebFV4lFyrEDL0CnTZqaWNLDmCiy7YY9HH3sOUqhxsk0rp2n2/IpmjlWV7tY0sKtVDnXW6VULmOHfYI0RTkumBbtfkhteAS/18dUKdKykLbALVZYWVogf+EOfuKud7PvhecJe32K+Tydep0//Y1fh/kOnl1iYssmNt92LU++/Dz7H/wu5nIXv2BijNfoqQ5GNjDvdVIw4wxPWJhCQipoJgbp63O8vO8Fhsw8Rr9P1G+z86q9XH7HLRx4/VUOPvTHNJMMz7JJ/RCExZ133sVwtca3vvEN+vVlHEOQsz1aUg+kSZ1VWu0VNo6V8TeNcWbOYtlvUirZoD36rTZOuUDUD/nD3/osfrsLrQ4kmtGJKa59+7UcGylw9NmXQWlG103wgY9+mCeef4ZDjz2BWa3y3Df+jHVjkyQqobxzG1fe9A4e/+o3aXd6lIp5zFaHrBMQOR5xq8GZdkakU1TOItowil2qsmSnZDoEQ0KScKg7x/prdnBy/0uQRWx8152cPH0Mb+dFzFoCI0gIFxe46J03oU2ToNtnojLE5soQQRKjLPCX60xuGiXBRBsWvmnRdSS1WpVWvEhSyXNuucWwOwxdTVl6kLOo92K2XnABw8UywclpZDciqFg4yx1Km6p0njvD/ldf54PvuYPf3fcQFVXg6KmTtHImJ1qzFGoVorTOoXCJxScfRO7YxNvefTfPPPwgD88dpjY5BE93MUqScq4AYxU68wFx6nPXbR/gzz/zeTh1jF4YsuvOdxOudji8sMDWiVGyRCCSBEcb5ESGk8TYCtxMk2rwgxiv6GLnLdJEIEJB6lr0CgWanYC2gDmRMm4YGJZkebJAUfvUhEOvHzK6YTNhweN0u8dU3qbWSTB1zPB4nls+/B5ee+MUqwePsK5iEOUzikrgd1d54I3DNJtNNm66hpdOzHDzlVt57fARhMwIV5fJuZJd27dBqkkSTRCmGIZN0g8pemXq84usLw0hFOQTIEnYtW0H6IyFVgez7EK1QF6OMjd9lrC+ypRVZFgYtKSBIwWpHigOjVZAWxicSFdRS010x+fV7z0MnsP+A/uIshhMGNq1G7foEfg9toyMs+/h7yBHquRKZa742Q/y9Ne+QSm1yZKMyBOYuTy51YTZahEddcgFGSYGtoK43qS32MSySjjYGHYBs9GjaBgoy2Y+DZg+N8uW0S0sdPoYd95EtryMXO1jdRIK0iXFwJwYJ/I8kryHXmngpW/ap/gaa6zxD5i3ktLoscce47777vtrf1atVn/oA/xm3xOvKZHeiryFxtn2798PwBe+8IU3/WBZY43/z6hBIhmc7/EaGYgMUGQ6BhsoF0AJfv+7fwRKIM087/2V/wFjQw2ymPWpxrei8ybag5tvUCipKI0Ps23vHnpk0O/yrf/8h7DUALfIKy/uB23z4uNP89KjT1PQknLOIfbbFPKC/Q/8MXS7jCtNIQxxTYOUlCUiejkHWXboZz7dNCS1LZRtwdAId9xyB7nyEFaU0Wt3CfIlWtJEu3mkaVDwcqAz/JU56K2CpfnIr/zSQEHS6uBKG/wIFuZ58U/+CHoroANqhRxRvcnE1BSj42Ng2YPGT5SikpSeyNBJjJ1piFKax09Ar8dFV18NroWf+JiuxLIE8ryfj6EVplaYavDV0AqpB004LVKU1KQSUilIpEmQapQ08ApFFmbO8q0v/QFuPyGHYPPui3nHh9+HGB1j/5e/Tc4bh37GzvfdQaVURkUJlhJ4WpLDICdMzAzSOBlsu24HN+jD3Fmmn3man3z3exif2kjU7rH90t2s23wBFa+AoQXPP/gAWy65mF13vBMQOBl4CTjZwOg6aDcwSOHUWXIRmJ0OnSFJNDfN6T96CB5/mXwqUNog1QYRkr5hYAyP0rVd0uFhLrj5Jjr2wLA9FgLftOhrCW6OZhARCkHiFYgsi66OWOm3YGqKfmOVb37lK5w5fIRCdRQVZ6h+QO7EMlaSYjgppxff4PHf+fdk+/cx89JLTI4MoYIeVpJgZBpTnU930wqJRtqS2FSsZgFRllJ/8SAkBnGnj1fyWOm3OT5/kq989UscfOrxgVpNCkwkrpa4SvDqS/v4z1/8PTqtJlbORWuNiiWF0Yu497e/yN2//Cuc+PYf8di//U1OP/oAJTRSuLRjg6U0QBY9CoZJUQu8+TqVfkjZsMibks4bB/j2F7/I0WeeIY+kmMHy2bP8p8/+Bw4feI1cpYodJdgKlnWPnpnRPnSM+RdeZ9S3KXQEdiKIxwqM3r6Hj/2734At62F4mEuuezu7P/oRVK9Np1Li9g/dA1Jy01138c/u+1f4s/PMPvM8RqNPQdmc/PyX4eAMeylx5v6vUdImheEx2p0OtZFhbGlgJgozSLGRSAVurcyjLz/HNx9/hGONBn4uz3efe5mvPfBdCtUJDh88wb5DR3jk9KHB2F4QYFkOY1NTPH/sMA+9+AzOujG6hiSQOWbigJWZGUaKMD5is3jyELYfsZpILrjgaia37ORkvUFTZSyFXZg/R/34CdTBI/TaPhvveg/X3f1+ms+/Rl5XKJwL2P/9Z6EiiSZM2uscSmUXjpyBXkjOsHn2we+wEvqM7NjO2Siiqw1S6aFDMHWMFAFCBGiRkkrQrsVSELIYJqwqg9gtc6Te5KlzMywowXQQMN8LOHriFENulWJtDC0tVoIeFcPFne0QHj3HudlzrIQ+OokpRprcSofumdOMBAHXZhZa9dD5jEKny7iyaRoppxvL1KI8rzV9QidPqDWXbF3HeE4z5sFFGzeSphKvOErbsmk6NvNxRMeESAqyKCDpdignKaNxSids0klaVF2TiRC8Myts6sPdu69huFagL/qc7S2CH5D1Q9LAR8YJ5VhDHHPkhUdJVupsGZ/EVgmTroXodpg/dgzCiMmRGjdcu5dOfYUTbxzAqQ3BaoYRmZw8u0jtsiuxtEdLmiSTY1SvupykWCV/5VVkI6MsmpB4Nr0kwkwSxgyDWpRS8SOKbol+uUR3qMJKliBjGFm/ha6Q3PHxnyPvjrDp0msokOLEIUVl4GSSxUabV05N004UVmUYbdqs3bqsscYa/0/eSuNsn/nMZ/5GNVWz2eQLX/gCW7ZsebPLXDsTvyV5i42zAWsNpDXeQgwOQK0VKRnCFExt3siOPZdDmoIKQWXkDZPUk2SmAjJcpQlFhtASqQenbiUGK1Ipx8/OQKsJ69fRPHIS/BgS6L56EKKUqNVFtbpIIciyjCgOcEQGsU/Fc/GyjKTvEyYx6AQmazQdTYOQzLNIHIOUbBDzrqC+soJMFEacQamMNzZKBIicN/Bn0glIhTQNsigDldLRGdg2ZIqy6eIiMbQGvw9i0BxL/AA7X2Dh9OnBCGsUI/TgAkGYBsI2sQwTMoV0XKZ2XwHFEkcOHebo8ZMI08B0Bh4noBD6vPLovF+H1Odz8oRGC4U6v7T4y/9nsVIh8n06nQ6W51Gs1cjlisSdiF6qOLqyiO770MkoRgYIm1s//CGEOi+Z1hqpwTUsHNM6b6auEELg6YFKAsuCMMISkka9jiiWWTq3xKE3jhF2AzK/D4bJhg0bsG0btMTKJFbGwMtIKWzbpJf0wQ8o+Sllw6JrZ5AExAdPYHZiLGmipKAbRch8jiAZbIfUcxjavJ7hLZtRto0wDaI0Q5sO5AtgO1AuU96wkcwwyEwTmXNxaxVA423eSO3CHeB69Ls9TCEpejnWxyZmlhAbKcgYpGR04xaE0nTDDiXLJi8kTjpQINnn1UhaQCIhFprIElDOYV24le1v20tPZvRJMTxJ3GnB9Bx0fYzEGPiCaY2pBYaC+VOnwDQh55JmGXEcYxs2xJKv/t5/4cHf/TIEAaZnU/A8zCxDZwJh2kQChGUOGn5xRjFTyEaLtL6C7ffJqRhhGOB4OFpiZ5CTFslSHd1oYilIWj3G8kWSKEKiwTQ58szzdNsdyAaS+zTsMrs4z8LKMiPbthGstGgsrvC2q98GkaL5gxeZe+MkRiQ5evAQq40VpkaGcOKUYqYYTjRFbcNCm+ZLhyEQZEGEiWD+jTeo1+uUC0U828HQYJsWBoJApkxdvI3xC7dwZmWRqa3bKQ+PYlgelnQZKQ5x0UUXc7bfhIJLpFL6UcjMwjm2X7KT2ropTi7O0ROK4vA4WTGPX28wNlxm2/b1eCbs2rSdx1/ez9zsCqKbsrEyyqbqKPlUQD+Fpg+xwWsP/4CF108jOxEkglIk2VYex1GC9TddB3YCbsYf/9mfQrvNuJOHXoDhOtieSyeOMUtlUmliWi6OdIEMJTO00AO1nlSEKsOtVKitW0dk2vQAZ2SE0sYNrAQ9lO2SzxdYWWiQSw1EonC1iRACM86QjR6FUHDphReTLxbIOzYVz6OUguj1GbFMCo0OadRDiZSaaeLEKaWhKrff/i6MngbTpdH3MR0bUye4ZIioj1AZYRijhE2Wz7EUBMy1mpxrN6mMDmPaFo7j4AiBmcYYBZPEE6RhSD5ImEhNthol1rlFYhURmQp7pEDBdvFMG4lAZhoVxuQLedi5HcfL0W408dCoToscGk9rTGly5thxDr/yKlng055fIPN9jF6Cq01qtWEmxtcjtEmj0yUueqy/ahfzfo/C5k2wdRNpIUdqSbQhUDrFMSSWyjDTlDTNyG/egHfhBnxz0Ewtu0VWmk0u3LOHaMVn8egMIo1xNZBkoDV2rkhhZJjC1DqUaSJM50fxEnaNNdb478xbaZztR4W1JtJbkbeQEukvOq3333//m1zJGmv8fSHJECjbILMkWRywfuM6rrrhbZjb1/H2f/ILSJ1g9Xo8eN99UF8Az6CpwkFKlgKpJCBRwiSVEu05LHSaMDbE3n/0cZhfpWQUGR+e4p3v/ymIE+hHA2+MTCEtSWV4iG63D5lAdXp02g0kMWQBjJa45hMfJCzZxEWXVVuxamVsfftebrznJyGJeOTrX8dv1hF+j4tvuo6LL98FaYy2DHqk+GTUKlVUL4EcYMC37vs/IYnBsQnTBKEyirGiqk2KjkFmg68EcTeEIMWfXwEEpmnTs13UyBjRxDpM2yHqtFBpzLtvvQ3OzUO/TdhpIvyYsBPQtRyWciU6OY+e46ExEVqSCYOuZRJJB6EcNDaJNPDNQaS5bxlc9bbr2LhlGypR5B2XNNOEQczODRdw8unnOXjyFNd84ENUVI5kvouTG+ar3/429XqdguthJgrChF6vRxBHYFvEliSQGpFkxL02k4UqRClf+4+fI/LbaFvQPnqUoNNj99v2DkYYl5qcefYFXv76NxAqwVIZTqZwU4mZGVArARG4edKgg6lgsbWAXaywua/Y4ebx4z6pbZFpxa5bbmb0+r3ktm0l9VzOzM7xzIvPw/IimRJgSC55+/Xc8fGPQ67E9ne8mfjq+AAAIABJREFUi9s+9vOk0iAt5FAyR2K7jF2ykzs/+D5u/ol3QpxQcjxMBWEYUYx7qCgk7rfBMfi5n/3H3Ln7WnS/y2rQolLwiOp1irHCycDKBil4fQ09U9BzBWKkQO3CDXzgn36CE9EqerRKve+TmgIZp1jaoBQZXJg4kAzMecMkxNSavOfioKHTxnEt3GKeVhxAuTRIcTIMLCRmu4vbj8jFkpKRJwsFqbToxTG2NKg4OWj0GFIGFSVwohgzSfB6AZVI40YpIkrxEolIJGYkcbsxo5aL2Yu4UJdZFzmQada99xaCDUV6U3l6YcCEPURpKeTR3/49Vr73JHaakizX+e1f/GVsp0alOM7rX3mAqbZmdXaGL/6732R2+iRaZ5Tzg7omY4stMs/8M/vZkCuh0hDiGOnmOfjcizz17HPsP3SIpdUGnVaTqO9zePY0J2bOEMchp0+fYuHcLO1zSyTNDvXZBdy+YvXUIk898C2enDlFWKyQ2Xm6UvNnzzzOQw99i5lek5P9VZZ7PV47eZzX/vRhTr1+kDNnjzOUc5iIYXLnFp545UX0mWUuVSWMw3Oc/NaT5J1hNpQnINBw4CTxnzzOa5//KpxbgbhB2lphvFSmVqvAxBDv+eV/QrwwDYZGhH0qErLlZXQcYkqFXc1zdG6ak/PnaKysooQkkZLIgMiQJAZI2yJNU7IsIxUZqWdxsttmbnqW+dUmQaPO7qmNJMeP05s7R/D6aex2iJNKPGWSDyKMhRVWXnyVzpkZTh8/QWOxjuqkVFFs8WzyjVXskQIPPPV9OmfrOF2TP3/hVV5ZbCDtKhsvu5pjZ87Qqq/QWJwjT4rldxm2bQzLw3HydGKFOVwlKeV45fQJnnrxOWbOTLO6XKfdbtOOEuaCLi0VYyEpdWPG+xm1Rh+13KAT9ljRIa/MTzN9eoazc7P0Gh1kqlm1IKwWMUYmEYUSbcPAndiAqwpUE5dcT1NTkuD0HHOHDqPrdawgYSyz2TW2jajhc3rfUQ4/+TRLIiU3MU7cbPLcA99keOMk517ej0gS6Ddp+j6WkyNJBK0kJQgCdBLQa9TZcdu1XPr+26GSJ9dPEZ0Q07L57L/610QHDhEeOYnRC3AMkzCJybIMQ8fccPUerrv6Ctp+j8rIKCAR+i/VvWusscYaP+pKpMceewwhBEIMEkH+4vV/bd12221vas1Cr7Xm3nrcLf7233nwR2ezf+pTn+L+++/nk5/8JHv27PlrJXzVavVNd6lfY42/GcVf7dlnQFcppJSUJ8eRtQpjuy6lv/tishdfpPjkAbJGnTo59OUbGb3+apa/8mVG+gLEIH0qlhLfNEgMCaMV/uff/HX+w29/dpBs9voimJL8tg1M7djI8e88QiVQ5BKNJKVvp/Qtm523fYCDzz7FeBjQT/pMtSMWzJjVcZfJ970Lcd+DxESkhRyrQrHhlrezYetmnvnGH0EU4CUxtTBhYfMQ6sQSFeEhpUmrZKIU1FZT8qUisyMmUxfv4NzJacyGT9rpwmgJWl1qvkPZsFg1M1rrq9SGJ2kefIMxwyJpt/Ckybksgy3bKO+9FuuyXWS/9S8xVxdYGR1moraZ5cNH0E7KhpxHXE/IikWWRmqUfuan6fQWueWyK9j3v/9b9NISxnABe+9FLB2doXRiFW1k+HmTyasvZ/fea3jwK19lfW2M3vQMrfoSY6NVdG+JgufRihR9ZSEtj1tuv4MH/+RPMGyBUBlCQKoH/kP5GDIJLRXibpzkohuv49UnfgBBBFFEOcjwkkEseb0A5rW7uPujP8O3vvwNSGx2X3Ulr/35w0wstIk7i0RlkzCnKLfAjgSWVWKplCdyBfkNm5jKFzj+7AsUXRsR9jF0CigEmtiBvFdjqdNj8z0f5IyK2CIrnH7we2wIY9pWDz8KSTshev0QXHIh47uuwprcweyxs1ik3HjBBI9/4T/CuZirPvIBXv7eH1O+9hra33kIMpdqECPQRKZiSFmsBH1kvkTfkExu2MzK7Cx5rTCMiNiIQWcUUwgNh1Sa+IZD6vtgCnBNCNqUxtbRwYVmC9O1MbpNzCxBZglePo82BIkUtIKA4VIFFUdEjRYjhTJRFOGnCT1DISwbNTHM5E/eyvzBU6jZJTi5BDEYtsN4rUS31wTXoOP3AcGwXUCF8UAlZRgs9lcpDg8RCIXdag72hSTBLdYQqcBWgoIhyXRMpEKUaZIEBp6W9HWKvHwz7nCFc4eOsaFnkLR7WOUCoe6QphGGZSGEIE4Gyil1/lyh/y/23jzKjqu+9/3svWs6c58+3WrNlmTJgzxblonwxCBjwGbGhBCmJBebhPBW3k3eMknIC2R4sXOTd28SkhtI8ohxIIkdJmPAgwwe8YAlWZItW/PQUs/dZ6557/3+OMIXuMmCZBkI0J+1aq3+o7pqr1NVu6p+9f1+f0IS5DkIQ8+TGCSeltT7Eh+XSQ/EWI0kbyPbLchBOkVEpcz5l7+UA0cP0tn/HL4WuHGKVh6u7+FIBbkmT2KK1SJRHBPbjCTVuMohLzR4+cf+b772/94KJ9qwfgkjm89m7uFHYXIOojZ4NUrNmJFMcJI+uacgz1laX4Jdu5Tp1hTMxajhUXQ/pO4Uabam4YzlXPHOt/Pwn36Cs8+/iOee3k5lbgLfgFcs0HYd+lkGRnH1a67lvru+DAUF1lCJNUUtSH2XyBPEoxWwBuY6jAajzEY9cBQkMaO1OiKOSMII35MoJUiymJZ0sWdehD1yGJmE1GSKXxR0+h2U6+Bbj5IIaHdiVLmA9TRSCggTCjKgGWsi18dZtZpkbh9Fral6NaY2rwUqFJ+coOCOMPb772fvIw+wevXZVKeneObuOykuG8ObmaI4M0+QafIwRDZqdLKYRBWJSg7VdWOcvuY0nr73AUZil/Zci9gNoBJAfwF0ytLhEXoz07gFl9hziBwHaQbNDfxcksqY1IUVbYeSLLD/7BKoBF7ySobHcxYmT3DOB36BZ3/1oywXHoEvmFg4yIrhBsdNSFaDtd5KxGwHIwX9kRqzScTLfuv/4IFPfAqePgIqpfL2y+DTDzIqK0ROyuRwh+F+maHUJ1q6gtKrN3P003dQFQYvFEwNK2rrVtN+ag9LvSI6kBSzgSJx/xIJEsaaDkYMYgStgChLqQ3X0daw0GriOwrfCAqug+M4HB0fxxqDkPJU7uCA7+MpeJFFFvkJ4gtf+ML3XOeNb3zjD2Ek/zEOHz78gmDi5ptv/r66jq9bt44bbrjhBz20f5PFItJPIq/5Pm6fX/3xOezNZpPTTz+dZrP5b66zdetW7rvvvh/iqBZZ5PvHYhDI73jC7aca5SnKS5ehrcVdsYxMJ3D8ME4rYW1pCRNegf6Ws7j0mpfz5F/+T1bN95nK+oBEWjA4WAFetYYoFenPTEGjQbGV4g9XcYerzLSnEFHKcC/D1wCG0DV0PY+VL7uG8W2PUGu3SWoO5V6falDkYG8GVtbY2KkxuzCP9j26AjIpQQqQgmKe4OucYp5xsqggKEOzS706jO97LMzPU/Y8+lkCjSKnn30uh/aNkyy0QRiuvfk3+eqdd2Hu3U6jUMUtFbj6198Po3V2f+Mxjtz/NfK5BUZxCTPLrF+AWp3qhRfTufefGRaGfjBEolNe8/5f4p5PfgoTtmhctYULr3oF9//Fp3jNtW/jmRPPs6RS5Pg999PpLyCWVLjk/W/jkb/7R7wFgQhTkmLA0ksuwKuWOL7tAShUqOY5voQ8jykUPfpRSIqDdQKSWFOpDdGZnMT3B53nPM8h1oPgbsdA4kA6VIR+j7f9xq9z+//4K0gHWViFTFNNBt7ijg/R2DAbLryQAw89hVNdRp41IUuphIqGyoiLlgUbUkkdAnzmU4iHSpAbNl92BW6SsefxxyGJcKxG2RwjBwm0br1CvpAjVcCsEnDZJoa9IgsPPE6j06dQd5hvt6gM1dFjZebLAcSaje/6ACYRuFnKUtPivo//T2gDvmDttS9n9aplPHj77aiZDtVUI60hU4ZOksPIMEQRaAOVBm6UM5wbPJGRiwQtDLkryYWLFg6pdLl0y0vp91o8u2c3pCE2GBSYbvzw7/K3f3wz5STCxCEFK4nCBKEcrPSQjiJKIxzHoVgskiQR1lo8L0ApRRzHxP0YDFi/QKFcpZvnEHdhaQPqATiat7ztrYTjc9x/xxchTAiEg9CGQrnEVHt+IHuQBlbUoR8iIgcnsmSVAOolCGchTvCVR6OjSVNIig5ppUDWiQi8gDBPoVxARoOW98amaGuwWiOlpOC7hL3ud8wdjs2wAkJXYJE4Bqqpi9CCdtlhxXlnsu7Cc3jkk/9AlmSUaiP0k5R3fuD9HD18hG/cfy+VOKNgIVaWNNMYY1BC4ng+mbCEvT4EHmqkju6G0E/gNZfA/XsYrq9hIetxxdtex5pGg3/8nd+nUanQ7fYp45AUJe3lHpgYuWot5uFnWVIdpaUT0mHFmz7+37nzk59G/PMjrKDAMSJWXrWZE4f3s+mvP8y+nTtJ/uhWPM8jTVOyXKOCwqD7ZJqBlJSGqkT9NtZaFIKh3MU3gizJiKoBXWV440f/L+65/fOcu2Y9e556irzTRcYpBc/FJAna5ijPJfE9Ln3XL/LIJ/4WtGZJ0QWTYYzBQeFHAnKLt6TBke4M1geLxrUw7FVRlTonpqb59T/7M77yJ5+i1+oxTocbfu+3uOu2f2Ti6WcZLddg/RizCydZdvkWel/ZTT9toRxLVVlkp4eyhkwpuiUHKhXKUyFhGhGrGFkrY2bmqQ+N0lzocMX1byNbOUKiQyYOH2L6rnupVofQvS5S5zhaUkod/FyirGC8kpI4sCR08VUR3vtqjomY11z5Wp75l/uZajXJkiaMNnjNy6/gq7d+CqbmKfZScgzpkiFe846f49junSx89U5krcFEpHE2n0u+6zh0JaxfycZfuZ7n/8enMfPjBEmEHYb6dIo1LtOrRpCvvxxz610M9yOGKHG4ZsGVVEPLSA6xYyhkUEkNBxsD9Vij77xgLQaQrkOr2wEhqFQq5Dod5KlJgZSSkydPvlBA+l/328Ui0iKL/LTxuc997nuu8+Y3v/mHMJKfHha7s/0k8p9bsffv5uqrr6bZbHLTTTexdevWf3WdxcykRf6z8x0PthYcBApwrUDHKflCG1rz4LhIElAMCjDNFtt37QZjSbQhc8zg/w0okyOMhG4PmyR4ToCXakrSkkc9RNdCGOEbEKcmhsHDuUQLwbED+yg6Lr7y6Jqc0FOMWIeKKNDNJP1T9jRtDYF0EblB60FbatcOMoysAILKIOtI9QiVIF9oEVhJaBJS32AX5pk+cAiRuoP5yfeYmJ/n4isv56lHn8P6AbG1TDfnwYcNF53HrrvuRAlDHIV4wqGiHbrNOTo7nqJQLuHoHD9TJCN1xjaegXVdENAeqXDC0xCH7Lz/PqbaJ4iXjeH4ILQgJWXf009Dv4+v/VP5KZap40dASqhXkbGhEPjIPCXXKdavkqY5QvlI6VKqKMJeF8eVuNZibI7INYrBGHIpSR0xsO5Zw7Z7tkGcodwC2oQvfGUXdpAJFJ2c44TZC70cX6TkKoelY2RHF+j1YjIjMD44bgErHGI0Ky44j4mnnuXo3n2oLMdFkp36JmS+7Yv8dHOeWlKkqBUFt0B08CgLeQi2T4+ceuzgJxocxeaLLuTuJx6F2LD3kYc5+9xL2PPNJ5lOFqDbxQ8aJN0mtt3meLcJU5NIGQDfUj4xOCnyEMoB1Edgch5QCGtQp64DLQS5UKe64QmkhXM2bGD3ju0QpxRcl8RAXvJptubQ7Xm065LEMY7ycF0f5XgItwB5Bk6AVoJQCmLfo1QqsTA5DVGKIx3GKkN4iSXxA5phDCUfChU2XLGF08/dwN2f/yfK1SFC5l54edUSBnFdHUStRG20QVenDJ27nvndexBhDv2EDZs3UjpjBU8f2gl7niXPJW6ckDsOibIYz2dISlSsCbOY0UvPI1no0Tt4Ak/6JFmKkgqpBDkSKwZWHfkdAYYGaSVGDH5jLXMsitxkjE+c4Oq3XMve4WGmp6bRDEKUH77/QdIohCgj7vcHWU6Bi1IDe6i1gtRCZC34PjRGKY6N0G0dwh0eJlMeyzdvJnp2HKKE5x59Arv6NArAkHEAiScEM1EI1Qq0Wlxy3at4ascxyrnFM4oTCyHRiRn05AxUHHrVOiQuJ44dg16bI7v20tt3BJCoSoVasUTcapNFCcVykWZrnqFSER32kRZyNTjTyBlYIUmwfYdu3SM4bYyInPM2XUAY93n20cdwPYdeGuNisVKSZympNTz/7NOQR6AtWS4GdXHlQS5QRmCMoRuF5BiCagXPc+icnCR0Da7JIQ6ZW5hmIs6pj62GmX18c8ceZscnIElwVIeFXScgEEx+7X5Guj7KtfR7fXQg0daQC0HqOqSVIivOPoOFo49TL5aYjELM1CwoQbPTRA0Nsf6ijbRrJebnZhkbHuHuL38NJV2E42F0jmTQKECeUrwqcpSVWCBVcOm55+A0p0h6bXTUZ6jgoc65iGZJEy6vwMoq9DuEYczSxlKm2i3E6qWMehtpPvBFikrjK0iOHYegADKA8Un23nk3l1z7WvY+fg/xc/spJBlKayJjoVFk1dkbWKiVCZJ8cOCEgCSlWhxCL/QGqlkG9zI/Ny9MWoPz/9SZn+VUCyWsAJ3nSGMRQgyKrxYynQ8yz76NxQLSIov89PHjrolpNpsvNJP6flm3bt2PNGB7sYj0k8iPUebR92L79u1s376dm2++mZtuuulHPZxFFvkP8Z1mNsCCLyQYCLQYCFRm29g4xxYSPF8QiwSEgzptNbVanYVkEMJK0Z5qWw+eNoOcnygC5VAMfHTYo+B75Lkh7s1TEhYlHIRQaCnRAowYZCqV16/BnXoGN5PkFuzqZXC4zWjiQuoym4TEDgghKWhDRYOyApnpQecjAV1PQU/D2mE2vPLlHPjcnTj9kABFx9NQK1CZjjAL85Q3XEyaGoyCnX/zD5TOPRc0NOMEayLu/eLtUKkwumIlxH2slIRpj+FCiaWFAqrdJlwIEYFgLowIhkaobNrE3//drdDtQWMJS5euYN9jT8KWSwmjDnSXMjszDf1Z1l95BQe/+Tizjz7DEl2jGqWYUsCCr2gtzEKjwQ2/9kE+8fu3kGcGoXOUzZls98AIGktGmT82TlAt40oDUqPyDE8KsiTF8QQGSexIcB0YqrDywis4cd+DVP0yZqFLXuCUimwg6nIMkFuqRhF5BbSE8pvewHkXX8Dzf/jXVISgS0zgePTiHKsEDBVZt2UTvd37mB0/hqscfE9hPYfIZFghseLU7f2qi7APn6QwF1FPNLPL1zLrz1B569V0b/0iTISMyBIHkzYlV8F8C+IEDu4nqS/hyvPP4aE/+yOGPIVKY/yCx8lHHyMzKdIPcJN0EFIOKGugMQxas2bLFjasWcd9f3crCDDSkkiIlUMiLZHnI81AUecaeOz+r3H04AECA3mS4BZ98jjl9v/2x3jKoRoE9JL0VAC2Sz/JUK5izPWZby2gPQ/qNei16SYhV/zCe+g8d4TDu5+h3e3QJ8HaItSK/OJHf5PHtz/N+JHDHPjSVwiCCrf+8m+D5wwUD6UyWZJiBVglufZ1r+O8TRfxhbu/zPkbN3PcDHPiazswdEmOzbNs+QrWVFZwUh9hiZaUkhBTdgmUJWq3KcYO5A4jxTKetdRWraAzOU8cSy7e8lJmJyeZnZkgMxlaqEHYPAbxLWOblQT5YOIQVuAoQSxSyDXmRIcv3voPKKFASGKdQ6HIse27UIUiRevil6tICf20h5AOYNDCI8aCV4CyDxpe9+7/gm62+OKf/inZswdYc+HlPLvjOYIwZu7oMR7ZvZtGfQlTzRkMGuWWKaxYzhUf/g3uvfdOTnRbGGvo9eapeTWqssLTv/ZnkHXZ9Knf5ejECfiHu+HQJOKKzSz8zVfg5BwUiqgNZ7Bh49ks7NzL0aeeopnO4wcBaaeFn2b4xYBcChCDAl+qYGXlNE7KBKIW//S7vw8np9m7exe9VhPHcbD9BBcHTwzmKouDtZa5Rx7E94v4gDGW2PHwgoC4l5B7HgVH0u+2qI7UOOOc8znrvLP5509/hiQchES7jTq3fuzPWXn1m9F+BZ7s8FxnmszNqXkBhbkevh9TsR6NKGK+2yF2UmqNGte+4Tpu/6c7KJbKOKVB8f28LZfxyP078AQsqwwzNTeF67mknT6yXOXh+7bREoq5x3ZwyZWvgDRALYQkvS6youj4lo6fIa3A0xZlNL62pE5O6hsevu8+Fo4d5pDyUalDrVyhfeIg8pXn8OAffRQmF/jtv7iVP/3Yx5g6PkOxtoRdkxOcfPBuCAT+ZBO3Nkwy14bc8KZffAeff/hevPPPYfsze1i2Zg1TB8cxWQSOwHUcWFggPjpOONdExDGJJzjj0pcw11qgu2+KYlCg7WsyYSinp4pI3/YFVJz6QGGyHNd10dZiswwU2FM5V2hDkqW43qCI9O0faRYrSYss8tPFf/bMo+/F9u3b/90ZRzfddBM333zzD2hE35vFYO2fRPLvY/kx4VsWtuuvv/5HPJJFFnkRsYCCXjsk7oeU/QKECaNWEYhBh6p2GuKUS2y97HJGiiVotyl4PsVI4PU1hUzi5BaRZShHIDwQgUCWFO20h85TTBixzC8j4wSUJHckidUIY3GE5LrrXktzdppitQ69lCuvfyuplKQmIQhzQp1gSi5aZPR0TGIStNRomZM4g5yWrufgFcus27iRzVt+Bhp1im6RwPMHhZQkJhCC3Gi2vu/teIFLoIEe9B/YQSmT2F7I2re+Gq7axNDoMmbvfQhPeLhxSqVWwfiW6e4MuZfglnNcYaiNjbHxzddwwdozYLoLhSJMzFF6/BiVwyGvfPVrKV1wNviFgT3nsiu56L2/CLUR8BvMtDVhUKaf5RQKBcg1fqnAs3ueIfBc2u02Ok2JogyilAuvfBkXbb4UdErc71IpF8jzlCjL6CYDxZaQhtxkOEEAtSHWX34FV73y6kEntiTBJ6cYa2SSk1pNgiFzBJXhOtPzMzBa5i0f/a/0jh3gsR3bafd7TLfn8H0fjcWvlkis5twrruThbffRj0MwGY3VY5x56QX0fYhLimyoRGpzUt/h9W9/D+lIg+NSMKFcznjJBbBiJS8561yI+hxruBwsGyj43PPlryA7feqNJdBpcc761RzYsxNch7TdJezOEbfnKPQjSkmGHycYYenplExqHMdB9A1kkpO7nucbd98LUpCFXUKRM+tZzOkrCCs+Z1x6GdoPcEoVPM/j6IFD+EJRKRQplSrk/ZRqaFjqVCn2c7zcErgeC3FE3zFQVtz4Rx+m4+TogmLFBRvZ8nNvg1oZqiWO6pRdu75JV0c4jQp2ZRXoggr5/+74NHu//CW6z+1HOVXGuoLTdI2gnzHmlVG9hLJV6E6Iygxfvf1z/NGHfofnHnqMr/7J3/HcXQ8SGsNJlbGQZTx+/6OceOBpCpGD65eZLDjMxSFDuUtxOqJYrREXHXKtiZ7cx8FtD0MW4VYrPH/gINV6nWK5guMMCn/fUkMJC54KEJlAhYZK7rKsWEcZicgNZdfHVx6zu59n6tgJglp9MLkIkMUqQ0GZRrlOZAyzvfYLhd9YZ+RYvKAIfgGnUuUtv/wBPvPf/pR//uTfUwgTmGnxjXu+Qpz1cF0LSRtWN5hfVaU3Nko0VmJC94imZnhm2+Ow+ygTn/hHhip1YuGQjxVIllUR/YRyAvu//jhm/wRLmgLV0rzvl98PUYyq1EF6rN36Mq5677s4Ob+AI3zwPRKlCbOMtfWleBoqMQxFgy5+MyVY+d7XMC66gEYc7QMFHv/SPZzYuQevG1HKYFj4FHOF08spi4BiqHHmQ5YZF6+TkGlJVqlwzbvfTVIuMOdY8kaZklckn22zf9de9jy5i4Is4OYC0+xRCnMKnT6qdYz2wcdgYi81EUPZo19U9Fcvp7/qdOYociwVqGGXJMhopi0e2/EYBd8l64dk8x04Ps/uux7izPM2Mnmq62NDuFQTw1ChgjPfZfqRncx98SFcWeKpu+6hJgsE1mHJ0DCO46AqPnKkSkJMlxid5ZSkS1On9APJwo7dsBBy3Vvfhh4/QjR1ErX3EPHntsHJHOIat3zwN4k9l6GLziE8cZxLNmzk7Nf/LNTX4FZWkqsSShWo65Qnn/gyHNvBllEXu+cxJp7Yi8okkRQ0ZYoVBr+dM/33X2EkVWSBYt7PuPTarWy8Ygth4JMuGSZc1mDWRsw4GbP9JrLoMtOcRwUeickH4dpY8jzH5ppKsYRSCsdzCWplyvUahVKZ7Nvl9z/eYoRFFlnkP8iPe7D2pk2buO+++15YvlUcqtfr3HTTTdx33318/OMff8GRc8MNN/xI85BgsYj0k4n+PpYXmQ996EPccsstL/6GT/Hvlfgtssh/ak69JObGkBlNNw4plctIqdCORHqnvpznGfMnJ6gHBSiXiaIIaSWVUhWrwVqBEOqF1vRaQi4tqeeQAlK5ZHGK7xVIdU6GwZyyUTnGsP2JJxFrVhDnmsKKVWgpyT2XBEMaxQTlImdu2QLVEiiL9QQZ+WBf38qtkAzCgOOUmWMnYG4ejUWLgeIGA9iBAurJZ3YQhz1UmlE1kmIOZSvwrWWh22T1utMoWYGSLkWrUFaQak1fa1TRBV8iXEl7rkU/7FJcMoSbWzh68pSsx6H1zAGi/ccZLpaZfG4/TLVg6TrOu/KVbD98FIIiq664Cgou4XCZ4VUr6HQ64CiSuQWOnxgnjmJ838fx/cGB8jw6rTaTJ06C5+I6DnmeEpSK4LngOWQChCOwaNIwpDoygqs8nt+7D/Icx5G40kFZUEJipUArQYbBOhIciRwZYiLrQbsFSYLp9/GFi3AUQknCMETHMWtWrYQsG/zARZ9lq1dSHKoiCz64ipdf86qBxUhrvnT4KPE1AAAgAElEQVTbZ4mTmHz5CK3lRXaPH4Ltz/HsF7ZBsUI2VoFlVXB9siTHMxYZZZAmPPD1+5nctxfH8yi4DqVqhXJQwBcCmWXkSTr43T2H1FjSJKfsBdCLyKZn6Y+fgDwHOzgfcl9RWTlG+YzT8evDg9wbIZASKuUixmjCMCTJM4rlMpVCiajZoeB4ZHFCFEWABiUgT3lq99OgBqqvTthnYm4W1q6FapXxp3dCfQikoDU/A90uztrTOf8113LxpouhUgGl0Bbmux36JqZRGsK1ApEbHCuolcoUpIPMDTI3OMLBsYYoimipnPJFZ7HyonMYWbeGoFSlg+HozDT94SoRCpk7rBlaSl8IusKQWEMphapTANchC/voNKHTbPLSn3kJ3YUF4NR1w2AO0EqRK5fAL6NQxP2YOEoxUtFr9lHa0gjKCOUNJhalWHb2RtatWYNONb1eD1kqQKmIdRXSdfB8HyEEWRojrSHvdpgaPz7w7+X5wCqbW7AaIzS9sANCgwkZfunFXPLaV5CHTSgN7KkT39wNsz3OfcPbSPsRBIqpqEXSXSCu+fTJ6G57kuaXH0HPtADNI1++FzyFzkKWX3ctzxw/wmfvv5deFNGPIjgVDl9oVDnRnEKZQQCzr08pkRxw1o4h162AoSHK7ZRSCoE2BPlgXU+DjhKEsUgkGItNDcPKRUcJOjNI1yPPc4LRERgdgoLD5PQkOkkpKJdeq8vkyUm6rc5ABWbANQZf58w/+g2yZ/dC1qP3/H44eozTNl9If3kdjYRimXjpMH2d4pYKOGWf6blpsBqRGwo5yBScdkQ/CsGVSKOReY5rBb6xuNpQMQrf5GT9Dixt0NYhqcmI05QoDLGxRqUatKAQlPE8jziMcao11ly2BcZWAg5L6g3U8jF0FOHHKTQTKrnLUCpQGaxct46hJUtg+VKe+cYThAtdOOtiMu2jhUJqQdrvMDd3AnTI4W8+ClkMuPjSH1xPjgAlCLoxpWaMl1ms5yBqJb65aycnZ2fJtGbk9DXQb0Gjiin5lIeHyPIcNxgUzF3Pw/N9pBqcs0ZAr9fDGEOcZ7T7PXJryNDIU0a+RRZZ5KcXa+33XF5Mms3mi/ruW6/X2bp16wvLHXfcQb1e56mnnuLmm29m69at3HDDDdx3333ccMMNfOITn+Dw4cMvyr7/oywWkX4S+SEXkX6QBaStW7eyadMmPvShD7Ft27YfyD4WWeQHzf820Q6yWyk3yrzqTa/DZjE919IMHFJliX0HLaAhXJ664/M8ceeXwKYYkdPLDC0t6BiLU63T1QaNc8qiBsIq7NgyOoUKDI8RppIozkmARAFSDNRLUcqBL32Fc99wNZP9HipT3Pvp2zlmM/J6g1QZTJZzzlnnDNQ8SmB8Se5oUmfQMUoAaAchDWZigme/eh8kmqTo0Hclfu5QjFxy6ZJJh8N33I5KY2zYpexJStJStJoRz6W9YyfLlMvcrt04nQ4qM7jSJQZaeUYkFVopep0265aPUcTy0D/extc/+1mqow1ot5B5yohwGLaSO/7g/4FDk/hNgRzvMfPMEaYXOpReex0jZ26As5Zxze/9Gue+4kr6cQrVOngFxidn8CtD4BaJUoNfKhJ4AZOHjrB3+xNUAp+CB1pndPsdsnIFNTpG4hex0uIHAY7j0jk2TW+qxfaHn4CgSCcNyX2BkRbhKlJfkbqCzOhBkcLx8IsFHtr5JBvf8XO85/rrKQ6ViG1Cs98kDJvUqyXKgcvDn78Tjk8MQnWtpdtusW/fPsz0FKSaWmUIegnkAvvEYchyOO80xj70Tja+4meQB9sU7tpJI1KsufHNXPXxP+CKd76LNBMMqRK61YM4ppclvOmDv0ze72GCgLm0S98OVAEFt4Dv+KTSJfMLaL8AwqPbi3jJ1mso1IdRrktVCjyd4WLBWpxyhSWnrePgzDznv+yVXP6KVxBnKa3OAtYVqLJP7Ara0nJ8ZhbZGEWWK8x2OtRqNcgyCr4LrsOTd91Fb2ESkh7dE8cJZ+Z5w/XvgKWruOatPwvtJk7RReU5jY4hGJ9nz533seueB3n5W66nfOYGGPLpNTzmAktLZC+8yGYY2r0uaZpS8QvUvAIiTOmYmLwRoJd49IagtbbBxre/nl7V48JfeBfn/cr7SMtFqK9gzvr0Kg1Oxn2SSoF4qEivF1LSFj/VyLSHZyJOHN7L3p1P0GhUUVa/kF9mkfQKRfqVKrOZJrQO80lGx5Hk5RKV+jBFt4TtxigkcZQQnL6Wyf37eN2b3kx1aJhemtKzGSObzyMTll7UJ9UGYTW+MQRZBDNT7PjKlyGLoLUAwlDKchApRuZUpYRahZVvvI4FR/PEzqdhtIZT8gdF4sMTIMqsG1pK2OlgfEnU7wCal/zqO7DrlrL0eMLojGY+bWEvXMeBL34dZhegWuSqq18BWYcDD949KDoKhw2vu46Vb3gtURJTUDVAok61ddcCUPBPt30SMzMFRlPCoZTllFNDMTP42uAYQxyGICSZo+gkCRGG4RXLyXwfUyqz+ZproNXkU5//LG9//42IkSpBtYiyhqJfwOIwM9vEugFGSKQ1KJsT6IyLT/S4dCaiIHLKT+1jaW0p7rkrednv/58wNAzDDa7+yz+kWh8iTTKSNCeJosH8m8YU04zhzBAdPsbR8aN4gYuT5cg0RVlD7lisKzAmZwgfVpS48levh+Vl4rJD18RU/AJ1fLyZhGrkUexIKsNLcFSRS171KrJlY2w460JIHT7zyc+gWy3SZpNGpUa1Z1i9Yg1x4JMoiE/MM777echiDt1+B8c+dxdrzziPYibRWuPmmkbJG3RYXFJh9smdlNwCldM3MLJ0Ba50SHROahOqnssSLSgiBxltecKKFSs4d+M50O5z3pbLYO1qOOcMOg4MjQ7T6neQlQKqXKCVhDjFAKMEuTV4hQC3EOAEPlqC8j2SPOP+B77+rz/SLiqSFlnkp4ofthLplltu4ZZbbvmBZBJ9e5TLv7b9m2++mXq9zh133PGi7/vfg/rIRz7ykR/pCBZ58fnrj/JCJue/tdzwkRdlV9u3b+c973kPW7du5eMf//iLss3v3v5dd93F3r17ue222/jzP/9ztm3bxm233fYdy969e//N0O1FFvnRYxHfkh+dyucIrWGq3eK2z93ByW4Law15YxjWjMDMDOQCWinGczEnjoOTkSYJ/kt/hl/4r7/GM4cO0e33cVwPmUPBSsq4+LlgIYtxVq6lu9Ch7JXIBOiSj3YEIs2oWktRenS0YWHjKuTBWUhyShecRdyeJZYGbRKq2mHnI49DNwQhkGh8VyG1wdGSIBcEuSJKe5jpOeLxCWrVGu24Q1rwqMWScqrouw65lBRxqWWGRMc0aRGWJF6cUHYV/U6HY8/vpRhlKAS5O8hwCo1BSAeTGzzrDbKFul1IEuLcwSYhw2tWcNqKpdi0x9GsRT8wnH71y2k+9yRnOBXEwgIzrVlWr1rO2cMNHv/rv4V+l/mwxfMPfRO3UCFNExgd45VXX8OBrz9CfXgUhMBgIbM4RlOQApP0QGekJsepN/jZ992IUx9m4uB+XF/T78UUnBJZN6cz3+TizZcy1ZzFZBFu0SXRmr4avCAaJahJD7+rGVIFOt0IfeIks1GXXQ89RHGqiUtMXybYkqI3OU9ZKAgTculSSXIcbZidniKPUtxiGU+6HNz1LE6uaJSHKZ17IasvvxIR+MzcfRcnJ6cJDs0wrAVuOaC9osrzX72bkeVnMfnAo4zIgCAo06oUYbjK2Lq1HNv5NHF7AWpFhHTQYUQhqJBKQaJTnJEGnlsga0cs27SJ8696KU8/swsb9VBhSJBbysIl1zA326R5ZJzsyASzxnJ4+3bIEjwJ3TQijPvoks9pmzZx1bt/nqe3P0E36VMZqtJqtag5HkE/pZgZmO9S95yBGiM1hPMhh3btwxyf5tBDj+LmKUESsXa0gUlTlOsjkKxffzb7Dx2lc/gIlTM2sOX11+IMV2g1F2i3F8h8RSwtqlQgzlOiJCZOEyzgDxVIuwssG13OdVe/nsf/5Yscnp2B0WGm9jxP6pRx8yLvuPGDBGdu4OnWFJQDRtav5ZxNFxO7ll67RQ2HwGZImyJ0gisss1OTOEoCg4wpi2DLL72X8695FfuefY44N2Q6Y90rr2QujbDGkGWa0WKd1GhSpXjJG19LK4Mntz3E/Pg4TilAjxXY+JqXQ5TSX2jjOA46TigqhcpSXAEy6uPlKSKLMUoMCjCuwbGGM90aU1az6WVXcvThx+F4h6UFSffYDE6hyub/8l42XHk59/zLv+D1YnydENTLxFYRLF/OzJHjVOYTpgs5rPY4/8O/wsQXvsbSvExvocNzuoc9rQqjDYI2yH5Kd3Wds67awviTO1Bti1GW2LH0PYFQCkcLCpEg7cSgXJKxKiQhjjEgLEYIciVIhSTxXbJSQGw1G7Zs5li0QEtnJBLOfOUrOaYEZm6eI/sPUmn1SY+O06hWmA675LUSuIKlZ51Ja2EBSYaRGmSGNgUmtaVZ9Lhw5UaOnDzB1NQxjh09hrvnKPnMLNOHDlA5Mo2xBl8opNF4qca1g3uCVpDkKZENqQhFIcmRQM/RdIYCYpESVkv0khhMiPEcOs88RynNcbQmx9CxllBIzr/ySg6eGCcOI5IoJjj3PI40Z1l4YAeU6px13tnMLExTFz6dNCSslTn9g+/g2Ooyl//s9Tz/l5/BTrfATbn8nddzfP+ztPbv46zZHvO0KKAp+QFNL4FE42ajhJHEufblqIk55MRxHBuDp5gVmlx5VHLoO5osjZntR+zdvgc39jh8cpralgvI0xR5ZJy0OYfWhtRx+dmffwdP794FjsINPDphH+W6JGlKYnNiqxFKkKQp73znO1mz8jQGKX/fxWIu0iKL/NSwa9eu76lEOv/881+UfW3bto0bb7yR66+/nh9EGeW2225j27ZtfOpTnxrELXwXhUKBbdu20Ww2efe73/2i7//7ZVGJ9JPID1GJdOONN1Kv17n99ttfvI1+F98u8du0adMPbD+LLPKDQnzXHwYQStKLI/Y8txc8BVZTXLaENRvPBiXR2qAwEMcQBEghwYHEZsySEdsc63mk1iKtxNWSQiYpphKGRzhn82YolYm0ZXjJMjSQm4EFreAHVEtFMLBq4wYK1RqucHnJJS+Bggc2w7oODmIQ1J+fssBhERaUGVhFXC0p5OAEHiUhqaHwtIFaERRIK/BzMbAsAStFQAA0ljTA1VCwaBd0ntLIJWqugzAa4ykSYUgVWKWo10cI8Ik7MW4qqVZKgxfguRb4inN/5mKWDg+TmxyWlmH1EGdfvBGKKbHpofM+ot/l0EOPcmDbg1Tmeiw3LtnBcTwr6HV7EBSh12dichoKRayQJFmOUC6ukihtUFqjAHnqQGoBqlBgrtOBUolca4QYOH9QDoVag1XLVmKTBJSl3W+ROQKDAauxEkquj28M5UxQzxW0Is7ecCZMTqKziKDggSMgTRgeKpP0exStREUJbqbxtKXmBDha41tLYCW6E0MvRvYzSutWcuDAAWZ37Qc1AtMtsmrAfGAJbc7C9ufhqX3s+OYOKJTQaYbnuuC6LFm/gQfv/AIoBX4AlQqqWEQjBgHNQkGlwunrNzAyOobWlvGFOb7y6APQa4KEarmCJxROoqnLAD8xEA7Cn6++5lUsWb8elEQoOfBxCYEsBlRXjOEsG4GVY+BI/GqVNE0pOh5OmFJJLLU4RXZDKkgqQsFCm/y5AzDbJLAuThiTNrsIa+gWBLNpl16W8OyOHbSefQ7ijDUjS7G9mEPP7CXJEghciiN1VLVIIjQoaKxczuiK5QOLaZZSKRYJdx/kob/6NOQu5eoIF13zamhHtB7diT7a4jOf/QLPN2dZ9dpXcM6rryHNDeWRBsH65fTIEXFCgEHqBFcafGfQke3bjTlWSPaeOE7PU4OntWIRPI/RNas574rLyNIE4zl0o5A0jkEIdu7aRWo1UbeLWy7jlwoQdnlqxzdJdI4xGiEESgiEzpFpQtlR+CbDiSNKriJT38plskhrcTNDVfg8eOdXYXoBMd+jf3KK0qlx7j16iLwUQKNGZjQ6jDDNDuR9nvnqVykrn77tg0kBy76J4xQvOgtlYWW1gc4TqJSh06JaH6LWaBAbzfG5WYhjjFRYMVBSJu4pF2cG1bmIQmQRuaF6/ulEjkHLby2D7KREGMI8wQQulAPWXXgOjNXBsWAz9h49zMo1a0Ep+vv3ozohw14wsOj6zqDLYLXM+Vs2YxRkCnIJubIcqxeYLDrg+Kx6ycXEJofYku/ez/JcsyrOKXzjWWQ/p2hdPA0i04BFKYUVBiMt1rO4ykEai0TgOA6J1eRkIDOWnncGpfWrIDHMPr6ToJdSSg1lqVCeT+YpWFJl2UsvgqEyw41RGtUxenEKY8sgyUAozjjjLMgyHMfBlArois/4sML4Ma2aiyN9lqiBRTfKQiCChQmKWYhjE4RO6McR4vQzYPkaVqw6E5wiI+dtIBgZomQkSkOUpDBWoRcYUp0PFGRG0tvzHObgUdxc0J+Zo14bIj05gavcwXVtBcr36PS6ZGmC9AeB2sp1MFjiLGXNurWsW386udG4rsuGDRv+9xvuogppkUV+6vhh2dmazeYL774/CPHEjxOLRaSfRH5Iwdof+tCH2L59O1u3buWWW275gdjNvjto7N9afpTp9Iss8j3J5AvXnT3VcalsQcyH1GwZJrrgDJFPNfEaS6G4Ai8JWCrr5MMFqEoqS1czFhZh1/N87ub/TrGXwWyTivTo6Rzn9JXMrKxzYNjBP2cD/pkroJTRXV/Hu3Yzxb5itRim7i3hUMOh/Du/DH6FiZv/idax/fgqZq55EKfdoRBl0GzTtzl+JYCii3UEVnlEsSYQPgIoVANaTkjuCNqeoFf2CPMUlWnQOQvFhOlKgmsjSlmKzjKO2zbrfuMdkEuWTjvEpSKztRJdLdBuhRWXXIb2R/DyEiZWMFTm6o/8Kv3VAXklpVQtsK9tCVefh3f5FbB0jG17x5k78wKadimXbH071/78B3j4c1+m0XcpzPYZrtRZMZsjewknd+0kqTi08jb65ARzE8e57i/+GOeDN8B73sGmV7+CZSt8mp19UOhgXZdcCbRjyRRo30e7HigHV2d8/m//iomdT0BzGtU3BNIhtSHC6ZO0xrn7n2/FT3JoGby8RGYSAgJEv0yxeBrL3v0LNLdcwvO+IFuYhtYkx+aPQVGSuR6zxkGLAsUl63jrh3+b/miR1vIasp0wrWMKS0cIsNR0QhC2cXULwQJFN8ajx8RdXyZ/7CHYv5M3/fwbIe+x8bpXMDdWZqrb51WXvRWKp8HenRA16QQ54/E8p60dY1kg4MQJiDU0lvO2P76FZP163MZqeu0+buICMZf+1vs4vvAcGRnB/iOIh/ZAO4ehgAUgdXxi12U0lThhH8IO3vI6z7SOMLNnDwVVJ8/LmMgnWHU6b/mtX2f3g9/gs3/yh1zxgffgler09k2xKhjDNvvUTZHJuE9UKxKNLeGMV1/De37nN2HIQQYpRRFS6UyzJHBpVIv0wohRZwSbSMp+EbXQG3TzCyTTQcxDzz4J7R4ol5Vnn8vb3/crXPqq68AvwWmn8fr33cD1v3QDK8dW4eaCXrOLV/GJ2xPU5idwHvg6O//g96CS0bhsBW/6g3eR7niYma/dw/jHPkb/+Didoyf4+l/9Da1njvP/s/fmUXZV55n3b+8z3fnWrVklCQ2ABBIIg8RkCIRBYDBgG0fgeIA4iXE7sZ100m7o1d+X9uo4HdNxf2ncnRAUZzKO7UAwNtjQgJgsS0JC8zxWaaq56s73zGfv749bIrbbjt3BCWlcv7XuWvfWOnXOuevuM+znPO/z2k1JLt1JELXDxWwkzXKVzmwGUymMmZNFImDym8+y+Q++ACMnmVtr0BPE7PzuC9TGhnD8AGN6msRULLn8akp3vwv36mUElgVxQiqVwp0cp9sF1r9OffcQmdjB8AXSTOFLAzdlUxGapmXgpQx8FdPhSMJOG0xJ0FHgiA4xax7pvadh2kNnNY3YpNU7h7N/56M0Xt7I5i9/i1/91KfRNy6jYRiEiYldtSFs8t7f/y2iuSW6XE26aeI//Ldc2NvBsDqJu7yIs3QpPPc67DhOs5ih//rLEFWPs8MUBIpqOqZpzwhbut2ZrWVDOSeRc0pot86dN7yLtJHGyRbIdHRSd1vkpKBLK4q+i12dhKTGs889ibzseqg6LLnrVzg1epDjLzwDUzVKEy7KqxGnFUFRYMiEzrLHYt9m/MWt4MYEholnGDiFbrShcTqKMF2j2pymWMiQrtVxpqapxWWcvhSJHVHL2OTNPAXXptCwMLVNKE1qaU3LCQhtn/luFjM0GM0FDOc8bOCsCZviaBYx6WNdsxRSJvFYhaJlE4ZNmm4T29EQ+FiuZnjTHoyqImwGjCY+wy9uZsXeSdLdNgxvZ2r3ZghMJt0WbqkEQcjIH62FLz/Lod/+D1jhBC1ZBSGhZyFEOTrcmD0dCm0XMSky3tKcc9m1fOh/PMSq//wbUIDql79MdfcelDNALT+PaOESVvzmxyCf4rht4c+/EK1Neood0Kyj/REyrQkm/vprpI8OE9WbBKTIpEuUPHjp609Qsh2SRpVas4zvaGq2Ji44zFt9Has/+TFiEeOaUOzqp0nc1o30mddsQtIss/y88S9Vzvbggw8yODj4zzr3PVNZ8+PK1QYHB1m3bt1bbqyYLWd7O/LFn6Kc7ZOffVObOGPlA9i/fz8bNmzg0UcfZcOGDdx+++0/0n730zI4OMiDDz5IqVRiYGDgp/6/xx9/nEcffXS2rG2Wf30kvNGaWs3c6TZrLsPDo/zVVx/jyjvfz/HtuzCnmkzELThdpiOwqOgmYdaFFYu47t4Pc2j968S5NGfNHcCtVIhaDbRjohzJL/2bj/LajtfAUiSDp+hcfj5LLl3FyVc2cuMttzC98zAn65Nk+vtwEVSrLtHpKZLjI/S+8zwmTx5m9MA2FoY5ZLlK3NONmNvHWWedxfT0NFgGGBY60SReSCqTYbxeJcrb6BknlNQCS7fdC4ZWJIZqZ4tEbfdSLYwITcmwjFEnR/BcRRCHhHFEKCSrPvdbiEuWMtloYk80sVoxqUBB4DN6egTbTJNqhSSOQ61R5TN/+J9Yv/55SvlOFiw9m+GN22jUJolaNYa3bsTTAWZkcKJoUe9Io7WAc+bS//Fb8Na9TrPDoCfXxc5DR7no4qtYWujm6X///2JWR3HSAh0KSn4RoRMQ7e8lERhakDZM3FqDsN6EwMPRElOJdiaVEO2wc9cjiUKMIEb7MYY2SdIaJxYYVoZ8bx89K1dw7LUNYEi6SgXytmTFnbcz/8KLOfH0q0ilMbIZkqaPZ5tMRD5RJCh6BoXLL2HkwGFSfb1UvSaRbeJZkshJ4QsDV0sCrwnLFnL5++9g3RNfh5PDfGDNh9j88itYy5dypFkGHcDEOGnTwrIsfBVTrlcYP3UK4oT3/Op9HNp/BFl3mdiyE6cSsFA7yMSnbqXZ9Z2ngBRLjE6qgF3K4auA+/70C2x/7lWIE6Kshdlw0VkboyPHlTdfz9DgIPnAojo2TNTfTT426cjm2Lx1A1YzRDUiAt+nvv0QOm0R5RyUsNBC43akiL2Qlh8gOjvYtnMHfr1MLpMlcX1K2Qw1z0Wk04w2GqQ6+2kGDcIgwtEWtmlz7nlLGalOooancI5PUWgFVGKfLSf34fV34mSLJPtHGHr5NXZs3MSUrhMmCcWuTsq1aWQ+gxFGZBJBQRk0m3Xc8TH2HNoHQmJ15LEH+rFSJucsOYdyEBBWG5gKEiFQKkLMuPug7daL4zOlrwKBpk+n8esNovmdNLwGpuPgTo5RPz7BHE9SSGcZkzET5Qbzb7uW8vatvGvVDRzdvhMr5xA0ymTCEBnFODqF1MbMuttOwXY2/sy4VjPvhaBpSrTrgZWGSJOONbZSQEJkJhCGYNq845brGXrtAOrwaQ6dHCQqSPoCi+ZUhX6Ro95pM6FDqocPkw8UXrVGYgmG9+8DNF61hp63mNLAAryRKaK9+1h9+23s/ta3OLF7P1Rq7W5zUs8Y1QRIg0QKFi0/n0YSEvkBJ06PkkzVaLV8mnGEUyrQbDSQhknWcdBC4QceJAny3AtIppvceucd7B7c3Q6oK9eZrwwaYZMgJbGkTcZMU2sFtHTC6ZETFFacj1+ewjBs9GiFnEzhKDC1YPhEu4wsm8qgtcYqFKkGAUHKopmSeK5LPpfFq9aRTjvXRxnt3CYn0URxhrho4do+sYqwWppClMFUBrUwwLNj9EQFO4oRWhEmitg2qbgustSNDhNGDh6lkM1RsZK2mCJtxkdOYgZ1iqUcB/dsp+OSiwnmzOOKSy7h9NbXydSa5IOQUpQQiAiRsQkzeS695gYsJNG+fVRSEjOROImByqQZ37uZ4WyK17/0FzAyjRgewXQTwkIH7/p/fodDpwbpstNMvrSFeVf/Iu/+2K9xePNGokqZOI5wClksx8Cr1TEThWkYCAWmlpgKJAlCtF15TiaNPxPOv2L1zWx88ltUy02SUGEGiv/wW79NFonZPoSYGdggZmvZZpnl54kdO3b8RCfSxRdf/Ka28c859/1+BgYG3lj3jTfe+ANz4Uqlwh133IHv+zzyyCOUSqWfyTb/KcyKSG9H/vtPISJ9+rNvahN33XUXo6OjfP7zn+exxx7j/vvvB9p1nNu2bXvTNZr33nsvGzZsYM2aNT/VQTk4OMgdd9xBpVJ5y1sezjLL/4YGJETijIgE6ZTDpq3bGW402T8+TGt0FNMxSWpj4Af09M+lHkVc9Hu/ybI738ULT/w98ZFTXPHum3jnNVez+YXnkKUiidcEW7Jz6yZu/OiHGTw+CFMhmXyOOfkOhjfv48D6rSgp8c/v4a4PfZCjX32O7EiNlogRBYfb/+297DQBfKAAACAASURBVN25DUpdLKk7SC9hzEhY/Vuf4JIVF7P1ueeh1IkKE5QfEEYJsSEhlSJSEUiLVCIwNZiqnX6rZ27i7QScRKCkpG5ospHAP3kSFs/jHauvZ+zIEGYqQ8+FSzlilhl/6SXu/Mivs+OxpylKk0yQ0Go2qE9O4RgWKcMkierkHMWWDS/ht8r4Qyc5ffIwPfUG0yOHqU+exvQ9UsrEyRRp+gH28iX88poPMDQyTOdAN8FzW8imTMxag7DpMvzSJk68uokeJD3nL+C0KQmbCVHVJG+CQYyhaHeu0iAU6FhhIjExEYlCIBFItGhP05NYIbXG1OAIA8sQ5IiIjQRXRbTcOqeOnQDfp3T5xUwMHiaJJDUpWdjRy/BL30PFPj2dJbJKcmzPTjBtMl19LO46i3f95id4ffsOXLdFdsF8dL6AOz6NVpKr7/oQNWHi9ee44LabmTO/nyOPPYEjUhxZv5HW1BQqrHDDp+9l6MQRGJygUOyiVa5SzObw4gDqVYgi6uUazeMnmRgZgqhBSICRzmE5ORpxiMqlOPuqX+Dojt2kb7+S+qkhUDGnGjUaO/djFHJ4WcibDolSNOKQY8cPER6fxPRiFn7gNvSiXlo7j9ItbSqtGmq6zqIwQ2tiGhElhNmYKAf+nA7q0xXitE13ZCGkxdT4KP7EOGTzZNIFoljhx9DQAt+00dkczUYDVi5n5XtuxfETvNFJKmNjBLUyPbWARWaaqaCGzDskSqDHKzSPnCLlhxB5xCog1gEYJkGsuOC6aymHAb4XIoRBJjHIxQYZXyK9mCBj0T93gJtuuZnXvva3nHvVlXihR61SJnJbuG6NlGkA7WNFCIEWkjhRCG1gKo2lwFIm5SiAy8+GxCMIPbAKdNWgQ6fxhEGjKw1IwkKKMJQc/fvn6Dl3Ppl5nTT8OqlIEaoIbaTax6UAMTMuLa2xkva2TKWR2qDshfzKJz/FzkNHYKqCIyxsBcyUXympyTkmotnkyM7dFMZa9EqH6dOnuP6u97P32VcpZUvksxnKoUdz737I27Rcj4xpEcYhpGxyviBt5fBPn+auO+9ERxHjhw+z54UXoVLDcD06bAfte1hSoBHtckdpgBB88t/+NgcPH6Zeb+AFEbrqoVIOsSGJEp+Fl65EWTbVah3fDSiVuoix+MDdd7HrlXXs3vAKNGp8+N98jMBrEp2awpAmbjFDVAtwQ036nLO489MfZ5df5bZPfJTjR4eIppp01zQpx8b3XBzbJtEaK5un6noESC644ipWXXsDuw8f5KoP3srg4cNUajWy2QxKtp+ISw3pGFKxYDTn4EUNlOeSTiQZM4UrU7QMCVKSjI5hBXVEEmLaGSj04PQvYMl1NzG2dx+ymMcyJJddvYpqf4kkgHfcdCOjIwex3QAnCHC781z/qU/QX5rD8Pc24k6PY6kQQYK0wc5lkJbEnapyZP9hxnftoTMKiAWYuv1AwBeKpK+DD3/wgxzccZBSI0ZNT5DNZpmOXVR3jvKG71J/fR/nqBxDx49xSPgEB/bh2CkiIaCUo0VMYptEcUTeTmN6ESYCLcVM04b2w5YwiMjnO/CmqvT2z2Pi+DDVwydJVV0WFLr4rU98Ahm2r69atJ/XhDMZhLOlFrPM8vPD9u3bf6KIdMkll7ypbaxevRqAz372s/8sc9/v5+qrr2bt2rV88YtfZHR0lA0bNrBu3TruvfdeBgcHeeihh95y08TsOfbtyE8SkN6ko+/xxx9n27Zt3H///dx///2USiVKpRKf//znuf/++1m3bt2bSow/s65t27axatUq1q5dy7p1637s68EHH2TVqlVUKpWf+/rUWf4VI9ta0pnDLwGOnTjO8MQYE3t2wbx+gqBG722rwVCcnBolXciwoKuHQqRh+z7QBmEY4jZbIGdO30KA6yK7e1g4bz5UaxSEzak9B9jw3IsQxoRhSHV6EiQEQUAmUnQIk84F89Cxz+jYMGQzEIW0ghBLZiBf5NipUwydHgXT4cIrr4RMGkwTTAttmJyzbBk4DghBIkDRngjrmXSXM+9h5rtLSKVSkC3Qvfhszj5/aduxYZj0zRsAaYNKses7L5KxU7QCn6SQIkjbkHEILANPQC6fImjWCatVCDwyUpBUpunMZ0g7FsqrU5Ci7WZRGlNadGRydM6fQ2NqisNf/w6lUgm75mNaIOIWxB6O38D1W/RdvAKCJpy7iL7zlpGImYfb3/dzaq2RwmyHNRsmiZ7xdIh2fpTUYBsmppBtl4dhYAiB6YckKEgZ7RVOTINtM2fxAugq4roBE+tfY+OLr1C0cqQNm9j3sASQy1OaN58VK1cx0Wywb+9ekAJSNldddx1Lly2DOIFiifmLFqMtE7pKaJ1w7PARkBIzjPGnpsmnHNARGUPBySHo7OGSlZdhShsVa7Trt7+oHzBxYpCOYhaSCHRA9pp34HY5nA6rxK6L1TfAZVdfBQM9XPW+W6GQA9Ni4sVXwU4RJDHokImgiTYl2WwWpssYTopGrUq+v4tll16MVUjjhwED2Q4yhklBGJiRwrRk28qWsbn8hl/ELuYxMmlUpDDCmI6OTqyOTrr6+3nfmrsItKYVhOS6elHCgFIXXHAe6bMX0HPuYlo6JtYxXquBk2gIfZqtOp6MMSSo4UncPUfIBTGWY2LmU6SyDkXTxhA2SJNzly+nZ8FZxJZBbDtEWiJiiRmB6SsYHmVk4yb2bt8JtsP6519g7Ogxll1wAee8YwVk0jO5Q+3so0TIdpdFTDQzGWQKklgjUmmyCxbB8gugUIR0Bh/wgVoUgdsE28Idn2Rl/wKYqpIpZoltA0KXUGlipQkNCGU700fPBPwL/Q/mDalpd3kUNoaZwpImKGa6xf3DjYPUipRj0lnI4jRcHO2TNw1MYWC5EUQJIu1Q81p0KBMwQSVgKLQpEV4Cto0MFakYaNR5+dtPcWLPLtAJRCGFbJacaSDCkLSQM46p9j6e4eDBg0xNTEKzBUmCYTvEftju8BZHXHztLzD//KWIlINGkpZprCChfOAApAXEPkyUCZsNgjCkFfrEscITEJomRjaDWcgTSgkk7DtyBC9JUHGM6aSQUiKlIIoiEiGpeS46DCidtRCdy1OOI8hmmXfWWUjHAEMT6phkxpXa/g3akdDn33At9PXiaJO0MgkiTVnENE1NQITVCrB1gpAJSho0E0k9gmWX/wJ0dpFEEWEScGLkJFZnnsjzWHL+EihkyaVTJJ4Hcczk1DSTY5OMHT9OWkgMQ6KEIhKKIA5QUUQq5UB5mlSiUDMCktTtMaBlBGMjvPqNp3D3HSGcrpCogDDyIPI5sm0beAHFGMyWi1kqsnjRfDBsvCDAzuUIk4h3XHMV+d4uMAVSCAzEzPibuazNjEdHmlgzsdnHDx1BChMRJoQtj5Rltxc2f/BSO1vMNsssP3/8c2cirV27lsHBwX907rtt27af0beBxYsXc+zYMdasWcPatWt/oBvcCy+88K/CMGH+5EVm+b+O6Ac/DsawtvVDyzzwwD+6isWLF//YAXrmIDmjwH4/999/Pw8++CDbtm1jzZo1P/Uu/zD33XcfpVKJBx544A3r4E/a38cee+wtrw+dZZYfidGORDpzc6uB3/vPn+PF9d/jyPbtsPRsbrj7Tl780kPMXbGEifUb0VMB1fFx/tcX/gx3coyUb9DbkGx/4im2pzN0dvZSPn2adKlErqPI5NHj7Fm3HkSKTjfCqLrUKnWUiihctZL61v0wWuVrf/BH5DOKVsbnpntu53t//Be8+qdfJutkaDmKISNGSsXN7/8gzz39TQ4rAcUiSy64gD0vrAPLBix81+WSy69g38HdkLLxgCABJ1EkUhK2E6jRtJ07iZA4XXmmmk1IZ5navIsJswsaPtJMs/vZFyBjw3RM/pwsbqOGU8oxlkzBomXc9pkHMNyQb/3+g5QrLh2FFLEXY/V0YbciXMfADSNKnT3UmlXsxEA6gmYYEvfnmBge5Yt//hCcPUDpkKZltkhJi7IVEogQJ4mRgUErk8W+7nJYMQ8mWgz97WsUHHCUasceS0BLhGVTjxroJAHDwEilEVEEWoJQSN0usVBKgYpBapSCHJLJKGyHqQvAS2DS5+DgEUhJOuefhX3uAsZ27cSWCiNr0wga1BseXcuWMj06yvbu08RJyMgff4HsksW0pqvYicu2Z5+GIIBTIxzcvIXy0SMQuOzbdxSadcjn0fUm+ZxFvVkjlynyzO9/AcYnYeEq5p1zHq73DYrZDHNK3fgipDI1RZcUBBPj9PeUGEs0+XPmMLZ9L1bKohDZ1AdHmDp2GrwWO7bthJOTEBuYdoZ8rKn4AWfd9S6SnccY3XcEU8R0DCwkXeqi/+or2PbyS1z4C9fgFQyGx8v01WyyCvyMoGbHqLoPhkOqZy5Lu+exeaKMnNcLqTQlQ1L3Y6JahWWrb+DLX/8qeD6i0MUH7/sNdhzYy7mXvIO/f/FZknyaY80qo4MHIfLomd/PZOU0RjqLSiJyhTxxGJDWmkw+j1+tky5kqbk1kJpiR5Y4MWm1Ap78i7+Geb1gC5oqJk4blGQGoUFHPtLKYKVT7HvuZbK93fgNn6RWI+guM7e3n0EpMZJ2J65ASJQQKGESRTGGFhgaDBWjLAvTErS27GbxhSsZzEzxif/0uzz8736PViMmO38e3avOYeqp51CvTbBz0wEuXriYX7z7Tg5On+bZrRtRtkVsZNEp+cYJKIjBiduTdgkzJXXgGxK6B/jSn/0l1Kt0dPSgWnUioy0oxNIkkTDpV9B1mJ/rICSkGTeIk4DnHvkbzMWLmB4ZgTigx03ICUUzHXHnf/xdXvjCl+jGYLLhkjGz+M0GpCGnAk6eGoKWhyUEsVfHMgS2aSEMhySO2g0JZnJvBPD1P30Y0d2N1dNDNDaBNtoCW9/ycxk/tB3XtqBUwHNbGAgsLUnKNfY/8yxkYpis0Wd38tgXHwYUZ3WXiFshsr+bOBxlwcqVGLbD1//yUaiOc/DYKXrOvwhxXpapfceJW1PkO7K4cYLOOGhp4iw8i8rYCD0f+TD7jxyCeo2dz72IGjrNnPkLGT1+kmxvF7FsC0lhAmYiue2OdzNy9AimK+mwLSYkmEsWElsm0aEDdNntoH8t21lZKkhQvubgRJXMxZfj7t4EXo2hQ/vAsaC7wK6dO2FomEYU0NdVohFpXn/0STg5TUfemSmLi8EwCFVM1naIPZ++dJbyWIVCqQNfm9hJhNYJiZEgTHAyBQ4/+RT9uXkEURlnTgc0Y0rKoXJwCGwHFTXIFTuIJ8YpBRGZjk78eoMPfezX+as/+QI33nEHYfIk+yem0IkmJQSJVuh2OwmMmeuGISSV0Ql6ip20Kk1saWDN7UEQc2DyNF9c+wgf+5VfJZ22EDP/ZzP7hHyWWX7e+FGZR+vXr2dycvKNz0ePHv2J6/lxGbuDg4PAj5773nfffTz44IM8/vjjP9N56Pc3rlq3bh2LFy9m8eLFP7P1v1lmRaS3Iz8UnF1ScKP1Q8v8BAvcW1ljeYY1a9awZs0atm3bRqVS+bHL/Ws7qGaZ5Udx5kk6tG90f+GdVzE0PMKWnTshDnjxySdhtMqOv/x7GK5iR4K041A/PgpC4QQRQkPGSKGDBHdknKy0odai1XDJWhkOv7yRIhpHJ4hWCyfj4HWn6bz9KqKjI0TTdYq1mOlFJvTCk9vX01f1WRDZGF5C/uO3seubL8F4lfUvvggjdUibEHk88djjEMVg2aSliadjnvzGN0AlLLn+Wg4//xLKkMTpNIuWLObm29/Nn6x9mGhsgtC0cCybhtti0W3XMvTyJvpVhkOPPU9XKk/D87EzOTpbkuyyATqWLYKJgwQyhHSGUraD/dt209vdA/k0dHZSnZjCFnkcOpDSZ/7Sc5nceRA3CpEiQ0XFeN02OrRwPnQzwZZDiI5ern33al75r5+nB8nJokZGJhml6RECpWOaSNb9z7+Bqy4BOwvlSUJDkRiQCEUy4646d/kSyq9tgVS6HWI8dy7x2BhBrY6QJiKJyNgOUui2iKhjtNC0tMI0IUwUIolJSwu3mKdkGCxfczff/YOHueo9N5FIReu7mwmkj7I0JVJMj49CR57lN/4iO15/mE5TEQ8fA+2z4Zt/Rz52ycm2u2HX889AyqSYFElqCU1l0n1WH1ON/WTzBYJmgy5f011WnE5yxFMT/PVf/SXFYif1ag0nBSERadPCrVYpJoLimMuYoRh78lmYisipkHlkmSzHbPzTr2CYkom/eYreMIuRhNSjEIVCaM28gbls/ParOB054pZPNDRM99KzcbvT8MIx9uw7Sd8vrmRc7iceb5E2BIfsOsvvfjfjT22gPl2D3Sf4xqaHmJvrZVJb1FIRohlQq7ewOnKsf/ZZMBzo7cRIDJ765hOMHT3C669tAj+kd8VCjry+GeYPkC8ElFsNyNq0coJWGFGqKXxLcN57b8ZKp9n5lW8xx5fMSfVQweW0k+CUfQrY1JXm3e97H4cHj3HklfX4mRQf+M1Pcez4IE898iX6rQzKjduiy3iVomUSKYuxPQepWoMUE0FOGvhKEUsDN0nonNOHe+QwsqtE3GrhKEEU+FjSIjo4wuD+MqB5ac926DUhCWjVJ1i14k42vryRyHfpchWTp4f449/9JIUrLgFf4UXtDmB0Zbj3k5/mO09+i6mtO1C5HL7rvWGx0wISQ3DVe9/DhieewMJERjFGysKXGi+MUEGMLHWi3QC6U0R1TVDMM+41wDZBGsStCsvu/WX2f+1RjNCnO5WnKUJ2792DTlngxmS7upmO6mRLnZAKWXXpRZyzaB6vPP88zXIVIQVKQ6RDZCQQwmi7U2iL8VID+QI6STCFZMXqm9jx7Hfp6Bng137lXv7LI2WeeeTPIAKRzpAxFdV6jUImz8TJ0zA/DUKTESZMNXDmDjBab9Hb3cPHPv0pJqKIJ//Hn7O00I81PIUjTShmWNTVg9E3h01jY5DOEEQ+1916C9sOHCQoVwnK4yy76z2s376JCy6+mONph6kte+jNlhDlOt3FEuUkwi7kWXHZJWzftBm8gIf/6/9HvuYxp9DD1MQYrVyGT/3+Z5nwGnzt3/8utakpHAFeC5KwgdE/hyQMmTunh0xmBRtefgpMgWlniZsxy25ZjbfjMPNliTBfJ7YV6WqEmgx47+f+gOe++CBxE0IhUEGAYVtEocYUJkGrTkfGwo8DpmyDnkhgqohABwjTIhWEdJd60c2YIJfCNep0C5vuRoIrIsyeNLUuh93TUziZAhv/4lHIFcG2OHLyFPTO5aH/9hBRpQxhgtYRQgjiKEI7xhuCZvtaKUg7KeIwxDLT1ESCn9RYdM0VDL30KltOHOKjGYuEmTJj3W6811ZG/6Wu7rPMMstbzY8SkebPn09XV9cbn9/q8q+fljOVNj+JM53L3ypmRaS3Iz/k2CuJ/3MR6R/jjMr6+OOP/29upbVr1/7AMj8LZt1Fs7wdkPyDiCSAa6+5ht0HD/H1Z57h7Guv4diXvwKexDg6geNqHCFRRtvYgoSmDaCwMUiUak+eTBMhBEophBLYSqG1JpNNIZOARMeQLzBeq+LVXQpKInSAHOiDi85B+RC2Ajpmckh7e3sg58BYhHvqFEJLtGlBMUPGsdtP9pVGqARTqbaLoJDn+uuv5/ArG0BposDHj0I8z0OVy5BO4TcCMqks6VyaFasu4cTWfdhjEbblMBWGkJIkom1HTpb0Mb0gDwUb/AhaCfrQGIM7DzHa2wX5Ds5bdj4Hn3+ZXK5EpRlQzHZw6aVX8fTuo1iZPGF1ClvauDUP0ZUnO+kilywl3HGcA0+/Cn6IckNEVwaj3KLgpLB8D1tJRDOiMtKErYe45u5fZpudAi8hMdoCkhLtSezSCy/kwNatkLIhiLjo8svY+NWvg2Ggk5hsLoeMY7SWKB2jdNvJ4UsJWmLE7QotLRSEPpk44fTeAyAg35Hnkssv5YWXvodSLYx0Fts0IUqg1ImXJJAoOgwDlXGo1xs0a2XSaJxEIQ0H4giUxGh5SNsE5XPZ5at4ZvwUtZqHNg2iGDLCIo49nAvOI3h9J2EYkrJt/qGdYDutNpYCnc2CnHFWpWyUL/CUwjNjQqNdckQoySUSiUPNDMimcnjaZfdrr0MQoR2JFIKstBg+cZIwbEEi6ezoYtVll/KdkZPISZcQBRmTsy+5gPKzm3GiBAOBEwsswyBONCqJ8KMYYUhM0yRKfAhdCGNiaTN2/BhYAqYmkdkOJl54EZYs5PxLV3Lyf60nabXIXryUjvndjLy+l5SrMW2Liy5YgRfF7JrTx4lTZXrsDLEpUVNlclY/OlTgBWzfuIlcR6HtzpuaYqw2jZVPgdkOYReATNqOE5EoRNK+yTXiBKEUBhB4Pun+Eq7ns2TFCl4bPEpsGFgpi1a9QdrMYzsObr1FXmsS0+TQzp2w6h3wwmaYP5+NG19rt45PQAqFNtvdEevHhrCFQ6hD6O8Ft4mWgs7OTqaSpG3xn5loq5nyNiScd9GFbHn6aTK2RTGbYbQyhp+y2mHa0kEJE1L59ngUJtWwBQ7Q3QX1BJaeg8ykwYSAGEcn0HQ5+sILEKdICxMzkbTyDlXtQZwwdPwYjXKVBI0SzIi17XOeRiJnOrPBTNmdBss0ieo1dCZHZ2cntm3hthrs2roVJqbA9UHaWEoBmkQAUqEwOOeKdxJWWvg7j+PYOQpGmkndZCJwmTg1iurthHqVkfE6tutTsGy8eovubIbh8nRbMItt8D3OOfdc9g4OtZsPhC79PV3s37mDc9/zbjahsaMEqRQW7XO6ShKy+RyXX3UV2zduBsuB4XEagSKx0wTCQFkWRwePM1IvgxREpqZgpWi4PtlUmpbbACeFEbY4tGdH+wSeyRJPVUCOcfTEEIstGyNKiKyEWIEKI5JGi6lKhabUGI6NChPwfIy0jdD/oLokQrXdpB1Fmqcn6cs4RAI8HSO0bL/SaQIURAlJpHCESXd/H6kFXRyrHkPGCuUZYKbBMCEK2bp9NyiIhk6ClEglkFIQ6vBMj7UfQAlIZrqtmbYFWoNjserqdzK0fz+/et/HUHzfbe/Ppov3LLPM8n8ZP6pcbf78+T/w+c0ILmfMCmvXrv2xc9+flaBzJqrlp+GtFJFmg7XfjvzhTxGsff9n/8mrX758Od/+9rffsO2dObAef/xxHnjgAZYvX85DDz30Jr/ELLO8jVDte3wpwKDdZcgyDE6cGuH5fXtYffcvsXvPXvo8hVlrkEOSEBM6BpGpQCq0VIQSrBiEaWI4NjGaeEackLKdLYSGwG2Q9OTQjsNZ51/ETTfdwu6vfYdURxYniWmEVbQhWXT9rdRe2I4jBLl0lo37NsFoGZmAThI60xm8wOX6d60mCVwqwyPgtijaNiIKMNGEQZMknWVs535SnT3E41PU6g22f28jGAZWBPlY4NWbeESYtk1z80FKmTxlGWOaFqEliAomrWqNquUzdmgXeAHnrbyMyqET6PEyee3gluv0LFzEe3/5TjZv20rKS4j9gDwWSU+WkRODZEs5golRurVN2oemSvB2HcfIlbD2jlLdsBO8iIyQ2JbD/MICqm6TQLUQloH2JPXIYfWHPsLhV79LceIUkVdvd2ej3X0NBCNjU/hND9wQa8FiVt94E9v37uLm972XY8cGMWXbM3EmeyY2FNoA1zGxEoNCYGAl4Noa7TZpTU5T3r6H/jlzmFQJ8/sHOLh+PciIfCGNM9nETQwWnn8BRyt1rrvxDgZffI7p0GfOqmWUWy5BpEjHFth5qikH+vrJCJNYR2hbYGfSjJ84TeIrssVOqrGiYkoY6OPu3/h19nx3PXGjStaxQSfEaNpSh0FoWIyaIVghZ39wDZUjg0SWSd1KcPMK5SRoFdEncuggoixjWgM2jXqFJG0TTpfpC0ySMMI0TQrSpjU2TdhqgqeJpmscLY+ijx6lT+Zw8xLfkVS9BmMv76C7o5MoSUilcpyqTpFdvpgrbr2Jwdd2kMnnCA2BEiFX3HozwhQEU1OkSDB1TN4w6AwkjajCyltuZnrPYYIDp5Gh4tKr3kkjiKgeOETTMHCDmD0vbuDghi3QkUOddxYNI6Lltug3OhCujxu0KPX3MD40RPngUZiq0N3Rxd6tr7Nv1060ASkFSmj0TP2VTpIZc0T7PVoRVKcxnBQ6X8LzXK774AfYPTpMuqOI59YIwgZdiUWjOU3S20GkYkIVAgGrVt/MyIZtXH/3BzAzNu5rO9E6xiIhtBLCUhbdcDnbSxOkU5z/kTuJLZvXvvo4bt0lrrXQTZ+0aId4C9r7i2lwIolpHTyIbNRJApeGjqCYg3SG63/tEwztOMB1v/oxxmo+xnATb+kcBt57I+e883ImDo7wwc/8Dvv2HaA5eBBHaxKhsKRDYJqAxkxMbGFRuvMawv4iydGTDA+dYnTwOGkrTexHSN12pAhtIpAYMx3lEKIt1ApBJpcjtizC8Ummmi3iag0VBYycGmqPq1iRiTXpJEGLGN9OiAyJj83qj3yYeeedz7EDR0hNuIR1l6Anw8LL3sGmrzzBoU2vgxuTb3oUTUng1qn6Na654TqmRscZOXAMI4pJOWnCls/E8Aih5+Ok0gzt2Y2u1qgeb4fmy0YZmWikkCgpsQo5ypNTFIolTh4YojOV5x233E7NbTA8epK4u4hC0LX4HI7vP4h7YgjpVrF0CieVIvF8srbEr09yaO/ruEMH+cwffYFzFi9h17YdZK69lnyhyMmnnyWdMnFkQBQGhKkUUXcfQV8/zdY4ulFlzT2/xumJMjJQWLGB0JJECmIJ1YxJ/pab6HU1zdEJyFi4KsYKBY1ai3v/3WfYeGAbac+HhmZKafLvvICov0ipv5P6yQniRgDz50EUcstHf4WB/jkMbd5Bb2cvthuRFyYqCEikxnQsFBKBQswcO14coy0LbZo0kgQdBpDN4NZqNEYmeOj3PodWirQ4WPWaTQAAIABJREFUMz6YCfqatSHNMsvPE1u2bPmJmUiXXXbZP3n9ixcv5vHHH+fb3/72D8x9z+QVXX311fysJJUzHdnObOuhhx7iscce45577iGdTrNhwwbuu+++t3yuPetEejsS/+RF3iyPPPIIH//4x1m9evUbpW+VSoWVK1fOhlvPMssP8305HsAb4UhnL1pEc3KKrzz8MHMuv4TRyndIGwX8Sgs7kyXQAalQYWqFnUAsFZ4lUSpECEmmmMEyDGq1GkoIpKkQSpPJOUxFTbSfcPTb36VxcBwj1tRMn2ZR0DPcBKNK+dg4ST7PqF/F1wFIm4UKRMtjJAPlpE4um+XAjm2Mjpwkm0q3w6E9rx2um83RarbY8fg3ITZIuQnFYj/1Zg0rkyYMAtKhohAbaKfASXwOPPYcy5M8R5jG70uTqWiUEFz5G/ew6b9/ifTRGiaahiVpTkyTdGVJmiFmxiZphtROjvI/v/CHUBsjcW36Cj0E4yNsfeZJkJLadBVyJnEY0ijmcOwszq1XUf/G9yDVwfwbr+bU9vVMy5DLPvh+zrbO5mt/9jnoz1Buudh2DlI2QegyfGgnRKfpQpOJ2m6pWLQzSeYWOqkePgFWimjwFF/6gwehO8NEvY5I2SRRTBgkCKGRhkJaRvshuW0hAkkuTohQVAyFkc3Q4Uf0ZEocGzlF1KgwvGU7WWlByka0fObaWQhMhl7ZgnXn+9jw6kZ0toQ90EXvpVcyPDKJklnKicb3gbkDdF1+CdPf+DvMOb3EoyMc3L6LPpmjZYY0vJie1dcyqVucd9NqvvrVv4LGJMViHr/exHYkSpskUhMjMbWFZdpEMs07i4uYbgjiVhMrZVMxYkwFi2uasmxSyViEeZuLP/ub7Pjjv4DRMk5s0dPSWI5BRUX4tmCxK5h2DcajgGxvidrJUdJGDlVrUumOyZYFtU37KJkOTZFQN2P8vMRI92D0lzg6NoKZz+HGEbEEOosMzOll80vrMNw6WdNGKUXeSKGqHpgx257+NgxNc3ZsoSPBxq98h7hg01maTzw1TV17dK65Fau3k/HnX+C299+Nu+8oOzdtpFWvUUiZOA2FXy9T1GB5CXML/ZRPT5BLZ4hNjewpMUGtHcZ+JiA7jN9wDkZRDIakr1gkkBYjzToIyaNf/zuWX3kF+3a8Do4k1d1B6pRHXzrH0ZJgxbtXI1ohu3bsZet/+TNsO89L/+2LcPVF9MQgHBNPegQyRE24zOnsJuu6NN2EXS88Aw0NtYDYLWO2QgYyHUSBTyIgauc+45rgKR+MdoB2HMfgCIhClq/5ZZp2GjKdHNw3jD/SokNmIY7Inb2Aeq2FqtT51t99g+Zrr2OmbEIR4VWazNdF3CAiShvU/RaZVsDSG9+JOXqSE0++QjpvE+HgTtawDRtDw5maJKE1hkiIxQ9mInktl3PPW8pRhvA8j0LGwfM8GqNjpNMOXXaKxPWRWtG09UxOmwS7g7979DHocBhYuIDiyYAoDqhlLJyzeskHEjuIyElJGEUkNkSdBv1zF/DoX/85YdnnLKebSuiTK6U58vpOkiikaNuomkdXIUcY+lQ2v442oW4rnERhC4mUJo4woe6y8RvPMMfIY4x7lKs1nKVn0aif5oZ77uW5P/kremUWnC6mJur059LIVAnPj5EyIZu4FEtpjjfGQAq+9+orHD00CLkicy++gMbeQXAsRvIwd9zDjBSteSYMZDH6OmG0Ayp56rFCCRtiG6ETtFDEMiIwFaQEYvECmhsPYTsZ3CRCKYUUJqZtsWvkFEQhPa7JVBLgd6ZY8Es3c/j4IYbXvcwcq8jY4hzv/cynefLhteS6u6hXqjh2Dv/kJKWURZJE7W56ZoJPgonxhmNXzQSQC9vEjWLsjiJXX3kVu1/bQnPLQbJui7QbY6XaAfBati+tMe1cpFkZaZZZfn74UeVsP0vO5BP9S8x9K5UKDzzwACtXrmTr1q1v/H3x4sV8/vOffyMzeOXKlW9pwPasE+ntyO//FE6k//jZN7WJgYEB7rvvPpYvX87AwAArV67knnvu4ZFHHmFgYODN7f8ss7zdOOO31wBtS1IiFNIx+ePPfZaFc/pYsXABR/YeonNaU+uQBCkPLSWxb2LINA0/JGNnCVVE7NioUoHSBRfSv/Q8xgeH2zf2Sbv72mSriaEsDB86IkVQmSIwQyBEt1rYhSK5efO48j3vZt+3niAJXVphC1o+BhE6LTGzBpYjSUnJdLPJHLNEy7CQqQJ5M89Yh4mwbTw7obdzDi1HkOkpYjRcLJWQWIKk5dMlHE6mIoK8iT1ZAa2wOzL4jiSqNIncCIViyblLOTF4nF5fUfMbmIkgaHrEgWJ+PaHerNBvpal40+hQkXFKOH5MJkmIwyZaxOSyGUSosCKDtE5j1hTpCxcx5yPX03p2C32Xnc0Nn7yLXS8+izOtaXV1Mp3KUNm5ly4l8KoeybwC83/3U5w4MUyw7wBmq45RFSSBQSVRBBmDsJTm5nt+id2bXsFOmSS1aSwVgOHRPHaMXKRppA1UVx7V308SGyQXXkRSykMtZEBYeCokMBXClNhatr1ncUjKFOjIQFRdCk6GatYiqIeY6RKnvRrdC+bhHzhMElXJtVxCv8nwwb0Q+RD7iNBD6ggVtfBGTjH3httZfuFlnBo8TVJv4OuIwEqgmOLCW9/F8HSTZR09jH7970mSmICAKCWJiLGUwtQCQ2hsHZOq1RHSYGjjTiruNIWMTcHzsCxNOpAM21lMEooG2HFMY98h3IlJQJEkEVEcYfz/7L13uFzVfe/9WWv3PeWcOUU6RwVViuhFgATY2AZsikscVxyEEzuG2Phex+QG8SbOde6137xAcu2QxIlRmh2EHQNxpxmBEU2iiCokkJCOuk6fPruute4fIylxXHhicPya6PM8648zM3vNnjkze9b+7u/v+0tz7FyjlCKVDokyaGMTNyP8WGPqDWZ4Plae0Uo62InC5JKmEDDQR++5Z9Det5tk44v0j8bUJycpeUWCTCKnU3ZsHkFFCq9YIk0TbFt2BQnbJc01VrVDGZs0i0ltheNKXGPQnRihLcTMfpacfCx7N28i276L+sNPM/LQI/RmDhPjk3hJhIMhkuBom0IiacUZ0VAfHc8mjXLyiUm0o5A6R+icNI2I0w6OZ5GoGCuw0SIn7Bj8UoV2T0hea9Aviuwc24ITg6g1MULSq10m23XisMjY4AwWqkFmfvjX2b/2WYKzTyY9YQ6L3nQm8ZMv4XshWbXJ4vIgQ36J6ugYdliiLhSm1gLToYjAFzkdN8dWimlP0LQ0KvFIUgf8EjPe92sko/twRsfocTzKpQEaSrLishXc/tW/hdoeWhteoF9IJuQ0uC5Tz2yllDrUR14mfWEb2DluvQ3tBJA0pSJzuypQYEmKEnbeeV83L+id7yZ9bi9R2UM7mjmtnKqboUseBSXQcYoKLGQnZmblCJrvOYc4tFFVwXv+xzX0z51PODDE+P595LUGR/TOJKs2sP2AsWaDyLPwjGSoDcSS2NK85//7n2x++Ic4AxXiHTtpVvdTqNaZ3v4S2nTwk4i4ABPxFNJ1CMdatMfqtIWBPKVf+sSNMfqKRfZX95P3uhzzlrORnotpJzSjDlbRo9GZQsiM/lIvWZRQ8YuIOKUc+ASeRHgpKlDobSPsT/ZhD86gr1Bi78gILz3yCHt274Ywx4gSp/yv/41/5pm8fM/91L0WqRXRkxjSuobN00yPNlGLZjOv3MfLDz0EjQlsnZPYRaa15D0fvYLNjz9M87n1sH0E4oxtTzyFSDskjSqhZ5FGbXpCj6haA0eQ51O0d4/S6KScs/LTbL97A/GSPtK8RuHpXYyrBo2OYqDQR6tos+u+h7Ce305PWzHeaWBG99E7p489TzzASw/cw9TGpwmaU9i+phlIpgNJM2ojjj6OZr3FkO2zpxXRtkOC/iGoNvDznELRo1aw+PXf/QQjm56lMTZK4DhcffWnsSwBQiDEQeFIHI5EOsxh/ouxfv36V3QiLVu27FU9x0869/3Upz7FjTfe+JpmCT/yyCOsWrWKG2+8keOOO+7H7j/nnHO4+eabieP4VTWxerUcdiK9HvlP7G96MPz6MId5LVm+fPlPvW/x4sXcfPPNP3P7kZERrrrqKu68885XvS9r167lO9/5Dl/4whde3USGH13VColSGRhFdft2thgDnQwrNlgnHYF/5tG0v3sfTLWJck3vsUcTb9uN59hkOdBoMmPOXJYcdTQb730QkyqyPEEKC1EoI5IcNzO4UqJMjgBMAhhJZAQiimmOjUHoQJaALZHGkEkwNkg0thb4jkSojDxVxFZGbBlELtEFmyjLcLwQ04mxLcH0/r2UjUMlDBFSY/pKxGGIGdtFLFwqQALUbEWWG4gzhHQxccrWdU+h943RSEH1ehTCMvOOOZpqmtJ68AnswCdLYvA0rnaxE7Ash1QrYl+AJUhUhid8pDS4xsP3JCPbtjG29mEK1Sp79mzn0XVrodZEJZKpLVuZamYEgzOx9ryEawTpjEEWnnQs09MZzztFTCvFoQjSBZmCyiFLeOK5DWBSil6JvODhC0lT5YS5xFay+78eHuKsc97Mo1+5DTk0m4FTzqf2hS+Txk1kycPkGbZ1IPlFQG6BrcCzBZ7n4igDwsVxS0zrnNJJRzFv/kK4dz2JB45WkIPKcozo5lRZOgVsTAqyLaiOTqKmm1BvYyFRSROcbtv1nZs3wQtb2N7JqCSKhieJnO6HVeRdB40wGnXAGuBZNiIISGsJcqCHRtKiB9BSkOY5eqhMOjVNkERIlROMWjhpRuZKkBA54Kmu4yUTNm1XkhuBEQLHDyhIyFVOI+sgsgzLEVjKYEsLXB9cn/LwIJNzZ3ZD3vdN41oWWZaRxhG9YYV2ojHSpt3p4Hs2ea7QAjKhCbFQcU4uFcrufhml4YDrRVOpDLJ9zy4e/9a3odWgUK7gVBNmBL0opfFKZWQedYPRTbfjXtlyiI1m2u7m/tjGMIBDO46QUmLZNp7n4TjdYMKDuQ0WgsgY6lGLKG9A4POON57HV3Y+hNkxjZcJpC1JHKhUhqi1UrxKH1R9vNmzIImZuexktNVh23e+jyc1Sa3OzGIJkUPcagDQECk9fSWqUYwxGYHtYgM1pchENwgfmeN4FaQVYB81j/FqlXxykoIjsaSkXm3iDc3g0R8+DFNj0GniSJekNsrsSy9i7z0PgGoTLoDeY4/CPLaJetTGNhKhJZmk6wJCYymBOLBImdGGUcAdmEEnl5AlWMUApjpoW6JMwnSmqfgB1bRNPwGtJKPniHlEQkBrgm37R4miHLevj1a7QU+xRK4NrvSoRRFefw+5J4gnmgxmDpXAp2Y5tFoNmDWb2bOGeFnFCDKGrRJ7mi06gUTkKakGCj6W6+OSIPFoOg7G9ahONihYPiqJu93QAo89tSnOfcNyHv7a99BCkLsOlROOJd+2FX0gr04pdSgg3KDJrK77p7eeQS5x907TyLdCrc7wWy+gNj6Jc+obadzyA1rSpqY0SB/8DrnWWAZcCSQpYWUAzjqDXU8+D40ani2RqYZiAWLFnm27cZVBpU1UCl5QICgHpHFM0N9DFsfYnk272aISFml0UtpbtkJDQHmA8tAQGA8WzIaSg1k7ilfOMUGBTCkKpQKdrZM40qGdxpiyC9Jiw5OPgVEQR/huSE8pZCyKyEoVdLMFc2az9Ly38uA3v01zbD9HLl/O1q0v0xE2vuWiozoKjZhRYfXt30CmMe24jRMWsRz5I6Vrgv+4eLRixYqf2bVp3bp1rzjH1Vdfzbve9S7OPffc/+Cz/zgXX3wxX/rSl1iwYMGrnuswh/mvwk/KRPpF8Ys+9z0Yqv2znmPhwoU/s+nUfwaHRaTXI/8J5WyHOcwvkvXr1//U+7Zs2fIzt129ejWXX375a/aD8thjj/HFL36Rm266iY0bN/58C7t/22/4wCpX0g1WLodF6hNT1Keq2H4fyjccPfsIjj/6VG7trMGdPwsTuHzg9z7Oqk+uZEYKXhgwFdUZ3TpCMROQakhzlMqxLAswWBoCx4VY4TkWiVKkUTePxmnENDq7uP/LfwedCHyPC9/1Tu6+7ZukloUREs/YuLnCbqaEBZemnTPjwrNYeNSRvPi9H/Kh91zCw39/C7LaYM/EKD0zB2gJm7jXI28aCrFg/NgBBj/xAVj5VzAVoYIS2tY0AGOBFfgULRekZPfTTxBWKvgTLdqBS9NP2THsUjzlRKrT+6BVJ62mlP0STiLIoxhTtJnQCWlfCDoDYZFPJ5QyC6MzRisuTLfhX9ZhdVLYN8nWv72NwUZItWQRnHQU0bPb+OhHP8Lf/MHVmIIFYw1Gv/4DKnta9E3FdLSDMTlSaUIJnXYGUcpLt94BQYm8rfG9MkZluErjHRCRZC7oD3uwGjE4IXrTNuw5w+Q6o0lKwQvIdYbtHxDHkAeCf6EaaGTRp39/Rt94So8bMCLbzH3DiQwtPprtdz5EcUIjrG7asJcf+DwZEAm40qIWKfK4Tfb0Y3SaHTCambZCmZSxyRS/L2f0u98G5bFnZAcFlZPnEqEMVm7oMTZe3s1z6jjdcqea7xA3G91Q5aEisxeeTu3etUz5FqQ5vWefSW3NGrwURCqJ2zGh5xHnqisiGLoiJRBZhoysGx5vSTA5cbMOlqHlWXjSxjcCp90Nqfa1Idc5aXUCRAput9zSHRigGiUsWHQ0xncZ37ENXBg68WRGn30GOzdYWUZmO1iWhcBCK4XQBmH+tcW9raC6bztzKzOYzBLysEi7WqPdzPF7KsQ6ITh6EePPPoWFg7INedmmHWvC3l6QDcgiZGWAqXqTgtcLQG40eaaxbZckSXD9Ip1GB8uySPqKpCqGxYugmdFUMQhJPj7JLOFgyNgVt5jVO8QR+3LKM4eJTIdnbv8GR16xgq0TI1SGZ9F5oYY9f4DEUkynMcakJCKB0KNpErK8+/4WCoPol0cRjotdCNESPvL7V7NNR6xddTsEAbNOPIqRLdthuga2RT1LSPsGSdpN1j/4YNdZJGzsSoAnHE5ddip7H3wQtOTFjU9xwtKT2B12BaHE8ZAHBCNXyW62kTAII8ksaAlAaPbccx89eYugI4hUTFQooGwDtkDPLVAdj3CdMl6hzJ4s49g9TZq5T3bhUtbc9A9Qa8LsEsyZSX3LdupGEBZsOiSgI4hy6AmpNlJsk0JDc881fwy+YNPWnVRCn+q0YD85LTTnXvYhGpt38fxjT0OUkhpN3NtDqg26GVOq9FM1Y6ggoDbZYE7vIHsmGkz544wNTaEzsAsl2r5D3FNg0C7geiGm7CGKvbQbze6XQeTYOSAExihm1DJmTxnSl17A6fF57299kI2jO5nqkzz317fw6Bf+AqZbzMg04y2LHEPiWHQk7Gq2EP2DLFw8k23/cicgEanCtxx0Zsgsj8fuvo+ZAyFTk02sYj/JxDS/8yf/m0ajxj9++a9BgO+5yCynzytRnxynMO4xQxYY2TPKo3/9d1i+5uyL387QjEF++OxnyF2PWZHFVKfO8ssu576//2fiqQQvzdCJS1Qpk/X1QryIQr8DmWH3/v1Q7uWyqz5N08Btq77KaDWCVNHu9fm9P1zJH/zJdUTNBl7cQ2+5yER1Gns6Y2ZWQJb7qLounuchpSRLUhzX/Tl+3bvceeedTE9P/1zbjoyMsHTpUqanpxkaGnpNRKS77rqLRYsW8U//9E9cdtllr3q+wxzmvwL/mSLSL5qDeUsbNmz4qc2lqtXqL70zuXzlhxzmV422cl9x/Krx79sdrlq1ive///1ce+21bNiw4Ze4Z4f5RfCTbKgXXXQRAGeeeeZP3W5kZITLL78cgE9/+tOvyb5cc801LFu2jE6nw9KlS3++SeS/GQcukwqgFIRE9SYBFmU7QGQZk0XDpvXrufvGvyOo56StOtnoDm7/wffoLffgKFCtCByf8Rde5NHv3wm5QhlNIjQdcoTngGMhfZcmEcKxcRwHx7aRmcLLwWsnsH0Htm0jXYfJsTGwIRd2NyPDuFjaRWvAlnRUhDNUpP+Y2dQaY6x75CFUo0Mlt+hdMJPmMQOc+OGL8frKhJZP5Nm8/Y9/n+2T41A39JsCDcvCVCqYchksC9uRRM0GebuBbUPWqmF7NroTw1SL1g8fozgdw8heKPWQx3G3M93CIeSSI6iRExiHYstgdwS+WyAlp3jcIna5KXnJoRQWKU8ojjzmeBA+5C6zdEiuYpaddRrELV5+4XlEqYAd9sBYg23/+C+Mff9+nKkase/StBIi08JSCWVsirkkNCGDThksn+koRxdLaBwMDhzoXjTx6HrW3/9DKsLmN979HoZUN88qnNnHeH2avtlDKEuQS0km7UNDeD6usFhy+ikkoU0WOnh+wO4fPsyDd9yDbdt0UGgkRgikkVhaYGuJowSWkUgjMEZApw0mZTBwyJOIUEGfhmInJWgrhqVDT57TDiSZLXCNJDCSMOu6hmwNuYSObePNngPlHhiYyamXf5SBM5bRnDEE/RU4cjFLLjgf+gvUdEzkCrAkRCnOgXmMgMSCxIZEGhQaQw6u5EOf+CgsHIb+IrmJaQuBsn2M6ZappM0q+fgo48+/AFtehn17KfV6aMdg93osWX4SjUDArF7c04/n5PPOhSjCCIssU3R0QupbiIJPYhTqQN6KFt3XZ4ShL+ghrU+jaw1kJwWVgWOISx4UbY5/23nMPe+N0N8Lg31QFBhfsm98L7/9l/+HvqWnk9oWJ77rYlrSoW4krRw6xqKNjXILNCOFW+oHr0SKoviOC3jfVVdx7iUX8607vgObX8K2Lew4wc40Tn8v+1pVSv0VNt58O898+07Oftc72fris5x5wlLcbRP0OQXe+/GP8N7f/ThZaBEVHbKSR8vSaN+BNIFKD2ef9SZcWcQSIbZboJUqXtq7lye3bcU5djFnfOQ32Dk9Bk9txMEQq5imVHTaVaj08Fuf+zyzlr0Rt9RP1JhkqjnO975xC2e+793gAJNjPL9mDcWSBw5kVn7gvQVHQZiBn0ksbZNYNjXfJpcQ7N2DZWXMSBS+lIw5CloJ9M1k+e98jMq8+QjHYbRZhazDpm//gPa9azGDAdTboDXolA9cdmlXme8v0yGG3gKf/Nwfw0AfmVA0PUjJOSJTVLSgzy2gXthCq1rH9QParguOR9Vy2ZnF5Kmm3+8lzwQTvSFVYbByh6wes+zS99Oo9NDpHWBfpvHDfsq5y2P3PMhkp0XTluhymdOWvYGK04MyDk1lYKCfZuDT8j1yy0XkFk5i4VRKjNsRW2fbbB/Q0Grz9cuuZt3v/RnPferzCCyYGIHmLrKiwO4bQvsDxKYCLRtPSMyuHWz7/HXQbEASgxRI2yKNYgLPp+D45FMNitqCBAaOOYGbv/lt7n1qAxRDGOgjti38nn6mJhsM9s4hMAOYpmHWQC/R85vw7Q4bvnYra/7uFiZUjDI2Ou4gLUNNJuAJ2nGHod75aO1BpHnrb14Js47k0v/2h7zvE7+H6J9NXq6we7LKRL3BCRddyJZ7fgBSojyXa//4M2g0NBvUTMrePKYpJKYDzd2T7N6+iyzLDp00SvnqTmWmpqZ+bL1x0O3c19f3M7c9KCAtW7bsNXMmHFy7XH755axdu/Y1mfMwh3m9o7V+xfGrwsGOawe7vv171qxZ8zMFpv8sDotIr0MmKLzi+FXiYIjZQRHp2muv5corr+S2227j+uuvZ+nSpT8iMB3m9cfIyAh33303YRj+zBK1q666CmMM11133aHys7Vr17J8+XLWrl3LihUrWL58OcuXL+fqq68+tN3q1asP3X7xxRf/2MJt3bp1LFu2jOnpaVavXv0f3n/z78ZBJAJLSISBLE3JdIIuO5x8xlJEo01JAZ0WqIypx59EdzooYUiN6rZ6k7J7olAqdFtOmxxCjzlHLiRRKY0sxmCTCI1yLYTnkGmFsC18y6Lkh/gGdBLz/MZnAdDd3jhgBEpY6NClJRSW77B34yYeufsH0IkZef558jwj0jmTzWmKpx7J4OnHUrI9GtNVmqFkdGoKvv8ogfFI0hQch4G5cxiaNw8CHyklBc/FxlB0XXSWktsG13KgmsLeFjtuXYPdhnJHU3ZDiuUS8qhZOCfOJ/NsenHomUyZFbu4rRQGK8w/5zQYCHAOnGQ0RMa8pSdCqpC2y6RIIc159r4HodVi09NPISybNEnBdinlGqM75CiYN4us4JB7glxkSGGQQnTbZStD0NNDnmdMNVtkUpJKSWbJbgmY51AoF2i3GhRdl2MWzQffQVld+8vCxYu6QhASjUQJSSYlpdzGjxV9C+bQLgimHIWrBeytko2M4QUBdc+Q2JBKSK2usyMXAm0JcgzKEhjHgnIR4XlkUpIBkQK/ZKN013WgkhSluq4Pq1REeh7aCDDd/cqlJLEk2CBwICwxdOKpvLBlO8+99DImKFI5aSnDx5/IuieewJozDAJirUFYSGkjTVdB1aI7DBJLc+DkX2EZhVA5QnSzTXAdFp29nLaExLEgcLFsCSrHNBpYng+2haUMeRKD0mzbto3p6jQUQ4476URefPFFEA6OEbjCgYLP0OxZBOUieZYe+l5q0R2ZBY08wSqFFMvl7jch8CkvnA/tNkQJT6x/jCTJUK0OJy1dCkcuJE9TbDRbNm3GKI1XKHHkKSfhDfRhQr/b1a9cYuCIuYSD/aAyZi6cT2XOLJA28486hueeepq42cYLXMBgB91yIO07ZJ0EhKFWcWGyxmztUTECtryMs2OKaNcY03mTdhQxMTUJliTXijhJcBwHFccQBNCJGa3WiG0L5XnEqULYPo+sfZD27n1kjTblchmRZYhOp+tCtG2M74CUeMcey77JSdqtiLzTDd5GKxidoK9QQBYKEIQQpXRaTSyl4aBQx8GyQYl14LOQS4myu595aRKaIiY3HZRSEAaATeCEDAwOU/DLxHF9HqGAAAAgAElEQVQMSQ5RyuyjFsPAAEv6hgAolMvQaLBjy8vgOAfaYErIc3oKRSxpQ6bIlUJY4AiFozOsKMZyfXSa4bseeabADcgjRSq7Yc1CC4SwqMybA2lM6IXEnYThoxbTf/xxsGAuumhx9JlLoZnQa4cQ+gyfeiJoxdSOURzpoHKDRrLw2CWkdvcYoemKzUILmnkCvk1LRERWjlQ51niNSpzDdIeSJcFVIDpUaTP72KOZuXAxaSYJjMsM4VNMc6jHhIsWQm+Z1OoKpG4pRElwPJc4SfA8D5Acs+Q4pjdvZs/4OOQpJ51zNkcvXUqqNUmeoaWNKfaSFwtoW9Lu1DCWov3CS0xv3Iy1YAFoaOsEP3DZ9MTT0IrAtpnKOmShB07A1o1bcYq91JsN6s0WlmOj05RnNzzBA2t+wPGL54PJQChEpmBkF4uPP6F7pUXlHHX6qbiDfeRGsf3Fl6jX6z8iHIlfQCe2T33qUwB885vf/KmPWb169SEBad26dYdcysuXL2fFihXccMMNh9YVK1asYGRkBOiuZy6++OJD9/37NcUXvvAFrrvuOowxXHvtta/5azvMYV6PvFIe0q+SU2nhwoWsXLmSVatW/dgxYM2aNbz//e9n4cKFv9RQbTgsIr0u2UL/K45fFTZs2MCqVau44ooruOKKK6hWq6xatYrTTjuN6elptm3bRqVS+alq7WFeH1xyySUYY/jsZz/7Mx/32GOPEYYh11xzzY/ctn79ei6++GJWr1596O8vfvGLHHvssaxYsYIVK1awfv16HnvsMe666y7e/OY3/4jIBHDdddcB8KUvfenneg3//hpInueUymUKQYAtJV4hhMEQhnxOOP1kCkZg8gSvUAbhQTWlkBqqMsf0hsw/4xSIm9BT4A+v+zxa5jCzF0TKuz9yGcgca7CHjp1TcxQdkRIHFqV5w7TIiVAk7RadRhOiDlmUgLAwSuFIC6UMiStpDJXpO2ExAZLSaI3a3Q8z3MyxU40ymn2epjR7LtNPvMijN99B/PIYLd+mbWc8+8Cj8NRO0oJDMliGJGZyusobzz0Xck2a5KA0NgaiBNdxaGYxJsvpRTBESL5lD30iQOU5GkOj0aDpW5z7oV+HVoNmrUGfFZI3W7jSBddC95fBAbFrjGZjGuvipWwoK0ShBy1h7yKP2T0D1O9fRzlTTL6wGaEtkB7Yksy00J5gykkZ/o23Q6hIfE1W8WmRktqC3LVJXZsPfvxjMNwHZZ84juj0lkj6SlAp8parruC9H/4QaX2Sm770BW79yj9AntJoN6jMnIkRAstyyJQhRRBlCntgAAtB0upwz8MPwFCFaHqcdrMJlk8yVSdNUyj5ZEO9NG3FqReeh+jvoZ7HTKmMTuCQkUM54Mx3/RrGWNSkQ9Uu0pkxzL4Y9PACqtohdkrETgA9BT74iSuIdEYcOFTJ2U+ENbOfPLDA5OTTNXoGhnnbueeT7J/kXe98H1ktZsn8xRwzNB+27OS//7ffBSmxS0WUZaFtm6CnhyxOyBAIxyXLFH4ORS0o5gav2eGWG/6sG/7cbMPsBXzgox9DW5qm6HDGr12ACGzIUgr1mGJDsbgyh0CEuEmGHcWMPPscTNZg7xi7nt/CjgcepVjuJ6l2mNE7gFMu8r4PfoB2u83sOXNJDpxMdzptlCNpqA4Tdpt9aZWppIl2XU4//XTeccnb6Z19BDgBPL2V8We2gVXg2SefZsGceWRxkx5cHvyrv6f63IsknYTHn3+R4VOOZ/E5y8ARfPJzn2X4+CWc9c5LYKCP91/x25xw9lkgfIbLfbz0jW+z4Y57SOMmRBH0h4RHHsHOdBpsA5US8y85i6C3BzE1yR0f/yP8KcP6r32Hxrp1zL/qg9z+Vzfx0J334js+0eQ0obCxUkUoXdxYwXST555/iqov2WfnBHOHcTwX9o4RBEXYuIU1f/A5rNEqM7DJmi3Ccg86TaHSy/s+/Jvcc9991De/hBMlzHALWLaD6OTcddNX0FMNCjmEucEShj4nQOrukU+iD3RVkyS5oRbFZBrc4VlgclI3JeuRFGcOkrUT5p95BqLUR7R7ku9/+WY6Y1OYTLGgOMCAKnLBxz5I5eSjee7qG0DHCJ1AqnlxzUP4fgnGpwEBieJPP/O/cKc7hLnEyjWtpE3Di4lVh7hdJZRQ8nxkpuj3ijARcUJlNkfOX0yh2EOn2SHqdLjik59g6MylNNttiuUevr/mHpb9xqUM/9qFsLDM2z59BbOsAsV2BjPLDCw9DooFJn/4DFG7Q5pmWI5NrdVCODZaCrIDwqklbNppTqVqsyjuZbjusjAYYKxPsuhT74NiRmppnKgBBQl9Lu//0G/wkd+5ilJpkFmV2eRSYiEIlcPHrv7vnPuOi9A6oZ61OOsdb2PRaSdSS9tQ8MgsUMJQ6inD8BCXfugyaEUsW34WJ518MrnWZMBUltE5dj7H/c6ljDbGyPuLdPIIxpsEHfjYlVdCmlArKNI0JnrwGURT40qHMdHi/E9+GNoxI/98BwsDj3/+7LV87U8/B+0xZHuc8RfWw97N/PDmv6Ek2oixXbhTDfp7ZhBv3Q2lCgwPcMKF5zL3Dacy57yzwBUI38e27UNuJGlZP9dv8k9jxYoVh8Shn1We9rWvfQ3417XBQdavX88tt9zCypUrD60rVq9ezfHHH88NN9zAokWLuOuuuw6tRQ5e3Pq3XHPNNYRh+Irl+4c5zGG6vJ6cSAArV67k/PPP5/rrr6evr48LLriARYsWccEFFwBw6623vqZh3j8Ph0Wk1yEv0f+K41eFg6FhV1xxBQsXLuS2226jWq2ycuVKKpUKCxcu5Pzzz/+lh4sd5hfHDTfcwObNm1myZMmPiEM/Dd/3f+LtnU6HT3/602it2b59O0uWLGHz5s2sXr2aJUuWsH37drTWh2zsf/7nf/4j27+arANB98L9vw39NKbbp1pLQZxntNKY0y88H6qTrP7qVxmdHKPhQjIxCdWIuS1BlqbEZERZxIIlR3Wv2Ndr3P2De6Bc7oY+5ym33XYbAEmeQeBB0uHy3/9dPvmH11Dbt5ugr4dIK455w1lo2wLp4+QCJwcvNzjagFAktqFen2DJ0pOZ31sh3DfJUDNlqJUS5jmgaXiCeHud+Y/WKX53M6kWdI4YgByyxzci3nIq7/3T/0FWTLvWjx07+N7tt8PUFJbRSCMR2gYshJG4lktmcprFgPANx3P+l/+I8aMLqGWLackOOstJHnqO2/6f6ykdsZh0Zi/PBwljwz0sOm855IKHbvgrrLbFLD+EooeqSHbqGmbfGPQPcMwfXklzaj/DicJvV+nzbHQzhwRmH3ssrbJiv9uCksX+RhOUxpozmxxB7rvEriFXEZFM2fDck908pqTDsiuv4PwPfoDxRp0T33IuDz+5jiefebIrBNRr5OP7kdpQdnyq+8dYv/Yh2rUmCBe04Zx3vINGtUa11yWSHWjGFEc79HoV3MFeht96JosuOgeTZIRNTas6ATP7OOGNy2lHbegpQTGgnaWERy3mpLeexzGnngozh8AOoNhLQwneefVK6vUmuB5NI7oxel7Izj17uk6pgkdUdLH6KoxnHXAtfu3KjzEoNPXnnuGrN1wPU1Xu+MZtMDXNo7fcxkO3fB327OO7/3QLBEWksGiiaAUWY9UxKscshjjCEhae023h7ilNmGkKWc7MUh9M1MAtw45Rrr/hzyHsinEDi44gzSLswKc+3qRQnMHLO8fZZwUoYRPkmkKqCSMNEUzdvw5Ga7T2TjBr1hxGp6bJag2+/tWbSRotOrUGnmVjshynEJKojCUXncc7r/8cDJShWMZIh6fXPcktN/4FrZ27CZKcQjPGnk6QmY2/4AhGvv4tZg3N6oqgoxHMncN7PnUV21/YzFRjmmVvWA6By9/+/SqeeegBHn98Pfgu3/qX23nkwbUQJdz7l38J9Q7hZI1QgjtzFu/5rQ/TLASw9FSOff+7Ef19bH38KeKiYKLXcNxExtypiNx04MhhdmzeDPUIvWWEub2DlMMSSSeiHBTQcYqdqK7AqmKOPP8cqBQ4ddkZqHYHJyjwqUtXQDNCeAHphmepNer09Q0wOVWDQgWaHdbc8wPYvRtUQo8liRsdlDZ4bQMpkGuyTk6vW2YiTWikKa7SXfOM6YbGR7Ygci1wbcKhWfzWb13J4NHHkDuApdidtBicPY8lp5yCCRywLJwdY0xO7kcUQ+oTU5QSzVf++gtUN26gPKVwSiGtyTEKwuLcY07GjnLINbguQoHbzii2FcVM4FsO0nOYDiCxNUqAZTToHMe2yJpNKm6RtV/5BtsffhSjEryiS1gIuOvrtzH67HNga9yBAtn27fzg0YfZ/+Imjvif13LDZ1ZiRNYt5bMySo7F0fOOpKeaoqTuNhrIUp568CFkK8KKElwpQBoSHZMViigrYAcZ430h26IGzBjkiT07ILdwjcW8Kc2iMbCVxXf//G+44+//kfr0KONWxv4ThqnPLNDpKfAPq/6WtT98AAohSMEpZ57O7MULwOQIp1u+jGfxwEMPQLXGpvXrwS+w6ro/5dYvr6LgubiegylI3GPm8ISpwfz50FcGp0wgC3jtjO9+5R/At6Dg4FqS3o6hv5USJimULV6e3kHgeTCyh5e+/20QHcpehtscZ07R4MVVRGOK5tbnKdTGGBIZPWTI/aOMPfQY4uXdsHM3N//F/2HL/Xdw9rveCoMl0qTVdawBWZbBa+gwGBkZ4ZZbbsFxnFcM1D647vxJawNjDEuWLMEYg9aaiy66iE6nw8qVK7Ftm5tvvvnQWqSvr4/169f/mCPpp61lDnOYw/w4rzcRqVKpcO+993LTTTcdKm876FDatm3bL72UDQ6LSK9LXk8i0kGV9frrrz9k61u4cOGh2vMNGzawZs2aX7oae5hfHJ/5zGcQQnDHHXe8qnmWLFlyqMRtwYIFbNq06ZAN/o477jhkRb/sssu48MILMcZwww03vLqdP4j+N+PAetcIUHTLDXJHYtmCp797D4w2YKKGXfJJwhhsQ8X1yZIq006GGxaQrs/LGzeDcMDyeeLO+2CqCbFBFvvZ9+RGLCtETLWwcwGWy9Prn+CpdY9DoYSNgDDgzR/7KPT1Q24QcU4phUKW46kURIokpVCo8OBX/5mxHTvxAwclM5SlEEZj627OyRHhMEedfhZHvvMiWqcs5E1vv5ii8mBfHbP1eR5bdz+0a/hGAYZozx7Quhu2ayQYB4VHLlwSpcG2UNLQsTTVgqT01rM5f8X7YO5MAtdj3uBcTlt0Is19Y2SlAGaUUXaO21/B84ugHNREk6ad41kebBklPPpo6B3CnoiQ+2sI26GpI6pC007bOFrSXx7irZdcBAVNZjqQ55zdezSEw5yw+CRksQ+SGFEuQ2+IatV5+Hvfg6kpcDzqjZjJ6Ral4dk89/iTpM9t5JmH1zMYFKkoQdBO6JMOWa1FnxPi55Ki6xMEBexyL4XBGTBrFit+/3dhzkwcyyKvtbAyTdxucsYFb+K0c8+mmTTxFDA4yJEnncwd372z21Chk0Gq6ento7NjNxuf28hX/+iPYHK8WxaZRpClDPSVIIlAZHg6YsD18Pa1efif/gVyAdJGCYEdhqRRAtU2oh2R1PaCjCBrQE9A0Tb4lkG0pgmb0zA1xrb7HsZXNmm1SebaKB3DYJnzL30vFAuknQRhBMmBUhslNYKcWm0Su1gErRg4czlq515opTDZ4h//+iawXfJU0zNnLm+74uOweDHNgkcjkGjRLcIMc42fQFDqJzhiHudddil7G1XUYJmCE7DvxW0UsEmmG4S22xU3MIBi1lGLeWTjC1Ce0a1tizWekdhFH607iLTFoKWZGfagkZx12a+DX2Zv3iLyJMeFgzC+l29ufAqckOr6J/nWqq+Atok2PA+NhOkXtuA2Inase5Lo5d1YOuf8S99DUedY7Sp5s4lVa7Fr1x5aTcUxb7iQTc9sxuzYQ2vrbkynSeIl7BctxgoaVMJbVvw2PL4Vz/Wh3MuMgQGEa6NtSSw0sTSY0CVFQeBz4uIjYd8+Hrn9VmYVC2Rj+7jhs59B2AbTrnPhig+Q+D6RkHhuCWlsmLWA885YxsDCBZB3aLXrKLcAxQJxO4VKH6QpqRRMGQ0DJZLAwdYSL+8GvieWpOlBEtjge3R27+U7t36HiZd2Ymo5iJDYcZjYNcpdX/objv3AhWAnhHEMfTZGtckrRRoFG/ZNQTvlxHefRzY2iuVatHWLrVte7IoLrk1xxgDGKPI8x841km55p/JclJBY2sLW3ayuOIuRBZeOSTCkROP7SEd2kauEyNXYHmy/by22NtDrUJjTD1HMBWe9CX9gLru++A3Y32LCjRix6/R4HqWtYwy3cmTJIbISLJHR69oM2Q4D2tCT5Zi4TS5SdAg1I1n47ksY+tyVzL3hv5EuGGawPIPksZeYIYag1mYAH88Y8jhj5zNPMfLME5SK0Kzt54P/7x/wxj/7HDhFmi9sh71TFJSN0BZ/svIPuPvrt2J7BQIs7ESBioiaU9i2xXNr7sePc5yJaXo0tKoT9MwoE9XGqD/0ALLgw/4Y+mcj6ce3e5A47Nv4HMR1aMaYOCUzOdIyuEJBFrP9tluZoTsMB4Ki1Pgqx47ahBjSZpPQdukPixSMh68cfNuh4XVwSZkNzEoVfV7YFYnKvXzjS3/FkqWn0zMwiOM4JEnS/TF9DcvZPvShD2GM4fOf//yrmsdxHDZt2nTo7zvvvJMlS5YA8MlPfvJQYPaCBQu48cYbgZ/f5XyYwxzm9SUirVmzhmuvvZbt27dzxRVXcOutt3Lvvfdy7733ct111/3/5pz3sIj0OmSS8BXHrwqnnXYaK1eu5LbbbuPKK68E/tU6fO211x4KOl65cuUvbR8P84tj+fLlZFnGhRde+Krb3f4k1b5SqRCG4Y/N/aY3velVPdePYfhXAenAEJbV7VKVJug0IUtS8n1ToF1EO0EZDbP6QGjyvNtyUXmSLE7Q9SZlx8fxi1Bt4mPhZgZaEU6cY2WGQAnsVOHmBstyeP6JDTz56Hp826VTayCE4O71D3dzTWwXqSW21thGd6/OoxBo7GZM0SshhaCpU3TRI7Y1RoCtNWEGrVZE8JbTCN55NiwY4KQlJxAai7KwYc8EOx5YD4lCxBEWAqk1lusfKHERGCFRwkZhoW0J0oJGRO2lnWz41t3osRpTu/dBnBHHMf3Dwxx53BLIMjwjIc7ADXjskce6Di+t6Jk1g8iXhMaCfQ3mzzqCQNqYyRa7H3oK5VrUlSFzwAodQjsg7UQ8+uijgCbwXGinvHTPo0gT0pluo1MFxTLz5i+AJMHxAkrCouw4yFbMUP8Mliw+muZEFdoRWC60WhSxKGhw0xxfSixlMFmOpaFda5FlOXk7Zt0TT4JtYaIUsGimMUloU1Mxlhew9vt389Bd9+Lg0DE5ZDlSi25JYjOm3FOBOENkBjKF2jMKGPzAgyyCuAOW4PEH7wedQhJRtDRlDIVYd4UoaXc79uU5cbtDN9jG8MgP7idXOeQJZBFLzzyFt1/yNvIsJrChaFvYWYJIFDLXCMtm1oJ5EHqgEnZPjYNtIxE40ulmOElNbnUdIaVyibzTBpXzhvPeDEERWgmhX8I0O3iOC1mKclx2dtqwYD6c+wZwBFp0P4/CHBAs2h3mzDuCZeedC70l2lEbF0nB83GMwBGSdrOF0bqbD2M06x5/gup0g1knnw65RDUTTKbJswzXd/ACG21SjFLQadN2JeSKSMdQcIgbdegtUJg/DM02TqFEOlWFah0UlG0PL8nw4owgyQmNQLXqBOUAoxJcDAJNVG3w5LoniEenKQVl2D0Oloclgbh7HJjqgcIZR4LjMKgcMG73GJFl7J8YJ84zcG0ilYFnkxgFgQthyNOPPAqZAcshaTaxbAudRoTFANp15iyYi9tXIckNea7QSQ61Ottf3EJzchJMhgAio8F1kJVeTn/Lm2Dh/G4G2MwZlJaeDLNnIkxXpBGmKxhiSRCa4sIFYCSjm14ELfBSoJV2XVPSAWXoWTgHenzyNIGyB0ITuzZZbwjGgXZCa8ADrXBtB1zJyN7daAl4LsecciJeXy9IgaabzZQJQ47BMgJLSxzVzaNDCpRQ5K4mISEMfbxco3SCkjl5nuIlCk9pCGyWnLyEoFhibPsO/HYG9z9LebINFY+oKMinppl8eiNjm15iOu+AI1BZhkpi7DTDU91ugx4gHYGxQQY+jXqbY04+hXknnABRm+UXX8hZv3kZ9TSl7PaQ49LBBRUhbYMlMlyRg8mxLRfPLULuQTPG6mSIdkLZ8rpZUlp0M8TaUTd3yCjotLBzhWl36JEOZSQlyyZLIpCme5ElyxBpDsph6Py34VBA5YJcaUJHgIpxlcRBkjqC1NJATj8Sshwni8nzFgKNynKyJCf0QqRwUDloJQCbPDN0UkVd5GQ6wbcgVAonSij+X/bePMyyqjz0/q21573PWHP13E0PQDM32I3IJK0gqICCSZxNjEluYiImV43m3mhuvnxKvnA18TokTgzqjcYYRAEFlWYUaJq5567qoebhzGfPe6/vj9PwqNEYEhKV9O951lP1nDpn1aqnztl7r3e/7++Veu88NT3LRee8BF3I/xAP0k033cQPfvADli1b9q/Kev6XKBaL/+yxcrkMwOWXX/4jjx/rwHaMY/z7eSE5ker1Oh/5yEd+4X2/x4JIL0D2MvAzxy8TH/7whzlw4AB33HEH27dvfzYLaevWrbz3ve9l+/btvxBpfcd4ftm2bduzjqN/Sab9r+Xkk0/+iY//p6SM/4hZOweRE4ucCMjLZZy1G1i2YSMlldMf6Kg4Y2TDWi7/0P+A/iqJLggAsi4lp4w0bZ6+9z6SThvDK7Gs2Mfo8hXolofl5xhRCH4XTymcJMOLQetE6EGCluSUHI/jNhzPnnvuezZ7xVQCPQepckRPqYyVKop+ippYRDcMaiYsipAFR8fMJHYqKYUSzTK5ef/d3Np8Au2iTXzyz/+CxbiF2+ywJPLo2zdDXzOkqAsGTJM8CalaRRQamdDJkb2sFB0SwM4Fo0iGp9rwj/fifu9JHrj209COCbOYHeNP8f2nH8ZbuZKTl6ynGOmYhxtYjS7x5BFWv/JiLn3/79GM2wxYDuVDbebufggZdlkidArbxzBdHSpACRbCmFSlRN0ue75/N9R9KsJguVvGemQPzlyHvXc/DNN1Tjt9C5dcfjl4ZZxcJyYHqbPcKPL966/n83/7KaqVPjYefyquOwB1HxlE2CrBSULiRosllkcepFiGjWlbpGQYK4Zpzc/CYo2b/uQvoBnRMGOMs08kG60iuhGN7z3K1Hd+gKp6RCMVKFdB02ls38HyoaV0xydZu2I9XU1n1fnnsXbLi/HykAHl4yYdKoZC1Od56vbvUCm4eCLHUBGLrVnMOKKozJ6MeukyXvt7v0+aCGgn9BeHUN0OaRG0Pg/SDtH8LHff+k0MQxD7PlHcwdUSHE3Dj3y0isPxm06GTgsMgx98+YtAjiNMsiAhExpdQ6dj6IS6pBv4mI6FUyxy73duh/l5+swibqhTkC5RO0R4ZdqtBg+P7eWit72RJRdfCJok1p4RjEMmFbnfZt8993Ddxz8K7fmer6q2iCEVvt/BLXvYjolt24S1GlTK+FPT5LOLnH3OhdAKUUlGGicIQxKGbVpBi0zFZJqCagFHN6HVZd3mzdgjgz3JfeSzeskQSMU5W84lEQLXcBk0HbRGCztIsIXAzxNMpShXS9xy/WeJtBy9r0yickbcKvFkHSFMVCPC1j1OWX8ibTKKPkjDg1GHU3//16CbcOuf/iWFpk8WhBQG+iifsp5otEBm2kSZxHCr5EmGtXo15172asa270DTDWi08QyHrBOgK0m3NgfDZf7htm8QZzGRgNgPGegb4vSzX8wDn/oE0Z5dEGW9pErbAtMgLzpceMnLGVi9EmRGbW6KjZs3s+ZFZ5EKk0zoKHSU0Hqd08oFrnztFVAoQDOkhImVw6juQZxgWzpokgc++znwfeylw7z0Xb/NwHnnkp+4nHWXX4gZ6tDJeKIzydDwAHFjDroNEi0nCnzwW2w5ezPRwgypIUlMnVgIEiXJcolUEjPrdR80M3Ask7bfBlsjtgSBChFJRpZmJI6OH3VxpWRQM2FxntnxcYLGIo/87adpfPkfOCW1WC1sarPTvPSqKxCNkMXH9rJ44CBpUSPLJcI2yMjQ44CsUYM0whnqQyuUyZSJFuYs3Lmd7/7+R9j29vdTevn5zG1awp6VFlExwxztZwZBs+CBleFrGQ0zZrHRYLAyzJf/7Dru+KM/pRDEeFrOcmni+CkF3cSxCwg0VKgY0Mo4RonXf+D9sHYFWaaw0GjVFvGQiHqT0b4KtelphmwHMVfHbHUgSDl9+VosaZBK6ARdTJUhTY3B8ihWdYDUNQhkTJzFDKSCaieiGzTI9Jx20MXzipi2Qy1LaHYSpFYkSHRE5iK1MpnmYJU8ci2nk3VIzYxirhhOdTg0D37Gx3/796gfPkKexBRcD3JFmiQ/cqr9t/IHf/AHCCH+Tc0zngv/ntL4YxzjGD+ZF1Im0tVXX82mTZt43/ve9wsdSDoWRHoB8kIqZ6vX69x5552MjY0BMDY2xp133vnsh2rr1q2MjY09+/NjvHB44xvfiFKKT3/60z/vpfz7kfSkSDIFmZARsRi1aQG5VeR1f/4xXvXf/ydawQFAlYtMLi7w2J0PgeYRosgKNkib0HDIi0XO/N23gS1IunUOd2qs/a3XkjoKpzRAaCV0Sil1LcR0LfQULEz8xSbdbpvpuIHVV6Bv9fEQK0pOkU4cE+gaHcMk0jSMzOiVTFUtXNMgLrhc/Po3Q2mQmjBZklUxlEOr4pLrPkvv3In7yW+zanySrFMjK/tUUdTSNpEryAo6ecEgabZBQl5L6JgGdVNhLx/CKmqQ+kgsohJYF8oAACAASURBVFgxU5RMFHwKTkbSnKHYSkCBs+k09CBg9t776M41GF/o0N6wFFyPuN0CbMZ37ef2/XtxUslBf56kKln4uy9jRotEZgt/7hB6x8fuSGTTA7dExw5Qlo/bSXA7Nu2FDi1/gbi7C1sG6GT020Xmp2b4xqMPQqpIEhP5iotYd83vsBBmkNZIDJ9QRKxx+/DH5yi7VSaNmIN0oKKTSIHdlSjDpK0rAqFgiUffhadAfZ4+JSEVaK4Hp6zlpa+5AgcTw7Kh1sWyPTpGm+UnHA/FEkm5hCgWyWcXGC328ZI3vZnENuDE9aw4exOJilgM6qiyoCtCKo7JEBbGYoRmVZj2PJqDZfwRnbbwYfUy0s1n8LX9u8ijjIJRwGo2aEVNaoZD1g4YXLWCJ//2Jsa/tQ0MD0u4RIZJlkekFrCigP3itXzv5huwminu4TooCZUKzTBk0OlHb6TIJcuwTjqJqFihkJo4rSZy8jC1e+6gJFL8OKGj2aTKxNActDjDQbK622b6K19j6kN/gd3MMDOdTEqadk5o5azachqyr0w6fgiZg1erU9BSIi0gLObMiTa5q9PyG5TKfbDYxl6+ghVXvKKX3VIxKKxeilF0KTgupIqiV0AaOrPhDERtdv/ZZ0F6bF63CdsqcsAOKLYVsx/8KGLqCAMXvYKXfPhD+KlC5jq2a4OrEayosvqaX6WxtIIz36I63iS1cyZLOXLpEmq1Nks6AkXE7kfvJ3RCVm7dBNUSmVvhpPNfBnM2t3/404ioTZYsYOVNjE6Ci8aBlR6jf/o7oJUYbBfoi4fwXnYFURsOqwxsjWz5KKxcxZyfMFxYRnqozqAzAEFCY+wApCHKDykMDNJq1Dj02AOQdCHwGdAKIApc9P4/5or//n5ozfCpP/+fLGy7CzsIII7Ydf0tjN39OIFbpr1kFb5VYqA8AgsdqDW47+Z/QnbaDFoWUWOeoAhETQZFSseqQ7PB0M4ulTmLhSVLuX++w8Jsk1Pf8Br2HZ5iQNi4zZz8uw9Tb0wxbEBBQqXiQhpjmA5f+ND/g65paFnSK+kTJsW4gJM5JCIgdiWpIYnjAOVHyDDCUSDShBSDpDrCqS9/NQyNwvrVHLJz8maXdV2D2du+D1aI3TpMWS6wr7jALiOibKyidNhAc4ZpDRRRAx59AbhyhLo00Qb7iZMuTtliJmlx0DYYOvl8RL6KSjtmhZaxfGoB5hfYfNUF/ODzn2Hxb26EqXnGDu1HMxO0Tg0iYNiG4QGWv/oq5pWBtfMAxswRcneMbrmNFsziFYtMq4zAybnij3+X4vFryESVI33LuCvKkOefi9O/FN2qEFQcaiLGkSZBO2KVNYDVzDA1nfUFD4YV3/vA+2mpcfxkhuGCQVUrkA8uYeWVV1A9/1z0RobdyZDAbNomKjg0S2WSzAJLoeIueR5TLxgUrDJGrINuU4o1cinQpMvIXBmnK5gayBkfiOjIjHzOZ4k9QClRrJEuS4WGk+bIOETTBbqpgch/5HT7XPOUnpFpb968+ViQ5xjH+CXkhRREeqZZVL1e/xGh9o+Pn3f3xmNBpBcgPu7PHL8sPPLIIz/xg/Pj41h3thcW1157LRMTE2zZsuUFmeotgYpVRQcwTQ7u3k1tYhIrF0SmgCSDRsihW++Cjg+6JMgS+qQFYYw70Mdp606ABR9CULqkOTEDQUY3jUGAJXQMBXGcInWbHAmpQjNd6CRMHjjMOee+BCS04i6pbeIbHC0zgkyAQpCmObFtkhYchpcuBakjikXmRErHM1jotpkxEvKqi99oMH3Powx0FLQUGoLMkHR1hV92WEgiXGyk8DCFDnlK/3lnsPS8M/FbAUaqPyviFT90S1kpRZakECesWraCLIggTCkEkBmSNb92CXEpIc9jRnwF+w5Rnz5E4EYkJZskSxmQHnnHx5U2gTDolB1Cpyd4dhKFlfWGRKEsncwzyTyXjmMQuBqpCcrUWH3KCYyOjkKWE+owumSYZSuW0rUEbDwe6nVEN+TQ0zvRyzZN5RNWbFIF7VhSzyLSkk0rj1GG1pOhBxFVw4FYoaNRamdUFiOYapJNL1KKBRIBEvpWLgHP4pRzt0A3YGzbgyy1y0xrEZNlwQPjT4PSOXjnNrZ/5w5krNCVQZ5INMumE8YoofUuqOIUW+oQpUR+CEKw7tRTUdPTMDHV24k5OrFQRN0QWa5CdYBXXPYqQJJGCZrQ0ZSGlku0VFDSi5BYrKgsg1gjAhLDgkwwtHEjqVehofW2eRvOexFnvXIradfHcVzyah9dzyAruQhAzzOsPMLKEpwsws4SrCxketfTTO16CjotzDzHOJpRYmZABqeuPwFXGhg5OJqBTHP0XKJnPOvBMTLQMoWW5gg00tkayc6D5IdnwfPoJBGapuHmEplAkmUcIUSM9OMM9DMzPQmmzu7du5mZmUHXdYIgoNlsognF4w8/zN4nn4ZigVQXpEKR5Kon1/djHGGgmSZYFuQpDA0yunI50rVpJSHkKZ2oC2HM7u2PQhrTN9zPmg3HoSsF+8coWCampZNoOXmcYMWKeP8Ux+kFbMA2dDRTsfa4FUDE8v4ByDKkUhQGByiWq73jhakTpwm6JkEIRtetBaXQdZ08zajNzIIATRMkKiUXGYOFIssHhyBXtCYmIIoQuULXNJoTR2B6Aio6p132UhgoY+UKM4NCBDOHJ8izkGRlP5Et0HWTxLIJdAlKYNoemWOSFGw2bj6L8Lvfh4lpavvG6c7O0263kYaEKMKUOlquIzJY9EOMgQEyw6TTaNFfrqA9W56bo2RGLnJQklxqxFKSmTapZRBpEmlapEGCrpmEEup5BmkMlRIUPbqm1nN5ac+EKAT50W+lUgiV8+AD96PSEJEnqCRCSqhHPiYSW+rEaUaj08bQdESimJqYpBEHZEIRGBCqDPyI9r07YecRSARYBlgWmmUTAY5lQyMEw2Xjug3YxRK6riM0iUhBzvm4WCRZTn60NK1UrWAMlJgvC1Zf+mKmHngQe6ZJoZvi+DGOMDE0k0zX8Q1JA4W0LcxOyNTOvThRRrLQQEQZJgaeZhO3Aggzpg4fZnZyAts0gZ4P6JnthVRHDyOJxIt62atW2vssPkMm814WmZ4TG6LXJTROIe8lrwl1tMef7JUlKiQgycUPb2Hk0f/Ic+e5yLSPcYxj/GLyQipng55uY+vWrWzdupU1a9b8vJfzE9F/3gs4xn8EvzyZRj+LTZs2cccdd/zEnz3yyCN85CMfAXi2xO0YLwyekWk/00L3l51nfC0oCSiEgCzsotkeV7/6Kr567f8Hnsegn9CpaohIUllM8GqK6QpkjkkW52j1ECwdf36Gb3/uy6zwdUzhsD+J2X7jVyGEblWD0MLJTDTbJIygq3JOPPVMdj5wH1k3ZVAr40/VeXT7w4iNx6FaLc678ELu/tpXIAddk9gZgCTqxFhrlzNn52y7+35ohiiryMywge44sKg4+WXn8NTt36VUKqHtmMDLJNXcYc5OSXINckiaARSqRKmGSFJmzBxsh9GXnctI/yDZDf+E5RYgS9HznEwDqSSoHIlER2AKjcl9+zFSxYs2nc2TP9hDWyhyUihIxESL5bKKnigGlizhsSUD0DVJZmdoDyxj2alnc2DXLl7+23/Adz72f6hoBfQoQs97Tp1M9IJoHalAl72uawUXhopgQ21yATFQoN9yQOioss7Yd++iNjULJ63iDe97N198959g7psjEROkeR1MOOFtb2PX1++iO++z/qqtPPH17yCGS/hpRJ/l0E01zhpdRXtoKdNzc6x1S8S+z+JEmzs+92X651ooA7y+Ac4593z+4f4uux56HA7NYpkOUuXkVR3slPL6EbhljsqcwpnWMX2D2NLIyMg8G+Vq+LmGbVgQx+jtADtNUTpQNjj+5OPZ97WvAS76ylE6iwskmcTGIcwEWqFMqX8YqgPoSLrtNjYCHYkhLOymBq2IPd95HLIKRtUmCUPwSgyecgZzT02xMFsDx6ZeazG0QgNNYp64gfbYrt4usVqhudDCkzlmmqKR9IJtIseOoTFRJ0VStj3cJEUqSSJ6pSxCwRM/eBjNj3EySewnmEqiK4n+zOZf9bxUViwwVEbB0OkemKI5fifbvLshb0GekKXAfJsllQF816I76vFbb38nTz/8GPfc9m3cSh/bH3oApIYhBJZtI4UiSnL23fMAnLiMlWefwaHb70DTe6Wz7elZ2p/9EnrHwKi4+CKGwQFOOvUUovk21kCJdq2BGKxw5dVXcs+1/5vJbQ/CSIWJxjSNB+7CjRMS06OYw2LQYdOVr+D+v/8+7bkayffa7Ng5DrMzFPqWsrMxxtS9t0Ntgvu+9FWqQys4++wXsz9cYO/2pygND/Dyyy5n+5duJq23oFri7e97H5//X9cy8cBD2I5LlqZorkGWxvgyRrdcvn399fiRD4bRK9FVOXEa49oF0oJDEPlw6nrCigUyYnJ+gaUDQ8zVF0k6Cesvu5C9d22D4T6SWpMFEjB0bOFAN2fR6LD0nPNQfQXoXwZPHmTfF2+GRhdVqNCJM8DAUAJUjBFLGCrznv/3Wr7wyU9Q372b5uwcnm4iVEoqIdYUqQbHnXkOB7Y/hm7qGJ5DkIaQKJJU4VllIl+RGorNV/0KhdYhOp0Wh5PbWPRj4laM1CQyU0jVO0YCSJViqgjlx5QMha4yNKAZNRg562zmdzxGsz6L47p45RKeEjRrMVONgzBQQp+LaYscgQ1RzsRnbkW6Hm//4/fyt5+8Dp4Yp5alSEsnDkLQdJius+fBx1kxupy9D+3F6yvQbdZxKRLbRSZpwnErYG6Rf/j8F+hOzIIh2LBxEL71bfxsD4MTLUpkOJ5FV1csxDHpcSuYPbxARRgk9Xn2PPUonpZjmJIoy4g1xeF2G88rMHDccRy8+/sQJgzYLmgmlmURZBEgkaoXCDIyi0KWk0caYaJjZjmpDplQhEZO18p6watYMGIY2Jkg9lPsROsdmyX4BjgGSNkrS9SRzwaUfpjnGki67LLLnheZ9jGOcYyfH79MmUY/i3e84x284x3v+Hkv42dyLBPpBcnAv2L8cvDDkdgfH+9973u54447qNfrz7Y0P8YvP9deey1JkqDrOmeeeSb9/f3/bPw01q9fT61WY3x8/Hlf17vf/W6gJ/t+zogfHgKUpKCZeBlMP/kkpCk06zRdE8jxhKQgwFEZZpRAnIImCUsekQ4owZFHnwYyMpWBHwIaFCxU1KA8tIxGJ6Ye53Q9DwoWSzafDktGQGpUvDIiTJm45TbUgf0MbVzHSeec2butoCRaLtEzHSPV6dNdzjrvXJCSQw8/hSYLDFaHeNMH/oiBTSejjY4yKl2KicBoBHipYHLIpO4qrIvOgDBlXVJmpKNR7tjM6wnZ0jLH/8nbIdd56u++xDc/+3/xikP4RkoiwczzZzdoOT2niiU0bCFp7d9PjiKpeDQrKf7BMRb/8h+pTkpGTJs9coE5p8NjN34Rds/BVB3MAsXj1zG+tIz7hldycKCAs/YkRGSSSI3A6EmelehlLNiGCV4RnCJLX3QOr3/n70ISUBzo556vfJnv/O9PYPkpp2+9ABbaNB58jDNe9lJu/vzXIRRUBkrUFifp6y+DY3Jgz0GY82FoLcUVa8AzUaoXGDE6EdH4JDd+5K+YnJ8lr9ise/3LOViIYKkLtoKCiTQNVDdmx+3bYKzOzC33QTdm43kv4nDexogkWiPnoY9+EkqCMKgzVKtRMsoEooA2sAQVxbgnbyQcqLCY+MiSS6qg7JbIYgHLRrjlhs+BEvSX+3nr294Ink7k2qjchEKBvnVr+PgNn4eCSxqHqEqF1C2QWA6R1EiTgEHTQV9oYZkeSbcLtsGrfv3tPH3r7ZAEbPy1V0Ofy8xXtrHjo38P/UU2/eFv4FZGsM1hmGuz7C2vpetptE1J2xQEuiTSJPPtNtI0MS2HLFMoIJGQy567PhMwvnsXnTAgISdWGcIyCDWDSOpEmk6s6QRpjDD0nqZM5ZhAWeXYrTYEMWYuUF2fgl2k24noNEM4OMen/vRD3LPte6ASSn0l9KIDKkOpHNIElcSIOOaSC7dyzqmnc6g+A0Ubo1CiG0YYukN/aZi1XpnQD8iiGIKEp7bdy7577qNZn6dQdCFLeGLb3cgjswxFQKsBBZ3OvqfxckV/qPAXFrFci+HNJ1K44AwaJQu37uM9fYRllRKz7UkwQ5geh7CDt9CkPXaI7/3jzez93p2Yw1VaUbMXzAo6OJoBac61n/oEE4cOMrR0BZoS6AhUnqPSGFEwifKQxt79RAcOgtGTx2OblCtV/LBDsDALwEhms+vvroeFRbZcfSmTeotkdQX6LM4/80WQWFgLCa43iFy/Hqp9xN0UzyzA6qWolQPsvO2bsGs/JDFmM6Ba7uekSy+A5f2wbJRASQKpk5oudFp89Is3MNVu4Tea9Nsl7BTMXIFISLWQTKasXr0WdIPUtrHXrATboHDqRigU0DEgVmAX+eqnPsPOex/i8NN7uOy3fgdcg1BqCKFRSTSE0snRkSrHUAlmHkHURk998rCDKTKEJRg88TgczaJkeuSWzWyzRWu+QbHWQcQhp1+8hbQgiII2WZZhuS4TtTnyxQbfu/8hWGyz4aJL6EhIDI0sgKpThXrA+OM72XvwIHgO3TQFz8Av2OxxItb84a+z/rKLEMJG7djPulpGpeGz/a//lnKjjey28DwDxzTp1psI26EpctZuvRD6h2mkGVFV56p3voVuxSDygLJg5WsuIV5WoV4xWPXSLaByLMeBOEEzTNp+TH7UhfVMIKltmtR1i6Zp0TUMIk30OpNqOZnMyWRKruc4J6yllWY4uUkh0zFzSKUk1CE3INQhkT2X3rO+LX7chfTcNpO7du0Cel2Af9L1xk9zJD1zLfCmN73pOf2+fw3j4+PUajWGh4ef97mPcYwXIi+kcrZfFo4FkV6Q9P8rxguDTZs2sXXrVh555JGf91KO8TyxefNmtmzZwqZNm1i/fv1PHD+NK6+8EoDzzjvv2UDSM/Nt3rz5nz3/0ksv5dJLL/2pa3jmNdu2bePjH/84Qgje+c53Pue/Sfx4Fq0SGJqOiiL2P/4olgRETLyqHxJB3G3TsjNmrQxT5QyaLgQRI5efBzKEho8UkomCzmzVgCSHOOTEN18Jy4b47fe9FyyLfKgfiiYMV1hwJfrGNaArxluzFD2PweIwJBlF3eAT110HnZBiquGEIGKBpZkY3Yx7vnkbBDFFX9HXTrFqHb7z9ZuZefAHqChm2223k3YCXM2kUashykUY6GfkpOPRhkdoBS0cHH79zb8JmgZrVnAwaSEsi0te/+usP+4EQsMCVychwzI1kjQnyXMSqRPnijzO0fMcA0HWDXjwztth5TCbfvs3GWlrDOUu3SAkqJrEZtLrDGfYLNcrlFoRA4d98vv3Yk902fuNWznjrVfjn308I1ddQrJxNYueQV1XpCpFj2LcbgqtlMWnxvnuTV/BrQzQnV8AZVJJTbwwZWr3XkZkCWMxZGrHU1T31mAxZDr3iUoG2tQig42c06MCjK5CP/1UHvnSP1KIJFoCJgIPRb/nAQpUDCeuwh8twpADrTlefNWroeySVl0q61YwEbQASZZkcOpxTKkuCI3+mYTTkn7MjgGGSWhDTWT4piAh4xVvej3YOie+7DyyPg8GijRETCgSZsMuw8vWsGHzFjhwAAyTdGqSb9/yDTA10DSiLEeODvK6X38r1BcY3nQK2JLX/u5vkIRNQpmRFV3aZgeV1XBoI7I2FAAn58F//AcYOwBhk8M77oNKgSVo9M91Icz4+/f8If5ck2ihRWnkOF5y0cXQP0CIoKvbNHPBaVdchb5mLTXNplms0FE6cdEjMCApWnRFTFq0oK9IZfVSGn4DMVBiLujSdE3i/jJRnjFw/Dp8Wycp2CSuQUfFRGWD6apG4GgUwgy91qCs29S0lNQ2sJSg0nEgFdBqMrpyJa98xSWYQiJFr/EYR4OQhi65/St/z32f+Rxv+bP3g6Fz0imnQ64B4PgJ9c4ceg6FRMPq5BjzXaxMo0830cMQz48Yv+s+3Ezi2g743Z5XbaCPZqfLYH8/rlvA9By+/r1v01nbByMmgavjIgi1mFqeUqm4WPMNypaB3mpTxWTQK3LyJRcTJyFo8K0v3YhjWVhCABnR1BSbz7uAKAroBh0MyyKXAul5xH6MNHRUq0Nf/yCvfs3rQBpgWDSzjAwYHBiiqElmtv0AYoHTP8qeRx+HMICgC0nK9X/5MUZiSSWRtDLJ1W/5DUZOPAVTt4iSBPwGU489wsaLXwZxAllIEoQkSvGoPw+nr2PNlrOIJLQtg1Ya4Jx3Lt16HVVrYHolOs0WeZ6jaYI4TcmkQjc1vn/7d9G8ItRqXHLlq6Ho8oZ3vJ2la9eiaQaWNKHR5qzzXgaP7eXyl1/Bt/7607DYQqU5A8U+vERDO3pcF73WAOgqpuzZCBTdIKITJiRI7r3tVhJNI9AgKbgYtkfB9iikgg2rlxMmHaLMZ0WhihGnvOUP/xts3QhrCpRWjtK/5hQ6iy3SJMUPIsqOiwgzNNMDy+L4F21C6+8DBQOlKrglqJTYcOrpLIxNsDSzGPQz9NYCqtmg1AgxTEFuBxz0Eg5pXZSrszgzibd6JXtnphGxhploWJpkcuIwzM3gDA9DqcoZZ2yiumolBAHbr78eR4CZxb0ufEKSmRadXGEUi8RJghCC1a+8kPllZeYLijhq0DBgMWhjug5JkqCyHLKMoGBjFkrU5moM9430jjtljzZRz+clodbx6cY5A8PLEDosNNo/dHJ97hvFLVu2sGXLlp96vbF8+fKf+Lp3vvOdCCH44he/yLZt235kvp90XXHllVeyZcuWn7qGZ65fxsfHueyyywB461vf+pz/nmMc478ix4JI//kcK2d7QfLL4zx6PqhWq9Tr9Z/3Mo7xPHH++ef/m70E73nPe/jCF77Arl272LBhA3Ec/4vz3XjjjT9zDTfddBNvfvObUUpxzTXXsHr16ue+MMHRWhv57C3TPE1Jkog8jjBkRqRJhk46nvlD96NpGrEpUZrE6sQoPwKvyMnnn8O+B3bARKtX4+0I/DxC1w2s41aweuPx7Ny9k4VOCwpeb8O2cjmrLngxR+ZnqC4ZZt6SpEGvfCupNaDkcOoJGyEMOTA+Td6JkKZEsw3CLMNUKTKMEHqOHicYcUZ9chq/oCBOyfMOkcixDEkiFYVCgcW5BhQMDu/cTxYldHUXP817zpO+Pmh1CB95DJKYZrdJ//Ag+YZ17D/URNdTkiSGo13PdMchjTooKdCFRENQdGzaQpIIk6bM6Xg2qixpT2VowiFRMXG9iynAdnWUVmJhagaKOrUdT0JQw09jjj9/M0uWDrPnu7dCuUjeauMqQdwJkVGGkUG00KCdNYk6TTQhsTNJMYd6HtA6OElfLUXzQxoHDlGdkFhIUseg3c7pCzKMbsTiU/vBdugfKDGbgZ1IYj1DU/mzzhA0CaUCZAnje/dAow39Q3jSwDIMFlvzbLziVdzxlf8LJRtpWBSOW8rMwYPQjfF0m0atgWPYxLN1zIKBMAQz03WqJ5/ChpNOhHKZvWMHYPJIL9vCsaFSoq9/hMldhymMD4GQPRlx0CCZnITI7wUJCh75kQluv/1WqJZYv/F4/KDL4MgwLB2FOCRs1LCtXlcrctX7KhS0febmFyFVyHKB9vgB0Gx0qSN1DYIApIFe9FCJojU7z4GHnmDjeVt5+uabIejA0BDFkSXExtOAJIsSTnjpVvbfdSuInKRRo2/DemqHjoCuceKm03jEb+JPHEGrFohNA+IYloxw2jmbmXh6N36eoGcgbQu7v8JJ557PQ9f/PZ7SGCiNsNhaICpZKBRWCtVQ0ZARVAt4tsX0wUP4tUUMw0Qe9e70UBCGUHB5eOcT9J29hXiuC0KShAFkJoJeQMk46oZ55pW6nh8te80gBcNzaKUJ6JKLLn8NbUdnYuzrzDQaKF2j3mhxwqmnsevQBNgSrVwkbLZA1xAuREGIowQiV9SbdVY5I0zNT3LBKW/iqe/e1fNEqF7OX3bUF2Q6HonfxdA0IMfvtsHTUUGAUS6RLLYBmzAMOXnTJm6/9y7iyWmUrlEo9s7HUkooOtAKCRYbaJpCpBIZ5CgheyWrUpAKwDKpzy0QtQMMqSF1iRgdYcNLNvP0rbdBGrPqVRdT/+4OhGUTFhywJPPz85iO0yt1zCQvedEW7vjaP4EUxKGPZ+hkeQ65JOfo+5EUXUvRhU6mYG5iChBMHD7EwsIcJUOShzkUCuTNJiQ5/vgktHyQOlkWE8VpT3QfhyByhHomcxL8bgfH9TDTnEwIckxQgnrQoVzwWOy0GJQ2mhRImbMwP4u/L6dQqZBMtRgdXYHhWFDWwF3CkSOHWHzscQrlCla5TLToEwchhYqHNAVZHHDGBeew+86vgWfQnF6ENIMVFb7/lZsJ94whak0KvXcxTa2NmafkQodVS/D3TZBZOlXTBT+n26yjWwZ6BmVp0W7H7HvoCehmCMOHtMu+B3fQOjABoQItQlMpmuqVlT37P5WSVqeNpUuiJOHkl5zFnh2P9xxPXpm8qUDTGBweYWrvJJZXAV2HdoduFOG6HpkCZZp0STlty4t4bPIQ+VwTy3SwPY/ZhUVyoFopksPRT9Rz5996vbF69Wre9a538dGPfpQLL7yQG264gTe+8Y0/db73vOc9vOc97/mZa9iwYQNJknDCCSf81Ocf4xjH+FF+2ZxHLwSOZSK9IPmvk4n0TPe2arX6817KMX5B2LlzJ9dcc81Ruee/n6mpKZYuXcqNN97Idddd92+b5IfPbUKCkEjTIE4TgrCFaWQU+zw2rN8IOWSaIjYyQuUjDYkuNeiE3HfP/b27+XGGazss23oOp73hSlJbo3tkit0P7oCd+/jsdX8JngkVj9e84Q2ccvzxLO7fyxmnfgR2mQAAIABJREFUnAQFA1kyCHIflXQhzXjyoYepGA4VHJxUokuDBTJmPUXbydE7Hby5BmYcImXKimoZ9/AcVWUCERe+5Uqiok7oaYiSy+h8RmEuoXPX01B0GXnbK2kPa3zqli/C9BzsOQAP7oEs4IGbv8qug3sQ1QL66vWkfpdEpVAsgCYJOh1iIRGGga7rGCJHLdaptCJYCDHXreCUD/0BJ133x8ROgbie4eYlRqhwRj7AfLvN4rBD88Qhrnrf70EawFyNR6+/icVDR7h/7CCceAqXvO0tkES0Om2MLMGKQkpC4YYx+sFZCvUAzTOx59tkURejVMRodKnmkiWWhzg4g9FYxCEjC0Myt4BhFhmpjJJPzcKRPcz+4DYIMtxEAjmpzMll1gtutNqQKpaeuZnuw7voW0jw5kL23L6NfLZG9dQTWRhyoU9j6W9eTbCywmnnvQgOHma4maMNDzHpmTR1SbmwnLiVcLgTI/pt6vue5FN/81fQaXLlBS+FwSVQKkMcM7r5DN78R++Cvj46924HaaJlEQN9JVhsoMUKhMnmKy+HhRoHvv5NmFtg/+OPcdyyJXz64x+F2iwEbchTYisjTCLIc5ACRvqhXKDQN4CpcnSZo5FRSOFwIWSMRfpCjdXuUtw1Q2TLbdAyHr7285RjDUwHHA+6AQ888CDBzBwUStDxufCSS8h0iVMsgKlz0ctfBiNDYJkcOnyYk04/FXvpMJkQaJUK+AEs1miGMXgOmmGSC8jzFD8MmYoCTrj8cqzhIRp5RuZYRHpOLnteJk/F9GsWTpiy/54H+NZNX2Kkrx8978mbBTmIo2WRWQjVMju/8BncSoUDT+1HSzW0UgllCvI+j1Dv+WLcpDes7GggSqToKqWQpCxYkglLwJKVOMJl99NjTPk+tWqRmTjBKfUx++Q47J/EetFm1mw6mcwymQ18ZLlA1k3pKw2Q2S7VlUvpJgGuafPwPffipiDTHNL82SCYkafEOx7l8e9/lyjuIFwTijbX/K8/Y9kZZ5H4ir7SEFaxgi8lN99zD+vOOQ+GR1H9A3T8kIJTJosyLnj7G2D5ICQhxXqbEzuS9bWckU7vd9UcRb2QQ3uB73/lFuo7dqNURrOzwOsuupCzh5bA3jHo1nnF772dvuWracw1MAf6GTl+He0Hd+ClCsuUULFp7dnXK32bq2FIiVlyUK5JahsYdhGBC6lED0N0PwApefSOO2Fykm997gtEB/YRqxhlJNCc4ZEvfR4OTfHgZ66Hw3MINJRjMx0HHAx9MsnRAFKOQCFQICSzzYDcrhIYFUxrACvRKG9cy4KnMbB2LXmkEDmIokMYtPD3HyBoNun3SswfPsL/+fCHobkIpMzfdxcszhBMHEDEMZpuY1kOjSgkCbtQtfnGjgdgsB/DcRhRFiuVhZsZhF/fRnmig130iEsFdtsBbBgidiSJofPaP/5DtJPW4a4cod3u4pQr0Gly1llnYrUCnHaX4dBmcfsBjisvZ7QNej1j7Gu3039okVWBBu0EXSUIElItJ9AkvqFz/mteA46LdGyCLOGhRx+CuSNoS4dZfvYWNM1g+YrjeNUVVzO8bBXSLoHSOOO1V2O5JcximQMTh+k4Oosy4fwrLkWXEieXuIUyr/u1N2E6DikQZj9+vs1/vL7tP4zrrruOG264gaVLlzI1NfW8zGkYBtdccw07d+58XuY7xjH+K3AsE+k/H+2DH/zgB3/eizjG88uHPiTpZSP99PHBD9o/vwU+B+r1Ovfddx9jY2P/bNx55528613vYmxsjI997GO/sPb6Y/znc/HFF/OBD3zgeZnrnHPO4d3vfjennHLKv28ixbNepExAnKeMHRrjrz/+McI0JAkTFo/UiMM2WejjAIVc0vB9YkNDaQ6dvUcgiOgfHEH6CYUlg/SPDnN4/x7cRs7cE3sB8E46geTIJLgea5ev5paPfwKOHObAkcNw+BAqjbA0HZlphK6gNjPB9PhhjEgh0py8YNEctDn1Vy9lbHw35STDy3ISGzJTkAYBQ9IibrcwNizhsnMv5OFv3olPRmfUoxrozPeZ9NUzOsv7OfnSrRx64glodFhx8kmMvvpcgp3jJPUW1LqE801qB/eSr1uCVa8TdVu9WxzlMhf/yq9yYPdeTKFAKlQe4yFBN+j0lZgfHiZ+apIjMzOEu/ay+hVbGTn5ZBpPHcHNFQeHBOkJIxgXnIadKKYe3oFRjyh0ujTigHUXXMzs4SlG+wc5PH4QJ/Ap6hp+GtLNYhJDsiyVGFKy6KVUfRCmxZwZUDYL5O2ATGUocmIrJZAJWbGA5pVptQM6piRzcvy0gUxbGKHEzARNLyPXM9w4paBZGK5LWktoJoJsz15KuUI3DBqNJqVuzkx7gXXnvYTDe/dx5ksu5OBX76AxM000X0OkKdOdJmlflU1vfDPjDz2MOdSPpmvIZhvdskjaTfJmi72PPIlshWTdGHN0lGboMza3QPfQNHQCNBLSoEsqc7wgxwgFSf8gF/zKFez62jdQfoJbLFN/ehczjz8JYYxFjuj62GFCbOgUEhtHFuhaBVZcfinLtpzNxINPcd7LX8mBQztRWk4cdsAVCNek0ImZnJvid/7qg/hlm9mHH2MwsdjzxCPQblJwTGQcEc5O45o6cbtNqb/KvTffzICpkXR8DNNm/9g4casLStCcnWNyzz60NEXFipHla3n1W9/MkUaLvQ88DI0OMkopSgMtV8Rtn9ZTB1mYnKHbWsRXIXnZxo5i7CxHiYy2kWMYBjLKcC0HW9Np1etYujxaytbbuWZSsuSszbzsylfTvewlHPnSLVRaAoFCDbnUJw6RDnpEeYag18GKo1L3xBLEmiKXCo2MhaLNH33yb7j/lts4PL5AZBqcdMJpTI0/xcazz2Hy6b3QTNAbisFSibGHtjMkDBpRG6NSgUZCy0/xRUxoWQzYBaI8Y+LIOIPKhiQmkopSnBNpvQOV44cUNB1h6ciCRSJymrlkbPcBShTo1trIoX7yUpHZ6UlOeuWrOHjoCK+7+g3sefxpVDfA1DSq69Yw+ehjEIQUTYtO2v3/2XvzaMuqu973M+fqd3f23qetKqoFCooeiqboIUAgJGAawRgN0TRwjVd9xiZo7vDF+O57MrzD+8y4UUGNmhiiaRRNQ0IqCU3oKagqqqDaU+2p0+9+7dXOOd8fu+BirlHzrDQ3OZ8x5h/77DPW2nt158zv/P2+X5Rr03dBCYllJLltMXTDtXh7j1KJFbmrEBNldjz6GAeefAY/zIhFxnNbvkVrxzz0FZy5ls6BA4h9DUoL04hME6Vtpp7dwcjQMDLLschpdtrIwKWT5ihsLOkhETgmQfb6lI2F6oUoz0WnEfguSbtJqlOC8Tp5t82Y7WF1uhSlwCoHJHaOrgQUNpxMsjCHYzRCGCwpcT2fzEj62uHyN7wNd2iM/fuO4vbarH3r65hpHOH2t7+Tg48+g60NHZmiHU1BC8q2y3yny2h9FNPt47Yykskj0FzELXn43SZSC1zbIer3yFwHVkzAFZey7pILWXjqKXSrzbi2COsVWnaP11/9erLFFodac3RtDacs4/SfupXoYBP/cI+Fmk/rqS1krZjxWIJnE5EwV/UZ3jFLNbM5GOSI9SsJvADHD1iIGggpqRYLtKJ5EicjEBqJIBcOfccBW3LNW3+CQ9NH6TebuI7D4p5d0IpZHgzRa3UoLkQ02l0OLs4zc2iGfKTOsisu43Cjhdl1lMTEUCkQJl2MlfLckQOol/dSzQL6RlCuDXPk6BQf+JVfwJa8xl77uEOSgP9/WW3fPeeccw4f+MAHuPzyy0/I9j70oQ9x4403npBtLbHEjwsPPfTQv5nO9vrXv/4H/TF/pFiqRPqRpPjvGCeez372s9x9991MTk6esG1u2bKFG2644V8cd911F5OTk9x7771cf/31J2yfSyxxwjH/fAXEAJlWhHGEcC2ELZF5DovdQU2+IwhyQSUBYwtSobGRjOsCuAUSlSO1oXVgil1bX4Q8omb7DKUZXqXGxvPPgzyDdpdnv/kINFqQZLBrz8DYO9MIo9CuHOzPGiSRrV+/HiUkvSyDss/IaWtQTg7H7a0zqYlkTl8nBFKi45hWc45tDz3KcqeEbVkUL9rAYRkxdtk5pFpBZtj//A5oR6AsvHqZ+nmngGsxJCQrVMBoM4XhCisuO5/EMgjbGhwlYRhbvhwcm1xr8jzHGEMY9YlsDRtPw61UkM8dofn1rVAfZ9nrL2fimkvolwIO1ywYDmDNOKeuWcfLX/4m1lzIaKKQNmQlm9Hly6DR5YnHnoAkJ03TQQuMLfFLRSg6CDRGZWAbXClJLQ3BIDUIT2IVXbTQhK4isw2e5bF2zSlYy8aIKwFJyQIV4fXbSGPILAbN5PYg3lpmCjtRDIsAvfcwiW2ICoLUlWiOR2ZLF9kMoafY8+DjDHck/ZcPgDb4p64YnENpsez0U+Hc9aS5Qs10KWmBnSZkCwsExTLFREG7j5VqTl93KiQ5c88+R/H003HdEjJT4FvIwKboeHjGoHohX3jwywQqpaLBDRMKhTKkChHFFI1ARhlDtoVUFo4sIo1Lngoq4ydx3pXXwsQKTr/sMnBtWD4G1QCynBKSdt4HX/DCc1voTM8CAuOCo1I8rShEfUZsyRCKIZNTyBOssANhBzdTeEbiGUnc6oIWkBtcOTCJznoR1UKJ1kKLxdlF0l4fkFhY2BpkqvCQuMKFWLLq/Ivg9HVQ8cgcgaPBVYOJaTPQuJ6HpQxRp03ajyh6/qsx5K+ghWb1yeuwbZs4z8ByEUrjOS6nn30muDaJlZNaAw+ZXHJ8aFILMmsQeZ5LwLM5sDgHmSZudTnt5A1krg3DVdaffQ6yXKOGy3hL0XhxH4QxURiDtDFaIIVLbtlQLDK0diW5UHR6bfB9VJTgaLAG+ixGDKqpikbg6Jxut02qcjCKl597FpptTG4QWMTGsOmqK6Ef8s2HH4V9+0mFRW4EuTYkScbuJ7dALwEpWbRzFko2syVoe4PjVEnAyWDd+pPxcnAyjdY52lKobojdiwiSdNCae8UVuLURaoU6p65aA/0c0+geXxYTIKHgFQZiJgaVJQwvH0X6PlpIhLQJ/BLFoIQ4ngBZkBIT9pFpBr0QkghcC6/kY2SKtDQmjrCShCTssX7DehAKbMPKC85GieMR9q+0KAuJ0qCljeUVUNLF90pYcc7Wl14EFFtf3I4+/iyLhcYYg5NqSq5PagviLMUOU4pHjzERWxDnpDrEkwYbgYWFMWJQ5aczCstHCUaqIMAuFMkszWxFwzlraVs53aiHAWSxCFlOONPEme8zlFocfvxZ6CaYXkqARa/VBtshfXEbWRrT0xHJcMCqay4mXVZDrxqGskUaGBbcDFUpwPI6YNCvVOAdXyh5+FuP0Wq10VoNWlaVRVk7iLkWvUNTuInGwWb66DReeQhtWZx8xhnEjRZRv482gjPPPxd3pAaujZqegqCAKyzyVLHtxe2kafq9+Gu9xBJL/G/IvyUgfa/a3e67774TPvf99u3fdddd3HDDDcAgAOCHxcJlyRPpRxHrxLTxfDds2bKF22+/HYDrr7/+hFUFbdy4ka997Wv/6vtLrWxL/LBj5EAMGDQxDQgjzUIn5daffS9ffOgr5I1FrKRBWSq6wzbtVNMOM6gXQdsUezZ9lbCsG5GZJgtjHk4/Idu6i2ptmDjP8fsu7aNz1OsV6PSZqPnMbH0MKgXoxODZnPcbv8jWP/k07W4X3C7F/hBhz8DYKLsu2UC8dT/FbgpzffK/eojibMhCGFNwXNrdFN8vEHf6LPqg4i4rDjg8/+JDtNMEVfS5ob6WB83XGCu4TK714cjLHJ3ag5Vqqn3F3iM72Pu5WXyp8XJFVvWYVxHiwnM5ebTOlOpTKVYwMbgdyfbPPchosUKSdun1etRLBRLG8Vau5q73/Wce+ZP7mT68HboLUNbsfPQhSpZLf24vScmFI0Czg5v49F7aDkrTImdtcSW1w312/vYfgJOgFg+AbTPkVujmKV1PsuHWN/DyQ09ywOkzXh/G6XQ46AN2yoXveC/P/eGnAAuMgqrEPraIsF0Sy1BZeyVXXHUhj3z0o5xx+0+z7e8eIFJgi5xF1YbphJJfRnQVU6T0qyVw2px005VMf30LnSgmFzmIiIN2TLkHL/73P6YONI8u4DmSWjtjIe5RufJCFlwHegm7nn2cdW+5gsn/dwtqfIRkZhFPaUpugaTRpLLMZUH0IfCYdxX1SzbSiPqsvfwqdhzahd0pUMhzvHaGN1QjcANyA+HT2ygVq6S2RbsgQOQEaycQjRA709SLdQQaLQo0rtiA2reHaizp/sUnOLr5EcbbMzy290noKc5dfzHrbricf/jg79BNNdXxUdLmIo/c+1eDMj0TsBCF4KYgFXNhTC0oYjJNGvXBgn6ni/Ali73e4B5LYywknrKwpEfueaSqQvGCc2ns3ILb3sE37tuNwgbpoFyHvoC+NEilQCcwrOk3DnDbJVeyd8coOx5/BsetEUeLCHJOUWVm82PYgUfJdQnTGIYrNMMu5BpSTVE6+Jlmyz/ez3MPGCKtCLwyc0mHkVPWcunlm9j2yKODihq7R09rnNzG1gJXScK0ixYKJCQCgobP5+/6LSgUcK0GOz/9CTA5jBTZv/1xnGLE9OIMTpgTNIeh0YSRcVjoknlgfMmyd/4k0195gImrrubA7FfRrRa028wVPapRxorIw5MFjsVNGK7SH64ioggzM8VJVpXGfIdyQdGL+ggZoyseZ73xAoJRGxrT8Ng3oB/zwH/7PYgUJden4BSZOrQIjg/CkJoUshzLsnC0QChJjIXMNNMPfAl/fpqw6BHmKU5Lsn7FKSRTC+i8B3mfK8dXsr28HfyAOOxBqwHlDC2W0W8tgOXSF21E6lItjbAgbH7ut3+bo0cP88U/+wSZV2PV295K2Jxn5u/+inG3QBSGDLlFer2U2ppTaKqBJ9TaKy7h5a/cT8GyqTgBkVaEtRLRuevBtKEZMnS4w6qohJ2mtOmTFxRpGpMmCfVA8vQ/3U8/Vzg5VBV0H3oaRkuc+ea1bKVJqV6GMKI31WCoFDBrBNb5Z9N0HKJ4GxN5DZVrnKBEhqKubNKiy9F2g9rYKB0EaTsk/9LXeOFvPw+NRUSe0xUGpo9SqRR45qXdmPESw296E34vYurzX+bI1GdZgUtUymD/HEysRUeKY40Qu9tlhQqY3LKPrlenmaW4fZ+TT1nFQ88+zHxxmIquMNyKaRPCpWdRPf8kmg98CZFLCqnBNTmpFhz61mMQBNSdMn6UYjJDd8imGy1w0sgqumlEvdVmrLCW6WYDdIep7S/ib36cerHEsUqfc9/7k2QfS9j1yGOISgGTh9iuQznT5DMHqBYCZJTjBa+dysjjBUhLa+RLLPHjxA+iXW3z5s3cddddwImd+77C7bff/r+kj99999189rOf5d5772Xjxo0ndH/fLUvtbD+C/O7/zf+s7f0O48P/5cTu89Zbb2V6ehqAO+6444TdSEEQsG7duu84giA4IftZYonvJa+x2331te05fOrz/8g3nnmaTpqikz6JnVGPNEIbJnowrjxaxqC1RBtBNAS9sSHibkzB91jeVVSaKZ7nM+NqpHRJZc6uvTsZ6mqCKCcPBFkS46QGq15DjVYJd0wOvJl0RCm0sCmSeg6n/+q7mH10C7aS9GnS2ncE4gSTGbTlkEsHLI/cdWjnGfnIKK0wJHJcxFARk/SZm1sgaTWY27mbbH4Wx3IpZAorSTGeRdpuw4E5youKTNo0awJGC7zxZ+5g893/FSkd3H4GkSJNUmYXG3TjHollMBhMFNOzJGFjmi2Hd7Pw1c0kaRNkTCFN6R7aR2f3HkZisF2XJFWQK6Z37ADPBk/CxBgz01NEmSaeXSQ3IWe98TrmJvdRjjTKCJKyR3nVKlrHGuikg+tKdDsiCySsW8nrrr+R7V96BFyH8cs38bbf/U1e/rvPI6RAoZg+uI+O1sQHD7H6wk1MHTgCXhE9dRTKwFiVtNthVWEFIjG4hSLW2adx0y03s+3pZ9n4ppuZPXQUs7DIsmqdLOmhpUJLhaUFqQWd4QJ+bDF/8BDOTVfgnbaWua98A2uhR7/VhU4fE3hkErpxxFCtTLvbxvJd8iyjN3kQtzTE8qERpnbtJdu5l7KSFLCxbIcGivmkT2V8grzXx7EEXZVwyoXnMLFmFcdefBHb9vBygUCghSQvlfiJX3svCzoh3XeUVmOBmWNTOFpxYN92SKBxdJrZXkL/4BSB42PFCalQYDSXvumNLCYxYqjIyGmrCKePYpXKxL0+ea6xpY2WAi1BSbC1xAiDEaCFwTJQCgL6Sc6qTZu45NprmVUpHN6Lq8DREoWNqZY5+7JNGN8mnJ/HzTIqWpLNLfLCE8/SanZwyiXaOicveuQln7an8SeGEa6L18moFodoJBF5HOPjMaxtHGUQliTNM9zc4PcHlWZ50SNsLPDS7t1k7ZBAeOSqj58LvNxGaguDhZISIS2k0bixIUoyrFodx7dJW4tUR+uk/RAzN8/cgQPkjQ4FyyIxkvh4S5ZXKiOMRdbuQX2EMzZeyNTu/YyuPpnZp59naHSUXBq06iNzsCNFnBvCeglcizf/6m+w61vfgjyj22zhGwiEQBhBZhviPGV+zwGOPbcdGWpcaZFnCdbyEUzYYP1N17HvwG7QOSs3bqRz5BB+wScw4Obi+DmTZJZFbkFXhYQYukkE9SG0MtiRoRX2MBNjREJxePtOkv1HyDPFYm+B17/zZzg4PYM5NIWvDbnIyG2Na2yy2JD4BY4Rs+/gJMnho7zxXe/h6X176B05CJ0OLhY61TiehywXafVC1l9xJYvaZmH3Pqw4odyMCbSPJRzaWU6r10Mt9mCuQ/L8y8w7hsWiRR64KEuQmxxlWUQqI0qSwXXh2MyqHpR9sEA4LrOTRzCtkGIjYV15BCtU9BPJ1W++hYOHDqIOHsbKBbltiDwDliHIIEcjXJtWmqI0yHKFTRdezOGnnybwPaxc4UmbPIwJcothq0xnRY1Tb7qWxalp5N6DZHlIN0vwZI5xCuStGNwCaa9DzbURSUJQCmhGXZZdfC7NuWn2P7cdJucwxzr4/RxR9Ehcm0hrwl0HGGtl1GLBUCwBgRICZWf8/D0f4ckv/yPdksdYJHBtF8fxSOKY0IJ6YYQDaYer73wHk6tKNPe9hL37IDmGtCrZ/vhjLDz3MsOFGnmWIsou2UILx3dIVYplCz7wa/8HlvXtltrfnza2JZZY4oeHBx988N+sRLrppptO2P6azSa33nrrq1VBJ3LuCwOx6L777uODH/wgH/7wh/nkJz/Jhz/8Yc4880w++clP8sUvfpE77rjjBzoPXpLqfxRx/h3jBHL33XezZcsWPvjBD56Q7b22he1fa2d77bj77rtPyL6XWOJ7wWs1XBiISb/467/B9t07OTB1mDzqQBojtIuXOwzFNvVUUssEY7JIRfhoDcM3vo6Jt/8Ees0aRGjjd2wq9hCHW4tgp3Q7C4Oo8UZMlkGmweoLSngMCQe302P2ga8iOzETuAwbH2kUkUyh4NCYOYbpzxMWMrjsbJpWTOYWcNwKibYxlkdm4Kr3vg82nk+Ghg2n8pO/95vopAH1Ip39+3BlgK9tSrLIUGbjZgKJRV/YSFmialcZMgVSLN70m78JacaX/vrTkHr4nQw7haA8hFerkVYCqBYgiTCOQ9KPwe1Rv/E82P0CiAiqBoqaGjbDpkiQOnjFErXqKCbTjK5YDatWw/pTeMt/uZssXMC95mISJ0HVXeyyz0WnrQdt6MZtnMCCfsiBr2/GajUp2JKkH1KpFEArmJzkM3/8MTxvkF41v2cX3/ibT5NJQ24ybGmgE9J86OtQqfLMn/4xl1x3Je/8zz9PYNkgFG/76Ec4/0O/wEvdGRw05WZC79ldfO6P7oOLzyBcU0P1Q4YSFzXTIRc2HX8wMmvQ/nTpXe/D23AanLSO7PBRnFodFju0n3yR4mLCSCbIVcLKKy6Bkstc2EdLm2IumHACaiIgevQ5jv7tPxH+w9dYbRUZsT10ljFnUnrk5CvGOet119CN+wPfF9tBJRlrV66iuGwF1nGF1Bz3+iJe5MUvfhF3pkk30dRufQPh8lHmOgl0Yywi8uYcjcefxe72KLVDTK+L0Rk4hmOtacZWjjJ20gi/8v5fxBkdR/UjtNYEfjAQi47fR2IwvwYkSkDuaPpuzmLWRqkurYO72f7Ql4kPHxh8NiRSg6M1zM0xtWcPp61cA0nGWFBlpG/hpMCqEWI3Ij6pghnykAWPrOCQ0qfpRDRWjzDlOOzPczbe8VNseu+7yMsBXQ8aRcFiQZMW66RBFSuokRsXqWwcv0z/yBwlJXC6EUN9h2LiILWLEg6R7ZAISS5sXONR1w4UbFRJ8dZfeBc4ml4ao8Me9aDCsPI4yS1h9WOGJ0bBsbAnRnnDHT9NHw22R6HR59k//Dgc7rHrE59G5CntA/tQjQWc0RFMUCDCogMwPgFRxrcef5Kxc84Dv8DQipWI0hCLytAWglDauF6JcjvDbnYZER5ZJwTL5tobb4CJYc689jJYMw7DBTbdeA32mpNIogQ3l3i5xFWDJ2EuNcoC6kUq73wDp/3ETSBtMILZVotwtMbJd94OuQVHZikhGXUd2HuAxrNbUZOHqdkeZduhmAIpuLZDmqZIBMf27qX97FMgDeV6Gbl6OYXLLoEspWu7ZIUiqW3Rai7gBg63XH81zB+FbodKbOFXx9hHwqRMMY6DtecYlQOz1BtdiiWbG/7gN6i+62ZSmWA5BXLjEALZaJ3b7rwLu1onV2CEGrSfJYbtmx9nVJfwQgvPr7OoHaLKMCPS5uE//nPS51/E94uIPMbIDMjBymkGmk4/wbWKGOGA66BVRjYyBIFPlCjiDMglQ/4QaRST92POvvwKOr02q05ejSl6ULGP+JjFAAAgAElEQVRh1MPOoawtrMow7/r5d4OQKMcmtqEtFEzUufqtbwLfoTzd50ImmGj2kY7NTMHQLdk48x2GjnQIHYvQsYhsiRZgGQ1Rxhf/8n4oDkOsyeMU2Y7xhUNYK5BnffY7bXTB8LXnH+OiSy5i9caLKNdH6cYR2AXoK86/8SaacYSWEhXnFKsVIqHp6pTEZiDe8W0+2kshTUss8WPH97ud7Z577mFycvKEzX1fS7PZ5J577uHOO+/k93//9//Ze7fddhuf+cxnmJyc5L777jvh+/5uWBKRfhT5N6qQTuRZ37JlC/fccw+33Xbbki/REkt8B/6lddHFRoMwDDl/4wXg2FAqUcgklpakUhAJSYQglgJjS5zcUJY+9foYVlCEoMg8OdM6p3rOmeAPDIKDWEGmMY5LH4PShsD2UUbhCguUpqBzsk4T93iDnRIKVM6py5cNPJKqRa66/rpBOppSREKgtAEpwRhktcZZb3zTQJhZvQ6vXj3+rQYTV18JnFRjpYYsyzCWjeMNVvR1EtHKEjLPISiUmBgeh35KbfXJAAOvGmkT5Tm9NAFyrOXLqGw4jfMu3IglLKj4rFyzfJAAFiUgcnAtVC5AO0SpYiHNmWk08eujjC5bjlUoUh0b56STT4FimXM2XQLlAGVp8sU5tj7xJHS7lMoVcqEojIwAFm6eMVQqYowmyWJsywLXJ52dx7YMpBF6Zpqjz29BugNvFh3HkOSIQhm6IaicxuIc2mToPIVcIT2H6tgIOAKFwFgSR1ioVo8rr7uG8XWrQaWUhqp084hXH9zHxZpMSs66+BKuevObYWIUvCKdbzwGGjJbkOkMXwOlCidv2ADlwTlSGlSek/dj/DynJgRDWjOMhZ1maAw9lWEPD0EpoL76JNadcQbkCkda2LbNgf37ef65LYQLi//s2jYCSoHFnmeeY2bvfoQfsPbqy2HtKhAWGAuTQtEDL01x0ZBnKJ2CziGJOLRzB8cOTXLswH6e/tZj5HGCsAftKnGaoL/tZpJ6cFyUZBB1ZmmUrXA8i15jkSN7XiZeWEALCUYiGYhIbqlEY+9enn/qKYrFEkmUEhRLJJ4FSRPshOvfdgsXXXABfjrwkcIts+FXf5Vz3/1ugmUrqdfGuerq6zDCQvUzZAZoA76DjmLiMKKT52RIsl4fIW0QAhsJmcJVEmkkSggyKYlsGzwHpETpgW8TWkGesmrNSqjXyHs9bM8njzJSFZMmGYHwWZidgzSlMj7CUztfHFTd6QxP2kz4RZbZBRCSim2B1lRGxzhv44XEShOhSDAMr1wJ5SIL27Zx2umnQ5zSzRSxlMTKkCExGlKt6AtFjiA2CiPAsiw2nHYaSJvN//QlODYPYYedu3eS97qY3Ayqzox81UPIiMH5cs85gw1XX8ppF10IwsUqVsGywJWsOe8syAxgYUtBGoeQpmx99DFoNMAafB5b2rguqDQjVxmlUokrX38DlMuQK5588nGWr5hg1do1UBlCuQ6ZbZFLMfBNyjMe/+bXIU8RSuEHRZqWhEBAANrR2JZE5Am5jmlbMQfiFq2kCwZc6UJmkLaH8lyKE6MYz8WSDoGxcWONq23sSCMUGMvBGR9hJu4QnTRKmETULQdfGVS7g+c7wPHUPKNRUuN5HkppkBbYNkR9nt78DajVwPXw/QJpmiN8hwyQrsPExDi16hAT46PkWTZ4fnvBwMhdGfxiActxwbYIkxQtJWmag+PR6fQg7ONZNibNkRgsy8IohTEGoRWe7RI6NqFj03cG/l6DPwUW81t3ECiJb2wyzyWzJKJcZHzDyVAMIAvBL8DMLJMPP8ORZ7YTa01xZBR6fXAD1qw7BS2Pe0DlBuG4JMYAGmNJcmE4nmk40I5emScuCUlLLPFjxfdTRNq8efP3dO67efNmAO68885/8f3rr7+ejRs3vvp7PyiWPJF+FPk+ntW77rqLWq3Gvffey5YtW07INr/dB+lf80RaYon/LTADP2v4nxru33z8L6hWK9z8vvfwwuw0DI1QjgWpFMxVJIsFTcEP6Pbb4FSopHDwq09QPtxBHVzAvnQD8/t3Qxzxk++5g8/9wT2MIahaHi/bkivedDNPfP2bWFGfVtrHLReIsxgrylleHSbsdMgyRYyBkoTZOR5+/69BnMN8g/TADARlsCArVQbpU7UaZBkPP/wIZ77hTXDBpVAs8qk/+TOQLsy1GCkPkza7SGMwvkVoG5QjEFpQtwIWT1sBvR5TR7sUrCp/+Yd/gn3uxQNfmaJDv9lnyCuwmGfkBhgZ5uaffTvtw4c4fXQZh558jjS3OLrjAPQkY/WVLHvfm9n2+QcIe9DVGgKb8U0Xc/iJxzFhl6nZBd7ylrfwufs/xd987M9hdCWrimM818/RQlEsFNj58ONUgwq9LKavFH7Yx48yVpWqTDdmibKc0mgdWk0CCmgBYdTBLRbxSgW6R2fIfYPtSOxIU7IsOgsNtGWTlTz2PvgAk/t3IlCgLT77vg8MZj6FAosVn75KwPMImn22PvhNlp97OpQ8Nr3ldr7wqfsJooRKX5Fbmr4DuHDfe3+ZietuADvnpne8h5ltL7P16GcRa0qkk/swCwpaIcNuCcIUtEWKoOA6OJYcJFOpHCkthF+kJWKs4Rpx2oAs4raP/C5Fr8j9f/43FEfGCRdmsIseJs04tv8A9eFR9FwbMbjEB+LW4iIrVy6n241papsnn32KM3/hTnZu/x3EYg+pQSnQMsGgMZ4kjsHyC6g8gk5IdqyF5zj8071/Dp4HUYrneWRJynE9aVCFdNzHF3Pcbcwa/FCniijJKBUsoqiPXyoSSw9HSCwNtjF0my1KtSHiThvdTwi8IkeSLuG4z5V3/wqV8RG+9N/vxX9xhpN6ghVOwEyny8sPbIbiEBzr4CP5f97/m2Bb1ELDqFvkWKdJb7jKxA1X0280iA5Pk83O4C1bzsj4MFMvvIDyHRId4xGgsAgdl8QW4EsYKkMYksw26SHAK0Cc8lcf/WNYaIIySMsj1CnlYoVmGOJaHm6W4S+boDEzw8iF58N2D3ybdi+j25ylHpQI0oS422P98lWMnHEqW/ftx/gF0naOG5R469tv55mXzmDblzfz2GOPwYqVqKkpVKGIqPlUaxX6SUzSbZBXbfLckBnQ2sZEff7+rz4FB+doHIsYskqUrj2Xlx76CoQJrl8k6sW4WK86UWthQGpOO/8Ctu/YRbTzIFXj0zpyjJU3X82RcJHP/I+/IPBKqCxDeRatsIU3UiWZnYHAYzoLSbI+w7U6aRZTtR1sz6dx+CgV34dCAFHOoUceZuys9ex6+gmWX3UN009tIQ0jfNtCpz3css1TX/h7sAqMVMdY6ITI809l5RsvRwYehz7xeTrbD3NSvUjmGmZ1g0vOWE/qF5ncvAO1f46hoSKzYR8OH+G+z34aPXeMXFY4lQLHFtsENZ8Ym3aSYo/VWHf7Gzm05REuvvvX2fnr/yfNrTuYWL6MTp7j+Q5JP6WQDfRVy0CxWGa+0YThGkPnnkW71YI84Zpb38zDH/szHNcncHwaFUHabBK7kue3PcuiSLDmO1QyQdNI9HSLyBZ0XUDFfPzj90HgEXcblCwfL4dous0X/vSvoVilHxmmkozi6HK6WRdLaXzHJkfRERook0qNsHNcpbCMploocfFVV/PQP36Z6uo1NJKjoFKwFZsuOZ9jL7zE6DVXs/DVZ3CLAe4Xn2OV53HEtXjP++/kvr/8c2il7D1wkPqqk2hMH6Vo+cy1m+S2AKERnkOKxuHb1kZfSUJdYoklfmz4fnkiNZvN78nc97W8ss1/zfPoh8EPeKkS6UeR71M72yttbPfee+8PxcW8xBI/tIjja6XHk3xsBrfhhz7yEbY88QS4Hrg2M0MeR317kEZjO3TjBOfsDdTOWE84HHDm1ZvoHpiEos3yTecAOUibz/3uH8HhBqkleDlfBBOiRgJCX9GNQjJLEAYSZeVICYdbi0SuILcsQstAoAmEgI7BVRI/0rzw8X+ASMKZG3jLf/0dWDnBT//cO6Hfhxe2sfMLX4Et2zl7eDXsOEC5l1PRDrrZQQhBaaROWimghgLKF56B8RVyzRjvvvNO8H2ckTr9tIlaUcY+ZdkgwS7OUJbFsX4XUSlBvcrP/vIvs/mRR3j0q1/l/s9/HssvwIIm3DaDaNukfYuX9kxx2fs/QNcvcu4dd3DrH/4RZ9z8BkzBgkKB9v69LB46CscWaT6+FbYdYPNHPz5wLtY5pClD2kWHOaU1a8ARlIaqJFFEozFL4BfxA59OkmFLDycxyCQHV5NmId3FeaxcYrRAZwbbCHSSUUISGI1MBglVavLAYKVe2TCV4BxLkZ2IaP0Y/i2XwooyY5Ua3c3PsfuvH4B6kcX146SnriBNDMt6NhNdCyzJOe+4FcYmmPn6w7DY5uFvboZAQneBi6+7EkqGKatDIOFrH/8bytID6WIVijSNpuMI5nRGXLBZ9BTNlUUW/YTFqgcrRqEY8PAjj/HEw4/SeXEXcrGF0IYsTrCUwdaCqNHGfs3/bUrCaKlAa26OLAzxA5+rbr+NnX/6JwTlMgaJZYPlQiIj0pLPoqXRtSoKcCqjeMKnlkM5iglwQRkc2xmkWDkOudZojq8q6kG6lUYBZlAFlAIKkDCydjXOcJ1YK5AWfTR9kyCNYqQYYKsMW2sC18MIQb06SiFzeex3fp8v/cpvwdQsli3QRZvUthgeXcaqq67m0rt+DlZXaNadQVlV0qVZERxe5tNbU+eSt93ChovP5qa33UKWdWGsyi996Dc478pNMDxElxyrXCJ2bTpCk1gGTM4FP3UbpXPP5JJ3vxMChwY5bi/GChWtHXvxjY0vPUqlEsp3aPmCbMglqhfwMHSm50BKjkYhWDkrb7kRXbEJ1q9gzjTBUqweW8bizBzbX3qZ/sw8RBHSD3A9m6984QG2PfgF1qw+Cfo96HRYc/EmCENwHX723e+mVhuCKIYUrEzgxQorNyBtpvbugUqB2poVmErADVdefVwoLZJqTey6dIUgtSUKhWMZsC1e/LvP0fnEA2S795PPNCljcfVP3sLVb74ZXthPNLeAtl26roECnHXBeUjfBZWRjA3BeI1GUMD2PZIoxaQKr1jkS/ffD80WdLsgJKeNjDCyajXHtmzjhuuuAwSdVhOnEJAlEZbn4GNIFxpUtUtyeJ4juyaxj3eVlaSHaPXRzR5IeOJj92M9s5+glVJ1ArJ2h5odQLmKbjZhpMbZN1/FAdknHiux4brLcMaHSGROmKcEgQftNpsf+Humm8dwa0W63TZKambzmMxAkNlUYxs7lfSjGNt2Icu4/tIrOef8jTDX5OXnnsfyBpF3qSOwTl3F5f/p5wmlYvHxx2DLC6gtWxlOBTXlc5JbJ/FckDlv/61f58Zf+k8Q+AxVa7i41IxHWfmQGli3DO37FEsVppsNummL+qYzCGsWpiAZcwIKi1ALPcp45P0YG4l0JBtvupbgpktolVPwfYLCMBxr8tTffgG6CRMjwxiT4wnBeFCiNz+PintMzs8icxs6OfPNJo25acgyAhwKQ0OAoLJsOVmS4koH8+1lR0sC0hJL/Nihtf43x4nglTa27+Xc9xXx6NtNtV/L5OTkCTfy/m5ZEpF+FBH/jvEf5LWlfLfddtt/fIPftm0hxHc1ljyRlvjh57iQJDSSQdfYqStX05tfgExhVcpsuOOtUCkOqoEihR/B+hWrueyyy1Cu4bTXXQJODuEih/bugXaElzk40x0wDos6hQKgY57d+gz0m1D0BwJNvQyWjZA2OZA7cuBpJHKYGEapiHJqCAwECNwoxzIWOA7Kttlw/vkcO3gQohDSDI4ehSgmn5nFyhSe0rh6EPOcWZpEaGKTQ6nEuRddBOWAedMnnJ7Ga8UE7RgKNmtuupxYd/Ar5YEAYPQgncqSICWe6xPt2AnK0Nu1B+k6OH2NXgwxmSbPNdm2HZh+AiYnGK0Ri4wDe/dh29ZAJFKKF554EiwHoSGwXTrHpnGFBEfiOS6kGt/1WXfeuTBUphPFVKpVpOeC5ZJmBlyXLNfoRGFLB2wLxmogwZUWGIE0AiMGJtNaDPqHLcNA2FAanEE7UQ2XsgJfCYwwxCJn1bVXDsSSboyTCQiKvDw3xfLzz8EqlLCMoGgHkOecfMZ6OLSPopHQill38ip0xYY8ZubFXZApqHjYFuSdNiJLIEuxfQ/juYQGKLlQ9NCeTe5JIOPqN9zM6ssuhVWrmX/+Bfbv3Akqp/hKKZ02CMOgqkfIVyPOtRgUADiWR6YNiVFYOqO7Zz/MLxJNTxMsX46xLHp9wJhBsJ3nMrpuLQhBlmdI2wEUBaxXutNeZeCHNGipsSxr0FIjJQoDuYJiiWVnbsAbrUOxjF2pMnHqqYPqHjVohfG8IpocKQxGZYDGSEOeZszMHkXMdfDlEPQt6ISEKmYynGd/NM8UCYe/+ghP/Y+/hkPTuGGOMxdRlkPQiUkWOnidnB3/8DV2bHuOZ554FJI+GMXTTz/Nzp07IeqDFEjLRrg2eRaBLcHkrFy5glNOOYULL7wAhisgwTYaP9d4SuPowcjzfHD84gixcgXaMkgE5XIFWh36Dz4E0uLmN98K9SGUD1iaOM8I+zGhTkk1EEVgWeg8RccRR7Y8A0cPcfD55+DwYexKmU2XXARCYMKQLc88y9z0DCioh1CPoJKBp44XF2UJOAaWVYnHSkzu2wNJMrgWhSBUGbk/aLOVnoPJM4hjnPEJ6OXQ6ZPnCb4f8MKOrex8/nlo9igNVQfVZq4Lo3XOOPssisUyBB4nX34Zo5degimVyQ2I49dpnqbQ6kKS4SCwjaHuBaxffhL0IxaOHaPguaDyV6/hVzy2XDX4XkFfwaPPM/2trTDVoJxAUUMpBT+C7tPbOPr0VhwhiGSOHbhIo5GJgn4MBZ8LX3cl/WGfqO5z2jWX4IxWcX0Puj0OPfEsHJ6Fbz41uA6P+3YZJIklsYIAhIVKDMIvoKTBSI1jW9CP8JIMcsPstu04ArI0xthw7gUbWblmLWmaguPC2BhICw8LSxlMqsn14B4Unjd4jklJmudkSh2/zzVozfjGc4jDPkVjMeQVoBJw6U/dAmsnsFwLk2Ss3rSR0vrVdH2LyNE4gYOVZhza/hLRzCJEGeQWXjenkEhGlA/C4sUXXoDREp24yYKT0i0IqA/xzItb0d0YT3jM7t8/+Dy2OxCJxcBEW2oGLbZILMSSbrTEEj/mfD/a2V6Z+37wgx884XPf13L99ddTq9W+o+fRK0LWD9pGZimd7UeQ3/0ogxnqK8NMQv8eyDa/OuL2ZjZv/s5jcnLyO5bRveJID4NWs1ec4ScnJ/nkJz/5H3aobzabryqsr4zJyUkA1q1bx5133kkQBP/sZ7fccssPPOpwiSW+E2bgevPqK6HBFgKSjPs+9qcUiiWCkWHO/bk7CJDMHpuiIAKGlCQu+py0chW7d+/lMCHZ/p0D35tdu6nICkEnolyv0sta2CUP7RkwknRmCoTG0S6l8RVc9p6f4eDLu9CLffxSQCYgD2NU0eL6D7yX+a8/R1VJQk+QOYIwjgjGJ8hsh90PbeZnb7udv/u/PoIjBEKlmE4Xei0WDu7H67WwTE5mGUJHkHiCftQdeD3ZLpdeuImdL2yF6UPs2bIDd6bFKqfEwnBA7epzSHyH+CtPUp6LSEuC82+9iamdL0GvzwvPbBn4wrTboBRhu8OYdvDQ9GsudpqQmZSjzzwDnRZHp/ewf9sWFr7wFXTcRSqD4/lkvRDVCykUAzKTYWyJIoKiTVn7uF1DZrm4m85hvj2Pml0k1+C4Lt1+ilUoE+cZBadEUbgI3yNaN8Ztv/QLvLR3D5W2QmmDNIMHr5KSXL7iESJAC6QSmHIA9mBe7UoHqTRJYwH6fX7i9new5TMPUsosaoUKK664iK4QXHDO+bz0xLNEnS7aEXQJmWpMky60WJVKevPzzM4fZHb6GByZp73tZUgTvKE6yew85SGfXhphjdRIcs1Jp51OZ3qGoFRBpzl5lvG2u3+Nl/cfQ6QWzWPzvP0tP8W2b34T0wkZty2CNEUJMJYAezBxsxHYuUEwEJESG+xeTqvoIcpF3E7IoSefAMujJGze8kvvY+vXnqRcrJLqnMGB0Jx86eWcfv31HHr6KfJCEd2JkBiUkBhxXKB4pR3UtsjSDKUUju2QZRluMSDLEwqVId7xtp+m5JWZnFqgkecUzziDNVdfwylnnMHhZ57FCAiEwbIlcRYhXIccgQk8+paF6/iUmyF2FBGUAuLxAu/+b7/HqVdcyraHvwVxSs21uPVD76fZXiA+OE2SRvjXnoNcNUaysECxldFsz9HaupVKUCSZnubwgX20pqbAcQmUg45SwrBFsVLGxkJ6Pi9teZ5Wr83sgQM0t20Fx0ZqjREKy4AwgxQ8IyWmWKS+4TR+/s47efYLX8RkmtT3ueLOOzncj8AtcvjgEapa09i2FQoO5aCGig2OW/z/2HvzaM2uus77s/c+4zPdueZUUpXKQCojlRlIJBRgkARCEgWRqChG2wGQ1qSds9p+3+Ttt5c2dutKbHGRuJQ3ICJEwTYQhlRSqVRVap7vreHO4zOfee/9/vFURUAQWoMg3s9aZ61b9956zln3OWc/5/c739/3S9cU3Pi+n0QUlmhqljKGWHShGiAbHfpXrGT1ipX4nsvYwYOgHGamJtD1BZSxDFgHF1AIMgSFAis19/zmr7HYbLK4fx+nv7S91/wREqoVNrz6ahYWZtHSoIsMJ0/xqmWG15xHcXgcLy4QoYPeNMzkzueJJmYYyl267SYoH7N6GJIONrZMHBmDtOCm9/0kay+5jM5cQufUQUIt8YSPUS65zEAIVmpBWXicmJvn+PYXIEqYfmkPvjWQJzieAgFWSFytCLQkNIqhWj/z8/OYRhfZLSjlGmF7SYAWcDKPtNEmlh2iIUVMTigFtUgjHJes02YiadHttGF+ltIF69i/4wUquSFdXERMzzPkl2GxRSEt1UTi54JCKJKSIs0NUSvFrfTTXjMAeYzOYvIsI15qMrbvACI3lJQiWlrAc6CddGlGGbuf+Qpych5b8bji5hvoLDToq6fMiJxcSqROMQMj7N99iE2XX0mapDQnz1DYHO25tF2nd/943ipuWHUhk0eO00gjipIhGghp7X6JINII63DZr3+QYPP5nBw/AlmXqBuxUitOvHiQ9sQ8ojQAUpHkOdffeCOLJ06R1Dzswixb7nkr0wf30xIaHTgwMkg6PgGLBZXCIe1zuO+B/0gaxXRPjhOTM9w/wOLpcdatXMMv/+IvkSUxvuP2lohX8GHpMsss82+Hz3zmM/+oaXTo0CHGxsaYmJhgYmKCU6dO/ZO179NPP/1NGzPnat+BgQEef/zxV7z2/WrCMGRgYIAPf/jDbNu2jTAMefrpp7njjjv48Ic/zEMPPcS9997Ld7uFs9xE+j7koT/gG5hph+BufHn7nf+48WuaNN9oW7NmzTd+/Yce4qmnnuL973//y82csbExdu3axdNPP83mzZtZs2bNP1vmt2bNGu67776Xt0OHDrFt2zYefvhhnnzySbZu3fryz7Zt28b09DSPPvrodzXmcJll/mn02Xvas9WHFaAtA2GF//fhhxGFpdnocGz7Hq664tWMnjlELqBTxAxfcTE7n9vOyJKhcegwtJZY2crJc4sflml7cN0H38NJJ6b/4CS1rqWaFHQkUAkZTn20dLAXrGBxx27KiYNbCknSjKqWJEMlxkSbVYs5RavLYgmKqgeBy2U/cAtuZYTWkTFeeuYZhnSBabepOYbcNRhlUSMDFK1FMkeTuBbjS/AEr9q6lYWxU9CIGXvpCMXUIiHgBh55kVN0YqJGk/qxExRzTTh0Cq3BlgpWXnsVs3uPwMhKaHa44/6f4djhw2Dh0uuvxZwcIzNtoiEDrQblIsPLIjynIGvNwMwUl2S9IsjJdS9ZrVomc0FVAt7+k+/i4PG9EALrVuDOxAxRZSrpMDt+BPmmH2Drza/nxO59WAfKfj/tbsxFN99IvNAkb0UUvkdeKphQkB4fw2ua3pN961BIReoICimwQiIAzwg8I8hMzA0/9x7GD+8l0SleLnEKD6VCdn35eYacEiYzaKsJKn2M79jFid37YHGBy7a+jqlOHR9LfGqcUpziYGiIGBaa1JYyyvNt5GAfJitYP5chS5olmbLyogtodDvgevz0/T/Hnr0H8XNDuZAIx2f/6QnsVJP63lGyesTc2GniThviiBoaVaTgBkilyLEIbXrm0D35BFpC5kB/EVIPNMZkDBWGFVJRi1Lm5+cIr7uCyYNTZI2IUlEgZAmNw+zMHLNlj6IcwMwU2vcJ3IBc58izl8u5otBi8YMA13HReYERFiPBOoq82ebFZ3cwdvA4FAKsoW0s6978Bnb84R+Bcqj4PmmniesqMpujKiFxlFK54mKu+8+/xIn5SaKxM4yEVeZadfALXho/w8Fd+2F0kcH6EtHpSfadeonWydNsygJkUXDZe+7g5ImjMNtgaLFFu1FnheejFpusKFdJkwxhBDYt8DNBRfpIt8DJDX4OgQaMJW42qe8/2FMroSkcQ+HwcrocQhC4IZ1mE8cP2L5tOyZJ0dbgjQyTlkq055uQCKLndtKZmGaFkvQBi60Y8OkkGX2XXYrtr3B61x7CNMePO6R+jm3EDHoO1mhm5xY4OTaGdX1Iupiog6cEfsllMRS0XEiEIFOil7KmXA69sIfGriPQ0gwqDz8MSDoR4QXrueDqK5BDNVqnx1CupGwsrucyNz/DQGxZmximvIit//cHOP63X4R2glAwSEihHbbe905OHDlAfXQG0c3wV67h8IsvcPzYSa579Q9was+zhLlAGIkRDqlnIY3YGJQJtMP4/Bw0mzhpTp9yCY0mkIJCnlW5CYUyDiCZz1vM5h3WX3MFraQLlZC2TWj4lkYgiF2Ll0uMK5g4r80AACAASURBVNBrXF71s/cwf+QgbmFZ1dIEymOpvkj3zBnWNF3azQ6tiVmSeouKsATCUvMUreYClYqL1oKRriTIFbmUdMsOV9z+g8ydOkPiKi5/771M7HkR3e1SdjzopujFJipOCa1BSI08a1UQjS3Qr0pcqvqYsQlzi9Pkk7N4RtFcVUbXQla2c9JWQSE81px/IQdeeA7bXKDIE9LhGvL8tciBAdJD42y57XW8eHQXRahQOGS7jyOWIoQxNBzBiZmIydGTXH/jNUweOUpf4NGeW6JhDXZ1P303byFd4bHph3+Qza+9kb1ffI7cy7n0ossI146wcOgklXaKtfCOX/1lji0tEZ5pUhUe7SrovhJnjhwjrEdknsV0EjasWUen2eRDH/wgntcb5fuHNWK5h7TMMv/e+PSnP/0NlUdhGFKtVqlWq7z73e/+lrXvN2sEnat9v1rI8ErWvl/Pli1bCMOQj3/84zz11FMAPPbYY2zbto0HHniAhx9++Lte9y4ba38/8vVDinIAnK/trP5LFHDnDL8eeeQRHnnkkX/08wcffJB6vf6PYgn/OXx1zOHXxyhu3LiRJ598kgsvvJBHHnnkFdnfMst8xzlbENuswCuViaSD9fzeNxda/P1ffxrWruS89ecz/uIOLrzqCk4dOobQmoryyIQg0wWDg4PUHUtRq1KsGKC8ejVdbRhCkAMU4BuJ73nUm03G9x2GXON4vQ8day0EChHn2GdexJhhcl/15jmEBlMgpaS/v5+JsEw6dwbHNXhAkhjywIAfsmJkiOnTJ9GcfXKtesqDzVdczuFnX8BRLnQSVg8OkXZnWWq18P0SUrmsL4WcnpiGiSmwZVR/DZ3Oc+r0BOizhqlhCTdNAQ3CcNvWN/HZnXsxmYFKgB6EvJWjYoPnuPhrV5E2WjSinDjOGR4cRHUjHKnQRUbcbbDpqsvgoykMD7Dh2itpjG4jSXI0BTg+fpzjr65ANSCZWcStlkHn3HTTTfz9+CzT84s4VsN8h9bnvwL1GK3PpmopyB0DwuIVBqcXG0auQAsJQnPNNVt44WMfhyhDuQqdx1SLGlI7LLTr1JRPIQwLcRNmF8BIGB7k0huuZWzyJJ1jcwRaUsQpul9DFuP1DSK6HVwMxhFIqyhZh9gv4VZdNt9wPZNf2gYdTWd2kXypxXBfH1GekxQFZuw0nteHWy7jeQFTx0/Qt7KPxBZkTi8lMHVCrM2xRY6TZSgjsUJSSEEmIVOatsl6Me1YhDXobkyUJGAtO/7iSYRxCd0QYSAzGTgupBlCWq564+vZe3IUUkU3inoKFsCIXoKZEaA8F2egBhg6rToVoeg0WiAg7OsjrnfBC8GVUBQwPcWAtsj16zG79pD5IQqHXICRDkr0fLFqQcDkiTFe+/rXse3ZvURC09ffT1NYOHAcKDFS62eoHdH1LOPzS+CETLencPCJT0zC3uMQ9BO6Hm4+S7fVJUAgpcQVEPgenl8iqXdJspjcsVgMVd9nsd0grKwgIgVpkZUA0+4lfwkjEMYhcRyQgm7UYXB4JUujp0EYgpEBVBjSjbtMHtzPrXfdzaFtLzJvcspKEGpBu5NSGRwkW0oJvIDb77mTj/3Bf4NM4rkulhxZrqDpEPkV4igFBGH/IPFiA1c5eI6i7CqaaQSl3liRLsAxFrTAK4dEs4sMlgYQVhPnESb0QUky4MDRo9x84w1MbHsOKSzdtEWRptBXQeeGGKisHGZ09BgUBX1hH7kuyNspxoWLzt/AZ50afaWMKNFES/NQBrTh+M4XcVAYNBmGzBZQaIQWSCeg2Wn3xgZrVZxOgScMs0mTlSv68ZtdXAltr6em63oSyjUQgqErL2Vxokw1KDHzxWd7a5wAUUgcKYnR0GmiBqtgRW+0EkhN1pPQ1apETSj5NbxcMeSX0WkHx5Wosk9cLxhQHn6eAopMGQopQBRUBqogNVTK3P7mt7DvTz6CdCSO42CyDENOtdpHI+nQP1yjE3dQonftVWp9zM+dxBmUFAuLYDSqXML2VdDashTneI5DsrjEwS9+Hg9N5gBOQG39WgY2X07ZuMx94UVGx45Dpw2VKjrJUNIlcBVWp8RSYE+OYTpLjJsWJceheXqSwHcxRkNfhbUXrKN5Jqe/v5/J+QmSxjzYEk7hMHliklxL+lWAMZoNK9eAMNgiQ5VL0FjkwNOfh0YLwhI+Cmu7xHGM7/sIx8FojVTqO//Zvcwyy3zP8o3G1YaGhr7m3/+S8a9/zdr3HOfG5s5NCG3cuJGtW7d+172QzrGsRPo+5KE/5Bsokb52+51f+Oe//ubNm7n33nu/Ri103333sXnzZp5++mkefvhh7rvvvlekG7tt2zaeeOIJHn744W940QwMDLysRrrvvvv+xftbZpnvBMKKs9HsFiFACIdUKvacPMNTJ0a5+D3vYnrXi4T1OjkFW9/+DsKhYSb27KZ8wQbmDh5EdzuUsgRT8il8n9g6DF59Fa+55y6e3rmTH9p6Bwc+/zzaBL1RCyERiaGbxQhyzMQUylg0OTrPKByIw5yBpmVVV5HFObOhYOC1Wxi+ZBOt0VMEqsTFr7uJY3t3w9ISOotQAtIAdFCGzOCEQ2zceBHz8wvgBiBdiDNm2jFxo4PqZIRIsiwmDXKEU8JaF01G2q4z4GhIDZlbQddGoFD0r1xF9/Qp3CTGr89z+PAedNYCKTDS59CZE8SepHrl5Qxdey31w6fR/jBVO4BfO5+BS65hmgQ/idFpjrLQLRLyQILv8vyBA5iZJbCWfCREnJ5E64TctRid4ta7ZCsqLBVtKnMF1hHk5FglOTU3idUpJnChayibMibqlY5uf0BsI6gYPKlYnUoCnVKyVerKwZ6/BtKYual5WpPzKGMxNiYtDGHZI45T8jjG9wKysmLDfT/I7I79hPUCigK9uo+J/fuw1ifPBR4CrRRe1cc4Od20SVoBkfQUTh1rSLRP1/FZceWVTJwahWbE1I5DyGaLZpzQHg4xpJQdRdFsEEhD1m3gBR7tIkcbzds+9CFeHD3Ga371QdKyR2PsCEGnjQ9E0iHuq7H5dTcyeeYwuS8pZ4awAIvAoDDKQRiDrTcReYvMZOSDa6j9/D288Z13c+xTn6OIpum/cB2LjRZrxzNUJujoFH94hCTWWMcH4WCVZPCmLdz2I2/n4PG9ZI06jrRIB3SRIx2JQOM6Ct1pQdQl3neI9olTkBicHIwVFMohyQ0Yi5PkBAstij3HGNu2nVxaYgW+9OnvStwuuEYQVx26OicVmjRLwWR4YQBJhjg0Q71tAI+lkRJBkYHnUXguXVNgpUDrgiyLMVJjXUvm+b30Pl0gXEnXRpiiDY7GFglgCdoWP7fowufNv/IryBuvYbExT3x6hosEDNiMuNsl7ab4GopWnaGKz+j+HT1/ojxG5QWhcKinKZu8fqzQzF5SpXHgICqxFGnKah0wP+jT/7Y76Jzq8toPvp+GNHRHjxK6DqpZx80LfBkQW4t2XUgtq/0yOuoQCoWjBJnJMTrDc6DlWgoKcBxsrY/Xv/6NzJyaYu7gIbQjsKagr1ZlrVsmyVPs5rXUD59kYfceaPVS9lJfEGUxRZBz6KUDZKOLJGlB4Rls0AEb48QdzJlxSrmkY3JiDwq3gCSn7AR0k4LYURTKYrWhqK4kb7TRG6pw/kpWnKxTKyxzOsEEDm/47V9BX3wZzRNTrP6xuzhTtFh96YXkX9xPVm8yuH4dTDeoZZLAcemajLljJxic0ljHYaHbZmkAcHOcoEb5jW+iOXYGmxSUkxTtFGQKmrqgpsrILgQGIr+gUTE0nRSnv8SZY8cgT6BU5vTOI7Qmx3GVwtEgMeArWgHkpkvXVeRxgrUhxihabkKaxYRVSZGmlHCpx5p177mXlRdezuyRcXylKKVtgqVpws4CuWPRwnLHL/4Sz+98kfm5OfTUBNKV2Nmod66sCLj4njs5fXyU9VmNINOUigV8HZNNTKI7KSiPwg+wSkFuaJ48Q+l4k6mdLzH2/Db6PJfz8xqn5mOWTk1jN5xHVG/Q51UYPXyUxeMvMYwDYUEqc3zpkgce6++8nc6Xj+CXFIlJkY7igx/8YK+B9FXSo2UV0jLL/PvjU5/61Lf0RHrb2972z379f83a97HHHmPXrl0vTwVt2bKFrVu3smXLlu+pIKtlJdL3I69Q+to341t5D23ZsuUV75L+U/v8as+kZZb5XscAShi67S5T4+O06kusjCIIfFJVgK+Zb0zR7sYwtcCB//UxaDQZGBhAEzNYKLpZRu76TD+3nbnTZ6DT5a+e+hJ0O0RIfMecS9H+Gs59zwqQFnQhMQIiJLEjYajGTa97LcPDwzz+2Wc5tXM3p04chywDV2JSkF7Ph0aUBDYMaBw/QaOIQRqGL7uU615zE5998kmWjh6BQhCEIbabkRcpICl0T30hpMQvKbqxxi95dDpdrnrrdax93TX87S/+BjW/hC5JWoMSFtrUKoO0KNj17BdwM4srJO1dBzjv7RuYqpYw7YT5QHHnfXdQ2bSOvWMXc/S//h5kPSNoKRx84ZFrSbF/lP7SIDIVLD31PCNdlzXVYUTcZjFwiadmuem6G3j1TTfw5N7fwW90qfkuR559Dhu64CkwCeq8QX765/4D//2//Bd0YiDNca59FTrq0ndkjjNBik1hSBucUoXyTVdx5Yo385X/8RhIi+MHuJ4i0ymJFWSmYODSS3APT9FuNYiPjuPhENiEWKc00w6IHIb68c5fQXzqDENDgyyOn6I2VEWWJBJBtxtBpUYcpfRpCZ2U5z/2SegPQQgW8gjpu6RlxX2/9as8/sjDdOeWEBKkUpRqVZqtDrUVK2hFbfZtfx605OSXt2Pr8+huhCgHaOWRGIdLL3sV1197HYf278AstV8WwxqgUFBYSyotBD5aAmGZ4bffyuotl/LUJ/4WrIZWytE/+zh0MtqJQ40yK2uDzNTnufyddxNVKwyvXsmOx/6Y6f2H+cTzu3BmF/C8nol5z6emp1aSQpLnOU65DMDMxASeCHDDElmWkYtekpvyffpdH89RqEjTyjqYQOI4vQ9RnWtanS6VWo0cQ5LHyE0riVotaBhqsSaMEmqlPsajJlvecSeXvOYmtu95kdlPfvpbrwVSI6zB9oRrBDkUuvfX87TC14b5Ph8EqOowU1mLpmO48sffxb7ffITj3bh3F1eGtc0qnSSm5IecfG53L0VRCbJAMR9asBZP9TOdFDTzGD7xCRx/BW69RSwts8oyfPlm3nTrbTyX9DE3epTWV77Sa4R1E9asOp96s8G0a0B5BEKjpWYh75B5gnCwRFyvQ7VK0k5I4oTzX7OF0/v2QyXk5+9/H//zgV/vmfyXQ2TSIZSSRhzRGAzwL7mUzVuuZf5UgvYc8OFVb3kj+575DJt+/Mc48dE/ob00B0KgAhdET+kmrUGdNfZO0xS37FGgccMAqTRkGmsthbUIJaEkWfnOW5h9/C/hko1sWLeWqW1HqTo+KvSgnhN/bgdJowmT07z0+38ErTmOZxkr3TLxYI03vetuPva//pR14wkjWcD5lUEmR1us7jocymLYtIbX3vVmnvu7L9B3pousz+I6htBYTJaeffd73kqpAiwUyiE3oHKLl2XI6SZKKoT0SOfrTMzvwhUaZXrBDFo4GCEpooT7HvpdHv/9D8NwjUIE4JW44u23Mfrkp8h1B11oLAo/dIg7iwyMrIXNF9A6OQaVPmg1KBWGvJOiPI9n/uAjkBnodlh1zVX0rRphce8YvlDEScH5fQMcDQOai00SXyCswuLguA6hFPhWUFiDE4YkWUYxu0A7VVz9jq2cmRmjcWwUG3f4md/6v9jXnMNWJF/8vd+nIwq6k5MQVJHTbZyuYv1wH+ONCPpLNKdnCcsBuW4jVE/hJ6XsGeyL5dbRMsv8e+aVSl/7Zvxr1r5jY2M88sgjPPjgg9x777088MAD3zPqo69mWYn0fchDf8y3ViL97Hdm32EYvuwq/0pQr9d57LHH2LJlC5s3b/6Gv/OBD3yAjRs3fked8pdZ5l+E7UX/nOvrSCQ6t/z1U39D7rrsOLAfuzBLpYjJ4iazjUXqx0apRYL1kWBY+SwUHdIQBtOCJE8xFY8s15TygovCIWpOQJ0Uygpt8rP7/IdD+OpbbHvOO8JalJUkjiTyJOQdjo+eYO+hI4iu4bx1G3j9T7+Xo/v3QNyl4py9aXcE2oqziWhOr6miM6TvsWLFCKf27oEg7HURshxPSlzXIRUp2g1BeWhrETYHY5CeQyJ8Lr7m1ewePUhltkPe7/NTv/vrvPD5p1ihayx1F2HAg0Iy3LWYNMKt9TP54s6e+slxIPRZ8jVj9SmiIqK77yBWgxUK63okuWbF6rXYRDOQSZxY0wk8nCTHN4pO0SbwyyQ6Y98LzzLebJNOTLMCB9tpUvF8up0mNi/Ad7Fpl8wRzBw9ANJBt1O8qzey9YbX0Hj+IE26MNxH0kpYt2oNrdUllk6cIZmYAemi04LMQG1omHY3Ac/npq230Z9IbG4ZO7CbAXxG/BLNEvzwf/hJTraaxEnEve//OQ68tJdrb72VoYEBJo+epOqGtJc6+ANDxFmG7atiOgn9I8PEpuCcwdDtP3QHhw/sAzJOypz1F1/M0kv7GRgeob6wSBCGhEGJKO4y0N/P6X37EI5LY+9xWqfOMFILqKdddCnEVgeZHjvJoUOH6I6dJPSC3sTm2dPPCHACj27SwUgLNgfpEM1FFPU68Z5DrNMurXYdKoKBt91O7ZJNTIwdoSMKgpFBNt54DQdmTjKxdyc333034599BttMuEj095QvQiDt2cxDIfAcnywvMEZjrAUl0FWXfOMI/pUbCbds4k0//S5KG9cyeng/LVcRY8mNwQjRU1AgkNpS9gLaSURcpFz3hlu4/KorITfk00uEymHOMSyZDsXqGtNT0+zfvoP69r1438Z0jRA5CHP2+rQ936xMERSKwDg4uLR1THnVCtLxOWb37Oe8DZs4+Mw2ODXLYBiSKYMtCdQ119DsNIhdh6zRYlB4lAuFl4HMJTKXZHlOqnLUVZcQbroIsfMkI2GNtidIypKoPs/+L36JV110MXs//jGcWh9moU5ZuCy2uySm4K2/9ssc27kdudCiyDVyoMTAxRt55/t+il27d4PwwQhKK1dx+51vZt+O7dDtsGvnLgYGh4iTCBXHlABfCuICqI7wnv/0a3z6Ix/DDoUwspYf/n8eotlXIh5ey9Txw9BcgGab8trzePe738WePS/i2ATH2l4iovXQRuPXeqomo3N0lOA5HhSGQlhE4KIDF7tiAH90gWxhibkDhyisJO0rkZYsVilmDx6mOznJ6sCn6DQp4gyRW5xWQlb22PDqzRwdO0YcZyypnDG3y8AtVzN1epLucIlCKi58zQ2c3H+QoBAsjI9R1RqVp/ieIBcWIxSFlBipyKWg5flkRY6nPHyt6MtBtDu4UcJApUKcdPCkxbEGZQRGOD0vqr4+yhddzHicc+Utt5F7ZS64+XoWkojGvv0UaUrFSmSmUY5DXXeoN5f4kd/+LQ60Wtxw/fVMnjiO0JZKIQhyQbHQopYKUq2pEzPbaqAWO3iFIXEKjj/3HKbTxVEOzQCSQpFagXUdummCFQJRaGwSUbKC0FjyWj+33vsWRidHiZYWUAR0yyWONuaYaM6Q7d3DO9/3Xna+tBukYJ0JEUlC3k2Qg4NEtiDKElS9Q2FTXFfi+z4f+MAHKIoCtTzOtswy/6755Cc/+S2VSHfdddd3ZN+vdO27detWNm/eTJIkPPHEEy8bbCdJ8j0VIvX17jnLfD+gvo3tO8DGjRu/6djZP5dznd1zs6Zfz7mYw+UG0jLf23yDpdZaaqUQoQtu3HI1+D5lIXuV98ICzC9SKyDUFgVkniQWGsdxsErQyWNsFkESE01NUzTbqP4q1asuBdUzOtZnm0Xn4qu/Xp2kTC9BLFUSlIDhEagNsHLVWmySEwYBw4MDvWNSDgbZG70RApPloC2OKXrR3tbSaTQYPXoUgqCnXjIaaw36bIy6lBIvCJFhCZRDJgRWQZZrsJrm7Bz1sTPk1tCpSA7UpwAXp53DmhHKW2+m7IYEBhQW3whwfEhSUAryhPnDR5nbvY/ZF3bhIDAINILccbjiltdy0TVXkfkuzSwmEhojJE0ktq+MxiXXea8hlRtW1wYhLGOtxROKIkvwpSBUCk8b6Ca89JVtvdjpPEcgSF7az0vPvkA7jnrJVEmG73uYIke0OzTGTvZ+P9MgFI7rc9Elm3HLFXAdxqcmKQKHxAEqFdIkIssSlBLseX47ptWFeotdBw4Ahqn6IgNDIygjkUZitKVAMLT5Mi686QaKss/AmpWsv/iiXkR6qcT5Gy6AwIcgpHXoGFdfdjmEFaxQveYjFqxGGg1FQVCtEuSGspUMuh5FkoLvkSQJw+ethbygOzGNMGcttb7uPMuK3kgTVsPKES686ko4Nc7Scy9CM6LoxKCBconq2hWsv2ULrKiBTknmZ3numWew9SbUO8huApUqOIoZ26WQX/eExEqyLDtbVNqeaY/VUPKpnL+GDVuuYPWVl2D7KoQrhmFwEHyHTFq0EGhr0dqgTU/d0I0jyuUQN/R4cftz/P2f/yXHv7QDopS5TgsuXgtXbYCagjSGmSVWy/K3tSo4xuIaixWmd73KnimwRpDi0BEefX2DMNdiRJRwC5eJL+6APcfot4JaIqnkCkpVNt16M6wYBGkwWuMbgVdYvFzg4hA4IfghrF3J+is3k7RjHGMpMo0tNIwMQDuCpRbP/9VfQZYhkwTXcQkdD20KCHycwUFYtYKalIQScl0Q9FWx7tlzpxtDuUbU6vCVZ74IjsIfHsE06iRLC/jGIHWBEhad5VQcHxoJY4cP99aRC4ZYccVGvrBnO7v27KDxhWdhx57etaQEKQZV8rCORFh59lzrrWOu7xEnCRQF1eHhs4lr/+CVYUUv2CDac5ThZo4/2YBmAoFP12Q4V18GIUjPw1EadEwlz+g3lv7coouMIuqyf/tuaCcUZY9W1YUVDpU3X0er5ECmEZMt9n72yzBTpxMnBEJjTQYYjBSAPNvUl2gBuYJw00aolGllOd00hcJQxqGkXKTJ8VyBtAZhLdKezWdAQlji+V278AYGWXHBBpxajeuuv5Ebt9wACOim+NbByQ0uFuaXyMYnOHLsKBboZgWkOdoIyqUqCkEoFDrq4mhgw4UwOIhQksBROEjIC4R0KJQATyAH+qAckgUBqy7cSGJyjN8bPXWUQEkoeS4vbHuWxfEJwIAw7N33Ekv1BdrHj4OE9evX41aD3tiy75FjMdDznXIl5120ia5JMZxtvJ5VH32nFQjLLLPM9z7fqoH0jTyTXgm+E7UvwL333suTTz7J6OgoDzzwALt27eL+++9ncHCQBx988HtiAme5ifT9iPNtbP+GePTRRxkbG+ONb3wjH//4xwFevpgefPBBtm7dutxEWuZ7m7OFjj33JYZK4HLNFZvZ9eyXaI1PcsM1r8ZrxtSsB40YL8kJdc6EXiTp88lljHPtFSzkGannYFyBqvoIZSh0Su5YVl99KXf9wvsgcBG+i85TwmqlJ/uHrxkzsgL8co20yLEVHyS846fex8UXb+ZH3nYPpBknx8/wZ3/yx2cbABZtAcchMwYlBZ4rCNE4UoDrQpoyfugwZAWu60GRE5Z80jwh1wVSuKzbuIm3v/PdkGkKx0O7DlqCLxX7nv0SnDhFs7HIBa+/mS984s8gKFFRAWp4kB940234uSY1GRpJEUe9ZkyuCdodyq0E5/Q0HDwJB09TQYKxFEDheax7zfUMXX81xcoqzWGXJdUFH1hb4U2/8Uu0PIPTV4ZAcuPr3sB9b3wrSJe6TYgci1MK8FEMBSUGC0FfKginlwiaGYP52Tni+Yz5gydpIKiWV0G9IE0TJibHiHcdgPnF3kiP6hW0RW7ZdPElvf/bajJ6+CAvnD7CnIihr0wUtRC+RcqMF//6b8gPn4Sm5vjHPwVFyui2bTz//As4KFQOtbBM0Whx3Wtu4ra33I6xXcxIFdFf5u6f+HHIcz760Y/2TsRI43bhr//HRxgYHKSxsEC5r4/c5KRZhK8URdTCLzL8OGIwL6gUOTpLewqfIOCW298C1QFQLuf1DaLs1xZ0VkAUReA6IGDdeedx2Q3XMPCWGyCuQ1mwmLUItaAycj5ntu9h+1OfZ9OGK3rnnaMwh0YxX94LJ2Z49vcfZWDdGm78sbsxW6+lJS3WC0ikItEaxw+wykFnGVgISmWIcoJTS4zMxzR2HuHYH/05f/Obv8dz//UjcHiB8ryhasooGTK8bj3v+NEf5eLNr8LxPXzfxRRZb0rcZOSNDmv7h4mylNVXbOaOX/gZuPJVXPDed0MYoKxmJPv2itoBGWCTglQXJI6l5UtaJUWn7LJUhma/oJkmVJWH0B3KaUJnbAyZ5oRYcpsxMrKaG7bewei2/dAw0MhZUxmmlUXEjmTOL/BvvZaN770H8oQtP/IOVl2yCXNwFAMspR1Ic668fSuVzVdDLhBpgnQkstsmMBp0gVMqQbXKp373d1l/w834xsUaCYVlcsdO/vgP/id0ChwVQjeBVHNq126wlnRpkZKEbGmBqhQMVCtEWY4OK+RpwUia8uU//ANozMFAwMLYARY++QRvv/UGOHYMXA8aDXBdvOE+Hnv8T9FGk3QL8kKiyjUSXdDOc9I4AsfhfT97P16tSpJnCEfh+h6F0RCnVCcWGEhzVqMRucRKH4Iy73jbO2BkmNWDg7ghtNwY8pgwjgnjlGp/jSCHpd1HYSZmvaxiZxtQSMbHJqhmLqvp48bS+ZRHO/TLlWwMV5AstvArAbK/zFSziXV8fK9KVm+R65zcE9z1/p/h6ve+G2yKHBkgkxbhOlgHOnmXXGnM13VnrQBmZ+gfHiZLMw4fP87c3AJ/9xcf5/DTX+m9D14F3c6pBRWq0oOxUcFmqwAAIABJREFUacJGl92/8RDMNzjwzFfAuphckOQFIvAwvsCWBIWnufbaGyCNqfWVcZVEdLt4fkioXLpxFzZfyqorN0M5wASC1/7w2xh59WZiRxMHkqUsom0y9FKL0a9sh7k6opviJhlXX3QJd77+DTA9R9+a8/j/nnicXObQmONoa5pw1Rqo9NHxNRQdXnfbLZTWDeOUQ7Iso9vtUhQFvu//n3waL7PMMt+HGGO+5fZvkXNNqqWlJR599FG2bNnCI488woUXXsj999//XT225XG270Me+lO+9TjbT333ju//lI0bN7J582aeeOIJnnjiCR566KGXTcfuvfdeHn/88e96zOEyy/yTWED2mhmWswE/uqCxVOfRj3yEqRPHmNy7j5LjILOcYb9ExfVYylOa/VXqxHhbX8+P/sR72fuZz5ErgRYCZXutKa9aY7pIacUdDszNY8fP4Pg+BpCFJVAOOi9A9IK+CglGStZfegmRAt1oAJKLLr+a5574c3bsOwgWTNRCLy5As4kqDJ4jQUlSLFYalDV4uhexjrDIsyoWYS06SXBcB1sUaGsIAheEpI1HZWQV480mJBGYHGl7vhqFkBAIyl3LzXf+IIuDNaKiS+vEHMwscvTzXyJuLuFVSxhHkOUZvnIpKQdHa4LCUs0MtdRQzTSGnMwITBBC4HGitcSkydl8603MfOWLlK+/ltsf+m2OduZYddGFHDt4gKLTQVVDzjy/m5MHRml022hZkOqUVApK5TKO8sk6CaHwMKaghIexgjhQDNQGiDsJuA4yMzgoXEdS6JhqrrGmAMzL414WmJoYp1tfBKEpBS63/OSPsfF1N3Pyy19iUCikyWiqjEpsGbIecSvFee2rWbV2Le3pGYpWi5IQSFvQjtqUV63g0L59nDh5klRn1MfHac7NsXr1Ok5ufxGhPHSrDUgqwiVrtIhbLTzpEDgOOs8RwqIESGGQWJQxOBpyk1B4hjT0Qbocm17EJJqBSpVkZhwZeBgpzoUQAlCplIlaTfA8WpMTHDt0mGR2AdIMuhFCW6pGcuUP3cZt97ydlz76UZaOjINjQWuGIs2KQtNXaFy/wlJjhglH49x8NflLB8j9Ui/hME25650/wuTMDHG3QxD6pFHEUKWPmg04M3mK9tQkaAidCqKjkVmBNzhE26RonRClMbYckhvDzNGjhI6HshqEppCGoc2XMNNewiqXznyDY7v3c15lBDHfoHnkMFZnJI7GfBseLSq1iEqVRBVQKjG4YQNxN0EbzdD1l3PVT9zNxLYvEZVcOp2UYqiGcVLsmkE6jS5tCUs2onrbzUx87llI0563Wh5jpMD4LrmjuO6OO8EvMXH6DKuuuIQj+w6Sjc6QG4l2HCrDw4xcshFVj2jOLFJJc0Sv1QzCkqc5RkpM1IUNG7jjLXfywt8+DQMD6L4yr3rdD7Bw7CRO1xDkkGUR/ReuY2TdaloTU0gEMjNUPB9PeWTSoSt643W6VkEWTRxlKUUx6eFjBONzFBaGM8OZo4dAR2AsBBXe9f4Psffzz8DQEK615AbSAlh/IXRaCFfilkOiImPy1BlC14dCE+sc4wgQhszJcRyPtBB0Kg5GC0rapXNiguZCndL0FFopWiVwjEQZQa4US1UXEecM5C4iy2h26qzoG6LdbJO9dJQyFebjOls++D52zBwlsQmddkH/YInE90k9D7c6SLeVIlEox8V4Chu3OZAnpFlGksQUM9O4voNBUyhLpiSZEigrkAiEFVihMAIue+NWJhfmMe0O7b37YHKG7tgZFo+dgPNXUKmUEFlBISWxNfTlCtf1iITk53/6fl7887+AOKG/VEaj0dKSuIbIM2gpmDozx7W3XsfxZ76MaTeRZYc0M4DCrlrHW3/pfi4cGiGS0Di4j+Nxl/boCYYuvYTu9CxhdYACSTVRGFEAmtBoSrlHaWQ1C90282Oj+N2YhalJTNbkbe//ALM6Z35yjiLwSV+9ES7dyMzeQ9T37MEPfSgKHMfhQx/6EFIuPw9fZpl/73ziE5/4lkqke+6557t9mP8itmzZQhiGjI2NMT09zcDAwHc1VGp55f1+5Ls0zvad5N5772V0dJRHH32UBx54gIcffpidO3fy5JNPfk851S+zzDfFfvVya9BZRjnwCZXqqXhqFRouFAhcK8AIWo7B9oewcphsYobFM3No4SCsg5/LXny8lcSuhMAFXPT4HAwNkUdd0AVW9MaL5NePGQm4bMvVOKUAymVQDif2HQQNdnIKfAfKIbgOwvXwHRddWNKsOGti3PO7AdMbGjv7+sr0tpIf4gmFlBIhBHGW4vs+0Zlxtu/c1TsAKTFno9slvaYUSqGLnP07X6Kz1GLlba8nl5o1XhWWEnAEsS3AkT2jXKspl0O0AC0LEAWKAtcUKNehQPQmtFatgiihc+Agl19+JdT6iFpdxk9PwKs285nPfQ4WFuivVLFFDlYwNzEF1XKvOFcKVamy2I3o6pzCVTSKBOVViIQkDRxwDJESoHNEqURSpFAJyKXpiUCLAmkLRO+oesbAGKJWk8DzcF2FTLtIpVixehVYi2staRKh4zblwMfmOX2DA6RpwkipiiiXwVqs1ZizDSplLdQbtE6ehqgXHc5iky//7f+GSo0sTcCRrNu0kSiK8JSDKAwOolesn5N9C3P2/dVYYejqmMRkSEcBEgz0V/theppuFOE47tlz4h98t4Sl18A0oJTbO2m6KSx0cCML3RRH9aLRdx/cz/MH9sDmS2GgD841r3oZbygMRZZCXw3m54i+8IXeWN65hkcYcPEVV3DXPXeDNSghqZbKpEWOGKpy/d13MvyaG8CTxK0WuSm45fa3cN9/+mW4YBW4EgYHOPLCC4wdPkL/mjXAWfNma1EW5qdOgyoQQzUoCmgkjP/vZzn9+eehk4Db8xf6dmjlKZRKYAzhpg3csnUrtiggjrh004VYqyFwMDoHX1IkDQgsr37rGyBUUAlhZIiLr70WrngVrF0BJZfMJBSuJMoSkB6n9x5j5989y+Da9bz0l39F+++foRJWIRCgU7Io5sS+/5+9Nw+yq7zvvD/nOevd7+1VUmsXCJAQQmIHse8GbMAsxsFbHMux44QszuAkk5lx4uTFIX4zZSeZ2K+T8TLGW5whGMcEBMYYgQAJtC8tdatb3er97stZn+d5/2jZmcxkgpOaDDbuT9Wp7qrTXfXcuueec8/vfJcDNGfKKD/GkmDo+dB9ZUCkY1zTnD82puf420e+RpJy5yvhm3XOv+wyLrz6akSi8AQYeY+lpy2jf/EACBvbdFCJxBQ2YRwRGcy/7lIXGJpQzLcPWrZJl3DJa0G2HXNi116QMShN2s2AMjFTKXA8iBJiqUgVulm5+QKyp50OwkRLSRyF7N+/H5RCSgmmwHFdhG3Pn2sNSd2Dpgd0ZzE8DzPWNEemkH6AjYOhTTBMEsNEGvOW38RK0K6La1sIFJaTJnQMulefBrkCTRNYM8BIHrjxUthwOrm1q2iFkivecitX3vY2Op0A28sgJajwlGU0CtCv7aaUzkCz9SM7ciJAGvPHknnq/fiHU7hCaGiWZ0le28U5G86muHolBG1ytkXRshlYu4rlZ59JPeyQXraYFhJDC0zDAsPgteeemT9/FvPUamVAcerSgxSnPlNTs1TGJyAJyeXnrb1CmHjpDFpYfO/5Hbz6/PMc37ULPI/o4CEGzr+IpUuXg5MmlBqlBaYGS4Gpf1j6oDh06BAHX3kFervRUpG2bTBN1q5eg9ddItQKX2tO23Qup599FrO7XsPt6kH827hSFlhggZ9i3ig72/8NhoeH+djHPsaaNWu45557qFarPPjgg3z2s599Q9e1MER6M/ImsrNVq1W2bdvGtm3bflR3+MOaw/9x30+CN3SBBf63/BPXLtM0WdTbQ7s8B4FPYeUS/DMX0c54tNoh7SQht/FMxMUbuP33fxfmEh7/oy+CssmENn0ti3woMJVFrTY9b/2ZaeM1PN7x9necqntyEUJQb9Z/NEiCUzf4Ar69/XsYuQwIC/yEg08+B3jz4biNCv0XbYI4xI0kbqLm1SWG+SNFoxQaZcr516P/8dZpNAla83YDx3NRShEmEtIZVKy44va7wDDRp5q1DK3IxJL0ZJ3M0h6Gx4cJwpCze1fiDiwm9mP6hYeh5rMwYimxECRJwkRtmpabUMkkVNIJdS+h5UoCU6JUBDJhxWnr2HDDbVDu8OX/8EmoJbijFV7706/CZBMqHUgVkFNlktky+XyepBOw+uLzufGXPgR9iwgMA53LUo1jaqamkzLprFuBvvBMOk5EYfM67vjDj0J/Ad2JyV11Pktuv4rEVGSBWEi0UAgSBAHCiLGUJGrV6MulKRkKt9Xkqf/8aR77wiMI38BqNUgLA9IWCQnTjRk2XHMZG266gv3bnsaq1XFJEKbETBmUunJ0KjPk8wXcMMKoBBQa0Od0U6hGGM0AkpDi+rXc8v6fI1EdfMegx81gSk0cBacSWxTakGjjh5k9Epm30AWbVuxDuwOh5Norr0csWUbUbKMsa37wcOoYF4CtQLUDPGEj621QgpSyWRnZ9EcRGWmgTE1ESPvgPo489jec/677oFyHGCyl8E1FVSjKpqLpxBAErLvoKq69Zyv3/97vUzhnPWRdsAw+8fAfsefwYVJdJTqdDo16HdMxGa+MkfTlOOOKC0En4HrgOjzz7N/zZ9/+Eng+4oJNvPdXPsKyyy/FXdJPq9PGVGBrjSPBSxLSZhqEi1YRV/7qVk7ftBlEit62oCddIu+mCaP2j3Va8LoXUYtC3CsuZ+2ll/Lol7+C0QjIGS4vPvI3vPRHD4NIQy0kb6fm191dQngWKImTyUO5yWN//jmuf/DXyN56I6zq59oHPoi0JXgCTJvjz71MMjLL3XffC5EAq0BnbJb1998JfQV0IGns2Mvs8EnyVgpHmhhaEJmCwAYz6xK1G6TRpFsBzVf3Qt6FrAVvvZnpOODo2DieZZLoCJ2RjCaz7B8chAjC9rzyB9um4gd0TJMVW7aw8ra34m7YSBIZeKks1VyKehAz15WFWBBM1UkX+rDbJlZLQ6D4ztPPcdadd5E/awMEGr/cJL1sFWFvH6Q9sObzyeLZGeyUh0SDYaC1Rvk+NBqk2hFNR9LJCJbfeSPahGarw2y1AgNZqqkUhnJAeSjtkhguLddk2X23EFkh00ETYTi0bM0cERe++w64ajNJd5q7/uNvs+epbZxxySVw3kYuf/d96FI/Y4Gine3CWLkW7WQII4GHTU++iMjnwU5z0ZJlMDlFpqtn3vpsABjYiU0mtEBbxGL+fGlqhaUlIy+/hNFd5OyeIoWwhSU0sjKNaNawlxQ52J6GtQOc9757SPqK+FrQUQaGbPHCY18nl7FR7Rr9+SymVj/abKXIxgldlRbDTzxBqSuL5YLwLKQyCJXNFTe9jfZLe6m8tg9myhBrsDOUhMuBnfsgsYhbkPgmaONH2V+JUIQWxMSQtnjfAx8mNhSohKKV5Uuf+gxTL+8A1yKOYspBh6NHBkkbKdLtCOun05WywAIL/BvyZrSzffOb3+See+5hzZo1fPKTn2T16tV89rOfZWho6N8kh+lfyk/ROGGBHxv7jV7A/zl27drF9ddf/7p/90N10gIL/EQi/tEPYP6Cl+3tQcYRlvLo7e1FLV9Da3IHrcocpf5+rnn/e/jm//NxnhRpqIeIegdcC1MluIkkNgXKEFDo5p5/9+/4xm/+IcGBYZqXrAdfIrqLJLMN+uwsvozxTYhMsKQgESbIhNb4LGLxEgqb+6g+vQvDTyj091MbSLPphqt5YvsuTBkQ6RBbayxtEKp5W5s2TlmcLIUU80/GbSkQGqxMisXr1nLswAFECAUnQ73agPwiMtognSjAAuGQ6AQX8BJYkulmd1jj/DvuZMnAMh574HegqaiZIGUEwsZw0vjlCoViD5dcdwFP7t8BYRMkhGikUEhD0HPBZjh4AhKb0e8/ixH5nHfPO9j1539KITZo1+ZIeX1csHYDz339GzhOZj5MOO9gejayEzG8fTuNxUtgssyHf/u3+eIXv0C7OQbLF3PGtZfTMTW333UXn3n/B6gfOMjjLzwLjgbL4OJbribXV2L4W9/CwqDmacSpOneURvwwPyiXYdGm9RzZswsx5VNYspj24AmWeQWSeo1UroCwA5qdmNLixTzznW+Bv4lUHGNrjaE0gSVpJxHZUFPSNjP1MjqW9BaWYXRiHKWp+FXcQo6guwAph+de3g6FFDqRiHYHI2cTYWBLjYkgNOcHPBYGVqyQnkCYglg4nLX5EvoHVvO1L/wVjJ8g099FfWIGw+7GVAaW0rgqQWiFbUEnjvHSLoYGP2oz4kAOl7atQEakcEBkIfLY+cB/YlES05GalivmFRlCz6toLQ2RwcG/fYqDT70Iho+7Yvm8fMJ0wA/ZuXMnBAGW55DJZ2mXK+TdAq9+4WugY9ZcfCUX9a/h6N5DvLJ3NxvXn8eeyRHU7kG+8PD/CzIAxwbXphkrUhJAkRgGuUpC5Aek3nIx3x87CIOvQVeGqNLC8udVWyU3j0xigFMKuVMhyP8T7Y7Pxnveiu7LsufLj2B5edKyjpMEZIwUs14Wa7LCErdIu1XDKpaoTNXZ+ZdfoXvxCq66YAsHjh3j8OAUT239KJRn2HTT1Tz9V/8V8i6XvPVWRudqTBwcgpkKX/zqX8LcLESC/oElXHD5Fg789WN4wsIUKYJWHZw0aGd+YGUIEIogDsC1yOSL1GarDJy9gdnzzmLp6pUM73qRJ//0z6EVkXMs/LAOIkXz8AGYdbELPSQyIjKh02ri5ApElQb9uTwvv/gcTiZHIUlT9yUqpUltPpu1d1zPnj/5Eq0QjHrMaXYPdTnfdDiz7Ul6772HUi5Lw0uT2ngGE6pD2slST9o4PSUipSnmu/HHJ3AwSaI2SSFH/oyz6TNd1HM7GLcSojBh8zkXcOKZvZRWZKmeHOHS3/01Xnjg97Ba5nzYO+pUpJ2i3qyDEdLKFwhCTS5lU2/V+e43v85Zd97Koaf38K0H/xB3rMH41F9Au8F/NwVMjLHvuZjuczeRyufpGGX6li1loOhxZHQvIGFygq/+3ifoXrSE2uwMyzI5KrHElfPPICwFiQmxAIVAMB8qnslkaZ8Y52+/8Hna1Rppw8ZEo4Vm5NBuKFcRXYvZt38/VMsk/d207QRiHwwJhsK1HVSksAyFNtQpxZPAUtCTcah0yoRJTLsZEaVM3Gwvod9mzdIBnpsYp1Fr0J3LoxOIwoT9f/s4WDZrr7gGL3EYGxplojELQgImngyRhkKkBGpslGf++2MYtk2n2SLXjihXfMhZZPJZOsrnPTfewjce+QqhFihhEJrz6lvDFP/wufrhg5rXd5EusMACb0J+GodE/zu++c1v/ig8u1Qq8eCDD7J169Y3fGj0P7OQifQm5ONf4/UzkX7ujVvfv4RSqUSpVGLbtm0AbN26la1bt7J+/XomJyepVqts3bqVBx54YMHWtsBPLqcCYua/+puAheG4SK35xB98Aun7NCZnCcarMF3DljnKzQ6DTowamyQfavTgPuJSPF+rnURUZJN6XhALoLiMupPBdxRqeoyjh8fASaENi3SQUIzaKMuk5irIpSiFHr42uOrzf8HIoy+huzMEb78EXhpiacfAakuaaU1y4Rlctuo8jg0fI7aapP2InDDRRpowMnAyPaTaHdr2/IAByyQfm9iJgcpl2PCL72Bo6BiLmml0s4GBZklik621mTp6nIbvQyoNqTxWCJZUTHoJRqeNOTbG+Cs7aLamKDku2Y7EsfK0168izuWhldCux3Qch96rzqc2MgSxyaJqQikW1FI2+uffR3ffGq697Ebmrj+Xzne/Q1wq0BkfxEw5XPmRd+JYmld2PA3taaRrUAzBiCJqGY3yoOdEnbm5ChRKRDMVoskZ/DhCe4r8aSsYfepZXnlpLxwvQ6JZbOXILeqmUR5jatcehr/7NFG7TdCVRmds0jGElolhu7hWCstOkVy6ge57bmRUJtjjii4M6jPjRJ5N0NXDtBKoxCaJFLbnIGtljIMj2Lk0gQVeM6FVSKNyadJGisXpEtPpCBxBJ+VgrljB7PRJ0osXE1rzUyx/dpalZor2dJlSGGNHTWbdALV8EfFcjSQwyZx1BoUz11KZmMSLbcJOEz+KwXDwuhcxsGSAmSOHMXSAoXwiM8Y5ezPX3vw2tDSYHR7CD9ooVxJkDBILTEMg0yZ0gVtNSCKFTuVx7SxCKZJWh5ShsPw2VVuiF/WSSw0gOpokiCBtssHowalLTn/4PzJ57ADZIGHVwHLmRiYhirnp/ndi9xaYOXaAMPDJeg52lOAbERgx1bDByNgIs9UptIyYO3kCufcwaaeLGJt3//vf4qLbbmXPyTGkl+Lyt70Nb/kKTgwP025Cce0Z9F21GRl0CF89CpUmelEXhUvOZ7bZAbdEZ24S4Th0koiuNStolGeQnoXMZTnzgvMJTJOg0mB6rsr0c98HbeD6Pm4UobSiLWO06RKpgHoc4GIigwQZaZQJy99yDbUo4uCru3AbHezmOMJvMHdwPzIMsVf2U/ebzO57FcpljMDHq0wRBR0opmm1Kux77RgFI0PodyhYMcJoIFWA8kq0YombLiJDA1yLc97/Xi56260c2HuADeduYvTFlwn3HSE/OI2cruIKi7ZqobMpuuoaay5gSXoxlXYL8h6bfun9TO7ajdQuixOTuT07MVSD4OQwTiaPcGxiaZHokK5zzmGu3eSKd97L6KEjtI0YSUApaNPQLTqzE8zu3ombS3Pzxz/CYGsc48ntRGoa6Tjc+v6PMDPqY5ebxI1pBDFBf5YNP/+LBLkiM3sPYEQOppln//Z9XH3vO9l40/XsP7iPse17IFb0XryJ9twMSXkOW0dkZULtwCBYDsQd7DNPx15VIIjr5I7OUf3BK8RhDRoVlhgWnBynU5vilt/5AEdPDsFMGX90nHh6FmSbC++8gRcPvETcrqMbHTBDilLT6rRxYoXXiJj1DLxY07BDLBVgGoo4jNCpNC0lCGNN7CsKmRx+q4pCEqsEyzMI7AQ9VcYr+5RGK1R27SFb6qdRFHzgs59iz/Zt6GaCGeWxyWFhgfJRIqEdhyg7QyeJqXo+jmEjpIklHGxlomMfQ3Y4uvcHhK05OH01nUqFYjPGajUQGER9aXquvox6JkXX2tMofuwDtCc7OBMB3eUmLSMgTmpkAgmHTtKSFgibvJSYaZsgjomrFUh8Rp/ZzuRzO/CtiGD1Is667komR4cJheB3fuM3MZJ//IBGGwpjYZq0wAI/U3zta197XTvbvffe+0Yv88fiy1/+MkEQ8OCDD/KNb3yD66677ifyHnfBzvZm5HUGSD9N7/oPB0ilUomdO3fy2c9+lq1bt/LQQw8xNDTE1q1b+dznPrdgZ1vgpx6hgUYN0tCxAxCQvPgq5FOsf8tVxF05UpFJVjssjR0yGrBNkDG9y5ZTtWI23n0TdKWh5IFtgFY045AKioYFKAWGQQcJJkwNH4fOqYazmVlI2TQIsNIOzJVZ2dfPussuJqw3cJVJy4aqJwhTHqTyaGAOUJYFUiP9GBMTC4tWtcmRvQfm82+UgcBBZjzajiBOucx0GtBXAs+Crjy+ToiVxJEGee1QH52iMjoFpofAwEQQyYjS4l423nETnHsaOJKpk+PU9g2BbyBCja8VlTjCNlz8F3dj2Zoka7BsST9UfOaeeQl8gzhMqCM5KX0YG4b+Pqx8AU8LXASGaYKhaTpAXzcYCXv2vYayQEUd8EOOv/QytEP0vkOgJKQNzP48a85ZB35Ap9zCn2nSnaQoNDTZOUkqMUlh4oQSM0hIYaImpjg5coKl69fRjAPqHujFRTbfeBVtIpTfoHfZACQxrVaLtO2SNyyiukKtWkFQ7KJHFqBp0LlwHeaNl4JIARmc1Su55tqrIJsmTkIS20BFLWg2GDx6BNIWgSUwckWwHNaddxnkehB2lnyuG2G45NesJRYmptQ4ygAtmDh6nL07XkZ3QmxtYCkwEo2sNHGxWLJ0gI5MsDwbtEUqFnincrxsaUAbHMejd9lS6CnRSGJCrRGei29qRDpNNpvF6++nMTNJJpMjmy9BK2TOb1KhzcmhIVZefTH1k8c4fHg3mCH0lxicHufciy+Yz93xTNrtiEhJMM15dc1sBSOMsRRk02mi2VlwDDpJFXochsZGGT48SPLCa6ixWZ78xt+w6++fBAcoZqkcP87RP/0r6t9+Dsd1wYg575ZrSS/rp3TBRoLER3sZ/FQaTIfe09ex6Y57oW8Zt7/3F/Bth2q5wqJrrpjPNlrcBQUPH0mgEkIShDDn83wM0K4gFjamcHBMCxRMD49ycO9rEIeEfgdLZIiwCUtFyNpsuuFGaqGExMVqWpR8j66KJJ3Y0IxgzSrEaQO0+zKEKWhrRc7JkbJcGlEdFmfwHAv8AHqKdPd2EdXqOKHkhVdeQJcn6bRrRLUGXWaKKAxhVT9KdhCZNDFQ6bTmlWMDfeS6C7C4DxyD0BEEpsbXErIerZSJ6GgyygbLpBK0WbF2PXltQ61BKCSxUohsBvwQmj4EEs91GT9wmM7OvUSzVWhK6CjGDh1lamyYmp3Qti1CE0QI0zv2MPS97cTEaEuT6AhqFaq1OV55ZQfOmpVwYgR6exlYsghhO8D/IG6JEohi0HD6ilUMLF2Omy8hwpDu4JRyybaYsROSQgaEoD9TIGd60GhBrQG+D0nC8N79MD6BIfX8/0UQJBLLcjC9FC3LAmEiUy7KMIilxrE9TNtCpmwKqwZAJBjpFDguSaLnWzkHSigEjhTkQ4N0JBDZDB1hUm1UoNHGa8Q4bYlIFFJqEhR+HKPFfCaapcCTBq6wMdU/fGGUQqGFRgiB1pp2swOGw+lnng1uCl3I0ULhZLOgBMd2vEx9bJS4UcVv1gnrc/h+E41AmfPpkG9mAAAgAElEQVTNAompSIRGGfOKLyVMOlEMcYydy5JyPSZHRgANfsg1l1/J2WvPhFhinsplM03+Scv4Agss8LPDmykT6aGHHuKpp55i69atb/RS/ll+isYJC/zYvIkykXbt2sW2bdvYunUr55133v+y/6GHHqJUKvHNb37zDVjdAgv8n8NAsfmG6+DyDXDxaWy++zZoGuAY7M1EyKImU/dptZrMqDop24JWGyyT2UN7kEJz+NB+KLpsef9d0JuHdhOEpOpBx5GQz0GtTfa0pVx2/90c/uOHcdptrj3nPK5efx6oJlHapqKa0Ax49o//jIf/9GEwLWQjJuwu0hQJ7rrTML0MsWHD2n50Kg2hAdIkxCJGsKhvKaPffRYiiJIEKVK0XYsZ2WEyA2Hc4OKbr6Vv0zruf/+7oGATegILh1TokA08cpEH0kLK+RsX14bq6DH2HNrBDR+5B87qQTeqZA6cpLtioVoJ9UKOZj6HGwCPPc3Jr32Bv/uvn2H3Zz4H1QRjeALbyZCEMa888zyXv/026M5z94d+iWR8Etu0cLHQQQxJjDHQxTs/9gBbfvF9UPCYnZsg01XACEM4Okqq2iEfSHqVAXHC8Muv8PL3XwRlIiKTtMiRtUokgcCM07QiiSVNColNLtBQb0ArYO7zX6K7UITTFlPNKpSq03XhOvAUrOjnjvf+HH2nrUYJAxMD00kTS4+lyzay5eo7mFMOLF7OOb/8YXYvycItb4HsMqJjg0yPj5BGE/oNLr7resiaoGI8qWm2KtR1wFgErLuA1WdeyNvu/zCJSnNi+24aU3U2nHsRnSDEUSZOMj/kE7UW04eP0ZybQ/sRZpCQlRbJvlEe/Yu/5Jm/eRTOWEEr7RILl4LvUvJdTOXgxh7d7RzlUDNdm+Pmjz1AZtUyVChRhgnLFjGjAlqNNudfeimr33ojnSiCdkwqnWNStYhyaaa+9SgjX/8qnHsGl773PjIbz4ZqleGntvHVP/4MVAOshmRloYQvFEg9n/elHKLJCuFclTiMQM+nwaduuYJz3ncX27/4X9j2538CpSJ2y6fb8cAQrLhsCxv+4EMUf/0e8DK4tYSoUoNSnhcf+w76yBiZ0Spojwv+8JO85eH/zLkPPEg91ctrR8YhMnn0819geHAY69yNLLl0IywvcutHP0L3+Rsgl6YjQAqHQBgoU0BfP6QzNIUgNq15b1wgqR8ZRI4OASF20aOVzUM2B2euhcXLmBlvw0gTq+LihR5ps4d+o4el6X5M5bL2kstYsWkDN77/XVhnr6Wddqhn0pSTCG/LetZ/5B504NOjBL/+8B/wvc//BY/+yWdY1FHQnptPz88qmmaLqqwjMg53/savQCpHx3QICnnUQIn+Ky7g1vvvZXhsBDIuZ1y9haolCfMumggcjXvBudCRpJoKpEFhySJSjZDHP/1XUOxh4Pab0IUuRgXgZSg0oRg71MfHeeXP/j84MEZfmLCqYWNONtnznadgSZGkz4ZlOeLeHGq6Qevx7Tj7honNAEkbhA8pye7/9pcMPfp13nrrTdDfx7XXX8v+V15FVarkvTQZJ00niDBtF2wX3DT1iSkO7NxJODNLHzZLlYlHGoQg7PWoGQF0Ffni73+K5qv76bIzFBKDbNPH6viMvfQyYOC2fTwJ3SJFkAj8VkDT96l6CgyTuqHQRgrcLCqShO2ISPtc9r676LphC9fdfQf1WgeyBVbcdjtn3nMnQpukI5vejoMX20y1atzy4ANwzhmgXT7zwd/GHKnRbWeJLJOOa9FwDNqGRguLgp3FChWeFLiJwNQCacwHfYeGmm9fNE10kJAvLmZssgnZbqbCNnFPL3UlydYDcoMnaH3/aYZ+8ASpdhXCBugWbSMiDCIwFIkpCe0EjBAlImaCNmEUguMQa4XfbpPP5ukp9YDU+NOzvLbtWaj75LVF0g7+IYTtFKciwRdYYIGfIX7ah0jbtm3DMAyMU82uP/z9n9t+nLiXf0sW7GxvQj7+N7xuO9t/uvuNW9+/hIMHD/LlL3+ZL33pS/+klC+VSrFr1y4mJyff0JrDBRb416C15hOf+ARaa0zXYS4OWHTxZuL+Li4+ZxODj38f1WURrV6K3v0q+bqF3rKR6ILVVIeOs9hI05EC523XEj6xA/W9XdjC4PjccRxpIevz1djGuaeBVFDvkLZymF15igP9nNy5i2JHozodFi3pY/DFZ0lsiygO6MvkaU/NkFp/NknLJ5krgzCh1Ms7f+GXeXX3AQbWr2X5TRczu30Xl739Hs686CIO7NyN1Ca1dgvOXsuKTZsoHx7BymXwHUnx7LO5733v4bXD+xkfH0HJGBV0qFXKhJ02vmkhlQnCJBAQiQTb81DNJpYwaDVmoFVnZmqS6Mh+zHQRUa4Sy4j8+efQqc2CZRNXO2Rli0honHZMerRC1jCJ0iY3fPQXOLZzD7mpNsdn54iaLdacdgZKwtGDh9GOhRICYTi4sWDm1KBh5pWdOBmPvlwG3axjBTFmGLGomMVoRxTNLLLaQUcJSawxs3nIZiknAflLLqTeVyTOCKJ6nYLhkXc8zFgSmQaxgulDR7CKPbz3A+/ltaGjHPn7pwAT6k12bX+e9sQkOvDno2oW9xF056nvHSQYqWBev5kLf+E+XvjMZ6EW4qxajnzxVcgbzBw6hlGpkU2ncc5ayuzICCYOcraCLOTAcyBb5NI73872J7+P6ESUjx8n35XH0ZIjh3YjMhZWrBGWhUgUljAwDY2dcedVcyhMJTATmzhtw0AXl/zqzzO+azcyMSh2TExl0nQF0rCIfUgWd8OaRXDxBqaffxVmG6SLJe584EMcOTJElxQcnhhl6WWXUDk4Qliv0VfIccZVF7Hpyi0M7jkKrSaMzxCcrLDcLjI9WwfDhqbP6nwP6SAmDFu00g7EGhEmuJHCRpOx01SDNpe+/W1cc+99VA8Mc/jx73Lrg7/OZfe+nSMnjhGeGCHo+OSFTdGXhFevZ/GmdUw+9ixezSdOCZAxi6wCU/uOoNsRgfKZcEyOPv4dprFo7N0Pw8OgFNe9+10MDx1CDR5m8qUdDFxwPvWJCaoTk8SDx0hnC8RS0n/W6Sy7aDOzQ0OQznLtO+5naN9BkjigO5WlU6vQtaibOAkxu3OsfvstVGpz3LX1gxz83k7i5w+wuCHIYTFrhTSW5JC9WU60GmgdU+5IKnuHGNz2A9RUmf5NZ1EteUBErq+bE3t2YhyboBuTbXtfRs1M42bzBJVZYhJKrZhANmFRGpnOI3XC9NAE4niDtkzg/FVEtRoDK5ejkBz89rc5/9obuHTjuRx69VXCOICMi7FyJda6swleO042lSV9zlo6ccDYt55AZAr0bV7PpBmjhidgTR/Lzjyb1v6jZO0UzaUFqFSgEpCVmpSZwi4UCU3N7R96N4cqJzF6itDwoRJghiGWjFGZGDOWmFIikwRkAo5Fpdmgdew4ixctYWTfXqwgQrR9dKJIpdK00fOKw0TRmJgEvwkKsr5DTExNKqRlctcvfZiDL7wCrQDdiUBG5A2bJG6SNyxMWxOGLfJZD+XHpC3QQUJgOWCnsU5bzYr7b6c2OAHLF2E2QoJ2h1yiWdzfQzlro5b1MVepMvHqIDQlqq+HejHH3OARsicamFqQGIK5tIXYuJZVF23Gt2yauw6Cl6NHRkw3W6TXr6Nn3Vqak8PEnoUfRyAFpp0mk+8iCkM0GmXMq4WwDOIgwjItdGwg7AwdIw21KrmbrsYfOopKJJlOm/5A0VYBSdJi2VlnMn3oKNSqWElIOmcjVYKpDUwNthIIbZBoxX2//CGkYzM3PkYxnSes10FK3GyKodf2Mjs2hSkccsLmt371NzAM8SPLOAZoQ2MsGNoWWOBnikceeeR1h0j33XffG73Mf5ZUKsWWLVu47rrrCIKALVu2vO72Twks/m/xU6RJWeDH5k2oL6tWq/+qfQss8NNEMDxE59hyfL/O8VQ/iYzJr9zMDZdew19/4RHaSNZcuBF/ZY6jTz1HTjtMNuvcfPutPPqVbSzDphzGhKPDWPmVRH6AEIJ1G85hf3MHTDRxXIPKiTH2mgpMi4QO9elJ9mz7PjgmdAJAE3R8yGRZP7CSnXsO4pbyhM0WpDSuMkFLTtZmWe6thWKJzVsuxU15PPXF/0YYSIxCngu3XEaxu4vRR7+HbWhQBo7jzNt0Qh+CFn6nye6jx8BxwHXAtYgch6jRJkZD2kNZLhEJZiLAtWG8SrO8EyyQzTLpTA9WNs+ii89jrjwGoYFtJmTchJYfEEcBRTK0hEIaiiVnnYZWimxsMfHKAVjWxbc/81/w+npxl/bSqtZJaQtH2uhmyNizzzOmJOQLGK0mYyNjdKVtomTeidJKIpQpKYQKK5aYWhBlcySdgEQlkLJZe+UlTDcbjA++Rlgu4zfnrWwRIUbbINVVwJcmSbXK3h/sgIk5EB7kuyAsI3p7EW6GpFomjgOy+RQrbr2V0WdeovnKCTJRBLU6jE6AmcFZNkC0bhWcOIAjNa6wMZTmwDPPQqNJMbMInzqetglqDRjoZt3KFbww9lX2HT5CxhGoZo25uRbkFMpIiOwUDgIZJ8gkJtISJeabHAwtydk26dChk05BKYfv2eCaYCoSITC0IhGQCAGmAUEbKh2Wn3U6x8plMqks7Yk5dj6/A9d08FttKLrsO7AfOm0sYTMzNcmmpTdxxQ1X8+1vPQ2dGMMwqB4bwbfL2KZJHMeAwUR1mjSagkijjJiU4yAiiYdJpCK8VAriDvVKlcrISYwTM3CyTOvkNEYcYTkm5FNklUvcaDM1OET4/GsMzz2J1ZHkUx46C34c05iaxnTT1Dplln7k3Yy3EzjrLD7wjnfwuf/wCay+Pq66cgu9jgnTk6AlFPs5+f0XWbR6GZ3xmfkcs0Rj2S6r168j7i3NH++L+zl/y2U888jX0b6g1WlQsBxa5TJJInnXr9/Hyx0fypMc3PECnBhnCTlcrRiLqpAzEStL9C5ezvSzz0ErhPIcjlcimizjDPSxcvkqpkf2gRB0ZiowcoL+VAnD7xCPT4PURFE0r/AwLRZhUjV86CnQ7SyivO8wtaMn6Ekk5sAi+q++msltP2Dwib8HU0BvL1ltsOuFF2jPlrEyAkOBazm0jh4DQ+JbGrPcoDp3Enp6sByX6ZlJGJ6bP16WLqGrdxllNLabAmJIeXQ5aZJ6mxnpo+00ceCjgw6cnCC9cjltpaGYJ6qGuJ6JlJqs7WJpgacsqhZQrzFzbAg8jxcemQ9gt900KdtFxglRLDFTJonWIBXCclDG/NRikoAiLpZngetitkIQNsh4fkB1yq5lIoh1jGk6KAWdIEAIwBKkY5eqAWhF0qhTVTF2vkB+6QDxRINGvYEvO5SUgFaToR0vw4lpopMxOadEPFODQ8fAn8VWIA2DliuIPcFpZ53Jjh07qDc60F1i3QWXMv34X2Nk06y7/GKKy5YxceBlsAxIEhLDIJXLkSqVqLQrKATKmE/4toSJlAHKNpBa0/FD1pyziaH9EZdcfy1PPvkEFAqY7TaGiiimBFWh2PPUMzA9DSpGa0lQj3Ay1qlmToEt50PoAw3LVq1k7+GD4Af4liDjeniOzWyzgZPNYOJiYWBIhWGZECtw/+GLr2AhX3uBBX7W+ElXGr0eq1ev/lFB1A9zgH/SC6MWlEhvQj7+t7y+EunON259/1I+/elPUyqVuO666/6XfdVqlY997GNs2bKF22677Q1Y3QIL/OuI4xjLsvjUpz6FlBJlGWjXJtwzivY7TDTKoE30iQr5esjY8XEiDKbbdcIkJFVr0p4sY2dzTNsGViyIpiao04acizxZpU94RGHM0g3rmdi9D7SNaMXEWpFUKji2h+pE2J7L3MgJ5Jkrufnm2zi27zBRLPHSGerHTtK/agmVE8foMou4DcXuQ8cpXbYRryvF4HefgEbAnsoUR6ZP0p6cBNMGHXPxnTczPjdFe2aWVqUMqTSlXJbq7Cwzx4/juSmMWKOqTXBcznzbW1j7jlvYeNF5HPrBduguQtrkoutvYGTnPlwsunq7yFdbFANNHQGOS9OCetZi83vu5PRLLuPokeM4J8s4+PgpgU45ZCKbmmWAKXn1wD6YmaLTDEmlS4hGPF89PT2BLLlo1yZVk5QiEy/WpL08pmEjOj6u0BRSDq6wiA2Fn3Vp6oi2Y6AzaapCklqxiJ7Vyzj7vPMZm5oCLZmVMW7G5bzbb2B4eJjg5BShiigWCoggwm5FGL4mrtWoHRgm3YhQrYS8nca0Uqw/4wwuOG8TJ8ZGERZ0Ep9K0mLT/TczuuMl2q/sId43SHPkJBuSFOMTQ5x2xbkUUhlmdh/CFiaG4+C3m4CN5aQJai0yZgZpWaj2LJOjx2k1atAqgyUpqYSsjskWHTbedCWzQUK7UiVjO0glMdIWxqIiSofg+wg3Q6fTpv+iddzy/vt5+tMPs/j6m7n66msZ23OIWtgiThvgCAauv4FrPvIBjrgK35S0nj9AodIh7bicHD+BqjbxtCJMEih2wcwcyvOwghYHj+7nqeeexSz72DIkbQpUovBljOrNQ9SGVYtJLI2vEpJijijysSONNV9IRRuFjyLJOMyOjTO85xDh2BgZPE4MHuH4K6/S3ncIW5uIKAQTQheil4bJHa2xpK3xCh7TtWkspXGkgTx7BalbLkJfeRb+Xz8FkyfY9cTfwdRJ1NQY1ZEhhl55gajZxJQxqabG6yiiyVnMagurHSIkBEHIieocJ/fvAmVBOsf2p7dBswVC4CQSR0m0pYml5tjJYU5+7znwY2Z3HyBn2kSyjchaTCVNsptWk+8rMjI4CInkmo/8Isf37OG2u+/m6OFBknqTk0ePwVwVGiFqqsoSUSRptWgRE8egMx7EPnc9+AB+tUV7YoqmY3HDffcxvv8owcQMTiQwlaIehvQOLGJy1y6MBFAaOgkjew4xOzRK2jCxVYIZJrSqLW77+CcY/P6zhCQEx45jRxKzlCauTHHPg7/JgW3f44yrrqQ9UOTk9u3Ek01ExuPtv/Mr7P3B9/D6+ml3OrSKacK0CUmLwy+9AIZFXO2w9cHfZdehvSgn4Jp33MHRl18j9jV2DG6iMOIIwxAk9SZGw8fEQJsGZhwjEgNtmITCoHv5UlpRCDImb3to20O226hzVtFpl1HagUaAPzZHZWYOtDE/QBvoQqn5gYc2EpoqQDsG0tRIYZAog6xM0TAV5NPc9GsfYf93HuXy86/izHVncvjZFzAcg0xi0Ww1CVwL6k3AIk8KI0gISyVoNrnlV3+DqSefoWWD321AX5YrbriZ4/uPELz4Kr/15S+QXtHPS49+C3vZMhrLBzg0MghdOU5fs4bK6Ch2oUS90+beX/0V9h44gN9sUMimidptbDRxIjHcFPpUPtdN776fwurlHDh2hM7oKHRCMiqFKWM6OiHSYLViZK0BnkvWS2H6AXGkKBa6CDoh+UigYonfVWL7008xOz4GtoWlDBwpkUmEsOYPJUsa6FjiWhYfffA35odfBj96gGoYmoUx0gIL/Gzxla985XWVSD/3cz8drVKf+9zn+OQnP8lP+ohmYYj0JuTjj/H67Wy3v3Hr+5dQKpXYvn07jz/+ONdddx1Lliz50b5qtcoHP/hBdu3axUMPPfQTV324wAKvhxCChx9+mCiKMIRAdTqsIk/VMuk9fyPnXn8N43/3PMHhMXzTQPd5MFRmyXCdeHyStmcQaEn7wAgXvOsOjtQGoVGHdkTJsEmiGMNxGRkahTiGdIY46NCdLxLV23iOQ0cEtGVCOrGISik2LDuDw6/th94iScoiHJ+jPnUCSh5+pUkqV6RRr3HNe+5m85lr2fPIV3GcHOHsSfxSDj15EkKJYQoOHtnL1L5dRNUGQkmWZApoIcllPaZGjpE0OthWGumlMVafRvfmdQSeZPbQUcqHhiFJoLvIkrPWM31kBMMwUYYgHRqY2sQyU3TQkBJgSgZ3vkaXk6c8eBzKdVLEND0bchZtw4FSAS+VwxqaJckI8hvO4oz1GykPj+NZJkkmxS9/6g946bHH6TLzxH5ETRho38eKI4RjkJAQxxKVQFsJVE8XOA6XfvRXGNz1A8iZ3P97/55n//LzNBoB4fFR+jJF6nv20zgyxHDUglf20LVoMZZnMVGfxjYMMtrE0CaLr7oMxmfIRgrLdmn5PkGzxdTRQVq+T61WQciIpNNBn5hgqjYNSpJpRRRizWrtMRiXSUSF+kSF/sCmYSjyp69mtjIHZgYyWaJahc133MXEriMUhENH1TEqLaRnoR2NsjRp5dBp1wmThIpr4HUtpl2ukQ4STJ0Q6BBZ9Lj1XfczWW9itRSKiNr4MYYnTmIuXkrtie8xV2vjApEMiYMmpF2anTZHDh6GQwdpzZUZmA0x6nWypTzVdh07kijXIGklXP6en4d1a6jPnMSutbFMgyQMcSODULWJHI3MpyFtc8NvfpiLfv4+vDOXs/qCc2lmHBrHBiHWeMm8xSUyDaJShsQBIp9czyKCmTKprgLNxEfW65j1FgNGioKfkJgS//9n783D5CjPe+273tp7nZ6eTRqNltG+skgChNgMCGNjjI0NdoxwvGDwGm85FnZyjr/4OFck4sTOgmOIEye2Qmx0vNssQiwSEhKSBu0SSMOMNBqNZu29a1/OHw0kGPIR5zi2Q+a+rrpG0/Wouqeruut9n/f3ex41wk9HaIGJqWgMKw4TXpFsOk3Ci9BDgdKUZnpXFycfeQyOn4RaDcWpE9kVstkEceQRWxZ53SArVGJXEIchoVXHQCIpKXiBTywpRKYOU9ppXXQOl666hOef2g4JDTIpsG1MIah7HpIpcMtVkkYLCcnAr7u4CYHdplEyPVBD8FWqu49AyWfJ6otpzufoLQ+hTs0xvGsHBA4ZYZBxJbKKgaIZ1IplZCNFnEzjZkxi36J55UpUM8nhnTuoZjQouUzsf57S2DjoGkZThopwwXPw9/chexZS6KOEYEQKCdRGEo8QJQItCnGEQjGVpb63B4hIBi5JHWrVAjRniP2IC69cw4KF89i74wkYGoFQxvZ9SJqMVItc+6EPcnjXPtSli7ni+mvoP3YIRZGI3IjLrnkLT/YcwTq8j+TCabR0TWHg6BmMfBtEAkPIhL6DRIQgRIsjlCgmFj4iBhHLhJLAUWQ+/oV19PYepzY2Ruw5+E4Ahs477vwEx7ZuI65FSLHEeKVMamYXnuOAbrD4TVdx9sBBQk0j8F0CmYaKSZIhViDWkMMQO6XRce3lqC1ZhvYf5tTO/Rzf2UNcqSCbCq4uEyYM5FDCcCLiUgUReEiGSkhMXK+TjmDs+aNEWQNfbzRSkBwYfHofiZYOHt+1jUM9e9BsB79Q4MKPf5QJBB3tU+j/yQNIQscvVaG5ib2n+/CHBiCbRiqXwfEQfogPjSLcrc0se8fbePQH93F6++NYZ4e54b0f4Ln+k1jFcUoiwo5D9GwKacJF62zHr5ZwfI+skafu+TiKiuO66JGKriapaqKReEuloFxBFQpqHCAREb2QdAsDUDUdRVf56Mc+RoyErL6sPxtIk0mkSSb578TGjRtfM4m0du3a3/TL/DcpFovs2LGDvr4+enp66Onp4ZJLLqGvr+/f3IrF4svmxb9uJu1sr0deZ2f1nnvuYcWKFaxYsYLbb7+d7u5uisUimzZtoq+vj3Xr1r2qSmmSSf4rEAQBYRii+jFqABU9hLLD2KOPMzYyBHKIFbhEVsTyr3yOnk9uoFAYoUnWKPoeetbALQRs/85GSIXopkFLwaUoe1gKqEYSKZCQps8kSgqY0Ur96GlyegLLD1n+sQ/Q8+MH8I6X4eRZnhh5GOoRLGnlg3f9T/7uxtuQJmxSuQzVZoG1qB0qPj/9oy+jNaXRCAjGx5hy6UW89W3v5J5n9pORZJxSkUgNCKwy+WyeyniJQNUYKZYZOv0siSmtqK5CpGdZtHwF6srz2H3fN8EfgxNjyJZKqJi0rp7ProOHwbJwzRRYJYIL51I+eQptqE5ONyk6AQQCpVZl79f/CS2pY6suE4pJuq5SFQJClRt/7yOkQsHjn/8Kp72AOKGgXDgPa8eTmHUfzQrZ9NV7IVCYsC08LcS8/hLKj/eQsFxqfhVUCUVXkWwZU8tQtRTIZDg9XIFYB0njmx//FFKulXJfH21NGfyzg+RNBfDQ5QyX3f4/+O6GL6E0maBBRYDmQ8m1SExtZiItyOoGriTwXI/stE4kGc48/zzZbBq/WCFrJimGOtLhMmGhirtoOsZ5S3lm82OIuYshqBPu7GNItfCWdTB/7Q34T+6huOUg7/n0Z9hRPsOC1Zdz5Mc7kT2PrJlCdRWqikFyxXnUTw8ysn+AXNMsKuVROFuFE2MQymQ8iSiO0YTK6KmzjSLEVZtwtIKrVNFTBuK5fuydhzBz7VQO92IZMq5TIy0E1SBk7V1f4Yef+gMUkaO8eTeakqasBVTDEiQFXsWDpI5WkejZvA37gm6ojuGJmGTVxpEgEDFm0sD2HBQ/IHACNv/Z3Q0RglOHWIW6h4oCUghAJIGtw5QVi+leupDTvScZ+Ok2OppbqRgRoWM3ugVKUHIiNCtCIkYPwHcjvJxKoVIG1QcjiTrh4PsediaJO3SWwt//gC49Qz0pY0cRnQvnsnjV+fz4nnsABSOTxxovY6BQlW1ImRDKyJqBN1GkNdkGhs6pap0bfv8DPHLvP/Dw5icgKXPl+26le2oX3/z053BlE11LY+NDUuH8T3yY/T/Zgrq/D9dyWfrpD9GxbB6P/PN38X7eQ2dqFq5X4/ADD3Nszx6oT3Co5yDp9mlYhQrV2Ca/cB63f+TDfP5jH+MNX/gIO77zQ7yRCUhJtL7lrUxRTXb9w/chA1233sTEd7ZQKhRZ/dFbqReLPP/Tx6G5ocbJl2POBg6BKqGhoIQBUewRqzK+ADUGEQoiCZoyKfTWLuzTA1RUj3pkkQ417N7TnGIQCNYAACAASURBVBjfTN/CXkQUwaEjkE6jpZKEVYfDD2xn7u03crRWgarH1csu48Fv/R2UKgS+x5s+8mE6Zi9l2wN/Da1d1Hce5MneQdo/8FFGvv8jkl3NnDl6AF1rtIUPRYwUR8gxvFia2RcQI4hlwdf+5m+wT52AVJKgUEYSCrlcC3t+vAVqAhEqhCLGvH41mY42mosWAz/ZzsxFyzgifkYUq8hx472IJQgjBSVUUUKBLwcQBUxd0g26BKcnIFJpqXrEps6YUwddQsxbQLTnMO2yRj0ICJp1ynEBWcmhanB482bUJo2EAsFonQCHE2PbIQyxRga59vJ309vbS+9wEbFoPoXBUWpnJ1g8pYuBUoxq1/ESGsQS565Zw34dOPQsqUQSHJcWM8mxWgV0HebOot8rQrG/kQwbdDm9/zBMFGHedKgUYaKCJ2fJp0NGNAEJhcyq1Yw+vp+mWXNYdsXFbHviUawRC8sNoR6x5MpVKLrg4N69xOVK40y8UJMpFICqU/FsPBEip3TEC2dLetHNEjHpaZtkkv9mRFH02kG/xfT09LyiUPZrFc6++uqreeSRR/4zX9b/L6+zdMMkQMOy9jqiu7ubvXv3cscdd3Dvvfe+9Hgul+Oee+75rW+BOMkkr0YQBMiyTFtbG1EU4dTrJIWgLDxABtuDwQG0rk6s/kGQBXprE7Rlqbp1PN9DotGK2SWGsSqaBXknQg9jfDmEhI4f+qhCR00ncfIG8+Z28+z+XlJCQ9dMPF2AoaEbBm5aR7ZBlTR8VeaBnl2gRRgyCNuFfJJgaga1M41/4iRerYIug0JMYWCQfTuegrqDsGQMIuqlKghwi2WUGKLQRUnqBHaNhUsX0fPgdpSOFKnWFoZ8F0pFqI6TU1OAixV4LJjRzfS0Qc/2HhAS6vTpzHjjJRzcreGdPUDOlxqrzmFEBwr1OET4EbYm4WsyHXWFsCYRIzhZHKc1m21MYoVGVLE4XhoGJUDEgqZUmtKps+BG+HHD+tZ2+Xmcenw7rgIimyGKfAI3RsgqsjAaWYn8VKhFKMUIM6tSrfjIko2hq+iqRBkPTZexI4vgqV2MR2kMzQRJEMgQyhFW0FCKnep7FrUlQ2lkjNkLl3Di6d2Ua2UQUqPYeN0ihYwRyhi+il0JmBU3MaSlGM8l4KpFpOVWGKtQFqfxAQKb3ad6wVSJwoi+oWHk2a1s2vEYkm7g2y6hE6EKDSXTTOvsOdQTafJxO3bfIJi5RnFiRSERyShB49oL/QhMmZPP7AdPkEch2ZJj/OwEbc0GaiThTpRA03AsF3ybXLYJLxb07NxJS6zhFAtUvAhDiXDSJsXYhqYmsAMgREHQle+g2j2DIUNGNRNobr2RhFAkRN0hHUmI0CdQU9QrLxZKTqJW6iQRTNGT9MUu0DhdCCCpk25ppt12GVBUcHxst95I6mQVsG3KUoQEZFzQwwitDp4sY6WbkZMCaWCEvJlk0LexEhFICmCQ9TWqUUAQhMxZuhhLUSGRgFDCUTUkxSCSNJhiggGMjOCpEoamU6gXSMZ5cAM2//Cn2H0DoCmQy1K2amx7+ilQZWwvQJFkIt+H+TMY6cpTzZhkjSbcWonZHbM58NwAHedewPDmo5wp18jlFKhEJJCo2iGm0JGHi6QVlZJkY83IsrswAKrAn92B59kgBLzxcsxpHZzaexTZFYTTppJtbeW044Ip0Xnp+Zw5eBSl4pDonoplFfHUmCCOiYQgjiAkJoh8JEkmkIEIRNw4F8ePHqZjaAzVqiPaVJAD5HGPVgR+LBjvfRaEjGqm0bM5/LpP5AWkdJ1p07o4ZZXBzDD+3CkYLSOZKnHscbY4zs7ND4GsQN1FcSH2ZVoWLCC6dDViZJT6wAm8sEYsASKCWEDYcKLFLxRqDiVAkrBHhiGbQYQRiiIhqzrF8SKFvTVwQEXCNRTmvulSDj6zn6nZJJJp8vBDjwCCyAvImGnqVrlRCwiBEgqUSKZOlUyug5nzupEkmT1xo9tjkpCKF6GnVdzWNJ3nLOL0M0dR4xgFqMYOqDFhbJPSEpjJJEXdIvI9Whzw8SGjMVYdJzVrFlt/8gD26ARTm5oZKldJCJ2ls+czuPcQmhMieS5NzTlKiSTnnHcuR8/245WrBL2nUcOYwHIauRldI458quNnwVQwJAO37HBo715wXdRF8/ArJdhziPyUqdB/lq4lizjdF5PobKeiykydM5tZ5y5l2xOb8XQFKYwgCJg1cyYnB/uJ6vWX7pex9C8/A8emtbMLx7GwPR9TU5F43Q19J5lkkl+C/+o1kZYvX/5SQmjTpk3ce++9r5kgerWGU79OJu1sr0P+6CFe28523W/u9f0yvCjv6+7u5vbbb+eTn/wkV199NZ/85Cf5i7/4i99oVfpJJvl3E0a8MGsglsAFbEWhRsSJ0WF2Hz1K7LqkJI2aImB6O6y+CGbP5J2338ahfbugNMH443sxJgI8RSJc2ArViEBKgySRikKEFhFWHAQ5ytOmkl9+LnZhgkh4+E0hOVlmxrjPQGkcS/aQIofRYydI+AqSF+A6LpYUk5gxha5zlmCPlrFGywSuihtG4MjEY1VyXS3YgwOQ1QjDgCZXRXdDzhx5lvCFVXs5kYBYollL0xSbSL4PqqDm1sHQuPK22zj0dA9x3WHg0AEKe7aDFNB9+RVYsklpvEqYyTAwcIKzB3aAXwavSiqSSV2+kly2jWlPDlGMa9iJEKo+rV6dcnuGsl2k2Q6x9QSrP/p+jh3dTZA2OLt7Pyef3E1T4OOrdWqlQaJ5bVx84UWM79iLYtfxdAkvZ5DSNQIBXdOnMrr/GFFTnsUfeD/T11zD0JkhsBz00iiRHJBMqXR3T2P0wEHswCERq0wphliOR9iUoZaN8UKZXJQmDE1OHHsW2Q9Iqjp2uU4CBTWWQVbwi0UixyF1yQq8S5ahBCbeQBFkGX1mO25lgqamDKnlcxjKCsREFdtzsLpNrIREdvYiyk/tRZ05E290lDnvX8v43gOI5na6Zk+jcOQIp48coLBnN+GWg6R9gSO5qK0yFbtK6LuUnj+ONquT7LI5FAqDLLvpRkZ6B5j61t9h6hsu49l9O2jKZaiViqhKjKtLIAS5WkwdkA0VLwjQFBlZA8erQcqATIKyabD85hs50HuM8qlj1Kc0gSthVz0UJUfdjsj+zg1c+unb6Nv2FGrdY7j3ONWe/VB1CQ0d23JQFIOkZ1ORwGvNklu2GG/GdPxyGRQB7S1ElQKBLrCiGnbsI4KQgJAopVI7OUzvg9uJ9g5QS5mo11yIrRi0tM1l+eJVDJwpQtKEjIxLiK1oTAtSBC0drH7Pu0hfdRGDB44hj9kIPYvdFjdUOBJkxm1qzgTC8zl5vJcTew4R16Ap045TdBvnubmZK7+0jv6RMThdhLJFh5rA9utEfogcB3QWY0y3ghE4WF6Zs0f3MHH8KNQD1MCnOd9CzbIQXVMZHzwJhw/gjg+Sajc42LubUlbFNhSWzZxDbWiAsDpCIKJGC3UzRRBJzLz4MjxVo15zqB94jmf37IW0wtCPtjW6cTXJkMpT/ueHcE+NEocujBcZ3bYP04shkeDQrl2cfvYETkLhkhvfwckd+0hOnUUk+SSKFk2BihAJKi1JAlWiNdZJVB1qRkhoqhAmUU/2Mi+V52SpAM0tZNwcbYlOgrJNRZVIvuUGVnzgNopJk+qRQ5DS8CKHfEJnvGcf9tApRgv9zMrlcIbH6Ep1cuzwMeTZXeQvW0Ztfw/5mk8u0BlzXN6y9iae2vcM+BpIBgQRXHQujBXpipI4dRsvlSBOZgh9r2Gxata4/rbbee6xXah6giCTJLLLYNdJp0x0DTx8phgJhg/0Ut2+FwIXdaSXMKyD79BpC0bMgCAp0yRSxE6VXC6LcCxKocPYgQGOfu9RglQKls8m1kzcqo0exKx++3uY372II089SSWXpGrbpH2d1jhLvWiTSrcwqqu0XHoF5RMF0pGKq4YolkVC1ymlNYJkAiohsyKZpG9z+JEfM/r0E9TPHKc9qeC7FknTpHZ2hPLIKBdcdjGm7XDq8BG8lMFY5EBLmtXvvpHTJ3qR3RCOnoaaSxQ2auxhJnj7299KwS5TL4xw1RfW8cxjW3nPR34PX+gM7NlHVC6xYtkinnpkM7EEzugISkeaUCpQeWo//eNDNKcyxPUQxcxRrHp4nkHuQ+/GLlf4+J/8CU9s3coXP/0pcH20F4qcIzWsdpNutkkm+e/FP/7jP76mne23uYu3aZp0d3fT3d3Njh072LFjB9/+9rdfeuzVtt+klQ1el328JkH9d2z/RXhR3vdipfoXC2xPJo8m+VWyatUq8vk8W7dufcW+/v5+3vzmN5PP58nn8yxatIi77rrrl4/7hUUSGRAI9h08BHULNJW6HEAYkps2h6sWroSfbOd7d/0FjI4jJTSioSGakiZEIdp113LFZz5FGLrEaR3X96irAjutUtBkrnjH23nbjTfCaBFtrAB9Zyls20vvrv0g+Y3Va89FTFSIi2WcwIY4BrtKbfg0pcGzjD28hfNvWwudOW5c/0dQc5CtgImtO2jyJMR4nYVSjpgYy3eI4phIEXhpnYoc46gyRdvGliWMdBNWtU6qbRoEMg/c9yNwBRk3Iuf4ZOo2ODZ923eyePXFkMvQvnI52WwWKiUUL0B2Q/xyhaP/dD9FCQ4kbHwtAZ3NsGgKxXSWulWCKTmibDPJlnbi9izS5RfTdvkqqDvIVYtI8htdkdIm3vcf48kfPYynKDimSe6i8yARUCtWaC4LDv3Fd0FPcd6aq+g7fpLjzxzjnIuvxLVKJJICE5dK/3M8/fd/jxr5IPmEomGdyhhpysUai95+E0rnDCbsCM+tsfgNF+PiUg1cTEnF8AVKJEgEEU21CEouMxMtSFWHat/zaIkkiVye1W+7DpbM4WxKgVyGC668FMPUiDI6cy9axcUrL6X8jftYdf3bqP38AVIz5rB48WLwDbwfPE7v1++jfayONlqEUgVkh+jtS7nkT+7ArVZJ5ZJQLKCgcPWsBZz5+cNQLHDwZ9/n/PfeQnv3dGqBC/Pm0leuQkseXzEgEmA7KEqM4UvogYIcKcRSBFJEW3OWuFIFLyadbCbpy+RbOjBuegtX/a/PMOv9b8ebP4tRu4wxpxtVUtjyjb8hPa0TKxFCXof2Ji788O/CBQugXcPLBBSbzYb4p+YzNjDC6tWXQr6FBWvXcs0t7+atn7iD5gUzqEUeUiChIlAjFaIkBEC+meGuPJwzF3HxebBqCeOSy5ObfkKiBlPkNq674XdJz18EQcSZ0EaJZTb/4/d45m++DaWg8Tl2PfJzl3Pdez/KzDlLiYBK1qCeUbFljygBTMkhTW3hE3dvgNmt0JXGjyMYGsfUE7Rm8kzYFlFzM0UlQOqcwonaKMEL3xVaEIEDOGAGDQFTaaIEQuOqcy+GZ4ZgwkORQPVq0DsO393KgiNl+h7fSX10FI2IZkPHVF4QoXe0MmfJImJVRpcUhB+T8GIYLdJUrbP0wot500c/Tma4jsoLiRYVWtJ5zCBCRD5UKjA4DoOjTFt+DsIPwYfhkRFqxSqqmsVHoW4ojdplCcFErYJEhB/7EHpcduuNBE0p9tUGifMKaIKV772ZgbTMSFIiuXQeb3/rDRw9fISJ3Xshk+Hy97yHqYvm07PpR4zu6iFNhFIpUw89vGyWPlNAeyttRoLhhx4Hx8WWJfyEQnnrY3z7f30edu/kvHPPh1KNWW++npa58yAWFGpV2lqnEU9pIyyVG53WVAXmzeXQrh6QZZxalaayS8KOSXuChOMRRR6R77Dv4S1wpp/VX/g95AsXoNa8hrUqoVHGY9kHbkW58hJKgY8PVF0bWU3BzKmMP9tHNhDg1Vl62UXIHVkCPUaSYOt3f8D9f/o10DVC12okShMJhmpVzNndjGGRuWY1tpnGTzZRUgVVQ8bMpLAsCzybq977LtqWLWAYl3HfAuEjSR5RpYhdKWEIgVesYoQyJ7c+xYN/9y0OPfQYsqyhRCpksiA02lPNMDBKeKQXM6cTqA213Pw3X0v70kV8/2tfZeTHPyU5vZvDj24DReYbX/oyB759H37vSUxZ8OCmTQwdPkatb5B5b7gSyUgiPNDDmHQpwBkYIbYiCrUq5LJwznQmcipMn8JdX78bI51sqHH1Fwa1ccPOEv7C7ba/v/+le/KrsXXr1pfGAPl8nje/+c309/e/Iu6uu+76d8VNMskkv36iKHrN7b8Kt99++0sqpJ6enpft6+vr+028pFdlMon0euQ1VEi/yrN+7733cuedd3LnnXeyadOmX92BX2D58uXkcjk2bNjwKz/2JJNAY2C4a9cuEokEl19++cv2bd26lfnz5/Pggw9SrVYBePbZZ1m3bt3LBqQbN25k9uzZPPjggziO87K4VatWNYKkf/kheDGJBEOnToMXNCwXmmjUrnh+gJHd+xuTxudPgxuiEOOJmNAQoMpg2ZS9OkxrRUxtJZHKQc3BIyZIa+zfv5cdjz6KHstkgIQrkAJBzfMgnYTmhgw2DEPCMGwMuj0PuaMVdI2JnmegKYOU0kAEOFLYKOxLDJpO3siQjGVMVyISEr4mGjGEzF6ysNExJ/JRskksQiqejQIobghOQPFoLwkf9AC0kEYdkgiwLJ7a+jgoMlEU8e6bbkYKGrlvWYIwiGm/+DKmTJsGM/JIug5CZcrVqymn5IZfyQsoSS71QpHjR4/Rks1x6SWXgGmgqCqSLPA8r5H8yLWRcAROCMXAo3nxfFiwBCQZkclAqICmYQgJpVyl8uAW+nueQVZVrNgjkmIMTUXPNKGHAUoUNdQecowsy6ixRFYYtHZMQ27OQsZk2cUrIJPEl0ExTKBh7VFCgRKCHAhGDz/H+PY9UJjAk0OswVP0DQ401DGhw+m+AepDYziOgxuHDOw7wtHHtkMgOG/xUlBNpEKF/uPPQbXcuPCKFZJuhO43bCPogopw8OSYJj1BFAHJBJHj0b97P7IwoeZDx1T6Bvs5+dxhTm55FAaG6VqyjPOuWoMdgiKppPQEfmyjRI3uSUokkGKBiCHwfVRFJYFC9bl+DjzyBBNbd+KcHKC/7wR+k8HVH3gXZDSc4gjvuOJKqHlUjx1vnCPLAVmQyWRYuvI8ctdcDZkkKDHCgyY1QTg0wua/vgcmipzYf5gTR47yk2//Q+NzKwFqEklkMI08F62+inM++AGWfeQ2mD8NZs+iOdeKvqAbjBipsx3P8zh75BiPbvox1b4zoJvEqsrwqT5QJfSOqRD65Fo6UdJpJg4e5ud338PJ4ycYo9a4mJWGBRFJhuIEkRzjRz6MDIMsExdLUKtjVytU6jUqcUDNt0GXqAV1SAjqQsZHQCwQoUALJBQgKSdRjAREMY/89AEYLIAdocogezG5MEEuSvHsA9upnp0Aw8B1PaQwRA5DiEOSCZOJs4PUiwVEFCKI0CUJ3JCUkSWZSGAEUHl+AKEqQIjZ1Um9UiUQ4Etxw4LkB+AFBONFevfvb7TQqldBCMpEFAix8CFp0LnqAkJdxpclBBL4HkKXqTpVbICkSXrxAqKMRjm28ROC1tZmeh7bTOGJJ6BcBt1g4ZSpGH6IoRlk9ASapCJZEROuSxBYTL1iJUyM0v/UHjh6krxiUJN9ipLV+P4cG4WmLCsWzwcZ5NAnl0yD7yPkBKPVKmve/c5GAqnu0bpoEe1dXZzcuQuhNfx4qqwAAgkZw0wS0rDV4nmQTNGeyxP7IWEEkmaCZhCQYPW1b+ScCy4kjCN8BF4Q4BsK3asvAkVuqJ4SJv1HjlIYHMDzLYQaIjwbajVwHNoXzEdPJagENmE2xfQLz4NcgopVoXLwAHh1anYdFLnRtVARYBqkkylCYkqaRCVyQdOIw7CReXFD8GPqrkU6k21ct+NF8CNSsoYWxxgBUChzbNeehsVVNrDCAIiYetFKVl1zJZdfuwY8BySF+oFj9D24pZFsHB6CIESRBIHjARKiKQdCJZFrZf68JZg1iRIxvqpiIbCkCJqzkNZhxVIoVWFwiM62DuxSGYD6v7K9vRqXXXYZhUKB973vfa/Yd+utt3LFFVewa9cuABzH4cEHH2T27Nls3LjxZXHr1q17zbhJJpnkN8NrqZB+lXa3fz33fVHk8Kuku7ubq6++mjvvvJMVK1a84rlXrFjxW5FMkuL/6ibCSV6B9LnXjolfKaT4pejp6XmpM1oul6NYLAKNIl/333//r8yn2dfXx80330xPTw/d3d3cdNNNrxr3ot1tkkl+Gfr7+5k/fz4Azz33HLNmzXrZ/q6uLgYHB1m7di3f+c53Xvo/1113HceOHePTn/40f/7nf04+n6dYLLJ+/Xo+97nPvSJuw/r1fO5z6/7lwFJjzF4o1WibNg2CEJQYwjqmlETYAhUVXdKoxmWSZoKqX0JrSVEpVUFN8q6//DLf+9M/B9vhjZ/4NA9/Zj3yebPIzuygsPkJ6MjB8ChGPWKu0kxJhYJtYadSXPD5O1i8YDbffd+HiSKIJRkklUBV6V6ymKaWVnY/9DBkU5BPNZQGIkAXGdziBB1XnMfEE88g0jotVsRYHOKlGwkmKZPks59fx8GDB9m88T5QDQyhIhyXpiik6AQohommJFDtADWKiKUQS/Oo6I1aUcQaGE0gqySaTKSzfWihh+9LuCTwO9phbic3fvajPHjth1HOncEFn7qFRz/7v+msCcbcEl5KQJxm/lvXECU1SuMlxh7bBXWbFkOlHFfRlnRzzs2/w1O/fzdmSx7b8GBhO/PMGQB0nruQJ7/5PQK1AuOjSHoHqdDAqZdQkzaxbKFLOnEoE5d88lLEREJQMSV0V8OsC5KZHGeUCNqaIAyhMMy5N9/I/h/+BKpV0pqJVLdRURCSShTLJJNJBifGiFpSTL/2DQwcPMq5sxezvzbAnEsvoPdHP4AhF0lVies27XNmM/LcCZAUhKwR5VXAgONDsLgDxsssXLGcWr1A/Yl9RFJMyYjJSQmKwoF0kqbhCpWcSeS7oKVoqkuIUCByGbwVs9GWzGD8Bz8DKQ2nS8y+bg3t3dPoeeoJ3N3P0KzIKFgoYTMRCqEUESg+gQgaq4BuTJORwau5pIw0lgpjegWaNLhqNVQc2LwTcnmo1hGqTrJQIxlIOFFESZMhdGB2J+esOJezz/cxuv8oHYFMybUx0s2UJKmRHFMbsVI2RTw2Cul0o8i2mYRCBfQUzGqDhTOgI4vmJfGO9MP8Zt711hv4wR9uwD872pgIhxYkTKhZNNkxpXmdpJYtpNZ3mulNrVx/41vpGxzgwW9/q1FsuFxF0hMYY0VkWSZwI3QjRaRr+BI4NQtpSjtxuQxuBWSZrKrjWDauISF1d3LBmqt5+v98n87rrufM33+vMbmXAswgRA2hRU8z4dQoyzKkUxCFkG4Gu4pRGSERQB2TSE4xf/UlHN79OMgx+cjClAT1MKDo+0jZLLHtNKySSKh+gC4LcCMCWaPS2Yqum4iTJawUYMTMuPB8ig/soKJ5EEmkA4EsiUbdoLROtTyBoRhEToBn6OBGmB0dJOZ00r5yIecvW8bGz3+JbKVOFLtUhQTJHC2+j7CrjMYOtLeDozTqwuGBBsQqsqSiSAJ3dJRUrhmrWKI5laJWLpNOJIhdnfFpCWbc/CZOqTap46NYWw8yf6yKp0Q8n6lBIkm6LKj6Llq6mbldczgycAq8Gu//yz/hO1/5K7SzZawoZNH/dwfPfuGbNNvQdfNV7Bs6hnjyAFGzijRRIzYVUksWc80ll/KDu7+BpBrEjousmoReiJxMEToeGdmnIsWNlQPfgCvmQVcn/PNmiGU0DzxhcfWf3smOP/4WTFTxu5oJ/AKSGxMHdZKuT2xD65QuKiLkg7//e9zzd9+kOngGmvPMv+XdnKmXqQ2PwLYDXHrNW3jyuxshqpIz01iOjSsimNEN/cOQN8GzaFs0n9E9e9FCnZyvoikGpVhQleJG8sYtofkxerVGjI9QNUJdw3I9TJHAcR2iDg3MFB/9s7v5+UMPc7r3WaKnt5FRdTRbhlDG1WOCyCVhmFi1GkY6Q02o+EEAHV20LVqM23sG7eBuxlpUOtZcyfDEGOdfehknDxyjsGsnc9/9Lsae2Mec1SvZu2sHGdfm9J49pBW5kcyUAASh+Je62p/5zGf46le/ykUXXcTOnTtfdn/funUrV1xxBYlEggceeOClRaSNGze+ZHuJouhlcYcPH35pnPBinKIojUWJSSaZ5DfGLy4Cvxqv5jb4ZXjRHVMsFv9T574AGzZs4M4773xF8exNmzZx8803s3z5cvbu3fsre77/CJNKpNcjvwY72x133EFfXx/3338/hUKBOI5Zv349W7Zs4c477/x/f4IXeLHV4Yv/3rBhw6tu/xkqqEle/1x33XX4vs+Xv/zlVySQAAYHB1m4cOFLCSSAWbNm8fOf/xxofJn39/dTKBS48MILX0og/WLcD3/0w8aD8QtbBLIP9WIZNZbQEklwfJKRwLfrOJJLTXKoah4ePom0QZOmY4+WQVPJh4LvffoLcHYcTJMjzx1HQSOMk7zh+nejT2mHSkMNoczu5JDuUsyY1E2dSJM4unMvmzd+nyiIEUIQRCFe5BE4Ngu6u3nXDdc31Eoh0DtEq9IEvopWtkgkklz37nfiawFuVxNn5DpKNgm2h4gk4qFR/varf8XxZw6C7WPKGpHjEUtQV2IS6RTNmSxepU4goKZBVQdLbdSLUow0qTnz+fCG9ZBNYRXLyJEgcsD1Y3who475sPsEex/aSnuqhXigwKP/449pDpPgOkyRs6TUJlRD5blt2zjx0wcZ23cQEgYYGq6m4HshsdB43rNpfdNVeJkmULLcdvsXOP7Ybo7vPshwxSbICcAl2d7C1EhBL4+yYsoM0rqOHcbUXIfQD0ihIGKQ4wiEwNXBikJMTSfjSlCu0v2GS0kvO5f9/3gfRBFKMkXVquIogqomcMsUwAAAIABJREFUKJiCiZRgoDJBvmsaVCzWvPN62lcuov/YEZioIlUdGCqQL0E8PAYphcXXXkZLSztT1BSK54GhQ72CLkuoI1VS9ZD+XXtY+ZarKbQZlFp1yGmEVolpoUZb2SPd1koUO6jzZkLkEjs1sr5H2vKo7NpO6/Q8RDbS6DC4Ib5ukJozB3esgJluJmmmqMtQ0RTKmkrZUCjrMlVNUA8cMDUkScKUZLTAJ1GtQt0DEnC6wIfeeQvkW2F4FMnzkKoV1HyGYb9KaKoIKQRZYnpLKwc2/ZjRvQeh7jMiBzjNKUpeke7lS2hfvhSkCFSduFBGVxOoXoSxdA7v+bs/ZtVXPguKBc/30x1prJl9Dt4PHmLagZMYD/Ww7a6/wS+OQ1jllj+5k4s+/j7wLSAmq5gwUaL26HamPV9kYvsz3P2l/82DX/1L2uwEzScqZOsq8dgE511+Gd3zFyJCCTWWqJaKqKYOkUc8chZZM+hoa0NyLCzfQW/Jcs7qS7nqDW9EdmHhdW8jJVQwFEiqoGoEkkokqRR9n4pqgK5B5xS48mJWf+1zdL1rDY4qUyPEmz2FlZ99L6WLZ8HKuZx3x1pqQYRlWYgopiWTIhE4iMAhIUXEdp3mphSW3VDqlJWA2Ldwzg41lEUZjQs+8X5OlYeoxD4YMqgCL4rB9pAtF2tklJyZQvUDmjQVIg0SKZatXo2eTHDqwBE2/tXXoVrCFRKSHTFVbUYuBSSKFkbVYUZkoo2HCHSQNVQ3oNVymUpES+TgnT1DZ3uOoFYkCl0CKURJJXAVQSWXAkUwdeECzj9/BU2ahi5CVGh0XUuloVonDGzaFJVsuczpAz1QGoPYZ/N3v08wNo5Vq4Blc3THVjShIyLY97OfwuFj5GUVCGlvSaLPnomjCPb190G+hdgPQU+gKjpTW6YgVWskYglXS4AvQ0sH6ZXnQVOOi9/0ZujuBjkmiEJIm2z55rdQ6xZy6BKMjUHJI1msIcU+KQH5pgSV0giRVeErf/A/qQ4NQyoHskLx5Bnecv5q5GoEocwFS5ag6AYEMkokCG2frvZZpCsueD54IUrXTN50+TUQaqiRTDrbTMH1qGY0WDqT93/580yZP4eQgEhERESohornOyQ0FTUImZJuIi2ZcLbE1z/6ScbHx8m35iFtghTiuRWmZNOYcYBBhOTaqECtWkWSVT74qc+CE7Bw2UrKxQnG2pvh/C5Wv/0Grn7bjQwfOkFh+36QEhR6T6KcGGLvd+6HgUEq/SdRFJmQ+GWd2OQXfu3v7+drX/saqqpy3333veL+/qLC/Ytf/OLLJqBr167llltuIY5j7rrrrpfGtPfcc8/Lxglr167l2muvxff9V7W4TzLJJL8+fh12tptvvhmARx555KW577p169iyZcuv1DFTLBbZsGHDy4ptv8hNN93E+vXr6enpeVmzqd8Ek0qk1yHSF187Jv6j//jxe3p6WLFiBevWrWP9+vUv2/diB7XJy2qS33ZeXKFUVZX29namTZvGxz72MdauXQs0VhlvvfXWV13BBMjn8wCsW7eOdevWvUyt9K9JJpPous7Y2BiyJL+USIqDmKO9J1hyzjKQBbKmkqpXqBs6gRI3akBUSmCkoFonH2nUnRp+OkW2GlA0lcbnzFAgkaDFbmVcthHnLyN6/Ge0NaUYDV06334VC5av5NGv/i2MTHD+jTfyzE8fhmqVjCGw/QChq4RhjFAVgiCivb2dkZERJFXlje+8kcc2fp8oa9JUCagGNpw7E/vI8yBHEAlSbmM9IpJe+PNeGNALJIQkocQSgRxh6z56qCPFAj+SCQyFqFYAQ0VKKGRkHT1QGJdUms5dQWHPbohDzEoRVYJKGEL3bDg5Abks2TetovzANghsMAz00QpuVkJLJRAnR4mzCVzXRps5g1RLC4X+ASiX0RIGXqkEpg7N7cy4fS3FbQeo7DtG1xUXMf89b2LLB/+QVGTQ9ZXbOfaFz0LFp0OaglqHSApxcx7jUREpkMGRaFYySLJD1fdxTYHU0kaqEiGqHkZsMJKMkJbM5txkjn0PPUymKY1TryF0GUeROO+SSxkOAs4+vQtmLyaXylA8cQxMH4SCPh6zYNV59JdGqZwepftklb42DWXpTILjx5jXsZCBQ8/iJ1RCxQUEhtCIhossy0zjbL3EmRYFai40KSjzupjuC/rO9jUsIlUJpjbxkS/+IQP7jvH01/8ZLYhwFIVCzqflXW+k8rMn8E4WaWmawfiMVlpWnEcceUxs+jFYVdIdKaphCup1aGvmHWvfwff//E/BTCL5kPAEeiAjxxF1v4SjmSSb81SjFwyehVEwVbCr5BZ3U1Qg091NZctj0NIG5SLTL7uUFUvOYc/WnZx+ci9MTZBZNI/K889DxeGSt9zI+JmzPLvlCTJGgqBmkRIKo5ENM/RGcvRMFa0kQRyS6u6iUKmS9QVhKCEUhYpngRwz44JzKYUu5UMHGx3fhI7UkScuVemoKQxbZZiagJZW5GcGaEKlgE/uraux/Tp232kYrWHkclz7/luITY0f3/sNZpx/AcsXL+Oxr3+D0sQEcy5cydxFi9n9zEEmDh5rvBeKAnFE5/VXMmv2TLb/wz8hV2zUWMKJQlAlLrr9Q5x70UV846//GlIyPH8cTg2gySqe0QzZZqhVWfnh38Wulzly70ZMywUpwgtdkqZOGDbqd0mxhIgaKo56HBFLkL3iUuZPn8Pef3qAaTdcQiEjUes7Bj2nya1azjvXvJm//cKXSAuVarUEUkginUR2HbQQKnIWP20CAUgBuB44jVo+SiwRDE6Qy7UQpxOUhk7Qns1QLdSwmttYcfM72Lv1ETrSJsFzR/F9n1iKiBBEkkIEhKLRdTF+YT00lHRYeQ6cPgVpA/oH0SJBouoSygF+UsOTIXI9pjoKegjlKKCgxaCqIGsNW7GsQj1g9cb17H7vl8nbMLykBa3VRHpkJ25eJVWyIdNKLQQ0DWrVhiqsXmP6hSsZePopGv5cQM2i6BnmXv8GyjWbITNgaudUsv3jHNu9HeXkOFqrgSVC0mcqpEWaITMmHUNklak3QWstwlPAk4FYIZBUQkkhesFCp3VMI/YisGz8mkVuRgfFgZO0yBpxGIAUoQeCSBJYKlSISbe3EVoV/GoN04vREkmqcYQrArj+atrzeYpbtuKdHsIIfaLQJ9RkQqlhVTU9lYQPYWRRkQzCbBO3fOkPODt0isfu/TOo+aR0AxGr1CWJ0GtYvXUhCJAIJY2bP3gb93/rO9DcBrHHij/8EHu3PUTqYJVk0SUYHKFODPOmcvFXP8tjn/1yozPF6BiJzjYKzx3Fd2xSut54r2NBrWaTypgvKYmnTZsGwNKlS7n77rtfSgStWrWKXbt2vep49a677nrpvt7b2/uacRs2bHjZItIkk0zy62X16tWvGbNjx47/8PG3bNnCmjVrWL9+PevWrXvZvjVr1tDT00OhUPgPH//Vnuv+++//Nx04s2fPZvny5dx///2/kuf8jzCpRHo98p9cE+lfy/d+kRelfL9YCGySSX6beHGFEv4ve28ebldV3/+/1trjme+5Q+7NzURCQgwQCIQpTAEFZHBCpe2DQFttsWrrQFuJ/bXUqq1i+0VUrBVbrRbUgvwQUUEIQ0IgCRnJACSEzLk3dzj3zHvea33/OAl+qWitD4r1ua/n2U/OPXdlnfvcrOy913u/P+9Pp3zK8zzWrFnDtddey+WXXw7A0NAQAFdeeeUvNOfChQtf8X3XdRFCYBhHGhDHMUG9iTBF5wm02fHep0IgsBBWxy1TOG42zJ0FJJDP0khjkDY6FQgMdJgghQ1+QmnRyYx7NejrYdqUQYgBL4GGx6FKhb3NKgQdN8jrTpgPgY+BwPMCtNZHcpFiLFOiAp/h/ftQvo+0BMXZ/QTdDpH2CUlI0wT/4BCyFWPiUGgkOAmYCqz0J3/+v68N3dGbpGGgBKRKEQmF6Mox99I3gCPRgU+7WsdVGh3GTJ85oxNmi0ZaNkp2BLju+fOgnIeiw+uveivM7u4EL8uUuOjCyccw7eIlBCjSOAQp6S+VueKNl3XyRlRKpDS2beNg4kQwtmkLPX1FKEDc7+CbIUQt4sYE8Z79kO/CdjMEUhNlHXxLECcKUwmEtLCLJeacvphxA0QuD6nkrDPOILEkgVAInUAYoHfvYtfmrRSsDEaQYGmB0EAUEquURWecBoMDUCpy3NlndzqatXwYqyKjgP3P76Cx7xBUGmQwEabVuXHSUKlVCZKIVEWdLBOlyQx0Ew0WGS0YDKU+hpujR+QpUmBeeRqLTzq1E0brGOC60Grz3DNbGT50kNSWKNPAyFqgNePP7iInHWzbRhgahg8xvuIxTj1xATPPOh0sBzNbhq4izJkBlmDqrGM67iI64mIiO5tg34TytKkY0sQxHBhrdMQty8Fxshi5LL7vQ6q45PwLO7k0iYZ2wP7HnmDlD36MNzrRmTBNecNlb2TJO66EOGDVQz/m+a1bwDRIg6izflTKsWRg3IfhGmQLdLkuRcMmbreAJnVVoSV8lE4oChOrHVFdt536+u0dR17/AK//0/cwY+FxkLOpmjFMyXHun/0RZ1xxCW5fD5QK6GKWiT078fcegFaASE1oRgzv3sfTq56CiSr7Vq1m+V33EtY9sGx2D4/wwIqVVLY/B2YGJ5sHP6RcLHHi/OOwbRv8kDSOCQK/4wIyBXv27Ob7934PDo7CU9vh4BhYoIwUZ6yOvesQVBLW3fN9ti1fjk5TZKmIVewiV+yi0QoRuiMgoTsCQyokspABBWedcSYnn7EYZUlc06I7m+fs3/09yNhMO2Yews1CktA0BKKrC4p5vDgiUpoEgWNanfObY0GcQtOnq9ADseKcyy5Hdk+h2mhSixsw0IU/rQfPkfQtPJF0Zj8MlBk4YyFJ1iWWkIrOz6joCNUdwboT3q6EAldy/IknwugEHBhDCgspJS1L41sWKjVR2gLDQgsLrQw0YGUyEIRYpotRKlOefxwyl8Ootogjn9QSnHf++QweewypZUOQIIWkFQdA3HHdWBIsG1yXCy64oKMfmS6dk3uAEAKlFLZpwbMvMLRhK72lImRt8vksOgyh1iSLS7aQh2yGMNFksmUoljDsLKnoLHkQGEpiKAGmBYZJtP8A8aFDDGgTI4mpjo+BTsm6mY6oryV2qnAThaEVWduheWiYpNXGNQ0MS6KFIpPPgNScv/Q8Mq5NNDGBtAwSrYiUQgnNkYgulASExiTB1jEkimefXs8zq9d0zkEGtFWMJyEtFskdM4fjzjyL0LRINUDC89u2QBJBbRyiiPqTG+DZffgHh2hNVMiXygS2JAhbrFy/Dnqy4No4s+dQzOVpRxGum6HVanYaQwD5QoYbbriBgwcPAjAyMsLIyAgPPPAA8+fP/x9lGO3atesXHjvJJJO8dvy6MpFeqbHT4sWLX9obvxoczVn6WQISdGJcXs3P/GWYFJF+G/kVl7NddNFFaK1fUUQ6mpE02T1tkt9krrjiCrTWnHXWWSilqFQq7N69m+7ubh544IFfiTW95bXRcQxS4mRc/CRh16H9IBWnvvMtfOiTf0sNEztXgnaMrIVc/wd/0skFyReJB/oIbAsVScKuMjiCEhaEitcvPZ/SkgXMfdOFXHHFZRT6p0IoKOencMEZF/DiF77WyRiJJFvWrSZrKXIyxbZdMpkMSRCg0bQnJnBdC0dCybaIx8f5zldu62TRiBSdRmiVQKqxtMIOFWUcBD/phiP1yw+OfE8AuRiy2sCWBqKUI3UU8846BbpyECtyzQjv8BB4AZmcS/+FS6HcRWJIWpEPpRzN7jzn//F7YGKCe1evoHjZUnjdXKg3MYo5+s9axAmXLCVbKJD6PqY0ObB5C1vWroeJCbpPOxX8NrabxfAiotFRjHtXcmj1GgjGOPzkj3jyXe/DiGMyA1l23fpl3FaKZdjUciYjbsIEAam0yEUuKjIIhUXh7NPBEgSxwmgZzOybjh9UCc0AJSPyRzaJzbFhhNQkaUQu66KiGCfXxbZHHqMxUsEZmEkmP8Dehs/gH1yLc8JpENgUTZPq8H6coE1XGuO7KTaSneu3cOzJS6gcGsYouKBjpniajB+Slm2u+/at7Hc8dH+OEy+/lEo7oj3S5rn7H6e6dS+ioSF1MM1O+dHjt9/JpuVP0JYxo7pNI2phx4LsloPIlkDYLmOtwwgdQG2UJ+6/B2b0kDn3LKoHmtDTzYXv+2OOfePF3PbJTyN9hRlKsnFnDYSmwrc1h1o1uucew3Uf/hDFUxaROeF1UMoT+m20MAj2jVJomKz55//k2Mwg+T2jzMz2UhQutRf2U3luNxIDqm0e/vf/ZP33HgIvwfB8GKtgCQhVgsxmGCNlP1A2ppL1u2CojedkqDsWoWFx+h/+Pmfe+KfI3gLtdh2pYgqGScFPmBIIrMSG8TqP/su/cPAHKym/OE5fDDltMv7IOg7f/wT22BjFRkxfYMJoCOMejPock7i4Y1XWfuv/Z/jBx8gOzqYQGGR2j+J4KdLMosKI2actZv5b3gJowmoVWyiqh/fy4//zTzz6hdug5VEQElOkEHtc/8mbKAJDTzwFB2vMmIjoCU1QkEaKubkisxFMj9sM1kIYqWDNnkPL86kbknqrRbm/B93piY7GRGMRSZM0aFNKXZ6854d89bYvgVDsvO8h9v9wJbufWA9RwP6RCfZUGjA4FXSMthWFMxdhzpmFzuUJlKAVt3n92y/lD//y/RC2mSYzxJUKFIpMDPahChnO/OCfgmtzyruv4bw/vBaKXTSEzaYNG6Gvl83bn6VWqaNw0NoBbSC1wFACO+0E8zuJIpMo5l14IeH+IciXoNIk0/KRgU9iWySuS+RkoXcAd8nZqEwZT0ki00KbEoSARouLl17IlIFeTN9j5d98CnKSsbDC4eooDVuipk2BQGIaOehxOe+TNzDw5qWcc9MyjOOPg2KJnVt2UDLz9LQ1ZgyceQJxZYwdT6/l4nPOhh17YN0z7N64EYb2ItMQGXh0Gw6RUOxqjMDcqURTpzBeLMEpp1B3yyTCAmQngF8ZCG1CGLDkyivAha6cSbu2D2koiOuIWVPwpKbhSFpHjDoGCaGZkPhNCq6J7UgSEeGnbXy/hpmEICTVzdvY+9Bj0A7JpRoZxFgaBApeOjRaJHiANiMgYdO991NZvQER0hGwtEWSaAhCLvrgh3jDn7yvcyKwTTJZix2bnsZ1JbQrFNoN0v/4AeWtw6S6TtuocMaya6GkQSUkn/8OH7jp0xyzYCGXLL2Q8bExABQK27aJgoDID9n5/AvceuutCCG4+eabiaKIKIq4+eabSZKEd7/73a/69X2SSSZ5bflVl7P9vL3v3Xff/armIc2ZMwf4+YaMo7lMryWTItJvI8YvcPwKuPnmm1m+fPlkwPUkv/E899xzdHd3v6xMbfbs2axfvx4hBF/84hdf9c+UUr70JCRKEzZt3cKW55+FgT6GvTrr9+3CmnsMx8yei5vm8Tfs4asf/DswSzAywTv/6i9gRh8YNv2LT8VacipxHJPD4t7vf5fj33Yhu+77Nv/y8b+mmfrYTg47lDz+pTuhbjFvTDGtmrLtoQfxvBbaSpEImrUG/TOm09vXg1sqQBJjGxIRx/RlclijPoMtDcN1isogb9icfumF6Kk9eKbH/hI0HAjNzhEZnfiP2Oi8jozO+6mAnJdieTG6FaDTlHPfeSUPfOdOAErCZbrIMY0uunNF1j74ICNjI0xdMB/pulAqMvPcJeRmTWPlzf9M/4yFXHbOBTTueYBFPXPAKJEemGDkWz/iB5+4lWw7Aa3JSBPLtnlm1RMwOJVzLjgfBgcQQmLbNnZeUhQxvPACGU9jjkScLHs5xvNQhw/Rd/ZCgmYDpQ3mXHg2U998MXS5eJFC+hrLyYGU7DFTuPQNYNn0miXu/ua3IedAySVSPqU4ZEoYYeYcGiIisqEeepiGQHgR5Z5BnvzG3YRPPYO/aRexZzK0f4jZbjen9M3Gr9exMgYqCbBNxQHRJByrMbxhOy8uX005m8N1XXAdCs0W2XZI48Xn+eb7b8KpCvAtZp9+GhzTy7SrL4eLzmL5xvWACbFG+gmlRkJ/6pJrhUjLxCxlEKZgSitl6niMX4lITBerL08xatEdBwT7XqA0fxbv/Mj7YfA43vKRP+ex7/+AFx99HGo+060CpQDyUacLHxwp8snYjOzbzS3f+Cre8TMwl57C666/luLFS5HSoAub5v5DTIxVGB0fwyjn2V8bpRFNULxwEVff/mlmvfstCLIY2w5SPthkilHAqNQoShMdR5B1aIuUdKBI/KYzqAaC0DNA52lJSTxtJlFdse7ux1h754NMDW0KQlCzUibchENFTVJyMVoebsWnWHGYYWQpdRc4GI3TNgKef3Y7+59/Dm1lGdIBY1ETcg4Db72Iwtknsy9p0bQsrNfNZNY7LmXuRUtoxjVGgglydh6RCJy587DLZXZs2QD93WRm9hPhQUmAtMiRIRvH2IGHnUQQBdz+95/ihSdWY9UDnKBJVXj4UZN8BHkJ2/1RDpY0rZ4SQwd2YwxXiPcd4M1/9THe8ad/ipg6wESlQiokWnTKCVNMlOj0jZylMoS7h6HeQubzZAMDdhzm8L0P0XPKaXT3TWe87kPL4/SPfgTmzebkN11G0qwSJYpQAZZm5/ge/v17d4ItIA2YVZoK42M0pk+BE+axXyhoCbyDE6x/6CmoScIt+7nksquYf/J5sH4ng7qEE9sIZSOVi5XaWKmJm0gyMeRiTT7S7H/iaV589DFk4FHI2uQMQUnYOLGAVsjUc8/h4g+8j3jKdBraQMkssWGS+C2wDWwFKx99hB0PPYAV+lAPwKvBlAJzjpvHxHNbUY1xhJVDSAfGfDZ+9yEO/2gFwy/uJx0aBlOwZtVD1O2QSsaneOZ8Zp2+sNNaMgj46rJl4BQ5deFiDq1fBzpEJx6RH5PEAUZvEQa7uOgvPoBcMAdcg+Pf+XZ8wwVtYyUGZmoilEkqJEzvx5pWAjugRp1sMQM5E2b3c+7vvLnTrMCF0IXAgtBQeLbC6nJJ7IRW2sSXIblyDpkoklqNfAhb77wPsXuUUmrgthNKSEqYOAkYaeewVEdMajsgpmQ6IfRBwMmLFlOKJUYjJiczCO0y+wMf5sEXdvHlmz9LZskSICH2PFSrTi5o0CtTtD9BsxDhJm3otiAveWbzBmgGcNin3+vin//us+x//gXu/7evk7NdNm/ezMonV5EqRaw6J5hP/v0n0Frzrne962UlZh/96EdfyjC64YYbXvVr/CSTTPLa8evIRHolli1bxu7du1/Vve9RoepnZR4tX76cDRs2vOaGDfM1/fRJfjW8BtLg0XaHixcv/qmcpEkm+U3iqMvozDPP/KnvzZ49m3K5zKFDh156b+vWra/K56587FEe+uEDVKt1xmt1ClMH2DMyhJnLM/zCboZf2I1pwtj4KKaWSMNmSl8f42ZCEAQcHjrUsf3bBgODAxhmgYPZXRgqxfUTtj/0OAgTkgCEYjQKyGeyUGtTyOYxW21yWRfppCivgZPNkPoOmCHHLDqZKArYtPJJjFiTy9qEUQupQgq2SS4RuMIk1lCLAiKliWwJAoxClrTaBi2QHV/DTxxIL4WddkoonEgQGClNYhARqx5+BLQLE01ErsSBdo0e0elOVjlwEEZHGe7vxjQUNJoEXouZ+Sz1bIaRnTt46N/vID9zDscPTGVzs4aVpIRjHhyeIFAK05GoIKKYz1Npt2B4mB07d8F4nbYXUM5mCJtVUiNLDtD1FroS0cKlSULfjLnMu+gSHtz0LCpJUKFPb28Pw4bEydgk7TZxuwmhwZ7t2zo5LPkSjYkKqhF2cm1UShLFWJaDQiF8D0MaCGyCIIRikbDVRuQKmKU8SZzC2BATW9bBOXN5/uk1uCM1FDFJaqN9H890SLUGlTLv7DN4Yc1qpJOjfXAfRimDjWCKm6cSR7BziCi2IOPy0PfuB5nSe9ZJuN5sdq7e0ikBSRJMKcg4Ns12DcNwCBpNzLyLoTVHG0uZCrxmi1RC2o4wbROabbb+6D7GDo/B4X1sXvEor1uwgOc3bCKXKdCqVDF0pwwnkZ2sHY6U19A/lcFjj6N71hy23fNtwgvORbRqJM0aZrYLYZqdfBYrRRgK0ZtHZyQTWzfy3dCnp3eQjGEgvZgwbhITk83maYcBiW12yvS8EDIlzv7Da9FyBS8+tpaGEXPmNVcyOHMaO1ZvYOMTT8FonXaUkqYabItOvY2m3m4xNV9GJIooCBgNEnyloVQCkUJlHKPYhfY0MufS29fLSW+5CLrzbNk3iuouEkRt4soQ+9aMQLOBKPXiEBOEGum6hJu2sOOFFyGb59I3X8HI7hd4PmqgVYuornAtSJD0dpeptKoYXTmabQ+0IvZTssU8SVTDiAUZofEMYFoX7VoDLJdcLkMuiBjNZThx4QI2r12NroyD6xIIA6kkRmojtYFGgYYxWxDbEpKERYvPYvjpLXhDLbAdLr/kUv7jK99ir0jhlBM5rqefdRMNVj3ww45SOLULdg2D63Dw8Scha4NKKBSmcLg+AtOmU7RcmBhheMUohC0a+/cx8vwLdHUXqHk+xugYB55eA0lMK/Kx7AKJlPimQAkDQ0vcROGkCUIrJJpweAjZ043yWsRCYWsIwzZurkgYK1AR2VSRvrgfv90EQ2AYFsgsRAGeSNHDB2BqH6pdI2dmaEctLMvkx9/4JvijYDoYOqUR+FjFIu1ndsK8YxlvR4DRKRsWCcQ+KCgVe2ns3Qtx0HE7mQY9M6dx3Mknsenpp9AZTRyEaNfCL5VoZC2oVdixeStq914IPcaHhqDV+MnFRKhOPpQEvAYrH38EenrIxVAfqhCXTMi7lPIFosNVKLsgDDwTsolEKGg3W5iIzjlLQqXVZmqpTJpq6lpBHEGuiBeHxJagKASBERPNZf8fAAAgAElEQVSaCjPtdIdIZMcBBiBNAY6BUSwz74TjaQ4fZPzwQUAjiLlw6RK+9rVvwNgYp7/zrax8YhWmkgjTRkQJVt6lFfvE+QyNxtGSXMnOB5cjenvRVY++comxWhU1Mg6uTX1inE/87U30dZf5QrvF4MBU5s59Hc899xzAK2YUfulLX2LOnDmvmHM4ySST/O/ltcjiXbZsGTfffDPXX3/9q7r3nTNnzktZa0dfH2X58uX8zu/8zm9EV/JJEem3kf9arlbZDatfrmYuq/z8Kf4ni/NomPbRFoeTTPKbzODgIMDPrSU2TZOrrrqKG2+88WdmIgRBgOu6L833+OOPv2KwZrVaZdq0aVx66UVc+saLQUMkLPaOVVi3bSvrd77Arbd+DlrjJNE4Tt88KlJh5op0n3EaQ4deBNdg1ef+GZnNomyDtT/6PlPnzsTLh5DEFDbuZqaosq3XpHjxiSw6/kRWfu0OJtoeZ5x6Ns8+9RQHnDakYDcTItek3gpRbQl93YSzZ1AqFmD1BuzIJPU0hp3pbMTihLZMyNoFRiwB5V5CL+WSyy9j9Y8fRhwcJjVzIASG7ggNptZonaKVJhaaSMfoWCMwOpskS8I5C2DDHowX27iY1KZmWPAPf8xzN38RRg5AEOF2FXj/de/iln/8JLiC0XVrqW/cjOklKCTpg8tpGZqHdu8CJ8IUCjPsCBWtnALToNxQUA0QMwY46c0X88wDD+Aqm5ItGa1X6Sv20vJbCFeStQXZWFJTgorRxWi1zdCmw+BmCauj7H3ohxTLZaTvkUqJ7yQYdoY0jpl9aJx6sZeJVhs/J8kGAmesjSsdGjplTAj8VNGfprSJCLNZrO5BwnbI4HmvZ3zkIMn+nRh2ipkrEG57mDdfdw6PnTaH1op1GHEeU5jEroEvY3QzhFyeQ1Pz9H/8jyiv30vlB3Vyow0qKKygxcCwxiBDbWYv7VYD75EnmXX1lWx88hGIFGTKmEFEqauHxugeqhpwLFKtyBkOyotJkoSKYWKbFqFWnfyXJCYjyjS9JnJqD+rAfsbqLXKFBvv/9Ta6B2ZRSiAdPYxVyNPEJ3IFGAqpUgw0kRdjmz1UNr3A0MrN5OM6jTvuwCQhn5XUjQAjljiGReIoNDGOlvjjIYYy4fAmqmorllKELmghCU0Hz9RQLHHTzZ/h3h/+kK2bNsLIGE99eBnmuA9+jNFVYMVdt4OtAUkmtsh7AUa+RC0Moa8bwzRJd+zGTgxCQjKlPBOFlHhwFmcuvYAFc2fy75+8icHefhqHhilmiqh8gUp9jMfv+T5yIsAUmqIrSdMGhKAicBKTrjEPJzbY12NCu0b37EVoTKqex6q1m2jXx9H1FvnAp5wpo4KEOGsxRpPYjAnHqnQN9FILPDh9PnPOOJU9X/4GEoNY5QiL3bzrUx9lvFXjxzfdBInASiMYH+bzf/FhglYT0ggsAy0FvG4+l7/hbXzvn26HYpEz3/8+1n7tK5z9wT+jO5Nn39rNDJsh9GTJzp7Bjk2bMQ4dIi1q2LKXBx5fx7Qo5VCryilf+ks2feTjuHlJFCSUAzAqLUbzCbujBn3k6TmU0rfjAMIG/eIzWARUNq5GJtCSLfA8fvypj6JUgtSdcqlS1KadQPn1S4iKJdqbNtNqp7hWFh341CqHcfM50qCFJUBqhS81kanRaRPDcRl76kkeW/EkAxNtxqcU8VNF3rfItxUtbaP7bWi3KO4booFF3ixAFMLBfTgaso5NKlJSLVGuw9S2oi4k+oTFRAMDGD0HSScOQ3sCozQFK8ow8uCzhHqIHsOhsmsvTB+g7w1L2BFFaMMh2whpJSFkBjnjzz/I0zs2Mm1gGgc+901kIc/8c5dg7dzHaNQiMn0MAbapSESClcvjzp+NVShS2dMgDjRZXQDRguooP7jt3+hTgrRiEBQdGvmIOLSwa00MISk6eQ4HHj1Lz6TZCBle+Szkc0y77k0MjY+jn1hPbJc57T1XsfVf/o2W1QJXYdcThIBmRtEfaqb1uIzU29DdT2ra+OUSu8eqHftpWsdyTb72F38M+6vQVcI0YggMDMPBz1uooEloWOBmCEY8li77ECv+9es4sgsZtPHtMZjby7aRF8gdlLSzJrgW03O9fPWWW5k5czqRpbHtHALJPd/tdOvds2fPT3Vd3b9//09do19p3FGWLFnycwWnw4cP/8zvTTLJJL8+XslpND4+ThiGL339i3QP/0XFoKN73+uvv56vfOUrv/gP+gty4403smHDBpYtW8btt9/+UgbS0diYu+666zUvZ5sUkX4b+a//qoUyLHh5DecrlHS+jF90Yf6q/xNNMsmrzTXXXMN1113Hhg0bfurm8Y477mBiYoIFCxYwe/ZshBBs2bLlp+ZYsWIFnudx0kknvTTf2rVrf2rcZz/7WbTWLFx4IhoTQce9Y2rBlFKJgVyB//jCF2BiAkjAynLg4ARvf9vv8sjT69iy5znkvGn83lv/gO987G/pqYUEWiJRHNj8DLN+9xL2rXiMdtml2dYwUaexaTur/DbkTag2OPMNS9m4aiUuEoE6EngtMBXknSwHq002f/teUAnESacts6EIrM6T7rJZoN7wiYUAYYEf8PzDD7NnzjGEnkfOcoCkExAtQEtJoiVJCkpKlCmRVoZYCg56bUSiIEzp8qHn5JMZPbgWVxu0wzYzXAf5jrewfeUqqDYIVMrTW7fjlgaIx6vYCpxmhJ2aKCmotGK0C9XxCiAJDUglaKnAkJ1AZGEQCzBLGU499wy2btlIsGcLJdulr7uPuheRdBVI/TbNrARhI+oJOSGI/AT/nocRjo9pumitaVWbSCmPdNoTpL4PSlEbGaHQVWYi50DokaqICEWhVMSrxmjLBKUYNgJExkY7AsIm9PXx9je/md3PP8sDd+zGqIaEBQ+A+z/1RTBNek5fTDA+gbd1B2XTJrJT2kUHuyHwvvJ9vGMc+q68krMvvZjdX7+XwyUJOQWeoCewaI+MQiHLwBvPww8CpmYHGX7yceYvOonmxDhDmzbg/D8tsrWAVGhwLDKFHGEc0dApPa9fwqzrLmP9X/wdvRMl3NTgTf/fX3Pn39+C/cwBeswy3tR+DtRGIWPCFIvW+ARdRoZpNYUyoWZLYkMhbafjBskIKFi0WgqRdBxPUpnkY5uuQGA0FCmC1DAI0oCcaZJi0fGeWCRm2AlZFnTWYAqECZ947/s7XbO6y/zuDX/Of95zN0k1hGwW2VvmnGvfhtWbp5jN8/2P30p3tsyhsRGY0ccVf/5HKAkPfPxm0qZBbJpUjYikKODAPtZ+/ZusNRKklPgTTbpz3YRNn0C3cfJZ3FIXNTVB4keIaoNubSBDTSogMCU1F7SrQfucfeUV5EqDrFy9DmoTtHbvA6Eon7KQ6sZNFFJJPpuj0mqTOJDt7UVFETXPo3DKKZxw5mmsefDHTDFsYg0tqUgCnzv//G8gaENXN55fQ+Qc+kIH54UqBhphFxgVCm9GL8edtoDvfefznPKpP+OYgWnc+/F/oHDiIg5t2cr2kRHqm54FL0BYNt6OHTy9bRv9ixbTO28W29dvQDUm8NIEah5bbvk2HArpDmxCMyQ1/Y5jJQUhWjStBOHabPr+99AHtoEpmdI0iTQ4Th4/0kizi7DtoQEbieVmmJAKTJN3nH8ZP1rxBG0fXn/ddWx8/DFqO3eSK3VjRiEyObqKJUqALWySVKOVIo0CEiDuy5KEbchkaUURPfOm0zpwANoa4UkMkaM/m2d0vEbPrBlMtOto7RO2IohTMsIlF8EYNXxMkgcepXf+ibTWb4BizIKP/j6HDo5jjCcEK3eRDW38Rkq+1EsrCHh+y1YWHn8iSBNfxlDuAk9zaN16Fp88j9rBwxCE5Eyb5378KARtymaGBhoz6+BNNClks7RqAY31z0ISUir1kwZNyk6GeKKOGGuQTOllvFigry0w/QTsAH9KjpzTja418IImlAqcc/qZPPnU01QzDnYhx1VXXsmtH/trsE3o72KkNoQftjvCo5YUEwchBHEiiVVKGrtYQpC0OkHjK39wF8QtkBJkhjhOseopcZLA0BCP/uOt0F+k3W6BighndXPMGy/kwrPO5usfvoGucg5MQTh+GCORYHTzB+/4ff7j1n8mbPhMXXwSwxs30haSea97HaAwhSKlc/5YsmQJa9au4eqrr/4pAejoJvIDH/gAGzduZM2aNdx0000/5Vq69957ATj11FMZGxt7qfHGfx13dP5XcjZPMskkvz5eSURyXRfL+omz4pXyjH4Zfh1733K5zMMPP8ztt9/O3XffzfLly19yJd14442vuYAEkyLSbyf/tZwt/z8XkX4RJgWkSf638uEPf5jPfe5znHbaaXz+85/nmmuu4YYbbuC2225DCMGXv/xloHNjuGbNGmbMmMGnP/3pl8YdXe9Hn1gcHXf88cfz5S9/maVLl740H8ANN36UVEgMOt24pISSazGtp5fKgf0I10a4LsqLMbt7mH7WafRGLeobV6NqWTJK0l0soGoernaQhqRu2Jy8aBHVdp3Go8+g7BykNjTbqOoEZ77tLay9407WbdlMohKU6JSZGRrUkQ23KRUyTVBtDzwP27IR+kiphKFAHukuZlpEsULki+h6Jxg33H8APB+cPEQBR9O1lQCQYBnECmIl0EqiDaDkkPdAKait30Z27jy8sIFpZKAR8cT9P8R2czgzphOObwZhsGr5oxClmH6n7KMkHGxAaQNTxcSpwhSSVPOSmICQIBW2kcNreZhmlrgyzqYtm1A6RTgWMlZMtFqE0qBnwfFUnhmFTAYqdcxEkHcEKQbjvo9OfWIRg2liSIM0VogkwhDySEh2SnV0lGq11nEuALZtEoYxjdBDC0mmuwd/fAwU6DTCmtKDlcnhDY3z7LPbaI4cJmfaKNpEUkK2BIdrUMwyMG2Q4rxj2bB1B3ltMOrFMLWI27I6JTXNCs9tfIZC3cOGI0pM5/BJMRyXVGuOP+d0nly1huLeEHxBua+XOQuOZejQHsToyE9+f4C0TII4AmESqgRcl7GJUbrCFvRNYWzvCCY2T6/fRO+Uaag9HmGiGBuZYNrpJzBl3kw23X8PsrcLqiFZQCWStqFRUiEMk7BQYPDY+QQqYXz7KIkGjnadQhDaNlHgY5sW+UKBuN0gVilCmxhaoDFJdAziSEmNBqVBhzGZvn78sXGotzhm2gxOPHUx23bdB0lKFEfsGT5ElzmAlclCfYJDqQUDRaiMsuLLd3ZuPKttIsfh2PPOZMmSJaxb+zRb710OhoVdtNBxCEoTRAG5XJEAQbPlo+q7oLcEKqbYVcIcnSCTGCSGOlLWB4kBRCHD+/ZxqP480d79cOxsmDEf4ZjMLBSprt/MeMEgFh6UDHAEXtACXKSVp7VtL2ueHQK/iUhBGB3RlrbXKVMUNqaXkNgGQcZGjyqcI0sjjXxsIfH27OG5dh0yFgOz+lm9YiWMVjjlTccyMjFG/cABpBSYhsSRgraSKEtw3GknceJJC9m+fAWNOECkMYSa9Jnd9BpF8qaEtE3DVqSysyQViqYMceyE+OABUODmXGhItBZ4sUaZNo04JGflsC2BTkKqsU/kCCj2snvDNg5v3wXaZufe3dTaNdApnjApK4mhFUqAPiLYg0QedUbqztqrC43jOGgh0YM9TD/pBCqtBvkIWq0QykUm/AAjl6XZ9tHNJuRcMBXSdFDapK019pQpJJVxMBXjW7eC40LUJj/Qh9sK0Y0GWdNEiBxRK0ZpCaS8bvHpzJwywPZiHjVShf5+phe7OLT9WartKt62ZzvdBRstEClWNoMbS2rCxE9BYqJi0HGC7eRIHRvdbmOkCV5YJYsgi814I0RrwQQGiQ2csRABWJsPEGqNJoW2x7onV1PZuZuM4+CPjXY6A42Pc8rb38Gm9evYvW41GdskMSUOClcdEetTTSQkOjKQOJDEoEOaQ02yuSye54MyoLuHeO8hrJ4SsUpAG+BKyHdBqwUZg+KsY9h5YB+YgtVPrIRWGwwDMzFIg5io7pHWPQQGb7z0cv79xV1HwtUArZGis76Ektzy2Vv4xje/wZo1a1iyZMlL1+lly5axZs0apk+fzjXXXMM111zDbbfdxp133kmlUuFLX/oS0BGY1qxZQ3d3N9dccw3nnHMOd955J3fe2cnv+8QnPgHA1Vdf/dK4pUuXvhq3JpNMMsmrSDabfdnXr4aI9Ove+15//fWvednaz0Lo16KIcJJfKeKr//0Y/ce//PzVavUle92kgDTJ/1Yuv/xyHnzwwZfVUVuWxac+9amXlaUtWbKENWvWvOzvCiF417ve9bKnkj9r3Ic//GE+ecstnYY0+ohyr8FvthkeHuaU008jUhGJF9Odmcqcj1zDmvGDUOqC+1fAnmEKXUWatb1QcukSU2iPjWMXM8x/07kEKuLZh5+mUIemK+C4QUhjFpy4kOdWPAGpIG8YeBMTnQ+mIxJJDW6sUYBtSgwFIk5RQpEY0LZAWUBqk7WLeA2f3/vQB3l6+1Z2r11J76mLqB48iDg8hhm3MLTq7Nm0gcZGGhYtBVobkHEhK8BtYr3oM4BLmrcYSltYYUIGA9e1GbWAci9Xf+xjfOtjHwMpGTjpVA4/tZ6idGg365SdPCaCibCB6C6Q7S9T3bWr0x4+0WihSKUiNSVYOdwJH2Hb+LNLkJNw4BBW22EglBzKCtTJcznnXVfx5Cc+Awr6x9rkVUxgZhmXmrDsYpk2Mog62UWGwMRERSGmITCExJQSP42hWMSWgrheQ8Qx2WKZRhCgi2Wu/eAHaUcp3/3iZyAOOfENl/L6Sy7lC8s+1mlfrxS2ayP9JomQqFjR7RQZdyQUM8w7+UQOP7iKopBUVI3AEeBM5Zi3LGXv0ysRDQN9aBTTMkmMFPvIU7koTJHZPEqHzP7rP2PPI2spP7oHgGrBg4XHwvbtZL24U31yREgyMg5REpHpKuE36gjTRTcjmDudU09YxI7vPoJpO9SdGDIKeqfBnjGMrjy6ZHHhm95IPWmw/qtfB5GhPzCwkURCkEpFklHUhMvA6acz95TjWfUfX4XQJ5OAGzk0rBzprB7yx8+l9fRaCKOOUy4EGZsYysBQJspoAR37iQQUkly+SLUyjigUMR2bOIohjuiaNZcLzj+fzEAP3773TvAasGABV114GZvv+SEvPPEUWcdB2QZRmiDjFDOVWJksiSXxiZnp5PBqNcajFnZvF4SK1AtxrRxmV5kTFi/mne+5ji/e9jn2bN0KLY9uZVBIBaDwTahlIDKhIDTNehsGpjFr0UnMvvB8Hn/qCZxcjnD9VnhubydMvznO/GuuYuDYGQStgFwl5NFb/pUZxWkYqcBv1oh0jcCR+FkLmUCmGVDEpkFEu0uDmVA6+0LqT24CP6YvSrGFIsxZtIQmiEOwXJAmTHgUj51GY/ggpArXzmK3O+vdT2P8ogtdBaj6UI9wBnsI0xgqEwwYRSSCStCiIG3GSx4YCVkfQilJDYWcfQL2s/sIij74KTjdkMuTnTodr+1BdRzCsJNp1a53TppZG2qabMMgQWP39NCiwqzrrmLfqtVk6ynWgYOYqiMiRdIkkeLI02mNQYKlNZGhCGXEVKPEhBfRffH5DLdb8PweGIuQXXkUNejv4nf+4D3ctewTFKVFbyLxdciw0GAbMG8m1A6ASvn9f/gi3/zLz+BO1EkLgmjQwCxOwRkLyLx4mGZO0C1LDDfrHPee32Nv0OL4Wcey+WvfAh3xhmuv4vCT69m+aT1kDejrhf3jdEsHrTVNr0lemNRci4WXX8bWR1bgBilx0EaQYBiaNE0wDchhULLz1E0ImgHdZg8H8h6Df/J7RL0ZxPfWED79PMqMKKaSZneWZrsGxRIMtRE9ZY5/11vZ/uPHOPOc81i3YRXqxT3kEgtXmjiRwogSfBQT5QxZt0Ay1kLagkQ2sIyQNNJYWuLZRdKB6Vz9oY+w6m/+loPhKCpJIJKcsuy9HHfqYoKhKvd971ssuejtrL7181AfhZyDSCGnLGRq0lAgikV0rY07OJ3T3nYhq+76DjNK3ezfthVUijY0CAOhDUhgz4E9nH/B+Rw8ePBl1+Tp06ezcuXKlxzId9xxB+9973vxPO9l47q7u1m/fv3/eNwkk0zy2nDyySf/t2OeeeaZX3r+arXKxRdfzIYNG/jMZz7zspyiXyXLly9n+fLl7N69m7vuuuulvfdvApMi0m8h4uv//Rj9h7/8/EeDxMrl8s9Mhn/44Yd/+Q+YZJJfE3v27OGLX/wiq1ev5sorr3zFTKOj4+6++27uvfderrzySq666qpXvGlcsWIF9913H88//zwXXHDBS/Mdve106DiBOHLURkdZtPhUGn4TJ5QkvqL+tvOJywb0DcD9a8gOtei1DUbEGGGfDaMBkKGvlaKzBu3II0sGJW2q0/IMXP0mWj9YRWvdFnDtTpirVODITjB3xoRinuMWLmDn8kcgEXQLl7zp0J6oUSx34/k+idAo16IahSAtLKfICUvOojzYz2PLH+CDH1tGbegQ3/zEP5AvmsRBAIBluKTYWLaLryVxonjru9/DfSt/xBV//R4efPsNHEuOUCj2GU26e3tpVar0ZnIMeT5WaRpycIDwwAtQ7uIjf/NxPveRGzGFxHYtvOoo5IugEpxjBpk7fy4nz5rDf97+dcxqnS4jQ5QmRHmHtiWhGnDssXN40W3z3k/+FV+54S9hb51eDMbzWeZeexWNJGb0h49AvcmUdotuTCo5i7GkTfGtSzl/ygJ+8I3/xHFcLAGtyhhuNouIQ1QSIREYlomHxtAKeSTo1080IuuilaBv8RmUevvZ9YP7ME2LBAGFQqdrlevA2DjZmVPxXnyBsmeQFQ5DRbPjDFKSUrZAvXIYu5AhatVwDJuw3A8Lp3HCKYt47nN30iVsaq5CtZqUcAlUQpIzO86p/h4uvuVveOh9y5g7XiZUMQcKDZg9BYZHydb9l4lIaRxCqcB5Fy7l8Ngouzc/x8woT8uWjNVrdFtF6nGb9KS5XPKPy9i5Zz/TEpsn/+n/QNOHNOmEvJct8OowMAXGPHKqRFqv42Y1tVIPZ77xYrqPGeSBf/oUdj5PdLhJOTeFqrDIv+VcZp1+Inu3bGGq63LWqadxx0c/xqzzL2LqwHTW3PN9ROKjJyaQhomhIZcrEEcpgUpJter8bqWFUBKRKlzXpXf2DPbv29lRnQSdEjhf0+OFmFoRGhINSC1Ikhgn300gNS0Hcq0Gsd9C95aIwyYU+0BJLNMl9kIIPOjqZjAEzxbUdBuKGRipYRoWjhfgGhZhHGAkAZaboWaY6EKBVEeUzjuXwalTee679+O2FL3NEMuy2GMHFM88kfK0qezbdwA2bue8q6/hwIED7N2yjeLEBIEJka1hrMFcXUQQ8X/Ze/Moua7y7Pe395lPTT13a5YsW5Ity/Ikz7OFscGYMBhCwEAghMywLjdfsnKTBc4iA4EkGEhuICG5YIfJzBiMDZ4n2ZIsa55b6kE9d9d85rP3/aNkSL4vibO+JPgL9G+ts6q611lVu2pX1Tn7Oc/7vA0pmF7fx/m338L+sE36ze9DtQ2tnMFMEGQROVAs9dBotnANh0xl6J4i7aAGQuIrSTHtfK6V1FQdg7To4MQOulZjyY1XsPmay/n2n3+CcuTQcBWYCVdd92aeGd1NXp+lK0ip1ZrI6y5j6ytv46E/+HPy+BQ9Wy5g6RVXExsWvYNDHJ+cYPYrX+Ta3/sdFqanqJjw5BfugYUqxWUbcbcdpWwXmCWG687hrGsuQbcjph7bzfzO53Bci1aWoQvF0+W5nQn2HJu01SCLIxwFS5RPYFjMDLjQU4TVZ8Kjz/Puj/8ZL+gFpqbHOfW9h2HbIbpyyVp8IhT7jRC6fH7h0x/jC7/26zA0yIZXXs+hL3+PvomIJEtoeW6nZLXWZI1XZkJG6GaIVejmrDt+jqZnURAGL3z2yx2Llq2g2QApcVcu4a3vegefvetTMDmPYbjkadYJwO7u5dXv/RW++5d3QbMJUiLTDIsEYUOcxlRcF1GLqPYUwPZgJsG78VKueOMtPPQ3n6YwFhDPzZH7ir4wo2mZRI4E08DKPVJLgpkABQgiehzNwnyVYrFC1mwzaFYITYmuFJltT3Hlu9/J03d9CU1ModvAliFkGXGkCMwCmD5ccDHu9meIjDZuochA5HHGr/88ZqWbgz98hlMnj8FEhp3E2HoWJ1edcjmtEOUu2oZNKgzo7oP6AizrhaPHKbk+jbExMCUYCpCgZEdTNjt/PvbYY/zd3/0d8/Pz/M7v/M6/6hi65557eOCBBwB45Stfydve9rb/0H6LLLLIT5ZNmza95D7/kUY5L8fa90XX04torRFCcNFFF/GDH/zgZS9pWxSRfgoR97z0Pvo/cNx7URX9t1js0LbIIj8mOX1rcTq3RUMUpQghWLF2DanICeptKoUSs3kM68/CXbuGqN7ggmXLeeHRR5FjI+RpSOVNryXafQxvzwgGCuGY+KVuploBy9/xWoqXnkP9r++ltmMvGAahVKS+xRve/XZmW3Ueu/cLLNl6A2+8/XV88vd/F2ohzIfYlkWSZFimg9SwxO9mtj5N2zMwCh55O++4FGwb0hb2iqX40qB25CjSBMswkdKAvFPV4PgFQtXJDNry6luZzBv4m5Yw87Gv0pNATeQ0lhTJZucxbA+pNNq08SObRp7C2kEwNMtWraJ28Djt07lRZ912I6fGpwj27IPBbtCKVavXMfLYNrq0jZkkgKbhe9zw/3yAka8/wMGdO6FXIM9cijp8FKcp8XJBVCjQ3b2M4rIhju55FoouhG3I8o7bII0x1yzjmktewVOPPkU8Pw9xiFUskUdtiCN810QoTRBGSNtFoDB0BqIjIjlFhzgF3AIojd/OybOQ1HJQJh0RSSUg4J0f+gPuueceVuyaQOmUkS4Blg2NHCeBuMcEM4ewRXcEibAAACAASURBVFdDYRcHmWnVwJe4VhErVTSDFpd/4J3EMuf5r9wPp6YwiyUyQ8Hm9YjUxn32JEW/wGwp5uo3v5btDz2E3H/sRwKSApQhUHEEtsmNt97KQ/c9gCMKxP0G1DNWVyHDYnxJDmefAU2FP9jPG3/vA9zzP+5EPb+PwVQzbVSh3+Lmf/g43//sV+HhozA3z0DFZqYdQk8PhWUDRNUJaNQpOiWSpEhYT0HnGJUCeVinZ+UQwpbMpxE0a/Rcdx2J69L64lcg1fi2Sx4neI6P6xWYmpuGnm5QKUibUi1FGJIMTZAlCNdCw+mSJ8DMwE4hUgw1TKSWzPqCnluu5Oa3/wK7t+3khb//IszPI3SGHugGS3D1295Jb6HENz/5aTAtXNclGptgTV7iRNakcNsV9F+0kaV4DEmHPV/4Bs2RcXSeIhwDU1o0gs773HJtXvGm1zNfrbHzq9+mx+tmoNHEAI4bCVHFBRTksOGWm+nu7eK5HdvJR0cxtEmeBAhT4jUi+jMTneU0Cxa1Vb0w2I07tIzw8WegEUKU4wqI8hSKBc695AoOHz5GOjFFbw7zhFBxQQjcOKOQqB+VirUtSVQoUGpmWFqw5Lar8Yd6ee5L36DL6qHWa7P2jtdw/IFD3HjVlRzYsY357c+TOD6sXQHFLpzj48T1MVZtWMfITBWiEM5YyyXXXUd1YY5wdpKkVsVqNTi1fw9XvvtdzO06zOwPnkFkEZllUl9aAEtAlINycepz4Jikpo3KclbduJXZ2VnWr1rOrm9+HcPUuFqwzKwwNTOLdCvUel3e+f/exdjYKR764B9y5i++lSXrVnH0kWeZeuhRiHNsU5JVG525tS2UNBjatJHpR5+n4DpUrlzDqWe20Z2UEZlLa9kAq6/azJEnfgjVeUpuGaMakklJa3Vvp3NbuQcOjGOViqQ6BhscDIzuMkvPPpNjzzwOvUvg5DR4PsUtG2mdmOTW9/wq9z14Hwwfh0KBJY7P7JFDKJWgyCgaDiviIge9CK4+g64Lr8b98g7SE5PMxw3ot6n09FGfPMJQIyeWBm1bktgmtDLo72bw6i1Mf/sxynYBtzUNXpkZM8cXPt2JyYyISaVCrOrh+ne8mW0f/FuCJAQ7wespEDZquG6ZyPJxz1pH18pVTD16P+iEglUgOzlD3Fvq5NY1E3BLrIwL1IM5YithIM3IiAltg6rOOkfOngHWv+ZWzr/1Fczt3sdDf/kplvgFJkZOdoTboo1GdnIHUzoi0j/JeVtkkUV+utm4ceNL7rN///7/7cf/Sa99/2nnt61bt/KmN70JrTUf+chHftQNfceOHf9pz/e/w2Im0k8j/3Mm0n8yW7du/U8LJ1tkkZ8FXjQ8/OicVkCmFa7nMFuv4VRKyK4Cs80FUBZ9ucmQ9Ngnqqy74gLcosEzf/FXCODC8y9gIZBMH5mhHtXxPI/A6IT2Dha7qBS6GD41hSbFyAVSCgwEg7192AUPXJ/JI8d44oePnHZEGSAkqZTg2J0AbdOmHsWdXJEkxfAdfNcjRpAZApUbJKfGSAyLgmOTCo2U1ulYJI1j2ag0w5AmuVbsfOYplJHCQi+FNEVLl9iBLGiB5ZBrOOu88zm0axd5KjA8m8qyAQZWLefQN74FmdnJGjI1pmdx00038c2Dh+k651yUyhh56jkAIq1xpYlpSRILnj20n/NXrmJhYpLp+kinZbblYKgY6XjYtk1rfIy5yQkoWgxs3MDM7h2d8rtMQ67JTs3x8Be/AuVuKBQgCrE8H6FTkjTqOFZM43SWUMfBooREkiMU6DRFGDbSNMg15FmMxEBKicozsH2wPGjUObzvAJvO2cjk8yc7j+QVIcvAc0jTCAwDdA7SQKFwtKQfh5ppYTk2rfocFoI9I8eonLEco7uMudAgzmKIMxiZ4Prb7+Dx4zPMJwk0Glx+wQVY9SZP7z/2zz6vWRghPRcVRzz3xFNIIVh58bmMrikSf/0R+uxBJpNqJxR4735oQjA9yfa9L7Bq3ToWFtpEB/ZQGeynHswyeuQ4GzdfyPSoZm6+SprEmIUSWZTS3n8QHEVvd4XqQpNLr7mBk8OzTO0/QF+gWGhHxKOTeF0lCGpAysKOHRgXbMYcGiI7MUaYh3iWjVKKqekp1m+5kFe95U0cOHaEB/7hcxjawTBtpBAgJDrrlMDp0+6r1NAdN4MJoaWQClLLoKlz5vKQyaQFA93IMIQoRCsFYcpT25+DoJOD5QqBajWxDUkjbmOVi1yx9UaOxw2yAKI0Y2puFqliEIooB1d3stLINX6mePzb3+m41FTeEatKNrFKyYTZcRYaJkibw0/vQBqavN0AkSP7+6jYAywcPYrQOQtZiGM6VJMURiKYX+CNb3wHX9ozTLowghBGRzTNQjAlQxecx+F6g8HBpUTbd3bEDakgTUmlJJOdvKnTP194umMAieOUfdu2Q9gAsxPC7i9bxeaLLuT4t3bQqtapTUwjMoVwNHrXPja/5z1MBiEzw3sY2X+oU9JmmRCm5PU21FuMP/gomAInTaCZsHB4mOMHD+KKFMcEyxOIMERXI8gU+H2UCh7zQRutAM/nquuuZ2RklFX9vex68Ps4KkFHKaFSKK/M0Pp11E4e4Yn7H2J4fBQMzbEfPsj4iTOI9o2AtiGaJ9GK8qolNOYXOnlrOUztOsQSq5tGVOXU/iOgQHoeyqqQ9PWy7vqrOTJxDE4q0vkWDjlKa2jWII1BCQytKAmDBSUgy8mTjFg0OLb3IBiSdRdezJHGsyAlm66+kmdOfp2CYSKkRK9cykD/APnoBHmmsQyTTBhkGSRZ3vlMXn0Z519xHXvuehAzbmEiyJKQehKC0ZlHUytMBYlWYEClr48lQ4NMY2BpQYYiiRNYs5wCHo0DYxjdLqlK8FPFs48/ShA1kZ6NQoNXhnZCpAysQonrr7+W4kA/9z78dQhTQsdCYkA767TyHBrATS2MUKHRRNIgR6BJydEIz0S3NUaacc76dYyNjdE4NQlBhFMod45honPSq1481v4XnwMvssgi/+fxX+2J+UmufavVKp/5zGe4/fbb+fSnP/3PxKsXQ7X/aTbTy4XxoQ996EMv27Mv8l/CnQf5Uajqv7Z96KUF20UWWeQ/CUmK1J1sDgAtBKEwyA3BAzt2Mn74CJmRgWix3C/RPDnN7MgYS9ev4emdz1ByXRpHhumRNrlXxJlvMzUxQdtNCAdcNr3mZsb2HmL8ub0c23WAZHoKz3HANYnylFwpdj+/ixeeea5z8l4LmdqxD5oRhdTEcn0oFFAigq4ClS0XUTsxhmE5yBKINEYECSLLEXmKts3OWjaO8eOUUEmUYZMnmjRMcR0Hx7Zp1+uUusrE7VrHgjU1jZdJtO9Q8wVYBvg9EMNrfvW9vDAyjJMoEiMldHMuvfFqjm5/jkImKNHpsjYzfJBD+4ZB23jlEpdcfjnDL+zuvLflIkHaIiDpuHOuvYpD//g12tUqpmOhVE7BtOgSFrU8JRAZBW3hlFxCFdG/4Syu/rnXceTJZ7Ezg4J0cRNBYd3ZhNMzXPGqVyMKPnPDxzulUiojTWLiNEWaJkq4gEQAkhzfOh3qG2fIJMZMU2IFouiTqQinu0xeq0GuQcH4/uNM7TmKbTtkhiRMEiiXOO+mG8k8k2BsEifVWElCJDWxNKinIcoxsJoJFctDFj2ak8dpnphAH5+imCliS3cEsABSQ9J348Udp8mpOZ76/oNMnBrvBNnyY7Gzu6ubsNmiUqqQtAJsx8fcsIalWzbRqrcJh49TMn0uveO1TEVtknodRwqmkpDM9smDAHN6HtFsIAybyYeeZHa8xrozzqZQKtOaOIltePimgyNN+lybmckqlusQdw2w7LzzmG3M0qhN0z/YS9yo06rNY+YCpSTMt+gyfC4/92xGh0+gkhTbsonimKUrV3Li2GFemBwjNDT+QD/p2CjNtE2QBwid4WmFk+fYKgeRk4kcneWgIDYlkd3JWElHJjn6xDbaY6fYcMebWRpqRJDSQrPlne/kqiuvYfTwMeLRCSpxRDGOcFVO2t9PYKQMz44TYjHy+W9w9IWDEESkPTahGZOvXkXcaOGYHrYWEIXYUiPSGOkY5FnMVFxlwYpQXR40mpBoZD1lMIJSGCGaAVZPmUvueCP1hSrZ+BR2nmIOVFhwVCd0vGuQob7l2AmM7j+EagWIcgFr5VJu++0PcLC6wKlYc+FlN5CGKfHwSdoqBtfAXb6ctN1GaUkuBbmUaAEyzUmzhNQ1MEwblWi6Mw8dZgS25OCu3VjnbmDhiecI9uxjqOgQtVt4ThHHNhnb8RCDvSWi2XmK519CUirCkaNMxhFDlQqze/bgOS7G9BzFTDN+6CiqWUd2m+Ap2kGbcpZSEg624ZDlGUaziWe5mK5PImy0W2Dvrj0MHzhIfOIEvtbEzZBqprn6fb/E+a+5mee/9wOq+49S6umh//ILae58nmzPMNTb3PT6NzI+O0OeJsTtoONQjFXnGxJmvPP3P8hkFlOdOgKGIsREbNpEtn41R06NIE0HvXM3niMpJDmmULScjlhjSUmlFeHGijiJkIZJIVQYuUHabMGW89h47oWMHBpm8+Yt7HjmERiZY+LwScLhg/z87/82uco4+tjTUE/otQoYmSBPcqp5hFo6wBvuuIO9X3uI6ef2kzk+XVds5MxbbmB65y7QEaWw0zM0RxMbBoVSBburxESjRqEaEzeqWMUCdVNzzZ3vZ3DJMib2HCHJE0Q7oKvWojozTME08LrLxFpz7dvejb90NbMnTqF8j+7eAjOTJzGvvIDm8Cy6GqKEgZFodNHkmvfeQSWDwwf3dL5zm84iWWgiLUXNSMGC9b3LaE7PMDI2yfFd25nZuRspbHoNi996//sABZYgRZAjOn0VFl1IiyzyM8UnP/lJtNb/5vYbv/EbL/cw/13cd9993H333Xz+859n6dKlDA8Pc/fdd/OiZHPRRRdx9913E0URt99++8s2zkUn0k8ji7O6yCL/Z6HhR9dJhUIhsS1BW3dyFZ5/+ikwBEvwmWnUcHv60OSMff27VNas5uBDz4EJs47F7De+S0HaxI6GZWVIAlauX8ezKsMyDLKjJzAKCiElSRxheg7llcupjp2CTCMiRdFzUUoh0zaGoQhFp436Jb/7f/HcY09x8U1beWjvIbJAYWYRZprTaSYVotAYuUQaGksKtAEqF5SGlmCaJtHsPDJMqFerWAWPxFSYAoqGQa2aoiyLhsjYfMur2Dc+jppo8Pq3vJMvfes+qC7QymNQMYQe3/3YXyCLPbSjBdJWm0wohOWgaw1IUlatWsUPPnZXx8XQXeGiG25g166dJHPTrH3Hm1i6+VyeME16LJ9Waw7PNVFZxMU338q3v38/JCmtokMqI4giTj7yOCfve5gep0wexqQ6IDAVDB8E22LXc09x642vYOzwQXRrnuKaFWStJkmzjaEkSXraCKpBaEGWKLQG2+q4A9I0RxR8UhWy8tItXHvjVu75whfR45MYfgU1N8eKUhfz7RqpVlQqXdSTkD0Tx7n0sguY27aLLsOjkWvyXp9QathyDq+78hX88I/vwrXKzKoAGhprvs2KFWcxOTcOVg5xjq89po6P0HfBKuj2MEoF8qkpfN+n8U+u3gsNcRhR9guoJCXPc6JGnfZjzzH+5HZIAvzuEiPVacb//vOE3RK8iCyM2bzpAvbuO4iaHiUoGXjzilIk8GWJ9miNF04+BEJR1hZCa/I0QOiU+akWywb7mG1FTJ04wdSBvWCHvPWbn+IfP/kp7GqB/PAwKhI4UYZjuWQHjvLYnl3YhsSrlInaAaZpMD5yAmuwj+joEUZnJqHewFU5pmchDYHUkMf5i6/2dLdCiZE7FGNJIRUooOaaREXBzW9/O/1dfex9cgeHn3wemWVQMNj+uXvYHsdQ6aZkW8h6gyQJqXT3MJ0HYAmWrTuLrNoiUgK7GZJLTd7j03/1VWw4ZwtP/M09tKYbOFKSZFGn25wB+A6kOU7sY6aKeCGivHwlV1xxFdWj4zz71ON0DfURCoEg4/HP/T1UWwxoj5k4BRcYWsHaDRs5/p0nCcZmeTR4FGPFIAiFDgLO23IRX//852C2RrznFNu+/Sz+kgGCNISBAgMXbmJZdw+7xqbIpUJpia0UUknajoC+HroNi+r0PL2FMtZ8SKJTzJmYdL5KiiIdPUbBd5mdncR2PWSzzYknamAERPNtHNvgqtuu4/4vfxWW+SBTDjz9QxAxYTvBVDEl26aUaCLLIqq2MFd1k7YjjMwkiBJMFIZndQQRndOu1cH22feFr0G5TEwIhSKEEdIvw+AgDx07Ao88AqYBWc6tl1zG177/LTA8Sv0VmqZmYGkf8cgEBWGgdIwCYhQ4Jixz+W5jmBPpXCd3ayGEks2l127h0QfuZ+Ott7L/Y5+gN4N2O0KZJgiw2wmJ1hgOaGFgSINCLoiDFBcf0y8SKIu+3uU8/oVvQGpx8dZbOL5wBq2/uYfq8GHoc/nKX/4VKkshzChrhyDRxKmmUC5TSxZAx3ztLb+FCE3oLRDTYNlNF/HCPV+HZgscRXa6SydIhFa0Gw3azQWwJWno0FMsU7ViKPoc2rufmcefx7AUVjuir1jArNdwXQ9TZWRJC3p6qFdr7H/gQdy1Z3HO2hVs//Y3od3ilk/9EdPpD8haMbg2dsEhTGs8/p2vwt5T0F+hsGk95YsvYHL/ERJDgGUiix6t2QUqGASnpsBNITcwFczOTHeOq0KhT7tAF1lkkZ9NlFIvvdN/E3bu3Anwr2YvAZxxxhlUq9Wf1JD+RRZNnz+NvIQLaXHWF1nkJ4wwQFidW2Tna5jldAv4wRe/wFC5hNWOaQYu2irTihKyIKJiuqSjU1heBXr7oGAjKzaulSHsBIIQYoudf3YP3eVe0lKLwmBGFjfxanWWZxZJvc26V14LV54HvT5mfw/NuIHV44MrabuaVCpUGCC6PDgyxuFHtoEOyaOcgvLwzQKR0rilAqVSEU9LbGWQK2g5Bmalh5WXXMxN730HYdhE5RJb+iSeSRw3yKRF0o4p2EDBINIpKHj9q1+Hrtc4NjnGtZdd0mlLLlOWhmCPNRFtBzUbsOrnbyPxLfAkViMGGcOgQ/+WDVAuQyogShibnOQ1N98K0mT1pvU8+b2vsRZJX5pSwsBIJZmwOfO1N4M0qCQ2fj3BbkWdMiGlMGxJFrdApJ0psyVYCVgp4YljPHvv1xgQEgb6cNcuY+i881BJTl/3ALaVIlSbPIlwTBPbt5GupG1A2mWj+x0IAohjRo+NsmN8jk1vvINlt72ZPDfQSKLmNGWVsGX1euphHWTCytUreP7xJzENm8y0yPHAKJ/OTJnlzCWraAFzeQBJBoZB2uNSPmcVV/7fv9lpsy1clLDIxsbprQUst1zyuUkGShVapybJtSL3HXLRaUOf5gqkSZwrsoINtoFbC3FbCUQhbTNAlQ3ysIk/38arJRSClN1//knUD36IrJQhaROWPOYcG6NUQUQxRcvEx6AdaZQv0F2SumphlUqEdUkxL1GcDzp1ZpU+Th48BI7Jez/2R9z4ex9AWxC7mnZJ0fRa6CSlR5oYQUi353eew3Gg2QZpQysG6WAZLjLTyDRH5SmtLCNxJMp3SbSJDGzclkUsupnoKzO1rEJUsSCF2rN7qe3az5G920mTCENDWUhoLICOMNtzpHmTwLNIK2UWMuhp59hBxqnvfZ/ppx7ByZtkyTyiYkHJZxYYD+uYq5eRa0XSXSHr74GCDUWLNe94G9g2Z7z6dbSLPWTC5pybr6PaZfH84d34po3MJX5ocFbNgrkqKIUfi07ejm1w+Xt/iYlMgW/TqNXhrCWsuvwSSBRdyuLZe78Cs9OwUEXOzeLKlODkEeivwNnLWX/Zheze8TyFQCPjlDxo0+t42JGGy85j4y+8HlMboCPm4yqFZb14skzZ6OZNf/kpGFwOXWWczWeTFLtoRYrcNLGSBDKTOIdAaE4e2gX1Give/nqYme04FKUC26HPAJIEX9gIFAPKoNWIoNjFXOKy9KZbCIplSj1lYltQszN0WeLqnOW5ZKAeIHvKYGnqiSY2PCgUWb18IyQ2lBww2nz3i38Pe/bjJznNcB7aNR65+4ssw6JbGITkeN1lTBJIAyhpTjz8KBydgrgIkUVXnLPv//scnBpl/599GCqSmpVRwCDvrTCVZvTmPktkD2busjDQxZjKURj0U6BKzHxYB1OyacNmqKfQjBl3bZyzz4EuDb0KzBxz3zGcsRn8BIROaBmQVgrUs9OhdFNzYGn0gA2NJnZi8cKffgJmR0GFmAlEhkHbksSGROrThyfTBCFRVk4zaeJbBQibzPzjA3B0jFw3saQiT0NmOy+bkl+AIMCenmb3974B7RluvuFimq05aOdYpUEO3fsN+sM2g0LSZ7qEXscByOER7NzA7eqnq3uQyV278ZetwCr1QCpRjYRqlqEtmyhsQNiEsEGStlm+eikYOUFYJyUHOh1Cf9S8YpFFFvmZ4aVcSP+dIqBfFI9eFJP+JYaHhznjjDN+UkP6F1ksZ/sp5M5jvHQ527qXb3yLLPKzh/hnW6fcCQwh+O33v4/m/DwF00Yri8xQGDrHyTWy3abkV2jECZyxgt/8849y4Mtfx1KKxEzJlYFMDAp1QZCEJKpGEqXYKWilqaoIt9LLiePDXPHaWzmVhoBCz9cxkwxTZyA6XaiUEIyfOAbNHKUl7/qjD7PjK9/FsSXVNIK+CoHKidIE37BxlIGhJFpLcm3Q8kwSqak22+iJGoVCkcA3OP/2NzC1fR/dXT2kUYNYgpIG0ydGOTY6Tt6oM713F6fGRslqNbxMk0lJaFuAhcwcLvuVt3JsYpjStVfiHZohLJeg7JH6LsHhcdRCE6SmeeoUh57fD9U6J/ZshyMHUNNVYjKavkPsWuQi50C3QUyKG9sd8UzkZKcTzy2lMZUGodFCk5gaXAlhQEFa6CyjGYdkKiOQguVLVzIzt4Df202jOY6WGlkuErdC3MzAziReKjDDDDPIKZV8CkuXs+SSy8hdl0OPPs6Nb/t5ymtXcurYfiJSRLmXo9Pj0NsFRqfddW+5i9rYKCE5RdtDJZrS5o3E1SZPP/IIthQIoZHkSM9HBS2m5ueYLxW44LU/x3itSjY9hujqYm7HXtTxCcw4Q2YJtpQUTIew0cR1PFxtUsxMRJjiGTbtOAFpMGhVUFphdPmEzRrSMbFyhZVIDGkTGyZCOijX4dxzNzITB6xYvwEQLIydolIuEyYBhjAwdZFUBKQqxrIE5C5au2TSILZSIKLUyjn25E4YHufwoZOMbt+PtxBTCTPsMEaqjFKhiNImhucTJinaNDvOIjRSaQylsXKB1ALdsV0g6ASeJ2lGnCpct0icCbTTQ9JfhOvP58xXb6WWp+ixOaoHjnHi4CGC6gxGfy+hmRPHTYq+C2GEJ8FQEoGBwiQXBplUWAq6gpS+IMFphxSVxIggnU4ojDSwXYfaQ4/iD62kt7+Pm97+C6hz11G84EJOnhjjrIsupz91mDg0Sr9RYCFtc3DPLrKpWURPmXrJJHYEs415GPDwDZt2rY1tl0nbKeMHjpL39rJh8wXMJ23Ove1WTu0+QHL4OIVU4RmS0MiBFO275I0WJdNGSIlcPciJHc+jj45jphm6v4Kq+ARxRI7JujveTCIk8w8/S5YFIHPqcUy5fwkz9Rb7vQQee5Tf+uM/o6vcxaHHn0JKEykEls6xlEJJgcJg9oVjrD/rQpaft5mRB7fz1o9+lL2PPQv1ANuycJAkCAJTUUoVraIDhsMtt72VVp/P1OFjZEkNN1XEhgFonFzjp1BVAZe85y2MGTlEmlt+7dc5Vu7ilpUbUKemmD26BxxFPFtjXe9SJuvzeFuvIJscI55p4CtFoFPo6yIOQwYyg4Jh0Upb/MKHP4yz4Uwmnn4cPI84aJI3G1TSHNfy0K2Aol8hDtrU4pjC4ABeJEhNk1oWcssH38+x/XuJg5R+DKq6jXJzcCSu7TI3OQsiY16ERH7OCkNQ270fu57SUyhRD2uIKKWAg//m6wmWVBAnpnBkTLfhE1QK9F68iWR0Dtlu4Vg2qZFSkTYi7fzOKiHQ8nSWkO58Z4TSyNOCTBgEnPWLbyJ5/AXsTJGUTCrVECdNyTybKEtor15NvFCjuGotweQ0DA1xaO8+FqbnO+J1oKkNH0AFMQqDSBpkxJDG2JmmYLq0GiHNapX+886i/vxectPghre/jRPVOexEEQYhypFc+/Y3s/mSKzh55Cg6jvi197wbv6dCDujTF2gMLf6nEMJFFlnkp5277rrrJUWk973vfS/3MP9dLF26lM985jNMTk5y++23/y/lbB/5yEe49957+eVf/uV/0630X82iiPRTyJ0n6Njh/43tQ2e+fONbZJFFII5jTNPkox/9KGmaopXClgpJhqUznDzHlTZ1BaljQ18Pw8Oj+AdGSQwNQmHmBgKDlucRtpoUpEbpHFdKWn0lsv5uknqTUmxz/LltaJ3xqrfeTnXHQWSzjY3CTTs5J5kU6Ok6GCnJ7BTjO46S65xW2EA7EjVQgd4KpDFRrDATgZWbeLlFO24R12eZPXQQ1QjotnzqrQbK97jihps4cXSU+tQ0pq0xbBctDXSaks/PgVK4BY9oaoKKEPiJpNp9ugscBjI1ODo9DZuWc/7Nr2b8O9uxWgFZo8m5521i5MkdgACdQJqxzKqQBAm5UtDSlGKLyDSJLI0OUxAm8fBRXv8nf8gL995LjkBqRWZ0HkYosE67orWATIKZ5MgMYkMSqoDMMTtpzJNzzExOQ7vJlltfibFkCdWpWXSs0ZHG0gaGNjGwAImDy7znE7SbNIRiw9pVjG17nEOH9lBLm/zi732AHS/sIJYhLOnH8bpxGxnN4TEarRrYnQWm3Yop5HDjr7+LV7/2Np7+6lcxDEEcBUiVo/Xpa/JhTDzbICl77znWEAAAIABJREFULDv7TM65+TpG7v8hXUFMOYooK5MaGXbBRUQRfrlEo9kkV5osyzDdAvNxwDWvvQ1VKjG3ME87brL0rDXUq3V0lOMbBVra6GR8SYnSElot6kEb6dlcefEWzly+kpGjx0nIibOQtFLivDe8genWDOn0BN2VHmRLIZUBQpGZCbZKsWp1KrFF75KVzOw7Sldq4NVDegwbJweVpSTdgyyEMa0kJ1IZdqVClHdK1QSdxTACMmF2FsxCo4E0TkFrCl6JVqOFv3SI/MwlrHrd9bjLuhkdOcHmgeXM7NiHG8ekWYQoFchKQH8JdEbSamEj8LAxlUBoE4GgbUFagUQoSpHqiLTL+lnwDFpJiKMcukLB+PHjnL/lcrZeeRXDx47x7K6dZAK8HGrfeYCFk3OMPv0MwnVJ5+aoN6tgGPhKErbq0ONAXxEUDE41sWptSlsvxz5nDa1GDUQGxSJzX3kY5heYefAZktFRsCQ6SzESRUQAA2XOf++7qO4fp1ubiOYUIk5JJqaxHY+eoSXU27MgNcp3yZOMc17xKoIwYOrh55DdRbQA7Xu0wjrnXHMlG2+/kZOPbeO5R57k0LZnMbXASBJMNAKNkgotNFJZ2M4gU6emGNlzhOKmCzietVkzsIK5kyOEdkojTFCWJDViTBSRa4CUmE6Zgw/dj5AmeXOB/sxE6tPlitKgaUvkqkG6rtrMVG0OpqqIUpGFR59m3zfvo3riEI4jsARkUUaY5ay4+jI2XHU5o9u3k4cZwrRpo0hkhqEkXpbj5ibSLnBYR5zYvxNr3Zn09HeTJglJlhImKUMbz2e+GRBFIWrNSrRUpK5FJgzqSRv6u7D6i8xt30FXbx9BY4rMUuR9BcgC5vbuY4lloBamaR7djUFA9PxxkrkAy/awLIeABNHXS6vV4rc++WFSlTD+yFNUCt0EjZCe8zey+dWv4PjTz6OFSWpKiGLM1EKh0fLHWovUP94sDebp1oXOsqVsue1G9n33UfxykajdYrXZhZkpAp0TFopc/ad/iL3hHAaXrGFqdBpmqyBMbn3L2/Asj4XZecgCEq2IhwbI2iHEKQ45mYLcAZ0Z6Czlll9+KwcffgrylMtv2crew/sQ1RZJECJKLq951x1Mz1Y5/NQzqFzxoTs/iDotSHa6s4lFEWmRRX4G+fjHP/6SItL73//+l3uY/y48zwPgE5/4BAcOHKC7u5v77ruP973vfdx5553ceeedbN26lbvuuutlHafQ/538XYv8uxAPvfQ++sb/+nEsssgi/zpZlmGaJkuXLqXZbCKFxtBpxyyoOs4GTJepXEOlgnXRZipuCXHfD5ktptg6xEkN2pbNlb/6Hp6555t40xM0VYviiiW0ZmfBcVi+fD2zuw5idHcRlm10EtCHT2NykpIp8DOoupKWbVJsKYKbL+DMM86i+XcPMukkyCxH2Ypz3nAz5aF+tv3D3YCP29JYiUKmOZYTMZe1IAPHLVKWRVKgFoWdNus5EAc4ukGaKZRWSNPGMQ3CepOSZ5OGCWXTxMkMxoZsSAxIJVZqMbRhPfNvvZTg/qfg4aMMGYLISKn1ORQiCNOYno1rqU1MMzQd04jrZKbDYJbQQFK1TJRrsdSsEFRr1IjZ8pZb2ffCTpKTpxBakVmdeTEy8NPOYiqTEFhQjDSW47LgpPRdeC712SpqeJpKIljIQ7CBgR7EXIYOIxzbxUQS5ynKMlCWBltAuUjpoi2cuXwFuz77acgSKLidXJZ2G7ZcCtOznPOBX+XACy9wy8A67v/jv8D3fIJgHmwFSlEJc7Jc0h7som/Tecw9/QwkEY5tY6YZiRJo0wHDIItzKLngWyAFZluxItCYSU4jD6j6gkTFGBbkWcaqqy4jDGNmjo5AKjudpDas5dzLLmXfl74GYYsLrrsWN8zZ8cTTmLlB6LpQLrH8Na8k+sHDzI0MdzJ9PBPqLVDguAWUJaHik3Z3wSu2cunyPia2P8fYl77DoOzBymy0UORGSG7E+F6FaprSyHOQslNyGAWgNaYtQaRkmQddfVCvQU8X1KogNULlWHnWEZGASJZO+1lyDJ1QcBza7TZCOqSJ5ozLL+XGX30Xn/6buzrlQEh44TjFWNJfKBJLxbQRccsH3ktuSrZ950FqB47ghSmuYaGFJDRMMtlpJggKJ4VyDJEJzR4bZM6l73oHC8cnObpjDxwcpbtUpipSUDn0FFl7zVXU5xaY23sMWY255s7foGugj2/+wZ9CfQYcm67ZEK+7i9v/5Pc4cnKY7//px+lC4Zg2/m3XMzYyw3J/kPO3XMT9TzxC/PxeuOBMKjuOISVEhibSOdg2F7/753HXLuOJ7z+EuXMCPTHFClImaaOdAsIwifMIzj0Lb8kgS/uXcHz3IRgYgpFDyDmNECF+X5Hm9AT2GWvwmpp6twFHTuGbRUSek9YaFE1JliadOZZZp2xSmmgcNv/mL7FmYCVznsUpL+fEn/w1JCGv+svf53u/8j8QQYSVtfEU1P2OEwnZC0kbB43TnKVbO4SGSWxC2zLJXAN0Br0+XVdeT23HETavP4fdDz5InxLYOmOhOUcGFAoujVChlw52yhQLPrIZoaIQ2dOFSgKwXKxaStn1mW/WOmFnhsHVt76KQ/v3MDt6HFwXXIfb7ryTnQcPcGp2mi3XXsL2D96JPO9itvQu49n7vgtRBHnCoN9NoZ3TsnJmjKiTByfAziRD2MRhhFGymBApXQ2LwPBY9q5Xcepvv4Hf1U2tuw1mF3KqgRI5+DZMJRQtj/ziM1l581Uc/uhnMcu9ZK0GZ198PocffgbbzlEyO52J1CkBe/G+PH1fC0nTd8EMKIoeQjMnzxKG6hBmAfmaAVoLVcQ734oeneLs0gAHv/ZtZKULlUes3rCWk0cOQ6OFjyAo2VzxS+/m6Xu/hXtiCi+tEfia2AA/LhMbknx5EWMqIM/ijppFTiH38LXBbNyCZV0QZp0sKM/nnr/9a15z260kdMRhgYGtT2c2LIpIiyzyM8OqVatecp+RkZGfwEj+8/jd3/1dPvKRj/wv/3+xa1t3d/fLMKofs5iO89PIS7iQMF6+oS2yyCIdpOz8/IZhSJZliNNttEEhT5/Mxy+mMkuBV+ziimuuJTQNsAwSKdAClISGJchEjvB88CTO0CCYFmiD6669lmJXF0F1AT3XQCqDuZkprK4yidEx1OQCkArXsrn8mis4/+LzSKImwjJQ7TamtDm0ex9hGINjQ9En92wiz6RpSmKVURAGnmXS4/ssNOdRWiP8QiebptkGwyTLO1eDHNOmaFlE9SYmYEuJAYRZRi5yyBOsOMVPU4SIUbPTFGstGJsAUsK8yfKhpWAYtBt1lIRzLzqfpatXkqMpGkWMPMfBpG2ZHfHCNGk0Q1IyziwPsf3b3yccGT29WPrxvKh/YeGhlEbnCjyX9edtZOmK5UilsXM6fc9tB6o1PG1SLnahkhwlBBk5SuqOgDPUDauHaJ4ap7RkECR0r1yOmG/hhTHksHHVmbBkDWGtzdbrt3L/V77AJa95JUG7QdEvYQY5sp1gOTZtmUIUM7d3b+c3XQhMU2IYBpYAshyZZki/gDBcCBU0E7KFKvNxmzkR07Q00rUBTaW/Dwy4+pU3cen113XODlQCpQLMTrNm/VlADo7DrocfZnp6GsdyME0b4hTSjGJvHzfccAOO7UAYdfKZ/AIISaVcJo0iXN+HSgln/Vqe/eu/ZuyhRyj39XfeZwm57MyHFjAfNWjpuCNG9ZRA5rBmORQ7AkFmaM5//esor10LpsE5F17EL77/ffzzU5tOkD1SoIREiU5Nd5pmJInGc2y0zjl57Cif/vO/6Iz5+CicmgdhYQO1Zp2FRp08jrjvE3/F/Z/9HNW9B7AwiRNFLkwSKYlMfiRG9regEnXuJ4aETEAzwlMmqcpBJfiegyEBlUJPGeKA49ueYW7bNmi18B2b0JXsnxuH+SmwDTANXMMi///Ze+8oua7rTvc756a6t1LnbjQyQAIgAGaRBHNOYrCyLFOiTEmWhgq2Rg6k5Jk3lKNk2Z5nW09jyxrakq1nmUoWLYpRzKREAgQJgsgZaHTurnzzOWf+KIj2jMem17xny6b6W+uuru51umpX3bqn6uyz9+/XCnnwW/fywD3fojo4TCQ0sybh0Oat5PsPcfiFbfzN732e5OAYlXPP4KwrLiEWGULnWEpj+R5GJxweP84Pv/8U7DlG3mpTLJdJfIErLALPJdcKa8li3nDBhZx35tlUPB+mZzn7misZvOWd6KhbudY6dASqVc4672wax47D2CS0I/Jmk87sLGXPQ2BOJCr+TgDVCA1DRTact4GeosP41GEO/e5vd5/vkhHmJo6DzpGm6whvRLdSUCiwLAvaMUm7Q29QJBMSJQEkBgFSsvLqq6EWcv0bLoaDY2z73gOgU2ZbM0y3ZrFENwdsaYnRGqZqoGyoddBZDhL6Fo9QXnMSBB6ZlTPnKCgVEcbGVRZ7n/whM7v2doPTBrSmYzSmWGTxGacTDPZDpZdzzjyHTjsEJKJYwg+qRLV52mmd6TACvwzlXihWcR2fPNMowFGSPtvFRqJsm3VXX4JGYmtgdJBSXw9uq8OoU4FWi6BnAOn6RAcO0okTAApBEfyAk9ZtwAsq/6zPKGGgIGyQLu00QnUa4FrMq5iGAHf1UigXMY8+Dk8/y64HHsKxLUR9ngI5h7e/ALVJcE98ppUrLF63BqoV4jRFGIMlu+VQqc5RWQZz8/TaDgPFCkQZYKHDBBOn2EZArd7VbRoeJlWa+757P1r93V645PUjrrvAAgv883k9aSL9iM985jMcOHCAO+6449Vjy5Yt3HPPPT/2BBIstLO9Lvn0GK+tibTsxxffAgssAEoppJR87nOfI89zMlsS+jYml9jGohEldBBQLnH+re/hwAtbyAeGmNrzCqOXb6J1cA8aifY9puYn+akPfpiXv3c/9FW47kM/x+4HnqLaP0qWJByaOoQrLPpjTamd0664ZHZOJhTSSCIHjCUwcUpzUZHZmWnmNr9MnoaMCA87zwmjNlN794KR3HL7R9h75CjJ9DhmzQqy5jSVVOErQRbnpAUX49roOMdImzNvuo7JA7uxNTgSLA0iT/ClxLEl7SjF8mwio8k8gUYx3E6p6Jy6iegJO4xv3UKlk5OkHYq41FoNEpl0K1Sk5kjcYGR4iPEdu0AKOi7M5in56UtY/e63Uju0n1RIyqtOYvbYQaquSyRjHNcjy9NuIkblFPwiVq6xEBgp0JbAlR5hnqNFTmFokJLnM7f7EJ7SKAvyPIXhPrJORIJCF33ec/uHeGn3TroLZs0b3voWLrz8ciaLRXY/8SiMT5C3OwzHOVac42XQnA1ZtmQNB776VQ7u2AmLhhhetYRUQr73KD1Zgm9gTucwUuGnP/4rrFyzlr2bn8OyLZJWhGMJbAS2kFgIcqWothJ6w5yBOMNIi+ZwQOylZNUCeb1BUO5Ftg1xkrLv8DFmxybpjM8DHpZ0McowOrIYVS3RnJsDAypVtOsNUBIlLYI1J7H2gvN4+stfIa7P4xZ9VJ5R9AqITEGeY5UKGN9h/Xnncfx4C17aCWFGOTXktks22s9sVKNThTCQaAGOsDDCxhgNrsN17/pplO+R25J0fJLJuTanveENRLbNsZe20gpDjNDE8/MEgU/BLxBrw7Xvfh+bzj+POE6ZPnIEW0o8S6JzjWW7qCzD1FowW8eNwGunVDONbSDxIHclypPQybATg1QWWTPGKZZJhCAJXN52+22cf+O1vPjAg6xpCwpOkbmqSxh2KMsqhdjl6CPPMbvvCGSaIMtppR10yQJPcOW734VWhkarA2nOqWeezq6sxeTuPRDDx+/8FZYuW8b+J5+jlSVMWSkrzjyVqV37sDoxuWtAO2A0o+dvYmjpUmoHxuh5w1qsZsjUzBiqHZJlGRuvupTiNRcytmM3Q4lHe+v+rruib2jlc9iOT6sdQdnntOsuY+szP+TwSzuYfHYbaMmEE9N/xloqMTT3HaS8eClnX3w+rxw+gNg9hmom+I6NqxW+lBiVYoxGSDAWGCkRAqTQqE6d7bu28NJff5PaoV3QSWC2BVOzHH/qaXpbGlc66CihOlylNdNh2eKVnHPVtcwemwFh6HMlR3RMlCtAkiUpN//8R9h00UU89+0HeeWRzdi5Q+AXyYIEZI72JEY4mNzguEUyy8bSFv3Ko2wEHR0jFg1y6wfex5Zt21DNBktvfRti9SgnXXg+My+8TJCmpJ0WrmOB5aAQ4AYcevqHhLGi8dBjHHn0GThQY+LFPcwfn0S3GpAm2IFPJARt1wYv4Mp330ajGRGNz5Jrh65knUOiukWLoeWS93occCL0njHCuM2b//MvMfv8TsKJGRxpEyYZmfBIcgVVl54Nq2jsOEDaaDG4bCkHpyZpT8xikSH+p2QeFCtlWmEHxy/g+AWiOMYXNrHjIIMCp7/lBtyBPuYnpqG3xLmf+jBHvnMfcj7CjxWL4oxip0FFKvK8TUKIUxDYImPY76PeqHNAZaipaegk9DiCVpKiCzY6qHYF1dOUaiOGKEW7NrnSlDKFZTIKbkBYDqDawxmXXM7Yyzv4/c9+lpGRYSy7uzsqEEjRvbVQibTAAj85/N7v/d5rJpE+8YlP/LjD/Ed55JFHWL16NXfddRd33nknV199NXfddRe9vb1cddVVrx6jo6M/7lBfZSGJ9Drk0+O8dhJpyY8vvgUWWKBrRyql5Hd+53fI85zUdTnphhuYfnkvVtCDW+0lcSWcvJzCqpXM9/RQe+6HsHKUdRtPRU3P0pqcAcuBeodjRpKFHWi22H14EiJFMjXDZG0cZISVCaopeAjqnuz2Lxjz6g4/xqAKFu39+6nv2I3vF/EtiZckCBSJUGilIVNsf/IZsqkpWDzC2z78AXY++ThBLHCVRAlBuwC5NPS6PiqOOP9NV7PklJM48sI2LK2xDFhGk+Y5mVdA+wFJUMR4AXmxjMlygr4BZjotKgUH33aIWwm2BYlUOEiUFGQeWOkJI575aeaOHKNsBShhiH0DAwG8+XLq5QL0D4Kr2PDBn8HWiol9O6DHQuWacl8fl7zxOs44fxPbN7+Ap+Wr1WC5hDBPsQb60Lli/vAxpnbsRbgWYRphew55lnLhNVcxtX4xqj4NSUhpaJijO/dAJ4Jc0NhzmNq2fdgFSXN6CiZnIDUIpfBwKHhl6s0200cOQrkCR8egGtBo1Gnu34/sZPQ7FZSRZD1FVJZgW0UcpTl+7Ah5o8nQUA9ZHAMCI7qLKCGgmAt8wEcQSUGkWuBKbv3VT3Lk8BitY5NYEeTKJWtGZLWQQSvAabQodzLcdsTY7v3Mjo9Bbx9YkmRqGuG4FG2X3LVIJ8eZDtu0d++kUvJJ8hQsiQ4jXANF1yUzijBuM3V4HHbPMpTBolySNpt0+qu0R6osf8v1BKevoT1+BLsZMxBqyrFE5hKTC/Y8/Qz1YxOkR6cYcnrQluTI1heI5+fA5NTGjxHPzeIGPlGzThRH2D297Nm2k5dfepG5iQk8x8XWGmG660xDN4fo55pyqihlGj/vWofHjia2DbnV/RI6RAGrFSGFg/JL5GmMCQrge+x89BFefORhqFZIBsocdTuk55zEyjfdyNS+g6S2S49xKLseeZrgmhwTSPLAAr/Akr5B9jz9HGq+jut5RChWLF2NU09xDk3x2Le/wc4tm6lUqrRcuPzn34873MfxLVuxwxjVGyDrCmvNatZccRHj9TmiffvpHD3M3NbdYEKoVNG2Q9N1mN61g9ve91GCqSbtXfuJVQclIkpXXcBw4tJqNNEFyeTe7ZDkUO9Q6ORIS6JkRrMxRXPLLvxMEnVCju3ajjh9HcUDdRYPLiIJawjUq/pHRhg0ultpBmAEXg7lTCHm2yyOBLk2VKZajPYO48UZy9oOkUqp5ZqBwUHG67NUeoYZWb2GZyfGSI5Po1xNLDIyJ0MEFRxhIVyfXQf38NxzPwTjQzNBV4qkabs79y3qY+P11zG5fR+WU6YTR4jFw6gowUk7CJ0Sl7rtlVu2bEXNdCCJGb35Wo7PzjK8eCnTW35IamlSO0dbCsd0XezK2iKfDXGOTaNbOV6Usz4v09vJqcchF773HdQdi87EBKZsU7jmQjZsuhgrVux/eRdGCSwstJTkjoWyLJAWsR1CYMFLe8Fxocdh90M/xJ0IaS2vEi7ppzcPsFcsYXRomP71K5iZnSDbvh8nVbTaDZLABW0QSQfLdPXCjOhWYCpbkqUxulig026gXJeRcj/1xjz9J69k/VUXs+elnSS1sJu4txOYCBmZnKWSKwIMuaVILU3LVjiBj0xyerwic1Nz5MOLeNNb38GuvXsZXrqYuYMH8S2HNDOceest5CUfdWg/5SxHo0lRaMuiolx8PGIJcUGy6uabmZ2rI8KEL3zuN3FtG4M+0c4mkD+a+BZYYIGfGH73d3/3NZNIv/iLv/jjDvMfpVar8cUvfpGLLrqIgwcP8swzz/BvPUWz0M72euQ1EkgLZ32BBf7toYVgzbmbwPFpxxkdBQjJ0k2bKI+OwNHDUCmz4Ybr2fzUs/QXKziOi0g1JJI1S1dAtQqpgR2HwEjoLUM1AM/HMppMaFLAyYEMhO5OBp6CUgo5qtv21ExJLU0ZiXEhdw22NFhaYeUKmh0oVSDNidstEBLz9ycYCzA5SRySpR2efuZRJqfGusKt8GqCxg2KpNIi17r7f8tXAQVYdQq9l11MWvJxCGgqQyyh3VMEr9AdK7r6QJ7SFDINWJBleJYEc0JDx/a59PxLueLs88EKYOkoY0mb6azT1SHyCiAEUZKwdMVy1pyyDtL0H54c1yYTBjKFlQswEoVBWRrbtbClIJqYJhCye5+54vnHn8RTILSm13JJZmaZ2XeIse8/DgcOgRa4no9wizSQzGQxTl8RdAjtRleX5/AY4f4jkGTkBZtOxaPuCiyvAInmpSef4PEHH0RqA7rb3qOFfnVRqAGEJrE1HalpoEltjQiq0MnY+vgz9PT1Qm8PiSxiLBvQ6MAjzFMcYWNbEldIChLwSqxYvoqfevvbwRYYC9IsQrVboHPC/XvwfZ9M5eRZhi0tVJp1k35pdiJOA2EE9XmisH1Cl0gSJwlrL7qQZhiybuUaiNSJ1iCD1ApLGWxloFTGqVSxCgFF6eArBUnYPbIUaQksz0PrHDwPbIdrrr+eZRddDGE3wWbbDuLvCQn/CCNytNBoqcktTWppErvbYicMuDkUHQ/f9UhUjspiSuvWdls8pYSgArKAJ2xqqgUDRdZdchGyr8qym69m6OKzmDFNplSI8F2yPCGNI8hzmJvnqW/fi9UIsdsJphPSidpse+EFxl58ibmJcfAcKLgoDDoMefQb3+a5r30DHJukBwhDhrwS9itjbP7S15l/6EkKG9fBymVQAMpVVLOFSRPCI2OgXZ5/6DGefuZJTGCR6wiCApdecx2DPUPYSnaT1GduRA70gmdRsAV5u8npa9aDBt9YFLSFboSwaiWnXnYR81Gb+TBECU68H//uUEZ3r3etQXV/CC1xM4ntFGg3O5Rkmf3NeSbyhBiLlhdgDQ0wPjcHw700GnW2Pf8cPevXdtt9ly8mjNow0IPJUrTW5HkOWczIaRtPnOQM+gJOuu5KhLIZ2XA651x0GQib1LbBczn7usvB1hgkThCgPdE9NzNz9BsXcovdX/06zNV55dGnu/OQ/NH8bUAovIKFySMCW5AnTYSOiW1NPWmQEmP5Hhdefjknn7IehA19IwwtXk7Bs9j6g6dR48fwjEIaRUZKZnIycpTR3cfqtCmYrrA8aQ5zLRzpsP4db2LkojdQ0znX/tSNnHvRJpJOh85Tz0CWMVKpgmVxzhWXQOBhxP/8VVBJiOIQPIdcZ+BKsATHpyfAsin3VHn+hS1ULA9qEbQy1q45DeY6KEuSWoIGOXXbYl4KMgOJFpB75K0TjzVX47kHHoQ4YsOF50LRxxY2SI8lZ52BtWgIY3fnLYUml6B0gvZsMlsQmhx/zWrO2rSJMM9xCx5xqsnz/7WFbaGlbYEFftL4997OdvbZZ3PVVVdx9dVX8/Wvfx2Aq6+++p887rzzzh9rzAuVSK9DPj3Fa1ciLfrxxbfAAgv8w0qk3POZXLKcxaOrqB8+jhaCn/rVX+L5+/+G+kA/zoqV5ELgjQ7R/MZ3aR88ynClimil2LHLolNP5fgzj0MIy5wRGiZk41uvI6xapAfGKCaKxIbQEZQTiyDtqqe6WtCbGcpaM+fDypaiR0vmPEWlEdEJNHVPo43CSwyFJGfYq9Ku15Aa9mze3F08RRau7rq8RYEB36UQ5gxXqxwf283Ugf04mYNlTuhjCGhlCl0odnfVV5zEz95xF9umOqx95zvg0tOZq9Wxto8R9/eSLxlgyTtvYnH/Slo792KZriBrfwxFBe00QwibYtK988y26JtMmZtvM/PkDjovHmLNW28gy3Pm732A5YlFY65GwfdJW032T41zYP8BGrM1XC26hVon3NlUTwlndJQNIyuoHzrCULmXloqg4iIQFDKFOjxN4/gMspbQL4vo2Vm8XFOwLDp5TO4KMpNQwlCWHnGsyBUkBsTyxaQyJzMtvA1LsHKFarQYEj7WTJORvgFqMuP0d9xAXA6ojc3gpTbastBpSt6qU+kpMjfTwLG7VtcG2dVJktAqGDqBoVUWaCQjuU2v9jm29wCzk2MgBZVrrmHtO67HO3MNNd2B/jJt3aGpOnTsDqFOoSOojx9nePVyjuzdCRaYOGT50BCNVgNLCkwaoVCUe6uEYYeBoISlNDLv/q0Rt6AYsOnXP8nk0T3UGtMEfVVCJNqqsKZvCU//4VfoDw0RIYmtyYVFy7FIXAEjVXSrhujtoT41BWGTkm/jCoWLIYlCPNsijeNuIs5oJqOE0K2QdpqQ5Yhc4apuJRLCdPWrLEPiKFJbd2/bho7bFck2GBwlqCTyA0imAAAgAElEQVTQihpd97feKvlwP7d/8lMMr17NnkefpJJCbybx59u0Gx2Y6jD3/H7mXzlIad1JLDp1DcFJy6gfOgrNDsO+R04OUlBwCvQkgr62ZtgrE5SKzDZnoOTA2RvxggJqpAyWJjwyxbpFK2lM1Sl3BO50i7TfohhZtNoR1WIfoWNgWT8X3X4r0ePb6cw0oBFRPHsjV3zgvTQdj/D5PcwcGiNzNJ0gRSYhxhHsO3yMbPtxMpXgjAxy9Qd+mr1PPgO1GjrP6S0HhHuO0J6fpjQRYqI2Unosvu5SdukaQ5SYna+D6oDMuxVIJ15n6VhYlo0tHGzLwtguuqefSAlalSL5YImOstHXns0pP/ce9m07gLp4IzfcegvHDh0m1w0YXMJ1H/4wY6N9xJ2Ym37lo+zdvpmb7/gF9jz4NFW3hAJu+f3f4lBjjtbYOBd9+IMcXeRyzvVXMXvvD8iGexmbnqO59wikGaxZwSlvvYpDTz1OhiTWCasvPZf5sXHIJdVWjCcriPVrOPPsTRy//1nsZkgQZzh5hiMMxtJ0soyEjGzQR8mYcz7wNmZO6ac1OUfu2rSqDjvGj3LwlT1wrIWILRqHJji++QlMu4aXZ/gmp2BpElKMpUBqLDRVy6GgBW6U0BcZlHBItaEdJ/TecClJX5n2sWP0LF5E2mjy8gN/C67FQCjpkRbeogH0siHmjh6DZhPH/L2EswW4Fm++9d3s3rsTSgXwbKSxkLbN/LHDdKImzRf2s8bpB+lx7JXtVKYSWn02LcehZQuSxUPoSom1113P3Lb9lJwhknaGb2vSLCduhTgnr2LfK1soKNBzbQr9IxxeMcJ82kIf2EUhE8SOJCoICDziOCdUGZmtWXz5BRyut5gfnyY+eJhP3/Hx7rxzohJJIk4kxxZ2SxdY4CeJz33uc6+ZRPrlX/7lH3eY/yQ33XQTtVqNgwcPUqvVWLVq1T85fnR0lKuuuupfKbp/yII72+sQsf21x5hT/+XjWGCBBU7wj8yycadDb28vUkpCp8Cld/wqmcl49g//BKTNsvM3cnTfLpirdR3OemxI5gCBPZGySlUAn72ljOpdH6Zxx58iRvox0TTUGvStXklpw8kcfegHYElKq5dSTnImDu7F6q1QmG9S7u+lNjmJh8CtVMmbHbyCS92kLHcrtMOQjlR0HEnu2N3+H9WtfMGAMAJXOCQihLIP0x0qPRWaJqYQKQZjw7GyAkviiwpRSbH2uuvZ89Xv4aaStKC6/XRK4cYWsjLKsqvOY+/up6DVonhwFg+olwbRvQUW/dJHmPj9P8U6NkGgU5YODrFzfhxsGNAFiplLKgQTjga7ACevgIMTcOoiKGSw7wjVGYNyE+JWRJ9dJrEs2p5BiW6bXb/wyOpNDAbpO8xXAlh3Cr/wzlv5g//4i+DbnHzzlex78D7soA93PqSsYKpP4iWSoU63+KFWgMTWaAH9EfipxNgtEkvSsX1SaRHbHjfd8i5e3LaVsZe34I70c+ONN/Ode75JabKN1QyxfZ9pQtZcexGnbtjI3/zpV6ikFjXXARNjG0kwO48jXeYKmgHZS5A6tCoeoUpJdAdRLWDmxlncO0w+G+P3DHC4XePiz3+Opz7/31i55kyODRjyvTsZPfkU8sPHOXXjSWzbvIXw+R0MNhVHKk63dAS7WwEShlD0od1CWjZ9RtB0DemaxZxz0/VsfvhhmFQwEyLqLS78wFs5tK7E8W9/C8YyaCXYaU4pMUgnoIaNcZ1uhYVJIW3QVyiShYosKBKnMdd+4kPsPLaX9Sev5ol7/xa56yiO1igJiSXJpOzGaLtIaVFwfcJ6gyDwCekgTz+Fd9x6Kw99+a+Y37WHQrODTGKykiTzCtDK8YyLsCRxHmEVAnpiiySL6AhwRgdJa/MMbHoDb779/dz9l19B/XAz+BUYn4fcUPEckE1c6ZAl0FECVSpQGeqjMTcBeQyWxKoV0bgYz8Eq2KikBTZggT1QJm/M4W+6EF300Y7mTVdczviW7Wy+57uk7QaU+6De4cP/8VN84fA2eOAZNvziB6nE8IOv/CUUJBQ8qjtmaJFSKDmEeR3KFUYiwVxUJyvHMDIIe2YYNdAR0OgLKMUGK9MkQhOrDIwDxsbvHcLDwpk7TuRaRGmIJbuFj26xgvIDkskWYDEqfaSV08madGTG4mX9ZEnK9EQL5XiMbDyVsYO74cKzcb6/i8yEXHnfH/H9u/+CRTMZK3uGePaRR3nDbe9i7midQ995jEt+7aN0jk7wwt/eB4FD/8Z1dGamiU2Ly888g8e+9FdQ7gEF1/xf/5mXdmxn+m/v4/qfvYX7v/VXMFOnGBWIrO6k7OQCYQviuAMDRcjSrrC2FXDb536DP/u134JGzPJ6xgRtrv7U7Rij2HL315men6PoBshOQsvxuq1muQLPgB1DHDKwch2zScYpP/U2dv3Jn+MXBpDtDp12HXwLooQSNtWCphY3kcIjqFSZbjcJqmV8v0BtapylQwNErQgALTW2NmSymyxPjEPp5NWs3rCR5x9+HC+KECon0xHKRPipwTJdx8bISFzhEHQiOiIn67XQ7ZgBHEqpxU1vfQd/tPkx2DDC6nMv5sCnv4SzcpgsnuVnfu8z/NXv/yHmxQP4lo9MFaO2T7S4zOzxGtZtb8GMDhAePsTlV1zCE5/6XWQ9Z1kHxqghPEmepFQqJRJHYQvQcU6CTVYsQdSgLEMqCQhjk1iCsFigk+Z4xSJJq8mNH/0YI+dcwJc+/dv4sw3qO17GDSyQmr8zZVtIIC2wwE8ag4ODrzlmZmbmXyGS/+/8yJXt33qKZiGJ9DpE7HrtMeaUf/k4FlhggRP8I7Nsq15nZGQEYwyJ46GHR2HpAGzZgSxV0fEsqBzbcnGbLUIXelV317ixqJfKEUjQJFecyvkXX8nub3+f83/+3Xzvzk8w3JTU0pi0FGBRxVR8Pvirv8Qf//InkYMBemYShI2VKErVCnbBZ35+nortYbIUA0RxQlV6GGOIXIHybIwlyNIUobsuSY6CJM+pXn0ObqXIxL2PUnaLtOwML1UsigyHg24SichQecvVnHfpJTz8Xz6PPx8TeQlYCiuPGYgNNWxUXw8q61poy1bGcGmQiU4MS4cRb7se8+W/gJk6/blF6AuiQReilGLT4CeGFEGzx2fFeRdz+Q3X8We/8VlYO8K7P/4xHvzSl5FPbGU6mWOkt4e8mZFYNi23uxAWGqwwxbEliTZomUHQD26ArSDvNKBS5MO/cSdf+MIfwEyTHm1RinLmrZxC3rV1B2h4kNjd26UU/AwyOyKxIZY+ubRILJe33vIzNBp1HvnLu6FSQgQBZnKailOBZoRT8GhXLJKoAQUXaiGL/SH8vhGsN6xiz6P3U/X6aExOY5WKLKWXCaFJ1gzC3iOcctll9A2UeeabX8OLEtxUkNsFouXLCK6/ghUnr2bnb/82J3/oNqZe2E7zxZ1Qb4KTgUrAcggaMbnnUHB9oo7mpLPOZsPZZ/CN73wTog52nlNut+mgUCuWoNAUVpxM/PROrFzSj8d0JYNzRmF6Ao6FuJnuiq3nhmYWM3jKBqanptnwtjdx7jnn8NRX/5IDz2wGLOyefjJyKFldG/Q47VqHGwvLaJSAXHYr4bTSLFq1msXLlnP0+BjTe/czqFJmnBTKAYwshqPTkCgqWY5j5QgkVlxganGZa/7Lz1NwHO77tT9CTc4jz1jFhqsuxizq4ZU/uwecAuzaA9U+mJ3v/q4U686/gI0bN/CNv/gKtGYhN9DX09UTqlSg0waloB0ic41evpRVb/tp1ixaxAP3/DUcPMKlV17B6mXLuPeerzE/N41uCxAWlBR4FiLSmDSDsoBqGYRD0Rmmc+g4OA4M94FleM/7b6PVafI3X/mzrlNffz/64BiUC5Dn9Mc2c2GNaz/zCY7sO8CBex4kS2PIYiq2jW3AaI3WGq9SZbodIau9FEaX0Wv52Fu3E5GT9znMh7Pdwo8M8HyQXY2n60+5lvuffxQqEsIZ+jOBYwT1/irx8AjMxpz9lhsZE206//VbWEO9hLdtYlmxhwO//t9ZUeljzHTIqy44ZegYgpsvJnx6C0zOQ6MJjqAvFcxbKeQRbn8vmedjsLnttz/D97//fY4+8Th0GjA7i1dwwPgIfcIpzhiiJKbQUyEOm/SvX8tcrQ6tDEZHYXIaYSz8RoesapMNB9Bp4023ScpAdZDivpiPfvmLfPahbxBoi5Nz2Pb4vScyyS3k5Tey7KQVBKli593fxPdcIh0zctMFTD7+NNRisGKwBEiH4vAilJbEjQY2hj5pI+MOmSVfbVGVKABSrZFeiVBZSMslaXYYsLrun1pmhCoE1yaMkq4Np3TBdijGgtxRZGUJOqcSGUqxwC5VOSxCln/ywwz19vPSH/wF2ZGD9Gxcx5mnnc5jX/t/wfKgHVHCpa0i6DVYZ53Puz72KR75r19m8sUtsDqArbuhUoUoZc31l7H3wYcJSlXs+Tr9A1WOd5po10HbBXQnpW+gF9Ucw8/A1l2HvYYURJ6L0jkgWLRmPRNz83jlXqq1JlMHdkKmwBd0R0isH33eLsgiLbDATwz9/f2vOWZubu5fIZL/M1544QXuvPNOHn744X83SaSFdP3rkQVNpAUW+HdBnucIIbofFFJgr1gK48cA0I1ad5HoeQgju9+HLYEwknLmQgqJ76H7+jnpuiuZeHkPhd4S7kAZOilVOyDAAcfB9mx0HLHlxS1IJMQKHA+Mpr86QKPWZC4JMSUPgyCPc5AOuhwQWYZcdtdDrgI/F7h5V0fpR3oyjuWyfMlSLr3gIigVaXXaQFdHRv3oyZ4Y2xyfYNtzm0FlCKN/ZF6GPFHc5Ls2Jg27lQ/KQtsurUrXuWfZ+Rdy6shyBtadjFUp0CGFQgBxDmlOR2ls38fYBtI2E7t3sP2Zp7pW9WPTTD/3MunxGVJX4jkuYRiSS01q5RjZFVI2AuyijwkCdMmDSgBhjBul5NPT+FrC9DwvPvUMQhnKQUBQ8DCZohpDkHWfpxLdAqtC3k20KQGRA5m00FgYIV99Xe7/zr08++ijXZ2pWh1Tq4N0yNMMhaGjUpI8gYIH0qZQqRA2W4xWB7nyksth1UqaQnUrWKRFajLs0R56Nm2EnhKRhLMvOB8qJfoG+ikFpa7WSxQSPvkktaPH4LQN7Pvrb9A5dBTm6vR5PkQpSAdsQdpTQGU5WZh2dYn7+9lw8lqWLVsGYUTgeEgkQ7KMOjIFEzWuuOgShjadhfItsv6gKzL+0iE4UsfNNJZWYBSZlWOXA6YnDkPW5ND4EZ74wVNM12cxMsd4FlncgE4T5udA2pAqXGwsc6KN5YRAvK1AYpHnOZdecxUXXn5pV7rGaHCLkAIHj0KscXEQqqvFEycKBwssC290CNFfQc1MQZqjs5wwzykvGuba29/POz9wKwwPwVwDyy4iU4Pj+qxds5qBRYNQ9bt9kJbDpe9+D2ve+zMUzjoDRheB6PbIudigI6LVfbzUHsc/bTVUbZ549gnuvvtPmT02RkUWGMKh3zggfKiFeGGOyHIIipz1nls45aY30jl2kL5lw5x0wWkwcRxmx/n6d77Gk099H8ImqBr+ykEo+DC8iNNueCNhoYAzMMyKpWuIO5rMK0F/PwQ+bi6xtcA6IS0TpQkYhW7Xecf7342p+ISWi9s/SAfZvbb9oHutuICbI89ay0nnnNm1YjQJFAMs7eHgE1uSlZddhFi0hP0Hx5jatZdAFqi6RdxmRjbdwMoFSZh09W68AouuvgySBoOLB7H6esC1CAoBhdzQm0tGLJ+S75FGMabZgkKBR+67DxXG+EMj2I7bvdzyE1o7oqsDlEvAc4jzFATccNON3YvSs+DQQaS0sIUmLVpknoCxcYgzcsuCZYN4Z6/H8Tzue/h+6PPpXbWYsNF1LbRPSLX1ScHhFzdT9RzQKZFKYHSQU6+8BEQO/UXoq4ClKK47iYtufiOxNOAXyBF4hQJJkqGR3XnDyG6vrRFILHSucG2bPMsIymVAIgzYxsLRFnEnAyPxViyHlUvBFmRFH2XZ6ByMcGjqnLASMG/prrD/VIsdm7eSjZRBQH3LTh77ytexZdDVjXMt2o4GT0B/kdNuvpKDL2yj/eIeghDYd5RSUICoBaMByzedBQWbUBq0a6OMheMWMJaFti1Efy+1JMYASnQNGrSQqCzDMQLSHNfxmBkbg1YTJ42JW7Xu91nPQvFqcew/ummzwAILvH75966JVKvVeOSRRzh48OCPO5R/NguVSK9DxIHXHmNW/8vHscACC5zgfzPLmjxnYmKC9evXE0URqljigo9/jKeefgiO1+DIOJtufSuz+w+x/9kt9CWa+aoF2mVx4jOeRvhrTqL33I1MnDmC/ovvwp4xKIKbQn+zTYigMVCG1Om2tgQ2bl2hbMF7f/kj3P1XX6H88iSLTl1DuKyfsX2vIPY1qSpDQyjMsjJ0YmSscFNNUUlsBEopMtnV0kgtKJQqtIaLbLrkIp79znfxlSBKQwqJohIbZgsKbUkQPrf/37/Ftu2v8Ox/+wqlzEXJHCU1ggxPZyTSoBVoAhQS75zz0KuXkM1O0zu6hNpzL0J0CCbmKMuAlrY56yMfoNVqse+vv40btlAiQVUt7FlFbgEjgwy2XeJGk8SWpP2CoJWiTYpxJKlF180MiZ3bSOGRCs3Zb7sZ++SlvPBrX2BRZhGlbaTt0iGnQwwDFZwkw84Ni+0ibtsQ2dAonLDMTruJDSOgXoDQ6SY7hBEnhMhPbJarrkC5JRW+a2FSG0c6tDotnFIR47uoHp98ehpyjWMKBJmkkYGzbgnBQJHGjj0QR7hDA9g4hFkb+7pL6CkMMvv4E5ClCKEwB4+wpm8R9VqTrLeXWp7CUB+IHDkbYaNIXQNRC7edUgCaKodeD+Y0jrApOT61JMGtlsk8C5OE2ErjtWPKZBSHl3MobaELMbzvHZxz5RXMvbiH/MHN1B96Gg/VPe+W6bahOZDlOetvuIEVp6zje1/6c7BdaDbAsiGosPHqK2imKVESMvPYUxApFkWa0DVkJ8wGrRPVC3geDZXAQAWiDrgO5fFpRKlMJgRZpCkJH5MrEhMhix6FJSOoYoXG+PFu0tGxIc7x84BCI6JFSr60D1YVcYsF0qe24sUOQZZStStM5k3SwSo6akJQhCgAFPQXcd54Ff39g0xu2w7PbsOZjxn1iiz9zf/AXt3GNgqpFWOf/wLdLIyEUMNck0X0kaKZr0hk2KKUa4q2z+zyXoqrl1Pb9gp0cja+9xrMYJkdf/g1KDjgF3DdImkr4ppPfxxmmjx01+e55Jc+wmynyc67v06hMkScNEEZ7JGlXHDX7Tz5x3/E4BMvI6RBmYzMaJpav3qfrDsFMg37j0GxwOC5Z3LSokEK2vDY3X8ONlgb1tCzZIS5Z6dg7QCcuop1hRJzn/sqPU7AvrU9cNl5XDy8nqcee5TzLjyD3b/+xxjp0dzYC/WQRU2JMYpJ2eLM976d3v5BHv3TP2fJjZcy9tDTcGyasrEQJmMgU3R8m0YaUejtp50rciOgr5933fY+Hv7Ot5ndsZ2KNORGEzt+16HMgMZgtMIuBgjP4ZyLLuDZ794Lvo+spYwEVcZb87B6kDe+8+08dPfXyJsdgkqZq//6M4wdOsYrt/8RiavYePdneOVb98M3H6XYW6IzOwnVAldd9xYeeeC70D8A+8ZheIDe09ZSuW4TR17azod+5v38ySd/AXyPm99+Cw/cdz/p7kNQ6oX5eSoa9FwNUSmiJDhaYZscYcD3febbIXaxl0wbUqUoWwKhNFaSoPOMyLGIbMk7P/krbJmZZP/37ofxWU5efyr7Xn4Rq6fC+nPPYvtzP+iK2YsC68+5mE5RsOQtF/DMx36T4VmNziNCadPpt8CTUJ+DviqLb7ycRetOZcsdfwKWTwWF355iJgjRObCknxU/+z4O/z//HZRFr1clqc3jDPTSyFN6167hlDPO5NnvfItCbRrLgK26FUVZnGG7BdI8I+ipEmUpxpbYSc5IT4nN218gqJQIkUgsHCRuzsKG6QIL/ITR29v7mmNqtdq/QiT/56xe3V2cr1q1ikceeYQ77rjjnxy/atUqPvjBD/5rhPa/ZUFY+3XIp9t03ZH+ieOu6v9/j/cjAbB/zgW8wAI/kYj/5baANM+o1+v8yRe/SJwkUHA5cmg3P/3JT/DKvQ9QrPRyaMsPWH/GGcwePk6gBG1bQm7TsoGgj+zMldgnLyP64pd5+2d/k51/8xDC9fGSjD6rzNqzzuRwCUgTKqet47QbruLYD7ZiqmV2TB1DlQoERxqsOvM0RjadynnvfjsTj2/FaqVkgcfl/+mjHHx5CwZNnimsTGO0RiJILYgdyNxuO5vBcGzrVnAleRQBAic3XdFWYdAIsD22PPwwx/bsZXBwEWm9iacN0ggySxI5GuFqyoDIbTJT4LKf+w/sdxX9p53C/H33w97jVMqGpB3R71Vp5w79a9Zz9pnnsv2RpyiKHOlCpnNKBqr9VTrtefqbUMVmVidw/slkY7MY2+4mT1BYWuIqKOQWgRMQZikTx8c4To4zM0uzMUWxr5fEMbhlD+k7ECUUtEBkGVEUkwc+84GgWRHErsDLBK4SeErQcQSRI8gtDyWsbtLDGFyl0VGH3mIR0gQpJXYno+r6GNehnbZRjsWvfvazPPn8FsgFBpcYBcv60M0O+uA05SinUPDxlg1xwZuu48APXkTvPoqzbAmXve3NDC1bxrGnn6EgXdJWG0y3lcwy4HQiVpf6EEcnaBUlK649j3rjKCpSEOYscwPqUYzo70MZRRwneJUiKRmIDLIIbUsoFGjKjIYrKQhJNpfA7oOMP/AItT07ET39NA5PATa2DlEWGKnJ7G41URplrOwbwbMrTO/YT8FysDXkSjFy6jr27tvFwEnLaGx7GQoBMmyibedVpylHdS8uYwSJzkDFXYFgcggKhK0OKOixC+g0J0dhV3vopBFv/NiHWP/m69i+dQfubM5Zp5zNLZ/4OD8c2097dga8AGbb0G6gxsehk+Jqg+94tLMQx3WIwzZuwUc12/jGBSHRuUHv3k/75Vfg0DFI2mipaJiIc1edwv6vfo/6PY9QfHovznzEQFrEjg1pxUWuXUKz1STqC0B2MK6FKzzsJKcZhsRTc93qnmbExNZtzDz5MouzIpWGotKwKdUUnXrI6WvO4InvfB+v1mDfi08wc2gnRAmDlk+nFWLFipGRYV7Z8iCcvJxk7xEyGzKhyQW4QYAKfKxSGdPu8N7/9Cm27d/K0v/4YZafuo65oxM0puvEh2cop5Lk6DidvUcgKHDhz70LlYREe/dTPD5HEnUIXcHA0lGOH9yP5cD4kSP0HA/RjsUV730X+57ZgtCC0pIR7LPWMXF0jH3f+Fv6aglTk2MwPknRtknzhKRk4bouU6KD63jEjQ6uZZMJCQiO7t1LbfdufNshkDY2EpTEOvHelwbKpTLhfB2dZBzbsRu/t5f/wd6bh9tV1nffn3vNa+3x7DMlORnIxBCGAAmDhEEU0Cog1gJVK9hW0bbWTraCtm9pbRXf96mt9nls5WqfpzWvrYK1SgWBBBKEMIcAIQnJyZyTM+55WPO67/ePHW1t7cv7Uqp98Hyua/2z977Wb62z115n39/9+35/adBhUSgpxBkCiX76UsYWLuLgg4+z1KtQrdfY++IOpu7+J4zUQixfyvRjj8O+oyw/fz32qgW0W3WYbTE3dYTEM2C2ysKBEbrVKmESse7qt3LokaeYHJ+k++x2li5bxYE9++nu2geux1vedjX5UonJiWOEYZfMK5JqOoh+8L8Aus0OxcIArV4X03JIbAN/0CEQEj/wMdDIeSV6zQ4vHZ3g0rdfw+ILLuLgzp3cdtsn2XTvA6g44qbbP8Hjj2zu2y81m/oTu+jNVYlGHbpPvcRIboSGH+DnTX7h05+gFvdoHZ+E6SadnQeZ3PwMmC4b/vzXWHTJqUTPPEtdhhDBsMwhzjqVTqfLhTfcQC5IaDda9DSJkhnlNSdTTVP83btQKCLjhC1V6JQMGy1IcYROJ/QplvLYUUzYqpFFPp/81O/SIyTFQKFjIDAy+jeEeTvbPPP8xPCZz3zmFTuRbrvtttes3vbt2wnD8DVd+1588cXceeed7N69G4Bt27b9v25hGHLTTTe9ZvX//zKv078e+RHZ2W699VYqlQorV65k5cqVVCqVH/u4wXnm+S/LCfFI0d8s2+bg4UMYlolm6Ni2CY0mlXwemg2iXhcsm8fuf4AoOmHryBTEAhaW4aLVjF3xBhovPA9qgCe+8o+gCVS9jp+l+KZGYdEC1l26ASyNXLnA+osvAjKIesR798LLL5NkCQcPHuTpp59mYmIC27YJCXFdl/LwIJf+4s1gCsg7OANFlGkQaQqz4OGUCyeEaQ1qTUglyAw8+/unnZwYj65L+haqpJ8JMzc5gePZKCS2bpCkgOeiTIgiKAoHF5Pnnn0aDu2nNjsNQcDShYvxm/2Z0b12B0uYvHTX13ng69/AkII0SPC7MaTQSaEddKDg0CMgRmCUC5xy+cVQKSNMgyxKMTPQ44yCYWNmIHshRBlYLueuXUekpaQmzGQdxHCe0tKFJEqi9WeYY5sOVrlEbzCH72kU1p0J3SaZ6+BLSScKKBfKqDDlXTf+LKreQNd1NAQGMDxQptdpkaEolMvkHBdNCJRB/34d+mzZ8giW6YAfopSEcgnCDgNnn0kSRYBGr92isfcAWtPH8YoMiTwXnX02aRgyeeQwuDmiKMJPYrpphOc5uEphpZLqseMUDIdlY4tYc/IpMDICUYJj2QRJAqaGCvz+e52ziLIQSFly7hnkTz8ZZEpi6aCB6ScY1TarM4uhhoLpEJoZzUefIae72JqBtAzcYh7NMlEp6JqBf3yOzV/7Jse2v0Qeh3wkscMMEsWL374Pjk9wdHy8fzHpGd499YAAACAASURBVKZXQGkCTdMIoxDDtvDTkCCNsQYrMDbGm266CZYuJQ4DrOFB0iylUCkTiYzM1ujEHXAt/uHvvsp9f/llmJsm9qCW9mjOzBC1j8M5FeTpeVQ+Q+sF2O0IS9NIDUVDRCR5k24WYSmweiEFZWAkPmWV4foRVNsw00KzHHBM/uRrf8X7fu8jVIcNGrpPQkYQBThoZIZGPW5z5s9fh/GuC8FKwdFZft3VYAg6QZeIrJ+NFYdkWYwmbKzMpJRZtJOEcmEhDZnQyeeQZ56MvnIpndOW0PEbkHfB7wKSeG6aUcdk1Daxex1Ofec7II7IVETsWoRKgmUQ+D6q45PVmgzkKzz94ENw8ik0pqZ48mt3s3/vfhzDJgliiFPySmfQcsCS7H7oYSa/+yjTTz9LvVMlIqDYC5l9bBvtRx/C37eT+OABgixi4Yol1GpzoAk6kc+7bn4vtb27CGZn0V0HTzcgCNBzOfxejzRLyMKQbrd7wjer4bouAjCVQgQRnelZTLf/eUrTFJVBQbfQ4wziFEczyIIIXQkG3Dy2ZhHM1CBMickoGC6SlM4LL/HgV+/CBLJeiG07cKwFvo4hIJ04BscbaG3J6evPoTtgQ97Esz1Cv4PqNkGHbr2O5xVgepaH/8/Pw+79TN2/FT0zOPrUDmovvgxSgyhhdGgQTSjS2Cc3OkQWh8gkYf2GDQRJSpIpLMshkRm2baMAr1yEBRWwJHgmiVD4vo+mm+QyiKbmGH/iWQhjNj+0BSwLdJ0Htm7FOf88CmeegUDHVin5NGPqr78CmeLqn38P2uJRKDnUgh5HDx9BywSLrBxOqChZOfB7tGSPPTOHOFBvwKjbz86L4cJzzoORUcqFIlNTU7S7HbJ2G1yHarXK8qXLwHUpDFRASjLLIDU0/CAiZ7vkvRzFYpFas0GcpZTzBYrFIgqFjv6j+i8+zzzz/BflR2FnazQa31/7rl+//jVf+65bt456vf79DqRXOp9Nmza9JnVfLfOdSK9D/iDglTuR8v+xGjfccAN33nkn11xzDbfffjvXX389YRhy5513MjU1xTXXXPMfKzDPPK8jFP+c1/Avtz379vK3GzdSKJXo1BsnxpF36E1WEZ0AafQzg/Ssn63jm6JvlVk8zGk3X4dX7XH6whUc3rSN9u69sHoQa7pJNlCkm4bsmzzKhddewctbHqXrd9kxvhd1eAqGBhm46HzCvXspixzTM8eJGnMcfexRwlkfT2o0gw679+zgyNQE6y69jEquyJH9B0iURLdNOkGHOI1Zcs5Z/NZvf5yt99yHPTzMoovOoX3oIGQCO1MEJliZQihBphvYscLIFJmWEWYhrtTJlMbpb30TUxPjqCjFVoKC5oGA+tED0Jjgre+5gcHKMHsfeJBMA3STIZUnTnokpolfncMLQhSKxBCwtAI9nzRWEKdEqUHTM5HLhln9pjegVTs0do9TtGw01e9e0dDJgoSSXSBIMjLfZ2r/fkj8flfL6AD66BCXXnUFM0emUH5CECfgunRzNs7aVZxy+Qb0Up6Fp57Osb0H6PW62IUiARLb8zj7/POZrFXpVWexBWhJhJIp3dDHKJeoJwlRu4thGtT8NvqShSgJR3e8QNbssfCcdeRXLGPVmy9l+qXdLFl7Lm+44lJ2PrMN07QZ8QMmtu8llhm2ghf27ODQzhdpvbQHM0ox0TFLebScR6PZouB6NIIOHS0G3aAxU6V6aIJlg4upHjqOZto0iTnv/e9m0eo1dMKQuNXui6Jxj8C1eOs730F5xQomDhxCGx4mnZzDRFBApycTEguUjEAKEj8jlCFi0MZPIjTDxBI6Fa8MkUCFGZo0KNgeZhJiZpJMQaL3f/143298lP3Tx0kmp8iUREskKIVtO7SiEOnZlMcW0Jmbhm6XQ0ePMbJqNfGypSQHDvfDsKUkcTUiLQMZ9IOg/YRwz0FQErSUxuwEz23dAprB2265hfMuuYydL+wgP9ehmCoy+t1m0hYkMkHP5TCDDF1KbCVJVIpIQpwsIUf/8azbhkGPB17Ywotbv83hZ3ZBqwciJTAiOhWPTtQEU2BbOWp/fy/4JmvOOhelQf3AQXKmRyYzkuUj3PjZ38eveFQP7iE7ZQnmKafRHdKZ01KSoku0bjW87Tx2bd0Cq0cZmK4STk6BpihHUBY67bRH6Leh2+LIS8/CvpdZuOESzj7nbI7u2YWiL7A6GGipojtVo7pzL8sKI4x0YuYeexqCiNnxg0i/izmQp520CSwJUY9wfBymq+D7eKUcSkmsMKRg2nSNpB+SLkHrBdSSDkcmDmCjM7ZiKeZwiX2dKhyZQKVduqYgd85qKm6eoN7BScESJuVMkWU6hmEiFAhU3xKlFJaUGEqiIwGBpiANElzXxTQMer6PUgrHtAh7XWypYXkecc7GNHK0Qx8vN0DoeGjCxJU6UZqAobGwA6VYEeiQBD7LfJOc32J78zghTbSVp+BtP4wyI1KhIaSiFGroGQRxDIMDUAvJdxULwggvSdARGBKk0Jg4dpjjxw6RyQQhYrJCGQaHOHv9Oex+4gkGhoeRMsN0HOq9Lkkc8jO/9AF2NmdgZhpvbIxgroouFZ5l0JmtceSlXdT37IVOlwMvPNcXIxeOMPvE47z93e/hvFWn8NxX7mLYyxE057DsArmxMaKTFnCwNgkyZO/WrTA1SylU2JFPKkzaOR0Mi9nHnsR/8jnQ+zl1uijTHR2iQUb3wS3s372P3v5D5Io5krALns25F23gme/cD0FMOD3Dez95KztfeA7leXgJ6EFMlknaZkrgGARxim66OJbFr/3Wx/r3bTR0NHT6XVrf+9Fmnnnm+cngj//4j19RdPnEJz7xH6px7bXXsnHjxh9Y+05NTbFx40bCMOSKK654jc4GFi1a9Jru7z+D+Uyk1yHi/0P4vHrlEPt/l+3bt7N+/Xquv/567rrrrh947kMf+hB33nknzz77LOvWrXv1ReaZ53XE90Skf4lUki984QvcfvvtFAoFpicnMXIuiQwwQgMjTQmLLkiwkv50r3qBfth2tQNLlvYnFHkuRAkDg2XO/JV3Mf6Zv2UqboLl9DNlKg7GXIAs5JBpCNYQ+bVreM/N7+Guz/wR4niDht8B1wDHwmpGmIkkNTTU2ABxq4a7aBEjbpGpA4dRcYomBFITuDmPdr1K8aTl6PUejUaV837zJp75x2/CrE8uyujZinwvQyiNjm0zFPQjUKueRPcc9GpAhsHVv/s7fGv7w/DE8+RSA73bwsQkKlp0RYS7chWnLF7B8/dsgaESuC7GsRkWWBazWodYKowYUruAvXol1/7OLdz9yd9GzMQUcGiLBFYMQrvBSVe9ncP3bWKJkadZnQPPpBMFkGVUyiNk9Q5KQaoL4pxJ2bJotJpkeRuiHoyMsmr4JI7vO4wxMoDIebQP7sI6+yyuuOQy7vu7u9E1nSwMIIpYufZsDjz7PK6bI+g2MByLggJXg9bsLAMLFzJRnQPDhIULyLU7+I0aqngiAFtpkBiACYMDLLhyA/6ARy41mfrOI9CchrCJ4xRYNZdyWPPp2ikoCwY9tCDCCCQV3aMe+8Qli8rixRQdj8NPPkd+aJCo4pFMzeGaObJWD6Egco1+9knJw6gMoZo+2Vwdvd3BszUSkRG6Rn/yWJCw8PSzuPiWG7n7U5+CuTb2TIchy6MRh/g5HefyDay+ZANmlPDcZ/8M0/UwlSDpdkliCbkC1kAFVa6QHDuCrRLcMCKWGoFponT6Qb6mwEJDTs1RMlxS00A4Fm0hkQWXYmWQD97yYf78c18gnpjgpCuuZOU738HDd/5P1EwVapO8+5abOD47yXe3PgIzbYxUJ7U0zKCfjJ7ZJrLiolV9Ts/ySJlxzIhJSdCUJNEg0ftNI7pukfV88l4exzKRCHxLJwoiVCcBJwdJ2O8qsxIYzkO7AWkOYp+R91/Lhe94K/c8+TBXbbic6osHeO6Tf8ZSBqgi8JMeDDvQ8zHbCY6mE609iViLQcI7P/ir/OM/3cVlb7maRx55mMvWXsBjX7+HrNuFOISaD8UcNKq86UM3cezIUQ5++2FKhRJ10QY0FuhlakQkrkVl8TK6M5Ok1SojpRLdWo0sFaQIEjREljFERoxNe2wQFXSgUAA3B5MTkPn9bsRaP4AZA1a98TImnt6JHmf0ooDC0oV0Wg10Q0drtBg1C7QsQceSWG2JUyjTTnr9aXpTDRi0Ya7Olb/362z76j2kx6vYfkqYpixKLRo5jYwEXfXvtEJ9747bFx/VvxAULCdPrdlACSgMVeg0GhiOg54ptFQSZAmsWwPdLjnNo/fy/n4OlJGijQ0jW3VMYVMKMmSU0FYpVqnEYCvBAcbLivP+5BOM4PLkB/6QzGrRtjV0KRjsGZj5Isc6dT76pT/hC7d9GrveYVhPSTRJaNmkhkFiW8RRACg8S8dII9reIBs+8CG2/eUXGR5dxNz+cQZyOTIpSV0Hv9vlip97Dw+9uBO18wU+fPvv8Ze//3vQ8bFMHS0FXbPRNANLWNRUQv7ic3nLO6/jH/77F+F4HXoBo5U8M9VpFpVKxM0e1bEFQMDwDe9GHqtS+9Z9DFYqdGcOowGq4BJmKcKqMNhsM1AYYNypQQjaqeciVy2H+x6AWGKbNnrk48c+9vKFLFy6lJPXrOXBb9yLZVqkImP5pesQts7+R5+gVI+wq10wdWa1HuaZJ7Nq9Vr2PLiVlYND7N/zIipJkCfCtTVOBJrPi0jzzPMThed5r/ga3/df9f6/t/b9+Mc/zh133PEDz91www3cfffdHDhwgBUrVrzqGj+MRqPB9u3b2bx5M3fccQcHDx58zWu8WuY7kV6H/EHCK9rZbnde/f43btzI5s2b+fznP/9vLmTXddm4cSMrVqzg4osvfvVF5pnndcT3p8b8C+I05ot/8RcsXLSIHdufxTVsrCgh9kxKIbjKwDcB1c94MCWEBlTqXQqmhTU9S3hqP7R24PkjJPUW4wMZXdli8KI3ELw4DqaFbTmMtRLy0qQtBLRi4lab/UePEO3eRaZJTB3ymoXeDdEF6LaGpjKyepPBwjCtI5OEjTaZH0HWt5+pXoiLjgwifAFJvY1XLnM4qvKmd76TQ088h50qYhvsSKErQahrVNJ+V0DHlKg4YKi8EMN2eX7XDs751Q/Trcb0xo/gCQUqwo5ivDQjalSZ2DeOVipjv/lKzn37tRx7ZBueFRKKiCyRSCWhWCYrF+metITWw1sYNIap+CmNSp5zPv3bTOsmzb+7F5IMq95D81xaImPxBedgjAxSP3aY1NAwyPrLzzgk3/IZSW0SCUmuBN2I+qHjZE6OSCWsuPKNnHrd2zn0lW9R33OUwmQPrRMREcHiUc677qc4MH6AtOuzcOkY7clj2KRkYcDw0BCBUPSUgpERrvrABzm0Zydp1ANH41f/4A85Z90FbH/kKbRcCZXFdBdXiMbKjC5ZRrDnKNmBKYrDFXy/S9VIKP70G8hOGiU7NIkdBpTjlLIUmEFK4ljEiU9gabzlxhs5fGSCoN5hMNAIVy8mWzBAWp0lGxqEk8dYdP46OjtexpzokcQJXqYxEEvMJMZKFH4YQgaaW6Bz8Di7/+FBmG5BEKPyJqGWICwdmWnoHUk01aa65yBRp41sdTEsF1O3oZAnkzHZoiFO/dD7GHrjOqZfeJJQJqhMYKT9UX/FXIFoepay1CgkMTY2Phkdv4sxNoxsV4nqNZ54/gWylo/j5Gk3A/bv2s+aM87GVtA+fICXdj/HkUMHsDJJpZVSUilIRd40WSBNCqmkE/WQo4LZ0Yw5O0CmENkasaORKY1CpFFONPKxhqHbtLMAX4YEowOkCWDZLHnvDZzxczdy7MgBWDDM5Td/kIo9yNSRJtRqlPNF2tv3cehbW0g3P8ex+55g4v4nsJwc9cDHOe80TnrbpZx17ZUc3rED2Q4YVAatarOvYjUTjv3TozhBzL5Nmxishex58F5UcwrCAKfWwHBiBlpt4tPPhhWrma53iSa7BIbGmtt+mcve9x52PvwkZk/ipDrNI8fJZxpOkpD6AUmSEAqJtA20ShFMnYKM6DmKVLZZ8d7rufm3f4MnH9qK1g5wOyH5QDKoBuisWsyin72OlW+4iPF/2IqyS8hlw/zcf/s0Lz34FOnRWVbqGiLwCVREpElGlEWrXkcmEQQJ5xpDxM0uI0aB5559imSmjma5BJrgwvf+NOUVSxmf2EOi6ZiZ7OsHIkNXEg3Vn7yIRib6WTttv83itWvIj41QmzzCmVdeTiPsEXXbpCjsU1fyxo9+mKPLhomyFGaquIlNqhLe/blPEgznqb68F1/5BEN5Cph0kx49lRKpDCoVjr24i/EHtlCRLmbQI9YFutSwM8Fs1EQfLvPEkV1Qr6I7DoHRo2tnhJYgNhVKF5hCYQlJKZM4QcjC696JGKgwvXMn/vQU2A7nrTuH2XqVbqcNBY/hkTEmHtpOZfEKOnPTTB87iJk3EIbCtgWWJiELyIeKtko494ZraEQdJh98hJWFUcY0h1rtGFEBQhWxTAwyZ2es+siHWbtmLS/8xVcZ7mZYPZ+WHpLkIe2mjIkC7dinUhxktj1DkiQ4lcWc8zu/wcDAMmYf2kYh6GFHEQOeizuYozU7iY9i/46XMJohepySdDoYyxfj65Jg1x6SUKLFMQmKeMjlZz/5MczhMQ488Tw5t8hvfviDCHQ0IdCEQkP0taN5AWmeeX6i+NSnPvWKnUi/+7u/+6r3/4UvfIFt27bx5S9/+d/kIA0MDLBx40YuvvhiTj/99P/oqXyfO++8k2uvvZY777yTbdu2cfvtt1OpVF7zrqdXy3wm0uuR/+RMpO+l2/+wC/h7j/1XT8CfZ54fNeJfbZZhkkQxK5evAKmwLAtDM6GXIg2D/MAgoIEQpJog1gVCAjJBi2Q/AuTs03jjDddiWC46Ana9DH4Hr+SRH1tA3naxeymuV6KRpSAECAndHq2X9pCGIQXXgSxFxDE5y0IzNZQO4kTMRBD5WLaNqfoLmqJrIbIY29TRlURH4WaKwkARzRbgp7RfPoImNYzMANOgY1kEhoGmFD2RkpICEi0/wEwW0yrnwHFZ6ZW58Iyz+qqbzNDpz6oKM3BcC8d1UUnIsgULWLNmDQyWmNaNfsfMkAO22e+8qNfoHZuG0gir151DYcEyEIqFVpENp53dn+udSLRyiVjTQKYsP2U1y884FfIWmaWReQ7CsdA0gxSB7rhkYYDodqHTxSoVsGQKOZc9TzxOvVWHhYvodSMGvCJZGOO4RWh0CdpdFp16MiDQlwwhvBx5t0QsNKb0jFDT+yc526BbbfDGiy6mNDAEUca+fftAE5h5l763UYcw5A1rz+GU0RHWnnYKQ6UifrOLijKk0LCdPMuXroRiGSHBEAZC1wlU2u/I0E1otvnGxq/Qm6tSsF2WL1vB2OqVXPSWq2DVauhFrD7tTN79s+/FWLQUz7AwwowsCEk1DSwHYdtYpkM+X0K2OxBFFCLFqFvE00xkmhGnKVGaoGeKbK5G66W9tJ9/CaEZYHusXnsWb3rfDcTdFixfwkkXrkOoiD1f+DNQGUJJDClPdJZIYpGCIQlJsAwbKSMszQZdZ8mF58LF6/uTCNMIXWlE9XbfMhbHRHHIxN7dUCxAL4J2D1nvkJH0A5dVhp8EtFRISIZmmZz9/vew+pduhnWnkMQB/ZnoEjSBrnRsBJIISyjIFNboQt7y/ptZ+9PvgMVjdCamePnJp2F0lKVXXcmuI0d57pEnoZvhFSs0my1klhHWWyxxBlnUVoz4CjOMwFV0Du5h4sDLbHngPmiHOLZHMlACocilGl4rZFBq+EcmoBtQO368n2dlu+S8HB6gNEVPQVqd4cDdd9F98mlQGWiKvCZoTE0R1OcoWgZ+uwYypqAZqChFSIO0UECV86iSh9RA+S1aShJmKWg6c3v2cu/fbIRDB0BmCBTGieBnGnWqE8d5+G++glcawMm5YBqMv/AiSaPBokVLMIRBLBUSMC2TVqtBlsXkCjmIQ2a6NaQh+pPDELilYZJaBzybpRvOYclpK0HFoKVITSKFPBGcLRBKQ2HgGwY9Sye0TTBNVp69lpPPWgu6xbnnn8/CZUvB1AHJSKmEPzmJmq3CwYN9u2TeASEZLJRQSQp+r28FGx1EjA5BmmJ4FrptYbR6MFcHzaQW9Wg4FqHjEDg2oW5Tsgf6x9/qQBoQq4jI6P/QYEiJnSnsTKKypL/4EQKlwJptsONvNsLgINgutpvjkne9gyhvMTAwwEmVIZ6651uQJXSOT/L8A1sY9AbIgpQ4TAmSlE6cECio6ikUXQ6Nj/Ps/9oIicSvNphrTFB2cpD0bzdazoCgBZ0G2zc9ALU6ZUwUCV6x1I9IEP0MKgBzbAF+rgCmzeU/8y6efWIbL/39V9EsjYys35WrYuLABwnKD5DtLroQFGwXpzzM3O6d1B94EEwXGYQYjoPh9jMDq+MHObTjBQgDyvlc/4+WAuqfdSM1LyDNM89PHD+KTCTgh3YBfe+x7du3vyY1AO6++24+9KEPsWLFih+Y0nb99dfz2c9+lhtuuOE1q/VqmbezvQ4RwSu/Rrmvfv+33norn/3sZ//dD6QQ4oe2+80zzzz/TK/X4/777+e2226jVqvRaXXRlUNm6SRpCIVc/wu6UgwuXkLt5b3oXo6yn+FHEXJsAdH6k2CgAM+8gHmoji0jfFshl42y0F3A1NMvMSRK1PMGQ1eey5p1Z7H1f/wVy7oafqtOz4zRDYNEZv2AVqHQdJ1EJSAEcRL3bXGZIh/GeJkkTSWBBlgGWayouANovSaTJQkGeJHLgq7OESIGyFN91zq0HsjHnoK4BUXQa2AVTWTLJrr8fC754M08+mufJKcEum3gH59kFJOMjMA0aLkpaBJSKAWSePmpBKYBc9O84Xc+xhOb7uOKd13P5r/6axjfDxIMdFKh+MiXvsDDjz7G7n/8Np5ewJNQnZwkd/bJ9A7t7o+QlwnFU1cyvGwxB55+HJw873//L7Ht/i1MvriPnlmDNGRh5KEBgW3QjPrdSUo38D2dztIBrvzl3+HYN7cw9+wOajNHOcUpEkvFITemfNXlNJ/eiXvtetZOpBzf9jyTWYdsiY1nDuE/s4cyDu2KTSlJ6DTrpBYwNsK6Cy5gfOfLtA8c6at7KmXp+nXMHj6CYZp0p2cQuRIqSih4RTrVGoOnrqZWrZKLeoTtFsrQMHMuUa+L7ebQFVgZmBkkuiBZtggWDjE6NEZvosrM8y+DmcJQGWyFqHfITXVITMgqOdI0hE4XU7OwhU6mMgKRYUmFccJKpMt+qLphGMRC0ssSTM8h9kNc3UMqnWjJIJyzCrY81w9m12LQA6gmeHmNuCNxdQO7Moi0DeqdKlgadAJyls6KcAEvi4jkpEEq11+GUc4z+9Je+OYjWBQp6jbVeg1KFquveRukEePf2YTtx4g4xCYlAKzBHN1mDySY5QGUbZEmIRCCZUOri51qFOKUCOgMFrFDB6vXAkNiy4REGrSEDmefDHNHoatY0IyQKGYdE5aPcfFHfoU9j++m9vIRxMR+VAmuv/WXODC+n+f+/pssqQWYfkSop8yVBYNK4vspbUPDa+WQpsvJn/hFpC3Yc8cXyXcjpErpYqFyJhf8xgfZN36Ixv2PQpBSiENEUZE4IH2FfWIyGUBgSkKRgJIUdJtSCN0spmlmDAcehrJoazq90xdw9nuvwdEFT376c4hGhHDATaCcaX37HhndokeWJhBl6MrEdgQ+EaCzwJfY3gATZkrlpCXEx+aIczbB3CwLhEPP6lsElQArk2gKlJD4JqSGBrYDUx1W/9YvMP5nX2ckgM6QSXD+Qob3zzC3fwIKAl3q6LEkFxnYmkOIoCky3IvXUVp7MtO7dsPRKmsv2MD4zt34M9Ocf/kGdu3dTW98HDJFSTcJkw5KKDJMMqGB6IvNueEBeo1ZNNtAnrmeq3/hF/n2X/457vYDZDIgZ5l43ZCp0QGkUH0b6rrT0daeitx3GLZPMTzdw3Y0JsQcWAG0+lbHwXKJcK7FwuFhEqXoyoxYZXQCn0qpwlA9IzUMDnoZA/YAjVaboZuvoLplE5WDLdwwIiy7tLAp6w56rUvBdKgmPtI1aRsSTB1daGQVB4KIy668jhcefZJsuoHsdjB1MMyMTIsJk/6ky55F/76T6gylebRA4qsMtXiUXnsSQp9ioUC7qbjx9j9k+5FD7L//G6x6z40cuOde1NFJ0P3+5ztWjDk5PMdhVia0lUJh4A2PYbRjKlgs/8Ob2fK5LzIUavjVKnigpSlmL0DmPETqoGWCgutw+NhR+N4AghPXT4LERJtvRppnnp8gTNN8xdckSfKq9/+jXvtWKhVWrFjBpk2b2L59O1deeeX3a3/vWL70pS9xyy23vCb1Xg3Gj63yPP95vPLnaJ555vkxYxgGQ0NDtFotsixD2CapY+OUCpx/4Xk8uf0ZsuocYmSEWz76S3zm//h9sm5AYAjKdoXp2QbvvOgDHK7PsGNyCyVpoFSCYVk055pMOQKWj1E9VoVEI2l2aR44Cr0Ok36MYesEpoMw+i1HYRSBYeDYDnGtB6bJte97P7UwZNvX7iKIoVQs0G21cIcHqDf7k3WaSEzS/rf3VOEbKVMGuLkStVIepMa69WfzzNwsHNtDvljC9KsUfJ2ekyfafZBHf/8OKBn02nP9/J+FeabbCZ4y6fodsMzvB4wDxAf29tWJgRLVpx5lcTHH/oe+wyJXY9JvUvY8/FYPrDz//WMfh04LvAJJp0G9F6LbOldcuoHdiwcZf/hRcpqO//JRDrywFxwbwjme/PYmurUWYRyBaUMQIoOYQGUkdg5Jv5vMykALUjozLTb92Z9Dq4sXhBRzHrOORqPVhNIwl55/Ecma8/jO5z/Pk45JJYRFwqU1DVf95juYOeMMnvmru5BhQCPQ8LwyqatDtc32JRYV2QAAIABJREFUrdtYWB4mkhqWqSMNk+M7XqBoWcRJBpaBsiKQXVbd9C52fOsBWlOTFBMIoh66ayMMncjvMbxkCc16HSRkor827liKrHGERcc7TLVeILBNWFqCRgBBG6oBKurQXTDIyKKFdOIe6XgVp1xBzbbQdRC6QJh6v1PnBPJE212qUmIl0XMOsd8Fw0JmEkMzUUcaaIe3U0wTDBQdArTFZVrWHD7AiENnoEQnsfECSaUlGcaig0FbwU6r1q851aP+v74JVR+ijFKpQqugU11S4e2/+jEeu+8hxr/6DdxEsBSNGRJCXScsCBgcIJ6aBcdECzLSXogKI9768zeTFUw2/e2X+509miCOuzimSacZEY15REsqUGvSqSUwYKIZHvJwDcjAK9EI+jYbig5MTfH8li2sv+BSnot6tPc+DqHGN277vxAKqNeYzhewB4t063VyPZsk6WAZ4NkeflEDLePFL/51v5Mo6NGzDGylY+CQBBEv/dMj9A7t5/Rrr6Y5O8vxF7ZD3IVUYqP165x4b1Jh9DOLFHRSgS8lpp3H9sAHdMMhVBJTmNhzHZ78zn0QZ+gDHmnHJzYFcwYkcYbl9HOhyOXAs8gCH3/Yg4mQomVStVKEnWJlGo25KmnaxE6HKDgF0rSHpsCUGpoCK9WwMg0pwE5AKA03iNHWnMrChQsZLwtmXYuTqm2s7xwidhRzIwYEYEkLyzEJyOh5NnEUg6Fxyps28OLsMd78/vfx0B99jhe+9Q2wXOh1ePq+b0OWgutAo3895xKNVIOeYYAmQDcYW30yM0ePMFAYpTE1BY/t4t7DfwrVY3iJIKoUadTqFEsVZNCDvAcyZWhwBGE5bPjYR/nmR36DuQGHD//KR/nLj/46Y2aBWKYoZdKVgnDYYb+bIBKD4Y5gULl4tstMmlBfYEC7xurrrmf87q3QjVgo81RTh3ZZUA96UDKh7lMzNEolh24QoldytHtdDGVitmNEmmHXOqTYPPbVe8iysD+Bc9UgJBHUZzE9hzQANxMMdUDLdGJNo1YQqAEHPI9L334N3/2/v4yV+sg4xnA8nn/8MfaP7+bSj3yE737nHpiZgrAHuk5Bc3CEoiAN6p0uLRsYKIJtc91vfYit336Qw5sf5/C9D8J0DXvVaVSjHk6cYKYCbJ1WwUTzwYwVui6RmkLTxA9kIM1bLOaZ5ycPKf918uj/vmzevJlGo8HHP/7xf2OdA7jjjju4++672bx5849VRJq/174e+U+2s80zzzz/cYQQFAoFoijqj54WkBLjDhY4c/1aFi0bgyRE1efYtXsnGBrEPr6MSXRQScKux5+hdej4iV/+QZMKIQT0Ymg1odtCP3012AaN8f08v/VRCCKwNAIthbyLCgNUHPUtOoZBpFTfMiUEowsWcvJpawCDTIEwbJRpIA0LEGCYhGFEiuiHB2tAziAQcX/kdF6DF3cyefgw5RUnwSlnEM128ENJkKXoy0f7lo7js1CvQxLA4lEou2QqJrV1DN3od7Sc6GpRAhwVsyDvYSYR4/fdS+3gOIcf3szkvj3kPRtin7JzQk2Pov6xJjFCpsg0RAjJ1NHDLBsZxdF0HCmoGC454ZBTFrrucXD3XqaOHwdDhyiGTJD3CqSahjQM0PvHYiqBmSq0MIVmA5IIywAlU1qugKWjUCzw3LZnCZOUnF6EboQQOo5hkQ8k2zY9zN5D44RaDEohLAs/TPoj4S0H2j2mDh2BOMKIEpwkI68JZKeHESdoSdbvWiu7dHICCgZpr4fRDXEsG2VoWJ5DZWwRc8eO9jO6BGTaP2/YBnYQMopOQTf71p6KC0UXeq0TNroW7kiJ6274GVAQNlsY9C1DumGh0qwvHJ1Aif7mFQukWcLo4kVQLkCWojJJ6hjojoUnDGIUpuVRckq0JubQHJNFoQPVBJKU9Tddz42f+ST6qlX4QieHx+LIoSj0/oUhMzQ/xBWCnKEjhIJmDY4doVWrE04cx7QdBr0ClukQAZRcyHuce+UVMDiEaZoYmo4mFaQZMk5o1xqQSUgy0igmBUw3h+YUOPNXPoB72fngGOACcYDsNsEP4KxTWf/+G1l29WUEpoQsgxRyk3W6L+zGrtZgqAII1GwLsxkANomh081S8Ar0epIk7l/7QbsHhP1wtAzoRH3RI2ciUslyp4yXGfQOHoY1J+FecCrFN65FO2MlJIJ8YGBnoCl5QkjqZwQhFRgmC85cS5bLE4YxUS/CNwW+o5GJlLPXrCGcmIOgLxCmaYqhCRIBsaWjTEFqGuiGA4mCXhccg1UbzsfQTGSUkdomiamRxilpL4RlSyCDLIiQIkNDYcjv2dD6x6cpHSMzQelUdciyjOmvb4XMBhRzCKRtEmsC2hlFvYBMFVLphJogThPIO3DqavYePYT0QxzThG4XLAtbiL4AaWigCUSa4BgGKkowJOjSQKKDMEDTuOjNV6CEIOyG2AryOHC8BlIjzRK6SX9qW09JtMWLOO3SS0BCdcfLzD2xg73bngYPuPA0egs90DKUodGRKUGlQNjzwSigWSV0L0c4XGLSkfRURiUz+xPPVi1iYPGCfuC+YXBo516otXEWLQaZsezSS2CgjCIjcXRCUxCZAjwLwzLJ6RZlzWEYFwcQutYPXXd1Tr38ElZdclHfXi0MDKGj0HFTg5wysDIdpSlGrrgYccYq7NEhEBoyhSSOECpl79NPwOwMZy5fRh4BYUwhl8NesoCOiJiTPj0LzJyLhoarmRAJjKkW3akqjA1BN4CBYc676GLI50AYCKmRoIMO0jKIVEovjUl/yHfa+Q6keeb5yeNHZWf7UbB582agb13791ixYsWPPTpmvhPpdYj6V/9Qt2/fzq233voDj135CvtYt27dK7bkNRqNf6OQ/rgv6Hnm+d8FIQSjo6PfF5FSo69KzM3NsmXTJkScQKEEzRb3/M+/AdPqL8Btg2q1y/DAEPvufwhsHWyXuJuQqowkS7j06p/hu48/Ad0mZ7z5EiZfGmTu4W0YuoGtWZieQbPX5m03v49NDzxAcmwCY8EYl75hAw9/7S4oliBJueub91BeuBh0CzvvMt1so9k2zU6XwbVnccH5G7jvr/6Wgl4CCYFb4uz3vIvnv/R3dGZrDNxwHY2vP8Txh7aSP20Nl668gB2PvkhaKTGnxVz5J7/Cpnd/Aj3WkfUGQ4sGyK06hcrIAp77m7v64axSoMUQn5iE1bFgEBMzSdGzlMSxCfbth1IR2i0iy6SbKUbzLqVQo1Vr9AUQItx8gfxAgVQont70AChF2XJJOgGZH1LQbLIgwnJsWnEMKLKSR7EwRvvwBC0p8XMW0gAsQSfOsJQApRhIFf5MlaBgkKY6RTdHJ/PR1p/Bu6+6nq985DYmnn0OzJThbIBeu8lB0UEWTbxdB+gFbVgxDJNVVL7IgrNWMH3wZUhCxNLFWDNVSrqGyFJkFpBlGZ7nYqfg+DEz0oe8icgSGC7hljsUWnA87ZBGEZpj8esf/VU+97nPEXZ6fdFS60eKWJkkrgfUdEkenZwf0TnYZfUH3sEbNlzId/7b/yB68QBtkXJk26MoP8CpDJA0u+iWSWQZjKw+ieLiCkcf/m5/OtIJlIBqow6mjjNQ5Ia3X8Xz332K2vMHqFUEaCZBO8S85AKaT+2AuRbD+QJzQYdmKhjzhpk8EvLsn27k2YINUQdOrcBMDdopQ52IUVMjFil+3EWaDkEcsmTZan75N/+IY405Nt7+aZb5FpOeYsKK+ovx1OmLPTWN7r4ZVi9dzYHt2zHShIKbQ5kGD/7tV/qiTSGHYWvIbpsA8Dtt8MocOTxBcO+D0A5wTJ1QCDDz2B0bsT+kZx1i34vPQJpAmEAmmdm3h5nGBCuveiNvumgNX/vsn2I5eYIgRFQqKMNAjIxw4/U3cnjXOHu/czeWjBl0cwy8+6cYXLKUib++j9aevXTMjDQI8HWTA62ZvuXIdWDiEM9uvacvUi0oIxILLwxRlugvuoVEYaA0nbELLuTCy9/Izp17mX5+LyxdAbVp3vRzN7LlyW1w9BjPbH4Ymm1wLVCC0y+7hNmtTzPndyBvgQSp6ThRhulatCslzvupN5MfzLFfQpRlEIMoFLA8m6FFC7j6lvfz97f/CY5u8v+w957hdp31mffvWX3tfqp6l2XZkpskywVXMNjgCqYXh4QwGUKHTOzAJHFCCk57A4RJQgpgJ6QYyBgMuMjdlmRLVrF6OZKOpNPP2X2v/jzPfNgHZ3hfZuaaBN5Mrjm/61ofztnnWruttfd67nP/7xs6WFl3JkkKCCyLTNgo0W00S01I5xcJjg6TO3KW/nWrmD55nGCgSL0RoyUwOEAaKJRwCLUBrsOG297Erv37oN4i/P5TLHn9Tez8u4dgehzH9EmCDjnHJep0UEKiQ4kjLFxhgjbJhIl2LLAEuAaTZMhORChMeo0CtlSEqoMzfx7taByKDszvYXpojIs2vJ6Vq8/h6D89T/HIJOZ4h0Nbv4T4+RvROXjgDz4HPUVGmzOwZpA7P/JpHvrrb5CdGkHFEfl1q7j0hqt59qlnCfadZLCqqfbnMAYWcGrHK7ilErawWDR/AUfzLpe/7nVsuf/rbLr+jTRePEC91iawYnTeRgZVmD+faKKKkYGFxaiR0TY1/opBstMnobfCpRdtYGjPPoZEgWy8Rc7xCW2L0NAYyiSwDNCaK666mgNHj/H8i9sgCLGMrkZqF2zSOICeCl/+1C/BzBTEKYmO+Nj9f8Lv3/f7cOAINc9CdQKKfo6sHWMHku/83pdppiHrPv+fOPB33wTD49DJYcg7RNMCKzVQRQcKdP/hUfaxPJ/MFhh03yLoCkgGc0LSHHP838aPcyLdc889P5JT9PrX/69Wv/D444//b9/3TzILCX40Y+l/1HReq9X+zVva5kSk/wvYuHHjv+ik+J/tD7pK6f9bJf3hifQ/OujnmGOOf6ZYLCKlREqJ49jd0aSZOkee295d3ScJwrTQnQRIwIbLfuUXOfTQszT2DEPeZ9llGxgZOU395GnQoGVE7fgpbn3DzXz3O/+VvU8+jacMesv9OEECScb0VBPyNjt37WbJshWcGDqFYZm4syHb4EOS0Tg7RiOIQWrsvI+MIwzThryN7XgsXrEMc/ESjOPDRNMR1pIBauPT4Oewmx2iep233nYn3/zGP9Dec5BndxyjF49WqwPzczz+N38JA73o42P0ojFHZzj14GOcsh08bSLCGI9uO500IBWgXQjtPDONDtoy2Hzz7bz04nbo6wF9mlRo8ItMJhInmKFseQjTINGSZquKm88RxREIQc7zqXda9JRKmIFEKo1SUAtb4BqYq5YjHcGHPvNZ/svv/QHTrxxj4aYLKZ2/lMP791A/cJqS6xGlEss2GTQEkygsDOI4ZuW7bmf5ZZfwt5/8JezFK7juXW9my8gBpr7+JIN+gSCtceOvfpxHf+cLUG3jmw6h0qACJizJBe96C/t2vci1my/n6T/9C1pSY5KhTUFHSdphGy+F89w+jKhOrEyGvvF9yGLCRpNRO09mmCByxFnKH/3+H9CZmMQqFLptgRoyAW6mqXRg0g3JFs/H7WisRsqxbz/Ksb/5OyiXsdII3yuRaMnpbTvximUM26KdKZSOGJ4cpv+y1WAK0MariSRSKyzbJrNgaN8+hg7sg8TADSWLb7yT9RdczIvbXqLWb3PlJe9n6JGnaT6/A3o9YpFjpN7GN/OEhgONAM5dwNvv/Syy1uRbv/LrdJrgRQmOsHFThes4jKmIkTPD/M4nPtoVPlyHtB6RmiFccB4bb72Rl//pcZhswNEJzjyzC2lkOEJgWy4qScmyrDvGqEJotslmXXC5SplOGMBAgeb93+2eK2GK0Bn5XB6zXOGTX/8zvvg7X+TQS1uh14WOSSGS5DVY03Wmp2ucOPZ3jBkKo5TrOtB8hdYBRHn08BhPvvAik61J0BlBO8Zzi6QoRkbPMH38BAMIWgJwXVQOFvzKL3LnJVfx4h99jR2PPAnbR6mscek/ZwXHPcHkwBLs6lm8bDZvCAXSZGT4DE8/8xza8sC2IAzAz7P16BHUqSEoVmCqTW+xTLVWZcPtb2DJqhVMbHmRvnIv1TRFxxpXGN0mtERBO2HHo091HT9o0pzHgPCZGq3TsQ3SoMj9n7mPuNWmsKCHtD5DGkpswyLzLZo6hAWlrtvGr0C1yiXvvZPO1x/naH2Uy6+7nCfOHENHTVbeejNDP9gK5yxmnnY4tfsVhGOxcPVKlg0uYNeZx0AamInJzD8+ASLBci3cJCFv2wglSXRGvlig1WxjmAYZkBpQWbWMtq24+rY38ewPvse2o/uhkodE0TvYSz2KkLU27/zsR/nqpz6LvekSli5ezNDwg+x97Cn2/tfvU7CLRL6NX68zWMwzef8/gW93nZsTHVixEM5dyEtPbic7dRZ6PNa+++0cfuhhnvjLf4R6m37Lo1HKGGiZTD+yn6xUJtaStK/IlTddz9HvPcyW+78KrYhvfe6PmdcOqQiPVGk6ScK8Ky/jhptu5G9/7w8IbJOg3oGKzcAlG9iwbgOPfqsFkcXf/+6fYpsCnaTM37SRVr2BVWszbcWQ98D1MBLNQ//5j7pCjsrAtUkDA2kZZEKBIyDudN1EkaTkO+Qdlwc+90XYP0zP4BJoNWkkikDWqJx/Pp2jx6gLYH6JyeYU3rz5RCcPcuSJJ1n9H9/B8a9+k9zgIKFOWH3HjRz/yv3cdtcHeP6xx9HAeLXGot6eV4WjOQFpjjnmAH6i2bw/NE38OGHnxIkTwI8vnPqX8MP9PPjggz92Pb1lyxZefvnl/6lT6f8PzHvvvffef9NHMMe/OxYuXMh9991HrVbjrrvu+pHb7rnnHg4ePMjnP//5HzvHOcccc3QRQiCl5POf/zxKKVzbQUiFnWlcqfGkpidXIA465B0XtEIWPMK+AnYtxq1GBEmHsOhxzuaLmNqzB9O10FHC5PAYU6dHiTodiBOyOCOcnqatJHEWs3RgIfV6i870OLVjx6FYRFYbnDg2hNYCwxTooMP1t9/K62+9lV07dqBaLRytkDLBzeeonRji5T370WMT9OkcsWeRZDGNo0ewtI8XStqnhzh46DgFwyIJO3DxWsKRM1Tm9RON1TAqCzEnOyiZEqgAyzMxYiibRYKojWe5SJVgYqCERhkgbU2azTY1VSq0bJfCytW85Z3vYd+Onax/483c9eGPsPWb38QSFjpTkGlM2yZ1LfBcVBJTypURYYbhObSjAIVAmoLMMZE5F11wWbL+fC685jV848/+C8nYGGiDwQvOxe4pg+sQHDqBlSm0Z9MRGQUp0IaBrW2UcBmtT3Hy5DDkCqhqjaVLFjLhhvTncySnRpFosrULqAV1aKYsns7I1q8iWTAIR/YT9hbpKZXQcULS6aDCGCUEsSXQpsTq7cFyHFqtJn2ihCMFVkeiHZ/UBrVwEKJwNhRYkbYDiqUKKk4RatbijQYNvcUK9XaHNddfw/qbruPI6WE4W6VklogbNdRggfJMEztRWKUiQZrilAqkSQwDPbBgHgEpTFUx0oxMSrRUmIaBmLWR/1C4Qgl8J8f00AmOP7+LUi2j8/ROzjy+lWh4lIFCkVbYwfXynHfza1n5gTtIN65m8wfexcmntnPgbx/iyA+eQ0/U0bHEdnJ0kgx3oJ+RsI7sLaHjNuSL0Iq6mT/FELBhKmTs0R2UQk3WDNBpgmUYmGmCthQIgaENNILUMEBnYBogQKQZKQm64HDOm25itRgkPjmEa7kkMkZpjyBTPHN4D8kLh9FxhpMoCCOETpGmSZUMZ+E8UsegHKV0jARKBlx0Ph/9zK+x/4ntpDNtOmNnYF4eMNFpRpSm1Pe9QvPIEGaYYUpNbEq0VmCZlN97GztefJGTDz1OIdTIeptwZIZOlPDzv/k5dKXMyL7dWEoi6DaXpQZolRKeGGLNxRu44vrrOLx/H0vfchuXXHwRJ17YDsUyG89fx8TkGPneMieHTnBk23acQoFWs0VF+Mg4gUwTAqK/p/tzJ8ZpRcicA46N3ewwv28hjZ4ckgx3KsbuLVNXMYaQ5E0fUzhkvktIyKUf+w9svvM2Dj//DB/47d9mz8njjD69G++Gixg5e4ak2uSit7+VYHE/Z/YcYdVdd9IYPkE4MQGmIGjUOfjks1jCohgpeiJJT5bhypTQiXAysHR3MjBQikRmYNvITGO5Di2Z0khavPUXPoBXLjLvvDUsGZzP8NZtIFNc02SyMUnuwtUcnBpl8zWvhYE+crkKU4eGIY7A80mEQe97X8vMyaN0OjXKToHemZSeRsAyXWS60UKPTNAcHgHfZtltt7Bm2UrODJ1Cjc9QMCxkEpAZimJkM0COfCDJBnJEss2e3TvhyAE+8ZW/oNA/j5NbXsSMO5haUHA8WkGbpeeeQ73ZYGz/vm5IvFKQRpyzdDV7H9+KEyiSWgdl0HUSXXkBGz/0Dg4++ziqnqJXDLD57bcwMjWGPjVJfz0m10kIkgTI0H4e0gRUysXXXcf4gYO4yiSnDTAgRlMNEpyFi+mMnCVWCjyb4vLFvOm2W9m/d383oM31CMIOG9acy8hzL+EPDnDLB9/D7mefppPEXL7hUkKhmD5xhvUXXcQrO3byK5/8FEXf75bEdcv7Zj9k5qSkOeaY4yfHwoUL+eIXv0itVvv/iDef+MQnOHHiBF/4whfw/X9Fc9UsPT09RFHEfffdh+/7LFy4kAceeIB7772XLVu28Pa3v51169Zx//33/6vv61/DnBNpjv9tenp6uPvuu7nvvvtYtWrVqyfTgw8+yIkTJ7j77rv/zS12c8zxfzpCCEzT/JGfDTUbW6a7F8RJFL96e5Kl4Jao7toLYwk9LQm2JpmeptZsgICc6dDKQkqlHCruUPE86olk9bo1HO+0IQxIpUUQpziGTWy53byPIALDRLWaWLNillKaZnWGnO/glwqoVhtTK6TKEFnaFXE6HZAaw7EJCcGxIDPxhAW2DZmGkkVQC8G2WP/G69m/awf16jSuUsRbD6AMs+uA8CwiutE+KpNkQtCUMb35IlkQdscUui3vCMtACwVK0jx5HMKAVnUGeiocP3iQl3Ie5DziRgvfEKBNlGGydPVyQlImDtdRaYapNI4wiZQG1yRVikxlKMuDKOL0qVOsOH8tRDG4LgQJItGIWDG1dz8kkkKphLIM6ml31MlITLTWJKaGmQ6M7oNSAXTGtqe2EFc0lihgphE2cOLpF6BTBdclpkHvwkVcsXkjT2pN6+gxWp2AiekZcqUB0ijFNAXCdsAyyToRWQaFhYs4MzpOn1vGyBR2KqB/gNWXbuD49x6BTGJbDpiQRTG26M48S9ENWFYWzKgEtMHxo8eJKwWWX7aRU8PfJ+4EmD0lZBLhABGKMA7oXbaUtevXs/WZrRBG5Itlbn37+/j7nb+CEl0Hkpg9joXu5twoBVrTzVPSGYgitraYPHYSWwuKIofrQq1dxezzESUPZ1EvYc5gbN8Jzpu/GDoar57hmwaJ42BYDqmCSCVE1SoMFLoHijKgFSBaIRsvv5idxjgcb5CPLUqRJp7pYIoEaWkyIbu5UkIwq6m9ijt/PnESwPQMlmNjGpKwFXLskUfwmyVKeLTTEMsvEFl+N18njNFkmGjKyiTUgrZQWDkLrSBoNcD3u+2Hntl9UapVXnruOeJWi3wxR6evyJs/9hG+8/k/RE4Zs/M6AoRDZqQEtsJSCktBbBmEB4ZpDp2FqE2b7p/2LBikd94itj+3jb279oAQs8+tG7BtK42MQygV8HTG8489As0aRn8PO3ftBiW4euNlDOQ9Xn7uaaAIwsAZmEdbhmQ6w8k0LiYRgAvzLjqX0y/uASUougVm0jaG52MJj/FmrTui63sEuo5h5NC2TWx6hGGGSDO078LAPCq9ZV7cvg1KZf7qvj+AqWlKvRWajQk4MQJKE4xNc+zwQUhThibHYXIcZIYwBDqKQWW4MsOa1RSkBmnIV99b3X27u/ttt8F2SNOMKJMonVLsn89jDz9Ms93mNW+8iaP7D3aj4PwcnaAFQhNMz8DwSdrXD3BqbJjB5Sug2oI1S7oCbr3JigvWMvnQ9yBQ+FJTQqJJsIWBa3uEjgmLB8GyMKdatPVJ4lMjICSRIbANjZ1JJqI2C8oD6JmQNItBRzDSgAULkK0mtZER5pdLjI1PYAkTy7ER2uDQ9h2Q87qKGQKUwsyV2Pv08zgij+8VQCsuuf5aZlTE6dYZnt69A5KInFegtHABA8VSN18ui9F0v6e8DCK7+yI6y1fi91dYumo1e9xnMGKBZZgkSGKpwNLMv2AtYsVihp98CidfZtHChcwr9yK0hZlpRCtBTtXZ03wRw3fIG4KnHvkBkEKaUJ2a4vDxUZCSJ7ZsQadZty0ziHFy7k/mi3mOOeaY48ewcuXK/+Xa9ydpnrj77rtfjaP54X43bdr0qhPqz//8z39i9/UvZc6JNMe/iBtuuIF169ZRq9X4yle+wgsvvMDKlSu59957ufvuu/+tH94cc/wfjxACIQSf+9zn0Frj+h6Jml3gzAYSJ0Ijci5BFkNfEZoNCCE/k7IAh1bOQ8YBK67YwOSRIfK1DgUlaHsZyIS40UIksOHWNzDU68E5i9l0w+s5+uxOTGHjZwGuVDiZxM4UnjCImg0MmeD6LqePH+XFl3eS1Wu4aUwOjW+bRHGIFgIz0xRtl1rYQs4vMHj1Zi6/+lqOPLOd2NHkhIPYsILs9Bnwclz3tjs4sHcr1FqYCgZUmc66lWDEkGYYUUbBKTOTBRjnL0EXLMKoiULgZhpbgdKavAxxlELICBkGMDXJke3bodkgGx1leNtWUBJsC6UNwCQ1BG/+4PtZsGo5Bw4ewkkNSpmFMZtpZNkOYRThVUpkjQZmXz96Yobhg8e48VOfoLTmXMaf3U312Emmjg5BoliKT1atE8UBnZyB6fiUpItluISehxUq+ir9dBwgZYFNAAAgAElEQVQFqgXNBrkwwxyZoaINestlajJDZ4K+Veey4tyLObh1G6V8Dq/Ton7wIAgbUo3dSXFTQc7J0W53KFR6oZkgewp0Bh38qy9l6vQJlF1AZILCOcu48tabKQiDkcPHUHFCTlj4mLNipeiKJkKQWgaxSsDKITuK6vGTFM9fy4ILzyP2XcJTZylZOZw4Quc8OmZGWMphFvNsvvxqhvYcIj0+wv5tezHiAK26NbqmBlcbGEpjKWbDisHQAmVbbLxoI5fdciPm+UsZP3KcKGzTkiFUXLIoIlNN1PJFHPu7h2H7Cc5862l6q01ymEQiplMxSFJBWuwBPwdac/svfZylGzdwYt8reCksMBzCs9Msv+3N1I6cJZpuMM8pEiYNhFRIB6SZIu0M+eoonoESgsw0eONbbqPVadKu1cj5HkYc4doQY5HlTFizmP6Vi5keO4v2bLjmai57511Y+ZTa9CgibKNIyPpclAxhwSA58jAVYJmQZEl3pnC6zciOPegkJk1CaDc4u/8w8fDpbhObbVGsJZRbGe1cRupJCiHkUzBTk/rTB+HIMCztJ79pLXd//reITdj93UeYGB7tijfNaYTshvB7UiO0IpEput1iZN9eRBSSzuvDft01VL/1A2hLTh84yOGzQ1B2QGSY2iGrNim+7iLi8Wl6AwvLdGgYEvNNl3HZu+9g8tQYRjuh1aljGA5mqmnrhDt++aMsv2Adx597muI1mwED2W6iRIbplSj5ZZI05fxrrmDrtq20du6GoQnmNcDL8tR7PS76zAeZ2PI0GDnq+8+g8wXOu+WNDF51GVMPfpOCMHCyFBGG9BfzkMVkpqTtptT9jLYruyKIEghMMsOkjQApGTh3LUG9RSYzevpKdJo1wjNj2FJw6pkXCIZHKAobOw6RzTa9Xp7O5Az4JSZ2HAPTp3NwCGEV+MXfuIe2oZg+dJTxE6fRzWno6UGPT9KPSwfJYU9SfM3FnHv55Vz+s+/gyO69NF8+RHTsNBVtEMmQNAvAUuQFRDdsJn/lhdRPj9BJWzjFHOeIPLLW5JmtTzK2by+qE5L2G+RXL6c2PkmfX8CIJUaQ4tg51EwbX1moOMYs5jEH+3nD+97B4eoYb/rAXUy2GvT0DjK95QUINXaQ0DhxhlPbXkaeGQfXIrEUqanxhcLEJB2YzwfvvpudQ4c5+NzzgInZyXCUIDQgMwwY7OG2j3+M4bFRGpPjSCRRJ+Tk4aM0T4yy3OvFaQSkE+PEWZsew6EzPsb02CmcazYim3VaJycph5oYQdhsUrRd7vnUJ/Ft69XWQQRoNGLOiTTHHHP8hPnh2vfEiRM88MADP9W1r+/73HXXXSxcuBDoOqEWLlzIXXfdxf333//q7/8tEfrfU1z5HHPMMce/RzTdiqUf+d3siIzrAQpKRYhaCAWG7tZba8fuZhQJzds+/jEe/Nr9cGaGJaKApRPq+TI1MwEngVbCCjuHoSRDqknv6mVUR6epqDJ1JCwpQtHnwkuv4ZUHHqIQxZSSJoZlEmUJyjDIUFieTxzHaGGC4xCbBlKkGHFCTyTRUiIBo1Ki1Q4omXmqjg1WCI7J4mXnUjt6ko6bUazCOb/0Hg6/sJtg3zFIIqhIXGUSK0mu5fHur/0RW3ft4MxXvw0TYyROidiRXPSz7+Ca117Llz7yCUQ1oS/KAEViKqxMMr9oM9xK0TbkSj0Iy6ShMpJWnVyhgOPmKV5xOWdffAU93ejmq4gUa/4g2cQ4OTOPE6cIUyCTkBSDEMm6N13PgSNHYXgSN1cmbrbpe8NruOyqq/j+r/8hNuCXCygd4TaaWCRow2LSyDDcHMXYAG3SKNgsqCxg4/r1rLrmIr7w139MrpagJqvMxyRyc4zHHcgXIJTgW1zz8Q/x7F//I0UzoVWbwbIssiwhlytRbmSgLTLfZUp3uPrWWzj01PNM18dh/Xx+5k+/xIvffYKjf/ZtaAcoEUI5j4gzdLVBvlQgi2J80yaOYww1e4wJiCy46cMfhEjyyF/9PWgbfAFXX8Cma6+m+djzVB9/nDhn0krTrqDg5qHeALeHQlugkpC8U2LKamAYAltrXAlWqtBa8N8f/ZkJoeWhCj7WhSvILl4O//AwSzdeRXV6nPae3fQZRaoiwkoFdpiRdytU4w6yNw9ZAEpRsmyaV17G5s3XsvvhxzEPnISwTkpGfrBMszWJYZkM2D1kNRtjYYVa2iFrzYAQ2IClJSFJt41OaixpYKquQzAxDLROIe9iWgayUUWUCuhUAS5cu4kFi+cz9tgzCNvDX38h8xetpHb4NLXtP4AwpTeWtHVMsqSIWLWUn7nnbr72n34TRqYh7tBnuRitBKkyjHyBtJQjFZq0E5PPBPVzF7P+utew2PR46fe/zAB5jhRDcBTFpsLNoOU4vO9DdxO4mm985Y/Bz3UzvjoBLFvMNR/6OcxKhafu/mX8Towju4JeYkLLlBi2gUoTvFgR9few6S//lJ3v+ji9pk8jbSOXFbnubXfw9Ff+CifK8+53v5uh5TbP/db/QyXKUent51R1FJYWuPqeT/LcZ38XWpL1113D/u8/gWHbqKLRbSqcasC8QX7+d36Vv/z0r0KtzpUf+nm2/sn9UOvg+C6JLbufheVeSuMtCmaO6tL5XPML7+HRX/st5pfmMT41xjmffj/9V19G9dQER/7iexinXsFMWqhMUvQ9kiRB2BaxpchsZm2O4AcmsRB4GRjSoF2yob+Xj/7Hj/KlT/8GiBg/J0habeZVeqjWa/SVBmh0WkQywgCKfo6ZKGHeipW0Rmv0RCZjPSVU3oKcDQXZdUZNpiyVNqfNKuQccvWIHivHeBYgB33W/OfPUChV2PU7fwyJ4uN/+Lt89xt/z8x3nqRPapRrcEbF6DWLWfWJu4jaEWc++8cQJ1T6e/HHJjHzPZzNd9vaMDyszat43y1v4au/9JssM4vErQ5SSizXwlbgCpMpX1K3NfPWrWNg2XL2f/8RMB0o9sKxEQb8Svf8MVMWmHmEVGS2wWmjg3YAqcl3NI4yqRXLULDBCLrh7lYBe7hGQWc0HY30BWiHwQs2MHnoCKgABvMMzp/H5NApyCSYFkzWGMwkk5U8BRyiehPnivWUr7iAsYcfgZMhuVShygWiTpWlS5dz7MABHNeeFY/+mTkJaY455pjjp8tc2fscc8wxx08brbobsrspRbvW7F70GjZL3vJmkAmoDMPzkJlEmxZXvOUt4PqQq1DIL4S6xHVN6mZIQ2jCtI6ZBhBLTNtgQoWMkeAmHvOvuZrbf/fXqbfbLGmYcLoBw1MsrzXpzUuEHWJoo5tdY4E2oZlmVFstUkyCSEEg6GkBiUIt6KMtFRWrwAAFau0Qb3CQhkwgZ4E3gJgWtF7aR6c1Dc0mTqnI6ScO4C4+F4oV+uOEfAhmnEASEVQ0tSMHuGH1alozY9i9/Wjfg3yF41v3MvzCfoh8ctrBLRWQnkHTlBgIxlspHQHzlywnqLaYmpwmkQEsGSBwTOphwhs//IvoNIZiAVIoiyLeaBMRa5QhqbspzYpDhqZi+oAgd+FK+i5bB4BoBxSxmNn2Et//wz/CtjSukKTtGu1GHVnK00SgLZt8BqUgoyEiGjqCnGasdZqjskFjpEFl0bkEtQTLyDFjWYxbCRRMUAF+3sQTiq1f+hPKUZ2OCkGFWLYBPgRGRJKGhFlCXPJgWT9n+vK86dMfpLJoOcwIdn3l26S7hqi0UpQOwdcYrSaVVoijFWaaEich9aRDqBMiHeMZBnmpcOKYk7v3sMizKPhA0oB8CZ57hb3fepSzJ49DX4HQNcGDgd75uCM1ejKHJUUfP6mx2nBIkjFM08AVNo40cCONrU0cyyVSGX6hiFIKS5qYqcCMJItil/OqJrQ0/eVePvbhT7HpznczE0foTCB1RuwaNHQby9ZU4pSiNvFNm46hYNcBXvryV0iHhrCNlLzvsnBwgM7UJAXbpeL5TFYnMWyFmpkh147BL0BvkbTkEhoGltlLvunhdkw84WLaFvliAR2F2JnGSTIsKSFnY974Zjb93peZ9+6fgdPjjP3Nt6EZkZ/pcHFg0X/4NOG2l+lTgoplUiXGKLtQ7ZCfivjab38J1q5l3mc+zbIrLmOm2cbsyZF6JqFOaLcaRO0WKRl1EcGCEnpemX1HDqEtn8wy6UssrMyiXTCZ7jGJe6F5bh9HVBOUZl5oUY4k5XIJaqc4suVhhr7+dcpJRlmDkWV0dFd8Wn7FFWy8+WZEvgfbK7BwwWJGHn0M2iGuEEhXcNkH38fZah28Hny7wMFXjiBfHoHEpe7bnKpPg3Aotnx2fP6r3Xyccxdy4403ggMqb4CK4dTp7kzZ0RNs++sHQLa58cM/x9jZKegtg2ciB3oozl8IVgFda6NzHtNWxlU3vIbnnt0CWnRbYHMW/iUr2L/9eaaf2wYTpxGmSYqB2dNLXSno76eDQONhtEzyUR5/xqBH5lC2SSpcKkYRPJPiVZt4+sltFJUJdp4wM/Bsn6TRpihM2p0qHTMhK/gktk3DLrLsno/QeP0VBGYOgUTVZiCXwcU9VK6+AMo+bpZQ002wgSwG20CYDjY2ZD1MHJtk15M7uuebVIxlMbqniEoD6qrFTA6ksLjtZz7N0APfZeJvv40pDEpWnvZYDX9wNWddD4QDS5bB8vkscsscev4l3ESjowjbMlA6w3AMYpERmRIVtKmEGcFL+zj2D9+BIO2ONo+epTDYw3Rrkv5KL2XDQImUQEY0ojp+qLE7YEcCIUxMTBbbDjRqsOkCuP0WmDdIId+Hh6a/XIS0DW7M5N6XIGwAEf6qRaw/51x6U4NCI4SkBmUTizxeLGhLSVYpsuSCC5g+W4OWhsEFlBevJIoDHNOirBWODaQhkowESOGfXUlzzDHHHHP81JgbZ5tjjjnm+GmjdTfo6IcogS0shGXyG3/1Vd75iY+zcN06hrY8iaMMMtOhMDiP3JJFTFar0AnY89IOcHzcsNWtZzc1htZYSuP8cDzJMEAIHKvMzPmLqBd9msfOkGtp2p6ETpsTR4/QacyQ+AZN26bjaFJTIIWgXCxgZDYFp0jBLWMqE5mGRCUXZIhMDaQ2iB2L0FUkcYhj+Cz+5Ptp7DzMIu3QtmIu+sJHyTauZvrZnUQtizU/+w4KF62h9eILmInCSDV+YiE6ESd3H2DPsy+QOAahTCn0DRJ3ItKJaY7seBmEia2h06kjkbhFm5LXSzPKyEo5Gu2Q/nIfqe1wzh03Uc0y9OkRLJ1nx649XH77bZydGqW4fiXN6ghJzsS3TYxWA1dYxN2gHwq2SyAk0z1uN1/pbJWcshBaEpsZqAxbKSyt0YBdytMKWt1K+Syl3yqQyJC46IPULLhiI21DMHPoMHue20GURRAplEqJrVkryGwkli1BxAl526JDgo4SCk6OoNbEWL+MwQvOYer4GSgW6RiS9/7h7/Psn/01e598njQ00FIwOXSI2soVhKdPdUcfo4wlaY4wTYkciyiLcJcuQEZt8D20aZFlCktYmLbL6NnT7N72AomMIJ9j/vLVtCemUeOTZDoiaNXpX7aWRZdu4sxL+1joD2K7Oc42JnGKvXTSlJon0HkXUwksYWJKCFVGU0aoYo5W3EGYFqnW3UyuMKBxZpTpo0PgeowdO85zTzzJ6OGj3QDgNEEAyuyeQ5bWFLSJOZtbFFkCOxW4qcJRGabOQCg6QYtUK7Bt2mGAVy6hhMLQGgNFZMPFt93Ia9/zDiayjNbQaXyvQOAaJFZGaqSEYRuvVMLX4ApBp93G7e9h1Wvv4PCpMZqP/AAcG8IODoKkE3D69BlGR8fQpibLOoS2hoKDaoQskQWciSb2mQ62ypGcnWLq+H6wIZQZUoNIJTlt4aYaL9UULY9geISpF3bQmm4SmdCwFaGtEULhSY2fKUQq2PvKK4wdOgDNhEpTUvAcElMTWimdY6dgtIYO292RWddBl4qkOYdL3nQjmWlw9qWdGKZLY2SM1o5XEHmX9rr5VK66kKHnd9L+1rMMNiym4xoj+ZAzrxyCpQvg3PmwrJ87fvljGLbJ2e0vwYIF5MsVnvnag1AoQBpy40c/zNChY1BrY2eC8aMnQGhGzo7iuSWae/eA7/K2n3kve7ZuhyAENKYlyNKE43v3k52dZqADRWkQyYx6u07fdId09zGK9YC2rnHjL3yAQrFE8+Q4Xj0ml5q4hkOgUzbcfhOhazEeNijecBnSFNSqM1zwGx/jLBET33mYt7zvg+yvnYVOgJ0pbCURaFJTExfc7ghoTz/KdFj+tlsZGT0L9YDmdAPsDLKARZs2MPXyPjg2jG86pMTIbiUelgZLCjKtoNDHTe99D2HO4bKrNjO05UUObN9G/fBBEq0plXyq7QbIIvX162k99j3k1CQ6URiGhWW5TLaa/Nyv/xq7zw6z8qbX07d6JSe/8Y+cPXAUJwXbtEhMTUslZI4gThIyJbE8CyNRuInGR+DaNmGnBY6DzDIqfpFas44o+ASmQWQaxBjYtoOF2S070CC0JgobxL7HyrffQbHSz+DAEkae20VOS2IrIpYJGz7yQaKZkGiqDhmsvWITxw8eoj0+RTGBjs5AWFiZgdAmiWmAaTIzM8Ot73kfo5mmUKgwdegglD1IQwq2xcc++XEQisww0JizofGz37NzdqQ55phjjp8acyLSHHPMMcdPGyGQ/DCrAQQCYXQt+L/x2V/j+PQ0x3btIndmgpyyiJKEuNXBnNfH1e96K63eMrq3l/TkSewk/u/2y6v7s7XA0gJbQkMaZIv7aD72KDg+7VaT/msvJcjbqJkq5B1IIZ/4+JmBKw1sZVJttUn7yySL+2jJFuHCClGnDb6DmD+PW26/g31DhwlzmoHXX02AxptqUcn1cP6yVRw4sJfMTOnojJUDixk7fAIdKSae201t136kTjFsD9PO4To5kigj5xcIOzGum8OyXNqjk9z5gZ/ljEhJquPQ042hLdgWKImZSepBhiiVyEzZDSoOYpTrMtmc5sLNV1BvR/gzCXEQsGDlQjZcczmLL1rN8bEhSFpktQYlCZ6w6PgGuYFBqjMzKK3Jkggma3iJgSUVmZakTtqtBlddIUIJCNMQyiV0lKIdn3YcYxqCFImRaBAmV7/uDZwcOgW2jbNhHTKTqLAKKpmtyNbY2kLGCr9Upk6GKvr0ZR52o00lX6JZhqWXX8J5563jxKGDkIS8svcASxatoXl2DI1D3+uvJ1w6D0yDNbffzsD6dUxve5lGOyMumGgjgWKeD977q7wyNoacmgatUcIgFoJEKrAdcEXXMaEka669juve+laOjZ4lGz9NyXaotizy8xZwwYWbOTl0lplOCxb1EwUBgRCseP87qO96GRlExHGC43oknknqmGgZgqGRvotUKXnTQhsKYYEig6jTbUFrtzER6GYLFwMx28pnzeqwnrAQdMfwpNENh7aQmFqB0ChDEwO5/h6CNAGlyFybzOiKAd1zRjNy8AD7nnicTnUad/48gqAO/T5Lr7+CjTffwKRKCCcm0UmGi8AyTbIsZWL3QeTefZx/yQWszuc4e2AvMgww+yooA/BttGsjZjrIWJKzPHLCpuLkaSQttGnRUAHJ9CiMzVAOFCKKKWgH23KQJsSmpuNAUnK46ufezxV3vpmo1qK6/yiFCPpSQS5TKKGRhkALgVGLkUGE73mYYcR00kHlfK58z7toVwOC0Rpm0aRNRmabxEEAvsupA/sY2bUT+gbIJqsUHA9PaeyePNfd8UZsAePfeYq1Rh9KhrSW9PHOL/8W+48c5zW33ky7FRC9so/Dp08zvmsbWOD09rOo0k/zbA2tBfT0MDQ9CbU6uDkMaVIwPVSQkcw0aR49Cr4PhsGBJx6HJEKQYQuwUGQyQcsEI0mRnqDhSZRnkA6P0jhxnDCs4a9ZQmBKLtx0KScPH6Vx/EzXseZ6xKam58I1lNet5Mjel1h/+xvoHexjdO8eKOag7NE5dpzFV17BRH2S2sG9oCVCSgTd1zm2BJQKlJYu5XU3voGTx04xduAgeB49G87h8nfcgpFKakeGYcch3JE6tuPRSdqYwkDPflZbGrIspeDlaXaqHDrwMvWDr1ANW0Q7Ds2OLysQKdiCNIwhs2lnTYprVpNMToPrkNk2ac6FvI20BBNHDyOjiLE9+2CyDnGGKQwaaURga8RgL5HK0EIQdmISFzIFtmMjDagGHQZWLOXCjZdwZmiIYj5PK0uI5/WS9FVI61Vk3idJYhKdkaKx0BhCkOvtpx10qA2P0Jis0RwZQ42eIfNMYtlBCc3mm2/m8KMvYDXaLDGLHN23m7A+jZQaF4dyYlDApm3q2REJA6kFtBuYSxbR7LS59KorOXH8CDSmMft7KPgen/j4x4iTFGFZgInJbAHDbA79HHPMMcccPx3mxtnmmGOOOX7KaEBi0F2S8M8XtxowTRoHDhIeOoJCYZomvmFjWDYyChnoqTBQLrN82WIwuo1aP9wyo7vJ2QU1dBfXSMmV174O5i9hwW23wEAPazdtYtGqNd2Vg7AgA0eaOJmFLQ0MZWB5OQharL58E6xbyeb/8F4oehBGOErQv2QxzrKl4Jlc/rprWbRyBTpKOPbwk4xPTnSv3oWguf0g+//+B9DssGTdWpioYp2pY+PQs2AR+QULmDQkoW9TkxLDcdGNiFyg8d0cQ8ePsXb9WhjoY8Xll6KyiFhmGIYBmcSwbWIB5LoLT21ayFaTeWvXsnfLFuJqA5lmFCtFXn5hKzuffZZD21+kp9zbHQ80QRsGARKKBV53+81oAV5vBcanoZMgpEJrjTIE0M1jAoUS3Q1TdF0WZvcxadMl0hIMk6KXo3XiNE9885+gWoWgzYZNG7n05psQtoEwZncnNYYUaC1o1BusuHQz3kUXkBkCiaboFeDsGIeeeJJTp06B70F/P5w5wzkrVmFfsRGygHkD/Sy/cBMEKUf37sPxPVi0ADwDLBMMC9KEwydOoC0Lenqhd6Cby6WN2VDq7vMgy8C32HfkEHv37UFKiTAszExBq83pHTs5cuQIYZpg9w90G/ocG3p6Kc+bj1i6FDOfx3JdtIBYZt1g6MH+7hVHFOAUi2RJiFYptqERKgPLxMxShFLYaYpndfNbxGyb22wx348gAAOFqTOM2Vs13fOhVatBpULh3PMgTbrvGQpBhqMkCAMKZWh3eNs77+T8a68EJTn9zFM8+eQTdE4PQ84nVRKtNY5lk0YxQkuQKQeff5Ztj/6AhYsWUB7oIYsDrnn7W3jvpz/Jio2XIGwHw80RZYp6GDAtEhpAp2RCMg0FmL9mJYllogyHxASFRs7GVApApxnHDx9h7849HD8+hFMsYRdyaAyENjCVwNTgSKikGifNUEqiHAsnV2DN+vUsXbmSdpRgOj5RJrufD0bXtVhespTNt92Ou/Z8mK7iFwoEUZtAxjhK89w3H2LPP30PNLRUQI0Ar+Dw1KOPwfgYL3zzIWrfeQrGQzhwBuw8aMXb7noPm666ApnE3WdSbYBUrL/5TYi+XjKZEQQReRz6nDx2qQRhANUZ3FwOge7mVSFRKkOYQN5BCU1kK5Sr0D4UhMl/Y++9giy77zu/z/9/8o0dpydHDAYZIMIgDQIBIhJgAEgQoiiKVKIkai1KS2ltrbyiqNXWmtaq1nLVlv1kl3Ytr1dFSiQoigQJIs0MMJgcenLoNN09HW888R/8cIdclcuv2Kf7qeo6Xfc+dN0+5/y7/7/zDQgNW8ao3rABlOa1v/lbJg4dZXD9GMvkLJmUVZ3S6rQ58Nf/CTodpicmOfHjd2BuGVodFv7La3B1kafuuY9LRw5DGIE1aAkWiRESLSS62WDPo4+we/duVHMVJqYZdSN23LSToR0bmFuYA6XZToWaBdNJwJNY0TtfwvYWflcI4qwDaGgsw9wUq/vfA2EYfuBe2LIVlKXbbEEtgqEq3H47m7ZtBy+AWh2yTm8iVaSc2PcOFBo9v4Tf7OBYied4vZsk8iHyqK4fhTzBegF4LtpCZhXWkTiBjx8GbNmyhRt27qQyNNRrq9MKecN2bnzooV5mmO/1mjQdiZWi18IoDbnba3xj5hqcPIM6cRJcw8C2dSAE9bDE9/7vv6XIcgIRkOY5TmUASlWoVDGOpHdbGQoJRlhcY3CMAT9g3cgI9957Dz/Z9w40lsAVVMdGsb6PsRbh/deW0z59+vTp89+GvhKpT58+ff4b0FMi9b5cACtR3YS/+A//AaULkIJCWuIs7Q0uHEnn6izHjx1l4d39LB4bhyRHe6BdgfZE7+gKlCvJHYlyJEoK/JENDK3bxLa77+PM1CTbHnkQ00moILl29CRBEKE1pEGJXIqfq5mM56LWjeLVa4w9eB9pp8OYdFm+MI261mDWarx1a0hmLuOv3UQ1MeRnpwh2bOHq7CUYrVMXEaOLGSy1SAeqfOXrX+P4W/spSYkULp/+na+w65nHmV0bse7x+1g6fAhRH2JdR+DHbRKVMr04x+zKPNRKvPwrX2b85DjZygr1coWk3UWXy+g05Uvf+GMmZ2ZJFhuUx8Z47ouvcvLQUZhdwqY5abKILRSdyRlaJy/gzSyTX12mGoS0VUExXMZ2O2x68CGm5+fIF5aoDoxgWzEUBcZqjAvayZH0VC/QG9gZ3+PmR/bwxKdfZvzSFRAWIQtsphBFQcmrkAkBRnHPL/8ipy9fJNeaZPI8TpFjst5F4WrJ4NAYolJjwTHs+dKrnH1nH0mikLlGjQ5irEt67iq6E0Oecfsv/QKnT57k7md3M9NeYfH1t2kcOQuTC7z87HOcPnWEWx+9h6uqA3Pz3PjcczSly+Uf/QTT6nLzfQ/xymdfxfMips9fANcH6ffsOKGAUsirv/EVDux7n+zsGWpBgG23qa5dQ6zapN0ObpIyNFLn1f/x6xz94RvQaDM/cZkhPLK5pd7vwPGRoU+uCzbdsovf+YM/5NCho2SLi4RS4PoOushQRVWvXK4AACAASURBVEHJcxFpxkBUgm5MSTqg6Q3Ufqa2sYJAegh6rykpcG1xXYVkeuokIcmTFKo1bnv4IT7xymdIpKBx+QK+7lk/QwVuphHtGCUEJ04cZfHsOMgSJDk33HQzldoQzbMXkFbiCYEWkEmDLzS+zbHdBqFrCRzJ8kKTqFbn0oGDnDh0iMbEFcyaOtbV2NEBPve1r3Kps0ScNdAygQ2DbHv8AXY98iDnjx1CDVbIHUHhuEhl8IBSIfDijGK5YObEeRAFWnZIAkWn4pACpcISKRjIwLOG1LEkniH3PdI8Y76xyIkjB9CZxigHKVJcKfFxKFLNI48/wbnxs7ROn6VeH6FYXKIelRnaNMLi1WusdULUQhNHa2IH8sgnjVfojJ9i6OGPkuw7xuYUbtI+G2KX5U6KWj/M5cYiR9/8MfhVGBrk1qefYstdtzF+5RJ6YY5gbIxiaZXRUp1WcxHVbTAUhVQCn7zdpuR7OE5vtTSmNzRWGMKkQA344GSAw9hKQcs13Papp5lZmsM9u0zYUZRqdZYa8+i1VYoIvK3rSa8tQWpBBmRTVxm9ljNgQrxmypCNsFNLfPC9f0TGGWKphXUtVvSUo1oKCscBLBcmpnjrH35wPcXZI56aYfanP+LMj/4RNbVA1bq4tk2tOkLiQuoZhBJIeoUJ0gpwJYkyWN+CJ8AqWOjijozw8T/6Z6wmXeTxywzUyzz9tV+jWDPM4LqtXB0/Q3HpMq98/fcYP34YiqSnapSSMFfYxUWiZpfQShwF1pWYgTIPf+4lHnvxeY689Q42rEJh2HDXrbTjmCLNMLb3kGPn7bew0lzl4qGDVOp1hm++iR0vf4qgVmHuwAGQDgwN4joujiMRRU6uFXEW45aq3LrjNhbm5iEKKN92A5/87Cc48vobuJlCJFC0O2SBpDtUwnQavVbCRJHmClUpEfsCLQs8bfF1b0Ca5xkrLpx9/UeAZtdnX2Z5ZZmdd95Fa+4av/tbv4UjHSwCB3AQvQ6LvhKpT58+fT5U+kOkPn369PmQERYQPR2EAFzRk1ZIIfjjP/kGRAFDN24jXppC1AcxeYHn+WgBdDMwkiAHzwhUSYJRfPG//wOOnzwClYjaDdvI5mcxUdjblOcwd/oy0++8zx3PP8W5736HhYMnWLw0TaChJiVPfOZTnI9ibnrhKWYuniXttAgMiIUWxcQ8nVNXuPbjvSyduUhZWbyBYRrLiyRRBGvWs/CDnzJ/dJysSEheeZg7HnmYxYtTpFMLtEqWtBpAp8uhM6dInSXSckGGx+GTBzl8fpyOKdhz//2cO3ICnSToNEVqEEKQ2BxcAcPDHH13P/rSFaq1OqvLq4wOD1DgUAjD+PRl1g0M0pqZJes0OXn6aE9Jk2Ss1SGu6+GlCr/QlByPNE6pRBG+45OlKUL6GAVXVEY4OEDRbhMmmiAuUK7FOCCExg0EShkix0Fri5Uuxmpansfc7DXiSxfB7Vm2StrBsy7WQG57qp65rMWa+hpmL17GzM/iao2+LqsplWp04ozCkVibsRi6OJtHUe0VytrBLDQIVxNGuurnn3vTkw/Rmpzi/GvfhsUFwk5GPUnxbcG5uUu4RZsLf/ddaPY2znse/ihPP/IYBw4fg5UWSxcuc/DHbzJ9eQoKjQhL/P63vsX4uRNkC9cgTTl56BieE1J0E3yVUbIFOBmx7hChqWUpqC57f/BdqtpnPT6NpUVENyEsDBXhX29dkqRpQqvT5d1/fB211ERYi+MYtNFYCY4r0EZRKZXI4hgPgdYK1wvpaAVo8H2s6+BYQblcoVvkiMBnoF4lTRKUNiRpQW1gACUE2hoW5uc4dPgoC6fPUMkUnvAIfR/dzTA6QxiLNQ5a5zAwQq2poZ2zeOESzYlp/HIV34BwZS+I2eZooVDkSM/iCNBpQSWKyDoZ2nqQ5DA0wPZf+gQPf+ZTnN9/gEsT07QnZyBT0I5Zo3xW3znG+dMXITG9NGADv/zbX4HBiIlrM6ROTFb3yLopbN3Cmsfu4+U//jr5mmGWjp1CFGCFIHMFiQdZoWj5hqe+/pts2L6NyQvnoVrmyd/4VUbG1rO8uIhorRAVFldBIEMunrtIe2UVpINqtBl2I1TaBUfgrBng2rVrOEgq1iNzJbnOIBDc+PlXmXEUWENrOaGjCq7RC323rRbFxSlYTaFW4Ykvvopx4NCP/hEjDB956ilGx0aZP3uebqtFyXEJPYNRBabIcaSkKHKUNfhBRGEMkR8x6JWoxxplBDaqMCgChjsFo+s3ELdiFvcfxdMujuNisWRZzkNPP82jTz7FsXf39jKWfJ/hjRvx/RJ5o0voBqgs7WX7uA6ZLhgrVdBZgg5BCotrPRAuynWgVIJWC7ICxwvx0hwny9HG9hoWDYAhFg7ztkssFdATaPZUYwIjJFQiKHnoNCdywHY1ngEKw8njR2kfOUq1PsTi4lXOzl5h9b2j3PrCi1z6/mvgOrj1KqU1ozz/ymc5uf89SHP8LCVUBl8blO5lFVnHIfdcypvWMb2wyOLxk1AdYNutd7D7iT2cPXcG0S1wkKRJwszcDFMzU1hjCVyX2GqmpifZ/fAezv30pyAlf/6Xf8nEmXGWry1ArtCmgKEBdu28iY/ecz/HThxDd9sUoeDY/r2QFpSFS6Wj6YYGPrKdu7/6i3h+RPP4ZVAWXMmapx/mqV94ickTx/FzBanGaE3uCLJrs+A4DN1zL0mScP/Tz3D+5CnMSpt/8dtfRRUK1xEIRC8bsD9E6tOnT58Pnf4QqU+fPn0+bHTPQWJET/HjYEBrkB5/+md/ijMyxH0PPcBq6JAurUI3Y6hWJ09TpLF42lIuehuNRFpwXbxaldmlReTIEF/8lS9zbmGBvNHs/TzpUNUBeStGj1QIbttBuv84UScFndDurHJtcZG0mXLLlm1Mj5/BJjGh7+H6EoMmiTu4rsOwHyAQtAMPxgaQO3ZgD55hQEWUw4huKcdOTtCeamFnlhk1HnE3hjQjDEs4RUFRCgi2b0fvWMumu+9h27rNXPvO65z/4V5YXIZOm3wkpOMrXGDd+vU0lxbYuutmbr/ldqYnZ8mWlokG66x2moisIPQ80s4qKxcuMeyFlMoRcXcFrMHBYbib4xYFCI8M6JgEPVghlRB3YwIZYVOLEw4yeusuqpvX0lxaJJtZIEKQeBrlagKtKYzFWgs5aG1R2kKlRH3tGI/seYhWltJevAamoJIKCqe3WVTDdQgFX/733+Kdb/4VLDUgTnEcDxOG4Pr8whe/SK4U1xYXIAwoum2qt+5gePsO5t85xKaBEWySU7UGG5boujB35ADJ+atsbac4WhE4Lh1d0CWhKBfElyapFh55O2HNhs0c+embHNy3H7vaoDIwSJ5leFGAFBajMtCa997ZS1Yk+ELh4uBbn2R+Bc918IVBZykSRexAJfBI2xnaKMzaUbzUYNMEt1qnUDnVqIxSCum6rKSdnhUmS0E4jHhldJFiXYmWAi0clJQYYymswMhefpgy4IQlcs/Blnwwqtf6FYS0u128UoRTjrDSpZtmuFEJ3wtIOl3KQdS7v6zFyTNMkjLkRKyqgkYcYyoVbOFgrYv2PGq7dpLOzCLigki65CUX6zroOMb3fOK4S17kUA561jxhEVbgWAdpXTw3ROWK0A/wXIehqEJx6gqTr72LmVqE+Q7WgBuWka5LvrxKVUi2fulzrHnqMRaPHID16+g025x+7xBOphmQIW47p/rII2x/9AEmW8vMXJlgEI9rH5xhKLGkniUJBFlJkqYGqh6X01Um3zsIXQ3NDldOHmf2yBFUs4WLwjXXM9msS+FIdOBCnmKlwBqN9VxWXE3aaLFmYB0l47FgFXpQwrZ1rN1+G5N//xO8TzzC2O47aVdzssduJxdNvvw//xlHf/ATtoajhJ2MzliV5bTLlSNH4MoMtDvMj59m/vgxCHtDmDBwKMgwUmBkT3lmpANOiLKQZ5pUKzo6I9q5nY88+SiXTh4lsQVDTz/C2TPHaSwtIEoDFEFvEGSMpVY4NE9dZvrwKZJ2jBmscMOTD/PMKy/z/vGT5KZLO0vR9QHaTofa0w/SnbuKUYKs6mNt3su+Ny4gUcLlG//uL3jrxz8GIbDdlEiAaxWlXOPluhfw7EAeaKxje08PjEWiewMuK8kdn7xIGbrxJkToE883CDSoMoxlAe1MwYYNfO2bf8S7b70Bqx2qRYmLh94Fz4Mk49rRY9TrddLFZWYvXsbRFtdyPRMMcqdnV/SsxLouK92YleVV9MAwLDVoLC4xGa+SX76CyaHshwilwREIDFZpbByTpglEJa6OnyZfWIRSicNvvc3cqXHICyrlCllRgHSQYcibr7+OtjkDa4ZJr81DluMbgTGaEROwMhRCTTIXWe7fcQeX3vwAr1zDuIrB3XezvLzMyrFjEGcIK7CegzM8gMoSwp07aZ+/QnLoGBPT06TnLlEt1/nD3/wKrpFIp6f2woqeSkzSHyL16dOnz4dIPxOpT58+fT5sDL1B0j99TQCqZ2PT7QYTE5cZrdRhpYlUhpWFhZ5NB4MVBiV7R6kkrvU59PZ7MLeIiQuOHT7OxnUbGdi0FdwA6hGqyBmu11h6523uu+duyoODmDShUqtgMMTNBlxpcOEf3qaaagYqVRQ5hQ+pryG0UHHJbUFsDUQO3HsXg5s3sv7WuwhSjS4UlA2IKsWZKapdjdCGLVu2MDC2hjRJCJOCDSuKwWsd1t1+B5tGx3jh8SegsESdhKGoTOAHCJ1DnuIIS9aNQcHk+DnUcgvbSaAwpEpD5CJ1Tmg0WIPnuTgqJ201evkfRmHzhIQuMZJcSmQYQqnS22C4HuHmzSTlkMJz0Z2MO26+lYefeJyHX/4UXN+DaKd3jhzTi/twZEAYliiFFQI/AsdlZXqKvN2kHHoQd4Be4drPsqrotiD02P/BAQY3bIHcUg8GyDOLLTQUOR+cOMHAyFBvv5MVbN2whYGwzNjwCOCQWU3mQJOCHENYqYBfZU00gEEQG4vwI4KgCn6ZNR/7GEi3txl1PBbm5sBzkdbghAGdlSW80EM6oNIOwUidkdtu7FlVhCRvJASpwqw0kbkisJDnOV7k4QoP1wtICrCuy8jW7ajGKm0pSMIarSwhQxGjKXxJ7onrDXQaOTqMdB0acYvQK/eyZujlxSAktbVrUUWBjCISaykch6Qo0BZIUxgaAiHJ0pSwVifThrvuvY8XX34Jv1Sh0+xQKEO1XEMYjWsNFQuh0tRcn0QpvJFB6jffQBK5dISi40B1bA1f+d3/jg17HiQYHqZBjnGBSgiDNWTgUa1W8RwX4gypBY6WuNpBGAeQaAOFBa8UgCtZmZ9lk3IYixVr8XB1jhGSIu2isjZy7SANH07/7fcZ/z+/A4mExTYX9x3EaI31HFbiJu1QsHzqIud++C52pcGdT+6hvHMjhJA5UCqgnIJIJLguDA5SuWEX1IYRuYbcQHE9NP16ho2S/PxYOEDSAVcwtHUjXaFwh6r4pTJEEQurK3TyHFwJN+/ktpc+yc27bobUoXh9H3P/+dvseuE5rFNQefFp3tz3LqQJ1zoNEtfhxc9/Dl8VMDMLqca3Liw3e4HyGIzOKIoMJSVKiJ6CTEjcsIxCkGmDE0W9pr6SDzduoLp1I7gS5747KT9xNwyFUI6wQkBRgLEYY6hVqhQ2p9ttUS2Vodnmypnz/MN3vgsT07B1E9Fdt5FbkB99kLX33wmlCFEYjPuzaOd/iuT0qTOQ5UgvQKpeG6C0vYw0fX19BvNfA7wMcD0QvlfOKbFIhm+9g/seexyCEq7nUfUjTAbGZiAlwvOZmZyBRguU7uWRlSvsvO9eCDwIPCZPnubY2/vwFHiG3tBaSDJHol2LFgYB+IUln1sgHz/Lx557oZf3pDUP7NkDYYlKpUKRZQSOi9AGaSy+I/Ecl9ACSyt0Ll3u5ao1GjSnp8HzccKItFC9iylTLCwt9qywvkNjeRFyjZ9p8jQjKRQxKTguzM4xvHYjF0+exqvVKbIEKmWmf/I2F378FkU7xhUS4UgMlqTbgaFhnnz4EYIggpF1MDkNpQoqycFA0U2u2wv/yd/WPn369OnzodJXIvXp06fPh42i1wrl/CwMmOtye8GffuvfgipoXr3K6oVJfO2ysTrEQFSiU2TkrkFLS+4YhJWUcqgRkmU5RmmIM64eP0EnN+zavJ1OK2bjxx/DTszTXlpGD/lMuQUcO08pUyynS1AF7blUvQEajSUKE/daslSGk+VEuaZWCMJuAVjM8ADFjnXs+dpvc+7sedbMJWQXLrKcddjwb36V9r4j7GxGeEWbmVBQ/ctfY+tXPsnVH77NmqUOsW9ZzhPakytMv/EOp46dQMUd0BkkMSGWcpIz6pWo+AHLzQbh4BBZK2Hm1HlGqgNQCjC+JNq2Hn9uiYq1tLopdVdQ14Iiz0hKEuKEQAjKNmLhzm2khaJotBnWEZHycaxHTMFL/8s3OXPiCHY549L8DKcmTrLQ7eAtNCFNyH0NAsq5wSkN4AQRSauLVAIrQTsWioQLBw+xMjWBrJSxSjNQCFqeQDu9SrHqU49ArcLi370DRuArTQ5QLkM5Yml+nqnz5ylVK3jA4rmzdKXD1bfep5IImjIlq/tY16MrNUXcgUbOcGaZGqug1o1iW1DuAEXI6O67YWiMoZ034u75COm5M5CkmCLF6ozb7r2L+enLaJXBcA1dxGQDdbZ+/CUa7+1lQ+hjkpQRIiqlGlZpMlLyoiCiRssIFAHh4FrW3n0Xd/7OV7i0/31yL2LdFz5HN14lW5hHlUPSpENpx2bufPJRrl44i40THMcnKTKk4/VquYUEKcmspbp2LXGr3duk+iHagg18GKzx+d/4de585BEuX5mks7QCgc/ExBVOXrxC1onxa3VCxydeWSEQEpkXRPQUFZHvs6osmx6+j7ueexKxbpSVqUkQgiRJ2Xt+nPb0ZTI0DPig2mAyCH0c4ZCvNgmkS+R6hJkkVE5PWWJcrHBQgA5dYpNQ2JzqznVcWZlgSXXohhGZFAS338DuTz7HQpGRXZ7EQ6LDOtGGjazfsIXmzBw7tmwnuTpPlBvWlmo47YSkWmPolpuI0w5X/v4fmD5ylvrVhHWpRQOJJ1Alwdo77+WWF55lOe2SvX2IG9xBBo1Lt9PAZhlVI0h9QyF7SrnccbGeZPuzT/DAJ59jKWnRmZkgbSWsazi07t7AY9/6I4INa1jYf4pRfxA11+LE3ndB+HBhCZYy8maHu7bu4sobB2h876dQH0DtWkPp6Xs4/r3vEF+chXbKDllFdFYo41NYRdFosa5SQwhL2zVoKVHSwQiHvJMwsnETOD55O+4NwdyQTrPBpX0nESZkzeZNXJAtuNqAZcHQasJgHhB5PlkcU9RDWkWXtFYiLTKqfgV/tkl8YQ5VH+MLf/FNyl2YevMD1n3iES7OTcKhS9ya15nPmniO7SmRrItAUkiX8RPHQTj4UuKmMZ7TWwfagaHwDQbwNNSyXqaPtKCkwbEGz7gIK8ncgDV33Mpip8vi0WOEbhmZWIZMTuH5xGXAak5+900cozBSocsV7nj0Y5iVBeKFBZy0wG0nVLTAUz2vdOYKcleiXImWFmkFkXJwjaQ8NEJsBFtvv50r46dhaIRwuMrSqTPoOMfRUAtClFFYrfGFwAc8LJVcEeU56fIKIkkJpIstDCbLMUC5WqPwA4hbMFTGr5bR3S4jhaSkwQl9RCnEzSRxIKFeY8+Dj3H4/3oNE3pQdfnYV7/K5X/cj29dSnTxpYcSlkIItCcJhkYYGxji0lvvw2qX7Z9+idWLE+Srbf7V138fx/NAiOuTuusTpL6drU+fPn0+VPpDpD59+vT5sJGAc/3/XAAr6DTb+F7AX/3lX2KVJZQeRRKjXcGTr77C/S9+nL373u09ec5ihAMBBUOlCBlCo90GXLAeGBeVJMxdukje7lDzqtx83x3MLk8TNVdILp2GbotkKMR+/AE400UUFTK7CNIwEgXYLANrwXFxvIg81QxGI1SjQaxw6U7PMfWDH1NZ7XLt2DGUVGhfU46q3Lr5Fo6Pn0DVKuT1gNbrb7A63aC4OAu5w9joBhZnF8EU4BSk7SVcnVItFFFYRlQqLDmatS88w9TMVdJ2BxWWsdYwfMvNvPjrv8rBDw7i33onz/zil5j/6X7yJCEeCKi0JVlQpqjUyTo53HwDqhHTzjwGXtjNp558hlPHjuMORDTtCptfehy1qc6x//Q3ML8MtgOdZZicQZ+/gNQG7Ui0cMBAGgbkd9/Dy//qTzh55iI6SVBpjmfBWAvCA+FjcwcKl9rue2itqcHyKjgueaNFe3WpV29uDb6J8UqWImtR8SVitUXdKMK4gy1SdNVFzU7Caps88xh58jle+uM/5uCp49iJq4wWgrLVtNdUyG0CWzfzpa9/lb3jh8iTRVbOjZOMn0YlTdZGAQNRldX5VXACGFjH0O27uf3jLzExt8j6h/dg1q4lm5micXgfkJPlKQiBdgMW0xjrBqS5i9I+NXpqlsKBXORcO3uGS++9D50EkhYbNqyB5jJFO0G3M0K3RpLD6Not7Hr8CSavXO6pPFyBm8ZoKcBxwHPZePvt/PKv/jJjWzdx9tRRDAprM1A5JDEn336PU+/sw8mv2wuxEIaEjRyjBdL3iPOYqFSh5AeYNGOVgm7JoVMV2CJGzq9w/ifvsXD2MmzdwPpPP8dDn32JS3//NltKo9zx/GOo0RrtlTasWc8rX/4K0itxdWqKPArIHKgnEGhB1zd0IkXuaLQ0vcymoUG2PfUED730ElcOj6M6KSIKsJ7gxnXrWLxwntVzF3G0xZMuhYQnnn6Ws6+/yaCB1uwEkecjPJeG1thKlac+9TKbR0Y5v/c9vFbCUKZRrVU6okCsHyaPXHSjQWdunpVzF+i+f4yqG+G7Lm2VIryAXFvwfGqVIeJGjCt9tElh6yD3/OarXFqeZepvvssONUg1VzSCkNyJmTx8kvb4NKNLDWRbMTt5mY+8/Czzp45QVSk1K2jMX+bq7DS0EmhIyAq+/Htfo9TVtE5f7ClJ7ryN1YfuZf0DD7KiU6LFJUo6R5YdUpPhiYBMaYJEUjFl0ps28Jl/+ycspSmN8SswMgjdBApB5JXQKqM1eYVHX3ye8th6brnrTs4eOsVmUyPW0N40yIP/5d8w+b3XoJszTMjWVDBpl1ElgbvS5NjrP2Vq7z5EuUR7/yG4vEhNQWraKE/hCouMLQNykCJ3SIXFv/929LUJtC7Y4UYspwnG9ygHVbJuxvZf+wXSZkFrpUNmXFS1xo1/8KssXpkkb8bU/ZAgy1i6cpnuzAy602GNdXB0h3ZYY3UwhG4OqwlDhcKp+RhrqHS6TF89z+LiRYq4S+g4lGODozXCuLhRDRu6FHmO60hsM0ZLRagk2VidoeUCr9nh1JWTyG4Lmy6xeu4cJWXwMFgKcmlRbi+wPrGGREq0dem0cu7/Z1/iyrmz4LmMxJrEl9hAg6spBh1QbT71z/+QqUuL5EttbJLghBD6Ep1klDMHhUPywn2s/djDnPjz/w3iLmwbgMYyG+/fw+T+M8hOiuN0SKTBMS4lJRkWFfJOzqWLk1jHMPzwbp586jGuLs5TKfl86UtfxA9dpFSAAlEAea+BtD9F6tOnT58Pjb6drU+fPn0+ZOz/Tz6D53ngOugsx1GKtNPqveFKYkdQGhvtWVSsgKBMVfoUKSzHLRZbK4jAAymhFHHLI3sIh0ahUsEbrDN/7jIHPniPuLVCZAws57iuxAQOG59+AkY3IkWAGBxAGI2KUzwkcarRrksj7lIbW8dykjCxukRcGLCwYe0GOsdO4giF9gUIy/w7h5g6MQ5C03F0T1k0uJn46EVIDbnvowuoygj/Z3XvVuFYTSgl1hiSvICREW57/DE23ngjSInJM8gzludn6RgNa0bJmk1On72EQmA8DxwHKX2W44RWWuCv28rOx56EjZt77dknxhk/eASKgizLYM0Ai0mb7TfcANcaEOc9a40xVD2Pmhti0xRrNT+f/BkNS4t8//332HzLrZgsw/cDpDXI63YVAGkkOBEDmzfz9CuvQBBCbrjlzruh0QYygnIAAz7dIgUFyXKHkXKld9rdACXBSkF9ZAR0ASPDLDS6HLowwdAttzBcqVOTHhJF4upeTdzMLG+9/zZWJhCBVApXGJKZaS7s3Utj+mrPjuR5EHeZT2KmVleQ27ajpMvDDz/KjvsegCTByRWO6TWcLeddtANpNeBzf/DPISojHEnJCyBPAYM/MoSbKvxeIT3nvv8anZVraJXjOeBgIdMcf3s/e19/A1pdSAvIFD93ugkBQjBz9iw/+fGPOfD+fkiSXoYSGonC0wbfGFxryJKYUiXCK0VgDLJWwfgWu6bGo194hU7cYDlLsa5HabCOWylD3CYoe4h2zDq3RNmrEG3eAq7LpfkZEJbm/DX2vf4TiDNYasLlaU4fGefChUu9ayFX0E16NjAJmWvANSAN9WoFN9Ow0ubqpWn2vrmXYrEDqepZkdKEC8eOsXhpkrJw8F0Xg4XNG3j9239LnsboLCXEAQcyDCmGjjb8w1//R177P/4aEkXRjlmam4d6iaQWsrw4R7ayDMOjeLZANpq4SU4AzK4ukEuLcSXlwSGU67OyvMzg2vW4YQhRhXDjZhamrrJydR4cD6nAYEh9B/KcXXse5YbtO7B4pGXJjofuZsu2zSAFrucgpAJhqO95gJH770HK3nr17b/5z+z73g9pT05Tv/02nvjC52HnFjY9/hBxFJLnOWXPITE57Vj17Ei+h3U9pB9Su+cu3j91kokL55GlCEbqvPjnfwYbN9NdWkBlXaiWeefb3+PBe+5DlEMohzRCl1XXgtXsO30CRsegXKedtHsD38iFwOKiiIwFz8XalKA6CMsdsm6XtiwIQh/hSCS92nkhHBhbw/D2zTAyTLhxHWnSpRyVkNIlaXbBysBRuAAAIABJREFUDRm7cQc777kb/LDXdhhF3Pv8MyBdhCOx1mJIkCrH0wo/9OnmbSyGdq7Y9czTUFgCBQ6SXFgix6MqHDypek1uEaAKfBESUCEoDbDUaRHHXdCGSLiUBBCGGNel42iMUVQcFy9PCZotiDuUujmi1SWwAp0VCGMR2uBqiYeLa12kdbCeT7B+LVRqEAS4WLSkV3wAUGjYuJE0L4i7GUYJZG0QW3JZzXMU4IkAj4Cxe25l+MYtOK4LhYKVJqSawx8cQG4YQQ2WMPSsllr2mgc8ZQmEg2m3Gb1/N40iZt/et1ieukIn7SAjH/XzZfi6h1DY69/36dOnT58Pi74SqU+fPn0+ZP6/z0OtAMf3MAL+9V/8TyS6IKyUUUIhyhUuHDnCvgMf9FQujQ6RlXhxzGAY0QhccgG2VoXhOnSbrL/3TrZsXsf0oQ8wSYxuN6mmlrzdpS1zWDfGiDtEZ2GVtVu3sHzkKGt2bqUzNYdjPFwjSZUmWjNIN25CJaLdahBu28S2xx9hZuI03Lydz3z5l5hvN2hfvYqb5ZSCAFdC2uwggwAtLOU1w/zJN7/BpYsXSIuctNthZXUZ3/OoKYFFI7B4BookI/LLCOEQZwWudFnrRUxNTuIFAfgBVilOnzgOM1PQ6bBy9gzJ6hIEAuVYCuEw4FdI8gJdlmy/806KRGEXW728nmMX2CBKZK0WhfHIzl5m/uhpNqy/CbGSEpR9sjzHZJoiU0R4+Fbgao2jNZ7jU9p9D+1Dh2kePgxKEwqLsKpXAW4NroFAWwIv4OrpE8x3ViiuzIAUrB8eZv32TcwfG8ftxCRjVVCW0cFNlGTEfLdLsmGE7vaN5J0uQlZJ5+ZgsM7n/4d/yck3f8riu++QXLxIsrqEHzq4nocoQGY+Ni5YOncREgWJwlUWqzWyXsE6IBdXqXqSQmjMoM8nv/IF3v3Bd7DjR+mOn+LygYOsHjvFhkxQVr0MKGkhK/lQj7COYjzQbNp9F6uHj5EIjfYEu5/4KL/0i1/g2pUplucXCPygl2sTN7GOwnoKISxapUCBnZ9no1+m1lmlqhWFcEG6GAXW9oY01y5coTMzz0CphlMohAGD7CnDXIF2IdqwFh165O02227exZ2vPM/l7hxmZYapqgdKod1eNXghoT42zB1PPsH0yjIYj0Y7pkgV+dwi7dMXWLlwAdyCtOjiF4bGiYsQ1Qgqg8xNXMW0upjVDn5u2RTUaQhFKxQY34I0eDmo5TZDuUdkI7jWYPXkWYRV+EGIKwRoiy97w6M8z8jTnCgq4TxwB3c++zGunjqJLAV0um2UK1ACgrCEyQ3Wj2Dbdrbt3k1j8go4Ll/+l3/ETDems7ACt93O7/7+HzJx6ADN1SalMEJby+at27i2vIgoBSTtJtHoCL/3v/97FrKYq1fnINWoM5Nc23eU9PAZ8FxWooJWJeILv/s7nChZbOAycWacTrxKesMIq6rF2Td+CiIijTuk2rDzMy9gRgdZ2P8ethBQcsjiJdTyEjK3xK0OV44cY9enXubQt/4drDYQ3Zi8yMnCkHK5xIBXph1kaKlIfIcs7rJ8+DRcnMI6kod+6/Nc6K5w94O7mXjrHZxyGbuyAlZw4sBhrvzwDZygTvOu9Zjto2x7cDf++BydA6dBSPRAiWtFg/o9d5DFGfVgiFa8irxpJ7bk8+RnP0PiQGN5ASsFSRpD0JtFZNqSOjB4804agUWfO41aaZBlBRmQZimDlTojN90AlRIn3t4LuQTXgfUjnDywD05eJlQCz3GIBeRVh8Ik6JpPqgze4AhZtcaLv/Iljr3xFr5fQhhDR2ZkeYGPQysvEKswpDwc5ZGXQlY8aNYcNj54O4ODVZJWE7HaxJUuWeSR5hncso3WwjJOGFJYxY2iQlUEFKkgcKt41qXiVxBJQakQlIykph0qeW8diDcMs9RYIT1yASE8RqmyWuq9ubETUG93aTUUF09fhjgGMmzF46499zM5eYm8XKEVSVSiae4aYnHiPPbgWTbqEH81p575rDSX+PT/+g1K24aZ3/9uL1z/uu1yOe+SBS5WJ7z6m7/Gke9/j9VTJ6DTosgLvvkHf4jQCldef1Jje9lu0Fci9enTp8+HSX+I1KdPnz4fNj8L/fxZaDOwmrTREibmr3Li8EGUsL3QJK3BD7FJCu0ufhgiTK+2uKVy5Jq16FIVSgHPfeXLDN9xE4df+zumz53Ds1AWgsJkjHZjrLFUvvASyfQial5RKw2ycvoMZscAT77yCSQjXJuYwVwPsc08ePzVl5lrN9CFxhsZ4f7PfpozMuepz3+Gb//Hv6YzexWZFQwIsFmMSGOUMgjHwXElaRpzfPwkQeCzeOFcr84aQykKGegqjLRYIcgdIPBJMo22Fs+JmDtzkYXJKSgUKsswcYwvBbq5CkWOK8EmXWTJoShSBjZupJu28ToGHBe9rsTse0eIZ5fwPB/VXcY3krxI8euDjH3kDu78+PP4W7Yxsf8gmReSJQnWkZTKAxS5ouKHOEohdIZrDMOlEo+88AIfff55Dn7vNaqOQ551kBKs1HjG4BmLry1SQ+pZisYidFNKSnNteoKrl04jC0PdGCqf+TjPffFLHPp/fkCcFVCvQd1j83NP8tDTz3HhR3sJfQ/lwLhveeqrv82WW+/kyvsfIEiIbYYxhmFToqQ9fCDNMgLpEggXTxkcKdCuwBQZUWHJrSYzCnTC+PmTPTVYkUOrQ82AVhnNyKfrQOoacrcXJv71b/wpE4srtE+eozV7jaK1inYFlHyunjnD3v3vszQxTc2PCH0fLQU1m1LT4BaQKYWp+qBiCAS+VpQLxVh1mGtGYRwXpU1v01doPDfEFxK6MY5W+MbBCIl26akwPHjg+WfZvGUzSVEwe2WC1uFzxGemIZWIySXWumWS2UVKQUSqc5TvsfbmnWTrhthy7z3s2H0vzZUOfkchuhmq3YWyC45CZgbjuOAY9Eid+158hpnpK1AUhFEJJ81wNHhaIAxIbQm1ZaBUo5V16FpIVIY7WKdyPZcm7XQJXI8izbDa4DguXhgSRCWcu3ex3G6RXbhE0VxleHSMbhZjHIciL3pKkF27WLdnD5XBGkuXL4DvcXZxgZXpWVg7RmV4lHdff53O5QsYZfA9D8fzmL12Des5aJ3D8CCFhH2vv8nC+NmeksyBocoA9WbGiBuSoygCBQMBxxdmYP9Rkvcv4c82Cf06xXCNR176NFPnz0OcQJFRLlWZu3SWTtzC27GTOzdtZ/7yaXZ+6lkyY/CXu2RRBcbWs6zg8Rdf5Nabb+bsW29QHh6may1ZO0ElMWrjMO49d3DPs0/z0IOPcnHvIXQnBaGYPnGApiuYeO01dj36OIvHT1MfWYOOU2RWsH7zVprTU9zwV/+ClSvnaOw7iPv+LF6pykPPP8PE5AXKH3+Eh26/m0v7DpK0UtZ+7HFe+q1f4/iBd5GbN1FgaJ89TzmqkCddhLR4joNwAlKtSVTGnuefYaFQqKUGshA4kQ/WoNKC5eYii0fGe9ZjUQab8eSv/zJzU7NULs4gEWRWk3oanILtn3iWjzzxOFcOHiK1Gvwqx374fRAeGgfPdcld3Qu8zyXFUJlRr4ZIBF1l6QiLif5f9t4zSLLrPNN8zjnXpqss19W+Gw3TQDdMAyDQsIQhHAmCIiBKJARaiZQoSiIpDaWZ4a60nNFIGmlmtIrV7E6MtDE7mtBqpZVEA5KgBwjbQHcDaO9NdXd5m+76e87ZH9mj1UZsxEZsBDh/8qm4ERkVVZlRlTfPzfPm9z2fAyrl6vt2M3vyFNHMHMOOj5YOmatgeIgHn/kw5w6fIMlyAsBLCoo0Q+7cwVyS0FPQkRZdDTCe6req2gIrDVIKbArdmXnW6pDcFCznXbh6DBoBLKSswaK1wm+Mkl63lVt+/TPMvvEKT37qk+x94w3Yson1T32AzlvHsKePwKlJsAHKWIyQ9ExCaUtm2sucf/HHyM4KnqY/udG1MORjdQG1Kt2lJVamLvQF6Bi8ouQr/+zL/cl0yMsBkhq0sg0YMGDAT4BBiDRgwIABPynEPwxqQ7k+7Szijbf2c/TiJGWrRTNokqYFKvCxpebW9z7CbNajiFYZuvNWuo6Lbudcf8MurrvjNt4+fIBea5XexQuQFYTtGD8v0D5sKFwCd5SpW7fxK7/3x+z5j3/DmmqTRqvFipnlxMG9LDprYGUJE3qoqo+NWrzrnrtRuWb+/BRlN+XYnr2Q5kzNTDPmB0RHjlNTPnlnFWM0jifw/QpGWzCG0mjilSVWp6YYufoqdt9zF9OL88S9DsOlIPYgcyD3BYWnMNUqhRCIXoqba6qhj84LhDGESuJZjU1jlNEMOQ466iJHKugk5iOf+CTVnVcz+/oRvEqV8affi0kF+cwiX/79f8GL+36EPzZEt0hIQgVXbmTrbTdxfGmeGx9/guqm9Vxz+y6mDh8hx2KloJCCXGe4vosB2knC4WNH2Pf1r+M5HoGBkeFhunlMKQWOtX1xrrW0bY5tBpB3GKo3MHFEbgxUwaaW0MLywjTLrRbR5IV+mFOmkMa0Dx/l3MnTqCxnpB7Sa7XZ8cmnef3b3+P8G2/iXpwmqFusKzDaYpKMOaOJVIkz1iBPY6yjCK2gyBOKLEcISTYUUjiqvxk1Ll4q0IsdaCcMbd5Cp7MKzWGCXr86TGBB9Metv3byMN004qP/6rfpCU108RIaDVkM9QaUmqYTkPV65GmO47l4nYR6WUHh01YO1ELWPPog0UiVOG6zqgumyxTRHKIMfayjwPNASUxRYkQ/nPFQ+CikURQSrJJgBRfPnefCiTPQiwkSTTxeZeyGq+klHUgzyDWBcFBJzrAMqPRKpvYcIb4wz8yRY1w8epRUWsp6haKzytodV/Lwxz7AiTdfxfgVnvrMz5NsW0dLJMysTPPQ5z6NqoXMLc+R5CnNVFA3iqC0uMZSKMNyFlMMV3jP5z5OcO0m5s8eI0g10pq+jFt5OEpRGk2SZRjfpxCQuz7jBLTfPkpzaITu0jKlMFgBOC4PPvIYNzxwL6eOHGD61R/35cXdFYqZS3j1CnpqinxxEZaXaHguIyOjrLZWqdbq5BJskfH4pz7OT3/8o/TKgsW9p7BeABRsf+aDTJ09RViCTTNEqRGNKsVqD2cqYrznUDUG3wloEbHu1puoW4ep7+5jODGknsRNLEWtyns+/gmu3XgFJ154lRsfuY9LF87SOT3JsPXoCf9yG2PO5JHDnH79dTAFabdNsOkKdt1xF9PnzjK6eQvXX7mdI28d5uD3foReXsFxHRpKkba7sLjEk1/8TbxOzPnDx8mTHNOLMRiiIuP2993P4YMHuP3Tn2Z6dpng6Ax3/9wTOCM1zryxn0IWnP3OS/jawfErtGcucnRlETMyyt237ebSyTNEpyZxopSxsIr0BEVWUvWrWAFlUdJa7dDbdwDcChNejW7cploJQVsKX+KKGg9/8XPces0NHF2a4vxLz1NemKWeZKSOJhEa6iFD117DNVu28eO//FsoHEg0uAFcsRGyou9D04ZdH3gv1+y8kXMHjmPrIbEtiV3BHU9+gF6akKwsQZ4xe+EC6eIStUaNNI7JhUIoFxNnzJ6dwUs0RTeiOtJgJltB7NzCU3/0u7x56E02v/8R2guXeODnn+H4ueNkSpOWKXEgkEKxJfJZdEp6QqNlCkHIY1/5Eo0d1zH54z2kpUACrSxl0698jJP/+3+CSsDeb34HEs2G++9n+513cf6b34GuhtyBNOfGD7+fs9E05XgN16vg7D/LhHbo6JiRRACK3IXw2isQUYlZ7ZJcmqcyVCewJU6WM1qp8xu/9sV+aS/iH2TaVgwipAEDBgx4pxk4kQYMGDDgvwGZzaiGVZ577rm+H6lSpeim+Ch0moKw1MabjFyzBYZCGrdcBxMjNPwaR/YfxMk1y6++zuzLr0JSoNKSkaBBQ9VxfJ8I3d+cDw3x4p49hJU6q6urGK0hLkEpvA3jsGYE0GglwA/43te/ydSps3hRgd/JoJvD9CL53gPM73kLHB+dJISui++6FBKMMUjRd5EIowFLdWINcdTlzjt3U0QdvDAgVf3HsbL/Lt/bsgl3vImNOzihS71aocgyPEcRej6u4+AISaNSZe3YKIHv4tIfOY/jsHfvXubn5ykpkUoxNT3FI4+/FwKf+fl5rrxyG73ZOQgC6PVoHTjIKz98ge6R4+x//ocE9ZB7H34YPAFCAyVFkWCqfYlyoiwmEJDEYMFmOUbAUqtNbkH4Pqk2CCGp1esEw/W+d0VCJ44wqq9GwVjw++Ehq10WXn0VPA2+BqVRGjwtELNzCJuitQbHYXF2FioVWF3FsSV5HFEU6eWQIWT97Tew8c5dFL1lvA1rUPUKuS4JhUdd+YRWEl53Hc61OwCHRm2cSgfCWDHSWEt7Zh7WrsFkMYnISUOHTBgKXeLVatCNoRfzd3/+F5z73vPkumTdVVey9Y47oBcReD6mKPGkSzUIAYjxWXVC5rSEsAZrN7BiFU9/8TegUge/Co0meRHz8V/5JX72Vz8LRQy6xJ0YxWnU+yEPghKDQvRH1ceXZbm5wckLbC9G5SWp7vG+T32YT/7Ol2DIo+db2jXJqm9YrjlEwxUiz5AHEgIL2ybY+Zmn0SaGqs/c28f57u/+zwQ9D9op+15/gwvnz3P1zbew49HHkFISxzEkCcJRxEAXQy4E2pEUwkIg2fXAvWy+ehu9PAVr0bpA6wJTFuRZgrUWKRROpYpWCuH5lJMzXPzWDxlvrqFc7lBTHpWwggoCcCT7Dr7Ns3/xv9E9fgTaK5BGoCzSseiFGZQtUUkPZUuKoqDVahEEAVEUoZMEHIcoitizZw+nTp2i4gdIR3Hr+x9n/fgE9CJc16XWaFAKS5ynoAuUNYRCUMUjrFUhcJk9coTX/+pvUG5AicBxXZqVGrR6/Ogv/opv/cmfIrOSPd//ASunz+BGMaurS9BpQxxz16OPQZ7D8lJfhlWp8fDDj3LDzTej0fTOTnP02z8m3n8EehEEirJIKDsdxsoAOpqTL7/OmaPHUUGIzTMIfNZv28qnP/9ZzixM8Z7bH+T8C3vh4BG6dYe3p87y3ed/QMWpwplpZCmplgKVa0avvo6nHn4fzM7zzd//IxZe34tyfWrSxaQppJrQC4jjmKF6A5Kc9okzoHxUlJO0u/0Ksyzve70Q2Dgj60Q8+4PvsvWu3ax9/+OQa0qh0cL0q+nyjPaBo7z011+DniYsHLxSQbvLe5/8YH8SXeijPI+77rkbpVTf7mMFuAZuvJobHriXpBtBqiGxMLfK8PA4cZqRWEGJpexGCC/EWeyiUgNFSXVkBKqG1pqAVw7sJ9h1IygJV2zFCMD3Icv6a05ZIqUkVRrnug3gp9D08BpDrA+HyeZagEQHNZRXAcdww+23wpaNhA/eT2XdBujETJ84zwt/8X9ANWTIryEyDa7kut27oRfD0grF/CKB7zK3NI82BmNKNo2shSjjnnffh0JQEQ5hack6Eb1WG0cprDb0P5kZ+I8GDBgw4CeNsNba/+8fGzBgwIAB/7/5f2ln05e/HY7U+iJhLRkuA0ppiT2DVuBdvYX1d95G15EsHz7AujsfJPvzb7OyOIdqeOisg1OrUMYpXmFpujVEaVgYcWgsGrpKYH7qFriwQOVsRN7t4aqEdMLF5ilrnvwY75pYz3N/8K/BaJxaSJkmuFYwqgO8QpAiiF1InL601LWGsLAgSkoJsWuoWBdlocRSCEshLcZo8F1qw016SQy9HlXTvz+tXGiEsHEtjz32ON/7+6/hTS3TyCxFmWEEWNHfGBgkypX0ej2sgGq1inEVcdbf8CIlw4ywWhQ0n3mE1st7wTiw0GKtjsmNxQpJJiRxUeI3h8k6HQiq4IK3fQv51Hluuv8BTh05RnLpInR7fRl1GEKZQSdFSQdPBmSFwfhOfwrQcB0WV1nTHCZbbdFuhjS3b8WEis6P38I3kCuwVSCDagoVA5GC2OufEkEOE7YflrV0TqcuqQTDdIXk0S//Jt/5+rfh+Fkq7VVcIrSEXDgUosK699/Hrbvfxfd/9D2yA8fwqk3E5DzVvP+/09LQvmkHjz79MSbfeIuTf/cc1zh1MluypFPkjdv4wG98ltcOvkmWdFg6c5b8rQPgeLDYZbQ6SpkV5AUUUlK6PRhp8sGP/CzPf+M5OhenGBIhrlR0sphwYpRy5zVEx072hbt+jfd8+Z+S25KXn3sOXt6Drx1KU6D9Hs7V26k1R2nNLfDw+z+IXxTsfellFg4fglwz5FdJ0gS/UiHKYqy11GsVHGOQtu+1npMFY6NrkKWhs9rCNmtk7VXWPfRudt93Hy+99BIrL+/j6hXL6SrgWSY++hTalWxdu479f/l/wvQSflrgxgXa90koCa/ahmgOEZ86BblB5ZogjolqCpToV44UKZgcfAlFATKAzBAoH1n2UBaUUWAd3GqNxfYqstnEpFE/eDAujdoo5dI0w25It+iSVV0Kz0GGFcrUUMciTE6ZRSj6QnKh+74eeXld0Ugi10VYibBghSSoN4iLjKzM+3J4z+/L1YscUa9jWz2GEpBFRhhUmalouGkLt73n3ez7+jfZuKxYOD9N7irYPAbtDmzdxm333su+va/A3jepFJJgaIyVrNsPrDsp1ACnZKxnscplGZ/mlit57MM/x1//ye+DB3SXGd10JSocY2F6EugxumrQCNKRYdI8At+AlIy1Yzblho7T5GwZQa3Sn+hX9EMkfKg0q8Rz52nmW2g1XbAJwfXXon1Lse8QI3M5qdsX+btW4AZ1ZlxLY8t6WqfP9JPe0tBMCiomoxQG3WyQWojabbxKDYlAFH0JvzT9PCf3SrQ0pFJQCkElcYjXNcEVPPDFz3H0rQMsfP15Kr25/utd9l09gaigo4SqrJAYTY7BSstjX/os3/33f4brViEvKdZVoZswGkuWiw47//ifc/T8WfjhXpyTs1TSEkWObNRZTto4Y+OUKysEro9nFT3PYyLzWbA5YxsnmL94mh3/w89zZvYi+Tf2QTCC67mQ59y6fTsn9u4j7rQZDnx0L0J6Pguu4db/9XcoehnXb9/BX933CRhpQnuVihwijtv9RawaMPzxp2m1WqxzA2a++g2qhSTKDezaBWUbcXwGJ/Qprh3Hd6oEb0+isBRuSVcvcMtnf563/sN/4ZZ4lEvpPN01Izz8m5/hm7/z73ATzbBTYynUWJ0zVq+jtGV2arZ/PsBlU/+gEmnAgAEDfhIM2tkGDBgw4J3mcpn9P74psUgE/+4P/wjP9QmdAFP8109ULVhDsbpK68RpRq+8FufKHbRml4j270NUXGSa4FuDjRKUEah6nTYQhT7gsPGhB1gxCTffdxetpIuZX6CIV1j7xAMkh2agB72jbzF1/CQ1ITB5RpFGSN9Fa40WEoFFkoPIMdKgMEgrcAyAwghFITyUNShjEEKg6B+edFBWkMUJItdUajVKCpxSEFgH6dX52Wc+xssvv0S8soIbZ9SNwdoSKy1WSowS5I5DkqTYxhB4PnleQicjFIJiqIaXO0RRDJWAZz73Wd7uLMKFSSomIOy2yXUBQCAdgqKkXpSIIsXJMgoK9PwUBB4/9f4nePje+3np2W/1P4mvVHnXfe9h4urtLJ+7gG8F1iqKIOzX8HoeP/2Fz3Py1Cl680s40qfIU1JT8rFP/yKnXz+EExdIISgdwAiqpUBYAUKhrMSxEislPQktYWCoBlYRdXtYJBeOTmLmFiDqgkwZTg3VAnKpyEOX7plznDpwgIcef5zZ2QXSM+dRVqFsf4JS7ljK0uHsK6+zfOECPgWdbJHI9nBrHt25Sxzet4/2qfNsiBxuWbOZMweOoVKNlZAIQ+Zayokhttx+I625eYgjThw6TBYlDA+PErdbVCpVVOiTeZLrn/4Aa++6g91PPEErzTn8989y8fW9cOQ4FRlQi1dwdEnWqGJ6KensApRw7rW9nDp9hujCRfyhIbTOyKRF10LyLMVVDhXHxUdghcVIQ+ZYTCOEOEFFOUOJwElKKkGdlck5RtqaDZEkOj/LlF1m/dp1aCNoXbhELGDm0jScmYRU4PdSRit1yrRAOQHlao9sZhlKgYozZJ5z+427+MC/+Qrmmq3MvHkAshJpNTbOcKsVqrFljAARdch92xevX/5aiSJkWMEYzd0fe5rHPvExjizME6cxHoJOHhE2ahTKYi3YTCMTjVtYKHR/vZACpMBgsQK06E/SM0JSKNl/JAsCQZkV2FKjjYGwCijQXTCGSpwRdnPqYZ0FqemKAtaNMHL9DYikZOXlN+gsLqFv2oz33tvwd++k0VjLlWs3cuCtg9BdpLp5PTXrs7S0CvUKZDmOqzCehiinWpq+Z8l1SFqrHHnpRWTDx/ZWGBqpszqziC0V1aEmaXuZNcEwcTUkLtvURteQryyDzcmEZpMOMRoSR5GrnNF7d3P9ffcwc/ostLvoTocwDAlWM3SaI4brPPFrH+PI8y/AwgoBhqbRtJ2MRBQ41pLbgrwXYfICLy8JygLf5OQqo+tBr4AbH3+c2elL6MCjTGI8a3BNiaCgkCXKGDSWzBWEhUIKRdFL4c6drKYxK8/9AHoZrkgp3P5zh5UMi5CiyDF+SOpr5M4rqRWaY6+9gBNUaAqFzRIKVUIvJowLgvFRbr3rDrqT03Rf3EsoJY4A1aixbHI++hu/xSM/9RSvvrafoBdTpDlFQ5HW6tz1madpXrWJS0dOsmPXDVza8zZmrs1QYYnPn2dEKM4deIuwMHi5pmZdVAGltcRjPrOXzrF8apaDf/sstRVLPj7ElnffxdKpSRAlqB4qrBK/dgi50KPz6uv41pBEHerXXsf1O25ibm2IPbeISTOu+Z3Ps7D3MPmpeWpuhdXWEpt/+UNsePAOzs/MkxyfJqTKauhwau+PQdXAuvTyjO3vfw82tyzNL7BmYgNf+MKvgi77AdKdHwF1AAAgAElEQVTlaYFQ0m+yG0RJAwYMGPBOMWhnGzBgwICfMALA2Mvvew06yYh6vX5rmOAfqiwwCnKYOnACsRzzxH0PQehgXUFZpIiyJJD9ZbxwPfBcWDsOw+Ncec9dbNh9K3MnT3PFmhGytA2eYcvdNxPYgNEiAA1mboF8aRE3z3A9iUljMAVl4GHqAZlTUqj+oaXBXK4QklZePhyE6ZdECNMPxlwrUNoiCk1FeZhef4S51gVOaXFzgxsXvPSdHxJKD+IU11riXhtMCdqgraE0UFjbb7nIc9AGHBdfOjgaiCNC3R8RjzW89vyLbNl5Ldy0gyRLKX2H2IXUE0SyILEJSRnjO4KSFKUMCFCuy4+++W1ee/75/oZbuNCKaLV7DI+MI4WDRFEai/R91PhasKBqda7ZeSOi2STJczASltt89xvfQhYGzyhco8AqHNu/nbg+pfLxtY+nfbT0ySoBxVCFntGkcYnTaFJtNCgWVmGlC75HKcEz/Y4sZelfvTMDmUHGORtG16BGxoD+OVTI/qjs0AhEluPkGVneInUNqbR04jZBoGB6Dnt+mlN73ubt51+hKlxkqUFrRD0AT4IsuO/9j7H16qsRjaF+e6BSxN0eAkGe56RFTrKyzN4//VPe/PZzXHzrbdYKBXEKs3MgBdIkCDSeBKIESgHShXbUf1X0UpCKPMvA9WGkCiYBX+H6PlGaYIyhoCQVhkiVlFEbKwXKUwjR3zQut9toJXht7xvse+tNMquxIWTdNk4nxulqODsNF6eZeOQRvvjbv80VW7ezmPaIhcavV7FKEg41oMipjDZxG3VWdEoZJaheAVrRlD6+EeCIfvB6uY3NRWEuu43s5eejf545ICyJ1iRaM7HzKt7/6Y8SlRGFY+manCxNkFJSdwOGvQrWKrRw0dInFw4ZkkxCqiSZcsmkSy7d/8f6Ii3Uwwqh5yMMBEL1K8OMoVpqKqXGB6aTVWi4cP02rn/iCVbOznLmr7/FUCqoVaqs3X4V23ftJG61aJ2+yKW3jsNql1s+8QnGrtzMQtLBqVcgTWBsqN8SiwG/X3DkemCyqF86Ffr9nzOa9moHz/OIV9q0LlyC0tDSKd1kFXbfyLr1EygnAOWhlaHnWtq0cAMHFNz20H3cfv+9ICC0/Ra1ZiGJSWm4PuXCIt/55rMws4g0kDmG0mpSqcmdfnuZVCBMgRD28iTGEmsLMtUPX3EFu+6/H3wHPAWe6LelUaDRFLIAY7HWgupXJlkpGHICtt5wHZ7nwfAoruujHJBKgFK4QvXDQAQxJcFtN3HLhx5HU0AlwLGaqLPKxom1ICTK9/GQZN0Ob331e7TeOAJl311WOpblpE24dSMXV5d5bd/bUPSvHa708Xfv4rpH72Ni9/VEdRe6Ea/9/bcpDl1EJSm6TBCuJM4jkJLMakoJPVuQKttfewsJ+09R7j8NRy/iK5/RW65j87tvhfVDMBQiDQRpBlGJN7MEqUYaDcqQFTknTx5ny407WbtpK1RHqE1MEL77TmyzQbD9ChCS3oUFfvSN76BuvYkSjx5lf5HzfYJNmzBlDq5gx9272X7zLrCKOC/6F1PHuRwe9Q/BoL1twIABA95pBpVIAwYMGPBOY/sl9pr+21xBPzwCyZ/8wR8ijEA6HqnoC3uV7YcxXqVCc2QD0YU5koOnSdKc1oUjYA2OEchaiDMxQiwNNpcwPMTow3dz3R33cuj4EbZv28yx//yXLB060H/kRpV8/RqKV04xCmRliyYwWqngSkFkSozvwvq13Prwg5w9eQQtCrQqKR2JEQ5aSoRVCOsAEisEXqnREgoliX1J6UiyosBTLr1ODwKfMkkhtXilRuiSLM1JooyV0ydBW3SrjYch0ZpMl+RlSakLMIbtDz3E9ocfYuOdu3G3X83CqVMw0t+0Vto51nNwagFzZ86y8ebrePDe+zj93I/pFD30SJXSg8ImlHWfVBfYisRKQ5mXyKqHWWzRnV7m7KFjSFysBryQlXOTnD94Ap1F5IGPMQI7OsHOhx9i54ef4tv/8vdZOncGyoKK76FqFcp6jc6ps0jjIwqLlpJCCjxt8I2hXalR4BIWCoskCQXBPTdz7yeeZmR8I/MHLiIrHunqMk8+9WEWoi7J4jxKauq5QQKJA6l0aeoqRWY5PXmJqMgpkhhdZoDF4mBRTMQGmbQJXEtSs/3NVg38po9dzrjSD1Ha0qv6GCxx0sMLQ2q1OulKB0oD2nDg1VdoLS73ZeDGQC/CaE3N9SlMSVz0W1roJHBxjtm9b2OOn2O4hG7WgcBSOjnpqE/PpFTXbuOf/uvfo7phPbNlzhM/87Mcf/FFnPoQbl6gdc57v/R5rn/4IU7sP0DR69EcHqZbRKSOplQG61iwCttJ0UlG6QiWQ4ttOgw/cgdP/vNfY3ksZO7U2xCXbNYhYZZSK0M2PXAXt3zgMQ7uf43Xn/8hi70OZc2nccV6dj36ABt37eCZz32Gc4tzLC7PUFQkCzZm//NvsHzwDCOFpFoaKpUA60iyIscPQrI8oxJUiESJFQItFJkjqIyNknZW8TduZOqNNzj0yst0Qsup11/sy5SFwPghn/385xkfH+f42wdpGENpHKx0MVKRCiiFpHR9SsehlC6lVBgBgS77S42wSCsRVqKUIraW0V072HjrjfSOnCAwlk6Z0xuSsLWJ+9QjmKEKXsfQ+c5ePOPhpKuMOhWmTp9n4fWDcHaR2skFmqmm3VtmVsW0T50CIzBZlzt/4aM89dMf4tTeN0nzLsL3qZeCyBiCsSbGgJeXuHmGLjXWB61LQlWj1hxi4vrtzF+agdEK9/zSxzj7ypuU0zN4SEqvJHEESvssSQN1h974KC989e9gcob1QZU8alOzliVPkcZdpBTkM+dhsYdXlqSyQOeG0gcUlN0CpKWIIhq1IXSagbDk0pI6FhwHb+sOLq22iXzJR371sxz58ffRjiC73K6rhUBaSyktWgmamSJzHapehemm4r4H3sOZA8cYrzUxnRW042GVQkoXKR0ywDRrbL5zFwxViA4coSIdTJRwxebNnLp4nqG1Y3hpybqwwaooEHPLDEcFQ35AUfHIhkI2PfxuNt56E2989ZtcfGM/Q0GdIE9IKJh47A6W0w5v/vV/Yv6VV6hRw1lYZSwp6bgJj33y5zh56DD4DmUgyANB5lhiU5J4LoUxTKQudadBc3GFCWecpTJGf/B2poYV7sRaysVVhpcXKHoZVQK0Tql4AVHeheE6enGJwhr01euJvn8YvdRiNltk0wcf5aYH72bjPTcx9dJeuvsPw/wi7/m9f8aJ//B3hMojtV12/davsGVojEuHj8HmjWy4fRdn9x2iMzVHsznMr/3yL6PUf3Xa2ctXWIDBhLYBAwYMeCcZhEgDBgwY8E5j+h/oJkAOCAyOLgDJH//hv6Wb5SSOi7dmLWErBcehXXHI14RESy3opVQ8n8XlWZAG4pIRVSO54Qqu/PhTLIxXqb0+iatc2tubNIsO03/7NeZf3sNIrvBKl7DeRJTQenE/oWPoih5l0xDbkkwJSuVgnQpFacENWbPtSuaOHUXqkoYTkpYKcgF+FTW6hqizQuk7eDanUrisCEnZCLniM0+TDTXILs1QmICtN91MK+mAtYwXlsRaSmUxoSDPupAXyLI/ja2QLrmSeM1hbBKjLBirWZ69gLpqE0cOv0W3EmKrJZt/+zdpT61QzswRZh3GlaK9ukx7/9ucfPZ7NDQ0bY0kykD6WGsg8MB3cDPLeKYIjKanSpRUNHKXCh6lcNChC0kPcs1GEdCZGOWxL32B866PVSHipu0cOXqIIDGU3TlwCxquRlcFxeIyuB4f+vwXefPEMQrPAVuAb0m9EpNLqAZkfkKqu9TWB8QXzjD52h5m9x1jeGQzUXcZtm3ixPJFdt95K2WSUC53WJIFUc3BQTORWJIsB1mjrNV45J98nlbVJ547h45TJsQ4XurSMovkoaCnMygcNt72bjoXltAxqEaDbpFS1kOKIsEJQ8qipPRc0jjvp55Coa7fxqNf/gJnjp3ri5JDH6KI0WaVIulhsQjlYLVgbb1Jr+iChLUipFv0CK/aTBK3CNdvI984zs5nnqaxZRtffeG7nLlwgmL+Iqu2oHd+EpNEBEiKNOPMa29yYv9xmF+hVg3RypK5Bdc8/ABybJx4cg5KhRSgXUicot9eY0qS6QWOvnWU1R/vgcoYQyZkWmesSkN7vc9COseZuQsQpYj5Nt58m831CRZ7PWZEyrlLZzh4+gSd6VnKKAE/4PafeZJdN9xEnGfMzF8iWzvKSrdDnmvG/CZhN6emBXmekcoAtzpE1qzxyKc/wVQRkXdb6ELDcsKQDBFzZ7BLLZqyQR5Zqs21HDx7jmPnzmKiRYzKGHFcAgt+GFB4AboUUAn77TvdNpDjxAWjxiCEpiM1pZEMV0eJMk0+OoT+0APMb6qhzy+Q1lzMnddz/7/975nc+xpmJoK3z9I5eAp0jpElRqdIo2laiROn5GmHfFjQpkNFaOqTi+SZj9WGG778y7x5/Ahv/P2z2AtLhJs3k6+0SFKBqob0khiTpKzxfIbdOo4XEgkDoc/Y6Bquu/cOzm8YJz90CacrmXz7CHl7liBs4EQ5DUJaRhMJF8IKauNG5MoK2dQsAYJWZ5lEQMvX4GiUFJDneLHBrfiUgYMtNSUwLKp4kcHH9qe0CZdunFAKSSEEpjaMNRXIfGqRpbe0zE0338zevXvJVuZx3/sAleowRVcjOyVZmCFCgdcpcZFoP2DV0bjj6zh57iKMjxO5DunZ8zz5mV+iUxpWo5gUiykLJrwa+WvH0C8cpHDAdFK0kMybjI0P38nC5BReN8dKwXJYkg0b8mrJYhSjxjZw/T0PUjRHOfbaS3DxPBsbAWOdFVoNB6qKlSPHiA4cIViI8XsamSekbkk7MHDbtRRthTo2j58qkhGfaz/1EbqlxV3J8Y0DgU+7Ar2shc4NAZbVULPp7l0snjxDeWYRXj7GSKhYUZDtXMN1H/9pOsM+OjOoxR6uKfDzmGZzmNVjJ8HR3P7U+zm/bz9nXn2Vcy++hjh+Fl13oOhx7mvfwm918W1M4mmWF6eYPX4avbpCcNVVTC0vs/zCG4z4NVyd8aXf/A3Is3/wTWE9wL0sOx8wYMCAAe8UgxBpwIABA95p/tHYYReDj+lPnFIu//J//BNiR8J4g5/5099l3w++T2p6sKnJjp95nDseeoBTkycpbAw1l0YiEZ6HsYZ0ZYmF85MEVmLOXkRpS95ZZNgJWZmZRruCuOJiApcsTRGArvpkVUXuS7xYo4SLwCUvSopCU6k3yNs95g4fA6kwriIJK1x5++00t19D6/w5Pv5b/4S3jx3GCkOedCjXraEMAU+wOj1LfuISlC6jYZ13ffARsluuoj07SbSa9KsoNBgjoLA4jkJJRak1ta0buPuzn+L0a3uoqypOaXCFokDTOj8JKxH2wDne95Uvk7RWWHjjTczCHMFQg/lui2DjGjKt0WFIZAq614zy0M99hMXVFYqliFpX4/csUgtiT9JzBdJCpVAoqyilJA4U937iI0RjNZKlGToVCasdps5fxKwfxkZzVIbWEJ+fY92Du+icOIEqFY1SsZrlIJ1+y52n6HVW0WWOTVKMBsercO9X/jmTCwv4Z+e4tjKKO7eMn7loAsorN5FsX8d7fvGTTJ6bRJxfZnLfm3TyHkVV4eeCSiaIM83KkKWgxG06FItLnHllD9GBQ3hRF89TrLqW9XfdwuLiNGWWX5aEW66+8SZuvH03C8tLJK02nhWYvECHNX7hT/4Fbx8/ip1dYYMOKAKH0hXYuUXm95/ifR/5CFffuItTb+ylUQlJOl0EfZGzFWCEoisSqFah0KyiSWqSREc88+f/C44WTD/7KosnL7B05jgcugBnl5noOswfPYXbqCOVQvUiRr0mSb2OjTL8oqQqBEobkl6PoeYI1264gjgxRO1VDP3Xl7IGR/d9QjbSeKnAWAXdiOyKNdz8r36d5J7rKbdvxEvAmevQOLNELdeMjY2SrLQIPIde3MXRUC6toudXaIYVpDFMvrGHxXNTLJ07j1+rcOX2bdzz3odxmnUmTx0l2TBGyzXEnoc1DkWuCcbXYoM6199xN9c+8AinL0yx7pGHePAzn2E2W6XX7lCWBikt0hbEi3PQa+MoDy8TLHg5naqmt3UNujUP4zWe+OynaY42mT52BKoBJi/7k9MtVLyAigppRwlhvU6yusrtu+7gusYGZn60h3JqBS4sMfk3P6A5pWlOtqh2SqI85YoH72THQ3cy2VkgTjOirKRAUAlqyFgzTEjYTalnQGYQ2jA9dRpOnAQ8fFUhqsLOTz3N8MgaZs8cZUj61K0iljDnZURFyqiuMESFOdvmolswes01qNWIXBdYJ+Oj/91vsTR5kYXZOdzQI3P71XB14WAvzFDOrqLbPUpbYGseTqOOjApsIZGZoeFWcJVPryiwWCZuugGnOURrdZXMgdSTGM9HKhcfRbVaI80LrDJsffBOWqsXyO7bwXuf/hAv/ul/JJtehMjwCx9+mtf/5m+wec5YdQjSHJ1pdOATeRI7MoTJMiyC0A+4/+67uXj+FBUFN7xrF28dOUhhctZs28K2nddx7vhRvHqNns6IioSa8sBzGN+8gQd/+gmOvXkAmRQIKcnWD6MLS74Ss3Z4Hfn8Cu1LU0yfOAqdLo36MNI6FKnBReIYgSqBVONpgbL/9+EYQbHSYfXIOdb7dWKbkw47XHXtdlrnLhJNTTF683bu/Jn3cjZaQnUTaklGorsUsmT5wJtw6CScm2c9iuWshXYko9u2EaqApvBYOHYGkWaUNqcwmu78HOJd1/PAUz/Fq//Tf6E4cAwWI+y5eXRdQhHhD6/BvRixBY+MnLgokY5LsdTDaQ5z3y8+w8mlSzhGES0uMTw6xBe/8Kv9IQjC8g/GwX/kIBwwYMCAAe8MAyfSgAEDBvyEcDA4mH7Vve0vv5GQ/Wk3V2wg8oCa3xewCsGxt99maWW57wnatI5bPvwhqnhIR2FDD5ICZpZIT5zDERLKFKZmuXTgKGgNpoBmQF4mANiihCKHsTrVbZuxhcIahZUKlIPGYvMSz1pUaVFW4Q2N9u+rXmPLddfC2gmqY8OMbdmAqAc4YyPc8uj9falpmXLvo4/Bcouq7cu6J2cuIpoh3HAdNIcACcoFDQKJMhJTapAQjDW5YvctMDZClMRURIAwBoIKJBlBaRmLNdN79rFzdBxmZsBVtOMeNCukK0vg9ysk/Ku2ge0yceO17H7gfmoiZI3boI5HvTpEXBboahVlFI4Bi6CUEhScuHSeoY1rYP0IFD3wJen0JfTsDFy1kcUXvg/zs3gTY9DL0T1NKy0Z23w15Bqkw6G9e8g6q/2x7FKB8hlfu4XEddh5/z1kruBEt4WsjqLdkLQbw3wPDk+iooId1+6kElShVkNt2gzGUhkbJ1MOuRBgLMaBzHbxQpdGO2IkLqhFhpHmEAwHrLl9Bztuf1d/Q3W5y+Po4UOcPH6UbrsNRX+Mt+u62KjHK6/vYcOVWyH06BKj8wLf8aGURBdmmTx6nHSlBUlGkeTkeb8501wOScFy9a9/nODWndCo4VQaUCpIBD/+/vOc6a30N3zdGFo91JoxgpEm7TxiQ9hkJBXUEkOuXOacEp3FIPobclEaVGkRwmH65Fl+9NVnmT96CqeAoAS/BL+UuAaUtjhSYNEEYQjNEeToZiZfOET7G6+g/+w5xg/Os/Zcj6FcsGJTLokYFSiqQiJ7MaIbkS8u4xtL0e7glRqv1qBorRCiqUnB0T2v8bWvf5UjLz4Po3V03gPPgs2wxhIOj5BOzXLqtTc4f26ak+cuweIys1Kxb2mBXljr+6VcgeMKTNIGk/YnJUoXqSpQCfBvuYEnP/FMv12wtcz3v/Ut9r74CpRAK8VzIFNgXXCtQGc59dEhVlYWoTnMa3/+l3z/D/49YrnHmD/EhNekkmqqhSFAoDAMrRnj2ltv5NqbbwShQCgMCotCKI9UW1IDvt9E4DIkJG6awaVpxLU7aW69grjb5sr3PUKwcT2zRQF+BRyXSEJX2b6wvlaHLCfu9WBsFH/dBI1GjXbcRXdWaG7cxOjwCIuryxB4aGFxcRjWDk6a9asJAwfleZBaqqaCTQ2llDQn1mNxKAuB1rb/d0jFPQ8+gFuvwlC9f/75Lrm1pKbEWkuepP0QwhXc/8SjMF6hctcO9pw+BNLFS1K2VUf45p/958tVYJZ6s05VO9QI0UqBU1LGbchT7MwC2aVpjrz4EuWhgzQaNZ599utErWVII5760JPcdvducCGRJZEs+t436LuUhODw0SPkvQ5RltLLU7Ztv5qd77oLZ2QtOjfIKKKeZ/i9Ho42WCvo5poOAnXZqefpvqvpH+cp0tL3yXUyxl2fKO8hPSBJOfzSq7QvXAIHIt/gbxjB5jG617v8iw5+6EI3Q+VQj3uURUQhAClZPnOe41/7Fsf2voXpRDhKIRx1eZSgZOf9d1LdPAGdGKlqDBWCaq5h/TAIyOaXqQIphg4aXImXGNxujtvKOLX/IBNXbOG6m6+HIkWEHmmRDQKjAQMGDPhvwKASacCAAQPeYawwSPTl6WZAIfoSZlfylX/zR3D7Lm75v9h77yi5rvvO83Pvy5U7AmgARCYIgiAJESBBkQRzFKMoUYGWLFmWbEuyd2RZ9lpnZtaeWe9obJ91Og5jr732enbG3rXXkkzJkqzECCIRGWh0N7rR6Jwq18vv3v2jII/nnNn/lrv/1KdP/dGnqk91ve737nu/9w1PPcKr/+7fY63GbDQLtJeq6OlZZt88Db4Cw+HuAwe58t03acYNkuEcNHwqZo602UYVTYSh8CwHa7lNWsqjTM0TP/cZJs5ewKvH5DJJ5FnsfelJnnz+OS5+7wSB0MSmJBUCmfeIOx2k0pSFRGeCMFMMHDzE3IlTzHbaqJVljh19G39+DtptlMq497FHOX/0KOTyHDp0DxeOnEDFKb7fZnlplvrCDIO79nDzPQ8xP7sA7QjHKWAlGWgFQpMJTadocSoJwS4gx+dx0SQkJDICS5BGKZtTuHJplDN/+3cQp5D3oFzgpZ/4CVZiRacVQMPn1gcOIx67hzd/43e5cnGctJUQRQFYLsthh8L+vcRL8xhaYGeCwLQITQGWxK+tcddDh9m0fTtXj70NKgKl2FgY5PCnP8743BT05emvDJKcmSOut0j7inzms19gcNMNjB19C8+VxK0mKkrIFyokqUmuMMBUHLH43bcYDl22miVCfw3lFYn6S8j7bmf7pz/I8X/9G6ycHuWX//T3efXE2+jxa4DNjY8e5pYnH2Ti/BlQYJUVaUcjQ4FMsm6WlilY8ttQKTIzPU2hfx31+QVIUjAEab1GfXkZKQWeaRKHHYI4gnXDLB85SWNmGlzB4Y+/zNzZy0i/g60NYkuwODrB5OkzlPv70XFCqVwijBK0ENfVdoq1sTPcf8djVFKP+bVlKEsouLRu2sbN++9g+etHuKW4iWV/lds/8CQPfOz9zIuQhfHLkMvRyhJUARguQqUfVmtopXBNA9M2aQVtsjAi5xbwDJdCoMln4GUSU2Uo0c2pSR2DTEekA3me+Y1/zWWxhu5fj+5o9NlJoqT7mhXdJl8pEq6tUjBM0jTB9RxMFH25HJbQ5PIucRTRaTbY1F8h9ZskWURiCnSrSWXPTex/7DFmz1+gcMdBXvzUp5g6cRx/ZQG3XCbLoDpxldrCMrd/9CN0TIOlU++QLK7BSg3VbOLqFE/EYCi0ZZBEkJaG0UmMESXMnxklnFmE1CRbWMVaabEp348VJuRtl7YnyRkuuuljWA7ezdu596XnmbhwllziMBwb+HFAk5hOEpAUPVpmRr0gaTmaKG0zcfksp77xHVgOsZVL3sqhhIlvC9g2Qhw2aXiCmsyQQR3HsdnwwN088+xz1BeXWau1qUVV5NZtyGaCc3qMumqRDruYB/eiLlzDaSX02xWaJZe0sUY2M8Pa5dHuvmyahAuLHH3rTZKFJSzHxdYCqx2xLpWEJLSKmiz10VnGYOYRRZCYNvu/+FmUENQmZ4ilJBMmwnXRmcbXioWTp7t1dlEMhgNhhNaafF8/Lb+J1VdGSc3U4jyRCik+cJDg1BjW2Wl25gdZaS2w2myAk0AlT2N6nqKGTAvCvMX+L/0MkWkSLq3hVjs4YUB1fBSKLq2FZaJqDdNxUHFCtd7gB9/9Hvg+KeDlc0gErhK0o4BGEjI3cQEKZfq9PIVcnr59O1hqawynQnV+lmFLEtVX6LclcaZoJ4okX6KyfRdUV4BuCF+SZUSm6FqWZbcpUGpBOcuwpcGCauHbGYQByewKbgIU8oTNFYr79tAeGiG6MEfshwRljyRqQQC5VGFjERYdoush46SCSnkd8VoTVxoYhkQ5oG0L4eRZzRtMzF5DTy2g2yG2a9FO2nzs13+Js997A+nH+AY0vITshiFwLPRii+3aoRjD1IVR7nvfE1w6e56w1cQquHzh859Hoq/PkXpKpB49evT4/4reEKlHjx493mUEGQLdHZho3R0gYYAp+NXf+m0o2lS1Jhu9Qn6+zlaRIwzr2MKmktoUUkESppw/cZy84+DnBPf/3CeZfu0IQlrcse92pleukNjgmjn6O5pIaxIJor9EdfwaI6FJRdg0Qp+FmXHe+fa3iaULloSoA47JoScfZ2FlidRvEaQZVrFAkq/w3DMvsNpp01yYh5UViCJotSBKsKTN/KnL+GGMMG1Gr4yhYx/RX6JYLBAtrcFSA//aItnIBraMbGSl2iBbqWKhEajul6khDtj+2OPU3rlEf0dhJFk3RNnNIC8hTXErQ8haEyPNcJ08UeCDNPD9iIK2WBubAmmyeH6U9slzXXlGo4UerhCX8gRhE1yD933ykzSTlPqVafIDA7SiAFyrW6WVweL5UZbOXCQLYpTs2iX8TglEWwwAACAASURBVMDlb34bWit4jx7msLee00eOg9P9ubePvM3YyZPgGCTtFlbBRUtBHCksp0iz1iDbu4WnfvITnP7a11ixJZadp6FSkmYT1epQbCREM1XSTsCrR74PjTo4eWi2MbaNQCnP4uRVZCvD8GOy1EaV1hM7Bdi0kWanARtGeOnf/BYb736Ek//n33SVbZ7X/bulqivQSFPIYgwhwbRQ7QDTzKFsuq1oOzaxc90mllerdJQPm/thrQ1aI4WBH/hkQhKplCxLMUyzG+ptF1h5/Tz+7AwPfOTD7PnUR5iOEga33sD4t/6RvtkE3W7TEB0Wp2c5+/ffoF1fhB1D3P3Ln2P/C08w+oO3ufPAfXzw0z/JhWvT+POzKFPQinxEwUEbkiSKEaZDM41oO5J2FiFKLpFOEJZJZpld1UoSM/bD19j94qdoT82x88ZdrFw+Snb7BvJP3s0LLz5H+4fvsKktqFsZccVFC41pWdT8NpEtiW1J5kicvIfSMcISRHHE0MAgfpAQrNSYPXMJUpN4ZrGrQIlXkCjssEMhiLmhb4BbN2/h2He/T3TkKHQCnn7xo0TVJs3JSfJaYzsGdZ2hLcHDn/5pDj7xFGPf+yH5agfWWnha4ilJ2XaxbJuVdh0fQeq4pEmE8BPKwiPKOaRbhzm/NgdBC7NYQmUJ7WGPf/HHv0O1YLA2dg5MxXNf/FkGd97AzIWLECZge6AkuUo/7TgiUymf+41fY0EmNNcWOfS5z9CSKVmjSupaLExPcObUGdZGJ6Huw8Fbac0t45+6yuZqwOan7uXOj32QubBFNDpPP3kirWmlbTY/eJg7HniIqxcnoBPiphrZ6mB0YgZG1pNlGUnDJ285zImASCrWF8u06z5I8Es2qSvg5t3IwiCzb78GN+7gmZc/zOiRIwjHRUchjeVVTG3QlxrIOKYv8+ikKZt27eT5z/w4J99+HWVoiGLEfI2CV6HRbJF87Qgbcv0sRk38dSWU9qk89xDv+6lPcumr32eT7gcsmm6GsW876wolWnMrFNeaFBAYhiRMQ4oxeJaNnSp0klFbXEIEERYGpgaRpBiGifYjYhRJHLDn+SdZPXeJqBlgaLg6Pc6+p55n064buXrpLM3lGdZt38zi0gpWuYS1dTvWpo046wZpTF8hEwLDMKklIVl/HmUoMkuQKE2qNDmlqFsJaUmCpUFZFDOLLO5acpWG+YU6DO/AWwqJUgVZxIO/+AWujs+QxILAkKx7/H6a45ch1RTcIs2VGo4wKfaV2bhzC/VmlbTTgUbMQw8/xp7bbqG5dYD2xTFiWrDeYXJuDmNigaI0iQbzaCfi6a/8Cuu3bWPqhycZFmV8UpomTJx7h/DqVe588QXmp67ws5/+SRzDQv6ovQKBlr0ZUo8ePXq82/TsbD169OjxbqMl1zvZ/snGBt2SK4Rm70MP8/GPfgQaNTI0sU4wschkV90BGnndj+SnMcQRIzu2wrp+QkuybvMm5P7bwJA0Oj4CQeJ3wI8YP3oS6i3iMKITtjETBdoEDA4+dD/m8CCUK1AqkaF5+IknoX8A2VcilAI6AeePHae1sIQRRgBIQyJMB8v2MBOFEUTkMHEzQRaEjBy4nUOPPEBzbRkwMBOwA8XSW29x8eQ7sLoKhkCj0P+0jeiqazox9z34MGuNKm0VE10PSL3x6afJvWcfc3Ed23UpGR6ddhu8PCSaqeOnmbs8BXGGnSlyjgONGBLAsum/YQOHnnkU9mwHx+D82bNsGlyHWy7TTCLE+mFQGdgWBDGsNGGlideOMJohpIpMJN3q+UQTvPIdzrx+BFwBOsFx8xCFYBrguGCZxGGCygR2vkDSqHUrzo+dYmnsClSK6JyB3LOZwQN7GD5wKyyu0D55HiNNkZ4Dje7QhizqWngyTRETWehDKUVeFiGxIJNgGgzdvJf+e+6FRoe5yTnSegRrdR549ll+/Kd/BrIMu5DvZgcp1Y0RAQwNpcogaeRDXwWkxeRXX+Gt179P26/Sd9dtUF3FkAYAYRyB7ZAZEsNxAUESh9iGhFbIoFfGxWbqnfMc/b/+gfD8OFvyFfY++ijtgqRhaBxp43bSbhCum4fVZS7PXuXr3/omdGJOfvs1fvt/+BX8OEL2VzAcm/JgP1mWdO0x+Rxh6MNwHnZsgBuGaMctZM5BC5CZgkhDpKAFV37v/2CXWWTvlm1wxz5wTKqL87z12ut0mh2EbRK5BvVGnWqjayOKUXz+l77IrvfcSqfVpN1us7qyQjMI8UoFGqtV+mwXN1U4icKKFVakMJMMsq5TLWdCTiiWp8aZPHEcNTMDjotIMt7+1rchiBks9WNZDquNGG+gHwYGefOd43zvrVfRdJ1EEgVCoUXKaqdKU6RkeRs9VCHMAhxhYwuLDEGYptQvX4Iw4PF/8Xn6t22irgLyd+zhh+dPMl+tgpVn5933s6t/A16QgR9AoiBLsW7dxb0vPIWWitymDQRRyOyly2B73Lv/II0rU7TigGa92rV3NTtgWmA7PHTPYUqmRz5MqWUtTr99jLe+832aF0YhDaiJhFSC2TfA/rsOcusd+6HRhDCEKCKPpIhkeXaWIInIFwu04g6UCshykUa1hiEgV/DAFrD/Vh798EvMX7gIic+NB29n8007EUMDqHYTNJhCoIMAIh8HDWnKzu03ctPNt3BxYqxrE7REt4mw08Efn0Udv0DOLDLbrtImxrtlO1xX9Mw2qxiFHE1ahMQgBUac4BqSoFEn73mQpeRdh4JlYyvRtZWFCSKIr1svr9vNsq71LMsytNZ4nse+Q4e4de8tgMA1LEwFlCv47SZXZ65CFMBQH0tJBAWXRqPNe997LwcOHmTpyhix0RVdZYJuAHungdwyAusHIEuQtkViQGhdf15IDAUKiVMokigNqQVX5ti3fQ/asLvHtFyBrTv3YJT6wLIh5zG4exdeXxksC5l1DyhawI69N7F5xzYi34cMNo1s5MQ/fJdX/vKv2LT/ZhjIwboKVFzax05hpimWUph+BEODLC0sMjs1w8C6DVzTLWqGgILVbZcs57nrrrtIkqS7Hv1o/fjRuvpff9ujR48ePd4FekqkHj169Hi3ya4PkKTonvEKQEiEIfjVr/w6K2OXOXP5Inp1niTR1OImzZwmzgsCCamEyJRggVYZSsL56QkIAghigsxB7d6Ouukmhoe2kM0tYZompucRraxRLPdhpBpE93fQSpBpgTcyxMjwEMvnLkAnZG5skuWWT7y4jL5hE9rvIE2TpQvnIWqR1pawbUnabJI3bGwMsjAlTlMyAwzXIqmtUNm1jd179zA1N0u6vMZGt0ynXSMjhaWVblaTitEoQKGERgsNWrJ28izXzl8EmZDIDE0GCu548GHW3XAD05cv0e6EJEohhge6eR1WDpFKBjFRUQdLpOiwzTol0FlGHAcYG/oZ2bOD99x9kNHX3qA6s8TcO+dIgxBzoMzLX/g8xsgwC2fOIpWB43cwkwgXMLRgaMMWhp+8h+qRM9BOwIfqxBWe+Te/wK0P3cf5v/4q0orQYYcHX/oQi9rkvudeIrduI4tXruCaAsfIePDAw7zxZ38FpKAigr2bGLnrJm6+9wBTY5dhYZmO8tFpSM7PuOvB+3nw5fdzZn6C5pHTLJy5jGz5ZJ6FbkTkyuv4V//hT/nBO8dpTI6z+96DLE5MMXNtmalzYxx4+jHeeusNkjjCkILG7Ayu6A6OBBolumG7m4Y28qnf+zXefPUHcG2VnCiSZB3Y2M8Tn/5xZqZmsVoBds4hTmIoFVFxjI4jpGvj2CY6SMgsi3YcERuwuDBLcHUBz8+4+sZRVi6cJ0tbZEMVdq2G1JImTqHA57/8ZYzyOi790X9CzzUgM9FRAI7FvY88Qr8wuDY+RpqlKKkRhTy0Ouzadzu7f/7j7HjiMHc8/iCXXn+NtOHjaklfICiHmmIIxUCiF+tMT41z8c3vwcoSrLTh4gzRpWlUxWXKjojLNi//7M9iYdBsdkiF5I2332Tx2lVwPZ589v0cOHQXYRyztlrFlTZWopBhgpeBl2a4KsNWEbabQQIq1N0qeJUilMIyDVTgoxt1/CygUVvFkiaJvr6v2w7YLunqKv7EBEooIkMTmRmRlRKZCpU3UXYG+3Zz4EMvsPXgAVrHz4MG3xBEIgPbgZk5roxP0Jq4jLNnB3d+8sMc/bXfIJ6YwagqrLF5jnzj77n6zhk808HRmjj1UTsqXctkFJOkKae+8Q8QpFD3eesv/xY7giwn2XXHndz92OOMv3miq/hLFM2iQf2tY5izDQJL4SJpTszCcpVbP/sJVknw51YoeAUW8nDk6NuU5laIUag4oqAyTC1IRvpJdUwQhfTbZdpxhspi7v/Eh1iuL9FZqSOkgyFcpmcXUMsLsL6MUyrz/a9+DaZn8XIeaZYgVYxLRk4KpDBoOjmWqytMTk1ybfRSN/PNj3GFTVlJLNMiaEfYoYnxnt3c+IkXaWwoEa9EPPvxl/nua99HXZpBRAJhS4LEp3HpEvMnz0GqEWmGFoI4TYijCMeyMIXoPgBL6a71lO7D0JpAKcpenjBN6N+4ntdOHkU0IyqpgREktA2NQjB/4jjs3AwFD2vDRpS20KnB4NAQs1enaMxfgyTB1AJXSTpJxJYnH+SxDzzPXL1KuFSjYLpEaUjqdNchUokTmwQ6Jd66EYRmY3kTrTWfMAhpjl2EqAlpzJWJK4Tjk2BbyPfcRt7zWDt1Ah2kCC1JTYssZ+FtWcfpy+cx4hgjUdTrTYbMPM3lFcp33MTqa6/y0C9+gXjdIK1jl7DDCKVSylFMO0qZP3aW2ukrBO2AZMc69n/8OeayKqysQb7I5bEr+Fen+Xdf/tddBZm4vrDKbkbbj5bZHj169Ojx7iC01r2BfY8ePXq8m8SAhNTs3iU1SDEyQJpYpQq5TSMM79qKT0L69kWq1QXSAQ9EgvQluURiZBZNR2LGIQXbpVYx2Pr+Z7n6zR/AbAyP3g0jw+wf3MKpX/+3OLZB5AfkS0U6nWZ3gGVaeMrAjRSi4FJ1A1AO+URCrDCsHE1DQBrzC//xT/jNn/kpWKvhWQLPtWg0W+RyEpVJ4kSSJgLDzJNWVDdAWtGthc/nuu+nM0ShjJ5fQnp5ZL2ONC0yrchUBlJ252n6erkOkkwLGCxCVO9eCYSCcuLSsSzS/iLDTz/ETbkCr33jGxR2bOM9d9zFa3/w5xAkDCYZygyJrISYDK8DVrlENWgj+8tkjVZXuRRkEGg2Dg3TabWpKx92b+KmB+9j9JXvwFIDL1MIUnwdYJSGyBptHv7Qi0ydvsDC+XHQKUHRw908wo6du7jwxusMiDZrfkz/wQfYfvdjnHjzLYY2jrB66k3smVH6LEH8kecwchWcK0vMvn0cwri77USG65qkjZBSX5lGrcGGgfXMNpZhuEJ58yYaZy4jlIErTUKRUfJKNMIY0T+C1ikkHajPg+uw9+En2XPbQSZrK7RWlxh/602Yn6WSs1HtNgCZMMgwSaUktSwYKECkMOsB/YmB0V+kmgZEWQfiuHt7P82gb4D3ffijjIyM8B//7E8Jrk4gpcCNMzaYRa4YHXCve0pkHsIQqXJYQUw0UoYkgFoLuWEQVa93X9MIGdm6g9KWDXR2rWPfA+9l6gcnuPSXf4snBI5KQGoaKgTXwZA2nnDJP3CAxbfe6F4M1xoUhYGtFIaCRJqkEloFCx65nQc/+FE6C0sc+5X/mYpZIZd0FT5tD+oFA8I2SA/qCQXbIjYFcV6CKcBPIDWo5Cz8dpui5ZDUmwyXy6wtL4FQZFL/KL8cEhMhJcJxaLabUC5DmiCKRfRardtgt86F2QVk3w2oQGGWKjz5wrOUynn+93//P5J3LPwoBsBUMZbKADDyHq3rmTds3AjX5iiGmpCMxDURQiIaIWWvQCTAL0qIWlAusv+5l2lPzTL+yj9i5W0SESA9B1WvM5RKWq5B30eeZOXYBdILV7FND1Ma+KGP6zrIsDsodG/Zzo7+9ZwfvUi8VqNSqNBot9DbPIgU6+sWvkjw2x2kht13H2T47tv43ms/hOl5cpu34q+tQb2OsbJCVnYgSBmKLUI0rUoGNmy772Gmvvo6KJv8vu1svHmEsa+/gm07uPWIyB4kKub4zNf/mj/+xZ/D6IRkV2eRnQhDpZiuJIhDsIAIsOCGT32Sa3/3DejE0IgYNF3C1AfHpJ11sHfv5O4PvMyRP/8mcb4Bt2yieOBOKn/8A2Ya01CI2f2+D3H5j/8EtMY1LIQw8MpFwjTDb7co5orEbZ+C69HMOgBYhtkdbvw3zrp13kO0uk1moS1gqIBdDRlsa4ZzJS5bPiEK7Vj81G9+hT/52tfYtmUnV/7+VZhZoWIqlE5IHY1KFLlUUE4kM1GDdIPHyOFD5FyPif/t67ipxLCg4yqMVOImEkNZ3PzZj1K8ex//+NWv8cLwAf7u9/8ARBv6DBw3Tza/ShFJTUgo5EGY4EcYpo8tHKSw6Ui60qrdm+HqVWiEFBMJA320lpvdD+uYMJTnwKOPce3oKVrj4wQqppz3GA4l40YCVpFSatMMIm748MNsvmUHb/4vf4rnGwSdFmjByJYbmDt3oXtMQnfDyaUkEtDV2vbo0aNHj3eLnhKpR48ePd5tUrpDJHm9mA1I4wjTMPjD3/4t6ksrtBeWSebq9Kdda9LOm25ieXmVfGiQjw0KmYGZAmnIeq/MWq3D/mef4+rp86Acdj10P1Y5z8Qf/jmUbbJOg+LAIH61yca799Mc8qBTxzXy2IEiiAMSU1Jw88SNAGJ9XVmiMXMFTrzzDqlWYCnsOCJu+JRLJmGcYRU8giiluG076w8doL44yaF/+UVKe28ibCfE11aw7RyZbXL4peeZNkP04hzFUKGUQmiNlpIf3S8WCLTsbpn1A0O0Vci9H3k/s80aeqVJOQOZacpeheVL52jkXEIpiEfPI7dspj4xCWGIkbbA1MQmxEWDOFMYpiTyE/qVhZMalLBJ/Q5DpQprtRXyxRxB3kbXVjGHhti7fz9zo6OkKiExFRRMtEygXGL57THW1tbwkAjTIrYldtVn/uIYlCFodCCDoNlhfnySD/7yL3LpymXic6fIWi2MSFEfv4Y/fpWHH3+CmeVFkqV5KHs4pTw6TTClwlE2MVC3E/DyFDILPV8jzluQt0nTDE9atPN0VRSGBdU6RhTiEePZBrOj57j41mssnD5HdW4GalVy+SJeJyZTGbEhCU0TkKSGBJlAW5MLNVEYUMjnMGorFIKIJNKkJQeSCCwL0ozxd07wzplTpCtL4Lm4jkMURlRlykf/4nfY+tRDjJ28iDNTxUkEG1KDmATjsQPc9fM/QWv7IMHJU5Aa2HaJLOfRUiusbi6RjPRz6S/+M6tnx8CPKDsOUVDHkQaOMFAppGGMMCzqZycZEkWsWkhfJjCVJpOCmmcQ5CSx2w1LZ7XJ1a/9gLkfnIRqgFcpEklNJBXFFGiF7HvqfRx65Ak6fkgzSoh1BjmXz/78F9l3661cOnqcsvDwtEOn2aJcKbO4NI82BZGp8T2IPYg9i1gPAR5+Boc/+ym2HriD6bk5GOjjx3/917jx4Qe4+Oo3Ofzxj3HPQ4+x5Hdozc4zduQY546d6LYRJglGJrEyg0ICxVhRSMGLwE0EfieF5Ra2ssmJjLYJOAISg0rs4KQGfhJS3LSJ2x94CEojlK0cV65Nk8RV1IDik//5D5GbB1h4+yhGmGImKWujVxFzqwzjUkZSMC2SNCYTGlVyiG1NtFZnYXqBoS030K7WCFstCpUSn/i1f8nJb3+b9kqdKE3Y88QjWP1lxo+f4urpS9Dx2fJjz9C/4wbWvvUmOSNHHLdgwAMUpNBRCjYNsPvF5ymV+1hYWIWt60naIdXXTzOibHQQEEqD2NBgW5z8i7+GuTn04hJDlQHSRhWluypJ8t2BW9+2fjYdvpPcQ/ey8q3vQa5AvhkwpASSDN80SD1F+eF7mO60iVotdn3ig1QXrhFfnEaenCYs5snfc4htGzczc/YIiJRcrHEw8Asu9Be575n3cfn4CexSmaaOMW7cjFfM0+60rhcJSFLZdaEiEiQpmQAr0YRJhJv3SJZXWedUcC2b1bDdVdrolLRa5+TJ05S37UDG0Do3Rr6YQy3MM2iaEHQQwsFSEmVImjqGNKLVaFA9eoqB3ABDMkeQRCgk+UTgZoJYwtT0GSaDVfY9/gSv/k+/i5cvkIVVsDUi61CIYBBNhkIlESpK2W4W8WWEzDRhmKBLLuQcfu4PfpOj//gdaMdsypdZaqyCLdlQGaTSSmmmMfOnL9G31KCmIhjOEaUBVUODaXeHtlGEQUZ1eY6ZI0dx6poN9YhnP/vTXFxdIFhb41996UvE7RaG7V5X2nZnqz9aXXr06NGjx7tDb4jUo0ePHu8213O0fySxNxGYhkWzXucrX/kKlmGiwhgzMVhKQ0p7d7H9wB1Mjk0St2OsfJEozkBDSQrWwoC8u45LqzU23HMf7WCNan2R23ZvZubMqW6Id84lXq0yPLie7c8+zMymEoxNUmx7eIUSsWEilcXhp9/H2OXzpINllIZByyFpVskFCaiUNOzgaYfBWBCHMaViGSNXotOJifsqbPnpD7H0ypvsfOl5jl+5xME776F5agJ/rQ4Fj2W/zd4H7mbp5DsIX2F7ZYIUyt4gnnLIsoRMg86DLli0ow5kCV/40i+yoW+I02+8SaA12jQJUh9FRliPuvYav0l9chTPsrCDNuVMkEqDREoyLbHjDFdYlO0CUSei4hWJghBpGawFNdzhIvWkhfY74Hjoah2nEbI6t4BZrKDitJv1YggwBAlgphKSGO163PTSE8yNngPDhEBBBUzbRjXakBOMrowRdRZgaR5blSknHqlTIhUw+tarJH4b4hAnlXihxg9S0lKJvR94lnkT9NIaiDxxJ8WQNqlpQZzAjs2kns2e+x9ltVqHWo3+fTcTSkWcZUSdEMPK4Vh5slYTwzK6TVSdmHwc01KSMO+BzHC8flASVS5Co4Fh2ziOQ6fdwDBNlGGibUGUxmA6/JOUQgBxt44eJJk00cICt49CaRi3rRl//RhemCG0IhOCZLBIENZJM5PBtETxqUcoHLoTUawQLC5C0Ya1VdJTlzGn6pipJrMVgYy6aiA0bipQqSAVkkQqyDnYmYYkxsWkSYouFokMoJOAsgCbwuF7eOqnP0O8fpDa7DShljiOi5MmtNMmQcGiFsGyyugMljj44jN42zayOn4RU2rmr04wc/kM5orCig3ylSKN0EdqhWu5+DpDl13YspEXf+83aeJSvzqHKOXY8tw9BK0WjmlTvzjOwIP3MNVqsPLtH7LY9JlbmmV5eRbWliAOII6gVCTWkGBgGjaONMnSmBQIREpmCGzTJudY5JOUwZxJ4koioSC0CKVNWyqyzcPc9vgj7BjZxvEjJ5iZvMLOA/upryujKjnKff1MX7hM68wYJaeE1hCSokVGZhtooXEihYXGs2waMoWiA6U81u17uWHfTSyfPwuD/ey7aS9JrcWVi2PdI92eLRz6wEtcm5olW6qSxhGELcq7tjL5d69AapIEbWQ+RicpaIGQEtwc2s6xdfgGrly4QqQFj/7UTzJ5/DQbMwsV1Og3yjRViCjkUUG7u4/qFAOI/A6GFAjDwLKM7v93qlBBxspijdApEU8vwEqdQa9IK26isWkbJrpYIRidIB29zENPPk7t3EVqFybh4gRhkkDik4QpweQ8fmeGrodQ0y44pIMWh3/+swRtn9nRcWTBJcva3PvF/56xI29Ds4UdQ6nQR2OtQbFURIQN7CjDb0f02RbaAKkyNrt9+NVVVH+ZJdmkmHr45TxKGhTMPPe89xDR1DVWFqZJjA5FITFVCqaBki5J3mQtWYUbN0CzAX6IEZs4nZgkDolcm0RrTEugTEFbtcBMuenAAZaOnSGYXyNtN2BoCLsJCZrQs7AjQWIaxI6Ftm0KYULbTDGUwBE2sQEIhbhxE7NnT2EGGi9WtNIYz7XIooAo8VEKhvoHSIGOCaQJWCbccgv5pYgkaCJyULYEvk6AjCxIKagch3/sGd6+cJLIb/NLX/wi0jQxTPO/Kmfr2dl69OjR492lN0Tq0aNHj3cZ/c9ah//5yW2j2eR3fvd3u7kYWYYtBIER00k71NsN8raD6gRIFH4WkLmCyLEwhEXdVNCKaI9fwbv/du5/6B5e++K/BZVi5lye/+TLbL91H6feeIuOKdBCk043qFQT5ocM4iGXVMfsPHwvV5pVWFtE97t84Jd/lppMmJ+ZRPsRprIYST3izKfRl6cWtehkmoJRIa3FJPWIYLnNVX8RNg4z82d/RbTQYsO2rciBIp3LV1h66xgMriNNMyIZQ17yvl/9Mu+8+gMyZTLg5rH9DiLIuuonoTl37iKn3j5OHIRoNEgwhMbKFGkzYmjLdh780AuMnz9NurxCTguctFtjnYmuRStvCFAGUZLgukUafodEakIVYRcsgmYHA4UrDdwwhVqL1dlZTNshCZowMswTn/w4u++6h/U7d3Pt2HG81MRV0Baayn230lhfQVXXcNugowQvFpRTCDsNVNhG5Dw23XaA2qVrtFOJYdmIssejP/YinSyhPb9AKZF4CtJMk7g2I/cexNswjCz24Y9dQQ70k7SabNp/K1ExT7Y0w6f/6PeZjiJue+Jh5pMQL+fy1LPPoAWszs+jSUgTn5FNIzQTH0xFmIU0hCQddFn/zCMceumDjJ04h0pS8Lstd6lKSG1JloQEKqGjEgSKonSwA3BigZ1kmCpBqozMNME0IYoZ3P8eyjfu4tI3vsH40WMQ+Hi2Q5ZE9FcGaEvYdsdBpo+cY/Ufz2CvG2Th4hhCWQzt2srQfXfw9Od+krnpacKxSTxDkEmNNmOEVhhaU8AgzjShVlB0cYYrdJaXsW2TTGVEjkSXC6QkUCxBFFEw87QXFhidmKC2vMR9H/kwt2zehZ1qu/khvAAAIABJREFUopUVDKmI0oxwpUU4ucpIW5JNLnL+1Tcgn2P2+Enq47McFGXGVUJr+zBN1SD2NHlpITsRxUCTxpJ0pc2la7OIvTt5z4P3MjN/lekjrxKFKWqxijvZ5NJrx1h+9U3wY7I45vFnn+LJxx/lyGuvQjsAx+GZj/04G+8+xNVL50nNlMJHH6G6e4C2ahA2OhClZKZF24bOoIdfXaXth1Dsgw3rcfbuZt/Tj1PZvo0zX/t7zp0/R7Y4z87D76V/XT/X5q7BO2eYPnaG1uQ8RbNEWKtTccskSYiyDBKdEtqCuOiSmQYhCltIkiBl54G7OHDzPo6+/jq63oRWm+riCpfPnO3aKk0F7z3I2F99jc7lKUaUR0UJgsCnfnmavZWtGAuLbBBF6lYbKzWwFEhlYmIiY5g5O0o0s8h9jz/J9Ow0tatjtLKUYidC6oyagCyXkL9zPwe238LSxATyehPm9aIu4jhBaoHQAs/ykJZH34bNtM5dhCRFJwmOadPKQrSXQ8cht//YR+n0e1x+9VVqRy9ir7bIJRZxzgQzpXDbbt77kecY/+a3KLdgEyAiE9+UTE3OsfzGWQarMbLawN25i8u1GoyOQpzgujlqtSbmyAb8ZouCa+NKxQ1emWoS0XIEqWOxmkUM3n8X6+69nYVLk1h1BY6DFjZRo8nE+BlWzl2gJG1SnTIUpBgKGq5EYlJXERsev4fbH7iXa5cmoBnhpYIkS+mQEJkmUgsIA3QaY+dsEgGroxME41eRSDQp7NmFMVvFcmzSJKOS0i1/MATKljgRCFIsJdDCIDK6K9zsiZOw1sKMFGaakVqQakWqUmQGZdul1qjRSkJkIYc10M+DH/0x1MAmVt44Tm44T6RDSlFCO0m6odqmxHbLfPvo90nnp8Gy+fIv/BKmNJE/WlT/2Vrbo0ePHj3ePXpDpB49evR4l/lvndBmKmOtusYf/tEfkWmFYQo0PpmtUEmHsF4lW1tFhAGCiMzJiHVEUuknunEDLC0ynKb4jSWS+cvULk7hrsQUBoZphw2yooPpWsxNX8MfHcedrVNcrFLAhBfuwLl3L9bGTVz8X/8TdiTJ2gE4mvTmLbQsRfvSJbyRESIrptZpIh2PjiUglycnPKi1MFPYsvdGli+dh5u28OJT7+PS905QiBTVtMVPfOm/48RXv8Ng4hGv1VFWxOATD+DnbVYcQW79MP7EFEGWUjZyJCoiAXAdWosrJEkKiUIojYXERHRFXcUKzdlp9h86yIW334Isw8LA0JJMSDIputlTWUagFZFp0iElsQzSnI1WGQ5QMS3sOMVLBY4C1zCwbItIZGQyhU6Tug1nXvku+UDRbAc47QhPC1okrNWm2fjegzT9DunkIutjB5EqUtNCOg5JLYLZNfbuPUC2fj3tLCDz66jM5+Zb9zJUKnL1wnm8OEPoDC0gE4LZy6NUJ66w+7bb2HLrLezdfytXLp1l4+23cOd7D3F5fo53/ubrrH7nCFMnL5BduIg/eZWLr73O6twiTpQxKBz6cQnW6hT8jCFdoBUm6KINhkV7ucXkX32bDaFFxXRoZhHv//jLyIESy401yDng2kjbREYZKomwsLpZI1phaIXUoBKFbeVIY0UaKQ7eeiuTU1cg9MGxSTsBnulQj2NCodnz9FPsuH0fVy+cpJMT7L37LrY5RS7+w/epvfYaZ7/1fYJ3LrDVcNFKg8hAK2ylsFVGlmRkpoFZKXLnC0+zacMwM1OTIDV+HGBUckSdJpv27+PwPfegRMbi+BVkK0InCdSqXLs0xtrCCrNXJjH8CDeBITPHUCyJVcK8qrO0eg25eQS3k1EWDiqFOSLEA/vZ98Jj7HngEKiMaHoOw48pxDHFxMKNFHq6SvvYBWaPvw2tBixWCSanaC+vsS5MMW2PHR97mjvvupOxV1/j0umTHPnhq9DqYNl5UJLLx49zdXISEoeiUebwtr0svHmKcL4Oltu9IB/qB88BzybJQoaKQ/grdUp33YJeX2b2jddZPTcGOsO+ZQd77tjH6CtfZ/bkCZid4+5nPsCnXv4UbmZx8dgZKvkh1jpNTNdAKIku5NCmJhVt4t03EEvFQCNjY5DRubrC9NFTBItLFFwXzzCJ2w2cnEVqpozceRvvGdnH3PlpXCxWm8s0Rjz2vfgEC9fOsew3Gdixl7lWFaEUprIwlImdGbgYEMWoJGSgUubS20epjU6A6UPFRK21MAC1YZDktk3033MX+uIKjdlr3fauf4aUEtM0UUqRpilxmtGaGAPHxLEsEr9JkiXYnksY+4wcfA97tm/l3N+8AqtNsG0ykRB7GTd+/HmKh24jMgRTExMko2OYKbgY+FxX91k2ZcNCNdrk8nnWWi0OPfo4tcVFkpUVjOEBnvrc57jv+Rc4efIdgnqDXHGAybRNMJRHN1L6jAIRkoOf+hCRnzB/aoJoxwBmqBgybFq25vEvf47Z+SVKKy2KMfSFEi1gOSeJ/BAck1Rl3LZjN6NHT4ES2G4OPwlQOQd0hmHalJXA1RkiTsgVygSNNhQr5CoDPP6JjxH1u9RPX6CQZLhxRB+KWGsiEzJHQKrJpRolJIFloLSBSCVGLaZPu6gwJMxSIgOUsFCieyQP44Cim8cSAiFS0tAnXmtx7eQ4WAGJm0IzpBhD2zNBpBj3v5fO+YluMYNhUTAcvvRzX8AxzP9Sxyb+n9fcHj169Ojx/x69IVKPHj16/P9AkqXUqlX+6I//A5lSSEOS0rWpaMPA0GDEChOBNiShLUEpWHcDNz7zAEzO4ays4LgGftGk1NTozOjmejiwNj31f7P33sFyXfed5+ecGzu9/JADARCZAAGCYDApikmiSJESFSiJtCw5yZatcZBkBY/tscfesTW7NTvrnV3nME4rWy7PSJYlW5EUxQASIBGIDDzg4eXQr9/rdOMJ+8eFZGlna71VM9Jf/Xl1q6uruqv79b3n3Ht+9/v7fpmcm8estMFYVgVVSlGGwjC/rkSaR2xZtYWVa3XcehtlLPiSxaUFOjNzsLTC1kOHGHrgdhqnThEOjqA8iV1ZRgZlTFeRoPmBH3oH0wt1sqkrNJOU/sWI5cUFrJNxOWuTXJxk0LqU/JCOE/P4j/4ofWvWcOGv/5ao0S6ixX2fruqSOxSG3MaCdHAdB5OkSASelEgEArBugMpSLk+No42COMWRLtKCFQ5GFOovqzK072MdrzD7TiLIc7wwwFUameb4rodRhQLKGI3F0skyqJUBRTQ/DW1NtxWRNpboL/chUoWpBuT9Lne/7a30l2vMvHyaqpKkQFNqjOtAaghlifHTFxg8sA+5bSPJudMgNBcvXWB87BKiExFqENZipCAXYHwPWm3mmk127NzBzQcO8uJzz1G/cIFLszPYhUVYboMsM7hhPdlwH+6m1RjXwsoSOs+ppBZXKeLAJbAONld00diNo9BuQzMhyA1lt8Ri1EA7sGHXDjbv3UkjjelcuQRJhs0ypBEE0iN2JVqCEQYrTLFQsyCtg1WCvBNTn5wiXWmANjgWjFI4rosul9FDA0yePsb4yeOF8in0KVUHuLFvlPPPPYffXyN0JP2Og+q2QRb7EmHxrEZa8L2QttakWcLk1SssNJZQi/WipUVKMqMIhwZoXLrIxRMnaEzPMNQ/hBMlZHkKaQbWEMcZwpGMlKq4WtFtrGDSFDNUJQpMkR64fh0/8oM/xOXLl2k0FtEjNczEVebHrzE+fo015SqtsavINEfmBis9rOciHZeK9IiiNr51GBA+cX+IUw6p5h59G1dR3rsRW29y7dQpnOFBbJogKQp2vuejbJE0RSMia0ekUwusTE9iM4Ulh61rWH/7rQxu2cytd9zJ+KVLZCsRpVKNB973Hk5//vPQ7UK9w8EH7uWuN95Ha26G2bNnwffAClYNryZabnH61BmiNKcTRfhDA8TdBkYZhCOL1MRb9/Lmd70DiWDx+Gm2MUBkMnzXx68EZElE4LiEnkuuM5ROaTcWuXbsKnalTZ50CTeO8PqfeZLFKjSyFiDoW7ORxpUrSOkU5WErcWzhF1cpl9BZhs4zSmFAX1Ah8jN2v/1R5NgiUbdNO3TAy+lmmqVnTuAI9d8UkYQQSCnRWmNMoXLEccCCTmNcY9DW4pcDUpWR+g5nv/kCTjulbF1yq8AHDu5k+OBuxp59lvTEGfKlLrRXMFKAkkTSQa8a4A1vfZSk02VmfBwRuCR5RiNOic6+BsKg+qrc+vCbGa8vMf7ci1CpIq0low17dyImWow4FbTrcb65yMyLx2CxiffgYdZ7ZZauTrFp743Udm3m8rHjlJspICjlYISgUYZAOjh+QJIk7Ni8hQuvnkAKSaZyEKqIZrQWk6aUrCREYlB0jUU5DvT3k7daVDdt4Py512CmTk1KrM7wgUgKEtdiXIGTCwINuZREXmFn7RsY1A6B0qTSkPmyqPFYAdIlcH1cI6iUS1gMucnJ4ozWQh0SB3asprJ7C/nULIOpoYWB9aM8+mM/ysV/eBpciWMMgXD41x//BFJ8h/tRr4jUo0ePHt8XekWkHj169PheY/muq1oNJFnK4nKDP/zjPyY1GhH4JI6DtYAbYq0L2kVJj9Rx8Tatx6xaA1fm6a7q42BQQVy9SjfPURVLMreC6hskCQSQQlfhdnJMmsBwiVRasm5CWPJpdZpw+gpiUbN33WY6c4v4qaZfe4j5FtnEIvTV6FY81GgfcX2JtNvlA//h3+Hs3MLEsSOYkWFwNecb46wt99GcXaB97gre7ArdsoQhh0QksBwR5xldnSMHaiQTCxwY2cBrT7+Mv5ygtYINI+z8ufeh92wkuToBrQS0waQ5pSAErXGExEEgLSirUdISSEG+3CQcHCJToKWDvW7U7RlLmmf4g4Moo7nhztu4951vZ7bbIZqZwdEW33VYyjPyQOIEPrguFnAcgS8EeSejUukj7yQoYWGgRHd5mdzmpFkKruXS0WPMvHaBYCVH9Q2QrxtB1wQ2SxnIQ6oa+qqjTHcXCQ7sZM+BfcwdexmswUZdKsLFmBwlBMZxUNbg6OJuvWk0GL96hRe//GXQCoSD7URQb4JxAUPSV+Kmh19HecdalufGecsnP8yFkycoSYfB/gGyRw7R8R0ai4tYR3DPz/wocvUqVmYXkG7A3h98hPvf+wRnjhzn0rWrnDnyTToLcxx8zxMoxyWzArXcxjiSvCZRPmSOIZMGI8BzfFSeIxFUZQUvahPaIh3J9SRGWFJAS8vDv/RxFnZuxawahdMT1JTHwrGzzJ65iCtAmRi35NLMluk6Bn29MOgZWwwfIYikJXVF0UKHRXUTSr5PnqZIV6LzDNWNCrPxNAfHJWu3qaCJr7dFuls289RP/Dg79+3i2NGjVISLtRoz6BHnMRCwZssO7n7Lw/zNVz/P1gfuZvPBA0yfOA9tA+2cYLFF99I4w5WQRmuZtOJT9xXtwBK5ebFAd1w2GBcdJXSSJra/RNNLWWossnDxMlPHz+AGPqq5jBBFup1MFcJArjR3v+fdhAf30RmssHT5IpWRYVToY5yEDe98jKbRLJ45Q6ZcWsdfw4YVsk6XC+fPw1wdopTKyAgTrx7jzItHmD1zkqrnoeOE0PGZHLvC2Owsy7OTDP7AYfpv28dKXGft625j28BqVsYmsLmgf8tGTk9epv7Ci/i2RJY1kH0D5D7MdZYI+8vkKi/GY5qgPIHwPcpNxWCpj66KUOtLXO1O0Zi7ylO/+Vu89sxRWq9eIawNkdkcJRyUFAgsYblEt7uCcAzCBaE1bqLwt2xk/837eeUrXynapgKPQx/4AG997N0c+/QXr5tU6++aerMsQ4hi8pVS4kiJ7/nouPDzsp6L8RzSNAZXoDsdKrUafisBDJm0MNLPT/7mr/DlP/kjuDYPsoKcbmMdsL5PbEB7DgPr1zAw0M+pZ76GOzJMnOfUwiq2lZBnEeVaDTVQoTs8wvGxMYYO3Ep8eZys2YFtwzz22JOsHDlH4AY0Kw4qyaDeoTQ8yq7H7uP8N75GXvbwleX0S89DKyGTklbNIozACEHuCKIkQmCRUcr5Y8exSY51HVAZG+57PXr1CP6mteSNRaQG3/PIVEocBlijQFqoVZm9fBHqy5BnpDpChQ5LviEOJEZKRO5QzguT8LYvoeSCkBgtWGdKCHKivoC0LBi+8SbiKIdUkWuDkAIhDEmWFO2H1jLSN0hXOXg/+iDl4QHiI6cZzSXLfsjQ7h1cvHwFOd/CT3NkklINSnz8Yx8Deb2I9B3n2F4RqUePHj2+t/SKSD169Ojx/UL8czqb9Dyeef5Z/vErX6Y60M/BO+4iqo0SLa2w/o7XseeWO5i8NIkRAVgXu3ot9z74COPfeAV7dZ7x2csMl8qYJKWRaHR/iLIOHNjBhz/1P3Hh775OpWtJ+kJqD99BPlwmbiyQW1i3lFHuChbmG0w3rhGHGWl/QL7UZKc/RJpHbLjnVhauXiT+5ln86QjtlXll5gLTjRke+eTHuPSlb0CjiYhSoisTiDjF7WaUckO0qkTpDbdz+Im3M/XcMeSuLeh2HdlKqM/NcerlY3jGgMnRxoFMQV8fu2/Yzo7qCBOnz307BttodX3x5yCkxEpBqmOkNAhl8Ws17nnjG7k8NYF2JCrLkAh8C07oE6cp5IoVC1evTdBtLEO7hcoVW27aw4JN0WjyWoXMkVgrCYQDUUJoBV6UkTgCQsGWN97DyvQkOsmpSo/MkxDnsBIzLMusjJZY/cBt7HjnG5mdmsRdinCUwtWSdtoknZ/kje99DydPnYGlZXy/RNzqkgqgr0KUxpigTC21lLOicGazHJTGJhlebvCSjIqWhJUa6aY1cG2C1tgMi5/7BnKyycKXXsRZ6dCMWtQ7K3QHJFv23YovfTqTi0xfnaRx6jwkBpPHTDoJbaNYPHkBdA6jQ5S3bmNuappNq9ais4xovs5AbZCkmyJyEMaAMBgJmdTo1UNox5AGGrt5A51oiczT5KHEpArH9bDa4/KpC6STc9x3653cdc8dnDzyCrrVJvV9rGsZwCWaW0BYA9USNqyQdBPyXFHrq5E7kk6WQqXCpjvu5MEnnuLqS8fxpENf/yB4Hlk7pr/cTzkvUtxCv0RlcIBOFqFdF9nXj27UOXX2FGdeO442OXkWMxoEDFuX9tIyBCWanQ6Xr05gZxaZvzDO9MkzsNhgw8ZN2G5MXl+iajS5SsiFJfZtkQLnCpASpROy/gDz+G3c97EfZ/q/PMfaJYWXWCJfYxorlGUA1uA6As9aAgM+Eqstme8xFbdZ7gtx1wxx//vfwdkv/wPGFdDI8F4Zx75yBTHbpnl+gvLgajIUVDxq9S79qcEz0DYdEIJaJ8eLI4JcUxISK+R1XxsLfSX82/axNHEe7jxAxzfMPX+ctWmIrw0rC3VMfQGQ5FaTC4+6btEuSRgqkWUxuWMxShMi8BA4qkir2/3UWyivH6Zx6iycm6Eyozj7u39L5WqH0TxExSnBTZv5iQ/9FIOrhjl//DiZBOtZtCtQjkVJUFpSkyGvPvcckIHrQKpYX17N0//XZ8kAmzVx7HcrkRzHQQjx7U1acPIMGQT0j44QdTpF0aQUFm9QmtwqMpmSuRKUhU7KmS8/i5qsgyzDSozIFFYJyCAYGkY325S7GROvnUc5MFAbRK10WO/0kyQRvk7ReUxt/VoqW2+EoERjagbOXWBk+w7ufPvjfPVf/zYSyZyIefBXP8Tl51+CNEdZTfTyGSr37ue2Rx5An73G0sISYSbI8mXWf/i9NKfrhHhE9WWCfp8AKOUWkRtyV0Dgw+Z13PXQg0xOTfG2p97FqaMvk0cxqVYYPyAnBd/j7Z/6Lca15QMf+jmu/cPXiZIWJpBoR0MJBm47RJLC2qRMlqRkfQGq5AKam9/8KLX+AcbHr5Bi6coYVg/xIz/8AV49+ipuuYTJc3SeICohcRKRew7WE8S5obJzN/a+PXT+8jPQyBkwNeJaQGduHjXbIOhk+FqBVpRKJT76sV8oiki9AlKPHj16fF/pFZF69OjR4/vF9atbQ6FG+k+/838wMTtNJ44Zn5llx97DzEZdRrZtY9fNBzj73BGQPmgBS00mr0xS7cSUhCArByyKmJYrQJZYd+AA7W2jcOIVjjz9HMlMRFmW6Pb7mEPbqAVl4kyhllYYzDyMgfaqPvx33oe5Zz/r77qFUb/CxXOn8fr6cG/ezPaH7iV+bZLBdkQQQxQpmFpi7OhpbuhA3lwGleEphSslngVpDXFZovqrLJy4gJ5p8L7f/nXa/RWWXziO9TTW12jfoC1gPZxc0j0zxeSzJ5i7fJE8TwiDEGstYblMmmfgSIwoTF2dQOK4FpVmOH6ZQw/cT23TeibHxyDJCKtVAmWIVI4blrFemf37D3Ljpi20llskSQQqY3TPTt7/8x/h2LVJ1GIDCyggUYZytYbBIVcKVQlBCnY/cDfrN2xiemwckSTF9zcQKEjjLrrkMLB3O/XmEtHUBHa5gzSG3BiSisvo/pt58aUXoZvASoxOc8KBfpRJ0FZz63vew8yZswgrcKxCWIO0Bk9bqp6PSRJqgU+UtllzeB9rfv5JnK3raT79HEM2ZBQfR+U0Kga7SsIan0NPfYC1/gAnjxzFMy5qsYGoVEBnxRbnNM5dhlIJrIVmm6DSx4+9+7188e8+S9RYhjxHaMHG1NCnBYG2KGnRjoDBCjuffJy3/dJHubK6xsihvWx7+D5mZUa4fg1qYhoHlxvcGuFSRDa7yOXjr3Hq/BF0DpTL+Lu3kkswsw2GCahllqTkX2+xLBGU+2h2YlIpYe0qSBKac4t0/BrR7AKJhK5VjOy4kbBcw/UCsk6KcVxktULLMejQgnGw3YQtN9/KfY++mVaa0G4vURUa0+3SanewG1azUtKYNTUOv+sdLEYxemoSsphdTzzKjbfuRZdclhZmKTlgdEpOkZxYSi3VGAYiSY5BCodocYqzR4+TzkQYx2NlywD4MSDxlAQMVmgca/CVLYoYRpOXAmxzCTt9DdXqMPZnn2NfaRXlRoSs+TRUk7wUUPIC/NzS6auy5sBN7L/9EJ1zlynlMcIqOp7FNVDNLVXXJ7eKVGm6wkLJZd/DD3H44Tdw8eoYdmSY2w7diuP6NJ9+iW6cA4aKKJK8jBEgDcqXsGYtd7zjbdzy8Bu48M1noVqFHHwrcZBIHIK3vx5vqMyloy9RrkdsyiRBElEuD7CwqR//vQ9Svn0n9dPnOX7sZS4ePQZOUeyxojDHLtonXaoDq2jkOdakRSJgEOIKn6mTZ8kaS6y5dT+dqYn/poj0/zYFG5VDpUKnuUxl335qW7bwwGOPc/HCBdzUUDGAFZS9EMf3sb5DTsbb/9UHOXfkGE4Og0px5/vfz1WRcvjJx8mkpj55DVsrcfi9b2N03w6uzUzRXWrjWEFITsV3qa80WHr1JHGS8vb3vo9zR19iy+Z1vHTiKG47Jeq2oOQycfES4dwKWIWpwGAG9cUxri3MoY6P0+eF+MrQd9/trGwcILk4Q3tijhtWrSEzHVxtcTJNrDW6GoDvgi+5fO4S2elLnHrhOagvEZQqGEFRMFu3GjyXmUyzce0NPPvFL7Ny7iKsGUBoAZGCm3fx4FvfwdTVWdoTTcxAH1neBiuRa9dz+I4f4Nr8LM3ZKfL+oPDsynJeee5FzFIdE3WK7+IIbjiwj0ZjCSplVm3fTqfVZvOhw2S1gOTYGLLrsKJz1HAFsoyaV6XbXCEMPIzRuJUSP/fxooj0LbHvt24+fOf5tkePHj16/I9H/ssv6dGjR48e/yMxQLPbZGGpzo07dhB1O6iFBa5dOAvSIKRioT4DpMD19oIsQ9frpKqDDBzWbdwK+2+Cg/sgcVk3tI4Db7oHvBKMroawTF2lMDTALTcfpnHmGixE4HpMu5pF10K1zP69N+EimJ2d5YZ9u4uWkkrI5JGjXDpxGoZrpLKMJIRGB5SDuTRJe2kZB0lmMnLHoGWxZRjIc7h0lezZY7DY5dOf/jRTC3OFx4v4jvicwAdr0Vbj9g8AhjhOcD0PK0AZTTfqghRF2pIsfGKkJ7DC4HkOcRzzpWeeYaHVZNXhQ4Cm2+2Q5hme5yG1xXRjrr12nmixiYoSiFJwYGx6ii/941dwlYRSjXDtxkIVJSVtR9B2IfIlJDkkOS9+6UvMzE4BmoFyrdiTOsUGEiEk+CUmXz7B1uogzNXJVUwic2KZgSPYNDjIvW95HGbnIayAG5JkCsolqJS55b57CfbtI3E1saNJHY21xSZM8Vj8xoUayLk4x3BLQwr90qeMQwWXsJNBx0Az59Wnn6PhWdg8Qr5rlPCBW7Dbh+GWzVA1IDVioI9NBw9AkoAX0Dl7ga999h9gcQmabaj1kUqLotg0FmHsde8qj8mzF7l25gIrpy8yfu4KnlticN0m3vTQI9z/rneh8pxcpWQ2RqCpBSEspdCyUI/ZdOONvO+XfoF0pMpyxWXazeg7uIe3/vIn2fL6e0jiFFyf0W3bIVew8QZYu5HJZ54j6XQxshhVqq/Co+99iv133oktldDlElsP3My/+je/grtpI4QVSn1DOJ2UdLFBurQM7TZS57j9JZpr+6ibDKwPzYyX/+SPueFNd3LgYz+B+7oDnH/+BZ595hkuXjiN0TlKKXzfx1qLtRpH22LxrjX+0ACu9GAygysJjFRRr7+Jw7/+03h79uBkEkcXbTzCXH+0BmstruMWY76vBq+/nbt/7AdZu2EjSaNO27ZpBB143Q2Ye7fS2lGmNejSv30buw4cIPB8VnRMVyhSxxSx7xhiz9CxOUpITOAiQx88l6TZJK+vkB59FXPkJFe/foSJr74IQqBH+okrIam0+MoSZBYnt6AtWIfOUpPnn32hqPR0UrSVKCtROCgcmt94iYuf/yeYr1Puq7JIQiw9JvMVKnfspfa6fUybFszOkE/NAALP8XAMOEbiGIk0EmFdlhvLPPrjPwzbNoB0oBUjugmce4ryAAAgAElEQVTUAjbfcYCbbtrFP7sr/0vzryTLcxAub3nXuxlYtQ5RKkOiKLkhbmyoJBrbbpMkEdqk4Cs2HdoLMkebBAfJjQf3s+eNDzK0dysLE5cIVg+jpaHpaV68fAayNun1tk9XSESuqVgBo6tYu2ETzdkpWJzhysUzcPki2doa1Hx8z0FdvEbFc6kOVoGMlBiaHZhdwtMaKSVKKebOXGBdOICvJa4XUG+1ENbiYHEQ4EhAQ9Lh4BsfAiXAKUE7Bb9CIJxiLCcJzC3gbdyMTDTn/vbv6c4uQkmCNciOomRL7Nq8m2sXrxEtraCEYd1tB4o5M04JIsXLz73AzNnzEAiolaDThU6KaRdJlQQeKAUS7nzgfqhVQWn23HEn7oaNZFGEHpvDiT36jY+teOy8+w7WHDxAe2kJXINxJdaVWEegZVH4/64mxv9/h0GPHj169PjvoKdE6tGjR4/vF9+hRJK+R6O5zKkzp5mengLXxel2ydoLrN2zhempK3QmruIpRUXn9CuNT4YqO6ztOnTuv4XovsPccNf9yKMzjM1fod6tw5VZ7P4D3HrgLpaTFLU8yXSeU352DDnfQJddzE0buOH1d7D8/ClCL2TpzEXsi8e58upJMJDHKd5KSnT2CkmzSVT1eeTXPszZZBxuv5HVjz3I4vMvUK5VUVGMkRYVOijHYHODRsBSm81JwC47yLXZs+iFWdyOLtp2FFQT8DPLbY88wkR7EfPIHex+/+PUX3wBm2YYa/DCkHK1Sm40MvCQjoNwJMbNSDNTxMdLj25rmcbcFPe+90mujI1jk5TRoEw3Syh5ZQLHJ2+lXDt/gSAIyBzLwcfewNQrr7IwtULeSMENOHDLYZ744E/w0slj2Cyiun8X/du3EFytU9WSKO3SGrtK4JWxUcqmA3toLM2idYbKgZWU1UGV6ROnyOfnwCq0UdhaiO20mL12jXGtwatw7+13E7ghS4szEDqwZoRXLl9COwEsTaOlKnyYrMViyLIU40FkMmwAjXYHcbHB+NGTIFJWaor6+pAlWiit6E8EtbbBv9Tl6tnzkHZh0yruefwx2DTC7jfcQ5ZC+YUL3GBq7Hr3m5leXCafXsTxSyyOTVAZ6Mf6AYYcd+0oyzqlXXLIAoF0Bb5wCBJILsww9qUj+BNt9JU6U197keT0Zc4/f4Srr75CMDQINZ9GaNE1w43vfJihB+5naWGZPfffS7x1Dc9+5tMwNoefQ1VJGnGLC0eOsHJ1AtwylbXr2H3rLQzfdph1txzirU+9n1eOnYHmEvueegf3/9gPMdZp8MKn/5orY9fI4hyjMhaiFV6+eo6RzZu4afUW8vkmi2NjnH3lVdJmk0ogiWabVKMIs5xSlf1EK01IFGSWpRdOMvdPz2JOXcRpx+QLdVhu05cCnRbtKEWHFu0JUiEwCAIlWE4i8vUBu3/5Z8mnO6TX5sinFph/+Szq6DnIFNJz0cIiMAhrcY2lFJbRApI8hZF+1t68l/OvHqd98iSlWoXcKmKpuPWNDzA/NYe9cBkGB3AOH6S1sMTpv/uv6EGHyElIHEN/YlEOJGWwYUgqCvN267ngezQuX2P+whhyvsvq2MGbXqY102DHow9x8NEHmEhbJIvzeElOkCnCTIMSqLZh4bWLxI1lbn/L44igTGtyDqMtGYUP1kZdQTQ66EzRSVrY1YO0ky7lvmGiU1dZ+fvn4eULVMohZAoRp5SMwNfgGYFjZWHabj1Kg2vJfmA3S/Ux+p1+KssJfVbSGXWQuzZy6cQJzNIyjv3/riAU3louxnHBdRGbt3DhxRe5eOYcLHeo4eEJYLiCEoJ+x6MqPBIlOXH2DCptw44NdAdD5mc6jD39Epe++mVIJZWpOUpdzfRrpyDKCWSN2nxC7An8LEamCTZXJN2Uzthlrk5PgopQ87MMphWSNVXwUnRnGRu6bPuxh4lXlegeP8e6RoYyLqWuQsZdWr4LyoCWHLrlVi585guYbk6iu0iVQqqwGjoOMFSGviq3PPAAlz77ZYgMpDlenKCjCKEsulpm7cGDvOHBN/Hql54viryZgvtu4sZDhygdu8agybl0eoyFcxehkxLcfhu73vEQ9a8+i5sI7EqHZqNVmJsfuJH7nngb488epT+RqKyLMWmxA1zB7W97Ky+dO0s8P8/2tzxGHoTMXbhEPt+GiTr9kwsEytIe9dj31FtZbjYpGUE3tGAMRmucSsjPfOQjgERQ3BWX3z7B0lMi9ejRo8f3EGHtv3DG7dGjR48e/318R/zw9Q4oLHD6wlnuet3dZHmOI69H0qcJNrdIz0UKAVZej36XCAyBAiskqe+B64GUbLrv9UyOjWHHp3HKJXRnCToSjAeO5V2/+gk+/zt/Sjw7BzUP9q3lnkcf5dm/+UeINIeffJij3/gKHB8rVESy8LypxtBZNwCNlM037MK7ax+XTx1FjKzCfv0VnCgmrAbUOpZ5MugvYfMOJBnXY9QIZIWKrBDlMYkXM2Cg6nk0VURnTR/v/jefZLq5wjd/+/8k3H8b8tw46dRlAgeMKm6Ex6lHHvRRXj1MuzFJ6JZxU00qDKIckCcpvuMUMfBaIShaWpSUuFoibLG8aOYpweAA7WSF/e96lKS+wuwXnidzIK0W+4cURlOXdt6lsmY1q994O+c/80UGtAtIslwhQo+2r9j/nrew+YZNfOEz/wVzYZIwKRRTStrrCWbXd76yIGShwrIhDI8yenAPi3ETxi/A7hvp376LR2++jb/6xV+DpA3kgAKj8TVU/BLLcQSBz7annmDs85+HSILKIXRx1q3l/nvvI2l3+eZf/w3hwDDJ8kqhEvF9WL+G7fccolWyzDfn4cRJmE3YutQipMREeS2dagcHF7GwSChchkpVtDZMj5S4+zc/SnipgS8EX/xP/ytuxUO1W4QIHOOAlWB9ujcM8+6PfIySlfznX/tUoTTQKawe5IP/9lf5vZ/7MKicrdu2M336PGmrC3kCnks507jWAIZW1WfwPU+wb/tNPPvvf5tqEtFZXoI+ed00W0PkIKoBNrve4lSpQNmDOIJqCDft5e5HH2PipRM0/vLzKJOjrMH33SLVD4MVCuUYjOey9XUPsWf/LSxNTrJqYIjP/fHvg9BgFQOlgLTVRhCClbg2A6FIXKDkkXlusTh3AjAOmAQ2D+G/7gDZ00dxJlqsD/tImiu0fIe0rwQdQ6ANntFIFBKFkuBVqzQkPPnTP81nXnoBffEyLCc4kcHkCZ7nkpGB4xC6HrKvQrR1A1waA78E9XnQhsHBIUS9jUTQ1jF2cJSs04HhAd7xix/i5ddeZfKvvsSqWLGZfsbDnMWkTRD6WMdFOWCMhTQBN4QkYzTsI4oj8r51ZLZN6W2vx8XQPnka/8wMo0rRFprYA1d/Sz0H2pUI10FKibTFmLTXxfBGgG8MjgFPF+t/fX385I7B4BL6VZwb17P3obt55j//JbRj3BTUdT19oKCWK9q+IfUpEtVSCBPDsPFIQ4e6r0Ab8KrQF7L17Y+zamg1R37njwpfnUadsM8hSdo45TJuR1PNAiQOkRR0dcy7PvnzXBq7yPHPfY5SXsL3fZr9QFexpiXoGxrmYlXwif/l3/P0Z/+RY3/xd+CllPOMAIlwPPJamWbcAVcSaEHZcVgeHuXOj3+IY6+8SP7KK4DHusF+2vU63UsThEaQa4UrHYQMSFcNIqebGD8gzFKqYY3lZAWXjLIwLFmNXTUKtX427NjD1IULMDsFjgKd4ieQCa9Qrjo+RDHrPZ/lvE1UCbn7d/4D1xYXmDx/Dq5eIXhhnDWxZSqM0Y7GMYXylH5Y1R1godlg7cgqZmvw4E++j1fSZZb/9IuwEMPuG2D8EjRjBtesZbkMj3/ql/nsr//PcGmGQafEsuhAOSRoC1xjCPPivNcYqUAasfXhN7Nq8zaO/MWfQmuZkjX09fVx/vx5quUqAnC+81x7/Xzbo0ePHj2+N/SUSD169Ojx/eA7ooe/dW3bbrf4vd//fYQQ6DzHpikDYYWa51MSHjZX2OutXNYpcutLShMFEOSWcmzIrKJ6YCuHd+/j6rPHsHkG6wZhqY1rDWG5ymIa0ZiegCSnJCSKnKVumywow9Q8tz72AGnJY+Xoa0htsY4GxxCmljSLAR8/s5TKNVpJjjl+CrQkcHziqMtAaagwtnVE4VniymKx5gso11gV9tON2piKg4xTtMpRLuRlQT0QzC8uEl+bQy11yefqBGUHN88xGZR9gdO3mshIsk6HwdsPESwn6MzQv3cbrYUphr0qYZLjoNDSYIVF2uuJ0oBjDQJLUKngupIoajPfbrH02lkqmcHKjNwzYDVOLljjVEjzhHacMh8tY6MYiaScC7AaBeSBZCkAT1sWp6ZwogyZ6u9YuAis0kjXp9bfT57nOI7DcHmAqNuhsmsrtz/0IOOXLkCnSxqnjJ8fI7s09s/u60LD9aW2gyRFQrXKzY+8mfHAh4X5wgw7N9jMsHhtGtWJWVleQeUpwZrVeDs3oerz0GqyvLBMZ+wqrKwUqUuZJkwsQTjITG5g9wh2cR6TKvxSgJ8Wxrwta5gY9tlcXsPBm2/m4tXLdOZnAYODuf4vC4wApZo4a9YiM83l02OQKMKb9xNu24JKM6YvXqVUqrB08hSq1cTJMvqkpJzlSKEwwpA7BuU6JPUmJpG0XnyFapIzWPLp5jFWGFCaUHgYx2LThPLAIHm7zba77+KtH/op5vrLdJaWkdKlceYSzvgk2nfJPchVgpQCpwhrI5cSfJflUo1MOpz+2tNcOHmK0PNQcQeR5+RRRiApih+CQinmFCoflRgohTz6Uz/Dgz/4FO7qtYTVGo1WB33pIizWCVOFibsMB1XyWolYZwjl4huK39CCFZqu0sQmhzzj0vQ0+dUrRfvP0CqcKKPshd9uAfWtwAd84ZDEbfA8WKrTv3kraaOJFi7dOGVweIQ80Ui3THl4mNQYrrbrNM68hp87rHNrNNIFFqyiNNqHk3YpGUOoQBiLcl0IfdCaNFU4OCTlKpgUtXMdWasBZ87hx1CzilwocsfgGlt41Fyfv6wjwRHXj2mDZzVCWLQsUue5PlYRtjBuFxYji+eehcb8At1Oi+7sNAgwVlDJoKTAtRAYQ+JatEsRD6ghdDzcTNHKU3TJLby/0pxbfvyH2bl/H1/9whdhcRmhLWWbY0KD9i1WGXwlCYSPkC656+GuXsX+A/uYvDzO4mKDoTzDE5qupyHJyeKcpW6H7a/7AU6NjXHmyMt4RuB7hlpQwREu3Tylm6dYrfDLZfJORCg8kqEa8aoROrPTOKOrcLsp0aVrmMUWKknJPcmqbZtYWV5mZM8uWL+KpNHBmJx+WWYxb6J9WLNmDTbqYkpl8qEaux98E53ZJbpzS9Bpg0jBgqeAwWGMkDDQD52YPp3ikBFVQnb+0NtZTiPCrsIM9JMcPUcFh65TvKaSK0Kdk3qamq4SZQlBJSBSHZxVg0yPj8FkE3fnXm774aeYeu0UcinCky5pf4lg1xbmj7wKyzGjuaUlY6QrCFOLYy3KKeaBPE2hOgBhhZZw6U5MAgaTdPEcl09+/BMIAY4Q310z6hWQevTo0eN7Sk+J1KNHjx7fa77l+vkdTw0wMz/Lth3b8QKfqNFklRvSTiPwXKy1IN1vv0dS+ISAoR1COXXxtKAVgB31oTQEMy3CdSN88N9+lN/+6K9gF1ZgaARWD8J8g1oi8JortDyFEhocF2JgTQCOwVvM8Mz1i3dpWB1LlssBWV8IrRjCQWh32f3mBzh34ggsNrihMsJ4tgS5A92MNZUKc2mdsNaHXE6JkIy+8wEWF+fhpeME1qGkBZlKiDygWioMLSLJ4z/84ywNhHzz936HwTiiFoRMZDls3swtH/xpXv3CP3H3/lu4+rm/Z3rmClt/4yfxmxGXfutPGA1qzA0rCA3khtG6JHG/tTgtlA95XChRwnIZZaBcLbHSriNQCOMWiVVSYhEwNFgsZrtdMDEYQzl3cDJLLixJfwBppzDkMODnBiGLhCd93RC4OtBPu90qvJzyDIRArF6LXVqBdRvxh4d5z/vex59/6jeh24Zd21izdpTFz3+dsrIknkJLhWPAt4JYFTHelf378EcGuWvvXob6+vnz3/1daHfwwjIqTbEmB2kp1/q589d+lq/91d/B+UlGlhQeGStodOCSVQEUDI+y9mc/yOzKBAdElSv/+CytMxcII8GA9VE41CsKCAqlmk1xXItnLa7Jrh+XhWqu21dGtVLQLp4skZdLDG7fyuqtGzj/5a/CchdMTtDvEV73Y1FJjCcFWhqMMChpSZyALTffTefyHMNLy8ikyTJNEkfQ8orPGir1se2JR9i8ZStf/+KXWHz1DPg+q27cysLkJNTbCFl4sNiSgqpfJKi1uqAlvoJAGbSExJUYWYZc4YwOoeOEapIh4zYSgxQuDZtCqQwCHK1wbV4UeD2XHAGDI8hN6zGTC4yogFa7iTAxnk5x0oxKqUR5cIjLczOF8sUL8LXBtcVBZIQlwRQeWUFYTBQj/Wy/915Gupaj//WLiDxHCFsokbTCFeAKlySsQBLz0BPvxK1W+MKf/RmsX8uHf/WX+Y8f+UhhTOyM0F5ZRGxai+00oZNCGhcVmNFBaHYhigg8l5JxMUKSArq/gmq2QDiQikI6tHqQ1YcOcPCBu/inf/cbEJSRjS6VXJF6isyBoagomWdAGki0XyQsugYCXaiHlITlssEt6tZ4pjDnh+JjjCjGr299ImvIPBC+j41Twszi6WKspQ4E2qAc8+3xByAyjSMEbhiQ2Bykx2hlhMXWIuzazlueeIK//99/D6KMESlYac8jSg7GGCpOCYyHspLIvz6ZeECUIjX0CUuWJehKiMZFJQoZVgrzaMeF0TUwNwNlCSsdhHAJSyVMLSRtLCJGR7GNFtIITKlE+eY9hJWQ3du38/zv/yHS+oRW4EiIhEbLGNau4fVPPck3nv4nOD/NwV/6BY7/b38A+7ew657DnP/Tv6J8bp44DLBCsuuxd3LxG8cwi0tU0y4OERmaAMGKW+H2T3yELbt38Nc/+zP0ZQrVaRMJF/bshOlZdr3hTVyan8B98RwjWrLoxUibU1IGzxgWqpINDJEkMcsVi066EJRB+LB5FeHNt7Clsppzv/8HDFuQeCyP1lCmDcKn3NFUdcZCuQvlMsNLAiOL40dLSBwPnIA1+/ax++CdPP2HfwC2y46bdjI7McXizAJpnlDxwp4SqUePHj2+j/SUSD169Ojx/eD/cUFrgUtjl/nzv/gLtNGYXOMriVup0rZpYWIcOFiKAlJJga8tmXTJnWIB7GmBdkDftBUmpqGTorpNztWnSC5exhkZwZqM9/zGL3H6s58j60SspUSuO5SdgLLnEGYJVhRtK6U4LzxFBEgr8LUkzhOe/MTP89rRlxAixBEuew7tZ+iOm5itz5FfnWXbTz+JGO0nmryGm1j6taSSCBIUeQm2Pvko++48TOPiON35eRzpEFhLyQ1IOxm+8gi1x0orJl47SjfJcGbrJHlOOjAEB/ewsm4dOw8e4JU/+kv6HUHuOyyePkr94jVGYhc/t3SlxFoBuaCWFvHgWkqUkEVrWxAgpYOvJCKNUVFMFBSrjpJycEzRJvgj//FTnDh6BHLF/R/6KFdPvgQ2J9easifxHUHc7lIplzDdjLIV+Ehy6RRFhetbGnXBGgg8dt55mLbV6MY8P/iLv8hrL72CHruGiXIO3X4HYwuLUJ/iTT/yJFe+8AxlXSyMlWsxUpArTV9QpeyXaU3Nk0zOMD49wdz4BKGQRPU6Vd+lLE3RHpYZsijiyle+iVxJCJFkIqdblqSeRqsUP7UMdixRM6UTWHZt2s7lv/kK3RPnAAO1GplWeKkmlx7G88BzQAgcazBK4yKKP1us2kMMKskwKsXUSpC3SFxN/cJZiBOGHJ/+IEDlOTrNscr83+y9eZBlR2Hm+8vMs9216tbW+y6ptXRrQ0LdkpCEkBCS2CyEELIERoARNgYzGMML27M4/GyDPV7G9jxjbMYIGWzGYIMByYBQa+lWq1trd6v3pXqt6lpu3fWseTLfH6ckrBn7eV7E2H+M64u4EVU3siJuZZ7l5ne+hcD1ybGYfzB32le0xsqM3XAFh3c9w2xZETkuqQKRW2SWo5Kcw3v38/L2FwgnZiG2VDyf1ukzkCY4JsfREQYDi0pc/4kH2HjDNRw8eAg6IcpAWdsiyNlaSGPyoTK24cCgR9psUgsaJLmgQw4Nr7AlakFFQ11LqrliWFQII00eJ9ipGRhqEPa75P0+FQ1lz6NTd2lXoJm0uPnDH2Jo1QrOHNqHIgFRqOeMtJj5Niu5fDmjGy5lw+bXcXTXixzd8iQmDLFJDMpgZU7BvlpUZnAjgysk+3fv4tCul8B3kBsv5OmXnmf4bbdy2Qfez3g4yznvvIGb73kXex7eworIpZNFEAgYqrNq2rDEqTGtNJJCcaUFaJ1w8/t+ktqiEc4eOcIl11/LbT//YUSW8qPP/xcG6sOknR5W5KRuTi4KKV1UVkSqMGYuTgXLUslIInA0NEvQG4C4XKjKBBaEfTXT6JX8/eLSKckSjRSKPNOUNfhxTpAX6rfEgTyAzLWI3BLkUEsKAkqjGbx0PcNLFtE6OUkltah2m0gbmJvjwLPPFuHxSpGHGVXhMeBVELlGOQ7tNCPDwECZq9/7bk4ePFAQTl6VzDVoqxkxPnGaINYs4X0f/yjKDZg4PQn9Dqvf+WbWn7OG0/sPgDVoT5H326y+djPvvve9PP/oo1iTU0PSP3aM6OhRTj77LE5lACfSmDQlTmOMkgz7Q6SnZpncO44+Mw1Og3PWruPE959kbMUKWidPkby4h9yAdV0uvO6NlJyAMy/sAq1xLQhyFJZI+OSlgKGbrudHj/0QZk6TtOcoC0nDgG0muNZhYtce7PQMJonJbUbmCgQKZRWOlWgcstySa00sUqpuhYFezjIT0Fw3gq4FzDy2E9nq4FGsRxZqVHkApxtT0wJNRlwtVrrRlxg5/yBDWfAVVghGqzV2PbW1ULMFgjvuvpMTp07xsQd+FqkkCvHjpqBXq9r+Re7kC1jAAhawAArB7wIWsIAFLOBfGb1+j2azieM4JFGIcj1yx6Vv80IBU69CnpHz46fyAPYf7K4kEmHh0g0befGFveCXYLBM+7kXwUjyfgSeYnziBKxeAXuPE+kYC2RpjEw1AI5VoCmUIFbySkl2KiCo1nCRiKUrsAdPk3s+zzz/LCMbV6FKJVJyesdOMbp6OdNLhmgdnuZ8SghgAqAk2fPwDzhWqWN7IUI5SEdhdArG4CsXx/MwmeTk0YPQmYA8Q1Fk43iDA6RBhYvXruPZh/8ekg6nTjVBaGAAoi7CukgrWNyDJP5x6ai0RRNTLiVaCmJjcBxJmmoG3DqZSRA2+vFGFFE0s4URnHse9BMWn38uVOpIwPY7hcVMWDwLeT8EIHm1Vtx9zRovXrOas7MzWE/xnvt+khdeeom/e+RhvvblL7Nhw0WMHz3OqcnT1EcbDDcGmGme5K//4I8oW4ulUDThzP8/xiFMUiqBwhOC1EI61+bMqUmwFgX4SkJaWH+gOEwyIRFxSoYhjyNsDNITWENhN8IlyCXx9kPsf2wvIxGIVBFJgbYWLS1+4GCyFMqqyBvKNbJSJk1iMs9B2R9Xa/c7PUpjDZTnk9RroAMqG87FhBHRUztoW41KcgYrA+gswRhDojOE+jGBBLJgHl46zPjzR5E2oIGiH3WwjsAKh1wJ+sLiVIcwPU3VcQjzOZJuH6/mk3oGnUQgAnAUBCXOnjpDP/ALRY0plC/FOVUc++VSCWe0zjs++zFa3Q4P/+rvMDPbAS+AwWGoauhHkBl6qSRMigyfWs0jsT0Y8GC4wVt/4aPsfGoHZ7c9S2d8gk5/Pmx4uMHG99/JRVdcxZPf/QFgkPbHVi4ATzkknuT1V25iaPU6Th3dg261IE2oSolRgkRnhRoKgTQWZQ2eowoVY7kMlQAkmPHj0GlTe+Ob6PZi8kOHyEplTs4+S6WTo3JZHLI+bHzL9XR/+ALHj53ASImxRVixtbD5zTdx/oXn0+m0QRj2HNzL7gfbmKOnqZcHiM9MMFYb5KzOCsbbFgR3Jigy3SR0pCRDgioUgrmgUPFhcHNT5CDbwi6orEC+Ym+jUG26vk9qLGXHw80MZb+EjmKyV86T+VRlm0qUAd9CbAAhuOwN12B6EeNPv0huLBVKRCVFaFLwJNRKlIfGCI+doiRc4jBDqYIcxZGFTbBRZ8Pll7Ltoa8UTZk6IQkytIWqdAkdS23tSgYWD3Hs0GHodFm++fU0lo6x5+EfFE2GQhavWp3GwCDN6Zl5wkNCt82AUtiRBp1mE93p4Agf5bgoqTC+Im02GcFlcXURL3VhKFFs++q38BJobd9NGrZBg1f2iJOYs8ePM9veX1yzfEVf52AESnnkQQUGB8mspbJoMf1+DEhcU6yFzfs4tsJguULoC9IkI0aQK4nJQUrzqgKxl8c4TvGzawyuVMRZwrWbruGp08chbGFUTisHRyi0KE4lJ5eIPC9sz0JBlgMFEV8QyhajEzzXYfbMafKpWbx6jRTDy3v30gv7aHKcQoO0gAUsYAEL+FfEgp1tAQtYwAL+pfFP2Nnef/9P8cTWpzh59AiN5SuYm5yBsgcVl5vuey/Pbnua1s5nwSsTRBobp+SlAXSthJiaY01lhOP9GS750J2UY82Ob3+f1BXQbjFsK6AUszKDN2zk7be9g4OPPMHpx7bSzXoMDNeRnQ5dY9CvcCCBQpbKOFaQdnvFexUXkXt4xichLT5fFkOtjpPl6GYT3ABUUuSdpC4r0hJhFjNblUCIIyt4OaR5hrIaYUGhscqhPDrGzOQkb/v4x/m7P/5TSCEQOdb2SXLLjffczY+e2An9sGCFOlMETg1XOhjHJUsS/H7GqF9FJCl9NE65zFTYplYKiMtOSSgAACAASURBVJVFu4rEEay97FKOHj0CE1N4i5eTzs2hmjPkrmXo8otpzjYhnJcACQvDdVg1Ak/uRCQ5o4M1Os1Z/Pl9Zc9ADOC5xSYxnX/8bSzlcpkw6s8rdwzuyqVkJoeTs5BpnJUr0dNnufqDP8W2Lz8IxhTyiyQlSCwagx6uQWn+gOmnkBT2HccYtJRkqkhq93KLZzQCjec6xHGKE7yixKiQacPAQI1mc4qBikfSS1FKotwKiRZYbVleXUTSnSKgxDR9utUSpm4hL4gToUoMrV/Lm990E1qn/Pc//CMqq1bRn5jArQQYnZOHPSpS0FcSAhdWLOHOT3yCpx5/ihX1YZJjx9n17UeQbkDJ+BijkY7C9R3iLMHaIohZymKC4zADr0QQ+ORZRtZpgxJ4tTJpHEMeQ2UM5kKEldR9j3bShoEAnBR0XFjDOiH4w1ALinVt9agkBt8I8iSmK3OCehknjOkEAgINSkEsIHQYOe8CNr/1LRzxM/Z+9RswfpqSV6XUyyjYLkNjeAlH5k4XBM55KwoL01QHjs8ircVUDQyUIOxC5kPmQLfN2FAVmyR0exl+2aEd68IKNbYEEgu2DXHIQCpwsxyNxa9VmY76VEtl4m6foVKVfpaQS0kiHXLHBceBxiA//+u/yZ9//b/T2rET1BwkLkz1uSAY5kA0hVnkw2CVoDFAPH6iOI4TS9WvEbY6GGzRHkhaWPCshDgr3stdxmIPoXtkGJJSmb5IkWmGZwTxWB2iCKo1mG4CEgIfWStjoh40aoyOjcK+I8y1CkK2MVgj6SckWUrgBHiOj3I90iwjzBKqA3V6zVkWV4dp9+awlQotE0OQg+egUp9RfPTcDGJwiOmwCeuXwVwXNZdRRpHHKaFHQew5Of/pwS9z6MBhvv7FBzETbUY9H0OfSMd0clOEwwsNi8ag1YXIsLijaZY1UliWdSQzjqY9aCHNIPVZs+ocll18PnvjKZo/eAYnA8cUp3Li8mp7mMjAy2GVzhhZuYxtx49BtQxRjh9UcAVIaelELfyx5SQzTfAVP/lHv0vrxSN89wffZeBEk3Y8C8qiwgjfUeQIEuEV5QvDg9Ca5V2//H/xjd//z8U5YFLe9V//jG0/eoaJJ7fBsXEarbM0pMusycjqDcJeCAbcepUs7c17qh1wvPnjJEUohVVpEd4/EzHs+yQ2o+cpqouX0WtOwobzIEnhyDhv/bmf4ztf+hpjiU9/8hSjlQa6YjjVncBTPqP+GF3dx5Ys3WYTVXFwcoWTS3ztkAtJr1xkkvlBmamTZ/BweCUGa8HOtoAFLGAB/zpYsLMtYAELWMC/Bv6HL7Tdfo+///7fc9769Rw9cYLW9DSL3347tXNW0zuwj9OpZnFjiLnxk2BytM5wyhUybQsip59RzosesuMn9nPi5YP4oSYjZ1B5+GmIynP6woM84uxcm+nDxyCNyWRE4ljixGLKCmRhUbrlw/dxpjlDPDmJX66S+xZKHt5sTC2DaNEgLB3mhrvuYvyRLXhhhhZJkSMTCxztYLBkV6yn4wuYbrNcDUCvh81SfKMKtZMELQ2ZtfStBgfW3nk7hw/txZnqEmR90jqYoIhgufayazi8/XlGygHCdMniHDNQo3zb6+idOc6YahD3I04uCuitrNORCbl1cRyBCHyy3GI8j3Mv3sjiNau5+O23cnD74+AovK4h9xyWXvc63vKT72Hvi3upNiPSdheEZuNH7ubqFRs4e+A4SZ4SpRFBoKhXqnSSjNx1oRzA2Ai0e4Ulx/XIohglFI7rYrTGdLvQ7VGOU2pehX7YAmVZ9PpLGVy7munxcVScMxxpQjTadcAk3PyhD3LzO97Fc48+BnnR+mZUSq40ykgca5GFhgorJFGWEgwOkipF31i0DVC1Mr1OE3yBzXJ86WFzRVcLdFAirwTMVS2dTNNcFJA4KZac6957F3f99IcYb05hZmZpT51iz76XOXLsOLmFTAg+9tnPMt2cZXZ6ikqjTm0mws0sWIme67H3sR30DpzizJadzB05yVBtgEpQpqNzKsODWNehE4doCUJKkAKRGRKbQjnjvJ+9m+nhgJ/42Q9z4z3vZsfj28hTDdYQDA1y3+d+iTnfEDqacHYKbA465fa77qLRGKV1do6sk+HmLqbdhShlMKgguhHkBuMIEteSpQmjXo1qLNGRRPdyiAWOKtGbmuPgU88Qj09zxwfv5bLbbuK5Y4eJdMzNP3U/G2+8kS17dlIE+1jO23QFF914O+efu5FTO3czlkJFK+RcgpcFOF1DkORknocNynilCk7g0+r0QbogPeTwIqxQ0JylYmzBa2Hx8JjLUkqNBlE/ZWBwmFa3Te5JzHyKtTDgOT6mG7F7y1N09x1FWsXSz7yfDRs2Mjs5zcTkaezyIeiG+DMxw6e7RHGGUcXxnMYJgeODtRjygkDKc0hzVFDGKh/inMz1GRpezEwvJNE5ZbeKyRUIj3zNIB/4j79MnCTM7B+nKnyyMEb4HhveeQuX3v02ellMd8deyrUKynPpJJrU8RhYtIJYeli/QrsXgtEIVxEZjev5zPbbuG5AOwnBU9z20/ez8vLLOLL1aXpJSp6DVhJTCrCzTZDzmWdoMsfgLlmM6bRheJi9B17m+ZdeIJ2ZwlqJjmOM1BhhCaoDJKkmWLacS67azMTulyEXDBhJJnKUlSgLqTAkwhQkSw6tyTOcOPAy0YkTqNShkhU5UO48kfTKk4SSLl6pjTnZ7yBWLCePY4Yvv4IozbBCEPXbOK4lO28Zt//KL3BIZOze8wyHDu7njs98giPP7CDtzhRKwSzDRSKNwMshEwayPmw8n/r61dQuXE+wdg3phrXs/tpfI7OAZP8J3GaXEhGRNYSBIsZCxeOyt93O6Zf3wZol3PLAB5idnCLudCCLiupMFNd/4gE23fQmJnbsIon69FUGIz5qKmLR2vO44iPvZXz7U7BiMeHiQTpHj6K7Gi+zZIGka0KGPB+dWZqJxlk8hut7xHNz+Mot5s1apBXz0WsWaywlx+Wzn/wUjpCoV26x4h+/3y5gAQtYwAL+92JBibSABSxgAf/S+CeUSH/111/nIz/zUXpzTRgehks28PrLrmDHN78FM00IYxA5jYE6SRIR9npc8hN3se6Si/jmv/88q90BmkmXzqDBTSXlsEcHiwwcRhMXZS3TCNIBB4QDvYSK1vSreSGl6TuwuAqTc3jlCuniCm9585t55It/Ti2TdKsGtKXak7j4zAUSBstcfestbHvoq5SCMlG3AwM+QexS8kvMZSEXf+x+3nDttfzlJ/8j7vgZWqZDqVLFRIbI02QSJJqaW6bV6xOsXUWsu7BsKTx7BFdKMtUvZmpsOVfe/A52fv2b1H1FbfYMiVthJo9Y8ul7UWd7TP7Jd1g+tJTxRs51v/aLPPGt77ByznJi51MQamSphtRQqtfpTk8i1q/F1n1uv+U2nv3S15mePouREYyNwsQM1UxhFIQ2ggEJ3So4JZB9EBHVUgk90cILynSEgGVL+PBv/hrf/9znOb5vP0oLRJzgIgs7ouuhSw4mTRgtlZiZa2Edp1AcZFmhQpKKwFoII5auXsPREydhdBiSbF7lBF6eIsjJnASjLF5WWN1eCQW3SKzro5O0eCzv++DB/b/1ORb5Jf6fj36cla2UmJiYCt5bb+bwuaPQb8N3HgavxOjP/iSqUmHytx9EdlOMTaEmYPws9aEqqYE4zhG1QWwYFyqsfht8j0rgUmv2iD2PNjm2MVyocTQsqg3TitrYQY9cCYQKwJVs3ryZq666kt/+lV8GCrFZyUiCXNOQLjM6o4Vm+NwLmD14FA8HZXMykaMrBhoC2lEhCMo9Kl6ZME2w0hYb+kxTLlXYsHkznX6H/Qf2wkwLLzNILDiSZKiMdQX0NPV2yoisEJuUXsWn42TgeAROhcZcxoTpwKIh6IWFzS2KipM5T3EDh0BKup0ODIyAEEjlUJqeY8QqUhIiLC1kYZOqVWHRCJw6CaWgaM8qlRi5cAO33nU3X/nin8Kpo5SzBNOLGaw0SKxlzsaFaq3WgLkWY4sW05o+MX91KULkkyShWq2SpTme5wGCrk2gMQyzLaiUIE9wcqhoMMLQLVtQcPenP8sz33qYY089Q32gQaczA75TZGFFCcZI6pe+jrWXXEhp+Rgv7XyO/sGjuH1JNt3koms20c81MycPE2cxuj1XqPp8xU133cXoQIOv/d+/WXz+2VlKtTIJknUbLsSWKxzes6dQYdXqMNsB5dCwhjjqEJkIfLcoHchMce44qlCZWQ2uz6oLLuTkgcOYU1N4XgmTaTRZoQRbspiRK65g8+gyvveVr0KvifUpCDipqOkAmeW4DYfm9AxlVSVJcy67/noOnDxB++Q4QjiM4mCNLuyFyqC1RmQ5XuDSTvvgexAnhW1Slqn8AyVS6BaB4kYUBJKvwQ4GtHRYKPjqg7z1U5+BM9OYVpPv/ckfIoTBjixmdMOlZJWA1nNPginjXnYh2Xe3IMsSIXLcKCX2FH5mqaSKBEV/tAaymKdL3/FuThw4TPPYThobruTON97JV//0v9HftwecEL/ikkQZDI5y3pvfTDuJOPvo07B6iGtvup7dX/4G7enJgg0bLCGmQi59z11Mn5lk6vldpN0WldE6/ahLzRukG8awehGcmYI1S7n+/nt5ceuztP92G4uGhjnbnYayZanymOlncM0befu1m/nr3/h1Fi8aJTpzpmjsg6L0QEhcATY3lCplzpw5g3CcV++vr2xoFjikBSxgAQv4l4X854csYAELWMAC/ncjNzlDQ0NFC5vjQNhn/euuII81dBOUW6GiAmrWQYYpeRyB52Jdl9pIg/LoCNZaNClog4udVypAbjWZBxmWknJAW4jTolGHvNiA5hKsg7NmHViHPDIwPcMj3/0eCIWrDaBQsSniKlwBcQrNPjsffwIciESOB5CliNEqoxvOAdfhyEsvs/PRJ5jt9+i4ltx1yKwpsmdezb0B04+RuSA+cQZWr4OgBItGiywVUQZVwV2xhvNuvBGG6nTm5hipDlOvVCG3TDyyhVO791Pyq8RZBjNz2FYfpVzWXbaBpa+/DBQYralIFzfMUKqEPTMNZ2dZvWIlm9/0RkxuIQFOTkOUok2KFSnKE6BN0ehV9orwmsCnF/XxfRcyAUbBXI+tT20vGqFsETKrEIUiAFC5xYQJ5JbpbgvrUwRud8LCD5cYCAvVQSzg6PixYjfUDSEXSOHjZ4XLystNEUIMwCsV6gaLJBcCbQWMjCBXnQOlKiifv390C0/teIa+sEwTk+ESAf5Agwtet4mNV1+PHCgIq1YcMjlxGqZaLJFlnG4KrRZVT+HECTUr8ISDnwMoiDKqAw2Gy3VUmpEGHi2T4C4a5u333QOLFyEbDRIlySo+l9zyRt79Mx9G5yl66izHJk5xYvJMQQwIUTTjASUUXhTTyCjmuRvh+hUCLRF5itQZSrnF3DkBjhtQzgxJu4WNE7yBgWJDXg4Iwx66HnDlm29gzcYLoOyTUhB3ynWx7TZ0W+AaOp4klYI+KZ24C3UFokfcn6aTtvHLNej2Ic0hjmHVSlg0CrUqWRhTskXWUnDuem66/wPc+bEP0Xc0adUDNyBEodavhPVLYcUS7v3Up3Euvrionh+ogcmY2b+Xr3zjr8BoiCPCXBMjiJQglBYqJc59y83c+K534J+zjql2Zz5P6JVsKoMXKKRj0TYiJyYngtyBMESuXsrii9eDUASJQeaWxOaQG4hTdu3dx/ETp3DLNfIsAyML61KWUfM8SkISlCuowToTniG4YC2kfbJ2m5FlK3nHe9/Lyg0X0Ts9jZ6aK/K/+/1iLbKE3bt3g4ZRfDynQtTrc/WtN/OG229lIuqDzTnvPe9i7JpNXP4zPw1lD+V7SEcVIUnDg1Byip91VhCxzRZEGTe88x1cd+vNiIH5Fj1bEDXksOKyS7juHW8lWDTG1md2kLe6DAqPal6UOopUY5IYaXLCKMLxPTyhEFnO0d37aJ+eBMfDkQptDc58rlbiFJfTcgaiExWqLZODI3HTIjA+n3+Z+UtvPu8MfOX3Vp4Vx9FFF8GVV/KdHz1K6kgOHT8OWFwFzHSYfnw74akp8KvI5asYLFURfoDJMvI4xS154BQklcTgYYqHEe0Q+hkvfu8xmjt2w9kO2emzbHv8R/SPHYa6DyVF3qgV5HY34eCeA5w9tB+iBE6cZsfWZ0hnO8V8CgEmw8lh3/bnOPX8bmTZBwFRu0vZenTDNpgMJpr4fUGt3EB2Y9q796KCElpY0An4ijCJSclZv/n1eIMNyDQSF2UKUtQi5xWsxZw7hRMRYSiulQuPwxewgAUs4F8VC3a2BSxgAf9mcezYMb74xS+ydetWtNasXr36nx137NgxLr744v9/4/7hY1FbfP/OcouRkt/7/d8r8iSkYHa2Sc06dA+O48y1GcwMDbeErxSJSUml5Oz+g7y0fTtZkmHCEK9UJg0UWadHTQXkgUfm5ERxRl8ayueuJO62Ic6pW5cKGRJBHCfgBnzsP/wSzz+2FeIM41roR6hcMqgNaZpRw6NdUqSBQqVQVz5hrw1VB5KQEeNiApeo5nPpm66jvHQ5p594jtNPPw++IrNR0a4UJUUVuqdB5Hg55KnBHxwhUx7MNNn85tu59eMP8Pwzz0IngyjHXb6KF44chqVLYK5H9+wMcT/CkS5+mBLMhWQZdLVhcOV6Dux8EbvvMBNhm0a9TKvZKqxPcU7e7bEoqBP1Q/Juj51bn2T/rpcg0yxRFfwkpQxEVUlasVibUdaS9/7W72DPP5fZ4Qq3vvdODu3ZRzLVQVnLL/3Gf2Z43Tk88ZU/pzNxGhwHlWp8qzBoXBRCKNJcs3zVat78c/eyd+eziFhStYrKfIhw2a/Sj0May8a4+8Mf5lRzlijKoJvgxCkNK/Dmg5hjx2BVEXpshUBagTICicANSmjf52O/+qssu/Qy9n/rh3RPTXLihecw54zQG6vS0pbQrzB9YpqZXXuZ2rEbu/sw0pZ53dVXc8na84n2nCAdP0ItFxhPIZOEunSx2uBYB5EVZJKrPKJen1znVEoVZk0IQyXyrM/MUI2o18PGCXGvh/VzzvSnOZnGJCfPgoLO1FlePnYQNTSA1QayDJHkCCWZc1LOihiWDRElfUzdJ8li5Ogofq1KPDPHiPYY6uTUopSy0QTKx0hD7CkYrPL622/lqrvv4EdHdrHr29+gNTdTkBo56MAl8w2ct5arP3AvF3/0fRzqzNE5fZpEKLhyA7f82i9ypHUWzp4mSwW5NDA2wid+77d45tDL3Pz+93D5jW9g77bHoOTTT0OE65LpmKPjB3h5z7NgNX1H0lOCfMkAt//WLxFespbOtu3sOnyINa+/nFvuvou2knTOniZ43eXcfuc7OXBqHGxCfcNFBIMjtLstct+FOGbkgvN5fu8u9MQJhJA4aYygaJlzjSVQEp2laF+SBpA5OcSakRuv5LLbb2Dv+D7KczGLe+DrHJtFDNsyJrOcPnkM2+1gZE42WGHF+nPoTM1AllOXDlGe0+50WPXWm9ndPU00eYrLP/AB4ok5WuOneeIH3+P4vpfm1UEGggDhl6AZcvrFfUztPUJQqdLpzpG7gOtw4tQpXnj6abKpaUqvv4qlK1cxMzdLY6zB5NPbydoRlYEa0UCJB371P3A2DOmcnizIvCxH+B4YyfiJcXY98Th2dgbSnMBKBqwkIaOrUowUnPzuD4mOnaRcLqNbs9SER2AFJeXgCEvuufQ8SS4cRAqDtTomShEmRwlB4CiUVJSTBCly5kqFkklqQWhyxi65gP7UWTAKXwuM42CFQCtB6CqMO69EE8X0SCBbsYQP/9rnYGQxkZLEu57nyFPbaR46jFf2SMO4YJ0WLeaiGzZz9tgR7OnTrLv+Gtp7DqE9AyJFC4GVRZZ2oAUCifIr5F6ZlesupD8+je1nyEqVZGKa6aOnChWc6bD5g/dw09vfygsP/xDKo3zogQfYn4WsXXYOs0cOk8/NUe9qGsIiyIl1zgAuNjKUkfTDWfzRYQgTfvpd97Hj6F5AUutqho1m+vQM4y/tgTDFasnb73kPZz3L2Po1zJ45gymV0MtWsOMrf4l0ynQmJsgCH2UFdr5hM5eWwBTEvOO5fPJTnypIu/k4OkEhDHylnO3xxx/n61//Olu3bmXp0qU0Go1/9N790EMP8cgjj/yz3wX+V8ctYAELWMD/6Viwsy1gAQv4N4mHHnqI+++/nyzLXn1v06ZNPP30068Zt3nzZrZv3/6a91zX5Utf+hL33nvv/+e4crnMF77wBe669x4kEucfPDGNjSXEMLxuVWEVmZxECYXpxww4ASZJydGUSzU6cYg/UCVNU5wwI3UUqcyQjcHCQhFprLXErgEFi1o5Hd8lKgs2/fIn2L7tGdjyLMSaWhzhWUPoQuTB+eddxMThE7R7XRgMYHCQil9lcCahNTVJ1BjAyJg33Hs3T37pz8Et4fYySvNp3JkymEwzKsrEFmZ8C6tHYbaDmtGcQ4njqk8iDUpZdCmBHOoRdESF6//w80w2Zzjw219gdKbP9DKvsIIcmyGwDr4qrFGb3vNuguFBtnzjb1gagZN0mXCmcV3I7RhJMMrln/40rh/TO7Kfkw89iNcN6foCLSTSOuRzEYO1Os1uF3fdSqSnSPYfpjxQJmv1qSIpYzldDqjd8QbWrT+fFz/3J+CX4ZINMDdJ4+pNzO14DvaOMxJU6CRdguEanekJKlGxtkXdvUOKpVoboJ2l5DoHoPL2q9AnphHPjlNF0SJDNyoFI6QdGr2E8tuuJaxI5n74JKVQU88ledLHuCXmsgRn7Uqys2fAZpBrPAyDucC1giQ3dAcaJIuHoF7Fn54imWhCrcbYHW9n0SWXMf2tJ4h37kNETeY2VvA2rmfjptt47jO/S9APSSoOVoYM9BPKWqOsZq6UU1ilRDGXOORCEWtT2ACTpCA3XEksYxJfkkUdVBpQ6RmGLCQoWnUfKwS23UOMDpFVPXLT5/xbbmbmyAlm9h3G7WSUshThRoh+hleqE16wFrFuGf0rz8EkCTdddCUv/s6DhC8dJO22QeQErsbmOcZQZDhXRlDSY4ac83/lo+zfvg2e2Ikz2afcGKST97jkd36Flx7dCuOzsGIYmk1uueO9RM0uT/zW78PQCJw6Xsy1A8gSzvr1jAxUmNy5DW+kgcg1SdiDKAfpoByFjLqUXI+q9TGxoGskuuSROLD0J26lYzS9HX/P6quuYvzF/QVBcHyiCKnXCUUfesyyX/gkzV5GtG0v7/3Ux5iZmeEHD/wiSqTkXhsyWJrAmcKxxuLGGLKdsLg8zMTsNNFgjZZpgw+4DsFUSEU5mLLHnOlTih2W2QApJQf9HiQp58RweAC4+hLWbdrEke27YOsepPSohTHtPKX+kQ+xeM1yDn7r63ir17LCKzH+tz9gIEpoxp1CJeT7XPPBn+KcC87l4b/7NlPPvYRIDLW0uHZETtEGNpTmRBoyK0mFg1urEaU9cjS+l1OvDtCcCNGOgo3nFTa2iSmYi7j0/POYnjnDTPcsNslxZRFkn+YpjUadOAlRIifq5kXppQt+KugN12jqDBJNzakh45Syp5iRfbLRQRhazTU3volt3/wmdnKCRdUKptfHzh/3qXQYMx10HNEeLNNxXRgc4Cd+4dOcHj/Djj/4ArXzN9A9cIil3YhurUzXExD3Yf05XH3tNWz7yldhtkUtqNI9dxk0SzA3CeWcO/7g3/O9j/4yNFuk1RImTSBQDN72Rhbf8Hr2//6fwaWXUZ/sIR57llRqYhMzgMA4EpkLNIqeI2FsiJvefSdnzjbZ+3c/BOtw7e98jmcffYL4298t1iqcYuWmi5gN2/TPzkA7xlm2mIs/8QF27T3OEneAkw/+BSrqMpyEeEBLuPQEOKa4h2rhwFAdXMkb77mHx770FwzqMlmviystHWURQUDueshVK1iz/lzSLGLq9DjJgT0wUIfIUjsb00XCojI3/OLPseVzf0A9lYjOHG0/JxACJSRDQ0OcOHECay1C/M8Gtttuu42HH3741d+FEDz44IOvuW8//vjj3HHHHTSbzdf87fLly3niiSdYs2bNq98XPvKRjxCG4WvGbdq0ia9+9auvjlvAAhawgH8rWLCzLWABC/g3iY985CNorfnkJz/Jli1bWL58Odu3b+e+++57dcwrxNDy5cv53Oc+x9GjR7n33nvRWvO+972Pxx9//B8dt2XLFu69916iKOJ973sf48eO/U8ZDY4jcIQkCEpc95a3QFBhOFL4uSR1FB1PFOqFqkfiCHIrsEIR10uYqg9CYjohvp6X9htwE5AxTNcc4pKCUBM++hKLT/ZhfuMWO5DKwvYi3YBDz70MkaZSrkKU8sa3vpWb3/E2ptKIDBfXKjAOV2+8rKjkDhOknc91EoW9wKvVmFUwQwaDdc677nrUunXkWHpujlf1sdbi5Q5oUPm87UYpbK65+OINEPdI6cPELOLkNA1rGMSQ531QCWklZ8XG1ahLVhELTScMka5LaiAJY2g16bVm2bfrJcLWHGGvAwhKmaScSdwcjJJEDsixQTLX8vZ338Hw6hVEeU6mFJFyUOUhSDLOry/hpvOvoLpyTWFp270XDIwNNfCXLAZHMdOcJQ1DOmcmwBRzoWXxxDyTkALtJCLXyfwiQf+p7SQHDuN5Hgmm2Bi7BioKTB/qA5x+cidzP9oBcxFulGHThARNWnWxZcH666+kdMmF1ENLSUtSa5nyDKdLOTOeIDEaTkzB4VPkMz3QOWQZUy/vZvdjjzF54jit7iydNIKjx0l3vshzX/saOCmxiLFKA4ZcQqqKDJdUFQRSYZIpLIlWAJ7H66+6ipvvejeMNGhHfaJeHx3GkCsC3y9q3ZGkQoKxCGvxgxJxt0Xe7YA27P/RFmaOHoOwj+dIDBbp+XiuB2FI/NwBun/7N5ky+QAAIABJREFUFOahH8I3n+TFP/0rZvYfItcxVlmU5yLKNfoWRL1KlEOUJvTiHrR67P+Dv4an90FoqdfqBN0Ur5PT/KNv4Ty6H++FU/DNbfDEfvb98dcZ/9p3IVNw5iyUfKiUYXQQgjL61Fkmtz8HqUWfnKbcThjqSwZTj6FIUYsEOIrMWmJr6ZqUkBQtDMsu2cjVl17KOWNjMNtn/LuPI052qE9n0JUMhA6DpgYzMSVZ5fQX/pLowb/BOX6WyR89w9HvPEYQVBl2y7ipoJwWfFNDlgiEx2RzijPE7LUdJkRKK4lQI0sRIythLkaWaiQ49OYiSkmJgVSRpzG9OCxCvStl+g6FzXIqor19Pzx3DKE9TCukrSxcsIqhS9ZgPQsTbdIf7OTIt7aQz3Vp5inushEYqYMB242YHT/F1MGjMB/27My/XGMQ1hDqFOO5yFoJOVChm/SRlQArLLkVTPVa6ECz4oarWVIehoMnoZOyasNFrLl8Az3XkihBGgj6vqUfSLLhQabSlNgp0+lB4LiUEfjlQWYbVZpxDwaq4Pvk0sd1ypRyn2qoqKQeI/VBlg+PYptNUBKt9fw1z8wHmBsSVxH7klwDxgVbZub5/RzZ/hzVC8/nHe+8HVSx/l2dQKcFQwNcc9stXHD5JYVdMXDp6YSVt97GpisuhzSGsVHa09M4QYlcuhjPKxrRlEd2YorxH24vTr4tW+m8sIfU9/GUg4MgKTno+fNWF7nX+CNDzHbb7H1mG7gW8piZ1iTX3Xg1DNUg7uKUA068vIf++Enox5Bo9MQZ1OWr0bWc6vmrYNEguZJ4QBmoWUvF+HiVGk6pUtiykwy04bmtWyGO6Uc9LBphNL6xuMYUgfatDqf272f68DGSA0dAeUVWV3uOgXIVMFCusHRkBBwHS461FuefIIz+Rzz00EM8/PDDLF++nC1btvDJT34SgPvvv/81426++Wbm5ubYtGkTW7Zs4Stf+QqbNm3i1KlTXHHFFUChML7//vuJoohbb731NeO2b9/Odddd97/0nWMBC1jAAv5PwoISaQELWMC/OTz++OPccMMNr1EeHTt2jLVr177mPSklpVKJfr//mr9/6KGHuO+++14dK6Wk0WgwOzv7mnGf//zn+cxnPsNVm65i69PbUT+OsiHKDZPNWdZecB73ffrfcWDHc0x9/2nOhE3EQI0kjaBWgn4XxsaKAF9pYe0SmGhSOZvg9WIcFKkrybGUMoMHnK7mhbLFuNQig0SRSUHmGHKZ4FiNsoIgLREIh0haQgnpojojV2zkyk1X8fBffgNOzcBMl6AWsOiclcxNT9OZnKKMRFpDJiHxDGjByrfcxKK1q9n5lb/gzp/5BAPS588+/5uQ9RgYGSRrx/hhhcjrIUWGkwtW33gLu6ImJCHsP8Qi4dDUPbLIUrUgpSDzHaKSC8bgBGX8TBD0XLSwtIcyiEM8MUpqHT74hf/Cn/3M+8GVjOY5cT+lnki8vFA9pKtGaU4ch6o7H2IyyFBQojl+HGplwECYgA0QkaFWq2GHanTPTsOSxWy683YOnjxM4CjOfPsRHFyU0SRhl9qiYbqzc4WipDh6ipr4PKNyzho2v+lGnnx6G8mhIxAanAw0lrW3Xs/QdZdRGx3hsT/+c9h/kqoOIO5Slg6R6WKAYKDKrNSgBKxdzYqlK5l59BmiLALXUlIKMovIBbpUZv1NN3Kq2yJ65AliDxipEbz9Vmhp4m0vQT+CrIdyUnI/gI2XADF33/8Bmi8f4tHf/xMCnWGlJvQ1CEs9fIVEkmTSIZcCneb4566hPDjIpVdvJju0nxcefQybaSpemXYUFQ15xoIG3wiQFlUP+MADP83UzDR/9eX/BlLhugEiN5SMpJ9GaNuHehWMi2tLZK0eJdcn1Sk5Kf5QlWR2GlWuFEov4VO54EL6J09B1C+CluMeg5Sp5wOcIIZKDqsHCjVLJ6E2HWMcn36egHXAgmtSqq5LL+uS1XxYuQjWrYYLzoX/+rXCZukpBhwHFcbkOsfHw8HHIokwTJcjMAbpuXhBCascEp0V53HJB2PwNeSOg/YkYLj03nvwtOXoC7uY2f48g3GGXxqko1Mib96gIwEbw0gD5mZxbY42GTZU4MCd/+GzvLBvL0e+/TAMNCiXB3ngoz/L4WNHefQLX6OvQ6i53PzvHuDYy3s5/J1HwFiGS3XsXAcpBTOmQ2XJUvrTLXBKqDBjyfBiJlvT6BEfVo+w5IrLmN17lPTJXYV/yBcMXnEhN77lJr75678LocZ3fRKdFJ/ZdwiEQymDkjZYYYgdU7Q1Gogch9wYMDB80QUk3S69kyeoViuEEsxghTXnX87M1n1E/QjtK9a88UqO7d4BM3OUUojWLeeye+7hha/9JUxMcf1976c/2+LZh78PnR7EGVQ8GHFgdITb7nwPj377+yR7xvEySz3ROIFg1iZktQB0CnlGLfBJ52ao+D65UFhAS4dEZkgpcVIHYkjTDN8rEeYRa659HUGjyr5Hv4+jfbQrqVx0Pnd/8uP82ed/A5qzMDDMmJVMvby/WM+JEMhhUQ3oQV9BYrjp5z/OD//mG5QSQ3RmsihFeN25XLZuIy99+/uYZI56JnAdwWwtQ/QNMhdYW6iScIH15zK0cjXNHz7Jhv+XvTcPt6us774/95rXns98cjKQBMhESAIxhhBksCKDiApiLeKAYJWqRanVtlpftU+9tLbaam19WlQUVBQVRJkRCEIgkAQyzyfDSc58zh7XXvN9P3+sgOVVr+d5r17v87xvPZ9c61rJXvfZe2eftdfwu7+/7/cNV1KfW2Ho2efg+e2QKggD0JPMLD6BnDJoxzHkNfoveSOjTz0LSqF155HNiUyZt3wZNAPYfgjCCMfKE8YRwjSQtoA4Ia8MRBhjxyFKN0k1nch28NPk5Z4zUyVYKgXLwNcknQ3BlJSo3hIMdMKeQYgVfW4OX4Sk2XzIy0qk38ZLEzuDg4Mvq4ReUiZ98Ytf5OMf/zi33HILX/nKV7jsssu4//77f+vP33777Tz00EPccccdXHfdddx+++2vGLds2TL27NnDE088wQUXXPC7LzpmmGGGGf6LMeOJNMMMM/zeoZRiYGCAT3/60y97JGzfvp3bbruNOXPmcOONN7JhwwZuu+02Vq9ezY033viKn1+xYgVf+tKXqNfrCCF45JFHuPDCC3nHO97xinHr16/nc5/7HO12m0984hO/ViOJ7Lp91949fOcHd7L9qY2cOLiP2pLZpNM1SrjkAoHbVvimRf/8+Zz5tis4vu95LvncJ+nu7GHk0ecoAAkp9ZxJ5AAxWErQ6XRSlymnn7sWr69EY3wMN9EopApdKtq2INENhLSpyZjA0EktE0hwlixixwtbszhvvw22QeI3qSc+4eQUei6HEacIThrG6gqUSX1+P8acfuoj4+z+8aMc376XdtyAkkbS8DBSRVsrI/Xs5iHRNIxKN68+/7UMPrkRo+AQ1aeI8iYUbCLLJCQhKZUgSuiwOugKNeZM+9QTMPt6aDerzD57LbVjoxDGvLB3K9RGcbsqRGOTeCWHXChwE4FQGqPeOF3nr2X1W9/EsU0v0qkcquMTFJwCkd9k4WWv5YIPv4+9Dz/J6WY3UbNFrWRTKnYSDo+yatVy9uzeSW3zFvTZsyi5LnG7zazufiZPjIFuIJQg+6NBmmB3duKPjTBr6WI6OiqMbN6NmwqUZSBFQlULCHtKJEohhEF7zyEiFZMagpb0SByBsgWeH2GlmcdLfHicxoFjJDkNKiXwIrRm5l9VEA41r8mstSs45eylTD/5AkFnAbSERZddwsiz23nrlVfi9FcYGT1CbyPBrof4w+PwhnPY+cv7OfTQY3TWJJZUxIbMfIOUwIky7xEpxEl/EqCUI202CEaOc+TFzQw1qkQjU9gxVBKT2DFp2wYqp6EQGEn2LWhHVY6NjDJ5fJjq0Chl3cEKEvREItMES9NxpU1ggbhsPRffciOzzz2bgxs30aOZpGEbu2gShz7S0sCwKa85n7fddAvFhYs5+twmMFM0V8M3ExZ88E9g1am0Fvcx8LF30CyboGLk/uO4aUi0cBZrP3IjZ7z5D9i/+XGCpIlUEvSU5Ze/kfMuexN7Dp7gjNPn49hQnRylHTaz4qttULcN6la2blsGmmGCY6PCgKTikKoYWjXQBUYQQssjQSLjCDp6oRkw+vwOTmzZQfvYCdA0AlKMsIlrmbR7dIgDMDWcS9bwpvdex+TOwaxw2eHCuWvoe806Nm/fyfSeI5gUUb4iDiOe2fgY+0YOU1y7jlf/9c1MLpnD3p3bmN5+CKIYeor4q07Fj9q0DR0j0AiVQPT2Mn/5ck5ZcSb7d+9A2iZ6voAaGqO1dSfy0HH6yhW8uAEFi4CQPc9uhnoMqUkulRiWSZykkILluIg0qyklekJkSKSW+ZPnOjqIDZ2OU+fzxze9n73bd9KsN1DNEDOUJFMetaExIltDFmKoCGp9dla0rXl01UNe96a388RPfwFD48w5Zz2O7fLizp3IsAXdJZb90ZuZf+Yyhh97mjMWnUH12Aijz22BSpmO+QMYsyuMplWkI9GVoqBrOELSrk3R2dVBlCYoLTvuSaGIlY4wXVJp4uaKCMOg3fZAT6lNjzC5bxei6GLrLkkSEbsOL2zYAIEPYciFl7+RXY8/nqmMajVmmw6oiChoQVcnhAndr15L3NfLnPMv4jTXZWz/QZQSvO+Tf0Faa3Ng0yYqr1pOh2MzNj2B0mL01ECToEtBioC+bi5/y1vYt38vqR/gFIsM/exOaFQzY/KwjenaOIUCsdcm39VJu9Wiq6eHDrfIyI59mIuXc/ZFF9FuTRNMjUMcseaWj9LqG2BJdx9j03VEK8AOM8VREvpYjoHfriOMFB1QOoRpQC5vE0U+FhJDRpR0DRH4mCjyOZuoHZDr6iAIfahNMv+cV1Nr1tHTFP1kwp1UCtd1+dCHPoSu679xjj/99NNZunQpV1xxxcuP/fM//zPHjx/n3e9+NytWrOAzn/kMx48f5+GHH/4Nr6Tp6WkeffRRzjnnHDZu3Mjx48fZtm3bb7yO53k8+uijLF26lPXr1/8vX4PMMMMMM/z/HeP/9BuYYYYZZvjfzYIFC/j4xz8OZKqihx56iJ/+9KcAvOUtbwFg06ZNAJx22mm/9Tkcx3nFvy+88MLfOu6li1MBJHGMYZpZEUlKjh05CrUGFIugwfpbbuTpv/4SrZpAej79ZgkzDJg4MsrofY9C/zwe+sifgd7BQKkLrzGFVexEnNaBGhmknWZCGrPZAkdxYHKYMy6/kF17dxADttTxkVlkUW83/nCDyqpV1HbtyhLI5p+CTAW53gFe/+Y3seW5TXS5Bi9+/7sQtmB+P+nQKLHScFOJkUKCJNUtzl66kldfdBHfuO0nlI08YqqJlTOJVIgRgLQgzRtg5kkbVegoc2z/AY7tOAhBRCqb9FY6mJpsUSh3Q3cXU6069Hdy/tvfypN/93dUpSLp7UL5CSEx5Iq89b3v55sH/xutqXEYPwFC4Q8e5bLXX84D1cOMPXeYfLEDv9GEXJ6pHbt56sA+3FBgjU/hkKK3NbRyicHndjCY+DCnh/FjAaqYBxHR9EIIAx658y6ioA6VEun4JG+56QPc8ZV/YWRkjIJuEcUKDY1ExdiGSZBKookaGPD09+4ENHSlUKSZMscQMDbOQKxz3rwl/OuXb6cgCrRkndTVwTSRMkIZGkIpjBj0dkwfBiI1iEOXcy68kNIZC/jBV/+RyYILDQ/sPNt+eh+mbePGEkpF5l20lt1PPA779vLjvXuzthYZorcT8hg4nf3MXXgqm554HBotSrFJSkqCpG2AlgKpRAmNVJekKkEpWLv2Vay54DU8u3kLm+/7OarZwCkUqegu7XqVVJQgDDjvxhsopDoPfukbaI4JOZvRoWOYKZQtGzvIfFVeaqHL+TAXnWMNnbHHN/LgCzug7kPVp8Mq4Jo5Rr02Tl6jHSegBGvOO4+h0Qme/P4PIZeHZg2Z+mBqvHjrt8hrneiRz/Dmvay/6Y/IX7qEDVuOEbbbyImjPPu9b0FPP8QpOcsh7wdonmLw2z9n53ceBqfCrnQMTU+gHVCslGm26iRCg1I+8zM6/XRuet/7eeHW7zE0NsyJg7tYumYNp86fw95t2zj4q43kpUCXisBxaBdcLvmL93O0XeeI3+DUWXMYfO4F/B/eC0ojHxvIIIHJFnZiUTJh4vldPHZgnM5DTYzQQSw8mzPe/x6mxsYZ23sIIkk8XYUoYe65a1j37qto24Jf/MkX2XBgD6xayMrrr2Xb3/8L9OXoWH0m3U6Og1uHUJMt1Ny5MD7CnGXL6J7Tz+YNj3PW9ddw3jnr2PnMZh7/9m1YWgCGRrU1RSE1EdMJxUQw3GpBUYN5s5ml59i/bRu4Fug6bZWCjAlNDc3U8KUPCZQLvTSmG7jFAtWde/jix/8KPRGUzTwxHiUs8hgMxxG+nGbJB95LoVyidXiYvZvuh1rANBoPf+fbuELghz5jTzzBcU0hck52vOt0GRzcRfDCVgwtZtdTT6DZNii4/qZ3IU14ZvPTjA6OgaaTNhNypQ68MMCyLFpRSDuJGJg1h4mJCYpFl3zbot1K8C3FJR99P/f88n54cSuYFjRaGAryUx71JMTs7yceHOKCD7yfDd/+FvT18sQ3vpWlLPgBnUrhqSZYOl25ElMTdTBNJrc9T3nFCrZ9//swmfklkST82xf+HibGocfl+re/g5/86HbkUArNlHzBxrEsVDukGrZJhie5/8tfAz2LhTv2+JN0FfJMDU9TKudpSFCaoN1ogK5x8dvewj133sGU0aJj1XLOXv0att55Dy/uEyQ7D1HxQEqb/X/x3yktW8q28V3Q9kijmIrQkWmKZhl4YRvbMTE0DU/FpJpEGIJq1AATNMNEKI1IppiOC0JSHa+RLxdpJSEoyfs++9/YcXAfR/bsou1Y9EmTht8kjkOKxSKWZRFFEZZlZcePNGt7u+CCC7jgggs4fPgwd911F3fffTfPPvssuVzuFZ5IL10P/C7uvvvu37lthhlmmOH3mRlPpBlmmOH3mptvvpk77riDdrtNLpfjmmuuecX2M8888z/9Gi91DRumSZImDB0fxrb0X7fJhRFUurMEnt5uYluQlouMqJDENknbPgwep3fhGbBqDbR8pho1DLtA7Oisv/xi6CjinruawsolxF05yDsQx+y6577MvMgymEp8jP4OWHQqVKfAhD9465ug5IImedt73kPt+DBpO+Se7/2AuQvnc+rKM6C3g1U3vgfGR6FcQoiTWhuRJYJpQuPI9p08+bMHAEGSJMRkkdM0I0p5nf6BWXBKPwTtrC3Pb0EcsuqstSAFA5VZTNSa2HoJTc8xNTQGrQS6BxAdnbD8TCh3MBVFeKHHoiWLyK9axX//9u20Jqey2PskAJlNVdfqTVZf+nq0cpGxdhNlaJn8K06gHWMHKRYSx3azDiEvhrEpGB5jzRWXUQ/rNFTEuuuupau/BxwNQ8os7jpIoNHgzjvvJGo1SdOEKE1wLAfDMNARyCTGVCd9XxIyP6lUoiFJ4deJfSmM7T7Esc076e/op8vKY0sNo52CnyDQEGm2/6QCEh18oREjCLwGB/ceoBZGMH8uLJiDe+YyCHzy6KjpBlapCGOjHNu8lQ/ceBNasQQqzfxYpDyZkS3xJ6dJRqegdwBsBwEYCGypY5w07Rbi1wuaACE4MniQJx5+hAM7tmftewqUrmVeWU6RIInJDQwwPTWFrutYXR04+QKok/vOyUUIgdL+w2toipCQgmODlYd2Aq2EguFQj9pMxC1CI8FPJegG2A7jQ0NMjZ6AUp7rPv7nrLv0MvLd3ZkfWCFHWp2k5DXhUJXxjTt57t5HkInEb7bAzMHIFOw7BLEi9oKTn4GFKQVGIqHVpGC6lIWFi42stiCEnJMHdBacu46zzj6Lndu206hWicMIbIc9W7dw38/u4eCWzSDAUAJNgO7HMDHNY3ffy9577yfYuo2JfYfwR8cBjaJpU+7ppy4UorcXENS9OoxOUjs6RiOsodCYODzCpkeeZP+2nVz/qb9k1ZWX8aq3XAFdJcYmxtj0yyd48M4fZ143tRYcOMbuBx+DwSF6+uZSDBQHvnMnyo9AaCy95AIo5RnasZ3Nv3gAvDaHjxxi1/7dtFQM5QKGVCghSbRsH7KUQtRrmNLAXLWCBZddRGJrYAlwzCyGrFzktLVrCJMAnxQcDXIWVr6EilKito/rFikIk6TpUZ+exnQLYFlEaUKEhFNPYWF/H2piisHHn4HJBrguccnBl23iuE7OBJcYre2hJieh3oB9Bwi27YAgILEBG2TcBsfg0NED7NjxIvt3bMfo6oYkpTOXI2r7SCnRTAthOji5El4QgqajayZ2CpaEQl8PqpIjkm1YufhkBr2BmYKWgCY04rYPhSJrlq/MvKe8AJRARCmOZgCKxLVppgme55FTAvI2lXPWsGrpYqhOg9+AU+fCqXNgbAI0cF+1kgO79nBs/x4wNVypE0URjUYDFSdYgEhk5uuWSEgTSBKCiWkqApo1D7eQI/ED0Azmr1jBqUsXZ8fooElXVxfVqQnIF0mqVQgi7CTCkj7J2CRju/fCxAS0mxi6QAhQpAhDJ4lT0jQlSRJSw0DqOqkGColCEpMSk5IoSSgk8cl278TWkbYBms6GDU9ycPQEhAGiWKTueRiWSW9vL2EYopQiSRIajQYAuq5jGL+eH7/rrrv4xCc+8XLoxe9KVp1hhhlmmOH/GTOeSDPMMMPvPYcPH+baa699eabS87yX/Yxe8k/4v9PV1QXAJz7xif/pOKXUy+kvChgZn6Cnt4dLL72CfLHMz396dxZTXHBYfPWVrH3dBezat5ctv3oKtu+DWEFssOC0hcw6Zwkb7/wxjlXELuapjw7R9YYLSRyDNWes4Iz5p+EtmMOt198Ew+PYsYXlt2kSZSaqOYM//fLfs/GpZ9j8o59QWLkcaei0d+7i9Ve/gycfeYIgjkGEoEUYS04jGTvBFVe/lV/89d+CWSBf9TGlJBXgWRIzNAlNPZuWMMysxSSSmCRYtiIOPOKcy8U3/zkP3/qvCE2h2jUozeYjf/QxdD/kH776OejWIFJc8xef5q7bf4R76un4k2Oc945reOrLX4aGx5wY/KRGI2dw7kc/xoZ/uR0Rprhpm7YcRzcMhAedhV7GF+Rg91HwUwa6epgOG8RKkoYBHTGYhs14zoBWxEDXbGqBRzuv6Hztufh+iP/sFpzTlrBsdjd7X9xCeHwKM0yJk4Q0Z4ApMp+VOEUkGiq7g8LVLWQavCz1lZz0fhHZ/WUqNBJDO+lvo2X+PFLDxMBEUBI2sQrQhMBXbSIkytaIDQ2EBrqZ+feEgCaz99HVBR2dXHvJG/jJbd8k9Go4xRxBsROq9axoFEvQDAh90FI0mVCIJZrUaCQaMicyH6FUow8XN8l+x74piXWJUBrqpJl6lNWLSJI48xEyTbRUESYplZ4+NAVC6EyNjkClkqlREpl9Xo6F6U2jnxTFaSfXL6FOFtgK5QInGhNc/pE/5dD2g+z75VOYbUWsxXB6L/PefQnD//5TkhM1sGyIRbZOMn8VWvXMu6W3g+LlF/PqoMzo5j0c2reHQKTgGBB4dCiFIkQ6Lo0oyHynhAYdZTA1Fp+zljhNGHz8UfoL86Hq4ZIQeXUkCQEpsZlD9nUTaBqy6UGtBkIiinmUlgIJptCw4pSkGWCRScE73W58PyJBYuIQESCRSCJMBLkrL+PsN1zCgf27qQQpC2fPZtuO7bx478OQGIi+WShDh7FRcA1Y0A3zZmFoFuuWncmLv3iE5t4DaPkCxmQTs2Dj+QE2Ol2phWnazFu2iGFHccib5KzLX8cL7TqX9M7n8a/dSjQ+Djk9c8N3XeiowNAIA55PU4dmPksiJIFyW8OwXeqzSmh9nUQvbAHLAsui8+w1vPbCi9n6q2cYfPxRrG6LqFaHco5FS87nyPYdqLaPHYYkMqJj1hxGalUoFKDVANdBFAxUdZRCZx+to2OU0UjdCi0V0H/DH5IbPsjggxtAF+gtRa+bI/YjElI6S70MN6YI8gYsLXD2+W9k6733Z613UQR5F7NUJD5wjMXd3VRbVVLTILIcmkG2jy9few47NzxOoacXEQbkPTDtPEN40GVzyjuu5tx1a/nBRz+OMdbArLXoESYjrkMcJ6BpmKcvIo4iOD6Eli/i+m3MFGblO9mTjkIcgdTJtwO8vE7HmtVokc7UvsMYS+bypuuu4e5f3I/81R5e96H3MW3GbP3S16E3B1NTdAQWfkeRYGKa2bkOQq9Nm5T4pNG2lUoMqdEjFFMqolXMocIQDBuiBKNUIvGnoKCDruN6Dn4iIV8Br4WtIjpVjBIaE5pNaumgZYqyTmUj2yFhGpDYBrFIKTk5hFTUo5NfcqHQdInQsuMJSiCUAcpAVxLHVNSiACq9UPe5/vOf59v330n30iVMfvcnLOyZT9iaRKYhhmGwc+dOSqXSy5NAwCuUSS9xxx13cPPNNzM9Pf2yB9JLvke/7TbopfP/OeecA/A/Hfe7zv8zzDDDDP9VmWlnm2GGGX7vWbBgAc8888zLF5W33HIL/f39AIyOjv6nn18IwUMPPMidP/4R7Xabar3J3HnzeeaZZ1i48DTKlU46O7o5PDrJ1PZDfHfXHtAVi85bh37WaqZPjCImmxx+djOTIyfASwnMgLMufQOzZs3ip1/8eyiUePSBTTw/MEDdLUAbMFxed/WVPPjjH0ErgCiFVsBXP/Y5mJyikELriU28FLf28D/+KyiBNTCL13/wen5x309JtuyDWo1fPP95Kh19eOPT5DFIDUligHQkrm7gtlOMYoHJpM25H/ljlB/x3DfvQgQ+USEPKB7+x69htFskxFRedw61yYh//IcvIQodsPIM6PFh3x4e378RLJ/V555JoXwbLi0HAAAgAElEQVRBpnLxauiRTy5MaEQeha4ONvzTl1n+rpvZ+ZWvI/JgqhRSE1O3SCZj9OYYdqGCUdAYn56mbNgoqYhS8HKCqMPkqs/+Jff/6D6GH95CRXNJPZg/Zz4HzBDhWnDfdrZuezrLBg/a9GhlfBki9CK1dg10DaO7k8QLssJDEuPHEbrjIsMYQaY+IhPuYCoNTWRexEplRSVNM4hkQmymxLaGXyqgqilIiQg1HHSMWEeTGokQpIaVFToKOoQhzDkFu1AmPHSE7//jv0DkgR0SRJLX3vIJHvv3H8Gug5ipIE6q6IbATSSakjRclSXHpTaFliBXKDOlhYyZMYVA4sSgxWTqKaVASNIsnAolwFJgpaCFIRZQKncx0WpBzsoUTz2duGYeI1Rc/d53Mpz6bHr8MeSLEyRaVvdJThaktJOfh5VCqiWcqLWgbHH/v/4zGCWY3Ut8bBQKRZioUt85TIfdzURUw0KimRCG09nNpEywSmWSJKU50qJ52938sruQFZhyOpguOCaXf+HPePqXD1N//CnsZgsdSJ0CYuUKTr/oQvbf9T32PfMoyBBkwqh3DDq6IdHQNIuO1KJgGEw1qujVGgXLohX6FAs2uq7TbrYxTI0kChG6RozCreQJgxg9jTnhTyILOaRtkagYUoHQDNw4JWiHjG97jiO1STg6AqnHrwoOpcosOGMRZ7/37RweG6V614NQKjGwajnDaROeepZk/mnsGJmieXA/JAHSiyjZCYVGnR6g6doMO200Pc+J3c+TyAQW9vDCMxvAVzyp7yVqTFKe00V98jiYOrRCmPIoOyUaekwqThZADcCAuhtDHGEOeZQnGkzEoHXkkK0Wp556Ovt37WPw+a2IXIGkUSVf1BlYuoh5r13P/p0vQOJTNC3yusPIxHFySxZx5Z/fzE/v/wXzLZf9d/2E/kIX2olpHBShYdKyFYWFi+mQFvt2HoYUdNPGtBR1X2IYLoWuLgYnxzj93PXY8/oZPqWTrZt2w8AK+lbOYmxqjOUXvYadX/86r3nfB/nVv91KpWghVUrTzwos6y65nJxbYGd+GwibdrOBaVv4soVhGSReytEfPMDRW++CWh3DdonQGFcpcepDfz/4Pm53hfNWr+bxn9+LHDqB3d3N9PFhar7g4m/8LY/cfhts3UMHDp6ZUN2xBaopfZVexrbv5Gf/0kLuOw5ukcdu/zGyOZZFpU1UwXCoSo85q1Zz/Lmt1FSK4RjEcYwUABIB6EhGlCR0bejvYfGaNey79xFIBHojQhcWYZhAFOBbgqs/9Uk2vbCN408/RU4KxGQLlULJiWhIG01F6LEiiQM0x8LUc/hCYlkFWpMtTKXI2UVIXioeZa2rEkAJUgwUBgpJzW9BT4l5572GkT1HaMaK3FmvYjJuQ18vh0cmWXFqP5MjQ4yNjXHttdcihMBxHMrlMvPnz+eGG25g1qxZrzgHX3fddVx33XVYlsWDDz74nz6nzzDDDDP8vjPTzjbDDDP83rFu3Tr+7u/+7jce/8IXvgDAM888w8DAwMt//1/hdxWbms0mAJdceinf+ua3uPMHd/L973+fG264gVs+8lHGR8doVGuZUklk7Qhzcl3QSNj/6FN4tSa667D0kvPBEahWCG4eDI1QKObOOwWEhdGSCE8iJltYm4/BiTqkMOf155D2uGBbOKGiYBRhqgnthIIf0OWWsnafSDKrfyBr+YoipqYnuPjKN9Jhl+iyyuTtMoVY0JsrUbAcHMfBdB3IO+iOgU2KlUhwTCYImbt6BR2zZyHVydYnTYd2xOxCGVcTLDhlPq97+9ugswPlNRGzujjr3dfCrNlMPrYBTgzz4kMPs+/FLRza9ASoOqkbMuJ4SB3ajSpYJhdceBF0VIj8AJlI4jAkiUFHoxgmyEYbv9kikZI0iiFKQCkiXYEVs7M2Rv70OaAJDM2gmAr2795Dc/gYanQEtxllCWEL54AG3ZUyFhrN+nTWvpXPkdSmIU3pOetMzIXzwQA975BovLzITKSEUBJdga4k4uRNXS6fB13DmtcH83pY/MYLYfVicDMD7kgILKlRjAWVSKPgC+y2BlNtCGFg+VLe8tEPcMXf/lVmsuyY4Ev0KZ/Hvvnv0GxCLClrBmYhn4VlnWzFQSdLb+oqoRERtOpZw50h8TRJhERKSSKztUzJ1jKBNEFFCSoMUUmMmSgaU1MsXbmCd33wA5z91jdBvYZ/YpjmyBgnBo/RCNo0gjZGnKBkglTZokRCSkJMQqISzEgy383j1hMwcpnZ1/gEoFMxK+htl8adT9EaHEdXOmkUo4VtrDBF85rgt6hNT9NqtCgbefJSg5Wns+5vPsY5H/ljSFRmXOyUKGBBqJilGfRqDlgl1GidqBbzBzf8KWaxDzPQWZjCovdey+q/+TP6r3odMg9T0mNciwhNMHIWumNmyrM4RKQJrq5TMW063QLdpQoFN4fSDaRhEHQ4BC7olo6IYwq6CWGECgPaRPg5uOgzn+f8997MgjPPB6MCTUnjuT2w5zAvbNtGdWoSgoiBV6/gVReso4AOkQEv7KO2fX8WuZ7TwYiYLIRMCEULRRAHkAbIoI60RLbf/OFFXPEPn4ExD//QMSg5NB1gYR/kTNAF+URitVq0OjR8V6MUaHQ3odIEoZmQMxFFmwmvilAg/QAKRUKvTRpGIHSMk4VCR2lUp6Z59P6fZVejnWW8MCAhwervoXfBXI77dSJNUq1WARPLC5FS0kTh9+XAUrSOH2PPD+5DHp5ET01sX+DgEACNJGGYFPIm/qkD7JyeZPq+Z6BtcsVFbyKf72flG68iv2ARXHQBxTVnw4J5hKZOOwqzyq9U1Jo+L+7cDbGiNV2jv3+AQEhaiU/S9jASHQ6PwngLUgsTHdPNE9omc159NtgGxAH98+YwNDaSpQfmHE5ZcjroYJU68B0na20WWdOradugC/ryeeLpcUgVyeFhnEigmRbyxDgUO6GnklVkWj6VhfNYsHI5FByUa2GXXJLMColM+CNJhSQUGuRsOpct4fRVq8C2sa0cWpJSiMHyEkzDANumHfgc37M7M3Uvu7gVg3ynRr4zTz5v0+G6dBWLlCtFcqUibrmIVchhujksy6az2EnZzFPQHRypI/wU6UWoMEZGabaEkjRSWZF3/nz6584jjmN+/KV/oN1sAoLui1/P2WvWsG3LCwRBQF9fH3/5l3/JZz/7Wb773e9y66238qlPfYrbbruNdevWcfjw4d84H69evfq3Kop+F7/LE3GGGWaY4fedmXa2GWaY4fcOTdOYPXs2Q0NDr3j8pcjfl6J8hRAsXbqU3bt3/8ZzvLTtvvvuY+HChZxzzjm/UXA6fPjwK7alZIUEgFqjxuChA7zuotfSarTI5VxM28lmYnMFbM2kHJqECuoyJn/hq/AO74LjVUglxXwH4cQEmqYRuEbmlVGbBAFWy0EPWqicTmAGEGXFBrwE2yhTKfcxNjUFhFjCxJGKtvSRORNpSrB0NCmZXemnNZWCYaN08AOP2bMG8Gs1osAjiiJyOQcp2hgqa4uKdA3P1CiUK4wPDYOhgZHgLFpEMDRNfmiSPq3AESNCXnAmva9Zw9zZc9jyyb+BUheMTmTR2kkEOTuLfE8Fqh2imRaaZdP2auiOSWRqWAOz0OKQYGQE0MC3EZjYlOhcuYjh/VtBxJD6WKGkYmikicQH2hbglrj0wx/Cb3ps+MndiHaCajXBAqIEO04IT+1iwaUX0lHpYuvff4tcZOEojfIbz2Xhm1/LL2/7Nuw/xpXv/3OSasj9X7uNgVMGGJ48CKqNYSiMekoeiyktQtMSyhIs02YsBAoVWLqEc657G8/+4FaWDswlOjHCoZ270ZMU/aRYSDu580g0dCWJZUTQ2cmim/6ExliT0Z/8DHSJ7k/T6cX04sAHruKM5St46t4HGX78qcxcV1eQSnoqHUyMjUApB+vXctMfvpN//fRfQ20qK5yNTWK5OfJhShhlxTup60SWA5qVfd6pgiTBVgozDgm7O4ibNSjkoe3hFDoIak3sVGU3szqgJD1+irAMEhkTJAkS6CmXkElKw/NwEGi6znSaYKEx94wVLLpwHce0hL3fewCm28y+5rVUFs9ly1f+DWLB3NigpRqkuk3DzmynzFTDSSR+QRIriVbuwolM0gjCpgdlG/oq0GhAbGCPNenu6mfSaxKWdRgowIlB8CL6pcPonCLM6oLxKhwZoaA0HKXhODajXhPNMYiihFkih6Zp6MIgTVNAy1KlBCi0rLVRC0h1gTQckkRipjoEMYlMSHKClhmR61uJSG28I0cpdlp4kYciRqU+LF/MmvPPJ51s8eIP76EYKFJL0dJj8CJK/QOc+7Gb2OUqhp56Fo4dpitfYOqZjaAbmUKqHmUys5wBi+bj5nL4W3ZheYI5l15Mfv1Z1AdKhFt3M/bAYzBZzQogwsBJICc1GrpGYgvIwUWf+HN2PPI0k08/B5UKa66/nuNDRxl5/JcwXQPbhlji6hqKlFClGKUi7okqnbqDjNo08wZVLYR8HtoR5AuQtznj7D8geGIbh6aOQdmEVafAiy8ABvg+RFB0cySxJDIsUpWZ11//79/gznvuxR8bh117KceCupYytzybobDKVXd+g+3PPcfhr90JQUDabmA3QsIOG5Z103fpxYz90w8oTuo0cz4s7OWGD3+Un3zgU5Sl4Cg+5//7p3nynnthwzZE6qAvnc1pZy5j7z0/4+L3/CEbf/4I3lgV18nhpykEHm/+0E0cP36czZs2wdE6dFt0mBWcsSpuEjLYk0AxB4enMRdUUL5GMt6gUh6g5nk4ixeh5vVzxQ1/xIPfuR3vV0+z9po3s2v/dlp7DmSecmGSqchE9r0zYzAlkGjIfI6Fa1cREDO46VmwbCyhEU/XKBoaPpJ4YQ80WxSsbmTLI+nOEfkeHW6O9nCN4pJT0IIqBR+sNhxLfUSpgBdBd6mHyclRyue9isWew95fbSRfcBgZOYzQJUpBqaNIo+oB+klpZkLvGUup11uE45MgNLpXnUGUxDR27QUnD1GTGz7zab7zT1/HO3ICExAv+7spbvmzj/GVr3yVj370o3z5y19+xTl52bJl7NmzB6UUl19+OQ888MBvbUV75zvfyR133MEXv/hFnnjiCR544AFuv/323zDlfuk5ftu2GWaYYYb/yuif+cxnPvN/+k3MMMMMM/zv5Ic//CGDg4McOnSIq666CoANGzZwyy23kCQJ99xzDx0dHXzzm99kcHCQXC73ivjeZcuWMTk5yTvf+U7e/va387WvfY2DBw/iuu4rxq1fv57JyUk+9OEPs379+kyJcnJRSUSr0eTb3/wWaRJh6BoyiXHQKcQahp9QC0N8V4c0YNUVlzE8PsbqN1/JyPgE+tg0hSShK5fH0xSzzljGyqvfirlwEe+96V1suPsHJNKHwEdD4BZKxGlCaggWX/0GgrxFcHwYmUi6CxWiNCUu6JDXKfb2UcGkcXQcI1/AkwnL15xNYmkcO36ElozIVSq4pSLNhoewUpRQKKGwU4mbKKJaC2GZxIkPnRXmLlnMsgvOZ/CZF2hLQDdYdO5qjh49QBrHeCNVrOmAtBlAmmAXcqTtFhXLxJaSZpwSaRBpCmU4IHVM36cwVUNWW+gJmc/QnB4q61bgz+1gTv8A81YuYWT4GAhJPklJEokBJJZOLDWIBAd37uDosYMni20BeT+lECU4EmJXx04cJp7bxciO3SB07GKZuteiNjnB+PFR7FAnOjLBvl27mbd8BaMI2qSkjUmQCSKMcCpdtO0caRxTdByiMMITKRfeeD2HWy0uuPlPefrn98HoFJNbNlM9chSRJORdF00TJCol1RSpppCaBJES6BJmVShdeRnHB4/yqre+hWY0RTB1iHbJZEJXTOzYw677HqO5/yidTpEkSrDLZfJdXTSiGBmk6E4RNeUzsnM/RjMEX6Em6/S5FWj65C2LdhRgmYJipNETmqSBTgRc84VPYi2cxYnJceREjVNfdTbvvPlDmLbLsQODyJaPhkRTKQKJLhMQkpar46UBvpDEtgHdJWqtOk0tJurM0dYEaRATmYIYjfp0nT07djB6YC+JY5KIlGriIx0L7/goSEESRqQIpGEQ6wKBQj/ZgmcUDSwp0OpNlOcR+i2KA92ctv7VnP/2q2gN9LDo6stZ8IaL2HlsL6lo0fGas7nsmjexd89+mPJwI5NwchJtbBqqLTTDIjU0tLxLkKRoYYqZCkQiUT0VQtughaStQ2DotE1BYAgCA0Ijs7ZqypiWJghNg1BphElKogtU3iYxwX3PFcy9+iJ6y3lOPL2JXJISE4OhYNpn+Febmdy2lzQn0RIJhiLWY4xQErXaaKVOlq5aQzQe0OkWGd65BxptQCMfpxihwtBAJhI1Ok0yPAZC0Rk7jB0cYnTjFupD40Qbd8LxKfJhQOQIjDTFUBKhBJGuoTQB+RytdsLkE89DKCi/7SqGI5924HPqKQvwJqfRgphCCmYs0BMdOzXIK40kbyN6ywwHTQqWg9VOyEUKQwetUmT+utcwPjTGcKtB+Q/W8vr3X08+0RjdfgDaPiwoM+eUeVRPjCIRpEkKnRUwdV7cu5uk2ci85abrCK9JYoHZjvGDafYYbaa3bCW/9QjCb5AoH9suEPcUWXPllZSbEcMbnifqyoHVRjvzDLb+2+0Euk5LkxjlAmFPnubTz2GleayGz/qr3kC92WB68CiDO18gnqijxyl5YRCqBEyNwdETDG3eCs02dFrw6kUEx4fx4pgwyVR5VH1OS4soPyVJI2zHodlssuzCC1m88kwOPfEo+5p1om3bwLY4ceQY0bEh8GJczSbxMyPwDIGdiGwf1TXiOGTsyCDVY0PguNBuk7YDirqFlkg0qRN5AX/xrX/jqV8+gZZzKJ+3ktUXXci+bXtY5c7i2IFDdOdKGBMhlcSmhYZl5yjqOczpgJ6FCzl96TKe+dUGYtei2ayCIRAqfbkALbQs0c0tFTKfvZFR0mbzZOudwjtyjHBkNPMNTEPmnH8uU9U6k8dH+OubP5r5qamTPbYCFi0+ja9+9ets27aN8847j/nz5wNZYeixxx5j6dKlfPCDH2TOnDncdtttbNy4kWuvvfblJNUNGzbwqU99iiRJePjhh18e99BDD/3GuM9+9rPous5dd931/9blygwzzDDD/yeZUSLNMMMMv3ccPnyY5cuXv2zG6TgO1WoVpdQrZi83bNjAxRdfTBzHL49rNpvEcfwKhdIdd9zBu971LpRSv3Xcrv+gZHoplCuJYoaGhlh91lkEQYDSNZSu0eHpaGj4pkG1BAPXvpnhI0dYdvpy9j/9PCvPWsTRF3fj7x0kqdXIOwUi16bV8rD65iLjlKQcQGMKEkk50kkaLYTj0opj6Moz9x3XMK/Yxc4vfYuck2ekOkFudh+r33wJz+/eznlr1/Hot39Al5mj0aqiWSYLz1iCF8ccOzwIwDvedT0qlXz/9jso0cZO5ctGySiNWGl4GnimYuHK5Zx29ioe/s6tYBZB6jDVgiSBzgqa6yCnJvmzz/4Ne7a+yP0/uYuSqeO1GpgGBJoA1+CUC17D0Reeh+kUfIltGujtJmXLoRWHeJ05pPLh1FN49ZVv5rnPfwNroJeoVsVoerhRjAZoVo6qniJ6OjEm6sRpBCKBfA7qAW6qY5sOqS5oJj4lmSeVIU5XN1N2jL5ggHR0GMY9+tISUbuGg8OI085MpM86kzdc9Vbu+/DNWLqJ8jzini4QAjPOoarDJFoIFsx719uplntpTtYoTfs07n+Aomsg05g4zrxDlFJZItp/QFeSJO8Qayk9/9enmXj46UwhYoXMX7eEI5u3w+5D0JbQjjPj3DBm4DVrGXFBBR5XfPBD/OKb34SaBxt3ZV48SkMkko7OMscnhrPo+tgDTTCnqQiEoK6bxLYLmobh5kmmJwCJ292JH2RtOtQbkKrs/x9HaEqiRNZOI5SGlZgYro1mGHihTxgG4NonWx8Fpq5DwyPuzmepe22yVLxCHvpz4DpwvAlhmkm0ogiQCNNGSxLsVCFFZmYe6xIVhghTYDo2cZKQL1doTU9CuZwZN3fOgoaCXBH8KnR1QNuDdkjJj7FShSMEFQVBEjFpSWo5E8RJw2lpkGtpGH6MjqBqToPSEKUyKIWQ2aWWUL/2Ecg3PexikbGmh2ba2NKkpDQMFJGW0BAeYVcua19tahSmPQIrRZy3mDXXXM7Gv/oyTMacluvloF3F9CSaIQhFQr6R4IgcU6aCvA2iCM1pkCHC0rECH0OlWEKgBES6INVMwoJJ/yc/xKk7xnn6299DGBpKRuSlIodFlYikYkEaQAyFAHQMEjRi1yHyY7rdCsoPmDpzgJUf/GOsRovnP/dF3NSkqDRyCII4IbFMvKKDsXYFrc17MZo+jqPRNHzIA2lKxVO4niTs6GB6chpKLp1vfyOGZeJt3Y/3+CaMosON3/gf7L1nkF3nfeb5e98Tb+rcDaCRM0CQYBJzAkmIFJUoiZQsypRpWdIoWpY5li2Pd8Z27e7MaNZpNXbJ9lhOsiWblmXalkQFUgwiCUZkEBnobjQ6oMPNJ75hPxxQtsrami/LLzv9q7rVoU7duufUPfee9znP8/x/k0d+6/dZPHgUzy+TZ4WIVFk9ytV37+all/fxtjvu4pVnn2f86e8Xkc+G5Kr330t+1RrG9+2Hv3ocp+ZQ9y1iIWXbz7yL0y8dQEzV6UtgttTmpo/+HO5cm6f/+TuwdYSh1WuY/+dncUolgkRTi3KM4zIXZqAU/aVeWqpOqB0cITC+TyeQ0G2D6yG8CjI16FrAQ//1P/LPf/41Fve8woY3XUsjFCyeOIMztogOfdAN0IpqzyAdDYRBcW46ljs/8lGi+UX2/N3fQ5wRSpdyDrnRpJ64OBUNyjkEBhZkBL5DIDysNpjMUHJCHMcjU0V8VZZL9N6wk9nOLEwu4FcqBG/aSPvoMWRLsXnBEC4fZnKxQU8KVS/kpJcysG4ll229hEP/+ARto2BZL2LLKLUw4PxLL0O9SdCJGenrY6HeQIU+mdKFSy2OAPB9H601WqkiUlh8EBZCki8BQbV/mOmjJ6hWK8X0P1mISBrLQx/8EF/9668C0N/fT5IkP/q+P3z4MOvXrwf+xXEkhPiROPT6EIzXHcn/s+1+kuNpiSWWWOL/7yx1Ii2xxBL/y7F+/XoOHz7MPffcQxiGAFx33XU89dRTP3YxeNttt3H8+PEf227ZsmU8+OCDPxZxe/DBBzl9+vT/dDsBxZW8Bdd1Cb0QrMQKB2MFaWYwUpBiaWsFvsNNu+9k56238NoTT6HOTrLvh8+xOD2NMYYMSBxLZBW4DtncAnqhCedni5HluUOYCWr4iEThCA+M4NxTz/Dc975PErfIVAouRL7gyttvpbJiBUMbNrHy0itY6HSwjkQ6munzE0ydHweVQ5IwNnGW3Gh6Bvt/4jHudDrUyhVYbNBTqrBp3XrYfkmx6M4j8CTCCXEWIpz5DmSKv/3Wo7RNAtaQp4pQ+kXzcq6gWmXlxvVw+Q7E+nVQDklVRuRKFgNBW2qMNUXR74mzvPS1v4OyRzYzDa0WVT9EUnSltLMcBNhWnTyN8K0GR+LkRRG2RWM9h1QAjoOtBKTAwsI8g5du5Zp33c3aB+696DJKcVEoEuirgom55I5beeKZH0C1gpXFM+68fRf9t91GniusCJDVMkiYeOZJ2gdehSe+T+vMSYQAneUopVBKYYz5NwISFGJEzTigQLRiqPXBayfg8FHCHC7bcTli5RpoN4uYh1WgUkTgcOPuO3A3b+Sbj3yN0dtuZveHf4ZlV23Dqi4ydFCOZq7ToLJ6Bbe98x5G33wr9JRpuoKGB3lAsZDzHUSagxIIEaCios+Fer2ISwUh1UqFf/vqITOKdrdLo9UmU1BbtgJyXXRWIcijiFwYaHeLyW7SgIQe4XPLBx7g7k9+jNEVq6Fb9OxQLeNsXotVMVqCp/9l4psVkurAANZKsijBCkGnXYdatZhcJySy0aHiFH1ha998Fw997nNcdfsdOFnh8FHWMO+kXNAxdWK0oXC2EIDxi7JloOU4+KtXUh4ahbBCyQsQqcY1xWvydfEzUKAdh3qagO/h9/eS+5KOzoisIRcWr1qG1aNw6Q7KPTVMllCSDls2rKcchFApQU+VJEshh1JexB6xoIBcWOitwlAflCV4Dr4fUMIBq/EdB+E4KGNJc0OWazACu3IV560Gx2BljiM1FoN2DMr1LhasA8VwLRwMPoYg0zgYOnGDjIz+W25iqK+XMyeOg7VUHBdHKxwEmbDo0CWvhNxy3/3YMCRPUkypUnzGGA0qIzMam2dEzQWCwGd4wwYu3bqVoWUjdM+dLYrtwxLfeuQfWVxogHCxyEKEzHKyZotnHvsOG1aMcu7kaabPTYLrcPsvfIa73/0ejhw6zKE9L9J67TgOBiE0JB1qrs/c+fNk7SZ9PWXSrAMSdg6voHH8LMIV7P6Zn2L9ZdsBwUpRRkQRAoeGzRCVKtWhZch2RGgENleoLCdWGWQpYOlZs6aYXpYq3EbCqadeYnFsAoTg+rfcxWKjAc0WerAP1owSDA8VcWUpoNNBKgVhCLUaV2/bwlC5BEpTcjxCKxHG4IriMv/1KKURRXrRr/igNCZPCISg6oS40sMgiQxkgU9icna+5c0wOQPWp6p92vtPQKQLp1I54GxrjsroSuIwZF6Ct26UgZ3b6FRduq5FuQLpe+x6850MDA8WgmucUHK8IlWLJctz1l5zFbe99S0M9PWDsagsR2iLsFDyAgLPv7gTgF8uOs2ShPD1/0NR+nTxm/YrX/lLnnzySbZt2wZAGIbcc889dLvdHwlIAF/5yld46qmnfrQdwPbt2/nKV77yIwHp9e2+8IUv/Nh2119//b+5ZlhiiSWW+F+FJSfSEkssscQbjMUgkD8SkF7Ptc1dqLNxy1a6KisEEDn8K18AACAASURBVEeycu06ptpNbNwpHASr17BmdA0TT75ARfp0W+dxkVhjsJUQY/KitNXxoZ4SBhVGBDTq0/QEPURpSoLCL/fSjLtY12Vg/ToWT5+irA1RLYD1o4XYMNAHWhSTq1o5teXLaR8/SMXmeGFAK4oZHllOs90mzTU2iiEs0U+GZ0wx1p2i88UKj0YcI6ohSbtZ7HC1xOf/+s94/oUXeOa/fhGvIyhjcbwKiyt86AGm58CpUWrkhWMhi8h7KmQ6ghUj0JjnP/3xX/PII1/n2AtPU7vucnp7QjatXM1T/+2/M2RC3CTBYlgcrpA3uvQODhLPLBDg4osSC0Kx+X1v5eSpY/jj52GuQSV0SFON70u6mUFXahitcVat5rp3vYUDr75K98UD3Pkbn2V+wOPAI38FL43T2/FReU7XS2C4B7wy2+65l2N798Oh/chqFVOvc8nd72LtZVfw2D99Cy5MQmO2iCSVSjC6mlve/wEWjhxi/AePkyzUcV2fIAhQSmGtvdir8y+Uc6hayaTnw5uu5L7d7+S1p5/h/P49tGhApAlNCcd2kBY8BARlFkMXfAHGQE8vuGWctSvQx/eAKMNUHbRkZGg5F+pzOCuG2XDjmzj55HeLKVyJgdjHK9WwgU9142oah46AkpS7iqS3hIkbYCGoVjHduCgQ/1dOpNyRYB1uuv8+vHKZp/7ubyFwefsvfw63XObF/Xu58rJLGXAdHvm1L5DRBZuDV8GZ7qBX90N/CEdmWR8MczZdgPUrePj3/g/+7ot/yLnnX2GoY8mlIfEgDRywvZRXDnP97bdiS4In//EbcOEColzDzi5y2WVXs+Gam3Gv2MLfP/KHhQNrbAomW5SkS+oajNuF1EKS4Qc1slaE1zeMV6oQWQNRBP093P2hDzH+6D9z7MgRQs8jcCQi1zjWIK29KG4ZZkoWf9Mq7v3gQ5QrVf7i8/8bCP+igNKB/oDBD/4Ui1GE/ZvHqDY0JQsxunCzKCAT9IdVZKdJj7Z0PIe5si76cMISy955K2964J0cf34vp373z+hzQ5TKsdLSjSNwHYQjEZ6LwUAQcsXvfpHpbz/G7DceKRx6qjCyqQycoIbOc/ATMODl4CsQVpJQTA/EkYWYuHYYVqyA8UmYbjBcKpN3Y2S1zKJQRRdVrR9WX8Ll11xFX0+Zp//oSwyuW0M+M0Vr6jxeliKFJjUplUVNtW+I2ZIuzrXNW+CVU9BOodWEEPB96EaUrUC4Alkr0W4sgnCR/Ssw9QZcfxlX33wTZ7/2OItJE8QiaNi0YDmbzOOvrBFeULT6K2ibgHQJu5Zht0yjMUe51s+sqcO1O+DgMVZ4K8hnprEDgyykTRguQ2xgrsPOyjLOtCfwnRDrSJqhxAiFu3YVH/rAz/Dl3/xtRJyxrmeE03EDAgtD/WAyqrfeQafegFcP8eE/+WO+/LGHoNGg3y+jk6LrqJV1wZf0DS+nMX2BwVKVqBPjKksgHCKhiTxbFOgD5EWpfmojggCCVGKVJcdBVwfItYEdWxi6YjvzJ49RfvOtDMSK9h88yhV9o4ybBabieaoln06nwS2f+TnaDZeDTz1LksYQdGB0mN6tl9B8ci+ONZRXDqNUTj57Aa+ToE6PU8YipUdLGHRJ8tbf+DVW9w3w1Z//PFEcIYXEWEPgB6RZCoDv+RggUzlYwbKBIaYnJor9CoJitKOQKIrd/Uni9RJLLLHEEv/fsNSJtMQSSyzxBiOwxd1787otv7hpGtRK/MFffY12fR4xMADaoDYv462f+RDOqmXMvXKI8Gwd9dpZvDRHZ116VYpvDUiHzJUQSB7+sz/ivI5pHj+M8qG3rUl0RtsRyKu30smbJKFl23vvpRKWmdl/lP5ajdhGmACufv+7uPb+dzMtJFtv3sXsc3sIb72ZtRs38MmHPsjj//hNemp9mESRNDuEGspWUnZ9ylLiGFV0z1zECIE24AUB7UYDXL+4/d01PPvMU4yfOg3NNmUZ4uESuQa1LOSaT3+IuBSSHDiGzB200niiRKQUlMow14CO5unvfI/5M6cgSRjdeTlZmnN+fBItJJ3ZOUTokyhFluXI0CFpdvGrfWRZEccyrsQZHeLWu+6k4odMnjiJm5tinWUsuuKjlKJ3+w60X6E94CN7yiQTs5x99gVmn3keZurINoS5QruavEcWi5hWTvvYHHp8CgKDtTH4krmTU5x5dh/sWMfHf+HjnHz6WUQnYsDtpdvOmNjzAt1Q4Pc7ZIttpIE8zxFCYIz5Ce8piK0l7wkhjTn6vSexnS7h4hyeyqnpEv3WI/FytGexUqKsIBew9uo3EQwvp3tqgkuvuJ7rtu/g+PgpRoZXotsZnhL02xCbZnitlPrRCVRsYXQVu+++l9133MnLzzyFkYYtu29hVirIuvTddTvds2eKaJkFz3GRxhZREwqF0UiL5fWJVxG+dIiDgKzR5sTRk5w6d57LL7uCJ/7+7zm4dw/BQkYeG27+xY+y4dqruHDwOHa2iekmIC3NOMFZNoCNO+z51qO0kgzaEWEOVli0BOX4jF52K4Nr13Furs5rYxOQZGBcyCxkltTzOHD2EAsjIeGOjSzbvInGsXEYX2CYMhXt0WnnLI80NWVoSkn4thsY/dDbmVvfy9s+8RHOnp3GnDjH6adfYt7tgmNQviB1BYmryXoCOjrFVn3c3gpZR5EvRhw9doqDL+zDzjZZP7qWXutiG228KKXnyZP0PH+G1GriUk7kK5S19OChhYOtlIlFSiJTrBUs2gTWLgPhQdSl62u8iksyPknz8DG0AO3Lwr3kudBXA6OxJi/inMpj5m9eoHvqFMKkOJmi1u+iSx6O7xM0Uy7xhplL2vT01IjSjNyTZGUfE3qwfJCN730bo3feyDse+CBnXj1EevosSIkVGsoeTd2GKzax8q5bWHvj9SxkDtMvvEgzzUiSmO3XXUGpVkJLSffcedxuSq908HJNXYKpCNi0kZ0bL2X2h/ugm4KrYP0a8HzK1R7iuRkqviDptNCuKBxKUQpScMmum6kv1GkcPIlOI97+f/4axvdZfOVVvEDScRWJUAzbGt1WDEKghMJtJqSOQ9PTIF04t4hjfZx2Asaw2GPx33EDl/7cfcw++wqkBrcbIVyJQGIFpI4oxH+Vs/f5PWCLSNmFqAWBg3PbNdz24Z9m7PwUD9x1H42JWZpnzrDvwGFIOxB4JM0WJknwpcCi0IBqtfGMwSSKVAqMhJRCRB2+dDM7b7+ZyZNHIQiLSZAmxc8LRyPSIfUC9Mrl0Fei555bqDsZjPSTP/8yN++6g/oLh1icmWHeT0ldRZ6krBoYYe/elzh/8DSukagk4+2//AtU1qymzwtIz0zzoYceonf5MKeeeYH+bk4pyhHdFgBNazCehIrDyXOnePW5Z7GzTYSUIASOlOQqx3M9hHTIlcJzHEIhKbkuvbUqn/ncLxdTMp0iBqspzEpLItISSyyxxBvLkoi0xBJLLPGGYy9a7sWPXEgLrRQZuuw5epTjZ05Bq4n0XPKaixysMTc5TXRsnMGupWwK+5KSitBmCCRaSDLXAUcS9fewfuN6Tj/7DGQZJSegaQ2ZkzP81ltpbV4JNidaNszWNWs5d/AwBkuedcGVdHsq9Pb2c/b4abasWc/4/v3c+O77aLUWcZKUs6fPksQpUlvKYRlHFYLL6w9psx/fWyGwVoCUxHGCdBykslSER9ZtQKMBUqKVJclTcptBVVLbvokVvf1MHTqJbStcJDIISG0OfoAUDuU8Q3k+Tq2G7SY0Tk3QmZghGZ/CSAGqQ+Yqcs8iUrBuceyV6yOlj9IGyiHR/DQzcZfxs+eg3mawp484ienr70X09xAnMWm5wjve/V72vbiH5KWXoR5T9atkCy1kKhlMNT4GrCHxLG966z0M9I8yffgM5aBELmKQCtA4mUcll6ROTGmgh+7R49huB5VlpLmEaoXc07zvZ9/LsedfxdUCrTVS/uTUuREQSwNrlrHup+6jsf8gsc7wsi6pZzF4YB3qZUXuQeaKwgHkS659x1u46Y7beOXAAUp+QO9IP2dUh+5CHbVQRw/002i1SI3FSJdKbw9JFOPOdykrh8FVyzi47yVwBbMnTkCnCZdsIdx9He/fdRfnj50kimJsrpD2X9nvRCHsuFYQaJfu/AKL56ZJFlrFFK5WhJmcIc4M0cmT0G2QL8SQ5iyULGfGzpJPzVOJcwQC5cLg6rV04zakUeFCWWyBEXgarLQYAcpx2XjZtVx97ZuI04SZo0cK15Dn8bHPfJa402Hy1BmIImyWU1MSZ7ZB49BJZCoI/ZBOpsitxtuwnDmVggMqzuiOzWFOTdGYnKMzdQ42jHLHJx4i2LyG+agNtQBsxr2f/CiX33QtM61FmvPTRCrG1GpQ8WB0iFvvfze77n8X41PniKVmsTVL5mtGYp8aFms0ntLUEqhFCZ52aa0dYuv73sLoA3czu3cviRDQW+a6+++lfnqSvJuCyik7kvTYOJ3ZOawnEYGPUTmVLVsQ1YvOot6ewgHVjHG0hJqPtV2sL0ilRmuFNoo8lQQqQ/iCbppgquFFJcKCEGx661tYduk2FlRCXyI48K3vQDcuIpWOwHgO/Tu2csXuXbz2ystcOHCAdbt20/jB8ySvnYBzk0yXBTe8YzftNKZ+4BRD3ZxeK8mEpTNQgss207dmLee/s4fS9Byedcj7LTve914GK330lUvMnz6Nby/G8ITFWgdMcS71jC5nvr5IfPg0lY1rWHP9TsaOH8c5Mk4mFZmn4bbruSxYRj4xiyddkrJLnGao3gDKPiwmlHOLryzSkVhtSaqWje/ejQpdFr7/IsSKUFmUaxEU3VPKERirCmFVCGhFKKXo6RsiKNcY2bmVK268jgNPPkN7coGxl18EXzN05y1EjXmYX8AvVXCzvOgLcgBhcazAtRLHChIJ0nHIjYZKwD0/dR+rN6xj38uvQGawuSJQOY4tXKNaOGSuVwwWyFOy7ZsINq9Ht2M4MkGr22b68BEou3TTC1z2lsIh1d/RLCw2ILGMiICqstSG+pg5O87pV/bB+BxSC46fOY2YbxRF7kqRdNs4CNLAQQz2YY2Cyy6BsIocm/qX6ROAtgbfD8hUjuO6qDzHcwRSQLlc4TMP/2JxHGVxfF//tFkSkZZYYokl3liW4mxLLLHEEm80xly8ur0oCEjoSpjXcN8nP86pxhzN02fgyLEialSrQJLgx5ZaZnAs5BJS1+CbFGFdlAjoeB7Wk+DD2luuR80vcv7kSZz5Nroagidh2QCX/ruPMNjbx9yZMV778l/D9CJ4Lm6eYEf60c06uC44VTAe4fAASW+JdTdfx9jJ8SKO0mpzx67dPPXtb9EjwNcKaQ2OVRipC3cJ/2qEuZEI6VKv1/E8H5trPCHpkBZlNSWfYHCY++59F9/+3ndpjJ2CDWtYu24d4z/cT7kjEcKhKzRcvhGOHYZUs8KWWUjrGMcnCCt04xwcF7lyOSZe5LZP/yxPP/5tOHOa4FyXrK+ETVNueuCDHH55P80TpxDVKlZ1YXSEVdfdxuSBo7D/EMsHepldmMKWgJERUILaxp20XzsCgc/OS3dw8LuPEwD9FC4AJTRgyaSgduO17Lp5N09+61mmTx0D0QRSHGNxVYg0HnGPB9ISLNQJgHLvEP4lO5moz8PMGVjeQ62RIGNNt9vFcZz/VzdShoFqwPIPPcTcUy+jXztK2UREgQFbQeQetTwn0OpHMcO2D7q3Qq41Tm6oJpamzVn2q59goK+frN3i9Jf/B/T2M7T9UvJ2h+aeFyDsIdQVqmmOaM/jVnqZThbgslVc+ysPY3B49cmXsN98HGbmkEGIj0XHCZ4r0aKIs2lp0JKiDLtcLs4LZVh53Y24lSo377qdv/7zv4DpGei0Wb3zSuLZBeYvTIHNQCvKXShJSbcqSYZ7+Hf/4T+SL7b4s//y27i5wuYZYC9ODwOLQ2pl0YHkudBYLH7Piv4tkhivWsWoHJ2nhXMuV7B6BVRDbv3VXyG3cHZyEnHkEAsnTpKdGINOTihD3LBEJ20zcuf19K9ZyfFD+wg37yBpNPnUJz7OH3z+czA+DrUaLCwgRobwhUNfMMLs+WnQKQwOgTIEmcJNUkxzDj8QlPKip6ZeMuSeAgN9xqfmVJjWGnegn6QqYH4MFlP8TZsY2LKJmX/8IYGVmNCSpx2GDejQZzHLihX2wDLe/8lP88PnnyNPUu675x6+9Hu/UxSiOxrWjlBauZ745BgYxTv/yy/zyv5XmfrTv6E6r+nxqiy6liRIYXSYzXffw44N23j0N/8zrBguen+mm6ANTuCj2wtUhgfpJjHD69bT1pZkagpWrIVWCv01Rq6+nAtnT8D0LDgBzM1DJ6LqeZTqdVQg8e+4lvV37eLgsy/hPnaAtZGl7hjO37MBu3wTcmIOMzsDhw4QGvA8yCQoIZEmLKbJaQXLBqk1DPGaYXb/+qfY+/hTyL94nLpu0HvXtQy9505O//YjjJ6s0yFlbllI+dLNDFZ6OHfoCMx3qcQJBkVckgzGgoVAQ00V7q6TTWrWJ/UE1jWUc4m0kEtJecMqLoyfxt28gdHlK5k4fgYmmoXItWkIVg/D+ATlehGj1NeuZviaK2i+Ns6mgeX0NSOOPfEDTNQhySOMkAgrcUzxUGUPTzq0Wi3oKcFAtSjy7sYQF4bJslOcerl0UVKiXY/azh28adcunnz8MVa/4x5KjQ5jX/orMtll+YatWMey6f13I+KUo9/9ISvHOswkDWrlCgPKJ212uDBSZlZF9A+MoGcaxH1lMs9Q6Sb0ZDmh6zB1/hyu79DVupgK19PLz/76f+TZ732f0//8zR/7jAuCgKTbRXoe1lowipIrcYSkb2iIiXPnsdZihMO/XswsiUhLLLHEEm8sS06kJZZYYok3GqsvjiC+WHIqoSMgkvDE0UMcPbgXps/jJBGjqUNPo0klztAONMuabsmQS4NrNZFfuCs87SGNh1ASbQTNMxOkZycZzCVVzyOLMtzcQTfgwjefJT50jsWXjpJPN+gNy3iZwtWatNPCcUt4kWWok7PSBDjNDqljsIO91LZfys0feJDTL77E1XftZvP2Szh2+AAOCisM2uY44l9uHRe9N4UTSSJJ4gRXOBgsaehgfY8VWzdTHl1Ga+wkE3GESjNsK0eeb1A/PQaxwihIpYTlPVz2iQdg40q67UU6FxYIdY6wirjkwqohbvj5j3Lu9DFoRewY3cIWb5ipPUcQZOTWgOeQjy5n4+Yt1NOEfHEeOm1QOa1WzGf+r/+bFx/9JzrNNtWBKll/hY233oqq9dI+cJze3kHSmWnEdVvZfsf1RCrlQmOBbo8iDi2xhP5UMDNb59DefXRETvmKbeTnxqhlmt4MIl+TlizkDqLVoq8kyV3LoshZdfed3P6eezkxMYmdmEJEKeriZDYp5U8UkEIFwypAVwao7z2InZijnGmqJiPyKDqy8BCGHznXIk+QlCzGtGCkl/5ta2nMjIHnsWrkCo69dJDhkRUsGAdmzjN6xRXcues2zkycR5YrJComSlpExtLJE8q1KvlUHTHewh6eYv6ffgidDhiFVQqV54wuW04cRwhhMRKMsEhrCJXFdFNsNwNl0a2Y0eoAJ17eT/PMOVAeI04vs4Me1952I/6hSfJmg7QckPsWmefYJEH1GPLRURrnpmm/fIwe6ZHpnNwHg8XXUFaamIjQdpDtJjLPqJiIig9JpwshmFBjQw1JTjnKKeEzuHEz/TffwMG/+wcmv/M0nScP0Dl8BJ3mMN9C4jDa30/ebTM8uozpQwdY2LsPGdTIj83A8XMceOoF9HQbJ7KIhS691qNyoUOlEbOQaK56+9t5x6c/ha5WmHntKDpOwSgcq3AcWChBN4BQGWqpIdRgekvMmS6m5KF6KnB6kuFGxgbbx+LsHM16lz4CXG2IiKEqMalBK01QDshyA37I4aeeoz27QLfd5ZVvfhtfuDg+6J6Y9zz8WQ79w7Mw3maUZew9dITWvoOQJFRjRWokXa1gyxq2vP+9jF+4wJGv/QO9W67kIx9/mLYNmd+7D/IUm0XUlg+RRJ1igNZiRK2pCVuSeHoOVg1y9113s8wNOHPsOCxcYNWN17B661baMw1EkqH6Q/Jc0RibYfKZPeRzDdIoIVdtMteSzJ1h6/0fYH5yCk4epxR49LkKkxusLBxwwgoCDb1GECURbpYxeNk29k2dpnv4CGqqTl+pjwvnxph74UUGrr+RhdlFUsdBlyTrbrsRcXCS+rFJuG4LylXkPiBSBroOQ5nAOGWctmFd4uNYTT3UGE8gjSimVxrBwsIc9NR44OMf4dknvgetBtt+5ZPMdxYo33MDa25+E/XvP8PK+S7r0oCZsyeJXjmA1oJ6GDJ+6Cjx1Hm0MUhh0FIgjQdIHOsgtEZmGh+JMhqbZYR9/ah2Sr8NCIxCS5fUkWSOg5UOCIfrr7uJPifg+HeepnXkNAtPP49WDcRID/rkJH0KDr34HBPHTxHXW+RaY9YMEOtF0rhN4Lucp4vtKZOXfdKSxy0fe5CxZJ41I8PUp6dQrqXd7aAcioizEpBKDnz3eRYPHwNPFV+TxQA2lMrZtvMy2kmEyjMwFuEWIw79Splf+MV/j7p44+KiyffHHkssscQSS7wxLIlISyyxxBJvMFpIjJQICUIahBF4aU6P5/BzH/0ofds2s/OB+5mMGlQ372RqZobtD/40M6+eYKQ6SLvRobRiGLPYJq+CxDKkQ3TqECuNHalCNIcgx4lT5kON1IBRYGL6rGUhn0V0W+Ruho67ODrHmBzf9ai4PmXPIzeGRGjcko9NM9qzM3TGjnP6G39LoCynfvA04/v347qWjknxeyo0Oi1kT4m0G+NahyBz6e8ZQjgOi4uLuEKjswhbBu2kkAs6seLez3+WQy++SDrRonahSzlqg1VUPI9qniBwyLwMNvZyxbXXMP4X3yA9fIbeSoCDT6ItRvogJNsvv5wdV17JiR/+gJNjxzl58ggq7RACmZTgeXROjXH+tVPk8w3cOCUQYI3GNZY9X/5jekMPxxq0NqhGxPa129i2bA25Fuz+wE+z/uprefVP/5KpmeP4d+4kmTiC26xAXGPtjbdzfuUgzGeUMx+vpdh1+83Mt1okUU5/JkmUJhcO/SLAyVMSpfErNRKtmTt8gtcee5JwbJGRxCcxLgkGs3Y56kKXvrCXqnVQWZdca8IVVbxmxFzgodOUSiQIjEPueLR6ysXY+lVr2Xb//cwki6TT87iuR6xiZCmk4vbh+VV2vfd9CFNl/tQkC8dfgfYM7foMN23fSjUTnHn0exz/5uPoyWmWVfr40K98nmpPDxNHj2FUB7/qk8uI1oXz1MfO0pflJJVq4YAbqAEJLc+Q6wyZZvR6JXSSI5RECIFnBB4OZRxkJ6Y+PkE8PY2TJXhJgunmpBfqjO3bSxQ3MY5G2RiSHKTBdQS9rODsky9y/uBRUmsxnkeiUobecwdRvEheC4jrbaRvCaWgEgT4BgLpo1KFEcX0PHwXQhdhNeXYUrUG3Y6YOnkUkjZsXMOtb7uLrB6xfGiExWSeSz/2AFfdcRNeOeDks3tYP7wMlStQXVRzGqHa1JKIpL0AfVWsyVi56xYe/KXPEa5dh9l9FW1ynviTrzDzwxdgoIc7P3I/tc0rObd3H6tsDSV88kQwkJdQymf5jit57xd/i7H1q7nhre9jy5arOPXcYaKsQbsvIPEUo7uupbZsgJn5KYrRi6p4nnJA5nvIHdv51d/+Ai+eeA09PQ6dBo7OKcUdRJyROysw1X4WDp5CGElbLWAb88hUQSsiHayQJBcjrF1YOHwC3epy7ac/zJmjL/Py177K/Asvgra85fOf4ZoPP8i5VYO0T45hastwFxKEzEmXe/RevYUV776Xlw/t58zcJDQXYHCAXbt205q8wPk9exkq9dFONIENSLcs5/YvfI5ooEr3yEmSjevZ+IkPMde7kizRZCdOgtKohQU6cY5xRWF2kwLlWqzQ9GmN6ztopVhcnIbGBZiZwe/rQddnCd0Sq+58O8P9w2RnJxDNOrV2wuLB41yYnoH1q9n98Gc58/gTeKmi1pGEytCQwEgfnahO3XFQFnztkocw1DGUtKUVGFRPGdoRJ188hsoky99yD4urq6QL8+SPPkX9iZdgvkMDy4yT8LZPfIKzp2YxYYg5fYZ3fPpTnDh0ENNpI6VA2iKuqhxB5oEJJWEYkEZdemsV4laLUpxSyxXohAxDN1BFcbX2sI6HtZrx46c5tfcQMk2xWR36ShCWee/Pf55zY9MkSlAuVVlWriHqLbb1D2DPz6LbMdUVIxxrTtNz3Q1Ec3XM2XmuvvF2Ts1PM7BhA/P7D1BTFpNpolanKF9/vctICAIFoQDHxChB4QZ0ApZf9SZuuONO9j+/h3BgsNCXMgfX+lRKNR5++GFkERZEYnEu/hRLEtISSyyxxBvKkoi0xBJLLPEGY+BHhZ9gkVYjlcVxHH7zC/+NJI1Y1Aq1chVrasuYW97Dhuuv4swzL+MLBx14JCqjN9XEZYOTg4wUkgDH80kdDU6OpzRSQe4LHFOUq2rfUM4VcWApJzmm5CJ9D8d1qPXUaHU6aK1JshTruRhHIn0PYS2uI0ijFivWbaDx2kkGa334rsvgmlXMjZ0m9jxcL8QkCeVaDeV4dNIcShUmF+YJRgZQOmdIunSjFFMLkZHAZoojUQNrNJxbxFWaEpJ2aHFDFyfJEcIncTTIhMQIzCvH8LIY7Qm0Ktw51g0hTpicnuHskSOoZhPyFDptyqGPyhTadYsIkxNAlOBIiZ9rHGnJcoXudhns76NeX8TzfeI4Butw7tx5zpw4QX1sDDUwSJam1CemCHeuY+fbbmNiagp5dAFhfFZecQ2bPvMQ5775XfJ2RL9fYv9rL5MkbXQYEnYteD4JKUme4VWqGAeiOMGzltC6uJkmsxYry4TrlhOpfFXymQAAIABJREFUCLIuYdBHIqEVNakJD8eVdERErwxoexJhLDUl0DjEnsS/5nKu/rmf5fzYOHZgkLfvvoMzBw6htcI6ApNGZElO3ulwfGyS+SNjIBy8msToFL04z/jJU7THzhNmioGwQqZy5rot9o2fZfLkadxOhzxPyVUKflEa72pDnza0M6ju2MbqHVupR01YnAchqfoBUZxgXR8nDDHCYm2RanPt64tAA8JghUEgEEh8rXGsQjspRhrK5RDpSLwwwPFK2EZEWB7AHxggyyNUyYHlvaSj/Vx3++005lt48x2EyUCB0ILQKyFwi5Sp4+F4ZVScQDujYlz6CRAGFtMOShhIIpicYvzMGYKuprVQJ0uaXJCKTqvDiX2HcBoR7U6LbpaidIrEElhDxXXxSiGJUWBymtUKGQ4nx89xxrTQ9RbOxBxkhsGRAbbedBXjU5PUxyepdTQ5oLWmLH1aRpGUA+aqPmf37efM8QkuHD9LemoC18/JpKV0ySbueNvdTJ+fphFFCCMhzUA44AXQ00tt/UZyqznz3e9cXMx7lJKMPiSB18OV976X4c0XO9ZsDiUXOl0qgKsNmU4h9PHLVXQngZHllJYv46qbruHYkz+AuQYiSUF6VC/dwqHZc8S9ZS6/fhezpydxZutIz9CWXSLHEvWOUB1djjPQj792DcMrRjl38DXGXjtKr+PRaLZQYYAnPfyda8hGqpz/4bNwdp5dn/4Uy667ihPPvYoNPETgYyfGwfMhipDSwTEUpe5CgLBobUmVxmDQ8mKzm7HkOiXIFdLC9OwizQt1oukJbBZRcQBhSIQFKUnDKu2jh5FpTq2rkVgWA0FCCutGod6gNDCM7CSknqU/sUig44OtlLDKIHKH/ksvY8XOHay8ciOtE2fJXjnBYKxwsWSBpXbVpdz7wIM8/U/fA5PBymVsufxSTu3bj+22cWzxvFrK4mSSEpOnJEmGNhrHQiglnhDEeY7wBZkF7RV1bTW/ShwnlK7cgZIOdqGOK8H0SHAFrNrE5k3beO3lfUgJoeeCUtTKJUwcM1Qq02536UpL1FPhkhtvY/r8DDhVWs0G9U6DKE3w5ucJU4XQhk6nUwhII0OUl40Uwr5w0DrCFQYlRRGvFi5ZpUSn3aE+Po7SCjKNYyUOkrBS4eGHP/t6HVcxBRJ78Zt2yYu0xBJLLPFGstSJtMQSSyzxRmOKCFt28Y8Ag4oUbhhSXb2ObrsBlRqhN8DywQHGRh0INF7XkL/wKngOy9ZtoXpmltNqHk8GDBgfGWuMVSRWoUWO41pC30e2M3LPoV4R6JqlPKtxlWWVEYx70K0ACOg6UA7xPZ+s08aTLp4QlMMSQhvysk+zp8K//6XP8Wf//Ut0OzFJq8EH/8MvcXzsJKqbsPeb32Fd5DHmdGHTKq6+915e/f0/Z9VNN9IY8ul8/VG2dXrI0nnavoPNMoLSEOd7NPf++ud54StfZ/blfUXBcD/Q7hJ0XHpMia6EqCqhHVPLwHEEjSDCSQUlK+kaQVgbII4THMdFpBE1LDXHI9IdWhKySgmwvPPDH+OfvvQnANRcj063waot61mIM6K5C7gDg6iFhWLxqQyUqsXKJMvAOpBpkIbNH3kP3pphXnv0MdgzBrgQSHjXtdDfC5ML8NxLcNkGdt55Gwe/9TgcGgeV4l2yjsvvv4dXvvglkBW8VOG0EhLfK7qwdm6GzWvYseoSrt6ynW9/7RHmn3oW9603sP3anRz61d+j3wmouxHkBjwfX0nC3CF2XXJPwupBBq+7hoUDR4uS6bk6lDWELnQyKME7fud/Ry12eezX/xBiDWmKb2JMrYIpuwB4xpCnCSbpFvvXVwNCiHNotBkIfaKkSxIYsA6elvSkElUZoJm0WLtzO5fs3MpjX/0qMgwwUcrW22+lW6swuWcPfifBpjlCG6SxeNK92JkE6mJ1mGsMjtUXF4aghYCgTOpX0cZCUEU6EjoRJs+QO1Zz7298hhPjZznyu38I57uIWFHFoe1kOF6AFwYgJUmcUS5XSeMMHSesqPZSbbeJaNHEJcFCOUBqS8m4VLyAJOpSp+h2koO9mDyFJAWjCWu9JHEXv1ZF5Sl9Kr/oBhQkBnSlhHIluTLFe8lxi5irX8PvpugsJVzeT9d2C7HAgJdBxSSkaYKtBiR5VqjRTgBhLyQatKUiXIajDLe/xqnmNIwMQrcDKgcHNtz3Tq666XrOHrjAq199BEKPt3/mk3zzj34fLsyDsUhc/DghkcCWVTA1z6oH3sGuW2/klf/8x8weOUSGJncFy70KE6RQ8rj8Zx5kfGyKxnMvwmKGayzW02idFu4ux4IHfXftpjs5T35+Fjk1R1/Zpa1a5EGZyqYr6V0+yNS5MQY3ruPSHVt5+uvfgJk5UJatN91A/xXbeeWxH6Ba09Cqg1thebPEjIng8k08+J9+k6Njpzi1/1Wi6VluXrmKJ//HlylJl0ArsBIlJbELupzjpyFhLhC5xStXqSdtRNWjEkqaF5oM966kE3dQYYZ1FSrLQUHQ00vazHBsFR3GgKLclXg4NPsCWDvCjre9Gbeds6Y8yPe+9Oc48SLl3CAxpA409cUicyTXfOrjNK3lxGOPwMQclbmMHumS+bAwWC5Ky6v9cHoBrtrMVXfeyt5vfB3GJkApytJBWEkuXbQEg4ObgzNQI2nMs6w8QLMxR6m/l7ptgutBJ8UvlfDqMdKp0kbzgT/8LR599FGik2MwOcmuX/skQ4MjfP3Xfg/qbdasWsPswjzeSA8d10AaUertJ5udZbk22FLA8KU7KY2u4oXHvg/C5X0f+xiP/OWfghSU8g59WiK0YXZ2Fu0KPv87v8WpM2f4+hf/CJm7uOR4MiNxQTv/D3vvFSTZdZ95/s65Nl1Vluvq6kY7uO6GbaDhvQcIOhH0ICB6UpS4IilHUTMjN9QqJK1mZhUxOxMyox05aickURJFUgQIggAI10Cjgfamuqq7vEufee0x+5BNrR7mbRf7lL+IioqouFGVdfPczDzf/X/f54N0ICj2LbJSgFJIY/DdAlJKxsbGmFuY7WclCYvgx7bfH0dr/89LCQYMGDBgwP97BpNIAwYMGPB2k/fviSoJ/b4gixQSKSS/+5u/Q5oLpJGIZgNda5CsLMFKDXNmDkZGENsu4sM/+1M8852n4ZJrMULQyxt0nYieSPDyjKHqCBvFgN7mMfxejpsbMivQvotrAhLfxVc+NVf1JwuKFdAe9z35caYPHIDxcUzWf6CB6yKNxpEOvTjnlR8dAG2Ikw4UPQ6feJPFhUUqY+NsmdpB/fQi0a1XULlrP7o8RPvUGptHN2MumaK3dYKN147jU6ApM6TwiR1Llsacmpllz8QUKwuLuAhMHIG0aDcgizK0NpA7BNbHtaa/Cff7ZzDzLBQdlGMZmdpMVK/jBB4oTWpjXFw6FyZbEJbr7rufxZVVko0age+TZjHX3n4L73ni47w2ex69tgbVYQqTEyiV9du+JBR9Fxn10HkCoaR+eob15SZsZBArMBGIBDobjO+/ljtuvIm2hejMaSamthFal9b5JaTj4gmH8tQU6xsNWGlgopTRoWF6KgU05TtvYurOmznzp9/krRcOEJ08CbnFLM2z1urgr0T40iPJFUNOCUzSj/d2LHkAeIaf/s1/R21+gfUfvQxBiX3vupeV9SVotvC8IqYXc/rNw0w//xJkGWO33sCjn3iSjXZEe2OFd/3UZ3none/kpWd+iO0mOEGINYrhHTsZGduCjRVOo0UptzjGkDkS60uML4mLDlpbquUi7Y11Trx2gOHyECrKMIFPreCRXXEJwfatZCfP9KfJsCAkxhH/IiApB4xrUJ4hc8A14GuBawRRZtG2L/R5V1zFrb/2ac6fPQ3NFna1ycnDR1j/4Suw2GHCKaAlRKMuhA525yRq2yZ2f+qj5JdupzMcEO69jC9//bd4+cRxmqFLPY/JJiqYQBK4RTZHEkdYlnQXe/duHvm3X2Dqtms59/IrBInA0ZJypUqvmzDpjTKeh2xKAlIJ0gnJEBjRz8PxlKVoDEUpKGCpdCTlXBKUQoTvIoVAKItqRzBUwZDhOhnW9m2mFPqTNFu0x3Czg59nOFLTJaGpFPW0C2FAxSuQ1buQAwYaqwscPzNNVh3nlo8/wbnaMqc7Ndg8yl2feJw7nvgQh08dQ0UtGK7CWr8Rr722xOGXXmVjZobEd8gD0JtCrv34h1gdG0LlCbo0TP35A9DO8ZSLY3MskmCoinUNNk1xhE/85kmCTKHqNYKhEBNFVBLNiPFIVuqotXVss01veZFzz/8Q0h4UfCh4XHTVpRxcmcGcm+GLX/0aB555CVbbFPMe3tgmbNHj0A+eYvk73yI9cYrK1BQn//4fGRsaRSUJrgFhXcBFIFHC7U8jOS573vMOLn3HfUw31zDdGK+eMlmospzWUWNFTKNNxRjGFIgUyq4kyWJM2QdX9ZvRAB34qFLIRTfs5+xzz+FfupfX/u4f0I0eoVE0ixB7UFAWzwkwroMJFEvCUnv1dWh0cVsRo9qiTUzqQRYYsApSBXHG3Y/eTW9tgbXDh3Clg9SawIC8ECIkAMe4ZLkh2LOLoX172Th8hlFRopb04J59XP/gffQ2eqTza0xSJHclSehy5OQB8vEq5ZERMmPolgNef+p7jC43cNKIAAc/8OmVAj73W7/OdBzR7XSwUuKpBJUo0tUO06dmGNqyhXzLOJu2TzF78E2Gcomvc1xrsUrT7XXBdZjdWOPVF18E4WKTnMBzETbHCDDo/kBRHFMsl1FpRkEIrFbg+hhHUCwW+5NI9PX+CxWoF7KRLoQqDRgwYMCAt4WBiDRgwIABbzcKEP2WIH2hhNix4AjJ7/z730XlfesYKmN4uELsOJg0xamOYrWBRpOsXGK91ubi+x6CHZMkeQ3iGriWPLKIYkC+aztj119DfW4OP1YoY1GOxHcK6F2TdNIIK7L+p+xEw9adXH/HnczVauRz8+A6SAy+6+IYg3Qk5fIIcbuNzBKU6G+a0AlYS+3IcUIvpNmqo7aU8DeP0T6/THhqHacTs1xbAE/A9Ay9wEHLmGy4RGYVlAuwvE5npY7oRBQzQ5prCBzIDZ5XolIZJupFSNdBaUWqc/AATH9/UPKhEHD3o+9gvlkjb9XIfZfM5FAK0EZhpQBHcHRunqTdgzzHKIUhJ7MCWahwfnEJ02hAWODue+5m9tSpfjueK0nbHSpC4voum++4jdbqBnhDsFgDR1IdLyFci9I50bFZzh49Q3TqHLQ6rJ2Ypr2wimz0qDghOklZfvMoRDnEGcJCKQyJ8hyCImPD46yemsWcq8PQCMG+PeiT58EtwplFgkyQAjpwKMcGLTMEkDtgPQsOuKPDbMwv0ZqZp+iHPPhLn6e11qCxUqeSGmw3QjYUJkphU5m4EOBPjrPlqt3MnT5GMwxwXY9ocY1kbZ2iEpg849obb+Lqx99LW6esnzqFBCrlEsQZxjhY5WC1izEZca9DnicMD1eImh1cHBQC4h5qeZF8dRXb6PRbCxH9inTRb/bTPw7VdRzwPRAe2vTzkySCQqGCLpfQoc/um6/njdefgcPHQAlGnBLJ/BKVYAjb6JCqjNRkUPG5+We/xNZbb2IJy4bNEUMV8k4LtVZnyyV7ePO551GNWl8Y2FQFa1DNjELWRVqHjsxRO4bY//5HabSazL95glJbIYygE/Wo7tpJbWWNPMsRWmFKBTKga3LKwxWyOEYajWctmBxhDUEuiI0iKTikwvQr2ZOMUrHCQ+95N6ejFllzDYTFGPCFJFCWCgEq02RuX7zLSkG/cit0oVQiW68zJgM8mzPkFIlUDr0EV3uc+t73YWmJ/TfcyPKzz7Nr63acVoeTz78I3RiiHCfNsUM+NNrQjKAaAnk/Y23LBLd+5nGOzM1jjxwlOrEA7Ry0vWAPE9x0/z1Mbp5ifWMJ1e7iZYqqDEnTCOk5GMfiakVZC4QyuL5PFnXxJSSNGsNbpsiMBa0gjlmdPgXdNsWprbi9lPOHTyCVYqo8yVJjFd2sQxaD9KFUQfVi7PoGOsuRti8p5NIlky65I7CuBD+A0RF23XELp2rL9JYXIUlxehpPW7q+x64r99JsrGEDH68c0o0zpOOSpYaSVySzGViNqwQaiXFd2mfOwMW7GN9xKY2jJwEHq2NMwWIdS5hZHEX/mr9ud1/MPzkLcUbQ6RJag8bgDBWJCw7EEbgBGMn5hWnWjr4JeY6jLQXXQ6j+/2eFvCChOGzZvZtr3vcwqyYmOjSNgyIF9n70HchYsXTgGE6vRxGHzHFIpAIbccdHH2fX6CQzP3iBaPo0NJr4cYpnJdoK/EoROTFGcdtFpEDT8bHNFiNS42hBwXgYzyOsDtNprLD7pv1MP/siQ0biuRZhLEZroqgHrkNnbRXipD+mq/qXvLD9QgEBCGuw2mKVwqocV0i07U9gGikoF/oikvhxova/6mcbiEgDBgwY8PYyEJEGDBgw4O1GARJy2W+MAksoXYSB//S7/wnp+jhJzpDOWXNSzNYqm/dfxYOf+ignvvddRHWC9af7dpGL7riTTBhu+omHmD15GOpNNlfHqG20sYUQZ+cubr7uSk4fOkqOgIkJpvZewf5Pf4hOlhOPlZgYqhLVmnzga7/B3/7VX5C322zes5fuuVmk5xF6HiZPCISEKGHMKsaEpmAj/DwCVyHznACBXWsiQku6sUy2sop+6yiqG5HWVgl6EW6vicrbYDrgufiXXYxeX0J4IUXrkbSaGDRlr0TZeAx7JTpRxNhVe3nsc5/i4Pws2rXoNKIwMoLT7KK15UJnPcSK8ugmtmy9iKXVJcgi8Ay571LwvP7GfNNE37aT5OB7mF4EjqXb6XD21HnM6kbfXpRrOu02Zdejt1FDpBlbSkM4nqQe9bjk5pvYdtOdbNt5ORuNHmp1kSRtQdxlIsvx6xCutXCjlCAFGyUEucH6HlEWExaK6NIQtt3F830Kfoju9QgVlFKIpheQZ9fIx4fwb76GK+/cz9bFLnp2iXFryNCM7NrJvb/687z51A8pSYNxZV+Ucw14koVTM7ROzfQrv/OM1579Fo2TixS7ilKUU0Ezaj162nLJT36QHbuv4M3/8TeslDwe+sQTvPVP32bmh8/TXanhm35QrUBy7vQMx194nfbpOcoa3DwnyVJMGBI7ObbosOMzH6E1fbJvTSz7pM02roECHtINyUfGuerDH2Gtm8DsLCiN43lobdBKYf1+0G558wRZL4Gb7uVzv/Y7LM6t0ttoI12HNO4gAoPwFKvnDrNLTNBc64IViDwnsIJeu40ODVoYPOmwxZQ5ceQsi4dPwpFTSK/Mo7fcAx3NxtOvcPybzzCcFijUU8pbd7L13juo+x50ewy3BWO4lIxHY73O0X98ivnvPMemloOMu+y+5Vbu/szjlB64gXNvvUw2UaYT+iRKEYcu7/78k+y8ZjfHDh/BEQZPK7RjUNJg/QINqcjHC5isgwk8dCtiZHScyvgo548dBmEwQRlnI2NzWqIshlnQivjSLXzpt3+LcHyCM4eO8Njvf537H/8ob751BBpdKllGGYljFCZT6DTDqdfJ15ah12X5wKuEJufsiy9w5kcv4Hc7hEohreHez3+c27/wEd567XXIcoh7kCmGy2PkS02OPPcU9uw8XLaXD77/cY6/8BLuSBVjIrY9eg/bbruO1xfPEZ88RkEbKjj4NqbgByQqw5Z9tLH4BDihT0SMIy3CaALPhW5EEUFowMQZrpYM64D26TlWZucw1mKtom67UPYhTUBK6Br8ZoxTbxEAUlhGNk2yEXXIPYkeq2KHfLZ+9GE6J0+DkCwcm6Z3epaxPVcQL86jpkao7LuC6z72ONP1NvnMIt7oFO3FFtY6jGzdRUe6pDrDMTklZfCNABxyK8ENKG7ZztrTL8DoJBffcAO1mUNsfuwhus11ysrD9Hq4TsBDT3yY9TMLJOc3mNAwFhaIsh6e77MexX1hUCm+8Ku/TqJgbeYYKAUpVEpFJBKlDH151eJYi5KCRtljNt8gPnME2jCcW5RwWDlzmNWDxyjWMpyggNWQGY1TKaJsTKebcexbzzAuK0SJAmNJTUqMoTQ8zEqjTtztcnZ+kWazi2lE0I2x3RquAt3NscUia2tLsGOCpcVFvNUaw4nCCI3Whm6zhes4KKvBc/rvjwakG2CNItM51vR/5jn9qdiJsQk63S6jE1NE2iBLBXAkDoKv/sLP8y9vBsL++NddOCcDEWnAgAED3i4GItKAAQMGvN0YQF6YssDiYvGQoC2//fv/kabKSE1Kt+xhQ0UwOoaXacrVMuffOkUlsYxFGa6F8y+/RveNQ8y+8CJuI8GJBG4zpxKM0KtFZKst5l95FadcwGwa4v1/9B955b/8MbOHDhOdXAKT8vF/82W2XHsVZ4+eYXV2Bnpt7rv/HtbqG0QryyQqZ6hc7k8AYfAwBFGHokooYZFopIEAF4nDpihluFAg6XWQe3fibB8lixsE7R7B/Cp5nBD6AUqV+Llf+DmkFzJ/4E1kmpIPedgdm4iqIb1ehBt18Ieq1JsrHFxdoLR1KxfffB21jRVUo8GkLeFqTYkSTuJQMGUWTp5l6fhZRC8hdDxsZgi0QQpBbgxjF1/MOx9/guMvvgxpjrBQKRfIejFe7uAJHxwHG8dEvS69ep1yoYI0sh96LgUMlVk+cZbFhWUcq7lk51YWTxwmyDKKUqJzQwlBKqAXXEh6LQQkBQczVQIiMlfy0T/+fU5mLfL1OtoaKrGmwIXQXQxpyYNPvwO9Z4qVb/w1jWOztGREWi0gc8FG2uPUqIW8hVppoUMfU+gLYBQq0IoQur/elEoh8iFT5EZRsgIKBRY3V1DVMrUfvM7ysRlYb6GPnGD6xZeh3uxnQmUZyvfIhEHt3AQiBm2wgSAjI1EZKSAU4JWxKfjVTUztuYzG4nlwHYhjHOnjGIGrDEk7YuumLWwtlGjNn8MYiyskaIP0PIxW/dDeqUnu+MDjNN1RfvSPT9OdOY/KYlJpcUoeadzGhgLIEKfWkDiUikX8LKeaZYQIeqGBkUI/SL3dIk4Ntl7DrY6yf/denvnG/8XGG2+CsmAlWRqTWUP54imuv/9O9uy9gpPP/JCwUCHDoSEtmSNA+FQKVRrNJrFTYNFGHDl+iHMHfgSXXcIVH/gJ7nrgAZZPnCHOupw6+Tonjx/GWoHEEhqLcgWZL+iohEsfuJOb77kTXSzQPDMNrksXw/nlJQgrXH733eT4uAs9POvQUZZ4OMSUJa+v1Tjx/Mtsm7yEV//H33Hg6efRK7W+qJHn5BfWVK+ksAVDnl8QJtDgG5ROQRqsNBhpMdKSe5qz52d567vPQLfeP7ancTXEccylD91OfWaJnXtvZt9111MLM0TVp3nqCK52aE5Pc7ZicW66lE2JpDe3SI5GAzIMaCcRxvEwWU5vpEo7amILAiQICYERlJyApB1TDApoY/FSgd+OGK6O0250sEEIrqDw8G3cfOMNRKs1TKPBSCooao2vFdIqMilopwnWEdz3s19kdmONrbffinZyLrr8SmLhkscpH/uVX2R+bYVOILn7rrs4+vR3mWutcNnHnmD9yBzqXINJW2TCHWE+i9h80z4u+ti7WH/pZYYy3Y+AtyCsRPUS8pV1hrdexAP33suBf/4HNj1yF5u2bmbt2ClEqihqhzRLOfbSKyTza0glcV1BK+liPYcUjZVgHLef+1Uc4tBrr0MaQ6oojlTpNnskmcG4AVaAoJ8JpB2L3raJa9/zCHrTJqIfHaJo+vawTBqIDWNaUPcF1vZz8aO4C6FPMruE00oYp0grjvuiTCmH4VHC4hBBqUIiJL7r48UZkyIkmlug4Gg8L2ClUWfyqr3svf0mFs6dJV9aZsz1KQpBZnIqpTLSQifqYqQAB4qXXsp7H/sgx145AI6LNQopJYXARSuD6/lstNrguvSMxRoDo0OEhYDQ9fjFL38JlabI/hhTv4kPcAYi0oABAwa8rQxS5wYMGDDg7ebHFh3690wvaEngCJQn8SaqFC7dTvGKSynddhPpqRmS6UXOPvcaxAm60wYsSagYFoohAWKtRTEWiNjihENo1wNj2VwoU1GSPI4hy3hj5jRceTW0MzynCIvrfPufv8urr73K4ae/1w+pjSI6tQ0mx0Yh8HAcB4SgmcS0pKTnuRjXx3N8fOlScEMMLt1MkXkeQ4SYOEdIl3BynNsffRC2TmEDH6wl1OBGGnoZ3/v291haXCTAUnb9vgoxWuaOJz8MVlPyqnTipB+keu48vQOvMTw8wju/+HnYczGpJ8ndMjVtUG6RVAkELiVCCriIJCXQmiDTpHEKCGrn5yj4AQQFCAKsMUTdHp7rEViNZzSOMfzYDuGPVunGPSKdY/D7tipjQPiwvML511/hwCvfhzxjyPUIvIBEQoYh8QzG60+aZFkCnuTyRx+AiyZBp/zVf/nPBGMjUPTRvQ4xGQaBRpA7/V3dtit3M7FtCnoxQcmDIZckq6EczfZLdnLZrTeDzQhLQ2y/5HIuvuZ6MLIvVuaWguf3s4YcKOcXdueOIEFT0wlGtyFuIYV/IZxZECoNa7W+gKQNQyNV0DmELvc+8RHYf11/5SoNgQdFD1ywjkOhUAK/yPrxU5z99lNce98jvP/Tn4VCkaHREaTr4AmJg+bQ957i4PeeJu5F6CzDKI3nuBil8IpF8H1q09M8/Sd/TP1b32LH1Vcxeu3V/WwY38GUiiDBdiPo5aSu168sT3okSRvI8AG0hl6HPEvAC8HriydqdZ4D3/57RCC46q7b+MTP/S+EW6tU927DVA2rtksviWmubkAvYb1RZ9GmdFwFvoE4odNqwVAJG2jIuxeENwcW1jnx1PN8/xt/Q315CTAwWu0Hkwv6tp0LNhuLgLFhpl98ge/+t//O7HMvQmUYij6kXWg0uPXGm3jkgUfZtesyutaAX4RypW9bmxidf40NAAAgAElEQVQnOT8HrTbrC8vgliEXFCojpHFCDqRYUtf0hSPHgARP9pe5J8CzFwbYdP+7cyFCjFoDudYB4YIUBIArXEZ3bePBJz8IhQLnnn+FH/75X9FM26x2NkDmlHKNbx2u3Xctl+25jMZGgxxJhkNXCHToU6lWKRbL7LjjTnbeeydsm8IIsP9qv99sNykOlUmUxngeLZUwNjHFUn2D8U1b8K0H1mV861ZazQ6dWgMXEKj+OcegRf+S0FnK5DVXc9U1+6DVY/HYSVZefoNko07cbsNIiZePv8XS2gJ33X03Ya5Bu4w/8Cin3joKqyuweQwxNk6wY5Jrb7+JG2/cT+38eaTtv2JoYbGiHwLvWQ1Jiox6fPsbfwbC4vo+R775bVip4bg+9aSLG3pUq+NUJ8bxSwE9B/JigC0VyITAWkEgfMjhwDf/4cK0lQfSJWp0qWzdQeWibWjHQQuJFT9+8hSbNm9m3PHY+NErIAWGfm4T2uIZC2goBGQYAinxsf3r2oKDoR31+qHoo1WQHjc/+AipNqQXjsm7XeLVFWy7ztZKGdKcTOW4k6Pc8sg9vPMD70MWCgjh4EqBkgYv8Gm1WrTb7f77YKEAw8Ncf/31BMUCAI4XAA7aWOIsRzpu3wYrL7yGSQe2b+N9H/ow1YkxkiwFwPX8f+1kGzBgwIAB/z8waGcbMGDAgLcbC0r8eCDJ4FoD2qXX7VLesY1bfvJxrr3jFv766X/i4ssu5sz/+mcMtWPWnRg/dPC1QXiCuh8x3AaRQ9EbYs04qFIZ3IxPf/03+ZNf+TfQjXFVjDsyTmIzrv6Nr3H0Wz/Czs3B2RUYleAmEPWAkCAMSWt1AILhYdJmq9/65ftkhZDCDdcTHzuNt7bBRJ5hdM66ULB9Ozff9xArUQ5/+31mii3ce29ABRLOtmG9A8065DGjo6PUF1YYu24fte4irK3iN3NKQGO8CORc/cnPMv33z5KdOYce9mBqDFbreMUp8qQON18KjQYcmWXzYx+iMLWF2YOHuXh8C41T0zSOHgGTsil0UHEXjKYL5NUKVuf9J0AByjBWKtPt1XEch6L16OmcOPBAgrtlgqA8TO/MLO6mSVQ74vpf+lne+P6z8P3X8UVEVkig6jLZ9hHdiB7QKflUEkWnCAQSpyOxGZiCZPJ9D+BZh4XnX4dOAtu2wcYyNOqgclzfw5EeGWAdFzZPMbL3MhonDhPMLZIGGsZLeMs52i9ibr8Blppw8iSVi7Zy+8P38sN/+meS5VU2OSV6WUyvYPoLpddvI0NaQilISgKqRUo7L2GHM8rxH7wEOmdStslcB+uGGANRlKLcAghDeNt1uBo2v3KWNRXRHpWQR32hRjuInZdw5e23Ub1hHz/6+h/gOYKdl+3g/PxpsnNzTFTH6K2v47lldBiS6YyiJ0jjGIzFdV1ya0jQOIUA7dLPt+lqtu6/kUTHNLstprZtox4lXH71Pq7at5+/+KM/hdOvgRYUvCJuo0usExQGWfIBg1W6395U8PpNakGIUyyh47g/LZUl4Eju/IUvcdndt/HffvnfwomF/loZm+LJr3yJf3jlebom5+EPvZ/vfulXYaPGjiffi91UJkgVd11+Df/n176Os9GmEoa0ky6iGpJVPG79wsc4dewY9e++RBjDcGqIPOh5YHyLsD6TmYdSig3HwBXbueXd76SQS579nf8DhoN+FlGa9IWoiTHe/zOf5eyJU7z5l3+LF5YItUfHKJgYA5tCpwOdHp7ReEYRewbrgKcFIut/5JNAiPMv0xrigsqtMcQoJJAUQhBQjCwRGkZK4MeQWCb1BJ2qS5TMgdMfs9zWkPR0Tr3sQ0lCzcUrF8hJwE3BONDOwC2y/9M/ycFonYmpCZp/8F/xNDhW4GoX7Ti0sQQjVX7q3/0S//t/+D1YrbHtvY/yji37+Ovf/QNssUhnJIEoxm90qU4M0eslSAtGGIyAzHGZ2LKVldUGDI1DaqFVZ7QiqbfbIB22PXwvcnKU82+8DvUOnF1isjjGapLDZTt5+Auf4Pj8NJdev4dn/7ffg5kFSC1l6wEK5Vi06J/BQEnyJMXFg3KJRBhufe87ePXMLPr4WcrCoR3VAI3jBYhYo1wHhopgFZXLL6czOwtpTlk5xL0eIiyjxoa58iOPcezP/hw6XUb3Xsld9zzA8eMnOf3yi6BTAt3DNRqA3gVJDdejrAWOUlhh+oIiFtcIep6ExGNC5ziOx4qXgnUYLgzRShX3/vavsPnSXSy8dgR3vc0b330ax2i6UZss6eB6HqpepwiEYYGmKzFlKN9+G3G7i37rFH6msVkPLS2BkcgEPMelm8coV0K1dGHtONBVF0LRNDL0MVGnfwOiOtRvr+z2uOnTn6E8Moxt1Xj2m3/DhFdibXq6L3wL+lN1AjIsPs6/rOkBAwYMGPD/PQM724ABAwa8zWQXBCQfcLBgBCqOiVXO7//pnzB3+gQHX36F9KU3WDkzS5YkUA6IC4Y87ZBYRag0ouShJl26jib2SqjqKHve+w6q73+IZ775dxRKBVRSx4yWUc0elIdZe+pFRGGYB3/+80zt3Mn8iy9RaSaMuhXMSIlkdZUw8FFphlYZbilESImKuoxdfBmf+LXf5NWTJzFLy3S8gC4ubmUU1UyYb/ZwL9vD4uuvw7DG7L+ST/3cVzn0X/8Or55iCh64is/86q+z64brmSkpRm69hk4g0edWGLIFeqmCQoW1A0ehmaJREFg+8cu/wp6rrufwP/0AMsNlD93FY5/5FG+88ByV9z3E/NIZttx5M3PHD3HbB97LHAm2tkIv6xE7Cj+QDFdH6DRa4BdgfIw73vNuMiFZnzuPVwhJQ4eeUShj+ne6tca4Dp/6+S9z8NlnMFEPpMvmm/dTqo7QO3yGzPZgyAUvo9LJ8XURUx0lrgT9MODABRxKPUnJasa8KstHj9M+MkOppbk2rdBZWyNL477lTQqM74DvM64kQ13F1lpO+XyTjWQD8gwnhlJiSLTAGgtrKVtnmnRkQtZqMD09i8wtIgNPS1TR55Gf/TQjN16Dc8s1hDYEBXHU7QtKNiBfX2fbex9i+cQ0ZD3ycU0v13gjo8jyEHEnx7cBgVsgbnXI6g3i3NDzDFR9Hvmpz/C+T36So8emSc8tsTZ9jrmXXmU4Fqh2m2ZtgzzrQRoRW0XR8elmEW7BJ80TtLLkucZaCMMime5Pj1hjwBquufs2ZMlj6cxR4rnzWMfSbm5Qvfs2Zp55mcOvHuaOxz/Dnisu5uzB11GdFiN3XcfDv/UV7OWbqR2bZrwRs9UWcVROJXMIlECmGWFs8BKNG+d4wiOPExYOHeeNb/wjLDQg01CpQNTk8Ooc6cw89vBppv/iO4w1MxylWT99ktbsKQI/ZPq1N2gfP0PJdelmHUaqVXSak4uMBTelYF3i4+eRuUEbizbgZhIVOBQTQyFO8LUg8h3MSMByr8HMc89BnEOege9xzfse5B1f+hQtkfHSH/4JKwcOM2UcvKhNcbiCd/9NPPTh97AatUmWFyFTeFpQspayhqKydAoB5oZ93PgT72IVTbdRJ/FdEs8h9gVxKEgLkqkH7iS88Qo6x2YQCSBdSlYwlFj8niQRmjhNyaIuOB5EOQUjyFOFRqBziY0g1ILMl2BSrvnUx7jm9ruYOXoCFIT7r6Y5c4zohR9RWNNEjkMmJJmFghOSpCnahVeffQpKDlx/Ge3eBgf/+tts0WV8BG3VZbg8RNjN+qHLniQPwXrguAJXuCS5QfVSPvnzX2VuZo64VSc2LUpOiVGnRPf0ImsnpmF5A6IuWEMvTyHwYWMNOVlm4qJxXvzzP4LuBpP33EXZ8cnnlsgCh8wRaCmwwuIaS+g6aJVjpQJpmT1zGpMKyhtNiqlBuw6yWkErg8k1cvcOrvnoe1g1hn37b2Dx4CFwfcT4JjZv2kq708WGAeHYEO3paeT1+4lqDbLyMCvtJllt/ULZgcW1Fl8LtFfAdX2cKGHT8Dg1k5C4/UkzLS1pAOy6hHvvup8zx46R2X4rIoGHXyiSZTG1TUMc/KdvM/e3/8y5I6dIOzFxq8mTv/gl3nzxGUzoQpwyLMAgMEMBemKInbfcQm15DVZb2HoHI3KssSgLrl8iNxZrBPc++QSztQ2Isr4ApHMoF7nq1jtZPXsGP/ARArI4xq+OcN0D9xMjePUbf8m5U8dApVSro3z58z+NlP3Wwn4mkryQhyQHZrYBAwYMeBsZiEgDBgwY8Daj6AtIQtG/2yoFPdew2qrxh7/7eww1YmSrQS5ixtuaRCtSk1PRBYT0wA/IhWW8IWjYMlt+4QuUwnE6b51io7FBUm9w1fMLtBZmSMdHIGrDllH2vOtBduy/gaVXnmVWZMwvn4czC3hBiWDnDq7/mc8y++zLlLVPEYnwLKlNsDrDtRbW2swdeIu2TcHvcM2nH2c1amGWGhAD0mXq6t003ngZcgXHTnH85BG008W0FyHLcSPJiade4K2XD9A7c4JOL2XfLXeQhCG1hVW8zCKjHCMEZsiDKAE35M3X3uDEsRN9SxwOnTOLrByeYdPuK5n7kz8lWFyj+XffhKUFStUqH//cT/HioeOw0bdkmVTTUjHb3Aoy0iQjRaoP3U5w8UWsHzuOGqnw+L//FQrX7WXx9cMMmTLDhCS9lNd+9AzYDNyQYqPN8rPP0D5xmLE7ruPez32O04vrcK6ONZYNH2LPsuPxJ3Huvx956RW8610f4PCrBxCZRWcZBS1whcRI2GJjZiaAq3dAmjHZG4bcQah+9lSjELOmIjb8jPFH76CXpphOgkpc7NQElEKQPtuKQ9hkAw+Hgl+gV2szsmkT9U6TvCQ4S5e85LG40WR0/y3o0VHGdu2mk0fs/uRH2HXPHRz8799k03JMmkbkkwVoCDJThe2Xc+fnf5rZXofMMdBc4f5Pfoy7P/l5WsUyjTNnmT6/wEuvHiRdWqAyXKGoDd7aGkUdYd0EYxO0VOB7OFYglUEIUCZHey477rqbd3/ko/QQLJ6bQ4dhfxPoOlAts+rB7g++n+XlVVi/0F63/1ouf/RW5g8dgvkF5p77DvMHDqGTLoSCXm2R488dYOP5NxnugDVQtzkUhgjdMVZtTl4ISYdDMleQCwcvyShYw2ZZJG+3yaWAHROM3XY91z32buafewFW1vBMjpvUiJ0uMowp5zHORhdnYYn2zAzasaQqBwQ20TjVKbJrLoG924mfehVR61Hasol3/+dfZ7gyRmm+S69Rxx0vs0FGW6a4Qz56bQ17bg6n1cbXMVp4kEJtdonjP3iRjUMnIbOUjMVXCh+BjnpsLM9x5ofPER85Q6gkKs0xoU8USqLtk/SKDgiPob1XUas16b5xFDQEocuOHRdx8103Mn3yOJRddj78EabfOAE2gNFNmFaK54Tg+XToAVBVAmlASRdyi8oFjgyRwkM48sJX1m9jE4LVyLJgHO774s/Q3LmFlUYd/ALSDKPnUvb98he5+tMf4uzrB/HWG2wpjqGVIfNdbvnwR5DbJ2k99xIiTslNE1PKiEPdb2x0fcY6Hr4SaJEibUYp1fi5T8e42Kt3s7F9mNXnnwEVwfgknvVp1lswMcR7f/VLTNy1n/OvvQKxi6skxrVM6JCrbrieteUVNg6fgAfvwb/iajaeO0HZTJCqBGHBNxI31xilMRaMK9A4GGOxVkCviVMoEmcpZW1xowzPOGS+Zvi6y8nJ6Tz7KosHD8MddzL18MNUbrmJ+dVVbLeDrK8Tv3mIW//DbzN6522wdTP+SIUsdLj+kfuZf+llrFcmTyAxDs4dVyGvvJisZ+iudtHjY5DnIApUhEtSCdl+2228dW4W3e2gSiWwLkEGopdTVBb30EnCuSUC2yNwHdKix6Z77uBM1afXXIGoA0oy4frUdYqWCpsa2rGLbiTQUVhj8WRfWMuHqlz3kx9GbJ6isZqw69F3MPvMK2CLQAShyyOfeIJjM0dJ15cxWUSgNAUMotOhOXOO+UNv9K22+6/lrkfeyclDb/DVr3yFhBQlBOaCeOTkAiEYlLMNGDBgwNvIQEQaMGDAgLcZDThciKyAflMbhsWlJf70D/8YoQzK9HN03OEqeaSolKt04h6afr1xxQ8RytBTltF9u6kUSmwcPgZAPruIN1ZhPW/0/4jjwmoXT3s4E6NsrC/B2QVAQHeDPFFoT5JNVmnOzCE6HSqlYt8K5PQPkxq0kTSshYoPoeGm976b4ZEqSwfforTvSva86z7sNReTvHwQr9VFa4GqtWF+AzKHog0pBAVavQ7G5P1dfa1G4rqUhUv73CJGGYznMb5vL9HSAiSWITcgbbexvQ4PffiDnD30OkbmtJM2dRHB6io6ziDNQWt0dYx6N6KNIJ87jwgCJgNBJ8spKhcclwjD6vm5fn7M0ip0u5Q3jTO5dYpTz71MIXfwXUlbJbB5BLIUFNjMoh1NOFyisVTn3pvvIluvsXb+DEiDcZwLwdUe7eVF8vMzTGweZW7uFHneJPEViaPR0qKlxZcBjWLCNV/8LFv27mX6B69Q9UNcBOQJJc+jUqnS7fW4+p7b2XvJHvJ6j+5GE1v2Ie4AkvW1NSqepJVGDI1P0O0l6FThCYdCoUCytER3fhkOztI+eIRk5iw3v+dBtt91HQcPvMjqqVPY0+cY72VYm7P3gw/TbmeYWkwpzunmCZ1tRSb276Y3Nw+LXWrKcObMaczKEhQLsLEOrke2tk6a5lS8AMcYlBRoIVBS9EO1tcDP+2sKIVGOi94xxe5rryKyisWZaSi4VG+6jmRsiEsevhdTKDD7nedgZomh6hjp6jrxwjKyl9M6chqaXejm7DAFqmPjyGKZOFPQiiC1CKXx3CJOUKQZ9xDKIEYq7LjmKh794PtZnptHaINnJLnqt09FUQftONgsJe5FzJ85C4urSCsoWIvIUrKqh8KQaBgaGWZDpaiiB+GFrCMhKHsFWr0IaquwvEF5ZoOJ6hitssNbQZtzbx5h9ew8ZQx5t4vMclwF9BKKRhIqSzmHUi7oDpUgdDC9Tt+mqTU4ktw1dD1L2xckrmAokZSMi4eDwuKNVlCOhaKDs30S60lIOqRz8yQzc9BOIPS59iceZdfdt3G+02P9xFlwh1g9fRpqy7iP3E3hkq3kqocOJYnIsXEXXzr42sW4DqboQRhgpcTV9oKdjAs5RzkyDNBRDM0W2vPZWF0nb3Z54IYbWTs5TXLsNNYpMH7zHrI0Rq3U6M6tkFZ9ukkbAhfTSOkeniaZq1FNBVhFUCwQo7GuRLmSRiBJXEsvyEldi5KQOCF6bIQ7vvZljj79HUgSkPDIhz9CGZdGvc72Ky5n2/6rOHT8KB1toJ3iSQ894hGlCfV6k/kTpyEHshgxNo46foasUEDHDRyrkUKAtWAMQjhY0V8HFrCOAMeyY/cecqWwqUJbyK1CuZKk2aSztAIrPfAdbvzUE+zes5ej33oWtbACRRdrU7bj0s4coo0Wq4sLFAsBm0dHSZdWWDtyBPIEPM1jv/FLnE+6XH7RTlYPnsbGGXc+9i56eY6eX0AGDmmY0zq/DosbkOYUhMTNUwQZxtHkriL2FZljkK6kmyjwQ2LH49EPPUbLdWgvr0Knh+zG/Rgv3Y+NMxtNkILNl11Gd+4cxjNYT2C6MVd87qN0KgH1F19nrdklX1iGNMO94UrM8QXy82usri6AtpDlSCkIHJfUaJS2aGuhWOSG++6hIF3mjx7nl7/yFSwGxP8zfyQvFFkMRKQBAwYMePsYiEgDBgwY8DbzPxORrHR468RR/uov/hLfCEqlEsHmKR7+1E9y9AcHqIgC2ZXbefSTT9KNYjrnlml7OY62NI6eZOPwW7Dvclha4tKRbZxrnWX8qx8lOngc1iK2e2O0z6+y2N3gsa/9EicOHWPP9fu4+oPv4NwPn0WhaZ48BtJFddr4gUOepyBAIHCMRGiBR4haWQcNerXF2f+bvfcKluy6z3t/a+fOJ82ZcGYGE4ABZjAIAxAAkQiACEQGiCBSBMEgJlAUJYqSWKIVaUty+SqUSvKVLOlaZVplS5ZoJYsECYgEQKTB5BzOmTk5x047r+CHHlAu1300/NS/ql3d1W+9e+3dvb7+/t/3w3eQzYQcTd/unZy/eILaYhO9skjJODhJyqAu0Wd8QhnR8gwM+kBOqZ2QS0jGxmlOTYPjQm8FdMpVH/0we++5i/jcKK3VJVR/EUyEv3Mzxcs305gZBw9u+sTHmB2ZgGabwLGwfY/W5CyqXOW22+9k5J0D2EpTiBJKOITKkGqFj0++sAqtsDM64QQsnTjHmVe+B5aFm+TEeYgoFvj013+OrH8di0sr6EyDiTGWodgwnHjpByyPXIBAIO0MlMFKoTjdotQKiSenmRw9zfvuuZHZsTOdQGehEVrhGsmSlrCpn4XZCdYKPmpuDbHaQBpNVLWJm216opxBXWHszDBTR4dRKyF2bw/le27kio88wfqH70DVfNYmp/E3b2QtboJns/P2W4nqDaLFBWrGw2mnVHJNX6WIyULOv/ka43/7HYqnLlK6MElvT4FpsUxSg2L/FgpKo8cnqCUR82sTqHQOb/c2dm7aycrBEcbOnUTHEXc8+QSTx45AT5Uff/55qtUKq8uLKCmxDT/KiVFW5+17CnxpsIzhXaElrjc48c+vMnPweKchLUz5wJ13MdTfz+T5YTaYgN41yerkPGlVdPq+12Kq5xZp+hYMraO0HNLreCyZiEhI7vvcJ9j7oQc4f3A/cl0/cdUjKTvgQa/jUW8tszY7xckD7xCttshbERQ72TUNTyCiiLKwUMbGChP0QgNSRaANIk3wjCFPBIFdQ1oWcZZCtQfCDFqSXunhqZxUa279xle44uOPMXZoP7X5hFLSRK21SeaWYLkO2iJWEuk4mFKB3AFlcjLf7ohwFuS2II/yTgaPHdCjA8qZRSEDYQS53Wm40r5NYikiS6Iu20geNZFJCGnG1778NczoAouHhxlqRjhhguekpK4Cz2NuKWbkzRMszTfg3vup3HAD2amjcNl6dt1yPVbB4ea7bmfs7DlYngfAsSysICC2DSqPMIUAsgxLC5xLIpIBhGvIwggCD1GuwvgM6cwC+fGzjPxwP+nZi50x0j6Hje/fx8XjJ1l77W20p8k3V6jesY+0GSJOTdK/FOHJHFUMSHxQxlDOBEFuYymL3LVRlgFXgm1QwqDwEX19TEyNseORh1l79U1wPFIUZ3/4OjLLWVle4NSZY4QufPbzn+fI3/4jKk2gbLHlvg+wdmyEXu0SZSkPfvrTnNt/AJZmsS7bgpmb7+TViU7TmTICLIfOSJXBNp3xsfc99yx9gwMMnztFohVOMSBOUwarfUTLDYJIs75cohUlLIxNc+7bL7H9yj1s2rAJMkU4MkaSpuT1lMV3jqDjVfqv2sa5t/ez8sND2KtN9GAF1pc5G85izWbM/NN+SGNqv/EZ2lWbcHGJwbFJCpmmaeX0NhN6wpgeYwjSGCEThKVAKFJXox2Dtg25ETjFGjoFk2sWZ+eY/95LsLIGuaIiNb4KaEuN7uvHft8+Hv3UJzjyD3/L4LVXEYar6DiErVtoFD1mXnsTFtfInRxny2Y+99wn2dI/wNQ7xygoi0bUxrMdbEujjSHWCstyOu1+tovJNVNnz3Lh9HlqWHz9qz+LpTXC6liP3m3K64pIXbp06fLe0hWRunTp0uU9RgPOu08ALGiZlL//x3/gtVdfxTaQ5YrQwPpt25k4M04YRWgdYbYOsWXrZUxeGMVUPGyT0ldPKIoC13/px9lwx01c+Nt/RvoOV3/4g4jlNn2zMZNxi6xgQaPNUr1FNDvK8tEjhFNLRPV5gr1X8MBnvsDIS98lKJdAK3SeYXKDUQbhuPhBCUtb6FyhmyHO+AJ9bY1uN0gzxfLJ05CFRJNjZK5FXHbJCgFNnVInJ/cEO559mKGn7mcxarBudB5HQLFQINFAnvPUT36Rvfffx/f/wx8zevIYbZWienyufvQDrJVsFg69TePkedA+JGBPrdJfqFBfXaOkNTKKUQjCeoNC/yCBZSNbbdTaKlrZNIsu0rGoxYJqUOLyK3fBrs20L06wSfvIik3ejChgCHyfVppw5J23WVSSnk1DJLPzuGUbWY8RyiCwcT2fWDY7H2pm8LAo6wATNXBlRo+ymTl7jjyRkIGXQTHrBO86tQGy6Tabr7mejb0DLB06RFkEtFyN3jdEz+6dZCsJsVa0pGL9xs0Iv8Dq8gpZb4UobDN5/DBX3XAds0vzZFGDO37ta0xGKzTW9/DMJ3+c44cOoIUijiOurg6wtDhFHscY24BnUSkWyGROuxHhWoJCocbC+AqN0Yv4NUOzGJOFIcw1Sd46ztK5UeL+Io4EHYVUy0VSo0gXFjh17DBTJ06SZym275ALQ+wKckeA3andElogVMfMkboWQghEI6IiLdYFFbxUUbV9zh46yNjRE6Szi9SnZsmilNROWfepR7n6wXvYePl25s+O0XPTXm778Q9T3rSR08PHSUyCQjIuU2ayhMvuv4+Vgse+T3+S/jtuZ+nsGfTSIrlHp2kvkR3hynZRSsK2IQjXwIUgk3iZwkpThJTYtk1mcqQN2jbYpfUklRrceiXX/8bPYg0NUtq4kfb5cSgHhL6NLDpMvvwOYy+/DFmIiQ1FrdAILn/ica75wqfQl2+hPjMOacQjX/wMtz36IY5NjEAeYxyBdDoiUr9To6xsdJrSiVMzSNGpk3e0hScFRjpor8ze2+7i+U8/z1tHDkEcQm+FN195jbn5JWzbpWoUudEY4ZAYKN34Pj76r77OjGMTT89xx2MfRY1NkR5+HTm/yPIPDtD64RFmv/Mm3twyVprj+D6pTjGej3QF73vwPu5/6EH8oMDc6ASO7ghIRoDjgG0LHG2Q9QY9tV7sPMO3bfKwyfqeXlQ5YP3zTzNy8jDZ0aOdPCrH5r6feI5r913H6W+/hB1KPArEjk3DVaUP7+cAACAASURBVEgPMq07o5zSxpc2hcymmhqEyfFyqCWGSlKgPVfnzuc+xfH/8TK3Duxg+shJmvUFSHM810fFIRiJGR3lyIsvdQLCN27h4Y98jLHGEo1jw0RxDFsrXGitsr1nkL1PPMpAPaVx7hyOURhhIYWNxEJZHSunbfSPdIzp06eYPH0apMTeMEgmJWQpUmocpShqh+W8wfbqAGa+iUCwIJtYtTILZ85TsgJilZJaEezbCUNVVJaRHTyMv7jGlaJM2Fwmr7e45iOPkey5gnj/OTaYKitzF2hNjpOPjpNqQduKITQkNZeWpVCVIqFlOm2YRmAZC0cLXCU6zWj9vWhtg3HZvGGI+VNnO0J8rrAtjWs7NCVkXhGG1nHtQ/cxPDVGe2mRxx95mNGTJ8jrIbQ08dGLMLnKxz//JaI797D8zy9y+Mhxzp45TuZkNLI2ftb5HsI2aAuMMNi+j9KGgu2T5wY8D1vC5esGeeEnfgLLcTCW6TQeIjpNdN1xti5dunR5T+mKSF26dOnyHvOuE+lHIpINzTTmn158kaOHDmNJTZxleJUqI28fwuvtQ7kOFG2SUpHde65k5PQpTBaj0xA/01gyw71uV2cc6+9/QM0pMJ6s4i+3kZPLqO0bGbxuN63pOaLFRfAM+EXiCxMgcoKhjTz2+FO88dJLyDDEBiwpUbozTYDnQVDg/icf5+zp47iBRxFBK1kloECoMqgU2Pn8R1k7eKhTwS7TTuNOtQRpDKWAtTxhz223UDKC6OhJEilJspRitUbmeFQHB9m9dy/vvHOg0yqlDUQN3v/Uo1R7Ksy8c5igfz1yro6bCfK1kMXlJYhjBnuq5HFIZjmQ5izU2zTmF8gW5+ktlWlkWSfc2/NwkxidK668Zg8bbtzNxbcPEmQZ9TjG90BlBnnJ6WB8F7KMy/ZegynVCC+eQyhwKzVipUk9ATLB9TrFWQZBZvl4boVEKZIsZn21D9WK8CXY2kEJDyVcwkyzwa4R9JS57/77GdixnaWTw0SWxFy7jX3vu5HhE8eJhcL01GguLNBOEujtw4xPkF4YhTilUixjG4uw4FPatpXl+hp69CKjq6tkp08jCgW0ymg01qj4PQTlEo0kxuqrEcqMLAio+EWKqY0KFakyDFbLrIbNzhiUhP4c+qwSVz35OJsf+iDLbx5GqpyV5UXimRlEtQxphB0EYNkIOgKHci8teOtS87YBoQ25MGSOQFk2laCIUoooiZFGkitJrb8PLIGxBLmWpGEb1leJnIzZ+VnmFhbY0L+e6dMnafsuY1EDNT4GdKwvJtPU1m1kfmYOxysxfegkS2eH2XfH3TSOHSYXGjcooJKMUqUPbIuBy3fyU7/xq5xbnie8cAFHGSpuAR8P1y/Qkhl4AuO7KDQyEuy66WaufOI+jkyNYsUZG8s9LL59FKlV5zrQECQaqYFKAVMP8QhYQSF3baZn5w7OnT2POnISKhWGDx3h2A9+AM02CKejwChAG5IwJdeGvOgReprY16S+ILXB+tGm3yLPDfV2m/HJcZpjw52A9yiCoIBOUqRWpJ5LW+Yox0cZi7xW4cTZ08SnT8GGzdTPXEROTKBnxygFASbJKRpBPz79FAgsh7psYzy747qJI/p2XEYUhex/+Z+xJR0RqaNH4HqCKMzwHJuSXyCJI7I4xnZtpDAktiZrNynu3Us4OwEbN8LCKl6umFtd4OTRE+ipBXwZ0CLFcQMymVwaEROkrk1uWWhh4yiLgtQYobDRBBJc5dO7aSsn9r+D1dtPaWaZ1toidrUAcU6tWCSOQyiXIIqhVMXLDFmzzdGDh2lPjtDTs5FMK8y6gCc//SlG3jrE+YvnaJwexWm3AY2yHXIhOovesjGYS8u/M94ntUH09UGWYVotKASdjCLPI7BcgiDA7w1YWV7GIIiSlPuff46FlSXCsVFyQceJt7mXjR+4iRvffwuTh08gRyepShdlmqwfWE8iU/p2bGX8+GkYX0EryEUDLrsMGm1kYxVlG3oNRNUyeC66XCXXhkwbNDZauBhhY3CQlkP/7isQwiVfWKLZbEGU4PkelgAtU7JcgVvuBG2blI3vv5kLJ45BmNJeWGTp1GnwXMppQHZJWdyxYwdvHX2tk18nnM6iWT8AEspRZ4QuUSnvlkcbBEgFWGgN+D4mSukvFPjSF78Aro2xDPqSE8nuGB67IlKXLl26vId0RaQuXbp0eY9R0Plhay69YMHv/PG/Z2ZhjqmZGeJWG69SJpWKUmQR+wb6i9CMyRfmGJ4ex6iIoJ5ge4a2Y+iXRS4cOcPF4+dAadxWRjozD4ttmlKR93jUdu8k7e9FTU5DZrDqMf25RFqKeHGZN/75VWjUwbNwLUFgBJ7tkimJKpdR/UXcG3dS3L2V1YunCZM2KvBIXVCWhkrApj178BdWaS7Md0YIBqq88FvfIBjaxOThEzDfZPx7b7H0zhHCksEN/E6weDOkXKkxMTbB+Llh9lx+NTMTi9BOcYpFzr35BjPHTgICq5mhM4MxDhTLKMeGwMON2pDmJJiO7SFOII4BQWKB9H3oL4MtcENJZhIuzEwysjoLq3Vc2Ql/EvrS52N16qExBuKMlcVFNl6xk/DsMAVbEDkK7rwB+kqwOE/NdkmkprRzO1uefpjpoSqyWkCuNclSQZkiqRQMXL6b5ahN7ntYV19FPL1IHsa88eorXDh6iHSlSU+xTDw+ynw9QosW9Bd44Ke+TKtcJgx8iFMIFSLM2U6BpcOnaU7X0e2c5Vff5PqHH+eBJ57l4jtHiOeW0Y0G27fvYMtHH+f83DytRFKze4il7jiobEE2sBW1GHXa2wKLTEVIKwO7M4bW5xeJpWY+TojCGDU2RtZaw3MslFa4AoTSCKWwLi1u6VgEQ+u59o7bqG0ZYvnsOXQukb7Xad6reFD2SWVI5mpyX5D7gsyHtknI7BzlKHBA9FS571M/juMVWTlyFFaXSK7ciTy/SHj8IjoIYX4Vu51TkA5eS1E/NYqeayCPX4D5kP6mxfzrh/B9ibQEWZZ2gurTFMtxaKUpwzNTLA+fBhliNIhUII2hblmYWgC2BKEgKICyWZmcZun0GPl33iSZXmDxjbdh0wYKGditmMtEDzLw8D0XN8wwwtBc52PfvIc7n3uGH/y7P0EdHIdGRMUtkK2FnXqszFAwHiXp0KMd3Dgm6S2jihr7A9dx7c88x/y2Gjd89scw/T00jp8nt338oEK2YwvlrUMsLs1Cc63T/JfrTqq/csANkG4Vs2UHtfe9j9hI7n7yCcZfexXm5mF8DG96HD07io2mJSVUK2jXp5HFZORklkL4glwrMDa4NovTE0wNj4AG11j4wiZXEiOg3NNLErexLZskSvA9m1Tm9O0Yoh2u4l5/Bbs/+AH81EUN9XHl3qtY+OHbDKyl5PPLiGbYaW8vBKSWQOeaTdLFdV3iLKJ49z5uff4Zzk9P4CobnSTEjiS1NFpAannMNxrQV8WsLdNYaVIWNk4WUsJCpDmusLCyHNdYeFFGkCkwgqwYwLYhatqjvVaHaoGLh07QPn4a6svkRlO6lIeUOx4yCDpNdVJCuYRqhxQCH5XElJSPSXKUNOA69G7dzAceeZALI+fIhCJ0BUnYRlZ8cqvTTjh/6gL10bNw/U4+8+9+lYuvH2bbY3czs7LE6B99EzmxRlG7KHLarmAtD9HGsHZsBHsiwdGC9T/1BMnjd3B1cR0Lr7wJlkupGBBEihCbvhtu5X2338XE/DI4ATqVqC1b2Xr77Swvr8DmzTz15NOcHR5Brq6BzHGMhZcl2FJhLI30BNoRFK/dxce/8Ut89y//K0xMw0qL+rkxhFeB1OBKQ14FejzOHTrI/Q89wujxMxCHfOAbv8DE37wMazHaNqQyw7INruuipAal8UollAFjO9hBgKsFfb7Pl37uZyFLMJ7dFZG6dOnS5f8iXRGpS5cuXd5j3o1oeFdEMhbccMtt/PYf/h5KKepz82jbwqQZ/XaBds1n6MbruPOuu7mwvAATF8G1GVyTeI4grAkS49PXcqCRsfX+u7jx4fsYOXyMsigR9wWwVqc5O0vlg7fw4LNP0/r2AQpZROQryloiEkVueR3HgsqQWY6d5Bgt6BlcT9s2EDZYPHOa+omzOMrCjyRuLqlaPmmm0Y2Epf0nsGdncSUU/Apps82h//ESk8eHEaspPblLLwW0ZZM7Ibmx8YVDyQlI8hTZatKen6cxOkWpndCnCsgopIhHQbgk9YhStYq/Yzt3fvpjDJcthBGwtIxJ2ljGUOgpk2Q5ux5+BF2qkMzNcu+zTzFfLpAPj0Kco40m6CmRkkO9Dk4BmSssoYDOHl4LOsHAmYJSCdZWWZudRrUjgmof6eb1ONft5UPPPEN7bY3l4XEYGCArFOi99SZWNwTsfvCDJBjC6SkSIUh1xo0f+TDbnn6YcVtj1vm88Mu/zBt//TeQxVCw0anEDlOqukoepujUgckm02+cZeuuq6ntvpJVO+Ojn/sMO/bs4p2DryAHq5SXc0RbIo3H/OkLHP+LvyWbXGa9tKkpjWiGjF7WB4UiZnGNILL4+As/yVGZQqvF+597nssvv5rxuSnIVoh9iWcF9KQegVNirmCIixZ5pKidnSEyLYoFH1srjMwo+x7kObYxPzq075MvLJDYNkMbNzEzOQN+Adoh7//wY9z5kacolsusHTmNKzWuNJceLx25ws01tjSoepux42dpvXMW1ZRgbOTFUYqRzyavh6uefILN113B1JnT5I5ASoVdLaHjZsfdkCXEYRM7i6n0VChv3MAdH3qA695/M2eOHkMLoNUiWlnutE2hEFLgSQ8lHJKih3/HzTz2C1+hsPMKdmy7EnHbLhoVgzw5wkarTFtHMFhiz08/j1stsbpah9UWbRUTZTGZlaB6AvAD9FKDC3/zPUg9KNUYuHIr9cVJ2NAPtSK48Au/+Q2k73BhaoIwScEInKBEtVJmfHQc9h9l7juv0L4wB6Gg6ldotWJKzzzI0O4rUVGbZGoSwhxXCDzhI3PdUbK9And+9SvQU6XhaDb7BaZeeQM/juhVEqMzJJqgWKXtKfR1l3HFp5+hPlggnh4nCQR5O2FDuUyeGhSXbmyXBHI7N7gIcqPRQDuN6L/iciw/IGu3EEZT7auxtLLIoz/3M9Rdweg/vcjyiRGSi2dYOHgQOzL0pwrlCaTQ5FqjbAu2lLn+o09z/sAhPMfGqZZx+2uc+/ZLMLNKNS8Qe9AOMqQvSUouSV8fOx9/iLVbr0dcdxWP3v0Brr32asbfeQuEwQiDMQpXazytcI0GNG3fwmzo5ye+/GXe+MtvQS4priXUmgm255IFPqgWwhKErQhRLaPiGDZt4oMfe46JqUlMYxXHdylaFra00FpjabCLBW67/XaGR0ZozE51BF2dce3Hnmbh0GlKuYeQElUroHtdEIKjr75BeuEiK6dG0Kcvsu3ya6lPzOK5HqGnUAWD8kC6kFsCKWPM+gr33XUPJ/7177Pw+lG277kB6buEqwuELkCFUmoxc+4i6cIKaM26O2/jnh97hgPvvMnuz3+CJz/+HN/82q8jPQfCOpQL6CzB1wobhbQM2gFsyKM2x/a/AyMTYAcMbdhJK9U4gxsYvPZa1vIGz/zBbzIXt0mmF7j6jhsYfn0/Vtsw/oM3KPRtQkYhuizAsRAyx2QK33SWrsolRhiefeEL3HjLLRx55yAV1+FnvvrT4DnoS+NsXRGpS5cuXf7vIMy7ftEuXbp06fKeIAHH0Pk1TMcYcPPDH2TH7iv51p/+GWiLUrFM3mxh+0XiOIXBAbAVj33mk5w6cJDGybOEU3O41QJtX9MbVdGiiLtziOV0mYHbb6N/XR/Lh86y8vrrbL/zNh755Mf49//6F6HcS++ZBUQakfgZiafROdhZgPI1kCMsi2KoMNgktkPx/dfy6Mc+yl//1m9jzcxTAXosH2VBXabk+Di2D8qi4kBdNlGAFA4FxyewfdaSGD1Q46anH+bQiaPo8yegoXCVoGL7rKoEPAeMws8NDi6hU4OSD+EiTjFARC1yZXHFow8xcM11vH3qCNcOXcnS4cMsH36LPiGpOxZ5tQ//iqu4/bY7efuV7yMsQ9+11zHzNy/iJzGSmIwYYbv4kcTCJ/Ft3DxHC420O7OGngJUx8mQC6BggeNDpvnSH/4pf/Ht79IcH4bZCzz5xc/x97/7/4Jbhd51sHaxs6FOc0QQYNoRoljCJAn0D0KxyG3/5l/x1p/+Oew/Q6W3l1ZjCrauh9mIal3T3FCERkRv7iC0z+quIdjez4ZnH4a3jjL/2usQrkK4wsDO27nimmuYDZtct2cvRDH/+Ad/RFVJMrWGAcq9g6xFITqXUC3A5kHYugmU4Z6b7+KV//hfoL7KOitiiRzWbwHlwdRKxw3kO3hxmx4LWlaOynJ838exXFAa9S8SKUaAVDbK95BoVJZg2R6+sMlkjvKA3gIsrzAQa/53hPmXR2kJ2paFY1yKjk8LSAXc//nPsHHHTva/+iZTbx6nvLefpYP7OyneyoKKz4a9V/LBpx/hxW/9I2tnh/EyGy+1aQcafAuEhGYTJDiWh1AS4dtkOqGcOvjKJ8Ol1eMz+KlnqcdNzGqb/NXD+MToqIUf5pRxCZEIJyAq+EjdybpBWfTpBIFN4kOoJEgBlg1+QOnTP4bZOkj0zf/C4K6rcByb2TfegKFNVAtFmpMTsLwGjoOXdNw9cZbg4KGA3HagEBBsHCTJEghTKPZ2Rkjry9hpncDW5BZkHhTvvYed11/LfCtk6TuvQivBaiT091ZZWh6HUhGabQbsAGMESWWA+3/ykywE8PaB/XBhFEanwAsohi0KRqBlgdSGyKezWTdQzAUmz7E8D69cZNOTH2JoaIi3v/cSrZOnCdIctCYv+Gy68XqmLowAgis+8TwTJ0+QvXmQUjNGIGn32p0bpvII8oC+x+8Dx2X2xVfo0RZpFGKXAtrGQjgORjuU04y21wY77TgTvT4e+OwXeOn1V6GvCsOzcP48NSsmtwVSGIxU+AouXf6kDiSODV4FVhLY0gdxSDWxydstpC0p54KoYiN0jtaazPZh3SZ+8rf+LS+++CKP3vUB/vDLL4DMCWxBpn2M1ljK4PoeSRJDweu423or7LvrTgZuvpGXv/67bIs6itx4kIGXgoJiqY84jDClPp753Oc5eOEUC6uL9BSLzL/6FnYqESiUpTGuBt+n0JBsSR2Gsdnwb7/ArQ/ey9998ZfgyChOJUCuLVEsl8nSHCkVbq1G3+bNJFrTmBiFngrUQ4gFrCvA5l7Wr1/Pwg/eIEgkttGkjkY6YNs+WliYROIWquTthBe++nX+w3/6c+769a+TVQq8/fu/BYPr4OQ5nNkV5EYf1hL6dZkVR3H9Zz/J2ZFh+soOc995GSKJb8AHLLdAZEHmGJ796s9z6O0DjL19iJ3r1nFh+DQITeYINBYWFp6mKyJ16dKly3tM14nUpUuXLu8x7zYO/69OpJfffI21VpPFeoN8tY5rWbhad/4lzoAkB08yfOQA9eGLDBiPiIxYAJlhU1JksbdI6cYrCV1DND7Lvo88iQl8ll49gNi6nsHdOzkzOgrnx0gwCG0oyJyoBLhQ1WVUYKNlCtJQsjw8LyCSOdlAjd6tm9hULDNzfoRSqUCDjCWZk1ZspKXILEWGoKVjpGuD5+IIuxOMqgSJB6wvsO7Z+yhuGWTt3DhOqHCkomi55J6FLvlYgUvR2AjHJ9u5FTb1Qh7i9taw4xTL2KwlknqSkwqbhROnac/OYNprVF2IMEhbIAsV6q02rWaTbHKCRpJRmG8gkja4BukKPEtQyhQFu0ji23SCazr6gzACRwsc03nNGKgNrSNph2A5uMX1tJebtKdnIa+z++F7OXfkDDQzWIzpy3JqxqUoBKoVgjIUhaZUqJAsrsFqk6mwzQNP/RgXv/19RJqj7JStzz6I5/isjU7D3ddBf5nE0sRG4N56PdYNe2juf5322SnExCKbVtqYWpV6X5Hivj1Y6/uYX1vCeBYzwxeo9pZJVEJGTlEb0iTCLxUJemvoOEefuQjTc9z9sWc41pwBK2V9q03ddmDndopXXYFMbXoXmwym4DiCtR6DlUlsS2CLTnitlhJbdJqoxKUdm0xyCnYBz3Zx3YCyExA1m/i2T67yTth2uUAqQyLXEP8vR+oYkncfHUHuaPJMESmJKBex/ADl+WRXb+Zca4nk9dNECzOQawqZRU0ZlJQoKbniql0cfu01WFmlahdx8Il1AlkCJa/jNMNCt0KKRlByXaRU+MrGw0XikAYue55+nKXVNbJTw9CQlJbmKeU5jbJNu9SpuvelpD9zaNiAq2BnD7EPcRZRyyx6tE1v3yA5kNsWeaNFPr8MYUZ45AStegty0xGOohw7UXjSwookolokcQUmVdScAKNzLOPgbR7krs9/nOJ1l7PYGzB4972EtoKpcXqLBew4xjGQaiiu24Bn+0wfPAATY+BamHaTqN5EaBsPB6U1UW+Z2BbkjZSWMsSLTRrDk3B+hiAXlHODZ+VIBY5x0QKyd9OjLxWjCWM69faWYKbgcnFyjGx6BtoxvV5ANSgShiGtdobBAcvinq+8wMSBo8jVFgOthDoSc81GKNiwEtIfO6xNr1I/OQxJRhkLk6QkSYTGwNAA13zmWVbfOEpB5ggDjjKozKXejIirNYJNW/BGZylqQ6bqZE6nRVAbjWU6riRtddaeETZebLPRqdGsGLhsPWmagiswKNZlhmIGzTwnqBbJimXQ0CgUuXj4MKVKmfF33gYBWmi003mfRnfuwb7nUwgKZHFMbetmLGFx5uwIcnIBRwqKwqMgNe2SCy7kYYu+2OKy999OcdsQh3/4HbZ8+EFqmwZZevMw60JNTQr8HBSaojb4jo0tCjScHLFtM3pimeTvDpDqHP3BPRCukMsY17FQWYynNeHsAhVlyMIcK5aQWxhtQcnh9o88wfoN6xk/cBAhO+dMWQYtoJyDijOEBl+7KKVYaYSs5SmrO4YYjRpwbASGz4LtUG7nBK5Lpb+fpsrRW0pc++xTDI8M047qMD0HmcYDCoC2HJRtIYXkzNgY9fl5kIZqwecrP/szZDLDOJcCzd9tZ+uKSF26dOnyntJ1InXp0qXLe4xCdpp6tNN5QcBcmPH9/W/x/Gc+DXEEwmPzYshqzcK0IspG0NxYJd3WS/+uK1l56Sil2SZm0IZWjqj1EaaLsGsHD+27kRf/6q9g6DKYaVGox8TrAqjZfOgXv8T3vvqreE1DDZuGEFgPvY/kxHGcpo3VDMmH+jF5BI0MAh+U7Gz2c7cTyB2nrO/bTHtulZwcxysQqZDyliHaZNz/zOd4+b/9GQz1walzbBEujTgkNxCXilhfe467H32UkW9+n3tuuoH//Lu/B9OT2FFKMcuxtEIraLkO7rZdfO3XfoXf/MrPQmMNkUl6sFAWRC7IkujMnkU566SNMBFJtUozb/P4v/kl/vE3/h/ABuOz8Y6b2Lt3Lz949RXUuXMQSRxs1huHJjEtnVPWDgZIXI0WurMB0TbK8SBw+eALn2F7rZf/+Ou/CbnDQO8Ay6uLHeuCo7B7+lCra2zecz3TC7Ow1qKQxhhyAg+8HKrGJhYlWr5Ds1Tj+kcf4Oy5Y6TnTkB/kVsffYhtvYN864/+E2ZjHw/tu4vR08OcvjAM62psv2Y34coyyweP48QpA70llvOIDBdyiVeuUkktqo5PvNZAFHzm8jXoKdGb+djNkB63RJSvElhlWq5NWypi14VKBeoreL0uj//CV/jWa9/vZLskAuv4RZxmg6LJkIGinSSUgiJZO6LsBURhi5pfxrFsjDGoPGetUCK3LQQSx6R4WqKSjMD2SXOBsh2M0mxcN8DkwgRuILAwZBmIHhdtW+ACfYPQkBApkAkUXEhzyFOoFCFXlJczhNVxQEFnHDG3ILcBobGMxNYgMGSBDRhQir333EfJDjh74jTN8TkCr4gUCmnFoDS9OsBCENuCyOrYBy0JvSkYMjJyKl6ZdqZoWaLjKil5sG0TbNrAB596lKN/9xes/fAwdt1gl0t4N+xm3wP3sKyhLF3yesSxP/tjwLA59BFGMhXY3P6nv0q1bx0v/tLvw+gsFBNQimK9kyekEBSLRSJPgy8hl1DbBE/cz/pSlYXvvggXx/Dqjc4m3CuwlmVIBJ5VIdM5oPBrAWl7DQxYLp3zLi9Vq9kOGAtbgWUsAnPJJSY00gIlwFUdESl1TCcfjc4lYZl/6VbPa53Ac5ShGErsXOIXAupZjFQaLAfbE2hLUcxsHOUgLZsPfPpj9N9yFf/tv3+L/OhJaCad5rBqH3pxjes272B+aoIep8qCpxm8bjdq9xDJX72EJ1PWZIgzUGN5rQnCwilXAagKh7TZpGxbLOQJeD6lQpU0jnE8j4QU1zJYay02E3ARyTW/8/NEvWUu/v3L2AsJ6vBpNroemWqxctM+rn/kUY597+WOW2tpEWwXT0vgUkOdhgCbtV4b3BLMpyAEA7UerJUJaqUiI3mbILPo83poZjGVSpW51gr0eFgFF91uU0kMtihTz1PY3ge9fR0Fb2wGHE3/TTezwa9w+tvfhZ6crU0LX2lGagL8Mqy02TF0FaPUuee3f43X/vD30YfP0RcbPFzWAHZuIZ2f49kXvszf/N6f4NkeIqiR6pjHPvcc+48cYGlqDBYWAIe+BGwjWSKhgkvLltBbgkabSu7T6g1gQxGEDZMSrlnHzice4OLv/Dm76gan5jGxMsOGPTu5uHwRtAVhD/7lW0nXlmBpGaEFBSmBjvNJ2RY4NqSG3p4BFubnENa737QSu1NzQMfD5Pwf/y7v0qVLly4duk6kLl26dHmP6fTGWD9yawC4vs38cot/euMNbnnqw8zkEb0P3sSSGyOjNpbnEjdDCtddyW0feoCJqSX8lqS9ssDW3i0sCKDmwfQkF06dADvj1l/8Ghv2vY/JT+sS4gAAIABJREFU1/aDC9tuu4XDf/7/gVOgVxWQEkLHYsu9d3HPZ3+CMycPYK0muNqi4FaohjZRkkF/jc//yR9w+O/+AYIAyhXCPOTWX/wy6Y4hVqeGoeqT5QmkGdu2X83MlnVU9lzB3U88zJHDh0izFCsDlRpMo8nY/qM0z44xn0XEKMyFEYSxKGQG21gktoWyXXQ75fXv/xPQ2WwNShdb56wWc7SbY2c5plx4d+aJWqmfxbgJvsNqfxmrv59saZlytYfV82dYXWrghjlpJPnlP/sj1u3Zxf4Dr5AZSR82Riu0pdGWweJSJpKxMbYLjsPYzAxH3zgErQhcQ2QlnVGPdkKfXyVaa4Dvkq2v8Niv/CKFnl6mTp9BXL2dKIsIbRuUSxQIWo4E2yPKMqobqrR1BvOLTB84yalX36bHKyEaKSOHT1FfXKJYLuLqjOXzF8imZvBVjudZZBbEKsc1DtgWMgrxBnpQBY9FldDe2su1P/UJlrb0Es9cwLr1RuajJVqexRptog0VNt57C/seup+Jw0dgsAfVnGJ8ZYUgUWQnR+DMKF67jickqqiIVUyQutjCJs1ytGWhhENQreEEAbkRNJMIxyliG42jFQ4SgcYvBEQyQwsLaQRom4Ip07YSTKWAJ1PWZ7A5dnEiMFfs4YEvfolNl+1iYv9B7Kt3c/eTj3Hf009yYXyMdGIGX2oKWqKE6UyyXXKSaCGwjMYxGtt02rE8DcVYExiHglVg8uwIMyMXSVtNKBeQKuWmZx/jlqcfZHJ1kebKErFtyGV6KXFdY8SlvBydox2LFoq04rLxk09w3698mdFNPazbupP27BJj3/x7kjPDFKVHTXvoXBPOzDJ5eoTl195m9sApFg+doi/KSWRMDmjPIyl6TM1NM3rkNOb4eXY/+hA7PnwvM3lEPjnDDqsHRyk2Pf8A177wLGMnRqCRc/Wm7Sw1VpALi9y2azeTBw9RLBTJVE5L5ohKqdMulxr8QgFtwKQxnlCgO1NVrgJLOlQqNVIZYWuDc+lztITAWJ3zLC0wwuq4jQSdc63B0Rrxo+YAgRZg6IhcXqbwlEE5gtxzSWWKUyzjSEWp6JGIjNyG1LHIHZcLIxc58fIP0SOTkBrKhVKnlU3nELgsLa6wYWADWZSQy4yFpUWWL14gEZKsFhCVXdqtOoX+XixpGDAOqt7EOBBYNlkckQ5VYdMAaiHBTnLSPGfvZ59i/uhh1mUOdTKc9VVmTpxj7fA57rrrYcb2H8ONY7A0SRrRu3MvUT2l/dZ+RJJQylJKSuJq1clbArQliNHY1+3l9k88R7plI0mYEC4t4zseM1kTquDZRSKpyXyXZhZS6OtBpRLTSvCUhaUMLUfBQC/+VIPqXAhrCbd//YtM2A0e+cxnCdstZs+chUBSDEEbSbNkoBlSqfaxsLLInd/4Gq998z9jzpzDdwvIWJIhSBwHZUnYOsTtjz7CkTdfRw2U8XetJ6/PMnz0LaLegI9//ac5cfogJKvEtsFWgsA4tBEU7QKldsxGu0quY2pJjLO8RrJUh0yz5+lHiMImzcMnKMaC1bhJZsHyysql4CMo1Lbwwk99kSPnz6LqDRDvipOXLkU0LmCkolgo8/O/8PNY4kdlkJfWoKIjIP1IXerSpUuXLv+H6d5hu3Tp0uU95///Vvunf/LHDG3cwC033siuPbspXL6JbbffDElEGKc4jkN84hTf/c63ySsuZvsgBA6jYZ3By7fTv28fCItSrReExYbLLuPqffugt0xh+zbef/OtHWtGmJJ7Dg0U9Pcxduwkf/df/xrSBInh2uuv59577wUlsWwXXJ/p6WlYtw4yBQZu+fwnmBAR2dY+2LsNyCBwIEn5wV9+k+ytN6gfOcJMVO+4RSwLJ6hgAwxPw1tHYW6ehcOHqQBcyggxwkIiUJbVyYwRQH8FRAq+hZFR5+z5GnyDrzSkKXgOkSuYi1oQeFCtsHTwIJbnQ/8A7YWOK6B+aoTm+XFKpRoHThxj3VU7oOrjFAoYqdDi0igbncPVUCoUQVidf/sLBag3oFgE24b+AfbecjPB5o2sqgz8AAwkU3NMnDtFa3UJiiU+9PzzMLgeenpoWqBsAT5YJY/m2ePMHzoIs/PgFCjZAVW3RNyMSROF8Bzsgk+zXieNMwquR57k/E/23jTKjvI+9/29Ndeed88aWmhECBASAoEYzIyxDbYBY3CwsfEUO3ac2U5yMuc6CbnJubkZHMd2buLEscEDYMtmsLFBYkZIQrPQ3JJ6nvZcc73v+VANzjnfST7c/VurV69evVb33tVVtff/6ed5/rpuomkGMk4whUns2shCDvqqNGqzzHTq2TSVy3PBBRey5ZIt0FPklo/cxYYP3g4FIytwVgFNGbH+8ktheDArzXUtvEMHae18Da3eZCgVDGkGVQ2UDJBIdNdGcyxk3kINVkmMhBnpM9aYYcZv4SwdRpNgJxI7BU1qCz1JktQwiDVw+yoMrl3FhPCzWJVM8KIswQlZlKyz7yiP/fU/sv3hH4BUXHHxxYT1Ji9tf452vQFSIqVECZBCIxU/dyPpC8OmUCCUll17SkdgICOFluqUcyVsJ79gwVGgEl557Ec88vd/T+fIEbAtDMfOLludN+fRUM9+h5ISTBNyFqklmKnNER04RKER0NMGpjpYHkgvwktCtEThKgdjpg2NCKcVkgsi9DSm7BTxHagZAXhNePkw8ulX0fMFDr/0LDu+8RDsOQh9VaLIwwDOjI2StH04Po6oNalPz8DoJOHRE+x66ik0TaPdaRMrhVZ2SEUE0gdLEsoQYWm4joNIFxb1AZXyAImwaTTagIYUvPmh/tPnN3hDVNMVWTF1mvWJGQvl1CAhTdCTFCFTpCZITA3Pb0G5ROIHCGHi+XH2APT/pAS029DxMfNFhB+jRQrcAmuvvgoMgV7KMxd5+CrBdl3yjgtODjVQodWZI0lDqJTwvQBhmMQL272EbaMsiwSN/GUb6b9sA8rSKebKLF67hg3XXQWuTbFSIbTA77RhtgMjM+z59mMwNYeuAUhyAmZe2sXk9pehHeKmCrHwzNMFAxYiKxiXUnHlpstZsmIFUyLi/IsvBtuhZQgo6mAaeHFIkLdJhEIrlPBrLfRI4mhZv1woU9h0HtVrN6Oj4ZCyfPFSLtq8EeKUw9uf58hLr4KSkKSEAjTLBZlCrkCUJpTXrsbMOZCmIHQ0yyTQUzxXg4oLSQRRyKOPbwVXRywbYO0FKzKFUU/pK+Q4/MqL0KoBCTgandRHiEImUtomFjqtuEWqGTgISggswM7ZHNr6GKPf/B5EKR0SWiQk1QIqZ2QHTFrIKOS57duITp3izSD4G9cxBgotu7YBsXD+6W/mKf6PC7ZLly5durxldONsXbp06fIWkyKz/5KqhTe2CmbaEQ8++j0e+McvMdFqwNhZcAS4BYzRefIpBIZG2K/DpnWUb7gGXWnoSjLz9e+z5eOfYXb8DMefeQZ27ePm+3+Bp06OwclZqBoQBQwtW0508izzp05iDg0Qk0IQwsoVCNtC7d6Bo+Uw16/g2tvexexLh3j5x09l0SFTR8yH6CQkOmz8xAfZM3IEDI1111zDYCrwz0zwyoPfpddxaEUpkWvCJWsAF7a/Bs0E4Sh6oohU06j3FyFvcffd72f0wCF2PvE0RqojdZ3AMTKRptXmkj/4JK2ww9GHH2fV0Tk6pEwuTkHAwLhket0qzKVLuHX95Xz/a/+aHbfeItSnWXnb7Vy14RKe/ZdvM7l7F6VyH51U4SUeFDUouDA/CxEMmTazfptEz+YkU4KdgodBOLSYxVdvYfE7b2Dnw9+Hw8dYvuFiRk4cxy0VuOTqy3n+q/8EykF0YkpAw1VoIUhpwU1vo3fdatpnxwgf/xk5r05kxiSWC7aZDXdBSDHWcBMDoVkkvVXmkNCcBcuiUiqSeAGaTNGFQElJkkSQxKQFFz8NYOU53PnJj7P124+Q1DqIiSZqpkmhWEZqAk+bRZyzmAE7x9TufWiWhbRMSBVIi3yhn6BVw2SWSEBfuZek0SHvxVgyJSahaUFaMYkoECoJSwb4yO/+JnuPH2XPo9/n0rvvI2+4bP/zvyLn6RSiiFRTxLok0iWRSrNeGD+mvGIlvZvWM3LJOuRXvpxFp2p1SCU0AtBMrGIPkZ9mjzGJoeRQWTpE/dQJSEMcN48WRiRtn9R2UAKE+j8HSkhFNoCmQpAaNqahk0QxhCGmDpZuoGREGIeUh/qYCzs4Tg7m2hDFWDmXJnE2j0qwEigKkzSM0Eyb+SQEU4OeKtTaaKGJi2Jlbohx20c6JrX5CVBQisFUMS46LQ06Wkw1MYg0g8b6PnLrVnKB3cvsv/0AEziGRBUEi/wcUeozl4PKmlX4jTZRy6PUSXGDGMtxORM2cG0XxzBIgxZKxkhLEOoaCSnWpRvZdPnlJLMBOx/ZCm0PLZHkgHy+h1TXme14WbRRB7wpkKBLiSY1zAXxSIlMIEm1zJllSLASDTt9sxaJSIdIz4rpHSUR0YLJxDUISjluvvMO3EqVrf/Pl6k6vbQbNWQuIhUGWZO7nm3zS5JMjE5jBlev4oZb38XB0yfY9+PHwSlSLPcQnpnGihWGZdJWMUm/xob778UydA5sfwn/4AhFaZHOtyBv44kIkFR6K6z9hXdz8uwoM488DTEMXr6JqenjMDoJbQllcJRNtWFgoGOIHNNaALZCJD65KMKlgmuVqUV1mnSwyi5e0AGh0OQbB83Adntoeh6sHICbr4SHtkHNx+rPEbXGIEhh6RAMLeZt51/Mc1sfo1fpxI0mQtdopxGLV69g9df+gF0HD9H81X9gSOSYlC0YdKDZAS87R3s3rqEy3EvrxYN0GnU6JQmtBM3IIc4ZJl2/inMvWM/RB/4nGBr0Fjn/yi30Fnp47uHHMnE09uDSCzln43pGv/N91HQDJ0zI2Q6NqEOsMvVRBKDZDrf96Z9xYmaUA1//V9BdiCNoN7HjBGVA5AC+ji4NiuUS9VaDfKFMp9OCcxdBYwJGoYRBUwRZEi2XgySFUOGE2SWYCkj0FFOPSeOUnmoPk5NzP9eL3hA8ecOV1KVLly5d3iq6cbYuXbp0eYt5I+bxZpxNgO3oHDhwiIcf/h5p6EMnZFHHJN9OKJgOTqFIQ0lUImGmzto1FzDyxE/wdu+DyGFg+ToOfvMhmG+xWLcZ85tc/cF7mYtSrCsuIGw2ab/yGuZ8QLFYpp22WPuum1h3400M9y3hrre/k0O7d9Kp1YmUx9EXnmP04El0O48yDJAJeStPEnmgFJMHjsNYHc7OM7vrICNPP0d/vszkqePEfp2+dkjS8iiuW897b/sAxTDP6NGjsNjBb8+iVAyRRHVavL5nN2cOHsaSAqnpJLqBsh2wdEg8JvbuZu61g9CROL5PqAmChcLxqi9YevkVTE1Os3hgMadGzkAQsP76G1m5+Qr2P/QI+7a9SPPsFCuUyWRZp3DxGqLVi1EjE9BMMD1BTtOZjzpIK/t7vBGXsBRIdGLLoSVgfOwMvLQflEF97Di3//0DnPHqHPvmQyxZdSGtU2cwXRepYnq8NqVUYfesxNqwkVrHJ52Yg+OjlFWElSb4cYytaxQ1DVcJVBCimznSYp45PWXJvXdy6RWbCP0Os6fOYMQKFcfESuLJBDQdx3SJvJjUzWUF7IP96MUi7QP7oe1BuUqCRhRH2MqgPFlHPzNLj0wpxAIdDZkodNOFIEULE4qpQVjI0VIhvpbSdEySYp7UdknDFDcycZoxudjAD2P2HHydyRNnoN5hfO8RZqbqSL2Iqk8jNUmsk5VjazpOvkzSCshV+4gbHvVmwPp33op3zhIuvO02pGnSOXqWsiewEokf+IicDV6A4zgkUUQwM4XhusgwIvED4ijGNk0iQ0NpoFAYKkFDoktIhU6kmVkHk26D5SC9AKQETSPVJRExsS3Ryw7tegPXcGG2STkVFDDRYomQWemSkQqcROAXLDoiJUlS8lIxIIvobZ/eYg/NsE1saUzrPr6KCcoWN/7l79Fz3nJGdryKadl4SYeWkyBLCq9UImwHVDdfxMCqZRz4/g9Z2nKwdJdJo42eczNlxrZgUQ/X/fmvEK4dovbKAag3aQzkaVgBJAk5oZCxh1AJtiOIpSJBoRSk07OM7t7H+OtHwPfBNHCUji5M5lF4acxlv/E5et9xI1NHD0GjCUKglI4SAk3oKCF/7krSsgioEmqhA0lDZZ7DLMalpSAUuSRzhCkgsA1UweHkwQMc2fEqlPpIah59VoHeIEWLdQSC+I1skozA0bj+Nz7NgVOvc+DJp5mamoYVS/nIb/wKJ86chjDESlLSMCSnG/h6SnV4OVPHz6DmOoTHxtBjyBcKNNIA88JVnPu2yxk9eZSx5w/gHT8LBZOrf/Mz3HTLzez46nfoLfTg25KSsBCxwjM0fNdgNupgWzoEAaYmcAsOMgyxTZ2ppIHsyeNFLaSjIzUNZFbSn491iipHM04giODoST76u3/MOatWc2j7C/RVh1DtTKi/9bOf45nvPIpqd8iHMX7sESpF2lOi6dcZOTRGuP016O+jPTeOcB2WaXmSWovYTqGscf3v/xqvP/4ctZEx8qUiQRqhewotTklNg8/92Z9yZtd+kn1HSFWEWtLDomVLefUnT8NMG/yYD//JH3LcSFh38XpGtv4IUexBDwClg2WTKJk5MAt59BXLGSs5nP3uVi793KeZLxskx4+SDwxCC5KchERlAleq0IIOFMt4Xocb7v8wt/zWLzFx7gqi7ccoxJIor5AsWOQMAyKJLjNJSAqddMFslMoU18nz+d/6wpsLKxZeWpGiKyJ16dKly1tNV0Tq0qVLl7ecbA26eONdrYAwiMjn83z1n75E6nWwLBPLMpgzEjrrlvD+L/42uw6/Bj7k7Cr+7iP4JyZgTlHw85x+aS/oGo5torw681aHE50JgmVLCMdPsWbJSmI/RI1PExMTEzB3/Chnzo5z9mcv8NILzxOqxs8jPcJhqAV9eoF6u8k7HvhdRuvThLNzGEIgRZqVpoYem++4lThJOLnjFYhiJJK8hDJ5po6cZfzVI0ztfo2IiLUfuoWw38SfGKPgayiRoJIIU0AaJ8RSYOTzyLzLx//k91m0ejnHnn2ZUlvH8SJSy6Vpgoo1DF9hSY0zM/OojsepvQeg40Eqmd5/kPHjI6gwRVMaIg5JXYkXdfCFYt0F65kZnYYoxUihoJskkY/Us+yJAjQNDCmwnQJeEEAUcdUnP0K4Zjmdkss1t93JS9/7Ic2RMahPs/meO5ifmCBtNOmJUlITvDRFDg6hX3YB/vEDsHoZBB7e/CR+2aSkGbgI0iAiCSLQdGSpSNRTovLOa3Euv5A9P32S9ulTaBFUsNDQUAWXMAlJkxS73EPcaDFIHpkoxqfHKJy7DPuCtbzj879MfbhMq5yw6rP3UIgiamfPIlwDX8bMOClBn4XYsJp47RJ6rryITe99J4cOHkdaJh/8wz9iw7U3sm/bC0ShxDcs5NJhWq0GolDEz5kkQQsW97Nsw/kMXryBuVMniPMWS1Yso/76HuKcILY1epavwKn00PIDLKdEMN/GThTh3DxTU/PknztM/XvPoO08hiEEHVMRS0VvKlkeWEiVkKgYTWXCD3GELnQ0TcPQDRCQFgoQZWXRjmkQBQmlapFmGGfxyGKZGz//K5waght+53MsuXozZw7sydwbsaQv1Sm2A0QKHZmQ5HOYbralzLcNPCMl1RJSxyA0NVLLBFtHphFRT55mThFoIa3FZT76N3/Eqtuu5nB9jPf/4q8yqaUc2vEiEwcOw1wTwoiCZeCpBevOOT2ARXD0FLWd+yBJmS06TDoh2JKB3BCJEGi2SzQ6w+EnXqT21A5ohWg9PSg/wQ0NemOTea1DpClkzqLTSd/cBimkhlJmVma0UJytJxIhJZ6uuPIDd/LJB/6U/3jw/6Pw9rex9LJLmH7i6czOIYwsdqqJhYlcgcjEIxUrlA653gGanQBVKaMWeph0IbFQ5IoVQinwpSSVMnPgRQHmunXIiRnMVCNJEppK0r/xAt5+3z3kBsuMnTgFYYxRKHJ2dho5choSAX295BYvYucPfoA/MUHUCTHjbGMgKsGwC4zvPUrn5FnUbJOK4eBqJpFMKa1dzsa3X4vjWsy9dph+vcD7338P1Us2sv0b/86Ox39CFRc7jIlaLVZTYlamBFtWs/4j72XiwA4iL0akEqEZtHMmtcAjzINnpbjrz+Uz//dfcLRRwx8ZQ0WQJILBvsWcac1z0afuQlaKeC2f5NxBxkSHy7ZsYf8zz5EsH+TmX/osTz70PdTZcWi3KSoFhk5ogLJg4y9+BHXuaopXbEIt7yE+dpzexKBnbh6zWKbdX2HlRZvY8R9bCc/OIKQgNU0QGqUwpteq0pQ+O7b+kJkjZyjO14CY0GszdeQYtBKMMEWTCqUbnN23h9Pbn6dy0WX4p6ZIWiml8gCNhs8199xLcfFyLtj8Nk4++xLhgSMQKVatWcvJH/0ki2zGKWVcpNIxYx3ddZBRhGUUsli10PEdm207X6HVqpPuGsHWbTpaBzTJ0ssv4913vY/9O3ahy+wGLXRBgsxK4BW45Spf+M1f/7latJBJ7opIXbp06fLW0w0Nd+nSpctbzn+61S68s9V0sDSBnqYYSqGnaVZCXCqQNqbYPnYULrsAenPogxXmmrMMX385aGRxAteGUo5gagoVRdlQXGsxoHQuu/p6jj27ndbIKYQpULoC28h6R6ans18ep1D3sU2L5VddTv/6dYRopAv/1m01mywfXobyfWJDkLtsPeKKC6AimSjCpe+6Dm3pAJrInl6kOSSajkOCNzmCQwLEJFHI2ks2wFBv9vRV5vrJjkq2Hl6pFOrzHDx8CKdchERgSw2BpB4FpAuOjCQRxFjIVhsabfCzzVVIhW45yOk59CihaJhIGVK3su8xMsGhnzwHcQw9BSI9oRF0yGOjxRokoBKIJShTRze1LG4WR1QQtA+dxGwnTLbrNP15aM1BO+bQg1uJJ6ZJ0pCJXMysLWnp0DR8fCcCw4ehIptvuwF6czC8iGYQ0e74aKZBqMDM55GWjsrKVigVitCoQ+AhkwiVSmSiaDdbMDQIvRUatTlybgkHQQ4Bp8eZ3H2A5pFTHH76eYLjo7DnMCeefYXY9/ADj7bvoWwDRAIyIkkCbv2FO9GrBZLePEO33wJxwOTpCdLZNiKxIdaxSj287QPvg2VLcVspxbbCkjm0k9OMP/kiI9//WdZ59fI+Rp/clgkFaQIyYXD5MPd85MOsWHc+UW0ebDuLtUmB2rGb+bFTzKdNpo2YMAxxvIShYpUmkuaAi29k3TpZ94lEQyJUikpTpJRohonyPSjkQYJUCtvJtphl1ocqCPjZNx+C3a9z8OkXOfbqHvAiKBagp0S9YDKR1wmW9kAB6C9QT9u0HUgXValcsZGP/+P/5FN/95dQtrFmm+RnOpi5MlffdTuf/Ms/Zujmq2FqlGN799E4PcrF528gmauTjM3B7iNw5CyWn2JLhRlJbKBUKnPDZz7NdXffyYXnb8J2+8AtIQmhvwQXrkdi0uw0qflzRMvK0F8BXYNVA1z7S/dRWbEMv2gzlUuhVAbTJpYSt+Jmg7RaiGnGYEZgxNnXhpIgJGiS8ZkJtj7xQyiXkJHP/iefgHIFFFjFAoXePt6ozH6jE0kohXAEJNCszUO5RGhbdDptoiRBSdCFzli9RWjaGPkyuAWQUDz/Qm656UZQKbat44mYsFJArV5CszfHmN9CE2AGknR8jvjACdDzsGgYxqco5gtQLEGlJ9sYB4Ak1SSmF2F3QqwoIadpRHFAkkQ023XmZqd57ic/5sV//xbJVJ3JVo3ndu/gwMs7sxilF1GXIX4a04NNI6jhRzGbbrmBNVdfDrYGg/2YbgEclyBNoKATuhqQ0rdsmBMTkxjFKugmxvA5YNqc8ZsMXb2BoUvWISouzE1y4Pg+7JX9TAgPHOjbfCES4ORpco6FIQCRILQU09KgmKfRaOAfP0t+tE7nqZcRk23s2gygc9poct3vfIp199wKng9WHscpEesaum5S1Su0owbuyhWQpriFMmrh70gMRGCkkLfzABzavRem5mHJMEvvuB4cH3H9Bvrvug62rMZ9+2UEm9fQf/t1Wc8aKc5VG9FyJvgxWC7tngqeZeKHEl9XhL5Pki8QlBxII8xcgclXd8GuPZR7F4EOspzPXipti0uuuIJcJTvfhaahaZAkEZrrQKkCukWiG6QCoij+ealdly5dunT5L6HbidSlS5cu/wX85xtt9l5XMj42xrpz1yKlxJASNwIKFSYqgtJ7bqY0vJTRv/oKN9z/MQ7PjNBe2csSZzGvf3Mr5996G5svPZ/xXTs58Df/QGQL5vwUW5bRVg3gt+ZBpTA7A4ZYEJFsaMcQGdhI+jGYsRS3/uMfMeW1eeGLX8OohySOTpZfMMnZJl59FvOKS3j3pz/GthefZ/67j4I0oN5hSbGPsTDJyq4TyaDh4Id1PCSyWkDGAfQUIZbYsyGxniBFJgoQSFI03N4e/NDPVjenEjQbGgElK0dTRpBL0a7cRCE1aD61k5KhSLWUSIdEKMwU4jCk5OYJkpgwidGrOdKoRYkidmIwG8So4X5u/tDdaHmLH3/t63BmGgMdM2/jqwDSAC1R2Tr3gcXM1Oegp4rYspk156/n6Je/lsXHbAddS0mbc9iOgYpjNMciMAVIE4KA/AfexfCmi3j9378FqggTE2z80N0sOVPnyYe/i+GahO0WhmaSxCqLh/T2wmAPd33mPiaPvM7Bbz2BGqshdIv2kgrxQImb3vNumiOT7Pj6t6noilCAXi0R+hFxs00enRw2um3TCH1kSceIA/Kajhb6BIaiVXZJ0xT6BmBsDtasYcnttzL26k54/hV03SE310bYJk2RsuoDt3Li9Ams2Q62ZtCanAQZg0zQdQPdyCL/5sF6AAAgAElEQVQoSehBK8QqF4iEDpGCwSVQa2bnx/AwjJzk8g/chT1Y4Nl/eQhmG5DPcdkH382RmVEar+2FmRZGKNCVfFMoeGM+TFJFmqZomobj5rnsjttZuXwpr738Ert++jSWCcK2CBMFbhmWLuP2P/p9Xty9nelvfifrn0kE1JugCcqVCu1Og/zwIm7+xAdptDr89B++Cn4IeRfKC4XDQQRhwoW1PAWl2EcDr2Bk6mMqybtlEj8kUQmpUrB0FdTb5PwY4TcpGjaxTPBkB4ViqNpH8K7L8Mbr9B2YZW5mnGa5hFqZg9UrOP+cizj0d/8OWgwlixt+87NMb9vNgWdfxlw+yNLBRYzuOoDZU8KLa1RXnMfmizcycmgfR7dvQ9c1DJmJRkJlRcPiDfEISPSEQNeQmoBqORPWLt3M9ddcizXT4sePPApTk6AUmmmgsyDMLRRqC8tAOTlWXncD577tOp5+9jk6P30aZIrTamEmMa2l58BcbaFnW6L1l6gO9VJrNZBnzmBrFrHhIvsHWXrXTUw3pol+8ANoGVQ6oKHTLDokeZPh8zdwds8uGOyFZgvimHw7xJLZ/SQwJeXUQZkmEZKOjLF1g6jjUymWmPGbiIEKBcOiMNWibZp4uiCNQ5AJCAGaST6KUZ0Yp9LLfNSA8xbB1Dg3/8YXmHvlILt/8BjG0iWYw/34O17IRI9KD3RC7nngr+kdXMSDD36b2ssvQanE5ddcxciZQ0ydPQ2nxtD7lpA2p+DC8+DQMVa+507Ov/QSfvQ/vghhimlrmL6H6XkgoKMgcSzoHWDTL/8iew8fJn38xywxiniTZ9GFyexQCfuSSwkPHOXm2+/jqa//KwQe9LkwN8dQYBFqiuv/+nd45JFH4NXjCK2DJWPsRCCURqwZyGKeIFEgBPlylQ3XXMErtVOkB09w1S234QU+r+3YkZ0HhgG9gzAyBgN5Vt64hZOv7oH9J8APecef/B5P/sXfUFh3HkNXb6Lz05eYOLoHSjlIXcRoE6WDc/4a3nv/vXz7j/8MZ/UaBhf3c/rl7Vlfk2XCfAeClLxlEQQBaamUWY2q/QgtxTt1NEu+qWThJqGRonWdSF26dOnyFtMVkbp06dLlv4D/XUTKBrn67Awrly5DKAhUTJJzyXd0arYNmoRIcL7WT+o3OWK0YCiB8gCIAld99pd44UsPQKeFGG+g6ZAKh5xvU+kpM14fz35Gf46hoQEm95+EGHLKJGfksG2butcmdQyCqoByFfvwDAaCjm1i3nkVG887j1cfehDqAUZbYUc6KoyoFEpoeoJmaIzPjZEsXs+5772Bs8cPET73HI4RYqweoHl0iuHApS1syLs0wjZST0HLnCp5KfCCFOWYUHDJn3sunTPTcM4i6MRwYhStlSA3r2DtH36ScLLG6S98lVJtnESEeObC4p4Uekol2vNN9JyFrxJyOZfKXMi0Skg1C2W5ECu0gV5kj811v/ZR6pPT7PurB+nRTGZVHXRBf2+eYGoeI9UIU0mur5/ZRQOsu+5aotPjnN3+ImmtTiVJEVpIPYlJFno6dOWST2KKKMb0FCxA0+mnl5lOAgULp5InmD4DhgLLRPMSCpGOjiDEQuWK+EMRyBDGAvpjhwBFKydx3nUNppujGGqM//Q5cl4dzbFot1voukM1XySab4Om47kmiUgBH8IYEkl5YatRg8xVUqgMIiKNlt/BvmoDt9/5TnY/v41jP/sptCSD5TJhlFBHZAPdJRu4bssW4jMTvPAf38K0TPTIw8obCFMQagmLZZ7ZeodAN4nyRawNF7H52ms5PHaG9919B1/78t/DqRMwPQqzIaRglStEMmDDHe9mbnyS0W07sMIQLWe+6ah5o5ReSQlKQwkNhCCslKDTyJwtuiRsJ6DB0DVXMokFKVz94Y/y/AMPkLcc1q1YheaH7Hj+eYiDzN3TmQfTyBqgcelJDRI/JFIpZk+JVm0OFFQLFWp+LRNktRgsG+bb2BKK6HTKDr4WZkXvpUGY6dDnWyi/w5wWgC2grwzzTcxIEVsaaFBq6RTRmMKk97fvp3fpEjovHuH08zu45Mu/Tqsxz4k//lc4NkFKCn05GC7y9s//On3YfOvjX6Bw3gUUHJvJY/uhMQ1WthrdkFnNsFAadqKhkYkuiZ5mziJNR0kdHYs4EoRKwbnnwNkxnIF+gmYTLfIx1BsiUrJwPzOIAYaHGbz7LpauXomca/L69x6BV/dSiEJmSjku+8jHKKPz7HceJazPYBRskmCeQrVIOFtDaTnOv+VeJgoeM3tfgoIFxyfJBRpeHGFevJbbPvExdj62nbO79rB09QpGn32BUrWKWWugtIRIh7adYoSSBIXWW8Tpr+K9fop8tQ+jGVCyXJp+h2YSYrguy9suM4lP/ab1XHXf+5jcfYiRv/0mgphkZS+sWM2a5es49sgTCMNEhTHEHarXXME1N93Eszt3IJ7ZRjA9g8oV8A0XegYzJ17BhpXDrL9sM/t//EN48XnOlVWkgHF/nj6tRKrrjLmAJaCVcOvv/TaPPfwgTI3BXI2Syg61q4PhVJnuBETFUlY0vmyYqYnjoCfgpRiBSbJ6HRfe+W4OiA7868OYy5Zwy0fv5Ed/8Vfoo/P0LlnMtJjh1r/5W3b90/eY3P9TCGL6WjqagrZp4ZkJ7oXn40/U0CZaqMSj2msRNz3COMVwXDwlIZ+DMMWNddIoILLSrPfINaBURCv3c0HPOezfu5P+O97BwMAQB//un1n3f32SwfXnsu2X/4QVNZczjWly/VVatVns6zdx4eWb2fXdH8I5i9EtRbr/ID0Di5jfvXehBD8hzpe4+dd+n1YY8dpPHmN614sYKHIk2fkJKHQEb2x069KlS5cubwXGf/cD6NKlS5f/v6JpBlIJdA0CdGTZJWq0KedLNNoNSqU+arUJHASLCyXGtYjBG9/J5gs38aN/+QrM18E00U3QSzZpRxGJhOnZGdAFotqDitvc8M538a3X/xHTMCjoOeqtJkKEhFZCPu9Cy4f2HBXNYUqGMFAm3rWLm+77GIMtnx/93ZfRydGjXGzdxvJjJtNZSsVyNnfPz7Ju+TJsv8n+OECzdJonp7INPjJBIPGaITLnZK86QoDSiKMYA4NEGmhLl3Dj+25n6x89wFX33oUWpzw3+h0qTola0aY+NsrU0VOgQhIUUtMzAclQ6JqgNtekZBo0vAh0GLxoDWPBUZJOFtvBNnFSA70R06nPcWjnq3Rm5lG2QRiTOascHXNgETOz8+TKFbzZOmYrBG+Ew7NzaG6eomnSiAJM3cQSOk1iDCsztzipTsm0COMGPY5JgEQkgjCsYdpV4igimGpAIQdpCGhImRK5LrbuEnViZCozV4iWgmUjrByGTCGnEezYTbRiObpwoNPE00OII3KFHEnTpzkfYGESyIQkSLLNYRecCyNnoOkhU522DFCOBoUC7UaTstVLySnij0zz8s5dnB4byQSVkkbTjxBxipsoRNnG27OXbXsOkHPKWJgM5ss0Aw9dJvg+BAl4URsJ6JYJShFNTJF6Ect7+nn0G9+Ak8dgbhpqIX2DQ4gEZqamoeiw9+EfQiqxhKBaKtNIPDL5VZBoBqnQsg4rDVAKPQqhNgu2DZZF2GjgVgv4qWJydIJ7f/cPmIlCnvq3ryMm5+n4HXYeO4E7PAy2hrV4mA/+4kd47cQh9jzxGPgC5lvoTgFUQk7T8WbnKOkOhmkQNj2o2mBJ8GIQLrbhUtVswqCN3+6AIzn34x9m+cr1HH/yeWa2PoNGjD3UQ5h0wGtCFBFLAWYFLI3USzGFg64iprZtYypIGVhxEZRz1JVHIgLSs6MsKlZoi5SWUDA3w08e/AYk2aa99t4DtLUUCnrmoIp9pJCkQkNhIDVACTQ0pCATc5E4hk0SJjiagVIhuWIvtdl5AN773vdi64JvfO0rb7o7QEMArm4TpxKcPBtWnoufSlKlETZ9crpJuZyn96brufbSLUyPnCWcn8XsqxI3axjSoT1WAxewTfY9vw1kDdYM86EP3cuDf/7XeHPzoIEhJM/++HHmtu8EoTG6exeUS9nGP10HAfGCiJu4Dgz2smztGhYN9vLS66fotJoUNJeznRZmpUyufxmds2fwcw52ZCF0i0mvzUwaYZkFbJFQ9zqsuvoKii2g3UEJHd0ySFHUjhzjB+PT4NWh2aJs2ahI4PsJVDRod7jq0/fzwlf+if2HDoEfUHFKaPWYSMb0WwWqwmUsnINcAQwLLIMVxRKcOondXySsZdHaXn1hiWOnRo/Vw2TiQ18fF52/jqdO7AdbRzNNCtKhfnaEA49+F1YOApIN6y+g387BfJ0Umbk8B4epnToDUQTCAgPqduZYCwygv4/r33YNP37kcXL5IkZk4wYejuZgGwlurohjwfzMLKVqD0GnTsUokBgmQdSksng542MjyERw9PXTkHOY2fZTZpwiiITU0jk9M83m++9j5x//E0rotBpN0DTCo8fYtWsnJDbv+OVP8OT2J6G3THnRYuY5RJpoCA3QTNqdJhMTU4TzNXTA+N88R9rCV10BqUuXLl3eSrpOpC5dunT5byCKIizLolwuE8cxfk+RpZ/9GKP/8E36ptuIJKJRUEQ9BpgWjDfA6YHLLuOcLRdxeu9L8MSLDLtl2p06tbKCUCPnaSxavY4T46eyGJslWbnlcsb2HiAcm8TIOySJB44BDjAd0RcZ2OhMVvOkpRT3HW8nPTpNbvcItgmNpEXgNSHvoiUJq8p9TI2eJQFCA/R8AV2ZkMTIMKDsukRRlEWcROYOiDST4tqNvPcT9/HDJx6n8cxL9GlVYj+gQQiXLYOqiSVdoj1HKds2jbFxcsMDeNNjmAO9xPN1nEgS+BZmqUQc18EUONJEa0dYQGCVCBydRbffzExfgeSfv4tezJMGEbmGjY5Oy/IxKymLmj725ZfTVCZTR0+A5+FeeiH969dy5oePQ89iVlFk9NAuNCIMqTAkaEg0FK2wiVSgDEGqFDnHJlSSOI0xDAdaAY6mE8iUxLUyUYcIPEnJyBErDb/ocuWn7sfXdV77yr9x0TvuYrg/zzNP/wTv6NFsyFQK2h3ytosmBCJNSE1Jx/QggWIALi5KN+hIgW44RB0PC2htWsfHf+d3Obt7Lz/5xjehNQGLipxzx3tY3bOUbV/9LraX4HVC3I+8HX+gBBM1lkzHjG3dilMu0hsExM0p2gvnbsVeTBR79PQXmG6MEhpZb3MsXJyGT1QsIy0TBvqgGUOujB14WLZHa/5M1sMiq+B7IBa6jWSEpS9E1WS2CEqzLESckHdy1Au9yHKVTe+7m/6ePBMHdnP0R9/Gnw3I2w6GbhHh4KMyEaxoQX02Wzcepriphr+oCj0lrvnYJ9j91Hbar+7CqlaJWtPofRXkdAvltdHTGEsqnEhhI6hhEWoGLF0Eog6NOm5d4VT6qYUBObeIPj9PiCQyErhuI1SHEcfGKex5HS0naRjNhV33oCmdfLnCez7zeeYaczz5H/+SuaLCEM0tIm2XKz/2KebKZY587YvgtWAupBJamLqD6KkwrSV89kt/w/6Tx3n2b7/E4kmPetIhKuokKsKROqSgpElq5Uk0AZ0Oxb4KQewR+7XMBRNmpcWV/hV4zYTI74ARoQ0MsGJ4mLnpKeoz09lxjCIwTYqGjeMleAo6lgX5Ipg6NGroxSJ6s44lU9q6k4kVoU//jZcR5Uwa214gX4tIEQSrSjBQQRudQc7OAwLRM4hqtcDrgMi64lxN4OZ7mAn9TMArFSktWcbS6iCH9uyHJKZ3zWqu+cLnefTb36JSKtDavYv04BEIQoyeAVa//3YW33ozT299lJtvfRcv/vNDdJ55FWPRAOf/6t30D/bxs/s+Tw855pfmsiL36VmKK4cZHOjl+PPbINQour20PB9xzaXc+q4b+NGXv0ZuPCSXOMz2mrC0gn3FBSyb8hnf9grntSSntRo1R0NTUPE1ZM5hrj0H68+BkSmILJZKRd1OaRf0LPo549ErM+dgqdzLmfY8vP86ll14ISe/8j36JjxUEuHpEj8vIIzRYoWpW4SFPHq+Qjo6To9j01EhYRJiVKsYwiHsBCg95fJP3s8rP3sCzp4Ft8CQU0VXOmMjo9DfB4lET3XSyMtKk/wW5E2IfAzbJOkEaKmJoI9UBbA4B/VxQDEoNdpeQlDKEsoIC4aqcN65bL7pDl79H/9vtinRill3x40cfugh9FhHqDzJhmXQnoRNF8NEg6Ekz+SBw6AEt330Q7TNlG0/3EpvEDE7cgrSOLsHoyHQ0FO6zdpdunTp8hbT3c7WpUuXLv8NSCnRdZ0HHniANE1JLZO+4aXU9h6mmEiUrmjpMauu3MId99zLyWOjxM0IlYYsOWcpV2y4iFPbXyBs1rB0gW8qSCR2opjq1PnTrd/BWDLIycOHqO07TDrTJC8N8hIiPyKX6li1hIJRomfzRXhL+2nPzYBepeIpLr77nRypvU5nYoYkDuCcPrZ86P2svXoLO3/2DHapD8cpIjyJb5skpo50LGw3hx+ESE1/s5BXLqxnjtAZbc7Rv3SIjddczcGXXyHXWyEI22z8hdvZ9PYbef2b34OGT15qFOw8jYkZEDaFxEQ2IqqJTcd1sAf7+NQf/A6v7ttN4vnEcYShOXgGkIa0J2dRR2voSNKgw6Wfvo/TPSYbf+V+xhpTyIlxhCYYPzvCBe++hbEjB8Brk0416bx0ENkOwNbZ8ot38foLzyKRqIUlVUoohIA4CTOfjBCYCeTDFCOSlPQcuudTxaSkDHLopIkEKZAkFKwCjueTTwUtL2RGBlimoHbiNPM7D9GZmaM9XyPNu/z6F/+QgdXLOHLsEHEUEgXZ5qOeWKcUCdxQ0DF0mgXw8inxzZcQtUbp/cD7UGuGCQ6P89rDD3Fi/0tU7ryWez54L0e3Pkvtpzs48dwrOFet44qP3k6z16T5wrMwMACWjnPOIN7ZEZLGPC0dOhbEPTlkpYdmkBBaBrO1WWxDLnTvaAjpEFgm593xDq68/168C1ZRuPRiWp06adzhPR/9AIfGToIM2HDPXazesomJqEVamwPTxUoNcjjoiaRil4mUQtMg8HxipYFlM3H8JMeffpqp13aTNDzotaCToPsJuQg812bpjVu4+dc/zuGdeyCAqhfTMR2UZUOtxemDJ4mOTyEaKeZcjVyg4bQjeiOHIjYEEpUqJIoaOmnBgqrF2770FwS6R9BpU5zwaGkCuXEZcdQi31AMoZPIlJ6L1mHUIoLxEaK4iaUb5HWbIEkgZ6AURJ2I/fNnOV6fg9dHcCOJEaXEjgVewNmX9zP//FHK07NUmiF9iYWFgZKKKa+FsXKYV15+jtOTo9xw/4fYd3A3sWwjcwbEKVonJZ8KyiJHEEakUUpRWfSGNqXIIC9tYj9AYSB0B7/TZvPbb+DDn/sUabXEmVd3UKvPESQxtJqZexCF6+ZIwoAwDol1kK4F+Uwg/a0HvoiMfcbPnMR1bYJYghHCuYMsv/0GRr/zXYgVsTDRVy5m86/ezw23vpM9//6dzE1WKkKnA2mMu3QxumUjopCyU6DTbKJbOv+LvTeLkuyqz3x/+8wxR85ZWUPWoFKVpKpSSaUZzRKSEJolQBaTkW2MGa5t0bQbz7jdjWnfxhN9Mdd2X4ON24gZhEAgCalKQlNJpZrnISszK+eY48x77/twEt/F6mfwfYjfWrFyrXyIiBPnnJ25v/h/35eagrVbLmL7hRdy9uBh2ks1EIKgucSRJ5+FWBOenUIfP8VIoUza9XHsHDNLdU6fmeD8rVs5/NR36D7zY9yBKsn0aeYO7uP0418DU+MJCXN1qpFLvGkNdzz6LqamJ0mPzJCkivjqTay+72bMBPZ+5Z8gDUlkQv9NV9OaPwOrhxnevJGJN18n8RvMtZvkTEFoCQTgpYJApuRXjvKxz/wJP3n6OQgV+Y5DzYPzP/AIA+s30XjjFIX+ERZKHvV8ghIemzdt5fSeA6hTZ/Adk0AmSK2whYGQGqE0iSXYdO/dgCJs1BEiITYlZt5CWgZpuwFozAs3snblGGef/QmFxKJYq2M3YrRK6VQtNrznLu763f+DN9tLcNEG1l57DY2zp+nfvIVkKcDowgpdQqaCqJrABav4jc/8Hrt3PgtBiJIGBdPGsAoIN8dgYBDWQ9TUEud2/oQtv/RO5mWXkSsvZmzNIJN7X0FXyoyLQZKJaYqqSLjvGNbGMTbffyPT4QzMn+XY4YOcef1l0AZVL8fHP/zhLGxeaDQCgciKG3pB2z169Ojxc6U3idSjR48e/w5IKTFNk0qlQhiGiEKeyDRgsUXZMAhUQjLaB6Uc5225hNrBSfyZJmGymDUFFR0KjS59tkvXb9FwNSKFfAKdlSPYO7Zz5SU7eOHP/xLaKaPaQpMgELTNmFia5IsraA563PTJD5IbHeDJX/mPjC1KbCwmNpa47/G/pPnlH/Hjv/8iuAbulotYs3IV0ycn8A8cAgOu+/hvsevznwfDZXB8nMU9ezHdHDpKMKVEo9BagxZILw8FAWnEeXfeSfPIGRYOHYc4gKqDe+k2nGaH9p79gANpwoqrrqBbdmmdOYG1dgPp629m4eBuDnNFH7LbgulzeF6RsB1ALg8q5YN/+Zf831/4OzbeeS3XXnwxX/rivyLXr4YDhxkb30rjnx/HxsddO858cx6x/QLeduutDLUU3/vs32G4NvNpF/oNkBpSQGYh3pZSOEoT+i20BsMQaKUxlUWMIs3221RMm1TGJGjioodVKSBqEUkQgWeDljhY2JFEk6ING13OIZ0CODZJp07fts2kKqF94kTWfCQF+W4MOsU3BUhBsVSmYwGkvOXjH+HF557G3rSZC87bxL5//F8wMZ25wvwOhZF+urX5bIOlLEgtMDWUHNYsuJwlhcs2Ytx9JcZcm3TiHDe/9508++S/wNOvQ6jAHYBGG/I2xW4DW0kUNr5ZoFqtsiADqtu30mjVuObRRylok9e+9g0au16g6FmEJKTDVQZXjNGst0hqrSwst9bEGB5GdQIIQ0i7VDwLHcYUxzdSXbuB82+9g2997q9gaY7RgkEjDDCVhUihE6dQsMAzoK8KCz79doF8K2aq3+Git91EUvDQrsfxXbvh9CRj+X6Sc3OgFGneox4sgauzyRoUxECxnDUaDlVh9gT4AWbiIYeHuPxXH2Z+Zp6Jf/gmhQQ8z6PpSkrkaVoSw1SU5xfx8JDVAhf/2js59dohll49TKdUIGkuQMWGZpOi5WAFIEyPulRZA6NsYqsYYdoobSIB03JI/ZjC8CjaEPhzM2BKhGMhSBHdgD4nT5RK2qZg8KZrWbvjEmpn6pz61vdAa+79pXfyxq7nmTx1HHQCjpMFTBeLWWi6IbJzYNq874Mf5Ni+Axx4cw9hp4stAJmiDZPQNCBNl1u13KwBUUqIYsrSJRgdYcfdt1Lrdjj2r0/iGS65gSrtoolVyBEeO8a6SpHTnRZ4HngOl91zD1vXbmTnD57i5K4XcdOYAia+KQnzVvZ6KeRzFZJEkmiJO9TPtituYe34enY+9wytqdMk87OsHhyjJWFpsAob1pIr2QTPf5/qmrXkSkXuvPZ6vvHZzxPGAcGKAsy12RoV6AKnKgKGDTDzVI7UCMtlLvofH6djwLE//FvMUCEX59nxyLtY0IpNF2zhvNXjfP7j/wG0giTE9jwq9dbPTCLJnEvT0ciKAKOAMdel1MzTvGotw3e+hfkfPEtx9zk6URMu28DVjz7AS4/9VwiWR5PWDcHSTDahmJgUApmJ3I6NWtHPwKWXM/PGG7DURARtlnPVQYGTzyESTaRMkJqyMJBhh6F8iTaKjgmRSODCTWCYDN92D0Jp5g4f4aabbsU/O80rf/15MG3wAwZLJVp+C8M2OH/Leex75VUGSiXidhvPKrOQppRGhmnXz+A5BUI/wr14C/aW8+m88BMIUphdIp838dMUzCKrN25mcv9+RMFFl20ghFYTEjArVcoXXsjtN97Gj/7nPzJ//BiGbaKF6k0i9ejRo8cvkN4kUo8ePXr8OyGE4NOf/jRSSizTwrYdRDfAMiERKvuWv+tTm68TtCVmLNEFA20LSFPSZocwDLEsEyk0htJYGmLP46Hf+BBBo82ZfQex/JSyFtgIIhS+o0lsk6hQgU1jWFs2cHpmiu7u44y2FKNWH5NJg2hVP2mrzfzEJNQD5Eyb2v4TJK0YVg1Bn0PxI+9kYedL4OS59tZbSDGoT5xFm9ZymnhmlzEA5UeZjU4pauem8f0Qmp0s+MN1kVPniM9OgelRLJSJ45j8utVc+dDdnJABq6/YQVNFMLMEtouencssUbHCtm1kIpdfU5BUSsyNVKlNHsZvBzQOTKCOHINOSHuhizmzgFk0aSzW0eUytJZYEpKRFSPs2bUTx7IwhCaxs/f7bxsSDQKNBVmz0/J5TAXEjpPVVOdt0CmR55BYJtI1YLjE6MWbSC2PpFan6BRJghDLMAh0BDkb1zMRrQ5hGqPiADyXcHGJeG4eUoVh2uhUksgUb+UwcdUEQyMSi/7YxQ4NZo6eIZ6eRU3PkQqb82+7jrnnX4ROwlrpUG/VUSWgnJ2f4cDFSWIIFWVt4CJJztVI55ZQK/pgpMzpI0dgtkm1fxhvzXrCQh8kKbSaGCKbN4sNi9j28DtN8AzCkX7YvIHJE0eYCjqoyCcNQmS3g4wTcti0zkyjFmrZZjgMYMuFWMP9sHIU3aqDZWOEASJJqPkhtXaHwydPw+xsJniEXfqlS1em+KaC0XJmOUslzDQxlY3fbNEqWFCVLCwusHR2EpUahJOzsFij3WniXLKRdzz2UXSpyOTcHORKGG4RveQDFmLLZlbecg0jD99O7bmX8aRBIhOIQ84dP0NzahaKDknUJRAKFUSE+Gjpo0IfYeapVV3UxjEueuhOjh4+Sm1imlJLESURyDhrUjQtiBUi5xANlGDAgrCLUgppC/oQ1pgAACAASURBVJRjgG2gEFnjWicgbDYpeEWSOMAUAlsrjFRiaIMERZp3EVs2UNqwhqOOBBHj3HIN199xC89+6YvZ6wooDQ8SA4TdzHbZ1w+dDhSLXHnFldTmF5iZniINA5AKUyoMw8JwHKRhZKJTFGEWClRyeUxDMGRWWGrVmDp2jKWjE6w0S0RRl7ajUUGHdK7LkF1Ahi06cZg9hwHnkoQ3X3yJ+uGjYDgMuHnixM8K1Aoudi6HZTmYiUIrhUKhLJO4m3D08GFqJ45iew6mVNRaTQbGVrJyy0UsLM2RHj4IQYvy+DrWbt9CFMRMvvAGQkEsQhgoMtI0sMixMJKDG68AJ484Pkvk2MwYbZZqdTi1gHlmBkvC0Pg4Rw8c4JqLL2fp0ElOvrSXvlyBKEpAJeRS+TOTSMJ18JHQl2fTBdtonp3FcSuEZkQ36sLkDPmuJpQB519/OZML0wSHzzCi86QyRhZd0AGsG4eFOvk0m/iUAmLPoHPsJIQxjmlRMgWmCZZrkMYKz3ZwDRvH8MjbLrYFfhQS5g3CgoXXVyZqdGCxC11F9+BxuvuPgBaUvDz7972Jmp9i6KpL8Zem8eMuw26eJPBZWJxFColVytOOY/y8Qd/t1zF09aXUDh1isJ3gaEUnTIjnT2Bddgmj/cN0pmdIRAyuCWOrufmheziy+6VMRJ2vMYJNThmYhiZMQzZd9RZINUunz/BbH/oQpmX2JpF69OjR4xdMT0Tq0aNHj38HflpT/md/9mcopXAsi7DRZbBSJjE1uWqZII4BE8IU0yqSNFs4wkd3ugzlS0QyxasUidIEOwXXNJEokv4RTh45SbLYpHnoGFaqcBFIBE1XExd01iIkBVy+iVqzRXfnbji5gBQWS7YkNBSNnXtovHIUGUSYN13GTb//EU7PHAEj4qFP/i7rt+7gxd/846yevrbIyWaTTRs2MH3yTPZNvNYInYlItoKSUsRRgjYsiBPo+pgabCGwwhSRaHSiGLYK0OxQsfLMn5hg4vRZ1o6uJZ1t4S8GXH319cwv1JDNNnQjRqr9dJoNqqUSYZRgWjazew7ByRmYnmXp5QPY0x3kxrUM3XMPY2vWML/3VaIxL5uSilIwHYLjZzm651UomoQ6wpKS0UbC+GWXcvMD91KvN2gtLJFzHJASGf9/IlIiBNg2xU3n8zt//hl27nwWOl1wzCxE21HI4T4q4xvohCn/+dOfpjIwwP4De8GIUbaBNDVpmrLyobfR8kxodWHBJx9ohmILRwsM0ySu2Nz3xx9n+P7bWXPpJZx6aheDRpGCNEgabVJMVL1NMDENlqB7/Dg4FkncoeDaBFJBtDxlk0haDqTVlMiXrDBKmELQDgNodqlYfay2h1ghyohmi0plmI3bLyPU4IcBLopOt40eHiR/6VaSpRoIC9Cs376N+qED9I+toLlzF0zOUsGmIC3iMMT2cqQKtlx3PW/95fdTWjXGuq0XMhN2SXM5ODePk6R4QGqapKnMBCdDQBSiZUop1nQUSNfAu+R87rvnblpzS6jZDqkfoDFYs20LF193GxMnT8LcLOmFa7njN95Ld80A7aVZwlMTvL7zVSaPnoFugNhxAZc+8HYWV1S45yO/zpHnn6d9+Dj1kzMM7z/LYGxQF2kWjBxIGB1l+2+/n3j1ABRyqHOLaEcwFHpcGJsk0qBddUibixz+4S6Sg7MMBlAzEhzPo6ItcsJBlzwGb9nBqluv4II7r6djOcjdxxhILLpmNn04tO1CrHKRaGEWuaIKMiAZcMGK0X0eMupiegUIIgZL/XRDRXT6LPOHT3Lhr72bBZEwuvVCDh44QPfcLOSKrN68mZwhaE5PgWNx1UMP8Oj7P8DzL+yCRoPXX9vN2VOnSJMIQ2hsbWAmYGKS+F08yyLpdKmUqxCEy9ZGwazTzYK+0Xi+JpIJfp9L4bcfZOvD9zL31G7cTohVdegkCVgWG++6i6uuvZ7jO3eBBse0idstQOHlbDphhGWYxB2fHCa5XA4JpDpGB5JucwlMSaoj0mKWE3bzffcw0a7TnJ7Mcp2w2fLQQ4xccQlP/s9/xPRturGifM+tDF28jcndh6jlLW744LvB82gcO0EaRllOkq/h5DmYOMcamcNDcWx+Bvw2+159kzOv7WNlZGCmCe1ui9JoFbMT/IyI1I5CVM7m8ofu5tSBoySLLYJogbt+60PMHjqMmUraE6eolHOc27OH5OwUxU5IJTEoGwXqUZ23fOzXuPm2t7L36efIxWAuh86nWoIyIdXkghgnTijkCzQaAflSEQOHammAhkrp+h1ypTyd1CfxTKSliFptiuSpdGLOS3LIxUnsVohst5l99RXU9Gnu/cTHuPGtb+GlN3dBd4mKVcEUGktpgjgmtoxsGnBkgDt+5xO0PJf5nzyH3Ymo4tEIfS577EMs1hZpnJqE6SXGx9fTXGxw0z3vYM/rr9GdngGp6XNcVBwhLEEjjiEPc6fOcnahjmi1+eRjv43o2dl69OjR4xdOz87Wo0ePHv8OpGmKZVlUKpUsZNvN0fJjisUcYerjeR6djg+GBYaDlSvza7/6q/ztZ/+AvLRQCcixAeJOA0yXSjsilSFpziRKPShXsoDWJCZvu5h+gBLQ9VLIpyAdqNvc+rsfYWZikqPPvUw6M8/Df/MpZoMWz332/wKd45pPfpifnDoIh48xvGYj/drmyBe/yvDQKnI5l4mJU/Tfcjm3v/1OHv/nf0YePgaWB3GKlUoMpUBpLK0oS5PEhFhpUgO0ITAVmDrL1Wm5Bhe+5+0cOHQYdXgKgoS8VcQPw8zCgkE/Hhvufxtj69fy7S98gWE07c48npenHncxsNAK+s0itjSoWxGm1viuyx1/+xd4K8f41qf/Ep57gY03X8LxuMXbbr2bnf/58wwKm0a4RKffQ9opSEVfqKnbLpuv2IGrYN/Lr+EZxv9mZ4sxULqYfXvuGRDFWB0fW6fYpknXUUiZgFWE/gpctQWWFuHIJKV2ihGldEqCGz/6bg63O2y/aDu7/vbLuPvOMmK4pGGDOhJVKbJIHcoe9trNDBQrzO7dnzW+5fOsuXQrZ595DtoRGNkkGwNlaDWwSjk4t0T/8mRYB4NOzgIbzCsu5M5HH+G5P/8Hoj3HMfEIH7gBe8Mq4t3HYedhEB0oFGH1Gpg6mzWYCYnfbYDnMvzIu8gdPMfEC68yODLK4tICVArcfvfbmTh4iNb+o5TCNg1S6pdtJF5YzCbRvCJYbibmWRa0fYhTcG2KcYCnArqWTWC7OBdt44FfegTVWOKJz/8N/kydYqlEoiVR2AYTqJShEYC0yHrsLbAVlrbJY+BYEBZsVm8+j5WXbOPpb36b6mXbec/vfZzPff5z8PqbWWNheYzVTh+Tr+wGUuycS18UkjNNuhL8agm/bLHjQ7/MlBUy93f/AJVB/uD3/5h/+tbXWPzeS1TnWky5Au6+hPVvvZnWrjdo/+A1ypbNwliBt953Lz/6H38H7TZYGrFmJSMjw8weOQmLTapWgSCKiNyUHR98L5Zl8cqXHsfAQXkm+dEhHvjA+3jynx+ntm8PSInhFhi2ijRrdQKxbO/zHAglmA5U+8EPIOhy+7sexDEE3338y9hCkiQxFMu4nke0sJhN4RkGQisMrRAoTGVhRCb5nEecBLiuSSfwSZSib3AYP4hJpCapxJAozMBgLDBYsE3C0RwDn/xllr74NcTeLqNegZlwCmfjRuJWK5sicyxYWMwsU902/V4OGYW00xSVMxCGRd7OkVMWrTAkRmKuHMJrR3QDH1TEqluvx3E8Tv3wWegbzex1V17Blde8hXYn5OXvPA5rx2C+BntOg1Jc+uH38MZTT8LZOSgZbLriahpxwoIMufXRR/jhn/4N3sGzFDBpDXgktUXylTI+AVf85sd49avfhfkWdqB45EPvJXQ1X/ncf2cwLfyMnS2yTVpmCoMOIj+AO9clXOGy/cKLOPH0S0SNNlprUp1QLpZI/ZC8l8P2TZqpj1+ysTesQCtJemqKXKSwJEgja1lTKlufKqnGRFND4vX30XU8ZCOEVMOtF7C6UmXyq99npFghaNVpmSDyOWzl0KdypEGTkhmwKMF3cliFPDGafM7GEgmtmaxBD9uGBKrCwUhSbM9jLklAWFhDq1AK1FAN5hcgsUA5YMQwtgbmmlQXU3LEtKw83bUGTPtYQdYemLrp8tSkJteMsaVFa8UAaMForsDMsaOZgNSzs/Xo0aPHL5ReB2aPHj16/P8AKQwol+gaGsv1iKIERwmMROKZAkNo8n0FBkaGMU0TicAoFsnsYhohbIQ2SJVmYP16KqOj9G08D2/NSkTRIzazTQYAiqxKXSXse+IHNA4dJ12sgSHxTc0FV+0Az8bZsJq5vEHhgg2Mv/WtzH/zSY7801cpRibR1Bm6p85imVB7fTcy6LJ5/fpMBIgjhM5sTgKFIEULRWxItJYIlWKmKbZSGKjlN6RITcWSpbj6nXeB8sEBP+kiLMi7DiUhsIl47emn+Pa3v47huARRhGnaNMIubrWItgV6+fkkCbZOkGYMTspTT3w3a2FLFKPDK5jffxxkyoaLt2K7Lp2wzUp3kFJEVjeGQWgJUIoje/ay//U9OIaFpcXP/PFUP92sWB6m6UKjA+2IkjbJIbBlzIBwKTke5113XWYhOnIUTpwEIDYcjHwR2Q1ppIrm7BLPfOO7tOeXSGRKI2xhi1zWchfHmbCYCpJ9J5jd+Sq02vRdfD6XPHQbK668gAvf9wC4AvwmrF4JjSZISbpQxzbFT0vC0BigDUgN5EyT6bOTtP0GsQEhCavGV7D1sm1UbrwS1gyCTKGY45b3PIy9fSu4NjII8MysQS5ot7jhrTeBAWGnTR5BLo556quPc+TAG7TCBmDimAUGN6zh0U9+ghs+8L4sf6jVBj/ErLUppFC0PEwJQhvLkwUKhCZuNVioLTBTq+E3m+CZhGmCSCRFw6GvOoCtBNgCKgWM/n5yQ4OQy1FIJKU4ouB3MRaWOP7iKzz9j1+CeotcLDlx4AAsLrDxA7/Mg3/117j9w0y+vgfXsukvlLBJCRxBXSXEKiCotSFN2bP3Tc4bXw/VIZhd4Ccvv8r89BydWh1zbJzrPvbrMLaSgVIfuVQQRR1qfh0mTvOjL3wOnBTGhyDnoY+fZfb516hGgpxp04gCGO2H1cO8/uR3eOXrX4NWF7PWZdPASi4YXsVL3/k+9X2nQBQhFdx//4OMjq/GqBQRQ1XYtJHKzddDV1JuSYwz56Dexq7289RXvsJ3v/KvkMTkPA/TMKHRJpqeAdPAsO1/E5AQCsh0uQDBUhCgHYdQayKlMGybSGn8MCJRWdC/GSgqocJdvie3XXU1Vw2vh5am0lelbWgql1/Gxu2XQqxB2NCJwbKX2wwlqUpIDQNlgOHm0cLK7LKWjbBtcn0DXH39DQR+B5DkV6/mnY88TGoYMDgItSXu/40Ps+OCLbTnF3j1+Z1QLrP92uuhUIDRAegrIRabWe7YUBk8k6MvvUZ3cg7VjXnz1Amo1xkWRVzSTBAeLOM7wGCVzRdsgqUFyFkUx0eojo9x7OxpqFb/t7W+r68PfB9n/Xq0lCRJAq0Wbz75fWQnIG85pEkCwqAV+PgoGpZJN2/jA0hNcuQU6ekp0NlS9dO13VYKoRWmztZWCeQGBmlJhWx12XrvfWy+5z5u/8D7GTtvAygT5Sc4mKDAsB1iA2QpT4OURQkqZyFyDrEfQDckXGoTzjcZMbL4MPIW7rbzUeUCViGPHyfZMWpIZ+awOzGbr74uE7WFgY0JkQGLdXBtGgWHfN84G668nOK77gPHpihy5J1idg2UcmAIzMShX7mw1OLm++7Dtu1M5OzRo0ePHr9wena2Hj169Ph3QCn1b3Y2KSWp63Lte97LxO5XSQ0DHaUM2y4iCHCFSSds8dLB3fj1RYq5Mt0g4aJ73s62++7j1IHDuA2JIQSBAUEQMHTxRczX5njsv/4Rz339cSRgaLClwkgUVqqw0hh/dpbI70DBRomEoy+8wu4vfQ2kiTuyAtP0qD21k22btnF232GQmlIcURQaqboIESFH+jnw4+co5HIErRaDxQJpp4OtUgydIlCkhqJrpSRSYpsGjhBIoYgsRWxpElMjbWifPMrkwWNg5yFVCCXRVkoiO8RGSGgkVG+7idL5G+ju3Y80BZGRQCWHjDuAgnKBIOriFzWFOEYJReKA0dJMPvkshZEB6pNHGHRztKXALPWTSM1MrY7WGi9VuBIsBYGd5Q7nDIeqlyeoN7G0xhbGv7WzaVMghUnfposoDA3g1xagWECFPgYaD4t2EhDFKXLjOu54/6Mcee0QzLUhUEgliVePcsv738eL//p1kqOziMklVCcg0gm+LZhLO5iFPMI0SdoBTkfihQleIogNg/DMCWaPHGH6wF4WnnkeWgG24bDjPQ9x58PvxtA2jYOnMZWkZZt0HYPEtHBjEzuxYKFF8vpJul0fjAiGK7R27WXm2dcorhlj/QM3sbD7dagWOH36KMqxIAzoW6hRlYIoTvAnJjlZlJAzCdIuJc+h3ZrPwtQrJrGjqauUpqNonzrDnqd3MrFnLzQ65CyXMhJXJpSEwhEQKwNbSSwSYlOQWgKkYuDSi9lw/gaOnzpKWusCBhig0gTVblORFiY2URSjbZO0ksNIY8wkROmYrhHRrWhkXiAsi0JDoo9PsPjU61SdKq1ulze+8x3Grt5Bdd1KaqcOEyRdlPQRAyW6FkQYoG1wi+jDxxm+8QpKK1aytNjmzJd/QPVcQtJXpVZKORt04eA5zn3reeSeIzg6whQpSb6EuXYdH/zTP0aUK5x78VXy2mPIKpA2mwQ6QlWKOONj3PvRD3L4xHGYr+O2DValmtbMAgtnp5g5eYZR38CNBIFKMEo5TkxP4tdrUCmx/Y7bsStlkp+8QE530aQkRZfKxjWs2HI+jWYDE0jmFvCUgSVsbMNGxAkiSbABwU8365rENCls2sKd73wHfStHOD55BjwbZRqo/n5ue997icsVusdOMBZKcihaQtDKG8wdPsbp77+Cmm4jLhjHL1vo89YyOzHN2suu4I7b7uTAS7uh3YQwIO9pYpUSI9BeDp3EkC+SJJok0VAoMrJhHTUU5vQMpqXwF+d5afdrNA8dg26IMbKG2WNnOPzs80wdO4E+N4nXX8Q4N0fzpZchB9SXUK8fwQpjIuoQpYxb/TSWmqjaEsHmcVatWkdrz14EmrAvh24vQRyBnWPvN78PbgmimDDs8MqrLzE3OYloh+RTfsbOdm5pAWdkkJsfvp/auXn8iRncWCBzHhguQlvo2MC68jLWPvpL1C9cB32rufz6K5hqzKGbPoNGHisVREiUpVEaLA25VBNYCQYaMPAdm65MYcUoK9/xDhbyfUzvP8TJuWmmv/kk/VYRFSakpTzy/FWMXrKFNRdtpTHfJGi1iL2EpFRGh5r85q04/aOkoUIIGxn6BJ5D/2+8j0uuvorjz71A19DEOiQcH+aRP/oE+/e9Qf+WjWxQDmd2H6JP5cl1AzxdItiygSse+yBzF63isnvu4mi3RtSpkZ44R+j7RIbivv/yhxypL8HsErbZDxFEa1dw7Q3Xceill/mPj/023VYT23N6drYePXr0+AXSs7P16NGjx8+ZdPmnBVnwsyYLJrYship9hHGKLOTxdmyhvmcPKI0RhgykBkKmdHRK0lciidoYg1VoxNi+id52Pmu2biaaXGDp2RcQFoSWRp6/PguwnpkEy8gmF7qQTxVeqtDL4k3bleRx8R2HFVduZ2ZqCvYvsMqp0IqbtIYGMluQAHOogqzP4fZXiOrzWGb2TXeMBAmF6ijd2XmqlQpBt4ODQSokiVDk48y+5ucBbWBV+7GkRVhvYS6LTFoohAYZaDaUV+C35imQA9dkIqqTFC0wQIcp9A2w5l0PYzabnP7O9yFog2Pw65/9U77w538BU3OIYh86bTO6FAOajmlT9kZpqZTkLRvZ/tA1vPKZz0PDy6ZxjBAKHkiDctOnmEikofDtbMOklML3fUZGRlBxhAxDAt8nRSNMg9C2GLjz7dx0w3VMHDzMa//0ZZx8HhVGpN1WdvINICnA2DDX/erDrF25mic/9w+0DpxCChi97GLOtecpTzYwW22inIWfM7PgZcvIrF8pjAobU0PdBgcLTwqUYZAKTeqZtNoNhpwcOWVwNqfBckALvG5EueAxH7SyWmzDBm2CBC+UeI6goVrgWjjdlI3WCLESHC/Y0A905um/++1ctOMqdv39v0Ctzkitht3t0kVRL1aAlP6169FBSOvkadZU+wnCLt3IB9dCGQIlDYQokMqYOAmxPAtc0FpimQZECUqaKDNPTkpcFdB2BLFj4V12OTc/8CDPfP97RM/vYiSuMJe0wIrBVVS7Frk0wTKqTBYEXHwRl77zTt74l7+HfSexHQ/CkKSQXU9IwKqAr7jwtls4dORwJmDEMZge1FpYSUTe0Agd00wht3qM2x/7MPX9Zzj0v35EUyXEowo8AbMdxpqCLkWa/SD+0yOs0Tkmfu9vKCgTgy7tUgCOhoaFm+awikW6MgRHZNegqWF+lhHtUosEslBAWTGYFkYEG60Ss81Zmq4BpoTBfphqgyWgunxQsSI3MEIwsYCR70N1fISqofOA54IwGXvwAc4dPQ5nJmF6nlWWQxglLLpeNnWUaIqmhZEmhLYiMdPlD8xEG0XEwAA6aEPYhkIOopiV192AY5U4ffgo1smj5GRMYBmkZQfyJkiXlZX1+LZBfesw5sZ1jJRWcu5z/wiJgNkZSCLyLpAGJFqiHFC+wB4YIC64vPeXfwUhFV/66y9kDXJFD0oOq1sx9W6bjiEpXH4xDz7wMM9970ecfWkv+D7F0UE6rRbVFSM05iawBoZYNTzAmf1vUqkMMDq7gI/F5Mo8pZYk305Z8jzSnMC68XLSna9SaQq0imn1JYhIk08gjSTlwgCdVBFpiTYkw6Ui3doiZc+jZUpiw8JSkI9N/IKD7zd5y3/4EC9++VswMQ+OxyX3v40933kCgpSS28emjz5MbeMIC2WP9t8/AXETjp+gFJqI2hKe4THvJuApSMBOoBgr6o7CQCCwka4D/VXe/ju/w/Fmh/HxCzh14jQn/89PY/oRJdMgEopgLM97P/OHTC8scO6Voxz58g9wLZP8iE29UeP6D/0264fH+c5XvkHt0BtQLUCnAVECo6Ow2GSEHJ3WLI5boNPvkIRtcIvZ+tpswGAfzC/Rn3q4yqS7dS2tfg/8BpyqQ2qyTgpmOjXCoQpUi5QuOI/2ay+Da3Pbpz7FD//kM9n0UavNYL7KwumTgAIzs7OBgflTEalHjx49evzc6IlIPXr06PFzpk22X80DQilIVZbXIhVrR9Yw73cxUOh8J7MYIUAbmKZNHCbZdIztEMqExFFQylFs2yRYRH6XgukxZNucSRcpJJru6BjXvOddHD28n6U3XoV6m3yYUDE8lLBoCUWYxuTyHj4KzALO+Ru44VMf5UeP/SkjjZTK/BLHcnUMy6WQZJkbqZlZJwI7Oy5DQT6Bjq1Zq6oMGB5ngjpLOsKRijjvggcDDYGpfJpAtLofxse48cO/yXN/8Fk4Oc2A5yHjRajaNMIIYshpE9M08dEo1wKlEamkFEl8t0gqJEPvvZsLVq1n559+ARSUrtlGe+EcLDRAujDmMHrhdnKx5PQzOxG+j2MJikUPaUl8JYkNEzs1KEbZ3l0aitCCgARLGDhaU0gkAB0H4qwQjWJiQTtGYqCxaDtALgGpKBeH6M7OY5iZoUQaCsdxQKYMRGVm3AjsEGFZVOsxuJkghISRKEdUMemohP7SAPNTCxiYWFgYpkLKFGXEeHkX7bpEqUYKKwvJlsuh067D1TffwNjKUX70rSdpTU2CKTBIUMZyIFK5xDW/8ig/OXIM3twDi+cghnKU6V0ag65TJDYEuDYrHriLyta1HHn1JXh2LwO+Ra6/zJRVg1ZEX2LSbDdYs/FyzgifldfvoCUi2t98hmotZFNq0HbgUKmd2WbiAirxQSaIiosWKZBdYMXQxpbQdSO0UFjSIjINlGmAZ7L+xhuIgpjpZ3Yx2DVYzMvMEqYU/R3wlSbctJJrP/EYq4fHeeIP/hzj4IuYGjQmLcdCWhIsi02PPMy2i7bz1f/2V7BuA+vXbeLUk09Co0kun0N3aiAiEAplgBPkCDQUL9lEc34SaiEi0IzbZYKqR1T1aCxMQVTOTqhKEKYg77foc126UYeGDWYZih2PoajI8T5gy3nsuON2jn3ucdr1RagI+ubmqfdXYc0oW666itNP7MKartPvFjitazDaR//QCkqzLeZmJgkNDSMlrnrgTsbXr2Pv7jc48vXvIQKDFeV+2p1ZhGujLY+2srHO38g7fuXdHD+wj93/z98zjMHIug3sz5V48FP/iSPf/TGHv/4U49LktLGUqRStNqNhJiUpYEkA1RysGGbrXXfhxZrXPv9FiKGiYwwrR2AKQjS4LmLLFrbuuIR9T34PopDKdVfT7O9jTT1lME5445knoLNILlleM8cGWVhcpC8GbRdoDOagvwqz8xBb5LTGsk06OmCwERMW+miLBDavh1YEC23WBIpIdmiUEiInz7Uf+RQHF04gjZTWj5+DfZOUtKBsFJkWIRtuvJKlZ55GEtGuWmAK6MSMpS6hjPANg3DQxm1EWLFCWR52fx+tWhM8D5GmlITGswSNuEM8VCRXg6oo0lYGnZEiWJLx665h4mvfp98rs/kvfp/6y/uof+1bqKjNvF7IPuQIym6BlloerVEKW4LQkBoaJULymzdQ8QrMHDkC7RhTupkl2rJgsAyb1mWi4ImT0A6hE1COu9ieSWSYBEkK+RJSAbkCRDE3vfsRmnOLvPHtbzLy3z5MdHoW75VTNH7yJuK6rWy65RqOvfYm/nN72PHHH2PizQMsPvF8liUmBKAo5l3idh0LiLApjYzStaVz9QAAIABJREFUTSOSTgdiSdH0MAyDVuJDyYY4os/M43e7RCsKcN5aOLEAQQQb1+FuWUf05POYl13KuFskeG0f5w4dzBYsS4NFViqAsTw916NHjx49fl70MpF69OjR4+eMvfwQP5XsjeVf5Axqrkb2l4n78yiRLclCZ4KGY5gI00BYJh0lSQygWoZY07E1UeJDX4WuozknYlCCyDJgtsHU0y9hLTQhDaBk4rswI0J8U5BzCvR5JVQqYVnciCen+dHjX4eFWeYWZzByHngFLAWGMjC1gSWzh51mD0caWCoL5Oh0u8z4TZbsBHuoimU55BMAk0goIpb/qa8HcHqOqTePMnjF5TBUYimnaQhotCIM2wEFtmFiCQNTiOXpLbX8+RmUo4BiaLLw8h5mjp9EOBamY9E+dhiaCzCYB7pg57l0yzYu27EDq1REG5AITaokOpWQKpwE3DQThiATT0zTzI47VXjCyX4vlkOFl0PAzWV3j0STGipro4sAt4C9YQUyD4mlkQJcZZKEEbGUzBBmwcGxwpGCPGAm4GkDLGgWbRphQOpHzC8ugGWg8i6xqYnzLqKvhM55REqTCIEs52FFiUs/9gGG7rk1m0aRKcFAjuLF51NYOZy9WZ1i2yYkKtv9N7sYS22uXLsJCn2QZPY9JbLJuY5QqKoHZQeqBWYO7mNq78EsfKXt0+w0mDo7kQV3tzvoIKZg5ThzbhJmzjH9/ado//AZCEMi02CeiCUZg3DAdHAch6JbwDYcDD9GJAKSTJgUWaEfxvI150hwJZhSgVSc2rWL6V0vgJRZ5tZP7yuVncdKoQBLiySLNVSjhgx8EjMrI4TsOClWQZlYNZ9R7UIrhDf3MzpQ5dcee4zNb7mGoF5bfuJM1EVDNFhA9rk0J09AEFItVskj8ZMmg+et4q3vfZDyO95G5e7ruf2/fJI7PvUJtJPSzTks2oKGBdrNxNiGjlmknW3sj07w+mf/lmBmBsIAjIh6xYVinrHVa1h/3jq6SZemDjgbLuJt28j7/+h3uOdXH2FiaYaSMqgKB7opM6fmOPTGUSaPToHI4aIJWov8NNZILbfcDfT10azV2bvnTSgV6USK40eOw0KL1tQ0BydPoOImp8PFbB1BY5JdsykQAJVqNZs2wWPt6GqO7N0PxTKVviqVfJUozVr08iMj3PDgO1lbqrDv60/AfAtqPs2nX4ZTC1x1183YF62CpIuVwMpcGQ/BQqsBBYfEy9G2FPgdmJqBQhVL2OSwyRkOOk4QhTJJNZcJElEbFrLWtAgIU4mUGmyb1SuHqb+6i9aRvay69gpwU/yKxzRtxh+8jWhlmUZeENlkgojUIBW+TGHZ6kcnxTRthGsRm9DqtqGYpzoyhFYJ2rOJhEJ7NsiUfF8VI+8Sk8LSLHgOE7ueBUsTyZCD3/shh5/4AbIRZOHXLcC0sUyDsB3gxAJUdt4MrTG1ziZuCmXuefu91OtNCGPMfBHLMtBaglZcfcNNjJX7YKmehZb7HVApOpUoTDoiReYMpN+BdoAZSEgk/RvXMe03qIyPc+W27TRefY3ZAwewsTANgYwi/MmzFCoVRrBwmn5206rsHs1Xy3TCNmmxgG8YFIRDt9kiaTWxzlsFK6t0CgaBIzA15DsCR+VolV0iR7Dy+ms574KLoNaEUMPRKaLvvYhbGubeG25hoFhevufTbMEwMs0t+4vTE5B69OjR4+dNbxKpR48ePX7e/DQ7GrJdnKloIwiAkdEh6OuH+XOINMWW4KYGpjIIkhizUiE2IbU0195/Ny9870lY7HLvf/8Tvv0v34ADh9l6//2cnjyJfHEfcclmwLdo+10CHWD051EqAQmDYyvZev31/Pjpp2CxQVU5NPosqIWAzVs++gFkFPLyN75NtRGRmBIVhfy/7L1nkB3XYef7O6fzjRMxSESOJEGCRCAYIIlRBCVSomQqy7JkUrIsqWR7LUvrsE+233PaqrWtt/ba63XZ8j7bz14rrHKgRIqkRBAgkTMGeTB55sbu2+mc8z40tNpP7xu/3V/VVAFVU1ODvn0bt//9D64qbu5/+vv/tEhamCI60M17DNVGWCBl1c8/yvg//xuELitzjwknRmrBgONCt0NilQmFhFu28uAnn+ZKa5qd227h/33mo7B4Y8pbulQyQdjr4gYluuQoDLYylFLBMjQClzMVBWODcKVFzR+gbWuwQwbf8gj37Lqbb/6nv2XzLVvoNBtMHjoEUgECxxL4yiBzjWtcQP6vctrEAmU0Js3xbYeKcFC6VUQALYBCOKtkkl4c0xWC1C0aSKzERi2p8Y4//U2+/OX/Ad87CFHOqLKZE0lxczs8CIsRJOBkOTU0uVIoy6Jb9wtFq5VCUMUdHuLBJ9/Bi6+8gpaCaH4e0hgmJvBxKXV7LEoL1tVZ/u73UdI241/479RGltLuXi/cObYDMwtgW1hZhi8kRksct0Qn02gk5Dl1E6PQ5BaF4FIJKG/eyJ1v2Iu1ZDl5qjj+1W/Tmp+CK4usW7KCrbvuQGxfxTf+7L+wNHcJo4jO8qWM7riTuauXIAzh+hR4PiXfp5dHGFuDZcNcCEnMQFDGzmMwhlxIlJQoHLQALRWe0gR5cfJlUhN5gjTLkLmmZmw87TLvQ27n2Eoz1NP0UPRWDJOnCWRAIhAypJKCrQUam5Y2YDtYno/dM2TaoFcMQNgplssU1MsVsqiLFkXcUklNHpvCmXLLKt76S7/A+MGjnPnSNyDSUC8XbxSdwtpbGVm9mvnnnwNl47VTAqXxMXRFRiINmWtABuAVPV7Uh+DEFIEU9HSHYQUhhtixYUkJFttYokzZ82nrBlRccFyYDFluOzSUQa7byKr77uP0//waDA7AlStYcZc1AwNEaYtmlCGlQyh9qPlQdiGLod3ESxXLh0Zo4uPuvZ2ZKITzV7npltsYummUoy+9QHB9ET23QLJxBMutok9Os0IOoY0gqjo0TRPWLCnitMeP4w2NkPR6rN99D8LyGT91DqbnqGqbUprRISUaGIURCUIjZtsMZzAvQ8Z230FjZh7rwiwlYEHmsHSQe979LjauWs+X//S/IK/MUJEWea9Fe2mV3rDPkl13Mnv5Eo47wjp/kAvfeYFKyaNpFecZqQVLA+o7tiFURvOVY7DQZstb30JnzRiz3TnyA68hLl9Dt2OkEFiWQ64KAd7WYMKUDl2sqoNSkqGNG/jc73yef/vXf+XA975XlOcnIValzMNP/zzp+CwvP/sSPaPxtq5i776HefaLf4ObCdLrc+D4+EtvIr4yQ702QKvdLtTOsgM6R3QiHLdYIfNzWYwoSEk+VEXXKuTNDigN7RAHhbQLx1lpyRitpIeJOsV5KTQkMZ5VQts2mdTgB2DAW7qCpNOlvG4t4eUL0MsYyKBZWmTT234Oeewq1354gHBIQNmCKMFPAxIfTKNLVdkoo3CrNVqBoLZuBXvvfxPf+OrXccanyaSiumE17/+tX+GvPvc5aKbQU4yIMk6a0UHRXTXC2vt2sn7FKp79x3+BbsJQR+MYhSFD1UeIxgbpTUywfGSU65fPgMhJb8wpSCxcc+P5eF9J6tOnT5/XjX6xdp8+ffq83vw0+wGAAWloJD0s2+c//te/4N2f/Qwbdu3izIsvIrUoHD5G4vllWkmIlhqW1Nn20JsIpxp0rs9w2YOBFSvo2Ra9ksvQyBCtE+MoNGHUBE+CUZTTDC9K8JVLY75Ba8kg2z/1DGvvvovr3/8JWcng37SGvNHl2oGjTFw4BWlELAR+Lsm0JrEliV3ctGhRCFxQ/Dm2JcbzaEchyqTIXZtZf9+9hDOLtOcW0RUfEaaINGdwYIDFXoTll9Guy6WJyyx2O5zYf5DRu+/j3n2PMT2zQO/aNB4SqTQl1yXVGcYUhamWtgBNGvh0ghicFFGqI+ebrEocWlFGb/wy50+fwbq2wNz5c3RmpiEQULLBKTbjfA0lLfFySS4FbR96LihXsHLrZpYuWUaz0yFWCkSOljlGWEhtYSsLV0lSlRHZGuNqsAyeO0TuSE5/9xtw+TrEFm6mqeLScTTV1SvY94e/R21gOZP7j6Jdh56bk3geOTbGcdn2zAe4a+udZM2QhYkJrPVrqa5cznRjgdvvuZu99z9Anmlmzp6nZ9uwbgX3/O5nObUwyaLU7HnqSYa2rGXZA3cz1ZyBc5cQGnwp0YkmsGxUlpNlCVJrpNYMuD6OUmhM0allATonayxy9eRpLh85wdXvPE8y1y6cDJ5LmKacuX6Zc5dPIfGwUkNsST74Z3/A4twid2zahtvJmV+YhcEy2U3DkETcctsu7rvnDVRWLmN2bhYtDCKKKWkLceOc6vo2uWehRKHJ2BrkDZ+BMhmO0ZSBmtIkQpJZIIzB1QZbG6rVCq35JiQpIk0pocgsgZdbWEZga4v60DDGaJIwomS7SK3IdVQIKmkRjfOExChzI2JqoYXNYJ7jakiSCH3LKtbt3YFZMUrj4sViVazVY+NtO7n7w++mqxIaJ4/AsmUoA3GeEw7USUeH0IFH0LAgy3nDx55mzf17ufzcd3ji1z7Jnn1v5PLUNcJ2i826yrCSLOgELBs/zBg0Fu0kgSiDRo+N1SGumEXy4Rr1PXtYGBxl4zufonLzFrbt3cVCa4LZZBHRy5A5eF4ZbbsoW3D/u9/JvQ8/xPHjRxFJjFsr063b7Nh+O5defBUmG6xevoYLly6TXZ4gdwWqPgDzEaYRI5fdRCuO6JQt4sDwhg+8l0d23kX7/FUW6aLiRRiuwIZVTB74CdgKd8UYvbnr9FRMKQhwbYek3YW5Jk5m6IqYO379Y4zeupkr336BobzMvO6CK6GnmTh3jSPPvkQ610TYFpkrC2dm2mT1/XtZv2E9k802b77rPi6ePEVnapYYDSWX+tAo1anrjNYGiC9fpXXoBDR7BF6Z6WNnGBwaoXHyOESLmGaHwZ6kqi1yyyazFNnoCLgeuh1RqZUKp5UG7Xp85zvf5fqlS4VQpRWOY5N3Qi5MTHLp6EnyJMerlbnljlux8pQrhw5ihx0qGqojFdqqzfZPPM3ud7yDU+OTlPfsYvChe0k3DLNsZJDW9cvYxuApjaMNwghS2yKPU8jBGx7jj/7gjzh+4AV6cY8kSfGNJJ5bxMkNQmuMjsETqO2b0FfnWBqWkJ2IdGCIx/78P3B9eZkwiuCVcezEwu2F+Hu2E2jBpYNHKWtJT6S469YiShXEfBsZNRlwXKwsw3VcWr0OWqVs3nsvZ8YvE12bQAsDjiBdXODV534M7RwZGywj6eqE7mhAsHIlyaUFmmGTi9//CXRzIKWnMzwh8YVkxu6SZ4bq0BKEzvjkr32CtuqRS7sQ8pHYSvDTVHifPn369Hl96ItIffr06fN6878XfQoDwiCkjRQWf/Tbv829+95K3fN59fvfQWhwlQBTlCXH5FCvgFTM5RnpxWkSY1CXLtLrtKHbIT19mtaFy9jCRiUJnueidIbt2SR5ytjwEoTrE8Yx8WKDwdtuZYlXYeKF/SRLa+zZfTc0unTnmxjTg2WjyGoVp5OSGIW2xY0FMlHMbBuBFoLMkiSuQDkgpYXxXKKpi7R8nx0bb+byyVNARpBIfMDyXVp5iq5XoNuGap2RDZtYvX4zc/PzPHD/A3Rn5pg9cYqS5WIbgdYZuVAYARiB1MVT5o6dky+rsfnd72D++f14xiPQPQIZEGYJ6AzZ7eEPDZDnaeFYyrPiddCGQIOvBEILYlsQ+hQRQ1uwevPNbN1yM61ul4VmEylTBAYlLAQWwtg4xiJTGT1LF50cFuS5LEqwHR9CTV37uEqhgJ7I0b7H6YU5xmSF6VNnueX+vfQ2LiddaGB5ZXSjhVg6xFq/zoXjpwmlZOHaFRauXYM8ZebEGU6dOsXCyTNUKwOkvRCikF6tRvTCS3BunCV79vDaD55l967dLHQiojMXKMUJEoFSxYoT0sYLKsRZ4fBKVTHxnWFIbV0coxvfRy8Dvw5hSqVUIi07kGZoy4aoDVaGaXSRjk+cdBi3NJPHTnLxhZ8wf+4SDNehXuLNT7+f2tgYJ154mdMnT9JQKWnYQkkQSYZrBEpaZJYg9W1wATRag6UFRhi0NHTzHMcF1xKojMKNISXyRswHDGEcUyl5BJ6LlSuU1ijLxlVg6aJyeL7XJcVAyUMZ8EsewhJokxE4Hnma4NsuWpvi3BMSLQR15VD2yrR0xGK3wcjS5UycvUB87CxCuNjCotMLWfAlE+PjMFjnnR95mrnFFlGnTWXtKnY89jATSUg+vYCuVLl87CCXDx8CCaNjKxgtlzmy/2Xibgc766FRNFzAkvi2h93LyLSmVhvAzwz0Ijq2gjQmWuiQaQuzZCmLC/NsXDHGqS/9IyaKQQsc4yKkRRjHUAl48r1PYYzi0PefRfdSulFIXrG49NJ+iIr33EKjS3Jtooi+1gIQmtKKDbzlPe/DrtWZjbvc9+EPEmxZw6HvfJPjrx2hNTWHFhEELmve+Ea2bLuNy+fPcddT72K4VmF6chITdUmyBOIYW0gq9RpREkItYPrIYSZe3A+VIcLGIoyWizhW5uAsppQTqLglOnmXVKTo4cKV1Zqd5+prh9DjFzl/+BThzBxIC1wbe+VSbt28EXX6PK2wQ7vVZGR4CY6SOEoQZzmtievQXIQ0hEgzrB0cbNrCoGsuq/bsZmzJUpoXp8jSDo4tEV6JtNWGTIHjIhDQauE5NlJKVKvD4NAojuURLS4wNT3JlYvjkMaM2A6qq8hFTrJimJsff4JOprjytWfZ+Nib2bJ3J86Ax1Cec/3oUWxd1P8U12CIpcTYFlRqPP62J/nWV77K3JVz5NqgLYs8UQz5ZWSW49qCRCXg2Wx+6gkWTlxkaejgoFlz126Ol2LaHty59XamvvYCbqwoe5KF+QkWz55FN0PiOMFfsZRH9j2KyBTx7DxJ3EUohdaKUlAizGLMUJ2Z8XGiiamioL7XA5UXLsTUQJThaYHre6QihU0rWbdlK92rDXITQQYlyyfzBSLwsNB00y55xYb6KOm1KZasGOMTv/xxejpGSAcLsJHYui8i9enTp8/rTV9E6tOnT5/XGSWLvuMCA9rgJhrPtvn9P/hPvPqDH/Pqsz/EtkFFCdJyMEKiPZfUs0Fl3POhDxIvNGi9chJlGzAB+B5yzSrufsNDXD90ityk1OKikyIlRVVcnvzML7H/xR8Suh4ICcZj9rv7Of/iQRKdQLfDyNKlVKXD4qWLZL4NUvGhf/85Dnz/BUzS484nH+eB9z3F8Rd/hBkaJGt28MeW0COHZXXu/NBTTL5wAOIcylWUYzM6toxGxSGfn2GJqVEzHnOBIfNTlr/nCYJbthAeu0B04BzzPzlCdvUSr+7/EbPHTkOi8FwXFwkqIZOaBIMygHRIhcYNPNIoYe/9D7IYpzSvTlDRZXTg0xUZiIxKqsmFRqU9rMEav/Kbn2V0+QoWrl2nKlyyXkKUxmSDJdKazdo33YM1NMzlA4e53u4yE4dQdsk7LbIkwxkcJlSS2Ai0cAmqFcIsLF7WNWOwZjXMLjCcVBiIYspK4MuARZmjAhedZHBpkunzV0HnzKkI7013ki7MoadnIIZwcpqzr7wGmSKzbUgSxMpVfPSTn+bEsROos0XMpIzEyjSVxMI5fJWoA4QKb2wEHacc+9O/R786zopcI3ROqhQJksqK5XTjkMRozHANBsuYtEduB+Db5HkGOfiOh4wUvvYYTCxK2qZpJ2y8/x7e/UtPc+zYUVTJZe9HP8LVlw+SJRlyzzaShVk4dwmMxYAdkDuGt77vKX7w6ktMvPQTTCdjbOkymlED4hb4Drkt0WmO9H1EvUpSlvzWl/4R2/e5dPgQaZoRS01iMnAgM0Ufj3QtdMWHOEdmGuE6dIQhE5osUVRth4GBAebCCJTGUhaOsMB1iUQKvoTBEiaAJItQWQ9PKYRSuFKijcGIQjA1olCCI1vRESlaWjDXYeq5g2Qnr2ArCVqjpEFlGeGpy3BlEhotTj//ItHcAiQpw1s2EgYWY5s3oHZuZftHn0IODNAavwiTHdpHTnPhBy/jtXpEvsStjzKZ9JAP7WDJzttYnJrEwiFME9zBOsLxCHtdnFJA1gPwYbbF9u07MbPzvPb//APECQhQqUIYizRTSCGK6Oqr+zn08n5ohwhhFZEoneM5laJo2ZGYPGbNvXu5+c4d2OUyzcnrZKUKC502l06cAs/iamuBhR89C4GNnptFpzGWsjFdhVqIOPfSAWhFXL86yfTL+yEK8UoBQ6UyAz2DFoKBdTex59eeJqlVab98gUCVyU3Ovj/8ddbs2MbF81fwp3usFnVW1IbpmJzQCWH7Rt78+V+FhmbEqbM43YJejkw1IlNI36W2ejnb7t3N3MIM1y6ew18+SERGlOWsXLWaTq+LkxtkkhYCTZxRsUvYKdiWR0Ol3PyOxxhas4qZxTma8wtU0hQvU+gcsFyk5UGa42aaAdfDyRUyKsrFhQaVa5x6DTfwyToRbpoz5riYKCXTGrF+Hee/9S2uNNpURm/i+unTjH/5S8xdHmfyuz8s4n6uxBEWNha5EcRZBgN16EacOXyIxsI8btwj1kXJfjA0hNXTRWQ1KBPairU3b2Yiz8lPX0FnEssrMX79IvHJV6Fc4cHtezj2tWfxBJg0InYp/gPTBiybsSWjxO0Op154iTiL0Z4mtcBBkigNjoVSunDgpgI7zBnVDsQaCwslBaiU3LPJKh4Q8/ivf4pulhFnivr9O+mePU+WRHzij3+XA9/8JqkQCCHQroJOwtit21icmeI3fv1XUVJhYd2oGpRYfRGpT58+fV53+p1Iffr06fM6k1J8prV/WjyqNQgbBFSHl5E7PhJFHi0ibQtj2RgEqblRpiSBgToSQeXiNdq+xYisMe+IotMkVQy0Y5p+wkBH09m2FtWYhSRi0577yC9cZ+H0FdCQVatEgcst993LyZdfhoUWEIPRrHQGmTAxjFQg6YI3WvwDwgVGH3kjc4ePweQc0qqis5gVb9jN1ne9mVavS+vffsTVwydZu/M2Th/6MUgXTIy9Zxfme0epaIvWIDDkQJ6y/OHHuMuM8a2//iJeUKU9KLnjmQ+ShxnH//lLiNkZ3CyiJDJiy9CzLbBciDWe4xIIi1JPM0lS9MWkKVglGKizee9uzp46infgJLJcIrVAZb3iRsgYMBZVO8A3kjzNyJbU6SYNajvuZFltCWe/8RyMjkHcZd0vvZ+bZ9scfvY5rrdaUB9iZM16OhMzJOdOAxEITXn9Mt70kU9gZlv85K//Cbcb0iNDYxH5YHRaOCJsjw23386qe3bxw5eeh8VJHvv0r1DvKb7xJ3+GPdckq/l0sxR8v1gmcl2C1WvoTU5DllIz0I4aULeQicVwx6Lj+sRlGzaNUtm+le6Xvk+VgHx+htQRKCPAcdj46KOkjsB2HK5dvUR69gwIC8IM0h5og29JRJJR9itkqUJpi9SSpBUFNQuqA3BpHiplRu+6g87VGeJrU9Tf+zBqYobuy8cgyrDCmIHly1hYuA6+AL8EHYWoVHjk47/Ii8f3E50/AxNT2KaMkwh6aG79hac4ceYIrpakx85iOx6r1qzm9l07+MpX/qUons7ywuGgQvzIEEiPhtJQlsXNY+og4wTtgLtujHSyQVkVbqRuEpGVXdAJm9/6CG966EH++tc+A9omyH/W+YWRhQuJovMKIMg1li6KsRMbUhsQAuvGUqGjwDWSNpAhyVxZFKkrin6qJIKRarEwdrENa5dAax6aLcgSKAlEBvUYmjWgPADVEjx4GyC4dWw9J/7zPxWON5HAkhGYC1kxk6EQGNcjVIquSgGNLSWuI9E6J3YVnrAJLIcs7JG5ktT76fFSlJTE0gqZhOT4hOvHYMMKtj76ZkYvtzn+vedJLl0jzlOG/ICGylE+BB98krFbNzIdtVibOuTPH+XySwcJ2vN4skJLRzjDo4Qmx7ZtZNZDtttUpaGVxbBkFH82JkSjxsrgCe5901vQ801e/t63i84o4zJUGWGx1YSlI5Rv3cQ9T+7j+5//neLY5hZyzUb0pQno9bAMeFlMEPgsJCH4VtFlZRvw86Iryy/x4V/7HF//8teYv3wJJmfxbI8kjKBagzjBCsqoMISSAyYuXIfCAtul2ohwtCYVDonjYByPIAiI220GbEkctlk6OMzVxXnKY8tYXGwwsHkjzYsXwfHw0Lhxj7LnIpwaU50GW598C6tWreLZf/oqanKOSuATRW1sC9JRCd3ujT41gSUdqFWI84Ste/fSajSZPHiYqkqwBodppl0YHEEsJNSFTR416YpiDZJggMF163nTIw/xjW98nWyhUbTqKw2WLJyitkMpjImcjNEdt1EJSlx66UDRUJ9mOEFApnpQKtr4vbToyTMCEksigEpavCdGTU5KiY5rM293efy3/h2vvfwKk/sPAA7kOaiMW3/1Y5w4chCuzoBx2DS2kgs/OYTqJUXJeVkycPcefu6tb+Orf/GXTJw6Rp5HWHYxgGBjFWMPN8bs+vTp06fP60PfidSnT58+rzOKQgcqgljmxvyaJFWKL/zD39OenSETmlKuwLKJjUZhiviV6xYCSaoxYYSbxaQYfGnTSzNIEkgTfNsiVT1MlrPpfe9kLolgfoHF2Rb6whRDxsYGWq5BbrqJnY+8gUbYw5y/Tu4JsAx2rImzGKSEFUug2SnWcQYGiBrzMN+A6iBmocOa7bcztm4141mLc4ePsPDjw+SdiMc//EEutzuoWKM7Ibe/5VGszDA7OcGq+3bTsiyYmcEuD7LSLXPhxCkc3yEJF9l47x7Wb7mVE68cRHQ62EZRDRzCPEO5AqQD2ChLE6cxy6x60dm0bBBGBxncspX43HnW372HbTt3MPXyAeIsKfo4bogBOB6VoIJtiifrgevR0jE6S0nmFliYaiAijbA8SHo0AsFgYjBRyvz8HGve/Cj1ZStZu3YdE8eOIW2JSVOyVpdokZ7iAAAgAElEQVROLJmbnGL26iVCRyAHB+ilIX65VPSWZBlkOf7KUe54431oaTF74FgxmBZGXDh8iEqa0VQhVF0efvvbuDg1DUlCnmTQbEASg1H4nk2Wp9RzQTk3xex3DunCPOnkNMw1caOMSKaYwIWKDxJW338/N23ajFsqcdfu3Zw8fgIaLbBdQGMLUfyeBvxqhVgYQlegSm5xA12yiuMYAZ2IqN0mvzYLCpK8RXr5KjQ7VIIAO1fkeYpfq5JqA70UlEFIyfjJU6zecRur7tjO9Pg59HwHRzjkScqKHbczumkD8eQM8cwCutlhxfr13L5rJ8u3bePMtUmwfUg0uJqSkkhdzMg7O7ejox7kFm6pjMoTlIogzclF4VawhVVE2WyLhYVZDh04CJlBJBqhwSBufBWrfIaicwkUZSXwgNxAz6aI3bkSIwRBJgi0wEbSWjKIWDLAL/z2v8NZOsT1k0eLgidXFv1cnQYEIzz8u59FDZdoXb1UxCl1gpUa1qQG2ROEXgnareJOPNPMHj0LV+ZB5+z4zKfY/sRjjL9yED3fASBTIa7JccjwpMD2HRIEqbTAFaheSG4MpDnCAqVUcQOvDSZOi2WtoESaZ9zzrp9j28P3c/rqZc5+/Vni85cZdgKML2iqDk7ZR4U98hPnaO4/TB5rkk6IkNBqLlAP6gjPR5TLdHo9SGK0EKhuB6UyRio1Qp2Tyh6OP8D6leuYixJuevgBtt+3iwtTV1iYmIAoIxA2nXYXBgKqj9xL9dYNHJ26ACdOQXUY9+oi+cYNbHvLPmYnrmJabXwJ5ZJPlsdopxDm7XoVrVLwB8Ar4Xk1zh89CmEXVI40CltIlO0xsO1W9ux7iMudBkQdMFbRlyUE6BRbaYwxpEKS2RJtWaRRiBbgWAKlc4KST5ikdFDge9z3jrdx8XIh6CsNTlAiTDPioIIqlZm/dJ4Lxw5hmrN4WUI1SwnIUEaSVZ1ifVE6mERhkGQolm7ZyL637mN6+jrzFy8zKmt0jCJ3BPd+8APMXLxG4BSvlSz75K4NxmLtpk24I3XGTxxBYFFpxASxImk1YKgGYbtwrNmGxz/wHuojg5x/5RUCr4TJclzbIjO6iL1q8JTgRuoYZSkQGkdrLHIGTJlEOiS+Rc+DvY8/xoHnXiSfmgNtQZQihoeYbU5CL4eZ4rq3cOISNg46z7CXj6K1ZtXee8hUxtz5cX7lIx+m5Lo/S4sjkT/9W19E6tOnT5/Xjb6I1KdPnz6vM5KfTcgjDUoaQiEJLcn5rM3xmaugUkqLMbFRaJ2AMKx+w73suf8BLpwbh8QgpEBaPYaVxbzMKWeGUqaQxtAlpK4gr1m0E4cHH3mCq+0QNXkNVfbJTEpXJ0jPJcsTYqWIXI/66WvEJkX7hizuUcElyTXv+uPf5eSxU9ixRC+2+PDv/DZHDh+H+TY1t8bM5SskJY9kaZ3ku88hvDq4NkdOH6JeG6Z95DwVWSEaChi9YwuzVkar2eLT7/tFrpy9xvzLhzh38QyKkER3Ac2aTVuJvIDL3/ke6Aydp+RJj0yACexCfxscZtUn30NrwCM8O42LR2xCsBSPfugXmTk7xfWDpznzre/jlA1JmmJbElvYkCms/IZQYATCaGSck+QZyvchB2chY2nmE8Yp5Q3r2f3MB3n5C/+V+ZkFWLqMTW99jKaBEwcPw8wspDlDfplBZdG6OMvC7Cxb/sMzzJe65MNVSsuX0Tt7jYoXEJQryLpPY+EKR5//EbPHz+Eu5sQXp7h48hi4GVXHIlxZgwBErcrWm2/m2sR1mF/EKgeUqmVykRKnEXZZIgKHTq4wwsLxbMpBiWh+Duwcf+MyPvqFP+TA4f2gEm7/zG/QEJJD332Way8f4OSPXoREsf2hh1nIYvRiE1uAY1vYnk1DpmSBpLp3O2mvUSgntijcYPMpG8ZWkaeGPDEYx2PTR9/HtkqdK0ePkYZdbEdQsWx6i/OUYkPguMQqL9xVPcView5vbBivXmfjyHJmx69Qrwxy6chhZo8eIb48Ad2UWnmQa+OXOfCjlzhz5DgsWcrWnXdTHl5Gq3GJcmoYKFWobdzEg594Bn/TZqYOnUK7Zaqb1vL453+DWAq684t4touT5GRJjEkVMkyop4a82UVio4VECYr+L2EwKMSNeUVhDN0SdD2D0oaBzBAkhlJWuC96LoQedFwLyyuR5RmHX3iO62fOMxLU8FNDKcpwwxQng1RJLk5foHXkBCx08ecaCG2oJoYAwdWyRaVp48Y+j3z4acLZiM7LZ6l2ctLMZqoxzfiVy2zc9xjTlyaJdUxi9bCChMzJibyUxPTQNy3H234rN61bTfPiRTRQdl0sS5CqQjiqlKp4mQVlj2bNRnQVi1MLnDl9lvCl/VhTIUO4tJMWvVpO3YJkoUFFSazMI2+nMD3LwKo1dPIeWS/kqd/79/z41Ksk4QLcsYWdz3yIoe1bGVy/mvlL47SiNspoqltu5i2/86ska8aYeOkg7dfOcuz5H7Bw/jTkIYwE5KPw9v/8J5x56VVGRZXhWDKkbT7y658lTXOuHT9G5WMfYOL6RYItW8iPH0dK6HQWIMvw0hQZJYhGB9owlFfIrre5dvIStDqQacgVtTjFVpBYNs4b7mIyMKSXz0MzxOskrNceAwaUUMRGkUrIbQmOBNtieMM6Vq1bw8zsFFbg0Oq2UY6NdjSsWoa/bi1zR44xes/dbN52O1ePHYfVN/H2//P3OHXkEMO3r2XN3bcwf+UoKtZUVU4FwWzJhdEqpU0bEblA9HK8wEd4FjE5+194nvnx04yOrUA128SOh7pjK7X1a5k6NU4UxZSMDa6FsixM1qPdixj/wfOQpDhJRllKpM4ZdAP8sMdQpUYSWGSuzbXFWU4cOwJBgJnvsKQ6QNhp4wRlrAT83MLPJVA4+XJHgZUXm2nCcN2RtERCz6QgbA5/+bsMtRRV46GSjNy1oNOm2kqR5ybIcwUrVsJ8hM5z2Lqeez/7DO1SgBgb5OSxowTtkE+99/140kIKiSULEUkI0ReQ+vTp0+d1ph9n69OnT5/XmYTiM61rAHIwijiM8KtVRLWKLFXQUQK6iGtJy0OjYekAe596O3Mz05z58tcgzqiaEDcosSB6RYFzt8ew8MiNpmUy8AFhIapVTNyDsg+5jR1LnFTjlQKarTkIAuxU3+iTSAlyjZMpOiWXTKcM37YdcXEeW+VMN+eh4kCaUrZ9vLCHEoaOMOgAwMaSJbTWGJ3h+RUIE4zjkOoYaiXoRkjpoqOiQ0gGATpNsG+s1uUWYDtsuv8hJi5dIxo/B1mGJTRCKLQlQAi0Jbjrl58hjBIufeVZzOQskZUVDg9hUxM+cRgyVBtgujtDtRKQJTm+5ZEnaRFVEhZaWgghcDNJy84o7bmFKOrC+ct4VJCdFOE5RGULIgl2UMSS1gyx+b3v4Oyz3+O2LXdw7J//BUoudJvQVCBTxC3LEeuWYwZGuXv33Uy/epyLX/x7MDAYD9LYdhMP/sYvM5pKvvnJz2NI6ckUlbTBApYMs+ojH6aiDaf+8q+KJ/3tiJKs4KRgK42UHnODsGrbLbzn6V/gT37/9+DaJFI6uGmGUhmWZ7Fp/TqOTV4qHExjdWil4A5AnDD4xD42PrWPA8/+gF2Zz8EvfwkWZ5FCYmKNVbIQnsueR99Kz4JXDx9k4447uG3zrXzpT/8akQlquQ+9HMtxaVUcVLRAybgMuR4N1SRcakFzkSB0Ge0JMuERljzarguNheLdUTXgO1htiUoNDA/B7RsQWzey791v51sf+xz+qWnquMyUVPH9g3VEbCg15rHzHGyHyLXIrGJJLcgtUq2g7FFdtozmxSbyvq08+N4n6Vy8woH/489YmiqG6DEtUubLAkvXUbYFNQl37+LpD3yIL/3Rn9F4+RAVx4EspvvQLm57bB8rtODbf/AneInBMwbbLkq+E5UXvTDSZdAO6DXnyZdWyUlxlGR0LmGUATJHMr19I499/MN847//A80Tp5FCorutortMKfBsLNtHdWPIUnCdwq3kK7h3J0y1YKrJ6vIYV1rT0CgihkVpfRWSFEplWL6K0sgI7tkzNCeuEwRlep2QsaEReq02kJM4GYmrCwda6hBkshADZCGqBbnGMqCEJrc0Za3ILOg4DrlwAQsdZTAwUFjiKiVYtBjafTs33bOdoydegGqNWixIXjiEmL6OjcFxS0TKInGtIu6Y5+AKdv/x79M1GVpIehfGmT7wAm4npHPyKkt23cddd93F17/+ZaxeG9VpEsRtsl072b1nD1PnL3Lpu89hhz08y0YajRISJSSJ7fDoL/8qS2yX57/1ba5dOA1C4XkO8cICSy0fowyzwF2f+UX2Xz8GZ85QWrUN+Y0DVPIOPaC1xGFoNqGMzbVKCfY9AsLiibvu5dDffpHZ8fPkJkfXy5B2CudcJ8QaGGL5xrXUR4c5ceYUdKPiAmhsuGmYNz62j4nXXuPC95/FLpfwtUu3k1P5yM9x+4oRetMzHHrpJTgziUwtfNsnGrAhzcAJGAwF5bTLgqvplWN4YC9WrFHXZpBTHfRsC9dxSGlSGa7ihBFSK7TU5JbE8T10T+ElEmVJ2o5F1khZ9ZY3s+SNuzj4w28x4A6hr04Snj6NcjKoD0Ojx5gJaPVaaNcjdXvgWpDZ1HGhs0irbIGlITEMiwpJltJ1JRgYjiUWklknhsDikf/rt2nMNzj451+E0BRRxFUjhYg9OwXKMFSusnBtApPlCEv+zG36U/pCUp8+ffq8bvRFpD59+vR5nYkpPtr+LxFJKVQUoiyLoZUrCbXBwsGhwvs++2n+7iv/hjk7zvLNtzF5+CgIqOy5lSeeeoJ/+vTnABCug8EUFqcsA2OoDdaQwka3Wxhh0clSqNXZ+OiDbN1xBz/49ncID52k3M0oS4dYpbSDHFtlVFNwjWGuZKGlgExAr9hXHxpbQjg5R9kP6MQRmU3RMSJtyFKEAt/2imhHnICwkI5LLgDPLVZ5shRyjZsbjCXJPMBApVckgkIJSVlCKuCGsIQRSJUXT5ilKmIk0pBiFzfacc6AbZOJlDBXUA9uRE5U0TliadKwh0kz6n4ZlWYAaEugpUAIC9XL0cODDN+1lUfe9la+/MV/JDx4igG3hAZCcnY+/RFuvnMHf/d7fwJpF/+eHWzavJmrPzzA0NgoF69f4ONf+CP+5X0fZ3H8AktR5EjmqUClAq6G3jRlWzOY3MTEcgv3sTeQHj4Bh86BJyHqIXKFqQvIB0CWILDw6wFpEqFnJ8GrUhkYpnt9pjijKjbUKoxsWM38+XPQaEMKJSlRKBKhqacKYxlyC6I4Z8h1cJVPbjvM18uw6SZYbMCF66BSyr6NSXo40iA8n2YYgR8UN/dB8DOBQ0ioVdjw5kdYve1WXj18hNaVK9z+yEO0fvAKjRNnKHe7TIazYBkqXgWES9dkxQtv+ww3IwwJccUmyhPIXFCCB5/5GNMr6pz85jdxlq/i5ju3cfTbz8Kxc6Bt1r7rAbY9cC/Rq+c48M//Qm4pouYi1Go4wsbNDK4RRHlKLkEHAcYbQL7tXuzVS0jPnIP/+QJ0FSNxyHw1hQBoOLzl45+iuXKI186cID53AU5fwWn3KNs2ca9BvHYlbN1CkCt6+w9ClFC2LFxhERuDFhLhePiZRMcxgS/pOhnhoA+NxUIosasQpuBY4LtgWcVqVavFO9//Psqeyz/8xV+ALcFokA6Vdo8KAvCo7L6FpXdv56X/8XUsPPxOQqga4PoI12Pf29/O6IqV/PiV/Yy/+CIMDEHUg7iNVfVRyhT9Yt2EcpxjmxxtJSROUXeDcv5/r2daaoSlKGWSUibpWRaRYzOwexv1lSu5+JXvFIt+d93GhttuY6RWY//ff5GB9WtRUUTn0KvFNcEvQStkIKjTNG3YtI53ffwT/Ovn/yOb77iXxW6XuagFzUmYnS7Wz+wSte27WLJkKeMv/giiJnTbDLmwiAavDHEP2ynhpUVMDySZpBCSbA+8Kth20ZG2OAUyh5EBsByYbkBQpVKr0u1O4r5rH088+XZe/bt/Y+afv8cYhgjFrEjZPjjElcVFGmvWUn3mF+lcuALf+DZ0ugjPwvQiGAgg7fD4Ux+kPTXHj779PUAVooglITfYrs+6n38/N7lVfvA3fw5S4wlBtZ3SQTLwtscY3bCVE3/1l2DSwvWUuAzGFpbr0Vg/zKd/93d47Uc/5kd/8fcMBZJQapKRCnvfuo8Dz/2YZG6xuJ5nGlyXO+7bweEXnscOe/gOEFiEtgHLY7A2RHeqjec55HaCFTnkq9aQrxxj+xOPMPvjV5k5cgJz5jTUXXZ+6mlqoeI7f/rfqFdqdERO+c6NvOcXPsjffPo3oZNSNxm50EQGgtE6UbsNjgdJSrk8iGoVYlosgQ0r2fPhd7H/4Mvc9+ZHOf7sT1DzXR5aextf/dv/huVrLKkYGhpi8toESitsYf3sBP3pGmpfROrTp0+f141+nK1Pnz59XmcUxefZ4mNuYe9X2rDYbfPHX/i/MUmKkRZ5lGFGa4iyQ3d+nt0770IYQ6O1SOoZHnnvO3n1uRfRUUzJ8snTpIgYOQJ/bJRwpkFNeKhc41k+jrFJlCFdUmds5y30XGgdO8FALMizkMR2AI2FKbp1MWhL4noBeS5walW0L9G5gSjGlh7B4AA9T1LfsgmrUiFbCIsuEQTGGAQCY6BSq5FEIZt37cQfHaEzPVWsBSmJbdukrgBhcNLiuGSCovfI9op+Hk1xo2lu9PT8NKIgJMpywHGoWjYyz+jkedHXIzWsvglUVvwMAzpJsVyPpNfDsqwbc+2mWDpCkucKt1anOX2NYze6ceimVDwfLSG1BbNL6my8awcXjp4iX2ySX7/OzPHTxBenaZw/Bzrj1YVriNNXyLsdxnAI8MgJQNqoLIU0pGRL8twlvmUt97/lEa5NXke3OhCH4Hj4wmbt4w9Qqa8k7OboxjybdtzGHbt3MBF3Gd66li1372BK5hhbFO6iLCVamCmOV6aROVhSEuscHIvSQJ04SbGMwMkVw1aAlRuEFnS6IUwvQqOLU6ohMoWjishfmim8coCw7aLg2y9RVpLA2KS9rHC6WILFqsUl1SEJLFbetwfft1hdrxE1F4kuXWPY8vj/2HuvKMuu+7zzt/fJ56a6lTsndCPn2I2cAwGQIJFIkCDEKFISJRKyJA69TGrZsmVZkkdjWrZkURSlGZISzUwwACQCkYjU6G40OufuyuHWjSfuvefhFCh65mEeZsF+ub+1atWqVVV33Tr3nH1rf+f/fV+epSjfp6cTCCwIPehFVDKBBJqCQqCKig3/xNw006++BI02+ugUF151FWNnbiJfMUSn20KPD1Gp1Tnwwuu05+aIRY41OIhdCsk6XSwEvnkr1UiRawWugxyrUa9W6c0twqHjoDVGa3InBwmWVaE+Pk4j6TK9a2fRMtdNcKTAQpGqFK00TM2QT81ArgixsLXBdX2EH6Asmzg3uJ5PS2R0s6IZrlSrkaLwLzsf7QeYXlIIcc12MUWiinyzvW/uZufOXRDFRR6atCHTOLlhkBIgODUxxbEDR6HdxWhB1u2AVMXkkTEMDI+w2Giw5403GVi/gQc++AiJbTN/8E2MZ0PUhTyFUhkZp0g0tlZIiv13ZlkYSfEhirwnIwRGGsyyN9dYAmnAyyWZZZFagnd87IOcXFqgnRruvvNdzKwps2HLBkY8n/0/eIL4wGHSXhdMD07fWDwHKZFZQuYl1LdexOq1K9n/rR+iTy3QPXqcfH4S0laRC7ccdp0sdVhsLBZZUUaBygmkgXqdXEhIUywkSRRj23ZhSxQCZZlftoyNnHcWazevZX7qKPK8LVzznrs5PnMSRgdBp6Tz8zAyhGo2OXzoMAs//hl2KvCWlQmFoRv1iIC8PoA67TSuufwKjm/fXlzPZLByFNIuDFV58KGHibs93nzlVaxqBWMMblhGxDklbDZcdDHbf7AsMHk2dHtUchA4zOcRsydnoNPFsl2M5+PFBlul2NLB37ISd7DEjtdehUYLjSJKY+j2mD45DbNtSjgIZciNYuOF57Hp9DM5sHsPMjMgJJHSWOUKQW2A1mIHjY/lSNJ0iVwJsl6MbnawvYATr+9GnTpFkCpqlTLXf+QDtKbnOPiL15FSkiU9LrztBjKjOfTaTjzHJ1cZnhZUXI9mtwPrVhAODpEttAmsgK5KyR0BrgfNNqeOHYMTE2y+4Vr2PvlTzrn4YoJGxOyegxiZo1CUSiUe/fRnMMYgxa9MIEFfROrTp0+ft5n+JFKfPn36vM3kLItIb00iCUOOYO+Jo9z63vfSVIrTzz2X13/8OMx1AAssKK0dZ+zs0zly+ADMLhTTClFcjDZ1NPVKFVkNEesHmX9jJ15qU01gjpTx4RU05uawgirmytOJhg1sfxkyj/rRJcarI+zVCbVehpE5XVdD4OC1FTpVxJZVVKC7HpVqnTvvvJuv/c3fFmJOrc7Y5ZdxwWWXMNPusOOvvojV7hT2MNclR5BGCWKgQmXlOHfccw+vb3+V/T99Ch8XpRSZyIvNUsqyTQZwRNF8FOWgFVJISk6R4aRlsQHUUhRV6mlGdfm4xhWPWCUM3Hg1o2eew8WXbeVrn//X0E5gega7UiNfXMRzQBqNkBohwAgbKQK6ucF4NkGpRLTUIhQ2vTgqnljJhW3nQBRRtkd45zU38b0f/pD2oRNUu4ZsqMT5776ZZEOdHX/4RUzShTxCjo9x44d+nYVOxPaf/AR55BC1qEvkl4nrHue+4zamJyaxBsqsHBvn0E+ep7vnGOqmc7n80us4efAYk08+XgQqb96IO1gjfflF2LAeBsfgpVeKQFoERBGuU8bRAieFJZ0XU0qugJEqzDSh2WEUF5NFJLYgM5LQKeHFBoVkFkXg2Tg6R6sUpTO8WoUUTTdLQdoMKQcn0Uid0ylXaQXg3H0VZ7/jJuZOTjO9fT/qyR+DzqGXsMKqY+ZnCUtDHHEibvhXv8f+7XuYePJJmJtlKHMRuMyPDUGaQKNHzQ9p5U3MeA2mOuCV8IIyiVmCVVX46HvgtUl4aR80e6C7WGuGueqaq+h12rz2ox9jd2OqcYbvOiAh0hkic0h9l8xeDqSPU6TW+CrD1SlaGIQf0EzjojktzSHRSGNhZzHapGjPYIfDZFmO6fSoSonJFeVKjalWG2t0FBmWybotOGsl1EMeuu8BfvHHf8WpvYcY3LyW+o2Xs+cfH4PFDHuwwi133Y7JM/bv28ORA/shjkFaWBJUN8IyFgOVQRa6HbAEYmQEkxlYamGtHGfL2afz8Psf5Itf+DwThw9TGh2jO79QLDxCUl63Dst1aM7OAhFUXEa3bOG+DzzEl/78PxHvO46facpZCkKRSUnX9n65dknzz5tzLYoRQVuDJ3ISC2JPFusSspiuqtVgw5rC+rl4EqYWIRfQzgkqdSKTsf6KC7n4mm188z/8B9DgRglpzSom3EzxNMOkuLa7EqhQtKmNrYCFFtglqNZ44H0P8I2//q/QaRGqlE4ObugghEWe5ziOQ5bn//z8pcZIG7HlTN7xrrt4ffcOJp7+Md7tN5NkCYyMsPqqqyn3NGsPzfL4n/7nQnPKU5yyTxZ1IMsRrk/JWNhWRNcWZNKj/vCHaPzjt0Bn0G1wyyc+hDs6zA+e+RnMzBTX4NwS2AHCGEwU4XohVjfCA3p4qLKH22nhkBFaklk0lpCI3MIeW0U+v4jQisSFaiaoaUmHhMaAAl+DcGFmuRhBCMq1IWhGDBgPrTVdRyI3rSRcNUpnrktz935KloUjoKW66GoAluT8q66HBHY+9Ti1oEVLepiuhZ97KG2R2Qn4DuVeTilTzJw1AIsd3C6krQ7h+DC97jyMjcDkAp5fQQuDu9Bk0CpzUnX53e98ma/85d8w9/NXcbVLWndhyxouvv1Wpr/3HK1X9xLlEbmrYU29aDWMNTQ62KGHimNWr17N8SNH0UZj/aqNrT+J1KdPnz5vO30RqU+fPn3eZt5qZxMGEBqFpofk52+8xjs//CFUlnPmVVeSNVoc+u4TuJ0OAo2sVYiyblHj3ctg1Souet9DmE7M6//0rcK+pBXv+egH+OYX/3Nhi8kUjFW5/5GP8cJPnubU9jdhoMTtH3+QfQf3cvQ736bqhrSaHagMMLiUoWROM9RgMkqJB1nGaVdcyQkrJdl9hF7UYt19d3J830E4OceNt97Hz555FlSPsd/5MO0vfwmOnSRNUyzLIjOgZSGEFf/bm+VxLIv6mRuJmm3yQ8VkUl5d/pkESh3okWMAT1pYQmIhyLQitw1GCpRlIU2EjjVD0ioEKc8mrQSMXnIJujLI1OFjEOc8+tu/xZ/94RdgYQlUimNpBApbmGURCfLcBu1QCytYlsXS0hKx0XzwU7+JCD3+7ot/UdiOpAWpzYpzz2KqtwQTk7iZR9ppFVlD64dgx17QCnugTB6WYHwN4bpN9HbuhpMnGECz1GnijA6SNdqFIDdeAi+glFfg8BTdzXU4fQNMTMPCPKuvvIbG1DTdV3cjlSDIoZxpBDAdtMFAKahgliJKTkCa5gyfdSZbH7mfI80Fsk0rCaYW2fXYE+g3DtCKF2HIKaw0Xc1YXiLKNC3fglwVkx3SxpbLNd5SILRBWYJE5ZRTi3WyykTeIXJckjIwPAq5TeVok4Eg4qTXLSw3rYQN4RhLJqfhdGBkCGYNtBrgtKkmDq3c5owH7ue0Sy7l9a9+g4k33qBcVnSyJgifclSmEwp433VccMctHP7xS7T/4UdYW07n5ve+m2N7dxGnHY7t3A7kcGqSUlDBm28Q2hIs6OUxgeUhOxrPDkkCn5N5rzg/jaIa5YQ6Zx5NWA/pNGNc1yePM1zHJiNFWwZlayrKReaAViRKIRwX5TgMn3EmN73/YZbSlO/93ZcI7roKGWesmOtw6B8fw5ISu1YiCVwQDiQGW6fkzSVwbMhThs72LNUAACAASURBVIaGiKMuOstJsxjf9fC6KTmS1qpBtv77zyHqFV74+rd58OZ7+OYX/5psfgHmppDGILBQUQ9sG9v3yeMYbAt0If5ULYdWFhXHqeJBriGTuDk4WmOEBiOx1T9bg8SviEhmWUSyDFjSENvQ8SnOJSOgk0AphHoZpKF6rIEvIbINbUdAnEOqqVk+HZViSgHaaOwkw1EKgSGxNKpsCqXKFtAq1o5bHn6QFZtO5yt/9SVox9Q3bGTT+Div/ugHWI5ExDlDoc1SLwcL8iBAWct2QKPB5FhG4eWSgaTMEnEhfvkuynJJkgSkCxvWsvbaq4j2HWTuqecYQSPISIerLOkFrv/9T7NmeAV//zufL6aMNJx59z1cetNd/P3v/wFkPayShBV1zr3uGrxVK3npz76IZZeQqSLvxRjLFGu1UoTGQaaKAJcmMXbWw6bQhzsu4Dv4DYNtl+hphbYFeOAnmoEUclLmBymaPBNYoW3aXkikMpQweLU6yfQifrmMdD16JgPfg6U2I5VhnHYLgUE5mumoCdUK19/1Ln7+1HOIXgu/M0tvqIw9qyglYBEwPwRUXFhsUZdlGm4CS11qXpW0G5GhyV0BlsB3AkJhs9hoUPJDenEPUymBL4rJuVxAWMFePc41d9zGk089CScXCefauFqTmhRVtUktg8m7RbkCFqYTs27dOo4eOozBIM2vKEZ9EalPnz593nb6drY+ffr0eZsRv/pZGDSGmajFviNH+dbXvgpjq5jfvgu9lBDPT6GERhnFhvIQTmaTNnusuWYbzcDFrg6y//hRrr73Lk7s3Q3dNnt3vQm9uNgY1svQXcA6+yyGVo2z1OyQTs1z6NlXiE/Nkic9xEiFleedSXNqFuIMYQlST0DJp2wcRC7wxke4/mMPEdd95nbuIdt5imyuA7bLZZ/5EG/Gc5DFdB97nmx+GivPCkuBAGNJbM9DqwzqtWLKpFRB5nDHr3+Qa264gR0/eIJhv0pnvARlF2JFOUoRWGDJXzZioSElxyuX8ctlkk4HIxUytFGxYijwaccptuOweGKCzsk5WGjDfBN/dJCN69cxt9ggjXtYJkdgkMvuOApnC45wEKlCxwlGCFIpGNmwng1nnk7LsZk7Og1LKYNBhbmpY0VjVNlFdePCkuTZsDBZWGVsl2qkCJuaFYMbWNh/CjM5DS7E3RauI9BJRqBlsem3ikyrbLpFSUmyczaz6Z3XcfED7+TIay+w6porueH225hvt2kdOoxxHGSWEHg2PZkghCzqto2NUAZXOrRVTl4P6ZmcHS/+gvkjE0Qnp5GLTTI7K8K5ii57VJwTSzChgNXjXHjdtYxvWMfUxDQ6inCkjackjmsTuxJpO5AqjOMjKgHJ8GAxHRJphmKBlTfJfYESgpLlY3UUjV6X0x98F92wRL7rEAPVMjFtHOmR5jDvSkprV3PgsR/ilEPi9iyr33kNV3z6Y4zqgLld+8laTaYPHyWdnoZWD4PBTeDE8UOMrR6nNj7G4qkTkOaUXB/R62G0wvEcTOjS8g3CdsksQcuzSelByQZHkzgWSZxiBYDKsDOBpQo7XK41mVAYUdxvs3ODVIWYIixIbEGOoReGNKTgjSNHyD0Xq5cQvbofd/8k5DmJSaASUl+3jo9+4XPUzj+dgz9/Dk9IHCGxLYssS0mjCL0sqGiVMaLLxKQknuRU3OTk7AwoWDOymv3ffwwaDVB5YYnFIDwPsqQIkJcClq2qAvB6ESXpIyyHTBpINZawwRiSLCezLQgDFALlWMRGE6sc7dhox8YqB7SiLv5QnXYW42AR9jSWkthOQD4QQtpleNPpZJ2UwU5KniWkeY6yLYS0MZmiVq3STWKk42CURjsBlfIAUZKhDEWOmjSFRdMAQtLKc2bmFmgcPAxKE09NM3niOMKS2MbgWJos1gwMlIiznMx1i4k4rYs8L1sWOV+5QSsFlkVuFFJKrNigM4XRDmffcjuHfvwYvbkJcB1E1MO3A+ajRdgwysqzzuDY/sPMvrqX0BZkuWZ+qcPEsQl609PFnYKkjdYZ0xNTTEzOwMQiptFBpMVUlAl9iLusOu8cFqcmkWFAS0eUUoMfejTyjLTuFdluaPLBGrLVJbMdCCSMD7J6aIQAm1avQeJKkJpAWAzG0ExTslxByWHsknNJApdEpeSWVVgnsxykIBQa1Voiy9rUKiUiS4FlOLJzB365RDozTdl36BkDicRWOTku6XgAaYu1d97BzK43i7wtZag5PiqJKDk+b92ftpPi3PRx6NoG49vFTYNMwEC9mNwaH8EzFgefeBYaCbQWyYZLxMRQLWErRd7uUq5USVtN0FAOSwghePTRzyAQ/2+9qC8i9enTp8/bSl9E6tOnT5//CRQCUrH51AiEE/L9n/2UZ9/cV3x3eo44M5ClSMtiyA/JGw2yHJTjsKAUZ990M4d+/gJMTxBecQEXX72NdWecwdEfP1PcvQ40a666mLMeeDevfflvOTVxim0338rUK3tZm3uo5jzV0XGavTnOvOM2hsfXM3P4OFESFRsuJIkyyCBgemaSXTt30jx8ArXUIquHoBJAMXNsEjc1jKxZzVm33cCpF5/DXt5YGwlKCurDw2y+5CJmDu4rNoVxhDGSvRNHmV1oEJxs000Sxh+8ldt/55Ps/vnLrFmSdHSMkgohTJEdJcEuhURRlyROYGgA8ghjFEG1TK/Vox6W6HW6CMtDd/MiQFYZjh3axdE9e0gXF5GAbRSWASHM8usBlu1gK4OTg5CSzLfJKj5HDu7nxSefZu7YKVY3csZMjhWnNN0ctqzhgS98ljI2Ezt2gzTc8PFfoxM49JYWSVsdcuEyL2xMawmGB6luWYccKONOzyGNwc/BVRBJuZzrInBzQWLD4rOvMPPky2RzMfM/fo5dP3me3vFpwkxS0YaagSRvk0kLiUALuXwn3mA0LEUtpo/uZ+6NHXBogez4HP5SxCgWtspIlMFkArEcjJxYFpd/9jfoWIKugTWbNzM5OYNaamI0lLVA5jk9k5NL6FgZ1a3nc+tHHmJSJwycfTodT9DpLtA0XTKV4+SSoY7NgHap+1X2nTjC5Vdexsld24mzLmiFI0O0Z2PKDk0rZ+XoCHkckaqE1olDHH75VY6f2EMWlGBiEdHo8cDd91JbyOjuPcqJmX1kUYfZPXvQwOVXbOX4vv34SBwN0ndJhKBFjvEChHBQnk8aBoxdejHX3fseFrWmd/AQQblERorqQVla2Nj0jCYP3WKqSkrINY4pLIS5ZcgsQW4X4dhX3n035155JQePH0dUqySTk3DgFCMLPVqmR16yMLak1NM89fWvc/jl50AJ/FwhMUgMltHoPENgEKIQUbVOcW2PXm7g0BwVqjz6vk/w5Uf/oLC+6RxUgjc8iu065O02wcAAKk0RgG00NsV5P06ZOO+g8ozQCcjjiNAJkJZNhoHhKrpeRg34qEBiBksQSK77jQ9zsDFF6exNRK05Yp3h2D6O59ONYqTt4ZVLxCg++bl/ya4XX6J75Djti1bgn7GZ1twSm6jS6vYQY3U6IzZn3Hs7c7t2FRN+5QGu/r1Pcskj97H75DGY6jDSkgxENm5qk0qbzswcjZlZiBIs28cohWUUtimEFiMEbm5IMoVyPZSRyE2nce/HP4k3NMT0G7upBCGdOCNZP0pqdVDrBsnSFtnQACaN+bV/90cccTL0LVsp33015S1rWNqzi07eLfLWhObkE88z+/J+1stR8qiBa0HaUfROzlCyBYFOcfOMNM6gHcF0k2omCZXE1gZjWYh6iZsfuI/B1eMc3fE6uevAYECSK7S0yYUBlbNy62Wcc8N1nNqxg0AHpBWXNVdcwD2/9n6e+advsNTuYhBFDrobECqbkdRGSg+rFBBXbM68+2ZO7NtdvPc0O/iDI7hugLFz8qjFkOdQ8z2WWktEJidLMtyRGkmrBZZFYpfwBkfJFtuIsErt7I2sv+sGLnrvfZQHaxz/+QuUjU3J8+m2l6jYPmQ5njL4yiBN8RFo6PiiaFEwUOlB2m7DcJV3/vqH2f2jp5FLXbyoRz5ahdUD3Pre+2gfOYm70ME3kqVuk5s/+D7O2ryFN3fsYnR0lE/91m/1RaQ+ffr0+V9A387Wp0+fPm8zb03Xv1U7ppD8i3/7R7y6Zy/HexFnbL2Sx7/7LbjwbO4f2cD3Pv8F6sJjXsZkoYBqFQbHOf2629i/7014Yydr7rmb9oGDLO3Zh92Jca2cnm6DrZGrNqJjDVEKC12ojcDCYmFjSDswNggLc1CuFCG7xuBpkNoQCVVsmoUEN0S0uwhp0K6AVBcNRq0ItxSSZj3YtBpOTOIXxWdoCZmUGG349c//b/zNP32d+opxtl1zNd/9kz8HEWLHmrzbgxJQd2FkBOZi7FOzYOfLx6mw0SghMQis0WGUUmy+5EKuuO5Knn3qSY499TxBkuNYgnaaY1crZCkEToDKNKlugmXhSIu82yWw3eJJSoN5K2NJK5wcrNxCWRad0IZ6FdpdkD6eqFCan8cnI7ADDjtd8HIYrMHxJhUnJPNt8o0jDFUHmDl2CJrzsHYDZ3/kN3jz1e1cdO1NlE8cx2k02P6f/huNMMdSkjAr/r6rPv1rSGHxzJe+QWqBbnWwjcCUSngjw/TSDDM7URySPAHfwlYGryfJpSaxiz/LVlA2Atu2mc97YBs8awSQaJ2SdZcYCgJkFCOMJBc2iWXRdYFBvzjmvbRQAm0fLItQCNTMNGNBiXaSs+SBu+1sEgvYux+Mjzj9bEzS49pPf4I3vvxllp56jTC3KGUus3kPw/LjdxehYhcjPI2UQe0hXMlCmEFgQx7CYgdrbJR3/8tPkfrw3c/9G1iMEVFGyfGwhWDJS2GgxOqeQ6eXkIQ2qQSliykLR9gECJxqiWbaxViCWuLQNQbtOOSWi1lYKC5MaSh5DlnSJs0zfBvs1CLVBn/1Gtq+wMzOQpIxYAXkcY4WYGROLjWZJZGlEjoIoTpUCDtCgx1DJ8NdjMlJ0I4EY6CVMTiyiliA7jSxf/kvWGEnS5Ko+HJZcHZsyCKoyADHH2FJaVKZM37tJUy/9jI0GniWTSKASpV3veud/OQH3ydqthBoLJNjGY0wksQ4lAcHMGg6M9OsGRqj3YroaE1ecjj71z/Eqo1reer73+fKK6/k4MGDNBYXMcawefNmpFVkDe3+0lcgdoCMbZ94BPKc1599EWuiQWepAaGA8SE2fvbjHPn20/DKXmqTbZqBgIphzaceoHdyioWvPQ64UCrhXn8BQxvXMP/mIbIfvcLGWOOiaQFzLmTLAdoSKDkOWRLhOBaZBC1ASRhzQqaabUxYguoAbDytaGGbnoDZSex2i9ALaImQmz96P1fecA1feOiD0BEMDYyx0OwQ3Hk9URWoBpx3wXns+osvwolTuJ5DuphQdgM845MnGk0TBSgZkFs+UkSgY3wHLNtH4ZBpjzzu4CJBaSIH3FXDSN8lmppESB9XC5KS5tbf/W0mvvEMR1/eSV5yuePPfo/piUle/Df/hfrAII20BULB6hE4Mg3KQVoOuqSgXodWwsr5jCXVQPs+saNhoFw0VsYJKzZs4R333MP2XbvY/qPvIAeHcKbnCTTYjsBeMUQkoLnYLH6nNshDn/ksT339m0zufgN0wtnvu4s3n3gcghIcPwlaFWsGUK5USFodKl6ITHM0kNhF3p2jNT0HlAUYSSmVmMAnciTGljDfojJYp91eAgsuuvJqVg2O8PMfPEGr0yoKEVbXef+nPsGOHz7B7meeZ/3GjRw6cAApJOJXdzJ9O1ufPn36vO30J5H69OnT538CAopNJCCEIMoMe/YdJDaSF59+Hoxh0x238Nxj3yKP23RUD2M5xe5o7QYe/I9/wjOvPk/ZK5Fmgtb3f0525ARjfoVW2iBL25SkRSWVjHQM3mQTu9XF8QYItp2DdddVZKFmy7arWXh6B2Huk+ku57//PSTtNvGpWbw8I/UtGAi54MEHmH7xNXAMts4JezlBrnCTBNszGJEQ+i7MzeEpMMuijxGghMCtVHjpp4+jW0uI8THskRpz9TIDrxxmKMtpjVRZ+dF3052PMG8epyQDEj9DmwyDQgBaCIwUEAbUVo0TJzGLkxNElsupYxOo2QVc1y9ylAKBdg2UXZyxAZLWArYEWylsDBUnwOTF4xphY6QNQmK0ouR4OH5A5gpSx7D1o49QP20Ls9MLhIspzWpGO4ReFGFbNtrxYbbFaaJGkrbpxgk679I9NonsZQx3QE/3mNp+EnafYG6hzdHtr3D05V/gdTOSqoWxIUUQpjBTgXYI8xMnMLMLBJUSIrBJO22ckRGuu/VmwvEVzDbmwHGg1cLKFI72yaWFsiVYGi0hTxJcleEaQygEHZWy5j03ctMnH6K1psT03l2gbKSWxLZNr2QXmTYLCeQO173rfrZccjmH9x2AZoMsz8AVhEYymrksiZxs8zgXXX01tbG1LP7iMINTEclCl2O/eIHoxCT2XBdPOywMhwQP38zQXVvpvvkGQTvG6qT4yuAwQk0lWHmPdppBmuJFOWUrJGrl7DlwgpP//Qmy5iJIzSq/hIlbdH2NGrQg6THSjglTjWfb5FGXtNdjbMUKsiRDC0nsSLJOG+O5nH3brYzduI35kSort17E1ttuI/ZdWsePkrkZKjSEIzWihQjb9UmEBWNDXHjrjUxOTkMnJowkwgigmPwSGKSGAb9Mr7EcnNzqEpYH0BOLmCRG+VBOc/xKQJK0Cd+5jdOuupRu3COdWcAyurDKCTDCkKschF4WqpZ1LgcKySJDlTTit+/Fvng98bPPQK4YjjO6pTLjp22kF3WZ2re3qJAXGmmKSScLQ7aiTFp1cDavIQx95o6dBKWQrs/FD97PUiXktedeQL+0n2M/fob24UmyPUehlTH15IvQynAbMfMLi7C6CutWc3LHG5zcuZN8bpbUSnHO3YI2GmbnaXzvNZjNYbFLMlKDzSt58LOf4bXHfkr720+zLrLxkx7drEN1qYPec5jO7j1gZTQcxbyraVtF/lfZDfGMxM8NlkrwKJr99HIcUyYFUTumtmI1MRaUyqzadiWl+iCd+QZ0I7wowc0lfuZz8NhRnvz+Y9CLCIxH2uvhDA8RqeXGt1eOk+w4Qrz/EKQ5Xqxwga7KiVyLpF4mU10sA9q2IfTIrRgTUrTBJTkmzlGpICsZMlviVstouzgncwPEGq/Vw0tSkmGfRmQ4/vSreH4Z5bq8+czznDpyAnodTDNHJBG2F6B6PUgVlhsiqxVu+tzv0qxV6B05TruXYpVscqPRvYwVlKk1NU47R+WK5/fvZOrEIYLrbuCc8y9j8vg0kRYoJ6CpIZlv8u5H/4C9J2ehOsAbU7O0X9jNiisuY/PdN7Pr8e9BWxPMxQwmFimCNWdtYGjdSmYmTyJrZXppjBCgpKHrGnLXkLqKSmyoJgZPGVp+8Y5hLTVZTUjTUqRZDy9KGPZDDh3Yz4FjB0hqBi4+A7pNaBgO/OgZpo+fZGC4DsDvfubRwsb5/1SM+iJSnz59+rytyP/vH+nTp0+fPv9/eCvag+XMIIDbb7iWW6+7ht0/fQIO7oPFBbJDx+HEiWJltiUmSkDbcPgYu174BXSW6PziRTg1ieM4BLbDzPwEGE3ZK5F1c7pJzmyzhcBBIrFzQ/PYSc5avRpGR7n5hhvwPa+wiylD2fe4ZNsVDK1biWsHkOTQ7HLh5tNhoAJakSEx0iETDm0kjA2RKEMmwU4AJFoWGzqNxDKQNjvgBiAsuvv28vpPf4baf4Bhb6g4ACpH9SLuvuYGbK/MyvXrKdK3bQw2SsqiTlxLvEqZhz75cd7x0Q9B3OPgU8+QHj+F8H3UW+1LykAQUj1zCxu3Xsqa66+C0EalOTLO8LVAScgkpFYRXeIoiYOL8kv0qj5R2QNL8tLjT7FwYpqNZ5xJeM4mSGNA4/oBVpzjtjNWDo7RyNsI4VCr1yCOwPMweVEpX5chcmEJYbvk27fDxAR0OmhhiqBfCdiQW7Dw7Esc+/q3odcBB5K4Q7wwD6WQ3vEJnv3Gd0lOzRUNfXECloPjV8jkcg+7EsV5IiQM12mHPl0j6CYGBoc49soOXv7ZcyyemIagRM8pBKT8V85HV5ticq0Vc8VZF7Lh/AuhUgZXoj2XxW6TjJzA8zA7d7L9i3/Jvq9/gy0r19JpLrD1/Au48b0fgF6bUsnHLTmgYzasW8OlF1zE5Xfehc5yhqTESnIClZMDKQ5eyUOEDkIYemkXKgGcOI5IMkStBjpH5Sk5hix0iovJDZi3BFYpJEtSyl7A6Ipx5ufm8GyHO++8k49/7BNcdOMtkCn2TZ1korVAfPQAkzMThJUQYQFCs+3Dj3D1hz/CinWbQYMtZdGCNTvDK1/9KszNgVKUfItiYqg4ZpYGR0PSaWMZCGt1nEqVjz30Qe57x7tYuWYDRAlZGNBKI6iXue2eu1lcXGDh0AG0KKb2EksS2xDZxaSGkvKXjy80ZAlFXlG9DPUA4wjqpRKUqhDnuBjQmum9b7LnxRew3eCXr6utJWEmsDRgUh75/Gf5xKc+SbMxx+DQELWwRigddj/zPEefeApe3oHVi4oRqDQGIcgX5qEcMn1wH/tefgl6Xd7x6Ke46Y47i+pJy4Kqyxm/+Qj3/8ZHKA0OQqpZdf7FXLJtGwzVodOEmQm+/uf/O8mO3UgtEaRIDAiH9sQ83VOziG4CSheh5xZgSYyAqNNCpV165Ng4VK0y0lgklgXGwlWSgcEhGlMz0Opy/nXXcs31V6JNwgMP3EvN8cgx2K6LMDFZYwnabRipM3jJ2Vz13nuIOgt86t/+O8CDUzPEh46BZVOu1Ip4oqEK1EvIc09j8KorMNIUonkek8cthDG4qlhbAm1REi6O74EVgOvRHQjIQwdyQ5Br6PUYHhwi9V2u+1d/wOKR4wzXB+l0l8AT0OnC8ePg2NjGUKuPkXYT3veZR3E2rkclPfKFBvM79zH/9LOQ9Ljj93+TWBryJGYoCEhaDUye4jkWcZbD9DyUK2w+5zzG1qzBr5ZxAp80z7Edh/ELLmTF+GqQLttuuwPmT8D4IBecfQaXXngepAmD0sFrd6jgoCyHjZdcwpmXXA5IKnYJkxRVEpm1bAOVxbiYrQWWEUUTpw3KElSCCiZJoBcT2i7DlQqNbhc/rBWNfJs2Ut64CYzASsWyfbeY0sxEcZJnSfo/vuFK+gJSnz59+rzN9O1sffr06fM2oyj2vXr5a0lxd/173/kmjzz0ASwpaXcijOejpESKZbtSLtHSIhGC9dddyqEDe9jya5/gxNMvED//NIzasLSE04E1OBzBhU3jbLn5eg78/X+HBFY6VVpxAzFcp20S0DGEIbQ61I1DI2vDYAmimFUDq0iPHWfd4Fr2RPP07AgGRxleexrzr78BoyNsfeBeXtv1Gumzz4DjUlpoEtsuyneLSSshKGcGk6RIMjLbIQ4EcuUKBi/eSvzdZ6DboWNFUPVY7Y/QbHYZvGEbx6MFtq46i1+8+gLm1GGwbQY6gqW8R3DVRTiVCq3n30BGXRytsIzGMppUShKlIfQ47ZGHOXTkCKvPPZ1T//gVShM9xvHpZm1mBJiSXTQeLaVUcoeBFZs5SI9rP3kfti159u//keBIk6aR4Bpqn3mE5vd+BDMLiKkOZ9fGSZKII/EMaqQEnRa2F2K6PVTZASysWp3xNRuYePPNQjDKc+w8xdagk4xSpUxDZoUosNCi0rYJHJtZ1cYNIe2B9CRaawapYScpHSS9igW+zd1//Mf87Ctfo/vmDga0g9NImBc5puQQ3L6Vy66+lmf+9G+gEUPUYmx0FZtWr+bw4UPM6QgdNcFxAVmEDucphB5OR+I6FfyhIfJ1QwxuWsmxg/swr+8iVALf1vQcQezbYGzQgpIK6UYJYvU441dfxNQvfgST85BD1a2TSxdsm97iIihNFUVFuFiBYMIOULZb5CPpHnYeEwuNGV3J1vsf4I3XX6Dzyk5q7aI1LnMlPV+y6tZbOf+CS9n/2l4mnvgRgSq8lEoU9sBcGXIBXqlMlmWIWoW1117G1ksuZv/r23n1B09Ao0epUqPdbcH68eLCnI1hcYEaEdpA5FrklWpx8fbaVOOczHHJhY2jc1ylEWhK5SqznS6p4xf2KT9YrqvPsc5cz/0feT9f+y9fhEaL0A5gagHdS0jCMvbgINffeRNnnHs2/8ef/nFhO1Uauhn+W1qj49ISBkaHYHyETZddTmv/Yeaefg5HaUaxmScjccFxAsaVy0k7BgtqbahraEho10G7smjy6qa4bg23q3CkTSOJwLMg8GCpAbUybN7I+VdtI6xXefGv/2sR3t9LKY8O0dl8OizE0OwweMvFrL30PBZai0w/9jzZC68jRkZY+YmHSacXOSuosuO//QPdxQl0INGeAWUR9lx6tgVnbuKaSy5n8fBRdj/1JBY5yirCc/zV64knJhmygCRmoeIwEJdYVx/nSGOG9pCk0srwej1agyXcxQiLnHY1QG8oQ56xQg1Qa8Tsa5wE6XFaXGJu2Kc9ECAu2MiFN17N6y+/hvr+k4wMb6S77wDjwCki0ppb+OViDVWX4JF7WTm4giP/508wx3YUuT8Z9KpQahaRP7HnM55Y9EiZGRyC2Ofs972Ddfds44ef/hfUT7RRcQerUqIRdeD81ay8624m/+TLDPY0vmUzWYqKUPBe8fql0qM7Ngoln3PvvZM3/vbLYPucmXjMLEyyWC/DuRs5/4E72fm7fwRCMCDADyx6SFqdiLHLr2H19bdycH6R1s7XWDFYZerVF6G5RNVzSbVEuQFZUKdyxnm4JcXCC99Ezti4tVFiVwERozMtXKBBhe6mlQycsZGlN96AVDPQ0pSMoJN3aZZMcT6lOdVGjmUMqUVhn7U1CAtba6q5hKiLwdAAGAip2itxhI9351Ymd+yEyTk2UOVo6yiD129l8chhZBQRlAw/9wAAIABJREFUHz2BA8vCo8QISQIUK3GfPn369Hm76ItIffr06fM285aI9BZv5SO99uor3HzjTag8J41iXCnIXY8kV6AFnuVjVar0Wkuc98EHOZi2yZwq3lyT08s22x/7OlRDmOswHLssjgyhA8Pah+9n8FSLHd/+CaVmGzk8iLVtM1fecTOPfeX/wts/RbLUgnJ5uanHKjaIBkYGh5lbnIdaWFRstyMu/MB9zNV9kjhj7uAx1i1pGq/vAp0Qy5ggqNDsdMG1wZagDa4QBMKm2W4hPAdjFNghpZ7GJqXpGNzhKpUlTeAFnOq2YMzD2raVdVvP48jffQUmZvHnDeOUWCBHAFuosU826XgKV2k8pbG0xCuVmc01xrKKTXwagWouK3cCz0jsTCOlBEuSWaBKZTK3CkkEjoC4W9R+L7XxK0P4XsBSK+KmP/0U9bXjfOMP/yPsPASOy7sevJ/vfP9bOFqSLSzhCUFQsxG2T6Pd4f0f/w2++tWvQp5hOh38LMFFIlGsrqzkjbAN117MnR/+ED/8xOfRcw3wFfW5Dg3fp1BhKpzzzjvYcs45fOsv/xYOzxaV7ZecBqsr8N2nIRWMuAPMpRHWeB3lKUgSaCgsp4LSMQxlcNu1rF+/lmNf+i5MNcCkMFrlhvsf5NxzzuIv/vUXYDGGpiommsaGqK1dQdRYJD98gsFUYduSxIK2JxFG4uYSLwYnLNGWip7qQt6h7vgIIemlkthdFhd9Cd0OuC4kbShLGDoNWhn+VJMxlgixaaM5FbqM3HU7a8ZqbP/mdxmY7WFnKSkaXR+i63iUS3VUR+FEs0iRFV1+y3lccbuDqNVwg5AkSwshr+xAu4elJWtTG7eT0jMZJ9Fs+9ynOOxkzDz3Auw/jD2zSDlVDLuDLNg+vVCiTUy2NI9l+0gjsU2OrYvw61Rp/KFhmp2oyB3LDOP4NHxDMiAYOfcsFl/YhWx0qUuPZkmSSAWWv3z9UWTdALSaYDRhtYpKUsoiYKndQXkujA4ydOG5bLvlBh577Nvol18shAYl8FoCbdlUhup0ox6JyIuFRi8vQBK8TsLY+Ep6KmO+s1hMEPnLweEViy0ffh9XbDqTZx/9U45OTvzzFInjFOdjmlAWho7O4Z7buOT8y1lth3znj/8IBgZhssVwLOmsLBHbEQiLLXffSz6/yJHv/QA3S8FkIDQGG41EeRbld9/CNnuII8++zIn9+0hDA6EscndamlVnXcjczAnSqVNgQlg7zsrzzyLspkz89OdklkbpGGMZBlKbAItu6NCqAbnCT33ihSUY9sEIgjQkzmJs3yXrtItxLynAdSCNccIyebON7/tEcQ+Q3P3ww8Shy+N//w+QC/zEwzJLIBRpYJOFNnSz4lgHQbHK2wLGh1l91R2UspT9Tz4BcYy72MATApUqfNsnEZoukqFwCH9pBkjpocgrIbbrsbTYxBUuyTu2MnbZRcz87Q8YPjqNIqU1GqJEB4QNkYLMg7IPKoKszeqgztLMAsOnbWLVg/dwYLaNWopZfPJn/zd77/ln11nY+36f1ddus6doNNKoS7YsWbYky1juNu4NYxsTG2OTAoFQbBIgEAiQG1IP5+bmpnDDSUJOqkMC5FISqrGNq2xZsmS1URlpNH00ZffVn+c5L5YgOX+Az6v9fTfz+czsmbX3rD3rt34FshhhSQyVIqMOaIVYv4H3fPb/4u9+/w8hauHUpujrVFkUJqmIwepQzgzKToHpKMnfQ2opbBngti/9Nj/8wp/B3jegXIYVJd5y1Q0c+uZTRLW8g8ySUEzAURARk6DyfrWigyENlgc2MxUDMgEb13H7n36OH3z2c9iDa0i/+RNuffQh1uzewbe+9S3CM2donBhFJDGGaYLRFZG6dOnS5f8U3U6kLl26dHmT+a89n+K/fC4II/7yr79CnGUomeEjUCZkSoFhYbkukRBQLjA3P836G66l0QiI3jjEAw89yGtjIzA7Cwm5+2KgF5ZXaTz/EouJRM3OkPaUSYIakZCUKz0QxtSnJsG3YcNQLqCYFsgMbEHgZtBXgJX9UFvCX72W2DOYz0KG+pcRzC+xuP8IxSRDZSnSAFtYJJnEcl1UlgAamSYox0ElKZ7pIjHA9qhKgaUFHSJkHOIYNjqVhBpIM/TZeQaLvSRhRjLXoDfK5+KXSjaxIWhlgrYjwVQYWmMpja0EpArbcoikxiqUUUrj6hR5/qJV2hZFLBwlIM2Qnk26apDem68ljNp5dihsMnD9W9Br+okWZoksAfU24XAFo+IxNXIKZuaht4f7H32EIxPjdNIMt6+PuNEkCwJc2yEKY944eAjbsjGkQsQJrpZYeSMTi0lGUjCg6NEpFWm++jqEUX7R3IqQ1b48nmdZVK69jMHLttFud2i+fpoev0zsKh78w88yu+cgYTvANxzCKEKbwOoV9G3eTFgLKAuLOFjIL56nx6gXLB569DFGX9pPVm+DZaE3LmfFlo1MzE4RLtYhTgEFSUA8M41cWqTi+Ig4wDSdPEoiwJYCV2qsTFJ0HRCKwNT0ZBJPmGhtEBkG0nNz50vRAQtwDBAZ1uaNPP74JxlasYojL73KAJoCAsO0WVCSoFljZvQEnFvAjDVFTHzLRWuDcqGHtJEXV9tmcl6UOJ/qE4LKsmUI1yYKAxBg+0UKQYpQGs+xiWVEIhSZIQhkxsS+fYS2y+Y776Bv1UrmXz+IKSHIUhqpQMYRSkoMYkwsfqrOGDpfEDQdhwCNVgoqZUgVfqdJKjSZlRDUm9gzHSoS+swy5ywJIoVOiF/pIQtjLAW+ZZOmKaBJlUImMT12D3ZiYpguaaNDuNBg9wVbmHztAOH0XB4n0wJp+RimSafTQorsfJGSACFygUQJdCaoZwlBpw1K4wmXUghWI0HWI/o6knR0moOv7MN2PCyviBAWqhPiWy4izfANQaQVCJ/p/YcZOTsG7RqUSohazBpRYLY1DyIBw2Px0BFqx0egv4qsLeEIEz8FECRW/vMlp+c4u/cg9bkZqnaBJE5RqgitlHc9/gneOHWScPIMlIvQgZ6bruCy++7gzMgJkiMnSUwJNgjXxItz51+cJKQqA22StWKscgVV8iCOyNw8tlt1fKxOhKskrgShNVIkKBmBbWAIB5VkoAUX7NzOyPFj1E/P0meXKKYSzzLRlkVHJZCq82JcCaPah85audPynruZPDVKY34BNVujoiEIW9iOC0mKrS2q0qBVrBBEHVoyJUbjFUrUjZhIBuCZyGov1/3ar7B561ZG/vJJBjMDULQGfFjTD4MrEdqBWgLDg9DTC0mGsCzMSoHZ6WmmFmqUKr0sHDuKVSqjlpbwbRMLTZpFUPBYsXULMzKldmIELtqMe/wUKtRI10eauRgsrLxrTRl5fJZOAFmHRcMg2jOSu7aKMPDYPaxOLRa//wrZ+biz0HkE1NTg+EUcv0CgMxAaLSyKiaBTLsDyflZeeRknzDbW2lVs27Cemaeep7J8gOnaEmeOHsXKMj7z0V/9T7FI5K+nn84ydPs6unTp0uXNoysidenSpcubjED9bIb4p3UNaaYolnr4v//kT4iSBK01/UqRCkgsE7dcZNsVVzJz5jR4NqwfZmlinGX9Kwl0xqvf+SaubSPbIa7p4dgeWdnn0muv4pJ1l3Dq2Wegv8Sdn/0op6bH4ORZZvYepD2/BGkEF67l8s9/nOmDh3jiM7/DynUXMDI6QvnDj5DoNld97Amqy4aZfv4ZOueWUCenWNqzn2xyEnocQiMlNqGYGlg6F8Vs2ybJYqo7trLz1rdydnQ0v5gNYiypUUlErGMiU6EqNsayPqJGiyCJcA0TTBsdaxbnpkkmxiFKKEqDQCiSggmeTSJNMPL4kqkVltIINKnOCLMEKWxUp02h2oNOAqQh8uhWplAKlGGgDIPYFCjL4sJtO3Eqg3zwgx9B9vRy4tlnuO2Bt3PyxT0wX2OjtBg/eYrJ51+Gcw1wChAGvPCD7xNlEWL3Dm74hXfRt2kdHD9BvdFCuB6mXyRNYqSWWIAlNAaCjjbY9Ilf4FytA4fHeeSud5Hs3MySMFGHxsku3wQna1TTEuBx7tBRRv7tP2geGGVbWqI3TrFjgz3/+PeESQhBQphJTN/J3V5RwF233c3csZM0Zs9hC41aaEEthIUmR77972RzHZZpQZ/0GZ8Y4cALz7FmeBVpKyYOIryiT9ZsYbk+JiIv+LZ9IttEGub5C0GFgcY1oRO2SLMY25AUhU0rVUSWSVIu5k4b32XDrp28/d0Pc+CZH4IC1RGcOLfEgbNnIAuokdFMOnR0isJDJQqEwDRMStoky8Lc4eYWmVuqkyrQjotpxBjkRdSZSS4MhSFmucgDj76ba2+7BVlr0XN0BuUa1NIW0aBP4EiCtA3CpmBVSI5PsPDCXhZHx6DTJPVtkqFlPPKF3yL2CtQW61TbEanIu7WEUAg00tDEaJQhuOad7+Th97+P3sFlTLy2D+FbxEEHIsFyUaBkFZmO26TDA/Tv3sWtN9/KkRdfxApTSoaF2UlIkwitBPgOpQ1ruPsPfpPKzVcwMn0abBPaDcbPjFE7cQpHKjwJVskn8xQqyVh1/ZXc/MuPcepHeyjHAqEEphSsjASNvjIsr9B39RW85xMf5ZXnn0WnCsc2KbsuU5NnGTt+HGwPrQVWEFOQUDXtXAg1TGKdkJZKXPfIYzz+S7/CmZ+8ytLoJK4oMKhs5oIaaz9wH+s+9hjZeJPg7CR4JqiI6rLlqFpIjxIoJYg8AE2v1ARujOpxCIhRqYUlPCpDqzmctgjMiCvf+z523nMvJ557lXjtEIXhIbxUokanUAWLrN0EMgwklmFQsHxsu4iNi3ILZEnM7g+/n7s/9CGmFuZoj08SZxI/TRjAxiYlUwn4IEsuuD6ylrKMIsI0OXLidepBh+VthZl0MGyLRhbTViaUbPpWbuTGj3yA1Tu2c+bZPez+zEe54UPv4+grB5G2xdtuvYnyuRZnRg5B2SNNM3wc6q6Blzm0gcLtV3LNI/dRMzVLo6dzO821u7j9Mx9n9LmXGf/3Zxj57tMgE1q9Nq20jd9b4eOP/xov/s2TUGty1YMPsOXhn0N3UuoHjhAP9hCFLSgVseZDmsePw9ohbtixnanjJ9GdANKUguujCyUaJ07Sclx2vfPnWBw7gx4dIzaLpKkEQ4GZIclQQnPfJz6Jt2IVs/sOM7z7LWTnWujXx+iJJaWmxcLxk4w98zxpltCXmVhKgICOD0FJ0LEygiQCw8HRLiKBljLw168jm5+h1a6RRnXWDA5y9CcvwFKd2WMjzJ08BZ2AUqXCJx9/ArRE/FQsJReRfir1dunSpUuXN4dunK1Lly5d3mT0+TYkof/z3qgUcPTUWS7dfQUELfqGhrDGzrIgFO6KATIEl+7aTe/q9bx48HXK2y7gprvu4qvv/2RevNGqg+XA0hJlTKQpCDwrj1CEEio9UG+w5oqdGL0Fxva+lEdbAk1fR9F0TLLNa2CpA5MhFUxarsW2z/0iYrCHN/7+64iROXS0hJtkFBMIbIgcYH0/D33wA3ztb59EnZrGbgYImWE4NpFrYm9czY7rrkEK2P9X/4wIBQUsOqKNWNGHFgqCFltuu41OrcH4K6/iWkXiehsqPu/+mz/lnz7zKZhbwG3ZyDQl6y2D42HOBbiWQhoSkwxTKaShiJVEen7eSdPfz2d/53f53Sc+zEq3SrzYAMeiVhCooAmehxlq7JZEGiXSsg9+BlkI1SLUFunxStAOkI0WPZVl1JotNm3fxhsnT0GaQn8VZIr91qtZv3Uz44eOoP7jeyQSzN5eZLNz/ipGgevi6AwLQZoI0res5oLhS5l/9QTNdsxlf/QEc4dPMvFnX+WiJx5idnScdStX0S6abNm+jUOv7WfsP77LxjtuZersGNHzr+Sls2QMb97KnVffwF9/+S/OW91yRc/M8tqRoSQkRdBG4xUrRJ02dl8/vReu59TkmTw2srQEUuJYNjYalUkMqfErJVphQObaeD1lOlEMCkSU0FsokGYxhmOSaInjOEid0V5sYQwOolTGXR/5ILWZRV59+jnk2ck8QufmTjBDFVCWoHr3XWzbvZ0X/vj3YX4p71DpAIYHmcKXKZbKu6+UAHdgkPksyyN3vT24jRqFLMXxXOYWz/HQL/4SqYZ/+863EMUiOkuhE9GvbUJbgSUIFucgASw7LyYvFSAVYFVh6Rxm2UAmbegrU37b/bROjcPULJwcPR99On+c0wy/7BFLhTJN6F8GUZSLPbUZyKBXl9Ep1GWGOdiLjNuwdg2Dw2uIx04hFxsYrQCRShxhE6mMloyhaIFvwfaN0G5z1WO/xMv/+DU4egKiDFsLjCzDtm3aMgLPg45m1c6LafTYiL2jmJ2QtOTTDlosUybz1SL0eXncqdWAKIF2CmmGKUCS5m4fZUIkoR3hIfAxUBZIS9A2z0e/zCrLl69h7vQJtv76z3PJTdfwL//tD+DEPEwvgu/gtAWrdl3MhisuoeMKXv6fT0ItYiUmAZp6j5H/zWXq/OMaECYM7b6K2VOjUO3hkd/4NE/+6Z/D5Fze33XxJi6+5DKOvPAizE1D0oRYUm0F1M0sPzfGUDV8SA2kYdMyFFsffZCjU+PQamBmJnL2fFzv3DnIUgzfRnVCbBtSS0ChgjWfsdoqM5M1iVa6oBLMjglJhjQjoCfvvrp0A7xxGtYOQJjin4sILxzIlYzRGXq2bqVx5jDEJqQtELD9qhs4+JNXYU0VFjtgD0CPACuDyVkGQxccA712kKDgEb0xji1cItnhpk++l6ef/Iv8uNU1gx3oWBYdR0DJhcyDTWvZ/dZr2dXTz1998b8hDVAu+TE+v0VgKkUhk1iK/G/MK4LnMNtsYw6vRNYXIF4C5fHQpz/PwVf2MPLMd8ltejHu6g3Es02uuPZK1g4Oc3DvQU6MnMD2i5SCkGWYTBl1OhXBcOTQjAJSxyayU97xhc/xxuGjnPzuD0AUYbaBs3I5Wx67n/n9x/IepCyGNMyPYxLnsetUYKxYgTo3j1Fw6cxM41lmHlkVuf8oI4+ydUWkLl26dHnz6DqRunTp0uVNR5//h1b8rBwpSuHM1DTff/EFShvWMz9yAgNBbBtkSqJMk5nJaU6/+gpZu0kniyiYNufmajirllPasJbo0EmqRoGCVCRGPuntpRrXL5HUG5iVMvWx09Qnp/KL5gSKicKTCoHBlY88SvHSzczvP4DOAJkwe+IN5sIAGhGlE1MsTzSOlLScjMjJO2A4V8uXkaQm6i+iagvIJMM1baRUyCRi+vAbtAb6WLdlO4tHx8hMA6yEwmXbuPcDv0x19QZe/8GzbLvtJjrFIu0TJ3FxkR3JzOkJnGKZaKGO7MTYG1ZQvONK+q7ezrbbbuL0y69RyPT5ie+MzNS4vSXSuAOOCUGD5/a/ArUaciGkN7MwTYuGCLAv28rQpVtonhhnKHXy2W4rA9GBNct59POfIcFg6uRRYk+QeAktmZGqlPVX7eLedz1IoBLmj5zCyyySwydY2n+M7MgxpJmBVGjTQKxYwa9+4bcorRzi9IF9SJ2RaoUVS1iMWTh2nEgF6OEy0806vYPLaYyNsfDDPUTHjjE7coyl40c5++xe1N4RovkGg5dewPoLNzK59zCDbYeODGidm8PrqdKq1YjqdSxhYWqFEBIhoJUlZKYFpk0njnBXrWZJLrG0bhmrHrib5r6DkEFf6oBSmELjISibDkmSUihXaLsGrBxEtRsQdHBLFTppSuo6RD0+WbtOvGKIX3r8CcJEcm5xjt6r38Kyizfz/J98CZ1pzKWQihQgU6RU6MFe1txxL1IJTu3Zh5o7B1HAyku3cM8XPsXh6QmYWqKUKVJLk5qazADpuYi1K9n5jnsRV15C88hRskYT07GJspRao4FjO6RS0pqdR5gW5XIvrUSyYfvFXPXWG3F7e5mdmMpFJGGw8u67ueeDH6AxP0/zzGl6kw6e1KQUKPQPEi7MwcI0VDS4ft45pTL8UgGZJGRJhlks5Q4i1wWZwLIiaBu/HjDgVYk2LuPy++9g9e03MPH9p+mcPIttKsJ2E89zsH2XVhwSmwLt5M8XpTKcWoTpDpPfeYbiuQZGkFFy3Lxw37JItATtsCb2WYnD3OwM7ak54jQlKrokRWC4StBXglrA7Xfex86Ld3Di7DRqZpGhyiCre1fQmq/hOgWUsNCuzfC2LagoIgyaOJ5FIiSJAOXY0F+CNQU6QROEzfziNEcOvA7VHjg2wUBHsM6s4grF2MQop984xOShQ5BqECZtqUiQaC3xbZ+BSGOZLlErYsPFl7F76y5OHBlFLbY59O3vQH0JGh0o9vDA73+So1//HsGrR3Mxz08hyFieKhqoXEQaHiJqhZjSwLCdPI6bBjAyArFGj89w2wffxy0Pv5N9e56GVcvQFQ+CNqZdwM4sZJTiSUGsAjJhsvPBeyhv38r8sQPoTWupXnsZW7bt4sYH7ufIzCTU6lCvg1uiVAvJwhijHeOGivb0FOgYHJM111zO47/5Wc6MTzJ95hQMFuDBe7nq8t1MvvocDFTov+hCFk+cxE81rYVFCBNsCaGMuPrBt5HIiMn9+8CwsSKJpTTSEGiRe15ZsZJLL9vB/h//gEMvvYKZphgGSKGxpKYgNcrUGAY4WmNrcJVJ3A5I2h36y32ktSae65D4Bn133sFrBw8R1Bqkk1NYFgjbQs5H6FQwVTvF6P7jBLMNkp0rUassolt2sHjkGL0Koiii5WoSx0b4DipWrOkd4tUfPAuxhCzlHX/w29z0gUf58fF9LH37R7itkEIQszFxyKIQqS2UJcAqoBtNHvqVD2JkCb/88+9BaI1h/Gdg/Kdxtq6I1KVLly5vHl0RqUuXLl3edM6LSPo//60NYjh+epRXDx9i9w03cGpqmrTWyFfO7PMtD0pAkuZ9RfPnmBo7g5qvs+m6q9h9wzUc+48fg8woYBCZGiHAlQJHmpRXr2Tjjq3MTo0ysG49YrZGOdY4ShFZisA2WUBQ2nUBiyPHkO2IgcEVBFmd3uuu5PrLdzP31KsUyEhJaTgSDAkaRCyZm5wlmpllxS03ErUaqIU6Ksso2gUSoaGngrduLdu3bufUwWMQBOBCmnQ4trSIHRjUR8eZOHmcsLEEYYLqZFhYpJZB5/RJyDIqXhlrsMrlD95DYhsM9g0y+oOf4Ep1vkdDogxAQ6ZkXmorFYR5sa8Zg2faLCRN9PqV+P1V3v3Yoxz80XOUEk1HdlCOjZIphBHKKXLijcOooJ2LATIDvwyGweTMFGfn56jNz0O9w3JhY6QxRamRQoMh0ZaTixNRws333EOjUWdkZITcwmNAELNKeTQKDqzopXrPzUTNiP7+AaoDy6jvOUzRMPKOkjRBTdfw2x0GnAqnjx5i8uhxmKsj4oSkpwiWwcToaaJWGwwDVwhMrdGmRhuCVGQklothWsSWyZpbr2WxswgzczSHVvD2j36U4a3bOPmj5zCLDnbBI0lTjExjOi7KNAlcm4/89mc5cvQoSb2JoQR+sczA8Cquue8eTh0fAQzWXbqDZKnN5IljREsLXPWuhxmbr5GcmsAKU3wgExmZ0Ng7LuXed76blStWceT7P4ZGA9KQVn2JKUMRLSzBbANPKhJTo4VGGVDp6aM1PcX0uTlaNhRqTeL5xXyZSWk6nYCzp0aRUpEFEaZhEc0tYWgTv78Hp1pmIWzz0c/8JrtvvZU3JmdYfOMQh3/8DM16DZp1BjCwUHSSjM70HLgGrBhk4503cMfVN9LXN8DZs2NYQBwmVCplhtes5e0PvQvDcnCGV3L1fXcx6FWZO3QcgclSe4GJqTNMTE1APcTSJlF9Hq0kUZqSKkmSJrg9FdZs2siDjzzC3NwcarpGHw7IEMc0MU2DRhqQWRoqJVi5HNohKzKbDEmKQdpTQvWVQEbQV+RX/viL+EPLmHr+IOOHjnLsyBGy2gKYFu00ZmFpgcxSpD0+Og5Yfc213H7jjYwcPECaJliGRiqNEgrTdlBlny1f+A36lq9mcd9hiFow0Je7tZYSeiKNSjMyKyOxDITron5aOJ2mVFevIWwu4TsudpJhyZRFlYFvUSsUmT45Tjy9gGuaZH0OGAmDw2tQQYS9bhkTew+jwxSdBFCxcaWBG8XElRIrb7yaK2++icmpOSraod5po12VF+0rAzoxVHvZtHM7o5NnmQ5bPPiRD+H2DjC77wAqARlnoBUOBhqN6bus2nohR86OIoMOQ1ftZsOFm5k7PcXI0RHC2Ulo1GBgEOZrqDRGSIkpFYahkEqiXRuUpNTXx7GRExx56SW4+OI8Wjy8ivmzE8iwxbU/dx/r1gxz6sUXSWSCQpMkManIcLZuYvn6NbzyL/+Sn9uEjZkkuXh0/q1FYkDQZu7MaZg5h/ZdkjRCqQw3yTBlmgvaIkNIhZEptFIIqdEIbM+nHnUQtkWhXCIwJFf/3M8xMTZJPD6FG4WkaQdsCysW+JZPKtqQmWSuj37oZqiarL/nTur/9kPKQhCoDFXOVxpNy0K1Ys6cPIs2LHA9sASb7ryFp/e+TH1+Dr3/OCUEhlIUiJE4NFUKa1ZiKwvlF7ho0yZGDh/k4088jmGIn92k+S+3a7oiUpcuXbq8iXTjbF26dOnyJqPJEBggjZ85kVITvv3USzx439tgywV5OenYBJgZ1csupbdY5MzTz1Lt6UfJlMwVBJ0OrN2Esf0CnIJD+t29eNN1CipjvpBhIelJNIbwqQ+V2XH7DYy35pn75o9ZHZsUgCaKmSr5mo/bD/ddTM+lO+GlEzT+9SlY4YMKsS65HPNHBzDTkNRMSe0MofP+aVuZSKdIgoF9wQa27drI61/9/xFhxgqnj2lTg5XS/9D9LE7MwYHTkElwUrY9+gCtZsDZv/0PDL+X5dds5Yq3XsWP/+VfMU9N00hj+q7bwdLIIWg0sZZiMgFsWZfHrmIfM+hgkiGQWDrBQJIj/LI7AAAgAElEQVQk4LkWodJkUuMWK4RBiLBdhBDnp82DPDZTrmA0I9wkwyHDa8T06jKRzlhEIFf3EoR1fCHoDxNqUpK6NoktwROQKPo6Grvd/mnFMg0U/dUeWnFKSypwvDyOwfn4j8yjYGXfpq+ZMI1N6ltseP97aI7Ps3B2FKan8GdNqj0xC0Ed23NQUiBSjZEqBnqGqIUhcv1yrr7ndvZ84zu0zs2BzhfVRJpRFQbayAhsSEzAtqB/CNvxSGfGYdtmNuy4hvH9x8jqLbhkDWQZwwsRU/tfzIUHy6MnUMRhhDJ9kpIFWzZRXFygMzmLF1uktg3VMpUrL8VZvYLmYoPw+Bh9C02WFibBN8EXoBxopfhtiSNSmnaEdiyW3XY37sAwM3OLyOeeh7iDHzVIpSTrrUAkcVMwkISOwlAKS4EnCjRNE2PtarY9ej/jX/s69eMnwDAwEAhhIjsxTqFIliksyyKNFK5TIRIBFASYitKFF1EpVph+/QiUKrC0AFlEWae47YAUSHuK3Pn4x5mKAo4c2Ec4OUpWa0OrBVlKoVCCOCYMUyzHI7W8vH8rSaC3BGEKtTaV3h46nkRqCUGAG2sKKaQ+iLJPq9nIY3xhBJh5xC4zABtPSOIkxO7xSJIABso8/KtPcHBiimNnZth2xdXMj5xm7p++DkUTZ3iYZHIaKgY7f/Exqtrmmb9/Eoo2lbNtXMeibijSgSJ3vPfnOXhihJmfPEP/A/fir1nB5NMvwDOHoeDAwixohe/ZiCT3d5iGT+oXiEpFmKuB53L9E+/hgh3b+MonPk2lKWjWFmBFHzQW8FKwLI8OFsbaFVx24zUsXzXEv//OH7LCKhG2l3CXrWBuYw+Dd93Epk0X89KvfA47NklJuf8PnmA8WmTfF/4cwyygtIa1qykMDVKxPWb37IVMUoklTd/lwl94ALu3zJF/+hqcbWAWivReewl3PPQA//iZP2TnxdvZcutNPPl7vwsCnMt2kLRa0GxRXbWGizZsYu+PfogxPYk0MoRloxOVd3SVHa7/g8+ycuVKvvqx34baEpQrYBn82pe+yJ9/6BOYYUoUtejHQSKpywYYLkOJw2LcxrMcWhWP5ddfycUP3seB77zMdbfexv6nv8fEvldYe+Fazh45ADrCamkqMTS0pnLHVVx81bVMjIxy9qvfxGp1KGKiLU1kCRQWxvm4dGJJiplBwbCZ15288DtT9IZ5517nfIpTKANLGrmj87x4j0wZ2nUJquBw7pV9CG+AvrtvpjnfJn1hD14cEJnNXKHRBfojh6CsCGPJhY++E+P23Yx8+1sQ2fCNpxjqcZkN6/n6ZZK/+Tn9QyTCypcm/SKEHS566J0sLswy//wLDJ9eounEtNKYYavIjGOghpfx0T/5I/7kHR8A38fIEixigtoiSibYZh5l0+frtLsCUpcuXbq8uXRFpC5dunR508ly8UhZ+YcCJhsdPv/FL7L37BiH9+0BBdfddz/P//VfwvAgu3bvohDEvPDVb7C83MtCUCcrFKB/Jf3vuJnMFjT+/F8oKRsjCGgWFZaWFDNNw7Ggen7mPsqgJSmbNtJQJAYgFH5qYUifrV/6NfYfO0L8/Zd5/+3v5u+e/x7x+Ci4PkZboewA4pRCmJFYKo+llQt53MbpwRxvIp0mOBZl4SJbAaFXRrsgdm/n3rvv5Vu/98d5wXLYZtM9d1DpX8b+b/8E6h3wJJBg91ZQ52rInhJb7nkrA67H81/9BkP1lILnMilSEpVhtVKkZ6JNBVpj6gyBwjAM7ExQEi4OBmEU0ECR2oDn8Pm//DJf+MjHoB3glCogFImZ5nGYTsaqMBcu2gWX9Y/ewcjCWcI9e6kuSEoBJEIRD1VptBfyJ1BYeHFElEqwwKnYFBYFbZ3h9S6j3Wzmx0gqkBGmKREmGCUbsZRQxkc7DotZBv0lVr1lF+s3X8DzX/4KthXgGyo/ZCbg2AwZfVjnFqmYfRx1G/gP3kL1xRPMzM5SKhZIaw1KtouZJWSGouVCamqWiT7WvfNuChevZ7TTZlXdYM9Xvg5Jyg0f/gA/eeN1OH2SDW+5lOvedhP//Df/g+TYCazJNr341NOY9KL19O7cQu2pZyHRmI0QC5sYBWWD0luvY8f2yzj4wj6CZ57DG+qn7+KNXHj79fz4z74M7ZRyoEizgMhPwXTzcq3hZXhX7OLKbdt49otfxEti+gtlmktNfFGmbQQEjsqVSwV2ZuCnJqJYyqNLngHtFoZjoA2BDmPsSiV3ccUppAbLqgO871O/zgvT0zz/lb8F08ZcajBglUiUpmYkXP9bv85zLz4Fz71MKQnwXEFmG9RlBoUe8HthsU1/q8WiKaFg50tQUUy5WKbdDtDawK/2EQZhHmmLZd7T4hggI2zbwghTSpkmyTICJIWKTSgUO996Ixft3MG5RpMf/MM/QycE04dWh4JtgVBktiIhyx/XdiEywa7mq2DVCvaVq9h6xw3U5xY5+xd/D6tX4K9aQ/bqcbzpOmqgQNBZQrsmFD2IAkgEJA5mIukvVenECdIURGkbp2iTtGsgFQVT4GgTE5NMWcQKYgRDlGgQEfSVMTwXZhYRvsnb/+pzzPXbvPjEp2E+A1xoZVDxwRGQtsFy8eeWsIG0UCa0BJwXAmjHWJ5H1mmAL3BKLslCC1yDQdHDuQuXc8H1V3Lyh8/hHJvA7avSCRootwQ7NkHB4bZbb+e5L/8T0eQ0lI1cpDtbz7//hiFohXm8LsjXJLFM3I0biOMQpicxozbSkaA0aINy4tCqFmHL6vxrTp5foPMdKBSgrGDsHEjFTU+8n6f/5klotbjrv3+a7/7137L8wDwhMb04nDXJ+5NWLoMDi/ljBAFlQio9Vaaac+AqqkaBgcyiLQSzhQ4sWwm1JvamzaQHjtJf7qPVWEQJjanO36MQiiEUS2mMX+0lWKhh45JaisjNsDJNMYXYEEhhnN+LhMww0ELjrBri2nvv4umnfwRnJimb/bSUhkhRrA7QmR9j1Z27mJyfhSNTlNoGnSETvdQBXcHcsIm33n0XT33lf1B0HLL5cUwgxGLHjTewFHc4uzgLluL+T32GN159ndHvPwszddCSlSUXMX+OxeEqESE0Y6j25S62+gKkBYRpI+KIcsHh3PQE9s+cSLmA9NM11C5dunTp8ubRjbN16dKly/8RBAiZz80bMNZcYGjTWk63FjkxeRY8uPb97+HQD38E9XPMTJ1ifHEaFjr4hksoQRsOljFAp7mEsg2sUzOoVg1NilCKkmUTojBwUeuGsLZuRM3O4EuPUmoQSklqKCq4+MLB8hxmzk7QmZiHMKGwehUrd25lfGYCVg9hrxpEnpvFtSpESYrzlh1k7RoYgg2PPUJt4RzWQkoxiZGpQps2EWZegOu4MHma2blp4olx+h3BMs9h7PAIM2Pj4CvWvucdNE6MgNboWg1lSEgSFsOU6MwM4fQS5VTjGAZB3CaLIygItJHlRavFEhqBsfUiLrrlJiZPn6RjmjRVRpYm+FVBHKfgeQwMDlOPUtrNJq7rUQkSdK2Gb5WJS0WaSYumkfe0lNcMcPnbbyT2HeZeewPPt5G+RS0KoH8QSj1QXUbWbOP1FMnCCE+ZxMJHFQvEUQh+ET8GXyp6LIe2EaNcAbHGxiQ1IEYhXQFphxjJddddyXzcIp2ew5EQSY22jDzit9TAwaSm22TFAsmRI4hmC1dl2K2QHm2QJh2kzChU+qinMdgu1UgxNj3L6TMTWL3LWDY0yMSxgxA0SIdXsubqa2hpQfrqaygrY+LoQag3sZsplsxIUcihCrf86vs504xQ07Pg+Bhhh5JtkaqUePwM43v2kExN0GeYNDt1Wo0lJs6cRM3OQpxQsCyE0GghsBJNEUFstMgsyeoQlg6fJrAMWpYgETaxTokLCnQIfgm0hekXiQxISBBkiCymGqTElod2XUgUzoYVbH3sXnY/cj/Hv/c0qSFw1q/gyMIcnWPHIZH0mwWsNEXoDGlbjO59CWYmQWRggJuaWJlNiIu2XOgkECUIaVAZrJIKhWFaqDgj8cq5YFQqoAou2sjY/fCDLH/fL9J74WbmR0Yg66AMiWNbyE5Cp1BAVYok7QZaGAivyNq16zk8cpKlsQmQaV7irFLcSoWO1sg0QjgWJgKjlWBlGSqNc0ErrKNaHZpLDRZOn+a6jz5OqdTH4ukJ0hNjeDojjUN6ZIpvGjhaEQcdSsUiTiOgKgRlUyDTDnHUwHEMtEwwLQPXtChIga1MtIDYhrCosfvKLDc9ZuOQwlvfwrorL6c9vUAad2hEDVqHT9DsLbPy/rfROnMShI1pWOhmB1KFEYVgajJLgKWQUQhJgovAlAohYwzDQAmNTNO8RBoNpkm61GRp/2HoJHgasizGMXQuGIdt+tesZcPyFRx59tk8jppKyAx67QKWY5BETWi2IY2xXRNlpGBkeZF0vY6dSmw0mRB5Q7OhkUKhoyg/t0Ux6AR7qB91boZbfuFhxqwM3W6A0Fz/87/IwaMjrL35FoY3X8jx/a/RabQQjodOUiyt8FqKeL5ByTbJVIKfaexCkbi3RBwFsHw5UZiyJBXm0CBxXxUWOrBtJ2/78Ic5/sJBwlrIvZ//PEf3vIJrFHBMh0gkiCjGwsKKDGztkpoWocxwyz5ZmGBoCC0LZZgInSG0xtIKoRVpq8mZ1w9BIwAhSOI6TkcyJEq0mvPIrau55ePv59jJE3D2HJVEEWSdXAgremx/9wPI3hJTx0/hL3Uo6lzsjTZdwM0f/ghn2m2ax0/BBReho5TxkePIsQnIJEIrWq0lelatYymsw6YNoAzEfECxnWA4DpIQWypsKfEtk098/GOYxv9eo90VkLp06dLlzafrROrSpUuXNxkJGKjzlZ/5KTfC5hs/+D5Pfv+HfPfv/gE8H3p64eRZDBWijAxQDFFAy5QUnyVPwIpB6DQxCr2o+SkoGKx58GbSg2eYee0Y9HpUlU/djlh3/20M+GXO/OW3cJsRScFmUSSUgwzbNGkamlSY+V16AJXBwAC0W5BFvOc3PsPE6dM881f/DGv7ecfvfYrR0TMc+MrXuPWDv8yarRfylXd9EA9JsRWhkSwhqFy9g4cfeRff+H++hFVvMGe0IOyAa1OJy/ilXuZsg7s/9EH2ff1bzI2eROsGq265ismTszA2T6FYIa03MaImFduhkTbyrqiijahHFE2PSAoCvwB9FS667hpWrRjiqT/9MqYyKOuMthtg4pJlKu8KsWzoKeexoTCPHO36hQcwB3t49b9/CZoRlcggdU3CZR4Igb/QplxwqXVaVC/cyvxSCyybhz/2cUZfe429//wP2JaJGUZgVIhMBRcMQ6UCR0ehE+PIFNuRxEJiKwswkCJf6JMmeRwNBZ4DSlJITMwso+0KtGNApvG0hRVrXNelncXEQlEyBY7lkLQ6eI6PwKQZRdBTIlYJWCblpI2hfBqRAhz6169CBnVaS3XM1EPKEooMYbVRVgieBmHTl+ZFuxECWbZY/sg7mdt7EOZrsNCkJ1N5SbZIScx8edDQFkaWEqJQjpmXnIcxru1hxhm4NpEFdqZZIVzG3CA3DygL7CIUgK0buenRh3n5yX9D7TtE3K7Bsh4o9cF0jWpD42WSyFbUy0m+LrdqGdSamC0L27SIBlwoefjHz5HGCVmPjdsxcVyLNMtQOoW8ghhTq/MLfxBIiSthNQUUGXapn1O+4rJ33MXAyiGe/8nzBPsP4GtFankkUjG87RLe9cijvP76Pn78D/8zd9P0DUDfmnwer7GANTNHn4DYMrjv0x/nhwcO0WwFbG61OfraXlLXQ7aC/DUTR7nDLg4oCUnDqbBx1y5SHTK+92WQYCVQ8XzqSqGUxFk1TFLPJ+5ZM5hHKWMLZubxoxQz6ZColLJrUdcJ0hLQ15NHaGshYOJ5HlGWUCz3YDU6hBZkJlgSCim4Mq90a9sQeApscGoGay+5nNYVm5mdnIS9RykXfFpzo+AbrLr/nUyeHgepeOxt9/H1/+/LhHPnsLMU67yDUAqIDYVv2JgKiCSWMMgMA2lAYoA0FCQZhmOgUo3plnFdlzgIsHSGITS+ISh6/SzUmmRaYrgOmcjPtTpOGSxX0XGKVXCY6sxSsnwsqcmyjNDKXTyG/s/fNRUGqaXIjAyExlAgLI8ok1xww/XsuvtOvvobv5GvQWYKvCJmAjKI89W3dcMU1gyx+bJtvP6vX4NmiCvB6iR4pk2qJLLo0Enauephl/Pzr29gXbiJbHQMmhGlFcO875fey//7pT8F06SyZj0DfpXT+/Zibt3C9RddzDPf/BqkdZApBWGROS4Fy6OzFGD5BUIZ5n12KgQUvoBQegBYKsHSClPnz68CYsNCG3a+QJhFCGlS7Bmk3Wmx7PbrmJ8Zh1oN5hYhTLFReMKiZdhw/ZVQ8OHgCapTdaRcJKu69Ky6mFkbmDnDVV/4FC9/5UncQ+N4QYztuzRKAjLJQOowY3S4/bOf5sIV6/jzX/8cXhLjOgYybEAcI2wHqaBQKDA9PY1lWW/+m3iXLl26dPnf6DqRunTp0uVNJgIUGuunhUgSLGXy4nefYnF8jkYro3F6hvJCE08LyqZFn3apaJMlFREbJtKxoFzmgT/6LTZdtpORf/1OvkTkSBqblnPR0AbmJxfp27WddHaeJA6oz04xffQ4yewirjBppgHKFtjCIJYZia1BKAydIeKEHrdAdm6JgjSp2j289O3vMfb6GxiGge6xOJ10qJ2ZJN1zgonTZ3lt36sUdm0lfP0woZERFm0ol4gnltj3g2cIXejoDr3CR6Qaq1ggWgpohTHu9os49sIzpEGK0e6gOh0u2ryZ9z76XkZOj1Gf/F/svVeQZNd95vk75/p0lWW72qBhG0ADbHhDgPAkGgRAEABBkKAnRVIaShSpIGVXblczG7uKnZ3hjCZGCs6MZka7I0qiPEXRkwCJhmmD9t5VdVWXr8pKd+0x+3CbpBT7sBEbQeklfxH1klUVae65N+N89/993xSGAi0tOnCo1CpYazBpRl34BMIlMwVRbZis02blwgzndu/GrzWIrEQah9gpbXeh6+FjKVSCFwWYoTpv+dS/YObkSebPnGW0I+kfnWcsGKaVJ9Co4YURSlmU1KRFjlGG4YlJnv/kJ6mMTvC1L/5n5i5cgLiLKyBQZeh4geXGdz3OLc88xlzeR1V89HqHSloQaYsVEi1EOZgmyn2a1QYcD9cPMRqqTpXcSFTglRtLz0VValxz/Y3ML69gtUA6HpmwJEqRRyGxVcQU6LEmWhfsfOH97Hzn0+x645sokzPs+UyKGp2lCxgvRYsMqTWTpsLGoSZrTkLVCwmMwC0sXZViazWi4SZ5r8Bb7vHYU48z0Rhi5tABKr7AuKUwZoVAWAdfC7wgREYBIDCZouFWqOCilCJ1BMYH24gw3ZRm2KQaNujnBXQT3JbGnp6nc+gcNcdlU3OY5ZUlbn/iKd764E6EFzEzPY2WFiUFWhhu+ugL7HjmCWLPp7v3OHXt4PoB+dI6k14dkyukhm1Fgs17uCpDVB0SkaCkQhhNhMF3HWLho61Ly3FoOYJVL8OSMHf2LFP7DmIOn8VJEnSusF6AnBgl8SU/+Mbfc/7AAZxqFWHA9vtMvO1+dn7oOaynWHn1DaqZIk5z9h0/TW+hg79u6EyfoddZw+KUtscgJPRCQsfDyQrqXsitzzxPMTTMmWNHIE3AcanXmxRpQSEERCHv/dhH8UdHmF9dYeeHPsLZr34LlnuQKipSkKgEPIdKAqETkCY5Y6MbiNf6jA9PgpIkcYE7OkG21iJCkPhgvFLk1JQCC4Bjy5YvYzI0sNbu09OazTfcwL1PP8HUS6/iWygCMAcX8GbW2YDP9IVzrJ47Ab7ACIunDbXCEunShqqlS+pKssCQRh65KCOSmxlUlSWsheRGE9SbGARZloMjkMYiEbjCEnd7RH6VKAzJXUHhgTUpdrRGz8mp376dK+/YQaAM7YVlKtJDqFLIumSkw9fgWokWEmkh0BbfgK8FkReRalidmuXI7jegZ6l7Q3helaLdZ9KpIVVC3Trk7Q7ZyioLe/bSWE2oUopNhSfoeYa8GZEXXW599zupXrGZ1ux5HvvcpznbWebKHTdwy113M3X0JLIw7H3xB6h2G7I+av4iwfmL9EKFXZ1jZe8+QtMjb2iwCj9RpBLSPMdUQhQ54qbrmLhpO/25i2UBQWJwhIu0IK1FYLCXikPLw+xirSRQEGlNPtkgd1N4y108sO1Wznz1FWilTNx/N8XmYTa3DDVRpW8ctOfA9DS01qgYg/Yy4kCh13uo2VmoRGwwlvm9+wniPp4t8KRBmIKgUARU6IwEnJ2aZvdff5UJG9BuL5G6FpMmDBVgHQcNeJ7H5z//eaSU/6Tf5wMGDBgwYCAiDRgwYMBPHE3ZG/MjEQnotNqMbdjIZ3/lV1mZmyMaG6Of9gnecj2tlRk6QpO5DvKWq0nTFQofgq6m84NDHD93gqzoUl9PqfQhPXyOuaPTmHZKbCQffffT7Hv5+5ArWO8wsWEznTRGVioUApojY4xunKST9/GxVASEVmOThNFKDZSi3WtTbwyRqj6u62GSHtoP2VYfR52ep99bg3Sdhz/+YTqz08Tr3fKOfKHABWoVSHNkpYoIPbxalf7MKkO1MUyzzts++3FO5x303gPoOOZqv8bs6bPs+t7LtFaWwZds2H4NH/3Mz/D6gT0k7fVyUsA4tAJDz9EUUUiw7Uqe/pXPcrQ1D5tH0XmP3KTkY+PUb7+XdHGOIo9pBoJQF5BnFF6F0bvfwkKvD1PTLM22wPfYcPebeOz/+GX279mFO91lom0ZSRxykxM16izPL7L/lVeZOXGCaMMG1Noy0oDUGrTGkyGZMCyvLHPu0GHU4SOwsgapxjOaAEkhHfSlPY+g3LhWowoeEh2nVISL1gFJptly390EN99IrHNYXuOpD36UO+64kyP7DpH1YoR0QDggNBN33cGOt72N2QszgMfZQ8c4uO8I9Uig2wVFJkAGqMilFxSY0Yjt73mKtWsmmelexEpwW30ayuK5Hv0hSXDDVfTjNmFfMLSWcvjQqyydOkENQy/NSLRG+xaQOFYSaUkqLbFVGGtxkchc4elSRM2qPlc9ci93P/04lduv49Tp0/R1xs3PPclK3KO6tMYGJMlai5XWMsvtJQgi5vcc49Are1i8OIf1oXAtSkAtt+SHLnD0K9+le/gMXuDTDxR5RYIHHaUh8PHDgI4rkGGE44fYbkKoBZ6G1EJcEcRjIdd/+qe49X3v4uz+A+VIRifFTTWjeARJhipSQjy0tVQmJrjtkYc4f/YM9NqQpth2D08ZZJLiLLWZ/Yuvk778Brkt6LoCVasCHoQuRUiZ+aIVFAVIy9bt13PfffcTxwlL8wso1+Xc+RmW223ueOadzPc6kOVkq2W2jzYKtOHwwf3MT52DIODsN74DhUOoJVUhkbpAOxLjSZLIp+dq7HiT53/1cyQjTWbOn6a4aivP//avMjcckBQp4VKbxBdlfpEjMEIgjEAgcE3ZBHbru5/kmZ/7FFqGzO/ZR7e1ytnXv08xs8Kogl5kCTOHYT8i6fdYmDpXWsMQ5aSVMUhT5vKs41CdGMOJKhS9uAz91xLXgqtLc1IvTzGuQ56UNtbG6Bh5niOMQRiL1ArRHKFlc2JRoCIJFYcb3/k4b//4Bzl0bD/myo049YgzP3gVrcFxXLKioPAclBQYWbZ75VISew5KOrgG5KVWzU6RIMOIxsgIaaePKFys8XG3X8FPffF3eXHXX5ONV4hVD1OkREIwZCDSkFuL8iRZQDnepRLG77iNa7dtY/rsefoLK2y88kouvPg9WhfnmXppF+QW1e4S+T5uJcIBiiwh31jHrnaQcUwmczKlaXQNjRzSYY+bnn0/tz7yVk7v2cOdH/0Qk9ddye133cHRF7+PUGUGlmflj3xf5lK7mxFOaa+0DhLwDFRlhHPPzWSbRmlevY2LrxzBXFxjy+atvO2TL/DG1HHWT83RSnOqmzaSTTR4389/mpW5eZibIxcFhQsqzgmcgCjVLB86het4mLEGSaNCXwhEDplwWa9F0E4hy3A2T3DXzgeYPXaShpb4jkMnlJdeox2ISAMGDBjwz8jgyjtgwIABP2Ekl/ZP/+ABpxpy5Y3XkMRtuGITSXeF+rVbuOKhO6Hmwkid5tVbuW3ngzDWgLEmVSFhfpXO8ZPgSySaEVxGbZWaCEB6sLzCF3/v3+PXaxBnONUGi61VdBSgXQfSgsuuu5Y3P/wgwljyLMPkORgDQrPUXUG55UZq3RbgU9oFjISDxzj2je/ieG75hioB3/zC77G8MAdW4zoeIMrq8awPUQ3TS5m89hoefO4Z8GVZOb26yt//yZ+VdoiwwqaRCXpZHyMFvc46lUoIErRVhPUKo5MToDXSdXAQuI1qGdJrCjpzF6hOjHDfs08RXnkZb/nI+6neciPD11zBzve+F8ZHwQHtCoyy+IUBBavzywTXXgsToxD55EmbkwszHGwvwPZtyMLSwGGCgEZYI89zKs1GaVdSmmTmAvR6WF1Qq1RRQJ+8DFNebcNCizJdPKQyOkqOpIf+kYD0Q4SFIknxhMSzAkcZCmtBSi6/bjv3PvQQ9etvgOEmf/j7v8+f/NmXibsdNm3chG8lnnQhN2zZspXbb72N2+9/ENpdpAjwC0s2tUYoqgRRg47jERsBsYKFDl61xuYH7oJ7bgKToYQl8HwMFvKET//mr/Cez3+GsFbFmIy81yPtxXhS4LnlJBWSH9WLCyTWubQ5dSRuGJShvRj8IIIk5tzBA7y6bw9HTp+ElRXotNGBy4c+/TNY4ZNhwfGh7pciaKsLlbD8oIQtn8yUz6eEhG6Hzcpjk1OhSFLczRt47GMfpnbLDrA5mVF04pS2o1hUKfN5ig3raEK09cvX7nggAxZn5hkKq9BpQ57i1aq4jksv6xPrAul5x2IAACAASURBVBs4OEFIsz7C+tIqL3/1q7C8XObkjIyCNdSjEAdLe2ke2enSROAGAQzVytefaNiwhebOt/HEhz9YWv7Gh8GVXJg+z9/8yR9z9thhGB4iD0MYGSW4+mpuv+tO7MIidPsQhEjXgSBCDA2DkKUY1euBFjSiKk5eIJUqp93c8uqjkgTqdWi1+B9f+lNOfe3rEGcwM0tiLGtnz8LSIvaH/eg/HM/5ofXy0g+AynK6/R7np6dKK26S8OBv/TpD4xM42oKxdOizrLp0TYpXiSBTUICjDJbScdf1JVR8wtExmkNjoFy8XBDo0iIZe9D1IQeqlTog2Xr5ldx06y0IWS5Cg8UY6PT75aJ03XKkpjDMn51i19e/DTMLxEdOcvrP/wrQ1MdHEJWA5Ifn5KWLdO5A5grwJcaV5E5prVNSYoOQwhSsLy+C0oyObCDXGjkxzCuzp+DqDVz9yffD5RPQiBBCQ5ahkWTClG2JLtBsgOuyPL/A1/7jf2Lx9TdwvIiX/+yvYGQSltbBr+AaQS2qUhQFcbdDqgyMT/CmJ3biNhoYXHDBrQcMC4fQQtotePCBhxmqDUG9QSOqsm/Xq5w+fgJShW9dXH44hQT2UqOZki5a/Ljd7IeTZ4UnuffuN8PwGOt79tNaWCC3iumlef7oP/8XOHiYsTtuZtMtN9FZWeKKa69hbMMYy0sLaJUR+bL8bC1ElRoJFjHSJDGarN1HJwXGC0gaNfJmFVt1ISuQYUhjvEnPNxT9Hu1Om7RQFPL/fQ0dMGDAgAH/9AwmkQYMGDDgJ4xjy/JhsCBAAYkX8vWDu/nynpdhtA6dFfJawOQ9N7MsJfb0efpxxubrrmY5ydBTc0RdRbtZo/ALiCKcdp/R0Q1cSNcoXK/cWGwch7yN7ueMN8fRmeFDv/gZ9u3djZYOaEv1+usgDGG9S9btQZETRB4JiqwekjYrIAoe/bVf4KpH3szsi6/TiA1GeOgkJzY5d/7sh9ly751c/M5upFZYo7ju9tsQzRHii4vg+vzKF/4Nuw4fIPcdwi2TcPt2VvYfh1zD0ipcmGckASdOSSqSTr3MHneFRemMuLvG3sMH6a6ulZkoCnwDsS7KBqtqE+KCA6+8yoWDh1GnTrHci0nXO8SrLY4tzIPpQMUh6bdoZJaGE2ISy/JqC50k3LDzQS5rjjB/9iy3PvoQ17z5Zo7/3d9DNydwA5byLkkAVlqU1mAlQpaTZUIIHF1QZDnWEagKIAVRH6KugsQgMwmuIDcZRRRgLmXx/DD81QEwFqMNnnTAWOzwBMoP6Fc86pMTjI2OMbvrVUgVWbeLIyVp3CPS4ApJVuTMX5zn6J79XDhwFDJLU/i4sWKzU+diqsmGh9GRj40tVxU1xvMaR/ceZSlwcbdu5aabt3PxwFEarkuMJnNiXjmwm6O7XyOdb1Fxa6QVsMKSpAVBJKk0QpJCgXAQWuAbSVfn5Q7U96BaIcsKUqPxKhF5LYK4Szp9keL4InUVIbTH/PHDHNi3H9vqYrDEzQArcmqxS+65jD/5INfvfAQbRaQnF3C7fSgsxaYGickJCo1VGh165GnC2twyl2/cytLp02AMG697E/f/6uc40+lCa42kEpLV6xQGMB6O3yTou5g95zn94uvo8WGue/BeHvzgMxyaOokSGlPxUUVBlhv8Sh1dq6CN5sO/+mu86c33cPjll6lLichTjNIUFUssFBmGTEpsXCCcEI8Is9olPTXF6QOvQT3isWefZuTyy5g7dxZqEdvuu48n3vcCx5dX0Bdm0EsL7Nv1fV74F5/kgZ076Swssr7WQktZWtwmx0vxpNAQF4RpTuRKkAblWLQsLV/D2sHLFHkBZmYBvz6BziUEQ5w+cQ45PEo0PI6/skaiM3Bl2QRXWHQ/pUAgqxGx0MxfOMfBl18jnVuD8THYupnpk8fI9p9kU63OarYOlze44rH7iWVBOr/ISOFQUxZPW3JXkAUWG7rUHn2E22+9nSJVLJ+5QE27BJ6P8F1i36JNBkISBBHViUkeeeJJOknC1PkprMrxpUtgBQUSWyg86WF7GUEuiM/PY2dXcTKH4uI6MqhjG2XeV5ZmZbOazmBsmLc8+TizK0ugc7j+ah58z/PMnZum2qyz3lvHurpsYxsehm5CZfPlPPah93Hwpb9ncfcuNr79MdrTF8kOn8TVFleCEZa2FBSOxkYej77wPNZ1aScZzC7hKw9fSaJ+QqVwoJ+ic0vFSqpGIrH0shiaIf6DD3DZ2x+l5Tq09x8sxbJGA5ODNBHKqZBYl9de/D5H9h2ALOf83j2wuMD8/kOgLEFsqOCSk2GkRFmNDSLwPHA8pB8ircGxhkJqiokqNlOsvnoQ5luQZeAYGjdeQ7a0ANUqj/3ip3FqEbMH9rFuE3Z/62vY1Rb1RJFJSx5Kwn5Ar9DYDU3e+S//JzK/hq+qNJtb6FbrXP0Ln2D8wXtZnZ6mMT7Klq2bUBSc2r8H4h40Kjjjo+hc4RqBNGYwiTRgwIAB/4wMRKQBAwYM+KfAXpqkuCQiXUzW+YP/+t+4GMe8/f3vI9y4icUXX2Ph8CnsUhcSBTnMvroffX6B4TilCAOGfudn6Hou7D1DY/MkOz7wJOEz97D48i6o1dly941MbL+GtQOn8Y1LL844plO0KGvSGd3IWr/P9NIS68dP4wUBDhrpCApXoEIf+j247z7OTU1x7rUfYGZbVKwg9yXC9zBKse5aPMfBm26RLc1hQugHHo88+jgnjp8H6bHrpW/AaIVidp6502fpZgWf/8VfI9wwytSpvTBWgySjIiVurii0QiiF77uXhis0Jk7LcGZcfOkgkdQLqNsA2U9oyCZxP4fUQCdGLa7BhUUoBOQ9dv7cx6lsnWTp+Cl0bNCFYtSv0s37bLzpasavnGTvn32JajDE8uETHPrSV2C1g3EKOlVLEhZoAa4pa6RdY3ANeNrgKoPQGgEYaTG+RRQwrF0iPHIcMhSX3X0zw9dfyXqeYrsxjrX/qEHIAEiBkKWtJHZcKGKS0CPu9zj12m5YbkOucLUGqbBC42iNsYrICxBpgWq1GfZCao5H2u5iTcHKSMRVn/kAjace4Jqf/yhzu18juTiHtAmV+gb6tSqVWo0Lh/bCYot0fQ1jLGq0AaurZRh5pujX6xhhsNoiwgCVFvT7BW7oYxEYbRkaavLsxz7GplvexJnpc5jQhcAFlZP5Pj//2V+AoSYXVztQKIqhKsoBcoO72mfMWuo4RKki6yfUqg3iIic+PcX8sdP0Fpe5/NZbePzpp7ji+m2c2n8IO17Ql5ZUGFwrqCWS6nyb88dOY8eaYDS9dsaZE+ehHnH54zu58cPv4uZ3PsbQm65laWqO6mwXL8sQV43Tc/vY3jorJ48xfeA07tQKXmwwmcF6EjvUJClyCEOs9Dj44sucPnwUtbiASmNUodlarzLSK3BxSH2Peiqo+FXiLEM8soOf/3f/K24tZOaN3USjw/jKMDc1TX92BtKCtekLHJqdQ6+1EfUKqBw6qxz5zrfY8+1v0mt3McpiHI/xHTt44sMfpBWn9C5cRKY5DVdSOIrMU2SuxTUSz0gSv6BPAiNVaFZ5xwfeR88VdM+doXLrmwiu2kL/4gx6cQkdeHzuN36La7dt5+Are6g1muRaUej40hQgOJmDTQwMRTA2Aus9uLhMP23jVgLu+tT7ubg0T/vQQUgNUa5x4UdTSMYVYBzysx3O7d/LctqFN19HNuKQmow8SxnqKjapCoHvs9bvkfT6HN6/n+njx8B1EdrgGEtgJf2mx0//zm9wx0P3sefIATSWqNkgzlPufegBFttrFJ7gM//n/8brX/t2mSQdZyAFo1u3EuuC9ukz4HgMvf0RTp4/jzp6ini9A/UQRqs8+7OfYmRklJmDJ9nx9reyXPRZPDcFKwnZruO4+87TaOfoJCFOc/JAEoyOoJIYHIc4TujMLZGtriNzS6QFwhiaXpVcF+RWE/o+OklROkMi0FWfHQ/eS3TPPbQLWP7Lb4Dpw92389QdD3Bq937SiiBxL41SDYUQJ5AWOP24zFXTGgxII7AYPM9BO7KcTjUWRobBGGySooscaxRKaLSJWT0/i9crz31Garzv1z7LVddezrEf/ADSnBO7XmT2yDHICna89QEyVZCdnqZGwJoPRD5KyvJKl6Yo63D27Hme+MiHObwyz+UP38/Zr32D1cU1GlLy4Luf5LW/+kv6x8+Xx+e2a3nwI+9hcnQDMy/to+J5WDsQkQYMGDDgn5OBiDRgwIABP2GsACF+PIkEsLy+zuaNl7F73wHOn7vA6tlp3KmL5MuX6qe1gWoFeimjQYVIK+Jmldt/6eeIwgrL33mZXEDqg9lQY+3wGWym6HRWCCYnKGbXcHNwKxXSvMP7/v2/YccDj3Lkz/+GiSefYNstt7Dwymv4lQpFv4vQBqSkCGqgLNc8+Ag7br+D6TcOUG31yYFEFBh0OQWyssza3DxmrU/mJEjjUMy1WFxukZJyxWOPsH7oeBkIdc2msoq8k7F161X0i5ypfAXai6j1FJFrGtbiByFKmku2JYMnBJHjIgqLJyTWWJQ2BELg2Ut30bVHAoxs2oQaqmFWVsD3S8tM3OXsiUMwVOeBh9/K1BuHcXKBYyztrA2b64zffj3V7dtY+N73kJWI6moXJy2wAnwriFKLSynuCHupzctSCkHGYE05WWSFxWDwjYOvHTJcuq6GAK5823088eSTZFnK/LGTuOYflKJeCrTFEdhLIpKuhGVL3tws8Xqr3BB2Y0Klca3BSFVOlwiBMgpPOoSOi4+gSFLSPEO4DtJziGsGecNVbLlpO3u++B+hWsFeXKLmBix0V7n8LXfzjnc8Tmtpnva+w2xujuNagXYEauNGLrthB53pC9z53HMkG8ZJu13sWpvIj4j84FLbmQHh4HsBO+66k2NzMywtzvO5L/xrTs7OkiwtgRty5x13cfbUGZbOnIBrN7Hzlz/F0M3bmH/91bJRrLAk1qJQZSSRMOA4IAIIQvBCvC3jTGyepNNuM7f/MLphIDEEhUAgEUjQGX59lHRyCPodGkMbyOYXERWfK6+6gm7W4/SRw6zMzJCdmyVYX6eBx/L6IhDDaAQTTYrleVQGTRMy4lSpaI+etFx1282867nnOX/yHFk/Ri0tE0YB0uZobbGuoYdkLZIoXyCVgyMctOfiNuucem0fZ196FRPHqNUVFmcu0l9aRVZq0GgCLpM33co973qetcMHSC9MIas+Nk1AW0bqQ+S5xg4NURkdZbHb5eLePdDtE1iBJwyZX9qnlJT4RuJrwYTvk8QxVccla/Vw+orz+4/hejWyU+fI5xchLXBVgc5S3jhwiMN796PXumgrsK5D403XEm6ZIDs1hRNrhjZfQZqsAYat229CXVzEFBlKpVyYPUd89GTZLugEZEkC0kGLsvnNIEG70Hdxb9nOLc+9A2fHFUzc9SbWZudgvUszNtSxFFISO2DDCOo1qNTKqRhlcAz4WJLJIXLf5dCxI3ROnIDhIYrVZZ78yAcZu+oy9h87hL9hFM/zmX5lL35QQ8c5IEh6fTpTF8rJK9clm7tAeNU13LDxCpYWV3AChyvvvI3rt29n9tQ5Fo6e5eKZUyyqBOYu8vDjT9E+cZ5h6eNpjZEuThSQuxK13oGoAgZ6SytYbdF5UdrJLlkE3VrAatZFRy7aLQOvHW1BgnIsnTymtmUbk7UR5o+fgUaFW++6lZF+wYkDB8GzYMpJSUQ5ReYpTQ2N1GUboZEWLSRKCqwuyK0pJ9gcwT1PP02nUGTdNghBKB2ELzBoqq6PmwNWo7OExuYJThw5RHt6BqktNi1Ae9CJWZq/SHb2LOQwFNTp6qR8bSopbZdZgV7vE1Qj1n1Yuniete99p7RLD42Q7d/PUr9LeuwEvvDBWoa2bWFicpLpAyfQU6tI94dC2EBEGjBgwIB/LoS11v5//9mAAQMGDPj/SwaAIcAAFgzkqeKlV3az86lnIapDljKsUoJcsFAJoCK4/NmdTH/5q9BPcGyCrrhw68Nc9ti9zHz/+/CdvbhFSnWySXthGZBQ82D7FbB/HqEkfmOY7K07ytyVI+d48qM/y0tnjxFYQ+dr36SYncHvtqi5EpUXdBwXpA9+lasefZRgcZpzu14iq7ul7a6bsWFVkHs+LdeUGS+iV/qyqg3IDFx+Ndtvv43xm25g//RJ6huGmTuwjy07H2P2X/0eSMmHf+sX+d7f/i3x9w9Q19Dqt2kPu3jWIjOFa0oboNACx3NRCPJCo4TFOqC1oloZpt/LCLdvI52Z5tl/9Rvs+tY3WXp9D6z1qCtNt+rBNVvZctudzH7pb5HCY1JaelFMR+S4chiVxNS2biWdW2ZDKycb8liJCsg1V7YsndAj9iSONbhG4VhKC5rS5PrHmUCSAsdKtFuhX/dxHroLb7RB+r3vQM+AcZDtHq4p25DKVVGGTuNIhCOx1mInN3PrU0+xeWKcv/sPvw/9hHo3JdQKKwydUJMHpjzeWuDGmrqReNLD8wKK0KcvNP0sZ3u1xmxW0MVy5aNv5fxL3yaI2wS5pdFospyXdjgmGgSpwV9eIkAS+BEXdcotjz2CuGIT+7/7HYaeeZ5aooh37aG1dx8OmqDiI6s+cZph0gLwYLwJWReu2lgKoq0u6AAhy1p1WRiybp/qIzdToMlf2s+IdmgHBu2W58hk7iLwWKsGuG+6Cn90nNbps2We0+zF8jwareHEa2zvlsvvZMUlrXo4soIOXT755T+kt9LmS898koYf0FUJVnJJ0GxfyvuR+IWlJj10HpNHEdc99QhbrrmGb/7V36Fm17GxxjoWJkfLmvQ8BxHBWgyFolGpksQrOIHGDQS9XOMKDzezODhkI3WUKXOuaPdguA4BsJZSFQ6yyEErcmPR1RpDm7aw7aG3cnhmgf7X/pQJH9YKgxLl2x5v1OmkkCFKG9JwA9ZWodD4WUEltLSj8jwBh0bfL61SdIkdjfIExo+wuUfW1+U6Ghni7Z/7ea64bBN/+rv/O61z53CiOrrdoxlUWS8S5EidOz/8DMcvnEJ+dx9bOgFHshh23kp47Ta2rWgOf/nLRCMRdQxBmpNj6WYJsdX448Pk3S5oiackgYaeH/D4H/wHpo6f5Pjf/x0Yw9jYOCtv7IMigSgs31euUaZsdouuuZagVqG3uopaWKbquMhOhx4G6fiEns/GsQnOz06xadMWZuZnYagKeVwqwUgq4TAjTkhraR4jPBJbgCdBG+o3baf+5EM0ZMiJL34JlldAplClnCjNHJpZxLpvYKzOfe97jqPHj9E6eQ7W2kSpIUsSvNAjy1Lq1RpCG4zSKKXAcxCuU05jGQWOAEdRv+kGJscnOP3yK7jGx23F5bUm8Oj7QCciGJkg6y1C3KZZrdDzM1SWgvXBcbnhqccQk2Mc/e7LcPAk4yg0kAvohYDrAw4iV0g/QHshQ9uu5qEn38nf/I//GxYXocgg7uN4oANwE/A0CMcnao6w2loCV4DRuFZSceq4WUyVgFlSrITQi1BZzoa3P4C5fjPtP/q/EB2NqEHP86BTgInA9bnhA+9l7J6b2X/wAN2vfIfKaspm32Vd91gJFDbNy/HdvmV4fJwi6WKNolKpMDc3V2b2DRgwYMCAf1IGItKAAQMG/MRRAFhcDFBQBsV+4Kd/jlaq2PWVv4UshWSdoXCIdpZCVOHZn/4ERa75u7/+K+i3ufWD72f/H/8p3LCNIHLIjhyGLOaeF57n1T/+cwhHoJ3wsf/2Bf7rL/8yNMd59K2P8q2XvsPEZVvIejFWG7Zsu4r5U2fp7dqH54XEQoIjGL7zNlpTpyFOuOUjH+fAH/w+mAwvzygu3ez1Nfi5wo9qJC4kSQ+CS4qIFWWzkuuCUNz40Rc4deECV2zYRC/OmT94AhrD3HrTDvb/0X/H82uMdHNqgc9iZ5kicJCug+965Hn5mVUqFfI8R1tDoTXCkRTjNezKGmE0Srra4f5PfIjtj9zHF//4v3Dvs8/RqFT5+md/iUnfZ6G1Cps2lXfoJ7fA4hLMzNKsecRL67iOz1A0StLtU680mdV97JYQyKC1zrY2LGpwhppkWYLneQgh0FqjTLkptJfShx3rkaFh8wi3fOQ5Dpw5xhW33MzymWn6P9gDcQ4rq5BLhvFJizILCje7FGJcYbRnWfVFuUnLCnBdXAt+nuE5krASsNhZR4zVsL0CjAuVGsMP38udD93HS3/2FxSvHmaD79JTCdVMYwT0TUEWOjg1D5Vn6NwS+VUsFVJTgE1A+HhIDJY3P/YIu/a+VuaR+BEsryPcAOtlEPn4yz6BymF8nKf+4DeRjsNffOZ/ofqOnWx78x28+oV/C8by3p1v5/je/Rx65TUIgjJnpzBEnRhdCcmLAqfIqUifzDU/Cm4ONPjI0tJ4+Uaqb70bb6zJxb/4GqyB60aorIebaSpZhkITRwUE5h+EQstyzCsPwBmCuA++i5/28TBYYUhcg3XLv/NziQByKculbMEVDkWegoQbH3yAfr/PytIyvakZwmqDvNfBcyVWKArHYIUFDIFyEFaiCFCBz3VveTMTExPIPOalb36lzOFZh6YXoXWBMQbHkyRWgeNSCAHGUqG0Y7FjYylyzK8j5tepNIfoqx4M1Xnn+9/H4SMHOX/wCKy1EdLBdX8YkCxxtSwFWZECFotACZ/Yd8pz1nHAr0JalP/jS8xKh2HHJwwClrpLVDaM0s36iNDBtvugIxga4hO/8+t8a/9upr/9IiwmNNMC5RiMMLgmxxTq0gEthRCrc/BcKAROnDM0PMJa0QXKPKBhL0TlGV4UkGHo6xikIHADsiSHwOOuhx5m8+YtfPtr36JodfGsQMQ5edMn1Ul57oQB9GIQHkJfujxJYLTKXZ/6GFPffY2lfYcJ2zmRtUgpWVUdwo1jPPD4o5w8dZ7pg0dA5QS+JOsliJqLzQwyF4y6DTpWkqkMtkxAZ5EnPvdZ7rjpFr7w6/8z8dkZSFKG8PDQqKCCdn3WjcXqsq+zHoXIXh9PwEo14+EPvcDBV19h7cI05CmyWsN3AtL5Fg2nRsfV5bo2BcNpgWsgr3q0VUHt7jfz8Luf5SsvfhcOH4alZRzrIjt9/Eth2Uryo/BsY3L8S+dILgQ28Mv1tWULl735QWb+8qtgFawtwnBUhseHEbe99wXe+MP/Dkoz5oToJKMV+TjKUs8N4tJ0VRFV6DsuO//lb7ImDaf+7b+mNzuDkZSiJxIShbjmeoLmKP7wEJMbN3Lquz/AWVijlrTxqz5tMvLUQFiHngQ3RI5U8K2ipnOWZ06hVOm6xRrQsvyCDRhUBw0YMGDAT5CBnW3AgAEDftLYS3VSQmIoJ5Ny4N/9pz/kiu3Xc3xqGvIM0h7ClyhlEEIwOzXL3FqLZG0NqnXe+t4XOD43izkzhT57tgwwDj1ue8fbObnegnYfHJclR9PVBfS6bNuxg6kjx+idOEU2fZ7s4gWWFxdIT5yglms8JyDFASG45YXnkNdfT7tIefqFF9j36qvQXUcYTaghUuAZg8FiXbDWluKSsHi6vFvtGouW5RjR8sEDmIsLrC2u0du9F5waY1smeeiB+zlxbgq3l5B02rjSozHaRAFGW1zXQxmNsaa0eAGF0Sit0diyiWpkFLXYwpceF1dWMALmTh9nOS1Ymb5IfOQ4vaJP5brrqV1xJWmS8d5f+iXC8XHmD+yn6MaMRBGZ7+OLkKqN6KcpSbMCTgZZggwqNDsp/tAwSkriOEE6LlI6aEppUFtbCg4IrHExjgsjNZrXXEk0NsLc+fNk3/4e1a1Xc9c992MaNboXF3DSHAdBXgnZ9LZ7qV+3je7RU3ipwbtiM3klgE4H4foIY6i4DkWSoIscaSw60zA0CpUGpAnpUBVnwwY2jG1g9fRZstUljFII4WB9iR/6BFWXOEtwgxDruBSZRRWmrFwfqjFUrROvt7AYNt20ncfe9TS547J84Agb6mNE3TbxUAi6IApG2DQyyfzqEnMTFdb7HZb3HKffrDGx/XpSxyM9fZ6jX/0Gop+StNtYKct2O9/FyzLqYUDgSrRWaAcQPy4EMwJE4ODlil4nphev0L04y5U7H2P9yHlMqwtDw5g0o7J1M10K3KqPibsgQWqLVxi8wqCkA82JMhQ5Twk9D1SOwJZZVlKU56aVSCtwDT+ehHNk+XulWF5YIOvFxK0W5Dmh56FVipSiTIQXUK4EgWsERggKxwXp4IQRRmt6SYfV2fOgNBUZ4liLtmVbmZWgrEZiqFcDQt8hpULzuuu4/1MfZSnukc+tljahvAsygzzm5KGjrM/OQrcHjouwkgAXx0ocI9Cy3FsjFNIKHCMxUlI4Ls2bbuSdP/VRrtpxM6d27YE8x4YOw7UmaadHksVUmnU67ZVyQiVJ8WSIcSLwodcImDl5AjN1gbCAilKlbUoalARhBVJIHOGUzXvWlD+uD5kqA5yTmNHQIzTl9cWTgl6eoFUBEjw/xOQFXhCii4yFlRVmpqforq2VYfTaIo0g9Sy25nHjQ/dz2Y4bmD96pCwg0JZAugS1Ct5ok+07H+LgN78Ny8u4jo+TFbiOwLqWtN9lam4au9olXW3hOmVAtioMQhlcban6Ib0kplIfJk1SqARgNaZepbW2wqlXX4NC4xlBzfVwQp/FtE+qNQw3oVqDRo18dY2R5jC+49LRGfNTM6QLS6WdNM2xRY5KY0R9BJtqtKdAFrhKEWiDxBJnGlWpIi6/jOErrkRhKU6cQKcp1gpMVuAIB4Eoj70F11qkBx4Wz1iktShhaT7wFp75xCd45eARSAyjt92OOnUEE4TgOvh338n2W27m3BtlaLefazwriH0Hi0Bai28MVghsrUIeBZydOs9codDnz6P7cfk9GFZAOIzffx/3PvQwp17fjcbj8o1byDX0Tx/HiVyUKUiVgsIgJyax6yl3P/1uZhfnULogchx+6Rd+Fkf+A8u4/GXsqQAAIABJREFUEaWF2mEgIg0YMGDAT5CBiDRgwIABP2ksZfaEEP/o4Vd2vY7OCk5870WoRIQqQRUWP6qgjCFXGcnKMlgNrqDjSBqdjPaFOTaqAK/bw+kWHHnpZe5877uYUx2u+/gHmPr2S3D8HBjJ2e9+H7vWxhEOEheBi+33CcMIm2ZY6ZJbwPeZPXOK9noLOj32/cmXcfGh1aaiRHn3WshyQy5clLKYXOMoQ2AdarmkoiU17RDkDiY1jFQncdYNk20YtlVC32fp0GH2v/YqFdeld3Ge5uYtZIFk0aRkFY8iy3EuTQYIISjUpSkuYzHW4giJbTTLDI31lKZTxc80Z1/fD90Mtec48Z7jNAnIZMrk1iu59y0P0JIeb7y2m9kTJyHJGLGWVr/NyH13sDgzRbtaJYkcEDnv/t3fZi1J6R49zbCMaAloFSnVoQaJyslVgXAcrLUYUwqE0gr8S81tOk1YmZ2l8/o+zNHTEDUojp9h5vgJxieGaZ2boukEOJ5HnMdM3HYj1+24ifNzi9AtyC4b4y3PPcVVN9/C1J49WDdAdfs0CfCMYGs4gk0Lxq+7gcc+9j6ufvxtnPzzr7P64m6yVo/EdtFaUcfBHWrSUQoFpP2EUPpYKxDCQ7shb3v+Pbzj+XczVBjOHTrGcL2JUoYLJ0+y/9XXWD5ynObwBtYWF8k8i+nkICvkVZfVQIFOSPYdZ/WlPYhGxLMf+QSvf+WbdPYfhtl5xoeH6a61qPsRorAUcUZF+ijHIEMfLwywApTR/yhsXEnIREFoPYYJ6eYauhn13GGyMspqa41r3v0YWx++l6mZMzz6offgSliZuoBnXSIl8JWLZxxS1+PuX/kMzclhljtrFK1VfFUKGL4GVws8JfC1wPuheMSlmnNdTlf4ro8vHJJer8yMCUJMkuFqTYDEMwbXluKTZ0AiwDpoUQq0/ZVVVhfmWF1YKO1wEigMeZEjfR8ZeORClkKpdRCVIXrKYkRBQsJCZ5Xe7oPQTqBe4Znf/jzHTx+Dbkol9UoBRwSIOCdQ4Muyxl3LSxMoDgjMjwLijZDkriA1ivMXZ5k+fY58eQ02TfDYL/8M8601OvOzqKE6Wb+Ds2GM2vAY+VqPqnao6QKdpiwdP4BZX+H/ae9Ogyw778O8P2e/W2+zYzDYQRAACS6gCG6guIgSKYoSJYYQRUabZVGUbCuOoqooTqRYii1VbMdOKalSOamkIkeLy7ZkJSknlkSKpkgQAgFiIfYBMQAGwOw90913P3s+nAZkVVJ1vxjfnt8XYFCNnjv3nnN7znPf938IW3rFnDYsyNMleVJRtQFZkhEkEUVTU0VtN+S5lwIhSRsShBHp5hp74wnLMGDRS5hWOVUcE/cHREFCPl9028jCkCYOCZOENgyopzOqqiLo96jDgEEcc/jYMYZZj0f/4n7Ia9IgIZnkREXNcjanmC957otfhu0x/a0jFJd3SWi7of5NSzboE5YB090Fg2xIUkO4LMlqiGrIBmuMZwtuvONt/NJv/D16Rw/yzP1fhyxl55lnOP3EMzCekSUZbdNS9yK2kzncch3v+4kf5u33fD+Lo2vsseD9P3EPO3HJmekFuLzgQJnSn5aky4o06zO84Ro+8KlPcfzNt/P8k49BE5AVXdCP2paWkDaMKOOU6qVzvPy1bzD99gvUO9tQlCRRQlA1hPs/d5pXj4UQyjiiblqCClpCqjhiuZzzxBNP85bb7uAjH/8BLj31FPOTT1PlFaxtsUbCU3/2VdjehaRH1rTEdUtURvTLlqhtyeOWZdwFPQ6scdUnvpfpfELz8Lfo5SVZmJEFKUXZ8l3v+wBx2fLso4/SXLrA2fEe77z73bxy7iWK3W1KKn767/wiL9YF8+ee5U33/AiToGJyIOUXfuUXOfX4Y3zhr/0EYQAVTfchRBgQxRiQJOl15nY2SXq9vboSiRD2Pygdzxv+t3/22/yrP/gj7v/zr0FbkUUlhBE5EKY9mgjYWIO65jv/+k/y1d//PZhOIByweWbMMUJ6WY+Xw5zLwwDWYjh2mLdccxuP/R//T3eb9aKEoqCfZSRhRBQFtE1DksXMZhPaKqaIevQOHOCXfvOf8A9+6zeZPf44jNbhzAVGbURAwzzpZuASNpAX0ET0SVgLErajZfcJdwNJHVCGIVUIZV0xGmxQT2cc6a2xWF4kOHCAuhezPdlj/eBhxhe2gZojH76biw89SFBHJLM5URQR7YeaqqoIgoCmaciShPf85/8JB2+4nn/+d38ddhYwnUK/D/MZw6xP2rQsprss4wYOHIQwID5xPdUy74bxbm+ztlxSDhKu+fTHOXHL7fy7f/xb0B9x949/lnsf+Bo8/DAMNslOb5MPIogDgijmwPoG0/GEpiihrGn3t+t0waEiDEPCJKahZblckvV65Msla1ubAEzmVwhyWCdhSU2+uQZRBWEAm4fh7LR7jEEIcXeRDRClMVVQQ9PActLdmnxZdcdWrwd5SC/tsZzswIEUsqTbzpOXkPZYHwypLm+zkQ2Y1zX0+uyVBayvQy8jOPU8KRATkwz7JEc2uXThHMFgQLs95sDmBlfyy1xdD9ktctLPfi9v/viHePKL91L/zpcZtnA2m0KwDr0RzPbvaDXZYevQIcbnzrEWDUiagDKG3bW2CwNV3d20sOoGlrN/iJURNP2Q3k7FOrBLRBGF3XKdJoJeAlf3u1k3t9/BZpQwPHuR2ePPUOyOySpo6VbhTAYpfOJ9vPv22ynOX+bh/+W3yeq22zJXA21ME4S0dBfYLfsLGvb/PYoigiCgyHPKLOpeq6IkrmA9iWnLiqitXpuN1QZQBd33rIKQIoxoowiCptsiREMUBQTLBb20z7you9k4dMOF016fYnuX5Orj3HJok5PPPkWVT6HKSMuKJs6oRg29t76FtUXA7IFHCfYnr22ka9RlRROH1CHk+zfsakKIm4Ks7rbp1UHINE0IrzpCMuyTP3WKeP0wgxNHOPEj38NTf/JVeOk8tA033HQzH/vIR3j4/vt55Etf5WAFyXSHPILlesK8zqnLisH+87aMu9+PMiWLhrA/CyjcGvHWd30H/a0NvvZ//t8E06KLxRsjqskOjEaQz7nzk5/k1KNPsnf2HFyesJ71WRRTSGPquFvNCS0f+sT3c8311/P1e/+CU48+DrMF2bBPns+JrzpMdeEy/bhHMi8Y9ofs5nOaOCTd3GRyZZs061HMZ6RJvB8KQ4IWxsuiO4Zb6OU5GS0bccblasoi69FkWbf6KGphvn+ODdeIixKKqltdtr9FMein1NWC4IbrCEdD6sEQJnvQtiTHj1N+82EoC276zI9w6o+/QnJ5SlbWVIsxx667gdGhQzx16kWaCtYWY+K22F9Ztr/1M+mxLBqibI2mCWibiiiaE7Z0c5iWBVEU0dAFpG5OFhD1IC8Iq5o4hKYXUbVV9z7aJBD0YDJhUC1J+gP2FstueH5/SN3kNE1N21RsphmjeUtDyyRsmPTptqyGNdx1Fz/2n/4CX/36fZz+R/8j60VAHIakQUIdRGw3NW3QwM3XQVvCsaPc/e53ce//9E9h0KO/NuC293wHD//pl7rB+zNgcwuuGkKvx4mmx6kvfommyInThAL2txZDj24xkiTp9eFKJEl63b3a6rurzBDoxwHrvRG/9l/9MlcdPcJ0vAtNSdbvUxQ50WjA9332szz77NMw3uWtH/4gW7fdxCvbL8CV8yzbmvT4Ub595TyLKufmG95AdWlK/+KM008+DWHA1uFDFMWSfr9PGodAS10VxFHElfEubRqw1h+xXCwp85JHHnmIUS9lcu4cYV4wIiSoW/IooMoC6AWQhhy+8+3M9yZUeUESJiz6LU0KVRKQJyHVMGTwrrdSzC5w1y/8LM8v9tibXGKzqigHIdvbl0i31pnvjBlsbFHOFpy47TY+8InvZ+ellygW824AbQBNXZMkCXVZUhcl+TLn1H2P8MS/ux9mFexM2QpTsnnOAULixZS4mLOZDplS0bbAZE4cZdRnz0Fe0gsC4rKkCSMuPPscL/7FQ/tlb49xHPDO972Hl8ZTOH0ajl5F2Ito2xpo+ZVf/VXe/o47ufdr90LTdne1A9qgoYxLqrYiqmqSsuTYcJ16MQVaeoOMslwShRDVDb00ow4CyjjmfT/+Y8w3NlicPMWHfvoL5NM50ytXYDBg/aoj5Is5TTnl2u98Dz/00z9JfniL7W8/A2FAWAScqDJmTUFZLyBo6E8bqqjl1k98mFs/8H5eevRx8tmMXpDSb0KaJmSyLGiG/W4+zXJBFgT0kx5hEpO3NeO9y8RHD9Es5gRBRF3k1CH0cljQEt52HQevvorLz71A+eRJ1oiYtAVp2KeeTYH9PWFZd5v7tu7uptQURbfd6eCQn/v5v8mtt9/Ot775Tdog6GISXeQIgbpuGLUpUZAy7jeQtrA1gmUB632+++c/z/OTGdz/AMunv83k/GWqK5NullIQMUkT8jSGLIJ8xsWXz/LKk4/DYk5QV7RBSxUG5FFIEQVUURevljEUMVQx1L2Yssgpq5wmDmGUdlenSUibpizmE0hi2rChCbt40gTQBPH+GR8Q0kJVEgeQBBF1URASUtclYZpQFgUkGTe+9U5+4gt/gzfc/mYeffRJ3vfR7+Ob5x6iaXehjjk4K+jRMh028PmPk564mr0nTnJgu2EnXVAGMKkLgn63uqvbZtkFzi7QtQS03d0E6WLv537iR3nPu97Ng/feR5iXLPbGXPrmg3DmEkyXsCzZPXeOb37ly5x54UXqOKNsYZqGzOKIRV5AlJFmfcq6u4gPm5Co7l6DOuy2K7a0rB85xMaRQ2zv7rDz3CkGvSF11VBHEYff/hbe9P73cXY+5s3vfx9Pfe0+GM/Y2jzCcrJLvz9gvlzQ1lU3cy2OePHl03zrwQfYOfMKDHqMsgGL6QTSiKZYwnDIdddey3wypWhrml5Cr9djRMhkNu1ez15MPehRZwlFkZMvC+gPoZ9BEBJmPaI4ZZnPob9GnkbdwbkxgOkurA15z8c+RnFhm/bymH4bkrQtJAFRllDnOVe1Q9qLY+IrU8LtCb06pnzxDM3lGewtuO7Wt3LtR97P6Uceprm8S1FVrPXXuTKfcnEy7QbvNy1hWxC1NcsElmlElYRUVQmDAWFeMgxjwvmCMKiJCAiqunufabq5aE3Ea9u84mPX0AYJcVERthDSULc1YZbSThaMgoQ0jikTWC4WrGUDYqAtC8JBRpNGtD1Y5guSOmYRwqQXQD/sZlIdv5q3vuXt/Omv/0P27vsmBN0KuLZtCeuWNEiY1kvIYghybv7Ed7G1tc63/tffZrB1gPLKLm2Rc/biBYhjfujn/gbPnLsINHz3z3+B5//si1y/foC/9dkfI64awgiCoNtK2gIuRpKk15cRSZJed90dgf79X052pxw7epT/5u/9GmkYscxnZHFCXta0vZSNA1u8473v5pHHH4X5nJPPnuTam2/i+jvexEsvnIYwZnL5ElfddSdTKq6cO88gb+gva4peQh3ULMuST3/mHr71wDeoooC6bSBoqZqKKI27T6ULSMOUMIqZ7F5hsn2hm5FTVaR1S9HWFFSQwv4UID75Mz/N9sVtpufOk/YH5G3Z/aFe3baXBLznnh/iwsF1mlGfW97yZs48eD/lZEazllIEFU2SQNlSzQuIUy5fvMQzTz7B9PI2TZkzGAzIi4KmqonDboVAFISEQUjdhDAYwu6YIEsJ2oYogKLKydZGVHHIpeUMAkj7A+qyol7mpMMR9d4u1A2UJRBQ1SGQQJhAmrG8eIGjN17P0auOcX5vSrtc0l48383yCSN6vT6vvPwKLzx3iraqCepmf/VRRJ01EIfEYUBKd4EXhiFBErKoC6qgoZh3F21N09BGIVUUctd3fRdveOMbeeKZbxMMRrzx3Xew3MyYXDjNp/7mF7jzw+/nW48+xt5LrzBfVvSLgPNPnwQqorwlK0vKsKWOIA5D1uKUZT+FzREf/shHOfXc8yx29xgGMUm9f5tvAjbfcBOf/NkvcN1tt/L8ow8RBAFtFNKkEVUW0UzHUJekgzWKyZRBmpDGKeOmptocMdnZpbq0x+KFM9TkrPV6rK9tMK8rwmFGE9TdAOl+BrQU4yktFXE/Y9kWPPiNb/DYI48CXWyJCAiDgHD/n8PROuVsRpOm5L0Cjq51d9haP0gWJzz7ta9CUQMxBAksC9ajhPliQp0k1FELTQFHDsLZC9R5SbAsYLxHlmUsFwV1FlNmCXUQMFhfYz6bEG2u0VZlt9pkPoXRsLtLWFPD5ghmk24F196YaNCjaVvqtqJoG/KmJW9a4iAlr0rSJKZpa9qmpSpzojAgitPuJo11SdRLqYsK2pZlG7LIC5544knG4ykvPf4k8YXLZNOCqG4ZVAlDEqZFQ/PyBcoHnoAlVPMJ9bDqVmVVJVWSsJzNGYxGTKdjhmkfmpaqLQnbkICApm0pqTn54gs88sjD1IuCuKhJwrCbk1V2Y55oWkgjWF/rzu1lRR2E1OWCtm1g4xBtURPEGWXVkIYZ7bIlbiLKOOyGdrewsbHJ3vmznH/lJXZ2d2G+pCxqsjTj9ne/i3t+7HNcvHKZ0w89yPMPPdStsmsgrEPaYglhQJREBHHczdYKgLqGOIIwgrKkWBZsHj/GsinZuOkGfvieezh/4QJnXjxNOhxQhC3zfEncNAT9hCqmiyqjAYx3YX9+1ejIUY7f+XYO33A9l555hqLIOXjwMFfKBQQVHNjg2h/4OHvnzvKe7/0YH3zne3jhW0/CbEm1yGnahjpoqaiIwoheXhISELUtQduymM0Jwpi2qiFKmY9nPP/4YzDJiYOUA4MRV/auEBzdpJ7twVtvgTdeT33uLE2+oMySbr5XkkJdEm0doJ7NCRuI6pog7oJNADR1Q9bLKOuKeNSnzpcQtPwXv/EPue8rXyWta+IAqjKHNKSpKiIikryhqWuWYU0QxkBDGMCiKqmbJW2Ts3nH7SzznOVsRh63kIVw3TV87D/+HEGS8cK3nqQ6c6l7ktsKgogwiumlGVESEY0GLKslB9/+Jj72w58in0156bGnSRc5gzDsZsbR8pb3vpcbr72OR//NH/Oxz3yWtYPrPP3n93LtcJPPf/KHIE0BCKPuPeTVcUh/dfO4JOk/JCOSJL3e2v/vX2ebMicIAn7jN/4+SRKSpSlFURFlCU0YsFjMeOypx/mOd76T3TynPH+es09/m/rBpyjP71FVNVx3Fbd88H0M33wDV+oFy/PnuP6WGzi3s91duIcBJ66/hnh9wKXti90n0WFLELY0EbRhN8cnaSPCAEpa2raApiIsFjRNQXZwi3LU413f91FeeeE5aEtevHKFXhQymc2oA+jPS9aXAaMiIK0ClgScOf0ih48c5uUv/hlnHn0cFgvCjT6L5ZTe1ce55z+6hxe+9RSjKiCrWyhymnxBO50w2tpkcnmbJOuxtbnJcr6grRpoGtqqZv2NN7G8dJaP/u3Pc90738Szp0+Stzl5P2A6gvlGRJM2xGVEEobEhFSLJVFZMuh1q7IWxZK13pD1OiWdLglnU8J8SUvDmWee5vwzz8D5C7zrc5/jxLFjzPbG5Iuc554+yUvPv0AvToja7g5abduFOaIupDUNNHSLm8oQygCKsPtv0f4Q5RIoW6BqePqpZzn15EmqK5fZPXmS5x+4l8kLp6DKeeLkM3zr0YehyLnt7rs5dPggD37xi4wOHqMdz6nSgGVQsl6UrFcVw7RPdMsJJnu7zE9f4MFv3M/i0iWCOGKUhBTLJXlbUdQV0/mC5198mRe/fZJiurs/K6fb9nLnRz7IRz/3GTavOcGpJ59mFCUkeck0DqnjlvbsZZbPvkzx4ku0mz3itR792Zw6aMmTlvVDW/zcL/8dnr68zbIooC4gz6lpqIKGtmmgqqGsoChJ45Q4CAj2I1IUBFSLgoODTS7lY8KP3sWb7vkE/RuvZe/eh6h39gh7fe75zI9z6/VvYPfsBZqdXdpiSU1L2UtgmMK1V/OjP/XThOd3Of/k0wzqmrYsKPKKeD2lLgtYH0FdkgeQDodUk12g5iM/+llOvPl2Tj/zDEynDI8e5b0f/QjrN1zH1cev5vypU7Q0DNbWaGMo91erEUB/dID+YMBkuseRQweYTveAljDq5ollvQEkDeV8AUlGOhyQj8ecO3WK8cWLXehsKpphTZUF1EHIqAwJ2pDdtOTYz3yK93/u01w8e5by5Qvc+bd/nB/8qR/nyRdeoDh7DsKQZVFC05DFCWVR0mbha6u8+r0e2dqA2WSHuigJ8oK1NmA9iEhnBetFTa+qiZqWt9/9Xj7/Cz/PrKo5+/hjMBxy82c/zfXfcRfn7n+E3sZRimXJkauvZT5bcqi3QTBvWSQNFDlhkjDs9VnM9oPcfA5Jj80wo20aXnnxOb7+jb/g9ONPdMPB65YTb3wTcRQxPneegJY4jQjC7rgIg25eWjwaUUcR7/jOD/CDP/XXeOGxJ9k5fwaait7xozzwJ3/CvGkox2NGhw5SZBFN2JAEkIz63HHn2/jBz36GB//8K12QIoAGbr7rOzh0ww1860tfhLUhG4cPMiln1IsZDDKuuftu+hsbXP7avbzywmm+/sUv069apleu0O/3iNMIspAwDiCJmZWQRy3LoGLZFhy99jjTck6ysc7b7n4v8dqQd33mU2Rb61x46CGKJKQp5zRRQ3j9CT75mc/wzFfvhfEYaGh63Xs7oxG/+Bv/gMsXL7B95gy9XgxUBFFIGLwakoLuBgUB1AG0Ucg1t95K2QY898Tj3VbgsiDrRfvHL0RNSFKH3XtBL6GNAoIwoI0g6EUEG2t896c/xeHrruXFhx6kf+wQzfqAdj5jdM01XDh7gVe+fC/15SnpfMaBKmSeQJPEtFFAGIbUccCMgjpoWVDy7Wef4bn7v8H63oxB1dCrW+KmZTadsrO9w6Nfv592lnP6sSd54i/ug4vbvP8Nt/Pp7/kY+e4O8foI6LYlhvX++EErkiS9bpyJJEmvt/1ry9c+Hg5gPp8wXyz4r3/177K9vc18OuPCK9vsLWbkYcssX9JELTuXthkOh2z0+0TLimvSPrNFyTQIOJVPYX1I/40nWDzyIAevvZFmMqbeLVkbbTBfLoj6CURQ50tCIKkb4qal2Z+XMiwikiqlJWCZwIKCpq1IlwuCuuLwDTdxZbagahu2d3e46aabOHPmDP00Y200Yj6ZMpguGBb7W2bakHEWUvVS5v2YMEpgntPLEsq44dJyj7ZpePOttzN78Ry9ZTc7ZFLlTNqS4cYmURQx2d3j8KFDXD5/kbBqyKKYOIxIo5jdKzscOHqY7abg6NXHOf3YSY6vH2BIzKm9i7RrPcKtEceilEtnzrE+GBLXkCQJZV1QBAHzpqQXJ/SXkMYRZVxR1CWzYk6Y9dm49kbGVcVOFHMtIeXeHsv5giRJoG4oiqK7UNsfWhu2EAY1EHYXa69dwDSvXbgHbUjdQEW3wqttu4UNvbRbxREeXKPox6QnX2QriinSmGU/oUoTxmFDnfU4ft01VA1ceOJprqkixmnNsp1zdKckq2AxyDh3aI1+f4tRHnNl9wyDXjfXqh80HFzbYG9vTBCmVFGfybKiPxrQLPbI9u/GXkQwzwJ6m2vMJlOi3TnXrW2xGI/ZiVvafp9Dy5i4aiiTigvJjKJccCSvGW4dpowzZmXJhd0Zvc0DLPf2uOr4Mc69+BwH14ZURUm5LEnTlCgIu5Vm+9vZXtUGEA5GcGnMxrHDPB2NoV5C2uemaUJSNOzFNVWb0hYVvSyiKedUVcHWwUNsT6fkcY+iadkYjlgfT6EpmM52IQo4eNVhzl68RLSxyaINOLi+RXFhhzJfsn7NMQoazo2vkKYpgzYibCHOaxj12ZmOObaxxWJnTDkbs7G2TktJ3TTUtFQEFFXG2nDAuZee5+brjrN3ZYc2DIjTEeNlxWC0RhgWzOdT4jimn2YM+yMuXrxIREQUxURRxNaspQ7hzHpL0sDGEjazATsHE3YomG7vsNXEXF5PoKhgWXDjVdfw/ONPceTIUeI4Zme8R9bv0RtkhMucoG7pxQntMGO7mBAEAdmyZqMIiGghCojqbvj2MgzYyQLGtPT7fZJJybKqWV69CUXA0VnD4eEaeZXz3OUzHDiwydGwR7AoON8uaNuWoG6JWkg315jkC0gi6u0xR8M+vUGfi82MpmmI4pgsy+j3ehzc3OLypW1efvE0o2GfKOkCWneMhN12vSwjj4JuFk6W0ruwQzbsMw9q9ooZENJrQw5mQ5q2pR2kbG1tcOnsafrZgDTtsVjkpFmfvfGEvdmcweYmV193Pd9+4TTN3g7HrjnObDpmmCVs7+xy9NrrKNuQi7t7nMgy1tKE6d6Yl58/xVVXHYWmJUpC4jQiikOaOOXSPCdoim4LZVPuzztLyDYOUadDiqZltgks5vDKRahqjq5vslgsGO+Mue3ELSSThlk0Zc6SRRMyrWrWDxzm4MGDbJ8/A4sx/TimF0fM8qp7HHW38qkB6rYhHQ2YVwVlUzMPQ9bDmKNhQrWcU7QliyigDgKiJiWrImhDijiCoKKlgKBiXuQcOXEtQZTw/OlXCNOUXlSyLEpGG4foDdaZT+ZML13ipqNH6Jc5wyTm9N6EJuxmi4VhSBiGtDHdORNCWVUkMSRVzqAIiZsunLYbI6Ztzag/YCseMkgzhscPs5FmfOdb7+Dn/rNfoC0X3Yw4ku74yOlWzrqfTZJeN0YkSXq9/f9EJIJuRUrRVERhSEBI1HYXR8X+l3efjbfEBEwuX+bA+hrPnnyKfJpTlSEvX9nlwnxKuZnxt/76j/I//9PfIq5rbrvqDWxtHoQkIuzFZP2UIwcOEtF08zoaIIRFAP066m7dBMzrkmkzpyxzmske7XLJY99+nt3pgn/9L/8VWZJy993v5fjx41x3w/XEaY/R+hrXXnWEuKT9GDAmAAAPbElEQVT7vk03ELqKYR52g5rb8YJ+v8c0aanDkJyGsp6z+9xp0mVBWRZsLyZcLuZ89Wv3MR5PObSxxc033cRa2ufOt7yVtf6AQZIxGgxJshSCht2gYm+xYG0ZcO7J5xnUIScvvsK52YQ//NqfMIjgZ37sJ7n1xhs5cfAIDz30EI8/8xQ7yxnHb7mZq44e483X3EgvDVm0OfPljOmVKzz4wCM8fPIFvvzAAxx/29v44bvfz5HROuvr69x8883EccxoNCKKIuL96a1hs7/9JwAiqLpFDdD9kqjpXtRZXjKra+bLRTdseFGyffY8k/mMv/8//GPu+MC7+Nl3f5BRE9AO+8SHt6CXsn70GJeLBVGaERCyAYSTOTMKpssx8XhGUDe8dOkKf3jf1/nyVx7gw+96Px9839s4duwAWZYQhTX9LOPQ1mHiOCMMBxQ5RCkM4u4TfOhmV09CmLYlYQuHwqR7fWNYBt2x2S/2D1Aa5v2Gioq4mDCdLDh3aYcg6XHy1Cs88+zz3HfffRw9fJCgWfAD3/cxoqDl5mtuZjQakaYpWZaxsbHxV06ZIgxZAFsNUMFu2p0XGbAxq2C+ZLoRk6Y9lrOCtWFK01aE+8/77mTG2toGNVCX0CsLlrMxLTWz5ZSXXnmZ7d09lkT87r/4A9586+28+413cOTgQZrNAU0c0ju4wZEjR8gqSNqAtSimjGBR1gyTiGpesnP+bBc9pzucuXCe8WzKzmzGv/3zb9JUJe99xx18/8e+ixuuu469vTEPfPMx/ujffonLV3a55prD3PrGm7jh2usY9Ppsra1z9dFjXdRJUpJeH/a6c3Vns3u6D9YQnNmFo2tcDLsB9JdefIXdoiYk4MwLp3nskUd51113cettt3Fm+wK/9wf/knPnz/M9H/ogh3sD1gcjbrjmWkbHDhGt9wjDkPU2Jq3D/dq5hHnFLC9Y0PDU+bNsHjvGK6dfobmwx4MPPcJTzS7vfuMdfP4j38+/+J3f5elT3+bUYpv/8td+mYNtzPaLr/Cbv/PPKJYlH//uj/KpH/gkv/Srv8Ll+YR33nUXbzpxA2/YPMpw1Cc8MmSQZERBzKjXJ4wiiCPyfE4QR0RxAm1D0IbdAPu2qwNl1K3yWwLn9sa8MR3x0pmXmTYl52a7XHzlLNV0wX//6/8tn77nHt7xne9lPN3jqqNbvP+uu4kIefzhx5jNluxNJlzY2+XRZ0/yZ3/+Vd72trezsbbGpfMv8eEPf4gPfuhunn/+Rf733/l9aGM+89kf5Z033UASBDx58hn+u3/yj/ipz/8Uh48cpNdL2Vjrju241yNZP0S1mNIWBeVywu7umCu7e3zlG4/Q2zrKW99+JwfuvIU//Oe/w+Nf/DOq6Yy73vJmPvzhj5AQc2JwhMPNgNFNW5QpJP0h42VLt5ivZm0UkwUQUgEtBTEhENYNYdMSxDG0LXlbQxTzamfpAVm57IbzJxF5ENAQEJCQdTuf//JHWFhRU3NxZ5uWiMl4QRgNOH/+LA8+9BUunL/MNx76FieuvpGbb76ZO267lRuvPsYgaVjrZ1xz4haaV7chhl0kLsrujnhB021ZjrKQnIKsefV2gt1d4xa0JAT0Xv2hGNNtsyxyyAKKpqSKMiISUiDIgQQjkiS9joxIkvR621/h8VpAChsqWsaTXUZrGzS0hASkTdzdkhuo94dxZwTURUEaxuTtkheSmgP0WZ/U9KLsL2d2hy1U024+RJB124SyGOJu5UtES0AD9f5+qwiWIfSa5LXbUJVBTZ60BNQMqfa/d7K/NyuEvOruHNbrddUkTSCGizRdoAL6hDQELGmIyei3EJb7jzGCWQSTomCYppDPGETdto8FLUtqlmXDIOnTI6GlISXs7rLT0j2OqmacLGjDhDEhJQ2HyUgXFRndn7dOYBcYAtV0TFg1DIZDAP703/xfDI8e4h3v/QBLahJqupHjJRE1GQ3MW8g2WFYtiyxinb+MQK++hu2/F4kAgrwlLIPuwiXpHkO1/+Vpu38MdKNmWGavPR0MXt3bRjdvZDEI2aLpXitgWVQkUUpEAov9b7j/9bNNGFZAWzJJKhZAQsJWGbOXQzWCEZBQUlC8dpx1G/xCqCJiQpbTkt4o2Y9CQAhV0kWbpmnpLxuiJGIZVWRhTFD95WMggjrNqWgoKOkTEpFQ1S1x1OOP/vWf8nu/+/v8wR/+NvPFkt4gpSqXZOHgtXOiqUrCJPkr20/mwA6wsSwZVUl3UfjqMbC7gF5IfiChbFp6YQQ0NNTk9YJB1CcsW4I67R5nCnUGbd3NrOkNe/vnZQttDHFMPauIonj/BevuYjVrWpIwICy6VR1huB9ZXj3nyv3zjgDCav+qu6WJAiZRQkgXvYJ6SRJF1E0DYdZtZex+G9qmgqomDiPiMIS66vbitPvb/ZoBxHBm/5g5BGSLlrzfMqYmAA7SEszT7rlJ4N4vfpkZFe/58AdYZiFBlFADfWCd1x4mddjs39OtYQCQdwfjbpbTJyIkoiGiIGaSLziQrdHbH3+2TCt6TQvjqjuQs5BZWrOgpUdNj4CKNYqiop90x0yzf060wKCB4NVa3qugrLv3piDu5pX1EqChTUKmdc4g6h7Ra8dA0O1AKxNY1FBFcDjntYg7D7oRPVELjMvuboVZt6WrpiQt627SdJN037NqIQ6oBt1pkDbdSxGlMM0XZFlGWSwZJvtfUAKLAnopZPCh7/4If/zlL9Hun7sh3Z0U27IhCYYEQQtt3c3VaulWI9G9fxLw2s+IdmeXYHNAm7YswpArszFHhgeJxw3hINyfLRT/5TH46uMcdBW7pSEnI+TVeN1SFQVx1g1b716+lhkF60TE9f4TGlQswoS6+7/IWkjq/ccV0Q3JDxpa2m7qUBv+5YcjcQVNyHLZ0OvHzPL90yqBRb1LFmUMiv5r5zvx/tD3V38uFlX3/aoZs42QHiER3cCqJSElULcFm6Td18Zxd4fQXsgyLLuXgpiEhD7QK3CytiS9zgIbkiRJkiRJklax00uSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVjIiSZIkSZIkaSUjkiRJkiRJklYyIkmSJEmSJGklI5IkSZIkSZJWMiJJkiRJkiRpJSOSJEmSJEmSVvp/Ac8dpd9vzAB7AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJEAAAM6CAYAAAAxMtIRAAAJMmlDQ1BkZWZhdWx0X3JnYi5pY2MAAEiJlZVnUJNZF8fv8zzphUASQodQQ5EqJYCUEFoo0quoQOidUEVsiLgCK4qINEWQRQEXXJUia0UUC4uCAhZ0gywCyrpxFVFBWXDfGZ33HT+8/5l7z2/+c+bec8/5cAEgiINlwct7YlK6wNvJjhkYFMwE3yiMn5bC8fR0A9/VuxEArcR7ut/P+a4IEZFp/OW4uLxy+SmCdACg7GXWzEpPWeGjy0wPj//CZ1dYsFzgMt9Y4eh/eexLzr8s+pLj681dfhUKABwp+hsO/4b/c++KVDiC9NioyGymT3JUelaYIJKZttIJHpfL9BQkR8UmRH5T8P+V/B2lR2anr0RucsomQWx0TDrzfw41MjA0BF9n8cbrS48hRv9/z2dFX73kegDYcwAg+7564ZUAdO4CQPrRV09tua+UfAA67vAzBJn/eqiVDQ0IgALoQAYoAlWgCXSBETADlsAWOAAX4AF8QRDYAPggBiQCAcgCuWAHKABFYB84CKpALWgATaAVnAad4Dy4Aq6D2+AuGAaPgRBMgpdABN6BBQiCsBAZokEykBKkDulARhAbsoYcIDfIGwqCQqFoKAnKgHKhnVARVApVQXVQE/QLdA66At2EBqGH0Dg0A/0NfYQRmATTYQVYA9aH2TAHdoV94fVwNJwK58D58F64Aq6HT8Id8BX4NjwMC+GX8BwCECLCQJQRXYSNcBEPJBiJQgTIVqQQKUfqkVakG+lD7iFCZBb5gMKgaCgmShdliXJG+aH4qFTUVlQxqgp1AtWB6kXdQ42jRKjPaDJaHq2DtkDz0IHoaHQWugBdjm5Et6OvoYfRk+h3GAyGgWFhzDDOmCBMHGYzphhzGNOGuYwZxExg5rBYrAxWB2uF9cCGYdOxBdhK7EnsJewQdhL7HkfEKeGMcI64YFwSLg9XjmvGXcQN4aZwC3hxvDreAu+Bj8BvwpfgG/Dd+Dv4SfwCQYLAIlgRfAlxhB2ECkIr4RphjPCGSCSqEM2JXsRY4nZiBfEU8QZxnPiBRCVpk7ikEFIGaS/pOOky6SHpDZlM1iDbkoPJ6eS95CbyVfJT8nsxmpieGE8sQmybWLVYh9iQ2CsKnqJO4VA2UHIo5ZQzlDuUWXG8uIY4VzxMfKt4tfg58VHxOQmahKGEh0SiRLFEs8RNiWkqlqpBdaBGUPOpx6hXqRM0hKZK49L4tJ20Bto12iQdQ2fRefQ4ehH9Z/oAXSRJlTSW9JfMlqyWvCApZCAMDQaPkcAoYZxmjDA+SilIcaQipfZItUoNSc1Ly0nbSkdKF0q3SQ9Lf5RhyjjIxMvsl+mUeSKLktWW9ZLNkj0ie012Vo4uZynHlyuUOy33SB6W15b3lt8sf0y+X35OQVHBSSFFoVLhqsKsIkPRVjFOsUzxouKMEk3JWilWqUzpktILpiSTw0xgVjB7mSJleWVn5QzlOuUB5QUVloqfSp5Km8oTVYIqWzVKtUy1R1WkpqTmrpar1qL2SB2vzlaPUT+k3qc+r8HSCNDYrdGpMc2SZvFYOawW1pgmWdNGM1WzXvO+FkaLrRWvdVjrrjasbaIdo12tfUcH1jHVidU5rDO4Cr3KfFXSqvpVo7okXY5upm6L7rgeQ89NL0+vU++Vvpp+sP5+/T79zwYmBgkGDQaPDamGLoZ5ht2GfxtpG/GNqo3uryavdly9bXXX6tfGOsaRxkeMH5jQTNxNdpv0mHwyNTMVmLaazpipmYWa1ZiNsulsT3Yx+4Y52tzOfJv5efMPFqYW6RanLf6y1LWMt2y2nF7DWhO5pmHNhJWKVZhVnZXQmmkdan3UWmijbBNmU2/zzFbVNsK20XaKo8WJ45zkvLIzsBPYtdvNcy24W7iX7RF7J/tC+wEHqoOfQ5XDU0cVx2jHFkeRk4nTZqfLzmhnV+f9zqM8BR6f18QTuZi5bHHpdSW5+rhWuT5z03YTuHW7w+4u7gfcx9aqr01a2+kBPHgeBzyeeLI8Uz1/9cJ4eXpVez33NvTO9e7zofls9Gn2eedr51vi+9hP0y/Dr8ef4h/i3+Q/H2AfUBogDNQP3BJ4O0g2KDaoKxgb7B/cGDy3zmHdwXWTISYhBSEj61nrs9ff3CC7IWHDhY2UjWEbz4SiQwNCm0MXwzzC6sPmwnnhNeEiPpd/iP8ywjaiLGIm0iqyNHIqyiqqNGo62ir6QPRMjE1MecxsLDe2KvZ1nHNcbdx8vEf88filhICEtkRcYmjiuSRqUnxSb7JicnbyYIpOSkGKMNUi9WCqSOAqaEyD0tandaXTlz/F/gzNjF0Z45nWmdWZ77P8s85kS2QnZfdv0t60Z9NUjmPOT5tRm/mbe3KVc3fkjm/hbKnbCm0N39qzTXVb/rbJ7U7bT+wg7Ijf8VueQV5p3tudATu78xXyt+dP7HLa1VIgViAoGN1tubv2B9QPsT8M7Fm9p3LP58KIwltFBkXlRYvF/OJbPxr+WPHj0t6ovQMlpiVH9mH2Je0b2W+z/0SpRGlO6cQB9wMdZcyywrK3BzcevFluXF57iHAo45Cwwq2iq1Ktcl/lYlVM1XC1XXVbjXzNnpr5wxGHh47YHmmtVagtqv14NPbogzqnuo56jfryY5hjmceeN/g39P3E/qmpUbaxqPHT8aTjwhPeJ3qbzJqamuWbS1rgloyWmZMhJ+/+bP9zV6tua10bo63oFDiVcerFL6G/jJx2Pd1zhn2m9az62Zp2WnthB9SxqUPUGdMp7ArqGjzncq6n27K7/Ve9X4+fVz5ffUHyQslFwsX8i0uXci7NXU65PHsl+spEz8aex1cDr97v9eoduOZ67cZ1x+tX+zh9l25Y3Th/0+LmuVvsW523TW939Jv0t/9m8lv7gOlAxx2zO113ze92D64ZvDhkM3Tlnv296/d5928Prx0eHPEbeTAaMip8EPFg+mHCw9ePMh8tPN4+hh4rfCL+pPyp/NP637V+bxOaCi+M24/3P/N59niCP/Hyj7Q/Fifzn5Ofl08pTTVNG02fn3Gcufti3YvJlykvF2YL/pT4s+aV5quzf9n+1S8KFE2+Frxe+rv4jcyb42+N3/bMec49fZf4bmG+8L3M+xMf2B/6PgZ8nFrIWsQuVnzS+tT92fXz2FLi0tI/QiyQvpTNDAsAAAAGYktHRAD/AP8A/6C9p5MAAAAJcEhZcwAAD2EAAA9hAag/p2kAAAAfdEVYdFNvZnR3YXJlAEdQTCBHaG9zdHNjcmlwdCA5LjUzLjNvnKwnAAAgAElEQVR4nOzdd5gkdaHw+291nJ6ePJtzIC9hyUFARFEQJRzPMQEmzPmIWVHUgygqBvQoR0UknGNWjAQJgoCIxF3SApvz7MxO6Nxd9bt/9Czqee97+5/7Hu/z3O9nn3om9Ex3VXVV9fZ3f1UbhRCQJEmSJEmS/p+k/tEzIEmSJEmSpP/vMyJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqSMjkiRJkiRJkjoyIkmSJEmSJKkjI5IkSZIkSZI6MiJJkiRJkiSpIyOSJEmSJEmSOjIiSZIkSZIkqaMUEJycnJyc/menEMLffQRCq5WEEP77zxFqtcb010ko1yZCvdH+uXqzFqr1UggQmg1CQiMERgIxASZCvbEmwK5Ak5BUCVAPMBpoEko7CZQb4ZH7rwuXXnJuWPXADYEkCVAKIdkZoBRICLUKgUAI8VhoTK0PMB5oxYGYMDVeDdV6LbTi0dCo7QokzRBXCa0SgSYhNAgkEyFO1oZ646nw6c+8MWzYfnWA9aG0g0BMSOLtoVnfGWgSaBEChIQQdo3uDlPVSqg2GyEmCTHNEKiHe/58W/js598dVq++IUA1xFVCUiHQaP8+IQmhNRXGJzaFQPv+mi1CK25/fvU1Pwjf/e51IY7b6zOwI8B4qE7W27/fIoRGEqAZCK3QrLRCzOT0RIjD9HPSqIdANZSr7e83GoRAMwRazz5uEnj280AzxJQDCYFWM8COAGsDPBOa1VJ7+ZsEKIUWldCAEFqEVp32OmdjICE0a4QWhGooTd/vjhB4qv15a3qiHhLat7fqhFKpFQLNUA+bQqAUQiCEZM98bZu+j7+d13ooNzeEFltDYLz9vemf37MdEpqB0AgkkwEmA4wFGAnQCtVq/dnt96qrrgxnnvnSsGt0e2jF1eltsNV+vhJCebwS2ltYK9TLk6E6NR4IrfZ6ahAmR6cCVAOUw2R5Z4ghtEhCi3ooJVumH3dtgPHQmGhvc5PVqVBjV3h6UznUA2GsXm7P+54/tAI0Q71cCtQJSSm095mkPVUnmmF0++7w3OMPD/fd96sAoyHE44GEENcJcZMQaAQot+8rtH8vmd6mkmQylHZuDzTroTJeCuXx6rP33Wi0Qr1RDq1QC7Al0JgITBGYItQn9sxbOQTKoZkQvnH5v4dLL7loenvZ1l7XLQLV9vaSNOphYnLj9H5TCvU64a47nwrX/firIWFde5tstZ+/qZHtgaQZSFph+8atf13eavt5CZTayxRagZA8ezsJoVkthVp5fHqZy4G40p6fFiFMESqjhFLlgUBIQjJBoEbYvHZnez+iHJLWeGhWa+313Go/TyGeCElrNBCmAnGrvVxJ+zh10SfeF6749y+3f75KoE7Y9szWUN3daH8vJoSYkIRGCNRCwlQI1Kf3v+S/Ta3p26rT0/Q+Gv66b4bpdf7sdkI5JGEi1GuV0GqEQNJ+vDghVOqE8SohZlMIbA5xQjjzzHNCrVkKgVaYmiSUSoSJqbH28/Y329aebb1VL4V6ZTRAKTRqI9PHor/ZB8PfH7cChC3b7w+f+OTrwprHHwjju0ZDaXyifZxmJBB2Tu+HrVCrx6HRDM8ef5IwPRGHhEZIqIWxyU2hVK629+vpx6gn20NgNNRb5fayNpleb4SRkalQrbbnq1Qph2pjKkxVt4dqc7S9HgMhMBqqjalQmiKEJuGuB78bLrn8ZWHztrWhUimFOKmFOKmFVlwLkIRmMw5xHEISE1rN6dc/ytPHnFII1EO1Fk8vfyvEbAzV8FhoxuPPHl/iOP4//lrt5OTk5PS/TtH0GxhJ0j9AtVqlq6uLer1OV1cXAHEcE0Igk8nQbDZJp9OkUikgAapAnYQMqaQPEqg1IGacYncfhBT1CuSLI8AkO3ZtZveOXrpyg5Aqs2nr42zbMk6aPLf8+nd09SV0dacZ2TXJ6ae/ir6+eWQyWRYuXkyxt4dcvsjAQEQI26lO7aK7byYjWyYYmrmIVmiRy6eJ6CFpxKSyaUJcpdmsMzExwcTEBLt2jbNl81aq1Sp3//lXkNtIo9LPa//5W/QOBIbnlMlmsyT1OWTzRbp6q/T0pKnUanR15dm+cyvbtm1lZNcOGrUq9z9wH+vXrmOwb5jjj3shy5esZPasRdTrTYaGe2i2JpkqjTOyezsbNm7krrvuplSq8OpXvYbly/bj9tvvoFKus/de+zNjVoEZsxsM9A6QNIbpH5xF3GiR7moyumsTPcUBWs00xZ5h9rxSTkzV2LzlCWbNTxgb38TqR9YxY8YC7vnDk+zY2mTBggXsu+/eDA33c9DB+xCl69Sbo2zb8TSTU7spjyxk3fr72DpyH5OTJQZ7DuSEY8+g0awze243Kw7cj7Xb1rNwyb5sfarC/fffQJJsZu2GR6iX5jJvwYHsv3J/egeaLJixnEp9K9l8i9kDR1CehP4+iFPQjKdIp3Jks3kI0GpBKgVECalUPL31RUAGaAJjEGZDTPuvBykgnQBNxidHSKfTkI4JzQK59DCTu+skoQWhzIN/eYSp3TVmDuzFT37/JXLFOocdejjnvfq1/OHOu7nwwk/ynndfwLy5C5k7dz5JaLBs6Xx2bttBqVRiy5ZtjIyM0GjUWLNmDdVamZWHHMaihXszc3gGMU2GhucztrvEksVLaCbtuS8UId0EMi2ImjTrebL5BNhNTBrCECFAnCqRYxuVyiyK3f00mjtIEZOOeolCL5OjEzRYy7oNW9i+fZyIDEPDA7z17eey975zOffc1zLQN5uewiIWLjiCVDpLV7FGJteEkCEkObKZPLl8PL1vjpMiADkgD3EO0l0QUgQCUdQuxVGoQsjQLCVkuwsQwTPrHqdcG2d3aSOrHn+AO377NGM7xzn/rS8mZjdLFu/N7KGVFLKLmDNnkEwX1BqTrN/8BKXqZrZubPLko2Nkis9w4MF709d1IH35wwjRJPsuHaJUHmfr1s30Dvby1DNPUmtNsW7D06TSMU88tZpli/dh5X4n0dvbz8EHr6TZbLJ27dNs3rKBkZEdrFr9IJMTJV7wghcyMAx9XQezeP7B5LqrhO4/MlBcSVKZSUxMNpsmbkI6C6QhNCBKA63pzS6CVqvM+MQooyMVRndNMrJrB9t2PMMdd95INpdmr+X7c/JzX0R3V45FC5fQSiIefexpDjzwQGbOmUmUTmC6TEVkpzfc/z7IPpme9vx1N4KQ+evNUYv2hk/7+drzY0kLUpn21xFUqgmt0KJcLVOrV9jwzBNk0zka9TSfuPAzfOqii2m1WixYMI9CMUWxJ0egTm9+iHQ6IpWGdDqQysDU5DjdxTzpbIZquUSh2EdCoF5v0mq1aLVajI+PU61W2bZtCyMjO/nDnb8gTSAdDXLRJz5PCIHPXPxhjjjyELKZHlIUGBpezPK99yKTydDd3U1XVxeFQv6/rQeeXf44aZJOw+6J7fT19ZGOckDh2dUVtyCVhmYMuTwEakSkgSwkUCrF7Bz/Cz2F9jJv3PQU1UrCE6tH+PEvLmfv/WZRzC9k2eKVzJ49l97eXmbMmEF/fy9DQ0OkUinSmag9S0mWahnSmUA6FREBu3bCnDnQaEGuUAfKQC+QZXJykiiKaLVaDA4O/m9fYyVJ/+9LX3TRRRf9o2dCkv7/KITAd77zHUZGRti0aRNJklCpVEiShDiOyWazZDIZoiia/o0KT6y/idHJdczsX8DYSJGQwI5dm5mqrmXj2jobn+ri1lt/xCvPO56n1t3LPgdmef2bXsXBBx3A3NnLaDQrrN32a/7wp29x5tkr2LhxFw+v/hNDc6vkesZYtOAg5s5ZzKJlM0my61m7/gnu/cuNfPDD57Jjx2OsXn0nb3/X2/nFr69ibHI9M+alueeORylPlclmWhT7IkhPksm1iFsR5UkY3ZFQrbbYNbaOM884m+OPfw6LFi1m/tzlRJlJ0rkSw7Oy9BZnk891Uy8nNCoxO7aMMXNwLls2bKOYG2Djuh089shTnHXGv7DfvgeyaNF8Fi0ZIpOrUOwLTJVG2bx5CxPjJeIQs3bzPcxfOIPnnXwcRxx5KFu3bmbr1k0MDQ1z3HHPYcfIBn7/+x9w+x03cscdf2Dr1meYLG+hb6DFw6vuYdfoFhYtnsfGNSkq4zl+/vOf8LPrL+Uzl7yDvuEN/Pkvv+Teu+/mkn+7gqH+PM990TL23n+QxUtmsHjJYgb6BwlxgR1bm2zdGDMx2sWOzZM88fQfWbpsPvvtfQRHHfJqli9dwX4r5kNmB3HcYPvYRlat/gtrHn+ayclnuPq6rzAxvonFiw/h8MOPYv6ieeyz9yIeX7WOcmWcx575LVdcdx6PbriKG267londNcZGa4zs3EW58QylUomhoVmUJiGVikhnakADKLQ/hDSkIgi5Z98wk4KEBkRNCvkC+dwA9UovfX1FdpeeoG+gQb01wjNr1tJojjNZXseOiVsYmD/Gxq0P8tiT9/CNb32RQw9byfr1aznl+aezdMkKCAWmyiOc8ILFDM+MiVI1TnreKUxOTrJ69UMUe7Nc8IE389Dqn/ODn7+L3aNbmD94AqE2zMTYBAMzKqQzU1Sm6jz6l4QNGzbz+JO38rNffo3b7/soH/nEuzngwG6+/73/4HOfO59HVv2Yr3/rPVxw4eUcvt9ZbNsQEVJjrHn6bqDJY6uf4ivfOZWdza/z/Wuu5g3nv5ax8Y3ccdevOPUlxzA4I+KRVfdx082/5qCDVpDPLqTRiEilm4SoTqNZY8uWDazb8DgbNq/iP678Mnfc/ROuvurT3HnXL7n1tl9z9z13MmfOPKamJqjXW6xZs5ZVqx7nbe/dj11TP+Ad77+ATM/t3PDb2+grHEWzPJcVex/LfvscznD/Ak5+3slc819f5u77fsrPf/kz9tpnmBBSpKMhuvPd5LrylOvbmCxtpVpJ2LxxJ9+79rOsefpBJicqROSo1Lew7qmnWLv2aWbPmcHcBQNs37meGbOG2WuvvWnWM0xNpBnqX0g2naFYLJLOBAqFDN3FHLlchoHBXnp7e4lbsHjRXsxfMJv99zuA9Ruf5OFHb+KKqz7E68//KPuvmMFT629n17YC+dwgu0ZHGRjuYfOmLfQP9j27fRE1SOVSpKKIkKTp6+ujK9/D/AWzmbugh+EZeRYuT/HFr1xAnIxSre9i/sLZ7H/AvuzatY2e3j4CGUJIE6WyRKQgRO37/zt7HjA9PQF7jqkR07dl9sxUex+IgZCCCOKkRkiVaTHK2OQWiGpk0gnlsSGmJgLVeA0PPnQvSxcdytw5c5m1oEpI76C/v5/J0W4KhRbV6hTlyiTj4yPcc88dTE7t4gtfvISPffSDLFw8l93j44yOjRInTUJokculGR4epru7i1QqRSaTYeXB+1AsdjM0NIPbbr8JUhX++RUv4oknV3Hld65j6ZL9aLWyzJk3TAiBJIlptZoUi8W/Xw8hRbPSXlWZzNNs3HUXmVyNnvwCoBuA3VMbSKIqO3eNsGnb4/z5wV/y2FO38JdHfsK1P/wyF3/uAkZHJzn6mCP42KfO488PX8OjT97BfnudRIgLFHqqPO+UQ4mSXh68/zHmz92Hvr5hisVehmcM09/fSzqTEKVj0lFMRJMoapEkKerNcUqVcUrlEtu3b+OBB1exbv0arv3h5dx2x29ZsmRfdmwf5aqrruLEE08kn8+3I7ck6X+MI5Ek6R/opptu4uSTTyaTyfDsvxL/N41Gg1wux5q1d3H1j99NdWIWX7r4RlqtCplslYRtpJhJ0phNrQKp7DijE6upx9v4wfUfZeeuDXz+wruIGvuS64oguoHHNt/OAfNPhugYrvjadxma2c2/vOocSOa2w0IWSJco10vk8hO84Y2ncM13rmDj1qd45zs+zIUXfZ5yrcoXvvx5Vh5wLGe++BwOWnEEhcICSAp/jRFRAlGdENeJ4yaZXCCwg4gijall5HrHgG2MTq1luPul7QUOtIctpCOqk6MU+nvb30+i6aEMWarlSQq9Md+58vNs2PQk559/PrOGl9NdWAKh0H6jxCayqS7++gYywzPPPEN3dw/ZbJ4ZM/r4wpcu4PWvfz0zhpa3HyKU+LdLPsSJJ55IV26Ag1Y8h2Ixz46t65g5u4/3vf+NvPJVL2GqsomHH3qCow/9F448/IV0FZdRaWwhIks+10cq6oaQBSButYiTJgCZzCQp+oGu6fUDYztHgTRDs+FzXz4XUvN4znFncMKRL+FDH3gdzzt5X0497bnAgZD0EVJQbY0RKr0Uu7OQSXjgse/S3ZNi2YITySV7U69BpqtGlNnG+s1Pcu211/IvL3sN82YfQH/Pgr8blNGeWn8dnRE1qdS20N3VHtVRraUodM1kqlylt7uPXbsmKPRMcM1/fo2DD09zw03XMX/OQmYOLuH0l57HD35yPfvssz+7dzXZd+8juOgTn+ea7/2ckBTYtHGUx9bcRlT8HV/70g/58he/R09+H+bNWwFRAOps2foIt915DaefvjcPPXgLucxsBvsO54AVLyCpziBVyAMlyrUniVvz6evei3q1RL64tr3hxsv4wfe+yexlq1m1+nZe8cq38vSWPo455DVEqRKf/9bxPLLqSY5YuYIL3nRHO6JFD7NtbB2XXfYt9ll+OKe+6HRmzOqnkMlP7wwFQtJHxOzp9VUGKtO3ZWlHiDKV5m66s1Wa8Xp2juwml5vFrbfcz8tedj4hyRJCnlw2TyBFbbJBoa/FxORj9Pf1A3l2jo6TzcE1P/oUub5neP3Z3yc0h5msrOfOu39FNptmxf5HsXzxCRCG26Ejmd7EU1VCq8CddzzI1vGfs2hZL4889DRvfd0nqIWt3HjjlxgdX8fIrm2sfnwTJ510LDfecD/POe7FvOf8SwkME8iSiouQbo+qghbju0cYGJwJpGg1WjTrKQpd/dSb4+RyXUSZhCSZoBY/xQ03/J7TT305+WyaanmIQjHD1m1P89KzTuDmm29mqG/u9PoKNBmlNFVhsHc50E2I05Qmobd/AFKTwCQ7J+5hw6aHeOyRpzhgvyO5845VnHfue5g5YynQ9+w2u+dw86zob46lIfXX4wpAqj166dkdIGT+5njVbH/Smt4XMuM0GmM0owkK2Z72qEvypBiAOEWlUqPYu4l/etXp/Oy/bgNidpUf4aqrrqTV6OZD772CKNozihQgpl6bJN+VJ4Qav/r19Zzx0rMhzP/7fTL89WOjBvU69PSWKVfG6OkbBOrEyQS//O1VPLlmNc874WyOPvJkRrY3mDln4bOPNb3Af13O6fXQKEOUr5HNPcEDT9zGrbfeyjvefAmFzFygmyTUSEW7ed8nT2HW4GF8+L1fplwvUcw3aLKFR558gAcffJiX/9M7aFZ7qaRu4pv//h0+/d6nSVpw053f5N4H/4vPfOQ/KZUjugp9ZFI5/vfa6ygJFaKoRkQCZGi20iRJQj4XsW3sIW666SZqpVm8+fz38/GPf5yLL76YJEmmR+pKkv6neNSVpH+gQqFAJpN5dvTR33b9er0OQJK034DcdPNvOeWFz+WC932IZh227niS717zWb70jY+yc2wjqVyL7oGErmKW+fP2Zu7sJUxNljn+hCPJpKN2qIq6WL/rGW655WYu+8rF1Errecu738nxz3k+JDlINSETQwpacUR3vpc4CSxatAioc/XVV/OCF7yAkZFR9tl7P5530vP555efxkGHLKNQyNKo1tvvl1q0/7W71QDKEDXI5Aps3ryRL19+KQ+uuoNcATau38SvfvcLfvKz6yCpQmqCn/74q7z5zS/m+1d+isu++n5WPfRriLYDmyE1AlFMLtc+9e/Rxx7k/Dedw5IFc+ku5Hj2XKwA2dQQUKBSiYEsjWadwaEB/nL/vcyY0UelNs4F7/swM4YWUSlXgYhUlOXGG29k8aKl7L//gUxNVmjFz/DpS17LT356BXPnzOKYo07h5OeeRb2S4eGHVvHne/8EoU53fohCvp9U1H6zFMc1kqRGOlsnl6+Ty1dJpXdDOrTfyFWAaJLBGWmGZvWwedNacoUKzWadtWvWMz5a4vNfuIxTTzuDdqSAyd1TRAkUMgWKxSy1CoQ4xQ03/oZ3vuuNbNz0DATI5yGdyVBrTfDYE3+iUt/KzrHH6O/L/v1Z7VEDoilgF0QVIIYQyGRyQIs16x7hU//2r1z06X8ln89CBL193UQRrF27luNWnsTBBx7N8593OicefxpZZnDmS89jr6UrefHJL2Owfw7ju6eAFJVqmUWLhznxucdw00038NrXvp5f/PxXzJu/HOIM1ckmJFnmz1vOua94E6m4yLvf81s+dcn3uOaHF/OLn19OiNv7wsiup/nop1/Gb37/DcrlGtlcD9AP9EGSZ//9lnPFN79LvT7CjMF5HHfo2UxMjpKizvLlSzhgRRdPPf0YP/nJf0yPShli7tA+HHfsScyeuYS7/vgAhcwcoEigizjOEaX6INUkRCVipkioAjH1Zg1IU6rEdGeHgR6y6XnMn3MIfT1zOeqIE8ikCu1T3rIZAi2gSaHQBfUe+nuPYGq8jyTJMDgYGOytk+0eYcWKObzlnWfx6JO3MWt4mJe99LXsvexwHn90E5Aibk20n7M90SGkqddgn71XcOCBKzl25XG86XVvYufYVrqiLGeeeibLls9jcmqU/gE4++yzgBSbNm2hHXbypChAlKJeKQEtHl39IFd+7wqSpEJIamRyeQo9PZCOyBcGidJpIJBKdRHFM3npaecRhSIwSKGYoxVPcNPvf8IrzzmNSy/7EDBCixFgnFtv/yXfu/pr/ObGa4EJonSV3sECoQXNWsTkRI1Z/Ys48sAjyWYjfvyT66jWpsNBgnwAACAASURBVJg5YyabNj3DnuoSkvbU/jKmfXpm42+m+L9dyWFPIKu1D1R7vp8w/bvl6eNgifHRp7nl1l/w+c99gi071hKRoVFPIKSIUtBoTkyvu5jx2hpGy08wozjAsceewKxZM4miEu2rmMXTj9si35Vn27aNjOzawfOffzIQP7sM4W/PupsOSbku6O2DKF2kkB9mzyl36VSel7zkVJYtn8+RR+4HlJg5p48kbrWnpEmS1EmSKklSa38eB5IEct2QzUVAlly2lwcfup+1Gx4CxmjGE8StDJDjrH86jXKpBQzTKA9SqXeRZYhFC5czNDREX66fvt5hZvcuplHNkcm2T3s76eSjWbhwKbVmjZ5iBKkSCZO0wgS15kR7lOOzcT9PEmeJ4xwpikQUaJ8KmiWbKZDPFWklCXOHlrBs6T5MjE8RRRHVahWAVqv1f/PKKkn6P8mRSJL0DxLHMY899hgHHXQQcdwknf778zCarSbZTPbZr+vNHTR5hJ7sUuq1Pr74lQ/R3dvgX9/xOmrARRdeRtyK+MIl1xM3EtK5Et+48g0s3aeLFx9/IbAXhG5e/YYlvOjFB7Jx7R845JDncsapn6FeGibfM8SWXb/jim9/iXR6kLe+4WvMmrGMiHFgE/fc+0uuvPJKPv6xS1m86HDaV8yJydNislwiidMM9C0DetqjO8hAiEniOqlMhkZ9ks998b08sPpX7LVsBV/8zN2QLnPpF9/Du9/3arpSBzExdS+Xf+OTvP2dr2fHyFYee/xhfv7z3/Ked7+DQw86gh/+6Cesum8OJz33bE59yVHAZr7yzU/T3z/I3suO4PhjzoXQR6sCma7pFRdgYmIX/cMFIOYDH3gHx59wFC964Wl0dQ3RagAhxejYTmbPLbJz9BlmDS8CCozthC9/6zQOPWIpJxx1HjNnHA0UqE7s4I9/+gWnvOg5tN+MdvOXB9eyedNW1q3dxmvPewsD/TOp1Rp09xSJWzXSmRyV5iqieCaF3FIIAdJTwBST5V3s2PUUj665iTNO+Qwp5lEdz1DoHYfURojqjGwqMjxjP1K5VPtiQPH0tpFez9evPovDj9qLJfNOZG7f6yDpg1SZL/37Wewc2UIm1cPFF36bdmhJAVkq5QapqItybQuXXn4ur3nFZ1g85yR6+oYhavDzX36NP97zW97zvnNYNOtQarXDyOUbEG1l+8gm5s1cCgxT3l2jONAN0ThJUqRcaZLP58lk0qSiFOecew7XXXsde0ZjNJKd5FLPADNpNArk0svaN0UQNyHKlFj9+E3sGnmAjRvu56VnnM3ddz/BUUeezOy5B1Kt76SQD6zbcTtLZ+/P5q2LGe5dSqG3DuwAMlzwvhfx3g+eSjp0cctvE1752svJZqAdCSYp19ZT7Mpy+RWf5LDDlrFlyzY2rGvwgX/9Kq16kUyuh/bImxKZXHd7FEcD6Bpl58QaLvvyZ4EUn7voP6a39yIEqNYSkmSSYj6BbA5ClmqpSqG3p70h0gCaBBIitgFDEOZOt886v7nh6zyz7iFqlSofvODzvPCsvXjFq15IeWwW737bN2hWM2Tz3ZAqsWPkEWbPHKbaKFHIzQEqtBrDlMd7yPQ8TbE7olTK0tO9F6RK0xEjeXbEVwgJUVSkHSUKhGR6NE8ElfJOkmiMu+6+neEZ/dx+2928/4KPt5c1zkPUHr0Tx1Okc832fcRFJnfX6BvqYtum3cxdOAipUWCCOuv4/S2/46ADDyNpFfjWN7/Nu9/zDvr7i/z4p99n5crDWLn/cdRqg3Rll01fjycwOvVnvnHFhykWsnzwgo+xY6TGT39yG+ed82aKxfmkUvk9uzhR1KRRGyOdiUhCnWw2R7VaoVYJDA7Mg6iLZq1BtjsGJmnFJVIUqUwWSUV5Ct05Qno71cZ6ioUeXv2ql3DZVy5mfHI3Xd19rH5kKy857Z3UqzlajRyZTIlMNiKdKnL6Gcdw9isPYHjGAC963pvoLiwiJFWiVAUY5sH77+PRR1exdt0a3vmut5HPZykWC+3XgaRBOtUPIWb7znX8/pYbuOnm3/C6172G2bPnsmK/w1m/YQNLFh8HSXufT1pVSFUImY2kmeKqH3ybjRu28pbzP8rsGccDCW9583m85a1vYJ999qGnpz3SDbLs3DbCjDnxdOzOAHUu/cp72bz9IRr1hAs/eBXzZ50EKdg+9hv+ePMkJx33KmbMgh/97DpGJu7jnHNfTnfXTHLZubSD3DbKlTTFwv6QlCD9NM+s286cWUspFksEIh5+4kkeuP8RIrp5/TnvAnpIkgwpoFqBQhfPHgdarSaQolaNSafTpDMJueL09QCTInGc5e1vfzvf/va3/59eYiVJ/4cYkSTpH2jbtm3MnTuXEGKi6H89na1SrdDV1UUqStFsNMjmauyefIir/+vzlHYX+diHLwVqnHrmwVx11fcZ6ltGNjmGuBXIFFpsH7mL39x0Jeef8x7K9YRifi8gS7W6iROfezA/+sF3WLr49dBMQQo++pkzOOb4vTnjRefRaO5DOt1Nwihf/8YF7Lf3LI495jgGBvai2Rgkm+slkCbEaVLpGlDmO9//LOMTOzjt1JewYp8XQFjQft8OxNEYr3j9Uo44ei/e/bYv0Z0+EaKYTRsfZeGimbQvmDrJzrEnmDU0CDTYMvokDz+8ipOe+0K60wP85eFHOOKQVwF5RkfXUOid4t77bmPlysMYLC6hURsgbuYpFAdIWhNUq2WK/X0kzRpxXCfblWNqYpTe/l6gi3YAyFMtjVPozfKRj76JhYuHWL7sAF50yitolPsgv4Yo1SAb9qY83kOhALXWBLsrf+K6n17Ef3znT1x77VvZui7il9ffwAX/eiH773sUmfQQkKFeqZHv7qE8OcnGLWu4/Y8/g6SLObP24uyz38yW7Xfwze9+hLHxdczsP5ZPffxaSlOBnkI/ZEaATXz2397J7p2zOfqY03jJmS+nq1hnz7/kT4ztpn9wmMpUle6euYzt3M7Wkb+wbefjjDV/xitO/RiwFForqDc28bMbPsGTTz3I7MFDedVZX+I///NqXvyyeSxZeAiQ4u3vfAMjo+s47jlH0V3o4y3nfwwYINBDRJat27by5a9+hLvv/S0f/+RraNRL1EoJr3jZuxkdWczw0NCz5xYF4POXXsr7P/BuMuk9wz2aNJo7yGVnAwVo5QlNiLL8zfVyxoCtkMygtG0OPTPhfe97Jy/+l8WUaiOc+JwzGOo5nqnJUeqlPNVKg4XLB/jMxa9hYCginavz9jd+mupEkUL3QkJ2hKnKOH3dfUCGJG6SSkdMTY7Q2zcwvbcljO9uMtC/nMpki+7eDESwe9c4xe4BcjlIsqOkoikmGzvoyw1QbRYoZGcSNwvUalAsQrVaodA1PSouyrafl752MCCqsyciwVoiZrT3kelT0mqNJ+nKw8TYJF2ZhUR9d7C7spHZ3afRrOxLNpehWo7ZuftBtuy8j29884uc+5qz+fdvfYn+Afjkh/6TZfNP4657f8aJJ55AszKHbKq3PeAjnl6/remH23OmZ9QEqtMXp84R14qkuyrACEyPtoIC7QgxSKOSItdVIGlAqmsMGKHZypANy5mcqNA3IyGudZGOMpCBuFUhnd/J5q1rmT9vCaHVT9LqIpPN02yNM1VfxXU/+BYzZ84gywJOf8EFZKMc6QzQVQY2k8Q1UukCjVqWXNfM9uCiqItAhlQKJqfK/O43V3Lb7dfzbxd/ijip8pvf/Ip6vUnSyvP2t36IKN1PXK8zPrGNj37iTaw8dAUHrTialSvOIJ8doNGscvkV7yGOnmLlwfvywhc9n7e8+W3ku3r55td/RKCfarmXfHaIdKrI7tEdDA7Ppj4BF33mYi75ypu5/757OPzQMyiNQc8QEO2k2cyS7WqPTrzl5t9x7HFHEIi57bab2bR5A+Pj43zkw+/k1jt/xvevuZyPXfh+ir0Jr33dR3jzm0+j2N3Hj390PV/9wo30F5cBg5AUiZsN0vkpYjZTb+0mm0nzoQ9czMff/22GZg9x3723cPefbuaoow/l6KOPptWMyOUGiZsxp521F8ccdRKfuvBbRKk8MM6GbX/isssu4767dnD3HTspT01QHNwELIHQRYhH+eZV7+CWP/yUHdvh9796lK7cAWzZejfbRx/g5t/fyNte93X6h+YD2/jx9V/gjtvv4+AVx/PaN76BbNRFRJobb72VE57zAtKpbpI4RaGrjz2jR4lbkJlk1SN3ce+f7+GN578NogwhVPjaNz7Nm9/yNgrZ/Wm1ipxzzjn88Ic/JITwN9cNlCT9T/DC2pL0D5bP56ev87rnv8b665TNZogiKJWnKBSKVHZPcdGn38nLXn4s/3zm+cTNFKn0PB68735OfeGLyaZ6SZqzSKUhlYrp6ekhlU6YOSvP+z/ydlYecgS93fuTzWR47KlLWXnQC5k5tJLSeEIqV+KEUxaw/17ziKiTpFOkoyKNZpkHHrqF0097Pv19g0TRMI1alnoDcrk+Uqk0UGfnzs387qafcvLzT2DpsqUUcsPEjRypqH0KVSrX5Ovf/hSTpW286ux3EUWzIKQpFnqJyBOlCoSkl3xmLkkokE4N09e9kPnzDyKXWUCj2c+82YdRnqzRrJfp7cuTz6ZZsGgOUZQlky5C0k2+0Mu2rRu5+ppPEZhi8ZLZ7B7bQk9PAVKQ7yoS12JSmW7ap01ETE7soruY4/Kv/xvve/9bOezgY5mYmKRYnE06nSEd9UI0SCbdfgOe78lw820/ZWCoi0JhkhUHHM9xB7+SpNHDfnuvZGBwNtXyTrK5mEx2Nx+98FweWnUDZ5/1eur1Bi87+9Xsv/9hbNu8g+t/fSUz53Qxb958Xnn2B+ntnUsun6cy0SBbmGTVQ7/hllt+SqkMxx57LHvttw8XfPiN3Py7H7Fuwz0ccvhMctkU4+ObKPam+MJl7+Br//5J7rzrZvbat8iSRUfR3bUXrckBMpkWv73p2xxwwFJmDCzhoINO58B9D2bG8BBROs2ap/7Ihs0PQGoXLz39JXTnh1i++BS2rs1CupskNBgarPH0pts4+ZTD2LDhSV7x8jOIwwTf/f4nGN/dz4EHHsVUqUE+nyZKQaVSZvleS4miNHsuwpROT0eJJA1Run2pqz2XjkklJK2ESiki1zVIvTVOvifD2o1P8Ip/Pp+58w5loLgMyJHPt/ivH3+RNWvvpLunyu7qOvY9cC4Dw4MsmH8EXYWZkI6ACnF9NiT97NxRoq+3D6IsIalSqq7mlNOOIoQaxx17KtVSTHd3YfqE/yaFnhwhaZHKZIhSEes3b2T24Fym6lWKuWHKlRb5fIFMpn3Jrmuu/Sa//On3WfPkoxx+9BHt+JufHhYX7fnfw9IkRER0t0/fmb5+WCYD9coEO3Zs4i/338n9q2/m2EOeS60xQD43l2opptAXuPSLH+D+h/7I+vXrectb3sLk+DMsXz6fnVsaHHrYKWxY/2cu/eKFHHnYcTSrPURRe0TV5C7IF6dnY0/TC+1TiogKRORIRRGkmsRhjEcevY8z/+k0yuUK/f2DzJyxhHSmm7hZI53OQHqUsfJq6vUq3fml5HvqxDxDOhNI6n1EaUhlIzZueZhLLvksDz24muee9BJSqSJT43UKxX5CEjj+mONYsnwha57cwCEHn9y+bBFApk69MUo2Owz0kY56aDVSpLLd7e0pav9vd+XqJHfdeT2Vyg6uv/5HnHXWCxkc7ObYY47ghz/4IaefdgaksjQqJfqGulm+bJD99lvMqkce54ijTiWdzpHryhInm8l2j7N+3RqOP/Z4nnpqPfV6zNNPb+SoI08im+shlQ60kibFvjxEMZlslnplkn0O2IeZ/bOZHK3RP7MbUi1KpREK3YPTp0xGzJ0zm+5iD5l0mrnz5rBzx05Gd41x1NErWTh/No88ci/PP/kEPvax9zE5GTjs0AV8+bLfMGsm/OGPt/HVr3+Ok054Ab2F2YzsHKenf4AUabKpLtL0UCrFHH7E84CE+QtmcP99t/PY4w9wyCEr+Nf3votid57rf/FTzjz7eL7ylWtY88RDrH36cY46+jkM9M5i5YHHMNS3iEMOPY6rvvcF/rL6Wg476EjGRnbQ3Zewe+rPxKxn7doa1ckRjjnmFOr1tUTZbezc9RADxb2Z+X+x957RUlVp2+61Uq3KYefEJicRiQIioARFUUFQUQyobQIDirRiRBQwAeZMK23EiC0GDKgYQZQsSXLceVeOK30/VoH2957zs98+44y6xmDswWZQtdasOWfVvOt57rukCwgqXbrnaGxoZvXKOs4dfwU5w0QW3Xi9AUJ+ey9VZAu7kjNNNFGH02UBrRyp28D27b/x+ecfcOKJ3fniy/eIJ/fSvUdnXI5aTNPJW2+9xaRJkwqeSAUKFCjwX6BQiVSgQIEC/5/AxG4L+J9ohoZpmkiCjJVOICgtzH54Il6fg+ryXlx24T/t/+qEaGQdgcBxtnmskLXzmYlx9c29mHbrhfjVPtS4ryGZztCQmkH7onuQjEoMAZRQHdDE/rodbPljNWNOGYdFVwQgktrIm/98jh07dtOx3Ulce+0DuDwlmJZMTt+DUwEQyWYNVDXInza39of7+sPNeP0K6/fPoO/xA/FwLlBpVywoMmYGTEVDEBVEEdK5JIJiYlgJTNPE4yhBRCWdMjGNCF6fA0jz+JP3U1IS4rJLJhOOpAgF2qJlLS65bAzPvDyGMn8XFj61EJdSzfVT7wPdAXIFmB7C9a1Iqoi/OIhdcZFm9dql/Lx6BbfecD/JNHhc3bFIYmCQygh4nEFEDLJGK6okopkK2ZyIKgko8gZ27dzD66+/xejTz2bVqlXU1R3h3PFn07lLOyoqqoBSMokynM4AiJDMbmDvwd84vkt/cpoXWSgmrcXwuHxgqcyedR5ff/sF519Uy803vgIEaWxt5ePli6ks9fDQo//giskj6VB+OYP6nYPs0Hhr2RT6nxxiw4aNXDL+Lo4cUqgs7YEgtberTqRGIEM6HsXlawemAWISDIOV337JqaNGYRlhBMkHuoKZrkZ0urAUEyHfDmb/sf1mUuk077z1PmNGn4vl8FNRVs2fUevSX37KZLNZJElBFsX8FDFBMLDLWv4SDYdtfjz3wZu55fbLyRlpFMWDW+xIRg+gyl4yWQNZqOPbn+YxfPgQnPQmrZXjUCwMQkRiEgG/BWzCQXdycRXVDfOePIcxZ/fk8IE0Y4Y8wvPPPsENM4axfdc2Nm7Yx4XnT0PLGiiqkzVrvkFxQPdux+NQAlhGKZIMLZEGiotcZHIaznzrW0ZrwakIRNP7CLgU/vhjO01NGieffDbgt8cgb/JsAaZp/0okmR9Xkeb6Jkwjwaw5l6AJW7jrrhdY99tBLhg/ndamNEWlIaCe1sQ2iry1fP/TaoadfA7x6B/oZiuhUB9+/nY9P294ktPO7MOKr77n26/XMWx4F/Yf/oOS4lJ6dD+JC8beg6m3RZLKju0zx4LNDEBKYHKArN5KJNrEow8/w+PzX6alyaK4uBZEHUyVNRuf54dfX0K0Aky/bglPPH8jO/Yvxeduw6OztmIZOQQpSkLbiqzAh0s/Y9KEGUARoGJmHbQ0QGltBGgFIJMoQyaA7ISG5t8pr3DbLX+GHT1vGJBIpPEXuRAkHTCw0Mhp2xGsGAsfe5gOHavY/Psmbrl5Og65GL+/I1pSRFFUcIjce+8l/LbuB2bdvYCTTroWDG9+bWzm+1WL+OjDT5AsJ4/OXwwIfPrx1wwZOoJ3P3iX9h06MGr4KN597xXCrXVYYpQp18wFvRZkGdjHnXf/DZfTw7VXPUBF2WCQj85pDTDJpOOoqoymZ9F1HbezDWhpEBtA0QhHtrLskyUUFQcZc+bZnHXWBO5+6Hw+/3I5kbpanl34KxgeMCGVNHEHRDCyIOWN1oUciGH03EFkh0kulyQWS3Db3+/hpRdfIZmp4/W3niEajbLuty0sfX8LGO1It6ZJpBoJlmZR3FE+/moO55z2AmRrsLIgeHfy4uIbOFK/l5JgVyZdeAWfrpzNH9vqGTvuTDauPURrg8odM98HYQ+R1gbWfB/n9LMmHPP3RjQJx/YjqylcqsgnXy5h3Oln0JrQKHaeAmY9SBFampt4/vkXuGf2HMCivm4jTz/zIvPmvYNh+DjttNP45ptvjgVPFChQoECB/z0KIlKBAgUK/Mc5Kg4p/DXPQNMMRNE+RIuiREY3cIpOLMPWfrK5Q6jOBE89/TgjTzmbHj1PIplL4FGLWPT6HVx92RkkMPExAiy//aAG6DnIZkwcDhHFDZb4B+Mv6cqBQ7Duu9WgD7RPsUorVjaAIEs0NRwgUCxiWRaJRBrLFCgp7Qw5eOPjO/FXrWHr5k0s/aCZJx/9O/0634WWDpFjBzffeTwLHnobr6sKt6cD0YZyAkGI6a14PAbX3N6X3r160d43nnPGnpu/+yiz592MW2nPjVPvQRKCqN68t0peRLCwAJ1ILELQX0I6nUZ1uBCsZkTZQf3BCPvrfqBXn96YRjFuZwXH1DRDJqcfIhEz2bljLwMHnwJoaOlmDA7yxNO3Eyry0tyS467bnkaQywH456sPMfrsE6gsbgsEgXboKS+yE6LxwwQCtsF1c2uE4qJSmloO8PY7rzLt+quBJE++dB8XnHM1e3c0UVRxAMVt0qn2PNLxzrh8LnRdItKaxefzoDohlU7gdqt5/6sM0EIy5cLjDpFM7+Sp52YweszJ9O0+GGiLbRztAxHqjmwnFslSXCZRUlIKuEH30hD/nBtmXETP46u549Z/IdMd8GBkwJFPMo/Fw6gODdXl5va7x9O1/1YcqUlcduECTM3EEJpQnB7yBiX51ywAUhpL2MCseZPwBxW++HwX106+lmzSz2WXPYSVldFMMKUYTtdBnll8NyNOHUKX9r2QaYOeK0Z2eDE1DVEBQ08iySkgmX/tXVhaFWDy8lvTGTKymL176hk28BY8alsScR2vLweYYNmvGUIE0EhlDdxqMWAnWjlUJd8+1sqWbX/w3r+eRhJMLp54PR07DAIkMDPYFyJhWHEkOQCGSioZxu0P8+2qV2hoaAIjyEXnzSabdSE7QDRsa6FkJoMghHF7I6SSEdyeMnv+YQFhptwwmkONdbRvF+CkAaO5+IL5kKy1p7iVv2UB4pEmfEUK0AKk+PDj56iq9jCw71QgBHjAEMhpMUQllm8N9AIu2//KgnDzbsKpn7np9sl4XPDUwtepCExC11qRPQ3Mf/5CrrliFtFWN20rziIaThAoscXreCyJz9eBeDSNy+FCUnIISg5dSyIrMn+KeyqgohkiiYRJMKCRzTXZQprpB7GBlpafeeONV3j9n1+w/KsVlJaUACY6FjoWAirNRyLMvPV2Fi58nPLqTuhaGFnJ0dC0mfKiQZiJGiwRHn/5PEznb0y97A18nv5gKYRbmgiVFGFoKRBcSKITdHt7tYQUAjrpXBMuh+0fpOWa+eXXT9mx80d+WbOeoUMuIVRqsGXLJsLNFvfd8RaqXI4oyyC3oFs7kIUMK35YzpDBZ+CQfFimE0n00xoOs2/ffvr2OQnbf0tjzaatdG0/koCnCl0DUW1E5CBh7RDDTj6Xj95ezjufTKdt8dlcfP58UFuBLJ99+i9+WPMa7drUcN3Vc8FqB4ItZkPCXs8Y6HoCWeoCQgJbhPLbvlRANmWg+kyOirpPPDGPHVvX8uRTC7AsAVN34vL5sMwWNm37jLfeeYFcLsfjD/8CmHy/eglz5s6hV88TeXTeG4hiMdGWNIHiEAB1zRHKSsoQ0clkk7hUETCob6yjoqwKyHD/fWP5YfV6Zt/9MCcNHMOll17OK/9citOtIAg+Mi1+FC+I+Q5PXQdBspCkViBNlgi6oeORKjEpJ53bg9cRBILoSRHZGSWVOojbh33vlAIuJkyYwNKlSwvtbAUKFCjwX6AgIhUoUKDAf5x0/mc+Cjy/62r6X0Uk2yWlsT5FwOfH7YFYfAN+n8nmLWvp2WM02YSM6i0D04Vmpsno+5ElNy6p1q4kIQGUgwVWzm6tyWSSiO5tvPTqbQwZehK9O50PVl8wQc8ZyC6TpsbdlJYVEw7XEwpVABLJmEZTc4p27drz0TczOX1UbxobVPbsPsTwwafS0iQTC0cZd+lgpt10Gn+7+CFEqZxDe9PIipOKmiKggRQR1qxZRZdOXagqOg606nxxym62711B26qTkSjG4Sglq0VQHQH+jJsCMMnkUjgcMmL+5J1oTuEtCrBn12o6dOmD/dV7gpZYhGJ/Z0DEIIJlGsiiN/94Bgf3/crPv3zO9t2fsvyrbXTuBD06juaOO14GPGzd8DvVlR3w+4oRVNWuyBAB6SC/bfyKNev/Ra9ePenScQBF7mFIUojxEztzXG8vkjvGnTd9hyzXoyUF3IrC04snEEke4vC+UhY+tAnVKVFfn6C8vBhLSOGQJUxMRAwgzWMv3kJNB4vBPe6mpqon23Z8xtVTz6W0zMuiF9+mNNCHZBw8niowwNTzhWaOfbyx9DYOH2pk4ri7eeKph5j74D2koh7KyrqQM91IghPJzHfViFmSqSZUh4mIwhdff8CZo3uTy7Yj3VqDQ4Zwqp6qtn8w65GptG1Xg6Idz+SLFpKMHeLhJyYzYFiIkaMGs2njNgb1ugIox0hWICk+26tXTPDRZwsoKtN46unHmD5tNru2Zph82V1gKNTts6isFUCEBx+ZhiHtpscJ1TQ0NOFUKph80V1IQhswIZ3K4nI5SCRjeAMeEAyMXI50KofHF0KQDCCHZWTJpA2cqg9ByrePWaZtQk4C2IetNtSAWYGe05GdWdLJBC5XFVhgGmlER0t+zerYQk0AsL19LDmHgEhG01ClIkQjgCjAvt3refKFa+k3sIYj9Rsx9TYEgyGuueoWMD2IuNi4cTNdOnfH7fODpaFpUWbPm8L639czaFBbSoLduf6aLUUSJQAAIABJREFUhwCRZxdNZ3/DNzx6zyEw7Ph3SwfBAYgRbNHNCSjEWgT8Ph8IsOfAh5ier3nm6WfR0kWMGnwXw0/rwTOLpuMvljEzXbhl6nz0dDtkpwhCA7bwGgAtcCzcEAvS6QyKIiE7lT+XYx5LBN3IoeWS6Dk7KczjcuereRoIN+9GVzZwy7QHeO3VlYhmT0zNXoqxRJwHHh3B4KEKe3Y2M/PmjRz4o47ZD8xg6owBvLHkBZ6c/w22iNLEJyue5dcfo9w/+2XScQ2X14tlZNH0FKKgIste0EUaW6G03H6OY/5ypghaGsNsRHKl8jfnBcI0tO4jFrFoX3MykuBFkBzs3rOKOY9M4YyzBnHRuTeRiFbg9ZbY4oemIbvyj2sp+Z5AEzDRjSyylP8nTIRjvYIuMNPsaZ7Fu2/8zBWTHuLlVx9k5KhT6Nh2IM1NcV584RWeePxze56a+bGW0sx+cBx+fxGnDr6U3n16IAqlYDn/7T3E1CxEh5UXnwxSmW28/9Fs/rVkD++8voZPv32A5uhmTh50JjUlp/HLxsV8+MVjdCq9mem3zicc2UJT8yG+/noll18yA5caQhCPJhKALoFAAmhEI8vNN91KWXENN06dQnl5CEgTad5AfXgtD8/5mH++9hYvv7qAvQd2Mffe5wAPmMfbaXfoWJYDQ5cwDAPVqZNIRfC4ixBMhXQGdAu8nn0IiEApmC5aw+v5be0XrPjyQxS5HfMefgXwFESkAgUKFPgvUmgiLlCgQIH/FY629+Q5+plXsA8hQr6dzeHUcbgyQBy/T7V/ly/VV70+Gpvr8vH1LvRMEapYa591cXEsnlrIHvOYcXodrF37GwcPHmb9uk2AiKXnAJCdEslYK6VlpTQ3H2bSxefT1HwATYvj8bto16EMxATjRp2Lix60LT+L4YOncuhwnOJSF48svIULL1Xo0vZ0RKkcTIua9pX8tGYxZ4/rTDTRhBuRUwecQ1VRd/v67ERwwKS4uBiX6iWVzAAiqsPJX5yV8wNk4nQ4EG3XVTQzjbfESUvDVi68ZASNR+oBlVQuTrE/RCymUVfXDCSRRYVUJgxWCi3XzJrfvsUkiWll6dYN7rn7Jjq070E2FSPWup+u3WoJFFfZRrM57HG1YOotI3jsuasIlQic3Hc0pYGOSIoTxCxlFQH69e/Nif1OwaXUoAiVZDMmqBKhkI/u3bty4OAh5j54J7KsU1xcjKKoOGTb1VhEBiT2Hz6C31fKWadNoKaqHVgC27b9QUlxCR3ad+OL5SsBFafTdWw6NTel7cOtFeOnVSsYPnIQNTXVDBtyJj61K+Wl/UmnBSRsIydBgJyWBFrxuDPIso4om1RXtAXa41CDeLzg8kJVmwoggsMTplfftow/fxwI4HSpnHrKaNau2cm7S76kX6/TsA/lKpLTkxcI7Yj1kqJKhvYfy+iRkxjc72wmnv83Yi0Z2x9LAiNnj2/QX8lll17N99//SDwepjVyEEkyiLVmQIdIswhKEm8wA0IYTBUt47P9hMQYWFG0TAzBEnF5/RimDoIdfocoYhp2KpWJi7SW92ARo8hOjUwyh8sTIptO2SKSaS/OaDyOnZxWjZb0Y+X8SHIIEQ+g4FYsZDGOqGgkYhmqK45j9KgLGHPGRDJaiqpaJ6l0GEmoRBKPZ/8fDnr3Ph+3r4StOz5j8Zt38ve7L6C2o8pxPSX6ndiN6poKbAVO4corpnDG6NP5q3pjG4/rQJqJk0az8PG7qG/YgsNli9SZKHToOIzq0oGcNOAsrrpyGps2/4bP56UoVM7po85h06bNZHIJZKeJlg0DKXJ63FaogAN7E2TzWovT6cSyhH+3aTsWQR8jk67H7bLwB5x4fM68r5MCqIRK2lMaaMMF501GwmeLgUmIRSAU8jHzjluIJQ/h8Zus+elrFj5xN1t2rCSj1dOnbw/ikRi20X4tw0++kltvngXIuLxBLE1EkFw4nLbfG6TAoVNaDuFoHASdjNZIJtsCYhZkFdHyY6TdpCICtigYpLzoODp36IsoOOyYeEEnVOxi4MB+HD58GHDjlEswUvZeIKKQTWVIxeOkEzG76jMrks0IGGYWyKJZ8fyr5UfXgqCrgIePPvySiZPGMO3WSXzz3Upe+edTlJaW0L7NAC46f1reDk85qkkBMsf16ExpWYCPlr2PKKTze3vKFozyIpmoCLaiZ7nAcuN2ltPzhO506tQJxe1j2LAhRKNhnnrqGXyhWvr1OYXbZtzMiq+/o7m+mVCwDV06nZivIi1H1xRy6fzaFEBCB+JAjkSsiVHDB4MZpbFpJ3Pn3cBLi+YSLOlOt86j6dtrGJDlqssvpW//7mStDBpa/m3Prh40LQ1ZAVHSAROv24+Qv2+HCB4nCGjUh//AslpBTFJU7ODUU/vSu29Xfvt1FQUKFChQ4L9PoRKpQIECBf7jHE3Sykey561fNE1DlAwQckgCJLINeFUvb3/4CuHwYfr378TPP/5E9269OX3E1eg5nYi2k4CrF4pYjGVCJgmuvC8uUivgx9BiCDgwTZBVeGDe1Vx341jKA1VktCBOufexNCiEJBClX/9efLTsfWqq2mMrAU50U7e9a8iCVYOehKwOnuAeBg3ryOFDsG7LLZRKj4NsglhHOLyVbXtf5NNPP6dhZy0VlR6mXPkINV17gNCMpXdAkBTC8V/4cfVHDB14CcFAJ9vfQ0rz13Y2+2SV4+CRPcxf8CBt2lQzdNhJ6LnNPP/Co7z44qs45V5kUwE8fhfJdAZVCSLLAhZJzGwQKT/kiDFWfPEGo0YP57HHb8cfMBk29FQefWQRfU88gSFDB3HCcUMw0h2R9NKjFj6EY2tZsWkSo0cMxc9V5OKDcaiQysRx+48ACTQ0tHRb3FIl8UQCX1Gc+Q9dSdL6nteXpNm1+W2i8R4EfeVAiJyWw6EoZLJZnIqX1mbw+UBxgkEUsh4kh0xLeAvLv3ydSZMupLXZoLT4OJKxDB5fkV1qJmlguVi99h/89OtbuNRiLhm/kEAoaI+dWXzMdyiXTuJwG0Ad9866knbta6gobcuRfXEUZ5DKNt0ZPfoCkhHw+L0gNhDXf+TV158jFoabpzyNx9WRpoZ9fPjRq0ycdCaiCH5vBXbbnwtML4YeRXIcNYg3yWZTqKoPcGFmHYiyZPvpCDtIpx24XKWAjGlGSGeb0PQsQV8F2ZyG6nDR2gRFpS4efmos4dg+LjpvBn263oqetOf2nbMGUVZUQYcOAxg3YbrdZ5ZPGjMoARQycfB6TRrq9hIsFmmI/Mxnn37BiFMm0KW93V5pmmFE2Wn77vzF3z6bs42oj9nZ2D7smGKWrN6ES/EDLqy0gmB3OnK4bj3u0s2EXF2JtlQS8NbS0gCinCZhrOa+R86mZ59KRp82jONqzwS6A37QHLS0HqG4vIR0shmX2w+CfQ/pRAaXV8WuQGrAoplnF72Iz1vE5ZNuxUwXISrFtkexWwMxDsgc+iNKTYc2NNcdIVSVJBoxKCpui5mTEZUIq9d+yPYdm9GzLoYPnUTbNt2QVRdYGpaZQ5Dz/Y9HK2SO7Ru/ks2lUZ3FGJoPSSkC0wtAxkggKxoyOUDF1EQExW9rI+hINPDR508gi3W8++77yFIpU24cR9sOAS6++EFWfLQVUt3tYjAX4NLsHihZxcqJdgEQkM4kcPn0/JhEgAD76rew6fdVbN+5msfmf4FThpnTb2Xq1DtIhCNkcyJ+T0dEWSeZCmNh4vWEkBQFxBSafpi0dhi/SwUqwOxA0+EMpeVONF1HcUeBNE0t+yktOvnYXo6goxsasqSg5SQU6S/imxll7R+PcqBuFW6pD5VlndDNJB+8v4x5931v34ycODZ+tgjbSjweIZ1t5bvvP+eCCdM56qdkv4+47A3KVOxkw/zcQ9JY8OR57N3/O9ddO40Tup1PLi3icBos/eQJtm/fytljLuSEHucQDjfi86u0tLRQXtaZSEuGYFEJzU17KSmzN86GpjhLl77Crt0b6N27N5ddfCXLly/hhBM6UVltceVVU3n1xTSNBw5Q1qYDN04fxOHGddw7ay59ul+NaagkYwL+Ynf+Pc9AUSwaW3ZRVuwlno3jU2vB9IABqYiO6PuZJe8+SSIKvY4/keNPKKKo2EM8nsDnGwZUA/5CJVKBAgUK/BcpiEgFChQo8B8n38dB/pP+MREpmxeRNCTBAtLkrAiff7mUU4YOxDRNQt62gAcoZcp1F3PJlC4M7XMJaTONS3SR0VWcQmeQ7JYuTD9aNgWYKE63HWcfBIgTT0bweToQb3HhC6ggQDYTQ/VAKtmK2+PANEREyclR7xPDsEgnJZwOkJ0aOXMfC5+ZxBmjR3Dz1Pl8tvQXFGEAqtciET+CN5jiosldGDmilt/XH2DG9XcjpHrzwsuv0q5/JZecNxe3t4j7517O3649lzblw4AgmCqpTCtuV5E9RsJREcn+hv/Vt17kgonn45IVzjynA6GAnyVv/JEfWy+YQfYf3s6n387G45WZPOEBUpEOePxgaCkO123k6msmMGBgL+bOvQ/DiDDpkrGUVimsWpPm3HO6c9aZE+ncfjAuRxlNrXt4cdFCKmthyhX3ACXEo+V4lFrE/LkaOXvstc2mnKgOCS1noLh3cPjwckKlOsl0jtLAcBqbyikr6czfru9HSQWcfdYEIuE0o0dMRjRqsAwnDqcIQhYtJaM4JVKpOqLxQ1RWVgM+sHz5Q6kGcgQ4DJSyZ/9GOrStteeJ0R6kJrKs58YbbuOJB5fj8VWAmGXf7h84f9JoOnSCAf2P4+vPt7L8y7UYWQ1JrcTM1iKqWVrC65k+czw+V0cuv+wGBvQfQUt4P15nO1SXOz+nBfbv3UPb9t1AF4lFE/hDATvVK5dDklQsQ7Yr4o4iaZh6AlFuZcbswfTqdh5eZ1smnDsNPWMiK5Yt3iGh59LIDvvQnEjVs2z5IsacNZJPPv6S88ZNweUoBkzeXXIHEyedx/Zt67l+2kNcNOkGOnbsz6mnXEJKN5FkERkTPWrh9jrZs3c9z79+MW6Pgp4u5qYrP6C8rAjB2QTkMHSRA/uaeemlV5g+/SbKKgPEEgeQFYvde7bx8fJ/4AsUM2HMLCqLTrCLLGSIxQ/hD5aCpYKZX1duN0319ZRWlgIJ0plm/rF4PlVtvKz+ZSVdeoi4xFouHv8orU06CxY8wcOPzWTZssWIEry7ZDlnjr6GPn1Oplv3nkeHHcSEvS4MlVxWwOEWgV+AaqL1fgIl5fb8MOMgGmhpHcUVAr0YLIiHwVeELVxwGJ0Ydr1aCTkty/wFc7nwovOobVtFNBqlNFTL0WozLD8IKb79+n4SqRTl5e0ZMOB8MmkZWa7FEu02WpM0zYfX43N78YUqsfAST2fJ5tKkk0eorXJjGEeQJIHdBzbQsfYU+zl0H0gBsBz5eZ6x9wHLb/v/uNx2q10cXD4IR3fx3tIX0KVdXDf5WSRJxPYHauL1915h+CljWPX9Hi44f4ottogOEP5s1/o3RA1IkcvGcahuWqNbeXD+TbSprULLKvz9pgXEElH8XoV3li3E1KsZ2H8kHWr7AEFirSZ+v2xXwQGCZGLqMUQ5SyS6jmAghpY5AUXujpaOoPiOgJYPQZDWYpuNu7GFIjn/93z7XE7Nt4mm+WtVazaZRnW70bNZZFXNz5FD/LrtaZZ99k/umboLVQqRTKdwBj/hzbdXMnnicyDuZfGbD2JZFuefNwm/qx2GKSCJMpt3fMWixQ8w8/bZVBeNxTTD7N+3lQ3r1jP+/Il88cnrrF3/Pat++4nzLjiRKy5dSuuRNE8/9xgjx6osee8ZkjEH/3zxCLmkiMNjV2zJqhvL1BHEBHUt63n/w3+wa9cu5j+8CAe1YAZBE2lsWcKDC6bQpVMvfvxuNd6gRrfu7RGtIJZ+PNNvew7wFkSkAgUKFPgvIs2ePXv2f/siChQoUOD/3xw1GhH+7E4RQJJEND2FIv2Zty0JJuvWr6ZXr7541DJyhgvwIOLj1zWrufziCUQTOggx7rjvElZ8/QHt23bmxpsmUlQiU13ZHgEVRXWDKaC6PBiajiipYDqQpSJUh8Nug8qBw6mAaKE4VEDO+2EoGFkJUZQRRRGHkvfeERuRhDDrt3zGurUbaVPRjZaDVfQ9sS+JeBhvSOeWmYNJxhP07DaEpx7bSf3BzURTv1NSY1BS2Z12NQNQnV5WfvcR484aw7EqFktCcYgcE9qEo75IBhY6PXv2QBUdrFm/irLqPdS2V+nfayT1TXtxqSWI+HA7S0gkY5w+8nwsqwy3WwAhRkY7woOPzKCpdTt79++ktp1KS3gvdQ07GTq8Fz2Oq6Cs6HjOGHkBOS2HqDYz79Hr+W39Nmb8/TKCnlOBdqiOMvuyJEBO8u67z9O+XQcUhw9ZVOwWs+aDeH1h/P4Mc+c+yJbfD1Ne2os2bU4ikxCZMXMKd905jU4dOtH/+EHIogtTlxEFi2SiBdVpYGoKEhKyAr5AAJDRsyKiqKJnNXJ6HEFKIoo64CMU9GO3iygc3JcgEEqw8JlpnNDrONb9Uk+//ieRiDaz4LH76N23FEGKkstm2bYlxTWXX4molpKMeVEdHpAM3C6NrHmE7l17YZoiHdq3w+2SkJUSe+JitywFg7Z/FoKI6rIP5pmEjsPhAkG0i6As0DIgqYAQRzdbkMQEOTPMxHNuprqqO6qjElF2HPNNgQzNLYdYsPBBPvxoMePOPouex52NU+5Ej66n0NLSgtvtRhSK6dGzI40NP/P5129z1vh+dO9+Mn1OGIkklqJZFoqYJMM+vEIVgggvvvQEo8/pRjaXRHUUMfLUyXZli6jl538Lz7x8E/6SCLv3baB/30GoDgNN3Me0OyfSd6Cb/v2P44vl39Cv9xAkpwliBNUZx243yoDoQcZuV/T4PSBEyVmNOBURT9BFdXVHqqq6oLqbSKb3sXv/avYc+g6Uegad2JVdB3/m5OHVhDPfsf/gIVKZVnr37k4y3YBDTZPOHkGRLVLpDE63h2w6SzIRw+mqJhvz4HQpdtubmOXuWZNQXElyuSaKS3pgaRKqC/bsPkSoxAeYiNieTbqmkk6n+H3HClZ+/yldulXh9Us89uQ8Vn73NQMH9gHLwjBidOzkQ9M0Xln8Gp079KS8oj2xuIHTrRJNtGCYaVZ89TrPP/84v63/hUEnD8Wl+nA6XXg9LiRBIBVP4nB6KApUctRUHbEYI51DdGRBTAEZtGwOSfIhKwqGlkFEQcnrQCtXfo4lJPEFM/TocBmC6cM0PAiSSq8eQ/F7OlJeegLZtAeXy0smJSI7c/+2H1uGbW+UTqRRHG5irSaqWIRuxZC9Ozm+Twlvv/Mm48ddgctRQSaXIVgksuiFxYw580y8HnscVZdsJwwKFoKVAdHANDREQyKnZVCdBpLcHjQfsXAGl18DM5RfuikeffJWunbuh9tdiS3aNdkLKOv7S4evgpkTbHFWANlhgZBDlDUMI44oaUCa6tJSXn3rXVb/eJDTTx+Hwy0gkqPX8afZe67QgiUmWLNmHaNHnAO4EQVbwAoWyTQ07WL3zkP0PW4sgiShZdLs3rWH40/oR6f2bSkpKebQ4V859dQRVFcNwdJVTjtrGKJSz4EDe3GIFYw85QbIuhCtDKIzBkRpad2N223hc1skM03EIhG6d+mLx11lt+SZ0Nj0E1mtHi1nMOq0Mezcs5mS0hIa6hPs2JZg/PjJCKKTN998k0mTJhUEpAIFChT4L1CoRCpQoECB/y3+utsKoBsZLDLEE81sWP8bK5YvZdx5Z9CrVy9MSyaT9qPKlXi8TgzTQpR0BNP2j7h15mhGjnVTU1vKnbctoqQcDhyA1gbYtCaDmVERFY5ZCxk5Hckh//t15NswEDJ5114ZIysiiS4771sCpCawSvM6WAOQJJE9yE8/f87o4RNAPxHkDUAli19ezEUXn4TL1QlI8MC84Uya8HdWrfmCgScNoGuXi8klO+BwqhyuX0t1tRuotqsbLGz/Ekv989oAuxLJ9tgBi937d1JRmsTjVkmmUnjcg0hGRDxBBbv/xcAghkicRCKIz+shkWjh9tuvZ/78+2huOcyTT83hnHNG0K59FS+89DyPzP0Q6AiWwtV/O4u68HcsePxOystqKfL0BLoAQdCVfBFAKzfN7Mftd11OWWAwKp3A6gBCC2Dy5jvTcTgOUOwdRPt2gygv7Y/bX4uZsc2wZTcgZdGzcWSnAxCJhRvxh0RM6kDrgSj5bWHDzIHoIBM3cbrt6rFYfC933nULZcVdqKnuzFXXDeWRp6/is09X8dbib6mu9PHNqnfo0nEQst6DiqoOZFMxPv9yCePOHczrb81n+PDhVJZ0Q8iVIXpKAYWG5rWUlgQRybfVoMMxg9si+/U52pb5//LJIZsALQuKAqrLfh1NHaLJw6Rye/lx9TL2HdzE79u/Ytp1T3Ni77Fo6RIsw4HDLZJOpHB53cy+/waO659m9cbFDOx7JmNPfR6X2tZ+XrmFeLwZt9yV95ZNYuv2r5FkP/fd/SJQDChYuMigo+BAwINklIKUBZppSf5AsacCCIHVKx+Jbt9ua6QBh28vgpRBkYI4pFogxf0PXcf1Mwbz+dL9XDpxCo8+ORO3TyeTkbntxrn2PCbEUU8jSxfz6wsQMwhkyBopFMlAsE3MEHCD5SUT0RAlcPjBFg6OJnQBlBCOJAgFO5JLWTicTrtyxVJAF0lGwO2GF1+Zja5nuWHK3aQiXlQnyD5A3seSt14iGTe5+rqJTL99Gs1NcW6aej8DBpwFhr2f5FIgihCOt1BatY2G2G7mL5iLYWpc9bcptDaZ/PTDOu78+6O2B48QQcvF2PHHHl57bRn33vsITrUaxeGgObYLS0hR6osTjjXz+lsfctOUuWj40HUBt+zA0ONIVppYNEUyleGLH+cSLBKIhWUaDviZPu1+ZNVPoiWHN1SSX3cR4onD+LyV2FV3qj0WQhjYCsZQMCCTSeD0Hx0/9c/kSkA308hSK1AEpitfMmSRSkRw+71oKQtLc9gphi5Y9s1VbNr6DcmYwtTJr1FbPciuIjX2o2fB5fWy+NU5rF77LwYN7gHI+N0dOW/s3WD5iTUo+AOAM8tTz15MY0OEO6e/iScUAOEQpDvZgrlkcah+E4ue/4D75zyQv6995IwEDqnc3gPNGswsiKq9L5pmClHOsHb9Dyz/fBkdO7Zn0sRLsZARUGloaWXFN8u55ILJ2H2YfuxN3aCxfh+lZSE++ugjzj33AnuMzLxZvzNLMrUTj7sUSy8HIWoLobk0iWic4vJKIMu6Xz+j74knAceDoaIZhzFpQhQUFKkNyUY3Hr9MOhHn1ofLqO1YzLAhZ3LFpf+ge1cPCx99keqqTridxxOr9+APghZvRSndxNp1/+L7leuYfssc7px1Iw/NfZQNG/fQu9ckLNODIKqMHTuWZcuW/T9vRAUKFChQ4D9KQUQqUKBAgf8N/q+d1rR0cloa00rz69of+eijJTwy9yZm3nkb02+9F7daSXFRP7Agp4HibEUggR6rQHY6iES3kTR/orq8mj92H+TxZ25h3sO3kYr5CDkvxuOpQstmUJx271UymrK9bswsyEcrPmxx5tYZN2IYBnMeeBi/v9ZOADJk+7wh7APa5Q9bMUAiHbd47e3b8PhiVJWcwIhRo7C/ObfI5lKoju5kEzkUdxwLDUmsx25Nawdajf1YSgqEZqAczLxwJKbtb6OPckxI0kml41iWhcftAnbxj5fnkjXiXDnpOUQqydGMZak4pRJUJ2hiKwpFpJMWLqdALgkOD0COT5b9g7MnnMInH73JkKGjCIbakUmIzJkzh917fueJpx6kuLgMU1dR3W1BU/MFOHXAgfy9eLHbDG2j4zkL7mZAvwmMHj6WlT8u5L1353Pp+OcZ0P9cJIcPVBE0lZaWwxRXwCOP3MK69avo1r0TtbW1dO3Wib0H1tOmnYeKwN+oKOlFsMRvi3mWbCfaG9DUcpiyKoAMmUQJmTSogT/44ddXaN+2G0KmF2XlIdweBVmswcqLGiAQibTiDxjoeguq4gZ8diWEmGXW3PFIrv106dSfSeNmAh0BE1M3IBdEFLDDwP7tdTH/xzQ3cwZi3ojK0m2fZS2ToyWyj/WbvqVj50pW/rCUfoP9fPnJbq6+/C5KiwfYYoZuP3a4EUJlgKMOjc0oKEAZu/ftY/7CB3jgwamU+cq4eebttO2kces1i4Ba0NuBHAeO8PTiW2jXpj+H9ueY+rdHABPd2s4TT89hxIgRhJstevUcQElJJ/SMgiypWNm8L7QIjY1NlFUG8xVxNtl0klwyjMeroFmtqO4QmDX2ded1HbsdrxX70C7ba8mEWCyHy60gyhlkKZ2fQ1H0eAXkvMgewNnA3+/tgcen07ndCC6d+Aqx2B78fhcvLXqNtWs3EAr5efihB3j+pWfwuqoYOuR02rarojX9Fi3RrSz7eClB5SwuPOdhfMWlIBwEMpi6yNrtr/LhsvfQcypmpoZH5rxLMurBH3SweeM2Nmz+kcuuuBCTBkR07EQ7jTffW8L4sZfjVsuAYlvoFRIYVhZJMAEHyVQajysAQob3P3yc1sgBqtrWc8aIy7CoRmIYubSDdBpCIVjx3UJiiZ/46vO1PP/EfpD3AFkMPY0ktzLj3nMpLirjxiuX4HcNBBnunDWRjl29XD35VmxRtya/b4Bu7UQWIiAmaWg5yL6D+3jjtU958rFXEClGxwKySAgIuGxhPD99W8N78QVE5i98AKejmJtumEkulyWnhwmFnIDJDz/9wNDB56BlnSiqh1w6i57TcAcUDHMTb35wFzv3/kwmk0OhPQ/e9439HFkXuRg4QlFMcRctsS18+sFurrh6GocOf8t9981iyuQXOXHoIKy0QiwOgVJAtPfahsbNvLtsHqNHTKZLhzOxK7ay7N27keKSAC63gCI5iCdjPPnkk9x+x30IVimSqCI3uotlAAAgAElEQVQKUN+8i4qSEnsuEsj/1MGQMTXIajFcXj/ZOKhqflrKkE4buHwSpgWClKS+dQO7d+3gh29/5s6Zj4AloKXSGEIGp1tiw5YtPP7sJBY98zEOsQYwicZ+5azTL2HYqApuvXcCr7+2jInnXcveHQIOsZxXF7/LQw8uwF/UEXQvDQcbKW/r5pH547jquitwKTW43V2IJOsIeL3opo9Mshi/z96IjopIhmEgSX/tmy1QoECBAv9pCiJSgQIFCvxv8H/vtIKJbqRJpFoI+lyktDqcyk5unXEbV115B926DkWRugOgWTqNiR9YsfIlhvQcTnXZQERBxeFxk4kaCLn2PPDI1cxbMB07UaqIQwd3U1NbA2joORPZcbS6JMFd915HUbGXsePORJJh69atnHrqqWRTEiWhTuiagiyW2j0eYhJ0T77L7BCgEmv2sPzbOYwZ14FU3GDWzMW8+I9FgIvW+hBFFV5AZvfuLG07qpjIZFJJ3EoU2aiyK1X82PHiVjGYcr5iIwmW538MnaZZKI4/D/OGvoG1v/1EbU1/KmpqAA+xiG0G7g9KxONJvD4f4dh6ivwdAZctUmDaQpVwhMcfv57RZ5zO/j1ZzjxrNM+/fAenjx5Fx5qhGJlaJKvWvmeTfOIYeS8aHfCgxRQUO/QLxBbiuT/wOTrR0pjhoQXnc9vfL8AvjMMV6GyLdqLtX3To8HJeevl++p94AoMHD6Ek0AsoB9z52HANCIKlYOoZRNltV36YkIxn8fgA+RCz5l3DeeMn063TyagO+96ScQcepca+bjlCJiGgeAUMFExTQRFlLANkyY6dMzQFCdA1WLnqZUaMGMmWbb/y2fIP8XvLmXr1PExDQXTkgAyWVZyfu2BXyhz1rTo6QAoCUVKpKIqsojh8pBIptJxBoCgIlh0RF4s24Q+EwAySjhu43JLd1unM2UbcTn++SkSyh1uBxshXrNv4Df37nUTQ1R9ZCWC7SCvY1Wr2PWmaD0XykYlpyK4wspoBElh6GwR5M/vqt/DKCyu54ZqHKK+uJJM5iNNZiRZ3oengDu3jvvmjqW5TRP0hg5uuepVQoDvxaDO+UIqXX3iOwYOG0b3HEJBcdhWfYLeiWngx8/HrgnA0Th5AwjRt36hQMGBvBya2MHcsjSvDiu+epW0Xk82bN3LumFsQc73AGc/fn4Pff/+V37f+ytgJJ2NYETZt2sqeXYe57MJbAI1wegWjx01n6esvUFN2BXpCozG6ig8+foqtW7YTTbbyj5dfY9OGHQzqOw67aksEEtwwYxSauI39u+GL9yx0LYlBFNWpoGsaybhAIFh5zNA8AygOEMkSizYTCAQxcgkkR4KZd4yjNbKfJxYsxeNtRzjayqy5c7jr3nvQ9AxOxeSO267nlRdeIpGMsvifr6ML+2hT04nzxz4I+EmmfsPjVph97yJm3/eWbSIvbOeTb56hsrw9/XqMAfMEsjF7a3UGNT77YjrBkMH+g4c4fdSFFAVORKAUXStCksEQNARMJETQlGNdxpZ0GM1swCHFWfLBvxg+qhfLvr6TWHMRf7/2J6xcEEExQdjItJmTyGVkHp3zPn5/gM3rf0KQo3TtUcJ5F5xLRXkRzz/zJmNOv5zRp5/L9dfdhdPrB6EeRBeQwEx2QFTdJLRP+Pi768mF+3D5pAWAi2TMhcdbTCYVx+nNkEi0EI2kSaczdOpcDehoZpyHHp5DXV0dzz79fL5y0IO98J20tBoUBfz5PbUJO13NBVTm52MSAQeQxbSaEQX7/2GVHBPWLMM2684AstiKwAFyJFnz60ZOOfEC4nHdrgizIGcliMeb2Ne0iJ5tL8WhdCSb2sHSry5jYL9+HKj7hY5tLkEV+lJWcTyYpWRjEb7+7l26dKvkoUfvpFfvbvztiml4fb2pb/qCz7/4gSsunQVWNZZgYqLRGsmhiD4CPlvbPSoi5XK5YwmmBQoUKFDgf4eCJ1KBAgUK/Kc5luDDsSoOXTPBEtG0LE6ngiKZxFO78bhD9O01AlkuQhCCtneSmKYpup4j9Zvo3qkLgWCQ+x+4i5C/lpraPsiyxMjTxqJndURFZePvX/DNN19RU12N1xtClI8KMAJg8OnyJbg9TsaOOY8Dh7bideskE83cfP3NnHPmhTg9RRg5BVESAcefQgppwIHq8HF8z86oksjb77zBqNPGkNEOc8/dMzll6EQ83iAgE/I7CMfDuFQ3luFAz6ZwKF4kEVA0IJYXqkT7CQQjP0amfTAX7GuWRAEtZ8dOGzooqkF1TWccSoiMVsdFk8bR2Bhh+Ij/w957BllRrl/fv8698548Q5ohDQw5iKCAKIhiQEABE2DOesz5eMScFcEsxyyoKOacUTAcFUEQkJwmp513707Ph97A+ddTb71fXp+n6q29qqaomj10977vvrv7Wr2utY4AkmiaRFNjK/c8dAGHjTsW13SRZNlrZzJTWFaaf1x+NTfffA19aw8lk4nR2LyTESNGIgs6ohwincygSLLXl7V/7kxwwmBJSPuGVAJcCU0Ok7MdQqEyokUi/fr2QVF6ghjANlOIsoVpSxRFXBw6cF2HoQMOxiv+othZEOUSkh02qurPewrlVUiAkXHxhSGT28s/75xN3aAS0qk4g/oPo7G5iXRSpqioD5iQyYCiS8iKn4zViCrZSIKFiIwoiAhIOLbkzQPg2KD7BSKR7rz+2kts3rKOP/9cx6wTz0cUVSCNSSeiW5QfhwyQRiCHgIuAlB8il/sf+gfffv8+za07GTRwCILkwx+I4DoiguhgGp34A0XYmQiiAKIr5tdHDlHJIMsmmdweFFkAIeTFqFsQCkt0qa4iondDlGo89Zqgg6OTyWZRFIF0rg1dLSLdaeEL6fz++zssfeN+lr//OP1rJxGJ2tx17110qxzC5k0NDBk0GM0nkcsIqLKGEgCDnWzd/R11g2qoqelL/54TgTCaT+L2+8+ms72RbM5k6PAJmBkbSXWAlJcGiOqtFxdEwc2PjYlAmiuuOocPPnyD2tpaiiJV5AwBJW+F5tgxBN2ivCxEcbQbgwdMwc2VILgRTNMil7NRVIXy8iIGDeyPIipIkkppSReGDhmJJERoazRY+eNnHD+1K0te/I4jjziDeEcLX333Mr+u+YT29kZ69allyuFz6VY1gJbmBAE9gpnLIEoJ0tYaVv2wke5ddaZO/ied7XFCUZmNf37HnLnHkUqZjD54LJKi4Ap45vICCBhcd9OZ/LV5FYccMohXlzzO1h2riSfa2PGXyKgRE3n77eWMOqQXry67m0PHdefhBTfRv89Alr7yAZMmHsNfO37mkPFD+f33tfTsNppQqBpV8QM6h0+cDgRBjOPSxEefvcbOnXsZPGQ4qlyJLCnIKiBI9O1bQSQaYMP6bWRyIj17DAZ0cqaCLEnkchKSKCMKFuTJPkQQxATxTCvIGsMHHkpQzzCyrpy0qVEVPhpF9GNZKXLSejbv+JpUupVhQ0bx9eef8d2qz9i2+1dqamqorKqkrLQXdX2PQPNLpLMdjDv8UBAFXDfGkleW8P1333HwIdPBBlVP4w8libcF6V87nqzThipLiJKLrNpAE6qqEQ73pLiknHi6EU1RsYFhB/WnvbOZkcOOQCBKOpvBdWWsnJ+A37/fQkkQ0wgY+TUazq/THI8uuoSPP3qOiUccgUdS5te1mANBQnAEEEVMvLUpICIToKZrNQIZHCWFIgbAUcmkHaKRKP6QiS72JpdSEcQ0jR0/0rN3T/bW7+DWm5ewfXOWXt3rKCrqiaz56VvXk+LSCEaunjXrvmPkiIMJhwcRDLi89tpnHDnpRGIxEVVPYhPHr5ciuqDkRUevLV3KqaedjGWZyLL0XzfaAgoooIAC/m4UlEgFFFBAAX8zvEdbi/0P625gf4x4e2OM4q46G9d9zc13zeLFZ78mqAzBNFQUP2TS9bhSO3PPPZjRY4Zz0vFXcOfDp3PVNdfQq8spBHzd6OxME1C7ofigPvY5K1ffyuTR84n6x4AVBrkT180gCKXgKLy85E5mzJiBT6nhrnunMmaMynOLP+WOf15H3yFnghEEpSstzTHKyorypq4GoIAjggVGxkELGzz7zOWcNHc8jz1zMxMmTKC2+gSqIrMglxdZSG3Iaph0LIc/GMi/HTexnd00tq7l/Q/eQRR8TDvmYirK+3tFDFn2S1DcKFgidi5vziyRT5sS6YyvYdFTN3HhReegaxFso5houDegcMUVZ3HfgvPR3MPJpWTUYAbX7UQQAmCFyWVB9Xd4cpCMR0agO9x0y7GMn1zKJx9/ztyTr+KgIRfQ1uIQLdUw3A34tV5gFXuHp1n5Fr+Qp2xQkoCD4bTjuBni8SQVRV3w2kiCGFnQ9F18/+1r7G7cxrDhg6mrHcq+JLzmuImmlRFRe5DoSBKKBA9Eqotx7n34PNZv+ooBIy2OO3Yyy1/5mYMPPpxjJ11EfYNLl6oB4IZpbckgiiJFJRqCsJEnn7yV6upqQsFyxo+dAWJFvvfKAdGgs7mVaGl3ENt4bdlTzJw5m2xKJhjsCa5CLm2i+jRcoLGpgaoqg9UbPmftH79xxuxL8h4lfkBj6RuXcPQJ4/HpZej0oyNdRthfgeSCIKSA3ZhZF8GpQ5RsRFUA1yWTyuALeYTMW+8/SGNLM6fPuoNIqAYjZyDLIpLokaDkPYXARbAUsmkDPeT3PhNaMNJbuefBORSXWQQCAc6Zdx8wBnDImQaqEvDOLXRSMQuRAL6QAqKBu9+Ty8JrXSz2zkEBMqzEh0m7YVCsHeIRikAmC15ondciKmAAMtgmOaOVdG43a//8isrKMn77dT2nzLoGbJWGPQmqqnviGhkETaN1bxOlXXqAK9G6t5nSqi7YWUgbBoGiJi67aib9+vWjsnQIM6aei6Lr4Bqcfd40Jk8awRETJ1BR0ptYi0S0KgJ0cPnlo+noTOM4MGbCGC4+8w0EpxTBcXEsG1EL0dn+K+dedhBPPf4Qu3ZnGdTvdFS9EnI/8fyS6xk4MsKLL/zJwgXvkzZqcQSHiKKR6MgSKs6xYdcT+EJJPvroE06efhN/rN3Axs0/48ZruejS2wCT11+/n+5943zyxav07VfJ159upyI8CVUrYf5td+EQJGs4qKqGLNj5eRaBYH48t5Gy9xCQSvh59Vq2b63n5JkXYGQUNL3II1sFQOgEkrzx9qN8+92nBAMR7rvjBaCbl3Amecoj8GHbxcQ6DYpLOgEwMhVoGiTtbwgpMtAFO1aN5JNAbef3dQv5+MsnCIfDrPltJ88s2gg47O54D79aTUmgFMMOoLmjQN6MQwMixXklZyMOMZa/uYKZM6/21rwjkum0yaQEiroHaWzdyB23zaOp8U8cO8XlV15EfX2cvv2PZsTQaYiIgE5np0E0uokOazdiZjTZlJ+KSgOQECwv3XLXjno0f4bnX3qU884/k6KiIkQhjGNqWKaLpT/K2t9+Z8UnSSrKaxk/fjy96sr59MM3+GnVJs6eM59udYPIAamkRlj34TjQkviNnPIJzU27+HlFkkvPeiW/VrzEuEwySc5MESkWsdjNT79+xK+/fc9nH32KXy2lo9Vk+Rs/EIr29F4aiFk6Wtey8qf3GDd2KmF9IqLWBk4JSElwZS69vi+pTDvPL9oN2WJiHZ1EysOccPwU3vv4w/+603qKyAKVVEABBRTw96NAIhVQQAEF/M34fyKRrAxs3bqe7tV+Zp92BAueOZc+3aeDVYedkpDytiq22c6lVx/NoifuQhbK+WPDlwyum4yDikiKOx8/hXGjLmLUgH+A6JLlE0r8h4JdQjYOejTrPeibQcwsKCEDzwDG5IefFyBIq3n0kQ8pLYauXXvRp/dQZs68BIcQIr3xHs5T3sHsS1EiSTq5E3+wExiKYdajKS4QIN3ZE39ABCXO7oYVbN2yiwnjj0WwK0FyScZbCYZN5px9FLNmz2DalFOBClobdEqLS7wKIJ8+5Bl/m0A7/7rtMrL2du688WtUNQqSSTa7F0URSCRSRKOVpJMZcrkcwYiLIHUi2cO8djC5hcaWPygv647o9PUmRUqSM2KoWjmYMigWL716M1v3fMG4sRN4d/lKHnv4W0x7J/PvvIzicpPDDp1Fj8pDqSgfCkIDHuHlB7cKhD2sXv8fHnjwbqq6lDDl6BPo1asvvbuNwLL9yJKPPQ0v8MCDtzLukBnMmnke8bhAOFyBi83Cp++nV58Kjpt0JqKbbzUS/gBCxBLtfLvqVSZMmEhIHcq7Hz1MRWWWZ559gUzax/BhR9JYH6Nr1zquveoWTMdGEEVkGvD8m8LghLn7zkuornX4ftWnHDJmHGF/H6YcdQa63BvbcbFp9RL79pn8OALs8zjCUzHFEs08tfh6jp8+losvvYBJE0bStXQY58x5zIvxk1Mk4m0ofhVXCKNKEVwD6nc00966E3/QR+2QQZjZNIquk+xMEYyEQDSIx+r5fd3nHDZ2AkauCE0tBURcFxKJJOFw8MCiAo+3kcDINjB9di+KyrOIIryy+DUwh4BQA5YP08mh+D33bNdJYVkGiqoSj3cQDkU91ZOT9+P67wrU8fblACYt5Jy9+NUImD3BBUk1vT9yNI8k9AFCA1988Tzr1m1k5456HlnwpHfItoHgBsCJsOHPLbz36QP06DqIU0+9FSOeoT25htffnU+/umrGjZlKKHAImMUguyDsAhoBga9W/MD4Q49HFMkTa3tZ+t69bF0T4p/XvM6GtX9yxgUDueaGORw5+WA64tvZuvVXjjryfnBGYxqQs7IEQhLtjTHeWv4YFT238sVnK1n4yHtgD/K+emYTN958Ht1qdOaecS22WURJ6UF4T40ZBNeHmQElbODYHXR0dFJSUps3mG8C/KTadQLhLuBCJtWIL2oBe3nl1ReYc/o1QBTsEhwbHCfvMZ33pTpw8Uzxx8ZlrPjua4476hxqehzqkUb7Qy8NPP8mHY98MoEUGaOTZcveYt6cf4BbBLZI1nC4fv5JVPcVmHbs+VSXTyFnJb0kRzSwZZ576SG6V+f4/edtXHvNs3kz9xSLn78Yk12sXr2ac868kl5dzybo64IgpQHQgznAor0tTnFxxOsHIwR08tQLJ5BMN3PNxUuAbrS17GDa7HG8vmQpXasmkDEi+DSHRGotn36yjBUr3mPho8+TNUy27bDp128idk5GcLw2wk++u58PPn6FtT8brPjqN6CFeDZNSOuHIDTkT1yDrBnjmadfwLElrrj8DnDCJDtzBCM2ODFQXOxskkcfXcBV118FZPj9j3dY/v7jdCYTPHr3J8ChCLYIkoHNj0hkSFsWrz2/irlzrkLxRQ54t+2DkAMhAcRoj9Vzw42XcPbcC+lZM4CKqpFg6uCksOwUi576JyXlAvPmXEZDg0tVVdjzNxPjJGIuatG3/L5uJaMHXcv2TZ0UlaTZsHEtZ5x5KX9tasB1ZARZ379rVyiQSAUUUEABfzcK7WwFFFBAAf8HIOyrRvdHpHv1z4YNq+nTrwt/bV7DoCF9KSmqADGLqKdoadlOLLabPfVbqKrsQW3tMJa+9iivv7GcqcdfiYCPPU3rEQJ/MmrUKILqEFRZxa8GwC0HW0CWyRMyLl5qFIiyTCqRQdVVulRqvPXWYvrVRdA1l+uuvZO2eDMfffku/1m9hoOHT8Erztz8hmQsw0SULe64/UY64zup6zkLWS3OfyMfihIk3mGSc3byzPN3smv3dsycSa9ew8AxyZkZVA02b1tLv361FJUUo0gRfGoFAiKxDtB9YFkGomJjWwl++PkjOuK7EZUYR4w/C1wVO+eiamEER8PnL8XMWmiaiqbLuK6VH+NyEGHHrp+59Io5bN26hcF145AEHy5pREVCcFUEUSaXyzJgSA2Lnrifa6+6hSOOOAFN6kZzy0aee2EhD91/F6Vl1URD3b1WKtL5cVFB0Mg4e3n73TeoqCymd58aZhxzIsXhUkDFRUEUBB5+/Dx0H8yYei6hUA2a1h3X8SEIMr37dKW00odrSvh0hfqGdYRCITrizUTCIQK+rpQW1ZJNq3Sr6sM3K94gFCohGCzi62++p7a2D7pfY8DgWgKqTsaKY1jb0aQSIAi2j1eXPkP/oX7+/GsV11xzPbW9x6L7ikESEeUkkix438n14RhBzzvFkgGZjN2MIoXRhSC9qyfSq3oYH3z4NDffdBPlJT0oKxoAhu6NjVmMbUcQbN1rPxHgpSW38PWqBWzZvpIRw45GU1VESQVHRMr3qGi6n6rKcpAUFCmE47rEE3F03Y+mqQfIo33/yu0gxPnqm2X88sf7nH6+H8Mxuf/eN5kx5SRUfzHJ1iy+cDB//ioIosOuXZspKgojShamlQRBRmSfUi6/bRusnMeLCSLIUgBNUhHx41g6sgKm24koWLiODyVfQze2rWPhkxdSUq4xbtxhhAPlBILVGEkVWe2BnfHR1uzQa0AG04rTt3Ywss/irnvPR/Jvp25ICY88eid1/fohOEXogSDxRD2iCpYDrhWhvGywp3IRQkAxg/vNZsyI2Th2lj2xlxk7WaUztY0xB82kuGgEoh2lqGQMuWwY24JEuoNgUMLnj9CvXw+6dNdx7SCVlX3w+StAbOLFVx5k7fqfcUgwddqR+IMyCDqxjjSoW1DUAIKrI8g2ggh+fxiQQWji7Y+e4pdf36a8IkqkKMS2Tbso71ZFLp1EUkMMGXIMVrwcMxtE1kGQwHItZNVFEDN4pFAahBRgUlFaQ88eg+napS8IDo6dwXFsOjta0VQNQQyAYJNKdmCZORTVj4iPgXUjcB0FUdJBEBBEgVhqJ2lrPX5/kF7dxqEoKo5gYjkpJPz07z+I6p5RYrEs/XqPIZ20UVSXIcP7UFQcZefOFo6efAplZf1QVB1Z1JB9FpCgM7GNJxZfTyyWoKmhFV2JEgwWsWPvh/y1eT3jRs8GM8KK775k2ME+vvvuR4YOGE8g0IV0Nk7Qr5BMxkilE4wZfSSy5KestI5sRkFXZCQRHBfCpWmqayooK+3OQcPHAFk0Wce0QRJbuPO+G1jy+nNMP/5EGhpbAIVhw8aBo2LlRBRJAScIcg5RlqgbMATdVw5olFQobNn9Le98WE9rYg2HHXwW8ViO1Ws+5KMvHqeysjsl4X4MHzkJ0bVwXRAEAQQFJwe5rI2sKHgfKPj0CLgugwaNoqKyD7hBEFSQJURVZMDAGj765D0GDa7jnfeW0aV7mFCoNwg2mhxBkHYgKBZhX3/WrvmDpcseYMNfP7Hpr+1ceun1ZFIWiqofYI4Ex2sFLqCAAgoo4G9DQYlUQAEFFPA344ASycz/xmtlAHhv+WImTKwjUhwBcix6+loWPP4Vs06Gdeth6pSDmXPqpQSUgwCHz1fcxcihMyn2n+jV+kKWP+rvZP4dd3H6jLuYcuTZBNRKb1f7osuVDIaRRNNL9u8XFxJtECpP8dyz13H4xDGYVpx+/Ycwe/bJPPnUs/j8PfDrgw9sJ3+3yCTTqFqW5/79GOddfApka8nmQA+ncOwEolBJojOFGqxn5U/LmTh+Jh4RFQEkcBxyZgdfr3iboycfiecjEwUhjGPFEeUssUQDgUAIWSzGykk8/vhjVNdUMn3GEZi2jSIFgFKwvZjuXMZLX8uk29B0yfNsAch5rUgPP3kG5118LLal4uMgNLU7Lgau6BLrtIhGghgWmG4jfjXNntZ6epTWEY8FCYcdmpu2UlFZhpVTkIQwgiiDuE8l5Y1pxtnE559/zglHH39gnlHw1AhBcEW++H4+R46fAPQEorQ3ihSXhXEcyNntaLqBQAuffbuMjRs2c+EZz6D6RNqaO4j4uiPrgNIOboCV3z/DgIEDKSquYF87CcjksJHQuOq665g4JUA27ufk6ZcT7wih6jl0XztgkDF0fMrQ/Lx6pFs265mH64F9UjAFTD+OIODKKSR85KwEgryBJcsfpDP9HWfPuZQQg4GxmDEbJVQEroKZE0kmIVoEgtzIJVf3Z8QhBhUlAwlyHYcffgI4qsfQALg5crksqk/zUgTFfSlmCqYl0NmRoKys+wEVCpBONeMPFpNojyFIzQSjbSx9fSG9evTh4/d+onu33syZezmafyAHjGKSQIZt2zawZu1vmKbB+LHHUFU55L+MiCOQKwEXLCmJ7SSRKEFEwbRcVH8Mgcx/jbuEi0xHe5wvvljOiNE2b735Addd+QACNTjpCKIm5fefwrWSCFocx44jSi4ffPg2g4fWsvT1xcTizVxz3QVccNHVlJSppDM5rrzqUm64/jFmnngUA/pOYuMfCc495yZwFRr3NiGrWUynlarKKOk4+MNluLkO7n/kbM6/aAqfff4hs096F9vylH6ClETEoLlBwR8UCIVasK0gjl2KLIls2bmavr27eelyQpynnjybXbs3c/fdy8HpA2IT0AVMH5blICseyZxLgRqC+safaUm9wH33P8nwoQO49tLbuPn2G4nFOhg6cBLTjrqN8kB/UMEQXDQdEPOTus8nCw4QA/s6pqROsrld6KrCvsQx19YQhEj+mDy/o3TSwR8sxUhlUFQZx80gq/vO6RyfrbqHutqxdC85CVeIk8rUE/SFMDJlGFYT4VAW8FG/UyAaqcorK71WuXiik3Co2/5zEzQeWDiLivIuzDvlFEw2svTVHbQ2wlVX30SuI0xj4k1aO3bRr2YKPrkG0S+BsJNXXljGnLk3er5wQoZEYhdbtqzju++/4B+XXQ9oZLM+XCuCz+dJbOKp3YRDe4AMjy9+jUvOvRVQ6ehMEI2Wksj8SthXwtP/fpp5c87Hp5UDKo7pQ5T85NIQS9qUVQpAEzYmEmVYhi//0sGgMfYtncnNrP19BbOPe8LzIBMbgHXMnXcWhx0yhaMnzaWiSxVasNy7rhMAWwcxT/buU4rh5NeciJm1kYQgoiyB6ORVZK388PMnHHLwSOo7fmPRoie555avQXCItSjc8/jh1A3qyhkzFzqq9JsAACAASURBVGJbFgaruPOuW/j30ztoqo+BGz5wjxLAFZz8abOPDS6ggAIKKOD/axRIpAIKKKCAvxkeieQ1xHhQMFJpNL/G3NMP4/qb5tLQuIdJk45j9ZpVrPj+Y6JFAaprqhg6dCh33HEXZaVdufKKq/ArxUAvrERfZNmrt55//TZGHtKV2j7DsMwgQroWWXTQQ6Ln2eN6ZqkARtZA00swUiaaGgQBzFwcxa+wn3lyAFvHsWVEzSvYcybYVhZfQMZTCXiFODi42X4IehNetLkIbl+PrJJS4KZwzXIEGWwrgSSHcHJ5Y145ld+n7L0VFywQNnPngxczeNBw/L4SJk84E9yuJNpNgkEFQbZY+Nx0tmxbw+ihczj95DvAkcmmLPSQiGmkUHQdM5vFtk10rZhMOosv/CePPPMPNv65k6cX/EI2EUYPaXR0pkHwEwyIiBLkLAdVOTBPOUNEylu0qDq0NmcorfSBCHt3b6ZrjzLA4Mgph7Fo0dPU9a3DxkXKF5deceXb3xaFZAAGtmNhmjaq6EMUdS+hTvSGH2UDq375lFFDp6EoETpbJKLRCJ6xUD6DW2gBx+9Fq6la3jvJK5ps10QSBFxcHLbkba91DEtFk8vJpF18viDppIXf73nJpNON+APl3gEIWW68+UxGjalj8pFHE/J1JZsNoWmlnqBNhFSqifUbfmP48GoUyQIsHn74di6+8HReee15TNsmnra5/vIFpAxobzJQxRwVXQL54wwCZeD6sLJuXsmRBQR2bWuhR68enDRrFFddcz7tbQmmHjsLEEinbfx+r8UNJHZs/43LrzmJ4cOH888rX4F0GbIGm/Y8ws6mt9n81w4uueB1YAjJRCvBUIhsJonuC+BVnWp+ngAMXH7DpB2RYsTcaOLxTl556wZWfP8JTyxcSlQ5HNkHj71wPCtXfcXkcddx0ozTiWVXYzkxenUZDc6QAylXho2g5p2ARXjy6Ysp7bGTCZPqiNgXg1WBFnXZR3548+gArUA9rfFGVv3wE6MOGkdVSS+ypomuVABh7GwAxxYRBbClJKpmYVs5JCmCaa7nngcvRfZt4/rLnwKjN67eG0fw5w9lPQIqotPXm1PJAFtjzw6Xbt0EDAxEBBRRZcP6VVxw5VjGjQ8y47hT+M/KHFKwigvOvwVcjWTmD4J+lYaGNFWlowCwbANZ/4m22G62bt3O5i1r2bH3R1as3M2sWX2prT6ew0b9A6Qwra27KC0NAi7bd9RT0/UQkp0eEREq9pZQIr4XQXAIhovYx2gvWHAndQN7sGTJyzz774U8/cwietUMpLMjw+mnXkGs3UBVVXxBhdtuv5zjpk7goOGH4aUhtuER2zLX/+s4giGNW659GY/w3UjWkVHFLohupeefpoFtO0jKvomVDxAlUic27/PDT52MGz3NW0O5Gu8zLQl2GiQJI9WCFrCAKBAlUR8kVAqZRBpfkU5nRyPRkhAuJr/+9jP9+vUnFCgC/OAouLQiiGnuW3AJ111xKVnX4NijT+Prz7aDU8buHXvp3rMKy2pEVrzv5l1/8sll7n8lXAptZOwUPimKjYTgRsimvM/8PkgkIRKB9vbvEQlQVNwt/z93A9vZ27CeV57/EF2rZfOevygqKuOOfz3K1q319O49EMeUEeUguYyB6vOB4AVJeMeR39S+sALi+XtJgt82LeGpJ//NMws8vykjESLOMn5Z/RVHjr0K23TQ9bWcePqp7N0BK79uRlbKDlhoAa5YIJEKKKCAAv5uFEikAgoooIC/Gf87iSThPfUajD64lHc/WkhxpBpVmuyRBIIJVhbbTiJpIi+98BTzzjzD8xXpCOOLVIHUjs1eJPzkckVYbg6/5sclTC4JseQmIiU2muKSyej4fEEgw79uv4LJE0+ktm9v7rvvZqYefwaHjD0Wy3YRpBy6JoANklSEkzNBTeNiI+EjkWlg2471NLeuYeeudWzeuIltW3Zw1tyHGHtEX778+j2+/vI3Hrz9SxQpiKhY+eI0gGVAMrsLVSrHr+sHBBz5hKr9b5KlJC+/+iCnnXYykuAjkxZQxFJkTcsXHJ0sfOFY+tR25dhDbwEGgqXhuAai4pnLWgZkMy7BqIqVCiCIYCo/8Z/f36Fb1950Lz0WWepCLN5OJFL8P+YJAZKpOMGAj3QmRsDnI5FqJhSI0NboUFIZoL1jEx9+8gozTzqVZLqFx5+8j7PPn0epfzq67kcUpANfbl+hue9O64BlA3IOhySpdAOqpBLwl0A2DJKMaYLig872FgRtN5FQad4QWgF8YFfQsGcn0YjXSucLdcHKQiLuUFQmkjVtdJ+Fi0k2GcTnB8txkGWDlpY0ZcUl+dPQYc2Gj/l9zdf855cPeezBd3CcEJ2d7bTHthAMaxRHK1ClPmCFcYF01iAQ3EyWv1j+/jK2bWqkuls/li97k8GDe1Pbs4qVP6ziyadexSVArDNKNNTLMy7PAroDUjyvaugKbhAzm0ZQWrnsijMQBZXHFy0DW8YR9iCKFh2xVh5//Em6dunOWWdeAEjYtsG8eWdSPaCebl17oUoVnDv3XlrqW4hGdG6742Ju+dfFaP6IN2b0Zm/DLjZt2sTBo8YSDFTiJQ8eMC+/+57zOWhcgK3b13HI6CPpWz2ZgD/ENz8+xeFjDuKQI0/ju/c7kX0qC58fQY/qLgzvczXlpX34auWzWNQT7xCYO/uR/GTnABs7oyBRBqoM0l7efO9q3v/kdbqW98VM1nDmaf9i4NCRtLduobgiQyrbwLvvfshff7Yw/7Zn8JSL5MmlFLCXK286A9PKoGt+rrvubmSxluJALbm0jOrvBNbhkqG+oYXd2+IMGjgCUw0Q9nflr52rWfjU2XSrGMjN//gA2wRJS+IaGoKkgNSMK6RxXI3OjhSBaJyWjjd5ZOE9+BWoLO2PYQ7i6stupy2+mxdeu4auPaK0N8PF817CI2IywDagCCgi06HjKxLZteMXdjf+xHPPLWbx029gWllef3cB0RKHPXt34te68udvNvfd86ZHroQ8P7bOziTRaCW4FslUJ+AQDCqAhU0WCQmHDCJBDNNGU7rQ1pygpLwc10mwcfPPfPTJGzQ2dPDAPctxTQMj66CHW9iwazFbt25j94YacDWaU59z7pn3Ulo8AE0uAmRSSQtNkz2lTv464c2Jyd0PzCZQvo4zZz9GxDcC7DLvUi8A2jYWPH4OOsO58JILWLv5cZ577gUW3PMBnXsPwh90UCN7yKV8qP4yEASSyQSBYICskcZ1HPw+HzgWiPX8tu4j9jb/wvI3VjL7pPPo0a2WJS9+y603Po0aAOSkpx5zPdWVmQFln12QiJfAhkPOTqBIIbKGhK7pZI20d+3HYb/33f6AzAZcS0SQSkCI8chjU1mz9gcevG8RWzaIPPr0ffTq1Yf5/7qP2259ANuSuPWWe1HkEJIcYJ9C8n+DAOxX6JpAhrT9O6+88gpnnbwQRRPAjbJ4ycl8t+pjXnziz/xaXs+6TT9w4rQb+GtjwlM/sc9YvaBEKqCAAgr4P4HCFbaAAgoo4P8GbBPHTDN9xnFUllaiKgFSrQ7YGm5aAjGCpFaAW8S8eTfgFdzd8YWrwIVt235hxuxDueuBK1BVH36tiGTKxs6BpkN5ZRhNcUibrfh8Ufb5MPWt7cGwEf2oqIjQr66YsROGo2sKAb+OX1OQMJGkHGamEVG1EMki4WA4CTrjLTQ0bcMXsFm9ZgWhiMjMWdM49thj+fTTT2lvb+foo6ag+YOICiDZpFJ7QEwg+zNEi4P4Q/oB4gj+51tpF8y0zoknXIAklNPZkcPnL0GSxXzbQ5pde9cQ8If4/bcNuEiAhGUbiIqD14aUIWN0Eoz6sXJpZA1sG1xHZfxBR9G1qheyEsTOOUSiIe8NueCAYGHmkqSTHThWBoEUmpbDdBsIBdJAGyWVPiDOLfMvY3f9ejZs+p2iaITKqnIiUT9+XwhR8NpsTNM98N32fT8B0lk8BZkr4DguReEogYDmFXdyjGS8GUWGHZuSREuK0DU/yexuTjhpNC1t9YBIU0MzVV2r0fxJfFEX20whq1BUKuI6oOsSLe27SFtN+PJew7IgguujrNRrZ/IOLc32neuIJZuYN+9MPLJCo7i4C+Xl5VSWlKJKIi3Nu/cfvz/gqXaa2hvZtGkDp50+i8bGeiZPnsQfazdx+GFTGdz/MHBDCFQTDQ8gm9TBBdtq5+cV/2bpS7fz6ZcfeNNvWSiaxO133kDv2gq6VYe8eZRAFIOAj4cfeoxRBx2CYXgkbCLZzEMP38sxx05k1NhyZNVgxYpvgTaWvHM5514+jOqepZw57zImTpjKq68/ANg8//y/2bZtC6+++up/TcqBc1CSBer6j+CvDY2cfdYNfPLp2zS1buHwMUeyuX4Tld1g684fiXVsp6MjxoaNf1LdowxBzHLc5FOZPPFE5s4+m/bYGlrbVgE7uef+s5B8SU/slAOsIjSxhnPmXc5/1mwmWtHBN9+/DcQprtA564LJHDttOpFimz59e5LscMAJY6RCXssnIbbu2sao0QOYduIENm3ZwHU3ns93Kz9lx67NqBp4REAJhlFM16pJfPzx5zzwyPWsWvU57bG9fPXlB/TqVUlDw1YQwDIMoBNBawW5AYQ2BGQkIUBRcTm6GKEo2p8+NcM5+8zz6GiP07VLDa3tHZSEqzntlPM5aco8IqFKQKattZnm1t3cPP9iXnr5SdLxBIJdCrlienQ/irEHzeOoI86mfncOVenGjOmzGTFiBPX1exg79lD8fj8g0NnZiUcyOESjPbzzU7B5/6NXWfb20yxd9izgIhEBysjlvJRDTYkCIiXl5d4siyp1/YbRs6aWgD9KLhNHUC30sETGaOPfzz3N228vp7KqlO7du1PXfwivvvImmuypo0wrQyAg4zgHTpv2jiaymXYgwQUXn05tn6EsXPRQfpLZZx8HmFx2yYU4rkEq1ciqnz7DERJ8//NyIsUuaiQD1KMGJLLxBCAiKxo2Arrmw+/TyGU7QMxw4UWncsut13PJpctIJWyOmnQiA+tGUlFR5hFIIsRim8imO71WWzyj8v95rfUe+1WpCMeR8GkSYKJqNolMK/FkM5630xYvTdEF0Mg5Etie+fi4scdR228opUX9GHPoZGprBxCNlKAIPs455xwOP/xwWltb8z5J/2/eRCLsV2368EvdPUWtBZZpEu+IISsSFRVl3sBbMhCgoqQfro3nxi6K+69P/3O7BRRQQAEF/F0oKJEKKKCAAv5mHFAi2RzIbM+xe+d6brntZCYeXUP/2mHcftPH3PLPOxk99kiwJcwUKP7Q/u3E2vcQLm5DkKuZcEQvlrz5MAFfJVHflPwbZhPXCSM4gLyJ+x+9iqJoOeed8YyXtCU00Rr/idJwF8AmazSja8Nx6YKDiEsbt951LvHOFiaPP5ITTjgTy5WRhTIcW0OUUji0YbKR1994llkzTsWn1AB1vPPuU0ydNhGJErC91of2xE+89MYN/PDjtwwbMpaxo07n0IOnIRJBlPx58mZfYl3eJ8rxzIxlH56BrmkiKhoIKUyzncuunM0dd19LWbgHUIeVCiD7LRBaeHHpfARUhg0Zy5CBkwADI94NzQ85ZwdN7WvpXtkX26hGkv2eIgaDb758l1vn30Tf/n1Z/OzLGEaKX3//lnfefpmnFv/MoqemkoyJTJ9yM127VrH0zQWcOvMkoB8QwGvHaMB2apHyZkymZaLICgdkVl4FaqNhWzaq7KnRTLsNRUqzd8+fXH/jOVx19XmUhubRo6aWTG47Pl+IE2eP4dWlz+KThgMasY5WItFKHn9uFFYuxIjBpzN+7LleS5wAq9d/wRcr/k2XHhFOn3oHuGX72+lyFghKB7abRJdVYskckWAIxzYQ3Qrv7yRA2so1t0zjmGOOJh0PcMxRFyKJldimiJGBQAjiiWZ+X/shAwZ0p7S4Ai+lTvF+MhZIJTiOH0EEQW/irLN6MH1mFd2q+1NRdgndKsZ7Jrsk2dHwCY8+cQPRSDHHHHkeQ2qPQ/d7CXV2No4kW3jO1QZgkjM6UTWdx145jn49J9O4x+GkGVNpaP8Qvx8+fvdnvvpsLfPOmkzXmiq6l95IOBzhgI9N3lPH9edTpZy8p45KrLWVSLEfxBj7zHg+/nwxbdmPeO35rTz60PP07NmFO++7gqKiErpVjGTGCfew+KmHENUW0u4qGusTHDxmMD/89BVl0WHs2ljMgkVLwZVZt/513vnwWT5b+SV33X4SxYGx9O87Ckn08+3KZeyt38HME89ClWrAqfVEGvnTyLIhkdtBUUkGsEiksyBofL3yI6ycjxOPPRczB62NMaq6dQEcHHcNotTGo4+9xcD+Y8nkGkg737L657+47ZpPefqZRWT4lnh8F68vbeXqiydz0aVvY2cDdKazRMt0JBHaW9sIB5LIviRQBU4xsWbwhTOo/vwaNkVsx0HSO7D5ioWPvkrv6kOZeuR1CCp54/J8a5MNyXZw1Z08sfg66ps2suDhpxAYDDmv1dYwdoKQQdP7Yxo2ir+VtLkFv6Lz1ntvc9IJl9PSmKWspDu2k0bS8s7oFqTTWfx+v9dapzj7eQUn18E1/zwORQpz260PouvtbN61hr49poHbk9aWLXy/chMnTDsRUTTJWTlUOeC1gfoVwCBjtuBTgqTTrfj9WaCIts4dlESrwekGYhseoaQBHXS2xomW+tm693WeXfwYv/zUwkdv/8KS15+guCJD644Kzj7/DhAkUtksmq4jYLB915+88vyjpGL1PPDwg/zwnw+Zf9cdXHrWffz2815uvesaQCQbt1n9xxcsffdaXl/SzqknT2buaZczcsQxB3zw4ACZHXPwR+PcfNssRo0ZzvSjzwFqvDkUWkjkfiGklmMxHNsGVRIBk3iyEb9PZvfO7fTq1RewsOwksuTLb1ymqbGZisqegEa8PYnfF0TWlQP733893Hdc/+2BZWLb9UhCNYhJQMPkfepbt1GiTyeo9wEpg53tZPYpc3hr+fv5OD9p//b2xVcUUEABBRTw96FAIhVQQAEF/M048FBr5X8jsmv7X/ToWc77Hz/If1YvZdxhI6gb1I/K6FAU9xBweng1iASJzjZC5Sluuvkkzrv4KALSCMorR9LcvIfy8t5ceO6/6DckzJX/uASXLgiODmITi56+nQsvOAfFHeHtWknx2DNzkRWo6TGQKZMuALcbrgO2C8gw//bzGTy4LyfPmIWRltD8XcnERXxeQJdXd4sbEIhjOSqyUAu5ACiQTTchSQqKWoyRTqCFNmPyE5ddfzHzb7mHyuDxZM0gbk7H5y/P+/sYHHDN9ZQwADimVxzYYOdA0vKDKKawrRSSHALTh2uC4DeBJpYuv5OTTjwFwQ2iCJWYVhrJrkVU4ZGFF7N125+cMe98Ro2chmuBIHt+HKedfjj33X8nsuR5h6z84Qs++GgZR0w8lGXvfEBxscj0qRdy4jHz6Ww3iJZ4BZGVrMA0wBcC1AwOFq4jIaAjCqJHkmHieUV1AiYZ0uj0Z/HiJWzatJpetTB58hieeuIJ5p15DJ99ew/ZxGhGDJ7NccdcgJFtQ9NLsLIisi56RJErcO9DpzP9FD+7d8U5ctyF2GZ3ZClEzrQQtHYE6pGxsEnxwtJv+OaLDdx204tUVhUj6a1ookg668Mvl2HaoGibgRqwFBAgZ+9CVXPYroNEDUZSQg3FyKZVVDGIpDkgdPDaW/+itDjCxvX1nDr9FkQnzuIX76ao1M/xM8dz34N3cfiEI3jvvTfo1lWnskLiovOvAMaTTfZBFHyogSzQwK7m1ei6Tnm4jnhHlHC4BhxId5r4ixWsbBtPL76Hqq4Rvv/+ex5e8ARke4MM2XQchTCi7aVXvbz8cg4eX4TrSAysmwtODZlME76AgmHE0LQI+9t29rcd2mDpXn2rt3PxZWO47prbKYuMwBdw+OCbGwjqvWlvUpg543KQmoA9pLMKqcbRlHWNks1uRw+t4f573mTbzt85+7zpHDxyGjiVnuEwLbzy9rUcNLoXOzZpTDniVEDBRURwuuNkinBsPAN1CZC2eFcQpxtmVkUQc3z4+ZN8veJd7rntJXy+ao9ckjYgI2JTjGSV0dFhUFRmAX8AJWCVk8m4+EIyqfQOAv5dgEbzniLKu5XyyKJJ1PQz2PzXbqZNnsnLz8a488HFQByXMInOKsIhhT17fmPuOSN58cVl9OhyOG17A3mFnneY8+bOoaRLM30HRDnlpMsJa70xTIdAJIJHtqbza74CJ1GCKEPW6mTDpk9R/QleeOlJHrj3PXB1Eu3buH/RHEwnxd6dMi+/+CVeO1OQbCqH7t+XCAnt7S0Uh8oOKFJE8n+jYuZA2Xf9ECygCfiFRDrJv25+mL79I8w6eTrR4BAU4TBwRWwHLDGFKBmk0wY+pQjLcvD7dVKpFh5+7AqK9KFceukN4EKyGYIV+X3k7a0Q8stfMUHIkOpsJBAVgBTJdIbTTp3De+++RTrbxJfv/8rUWXP23x8MR0IVA/mXD3Fuu+0ibv3XYyBYvPTqzcw5+VZsoxgl4LDf84hmPv7+Ru66432iIUh1lvLZx3+hyEX/pYrMy6kcEeQdmPzEdz9+xcQx54M1HFyR1b9/w5c/3E/P2hqmTrkFnKq82MdEJE5Hh0xxJEIi4RKKWLiOs98b3zEN0kaWYLAoTyizP9jT3X+t32dgtM8zzlt/wj6+XUp7fm+SmfeK+wWDNjRGgV1CNmmgBzVOOXkWry1bSiqVJBDc53EmemuJAgoooIAC/k5I8+fPn/9/+yAKKKCAAv7/DGE/i5T3yXEEdL0I23b58ZfvSFsxxh86g57lM2nraCLgKweK93MrmgId7bv5z4+/IQrtbP+rkQGDjyAQKAInxZo/PmDUIf3o2WMkAhGyORdJCHHwQceBYCIKLolWHS0g8vWKh5h18qH06d0bTR4BgowgCAgiiAJMmnAUg+pGAjqyogJJshkVTZa8xGbVYFv9Wzzx71vZuWsbg2snIDqeWkqWg/nWsyyyZoLgpf5sXttGOlZE//6HYztBjKxIW0uKcCiEV324OGQRyIErkcvYpFI5VElFEDw+SZTANkCUVETJx74qTZABMQFkqaurxTKCaHIFyYSJz6cjyArJ9Ea+/8/znHvORQyuG0kmV4+iWHh+LQKhIosRQ0cTClZy7/13c9yJw8nm0vSvG8J3P67ijHmnU919AFVl/dF9xeAoIPoQRVD8kkcWiZ4puWkKKIKGkQBZ8t7Mt8XW8eGXD3LeRZfQ1Pw9hww7n4fuf4CO+GoGHLqOTz9/lcPHH8uIQSdS2q2ZWcddR1FRLQGtBlkKgyPyv9h7zyipyvz793Ny5apOdCLnHBVEgiKKBAUDKKKOCcOImRHFnMcwglkU45gTBoz8VESMoKACIkGSDZ2rqyuffF+cApy569775j/zW+uu2mvVYnU1dfrU8zznW/Xss/f+irKC3i4hCwJ6Fr76+nMmHXUC/Xoei+D6ECUV3AySYnLeX87ipBPPxjIVZCnF9z+vZPwRI9m0aQOHjhiJLAQABVlSEUQZUXTIJF1EFERFwLHT5PUMqhZDFMJAEFkREXBQZB9iYQ3jBujVeQS9+x7BkD5jCZdX8/7bLzDh6GH06duJ2o6l7Nm9kQF9e/H8M19yz103sq++hZxucNcd1zNj+m2kEwl8IR3HrcDRu1NeMhgIoqlVXg6MIKFIXlczG/htx9eMGjuIDtUdCAWqke1qZBUkRUAMpHAQkAIyQ4dPoSzWl8rK4eQzErIYRvFJQA5ZdoAA4EdPSciKDIKEnZURJUCr54JLxtJ1YDMrPv2UGcddz97deQYMOIyetacyoO9kTxXlaiB0Q7SrCZWrIKWRZBBEP2+/ey1zL5jCxg2bGDLkdHA6YWVA1HIM6DeQDuHhdO82jqSeR5RtZGRMwUZW/YiaUigVDmDgujKCW4okiRhmit2NH+IPtzGg7zgwS7BSMqo/5l3rpKjfF6eiqkMhQ0wHNBBDKEoEBBtV2R9G1o2g1htHVzh87DASuZ9IJJuYPOEarrzqPvJ8R2tuNV07DySodgcBHl1yMb36h1j52VdMOmYWgbAf3Ix3gboSe/etpf9QjQ7lFQweOBNRKkX1BbCtnDe2AATIpx2UoKc2yuRFunYbQklJBY3NdfSqPoL21n3cfd+lhCu20NQUZ/vOdrp1z/PiS08xftxEHAxcZERJwhVACfiQLBEnC4IClpFFUXxezJroCZ8c0cJFx7JEMslyIuE+PLH0KoaP1Pj6uxWMHXUurluLaYOogC21Iws2PjVMpl0iHPJDDlS/j6VL51FTG6N/3x5oShlqSMR0GnCFHKIQPMDVrF77AW+8N58RIwYiSK5HMItRVKUEUQzQs8cIXKuMgcP68tu693jj7fv49rt3GXPYRBJxDb9WSkurzdSpM8CuBaeMAYOqkeQkltyCZfiR6IxAEIQoNTVlBIKbMXUYOXIWXbochumK+P0qv+/4kT92rScSdFF85Zi6gCJXEQ31wu+rJKe3omgm1bUSjfHt1O3bx8jhE9D1MLIgIQgSruDg81sIgo2kaOh5CUWWC2o+GUGSUFUfhmkgFUj5tngG1eciChkEspjE0Y0MshRAcGUERBy7kLcv4DWBcAUcQ0JwBJBLkelAJtuEqlnIPj+5nMUbb77BjBNmEAiGONh6sUggFVFEEUX8N1BUIhVRRBFF/KdxgEQqSPjdg89t/O1L+vWLIiGRTmqEIh29HY9gcsdtF3HK7Ml07NiZgL8H3636ip11yxjY9wgGDZ/jETBChvUb3mXYoMPI5mtQxQ4IamH/KYArbEekBIwyXDvD6RfFGDf2MGafMp+S6HT+n7MjPBVNPteEKnb0vpqLYNgtXHX9BB65fxHJvEvEdzg33344O3dsZ/4Vt9K3xwRMU2fRg7dRXpPhg0++5rLLjyKXLuPo8c8VMRMnOAAAIABJREFUwnANvJRlA48M8u5KZ3J5NFElb7Rw2pkTyRttfPLhu6RyBlF/fyAGVvBgpzMKL1XSmNY+lj53B4ccOoRgMMSAnkfT2lBKWVUIyNDcspWK8ho8G1MMTO3AHFgG7Kz/jC+/eYOfNn3MwgX3UFXWHZEQ69a2MfzQzoVzjYFzMIgbwcG1HARJLoy1joBIKmUQDgYLxFIOaOb+B67A0Ns5dORYJh5+JfmsyNvvvsScsycW3oyfD99/hxVf3c0Roy/lxBnzSLbpRKI1AOhZEy2gkE2nCEQE9iu4nntqCa3xfcxf8DfA4fTTTuXOO+6lrLSGcEkFtluPblgocghFqiLT7hAMl/5bC+79Y5khk6kjGPTT3FpHRVkXwIeZV1GUME4+ixiQ+HXD53zw8Uvsq/+DxYuXkIxbREo7YacVpIAL7l6QMjz55G2UV5TQXB9nyrEz6dyjP9dfM4/aTlGiYYHm3aOYd/mVKNEEhh1ApQO2CTgOkiqC5GDbBrmsic+vYhg5AkGblsQOymMxmpN/MGPaSTz55FP07tUXRfYhUAL4wAmCXSAg9y8x+SCp4uYUrEKAuWm3ofiyhdeVgZjEsHehSrtI61FCHIGRw7Ns7d+hKq3eD3ap123Qn8Q0sghOGMGS2VZ3Mxs2reHrL7fywAO/gF0KQo5nX72K6Scdw2+/7aUiNJHevfrjksd2TET8iMhYJsgKB7tXuQKYMu2pFkS1mWD4N+599DqunfcKhl6JKlSTzW1g47YVWGIL67/PMe+iBwrza3qdvWzveIJEwfqaA7dAVAvwzXdPs7PhVaLRKG+9WMfDi1/n150v8vnqV6guOZLJ426msqocApv44ZcXeGrpB/z17Dvp02sovkgI3KB3Tan1wBYsW0KWSnnljRf5+eef6dd3EGedcak39mYYAU/xZRpgiK0E/WUgNpIztuKXxhGv34Mr7ea5V//KmNFH07NvN+6552FOO+VyXnj+cxY/8BQQwS1kvTk4SCSBZiDHtQvncfMtj+LXOgKluJg4tBTqWjWSKZJozRCr+p65l06krRWefWINft+hiBKIBpgiqKoOOLS2b+bZF67kpGlz6d7tcBobf2Dy8bM5Yfpwbr5hBZhl6EYS1RfC0kUQQdZsBOEndPYw86R5LF+2iscffw5d15k6dSq9ew8CYriGhJ7+jOtvPBOTLOdfcAlfrNrJpZc9DoRwkbFJITthMLLg28Hzr/6drVt3c92CZ3HNrgQCCqJkAX9gGtvYsWMvHbuPwKf2IJV1cWydULCFp5++jE9WrODOv9/PksdfYeiQURw2agx9ew9DEgLE21opKSnFdV1Wf/MVww4ZSVjrxN69Cfw+mbIyjVQuTsgfI5lUiQQCB1RIXi3JATYtbU3oeZPa6s6AiGVbIKV5461/8vMva7j71sU4lGDkBXy+AAfkW7ZXlyxLR1ZVj0iWE0CCj798gOZ4K/W/V7Fg/gNMmTKFjz76iGw2W8jRKqKIIooo4r+FIolURBFFFPGfxoH4B73wg4ZpiCgyxBMtREtdJEQvH8ZRWPvjMyz/5GGmzTicQwediShUATbfrHmJLh0HUVszDOyOmIaDpFkgtiAg49ARsbBZzJkN+LQsIs2kM50JKdXkrd1cd+tRXHbho3TtPhavzfr/O4xsDtXnJ5VIEwxJniPHTZHP6/j8JTTta2fZezdy0UXXgdsBJxXghlvPp6LaYfOOj+jdayBTj55L/0GTwSoFWSdv7+OWO+cyeeoEhg85iojSEehMMmEiiXFmzRnD2+8/gIbFk6/eheAGOfu025CpRHC7g7APzydS5o2ZYAM5nnv+Qc4+65zCYAcAkadfuIYfvt/K44+8yfW3nE4kGuSaK1/ETPpx5QyOq+PTSlmy9E5Kyl1OnXUi0JsDXYP0yP6oDwDMvIUguLjYKJrvoDPDhWQuQySsAk2s/eUTvv7qU6ZNnU6vriNJx0UUMYgWi7NnZz2dOx15QCRi5ywkn8yNN/yV2+85D1DZ07CVt957AFWqYt55d9La1k5ZSQu3P3AZXbt1ZM6MW5EYxGcrPmHipKMK57ufrSy09rbBdYMIkuatO9smlUqhaUFkSUWUJXAhnwVJyWPThM+f4vt1K/ll41q6dxlC397DqK0eAWYY23RBbuX+x85k5PgwAwd355uv1rHs5S307zWRBVc9W7Cu6CBkaGjYSDAYJhzuAIRpaWgi3tbAP1+ez+SZW/jno/DkknVAdxB1XNcBIcee+nd5ZMkVHDP+Go6ZeCLC/rkmRi4RxB8BxARHTS1h0KBB9O0+ib9eeBOZNo1gicOOnd/z/bq3sUyB46fNJhbuC/i9jlWu7A1VgTwxbVBCe3j5natRw3u49/bviKo9mDRpClf/7Xx+2byekNqX7j0GkE414Toq4WiA9z56kOOmzCETryUcDdHa+gclJWWIYgAsMKz17Gv8lUwmRa+uU1BDFSC0s+CmqZx86kmMGjCZtrbelESi3sJywbIgnXEwrTwVlZ4K0M5HkRQBJBPL2cHehs2UVFi0t7fz4/d7OGHaWeBWgRkoEDh1ZLNlBPzdC3ZKL+fJJQKO8n9XaThg5NOoIQPPbqZS/ztUdywBrRlo4uElN7D229+5+OJ5fP3DP7HV37nknM9It5VQXlZNY+Neqit74ugCoj8H7MLBs2JZdh5F8vH2u29y/HEzkKUAHlmngBAAIYue3YwWqKCtbROPPnE3N1yzHDMTRpDyyP48EMAx62lra6WsQy9ww2RTeQKhMNl8lkDAx8f/8z7J9Gd8+vnzzJ17LrHSDjz+yNssvudFoBKQcMkX6m8AVw96yij5d9pTP9LUmKBXz5OxzDIQDGTZwDT/AKMzrutHDTWTZRm33HEfd9zwDCIqmfwGVn+xhuMm34GjhxA1G5BxrJAnzBLS2GxFJkpDYytVlZ1w3CzP/fNxfvhhDYsXLUFTumFmJVatupHt235EN/1cdPHlZHIO637ZyLgjJqIK5eiuj79dfgJVFWFmnXI6ffqM5t33PuC4484kncni8wtoslhY2H48+2wzSVMhrAwFV6S5ZRuCtoLV3z7Pxp8dblrwOA89/hC5nMm558zljTdf49NPV/DGay8iIQERcPty2RUncsyUEWzcuJFIoDsXnHs9ji2hqiqC6IDkK/xdvfCw2b1vG19++SXTp5+AYRhUxPoBOhYZnn3+Ec4/6xLv+AUSMKe3YTkpwv4MpmOhiGVAEKwYiBLJRCuRUotX33yOul05/va3Wzj++ON5/fXX8fv9/5+fY0UUUUQRRfyfRZFEKqKIIor4T+MAiZSmEE5EvNWhtCSMrnt5HaJoAWnmnnM0/Ya7TJsxnr6dp4B7OODj6uumceb5Ixjc/WIcAjhGKZIMed1F9ecxHRMjF8KniSSboKxmFxu2f8TXX6/ir395GcvIImqbee+TBzlyxN+JxTp5cRT/EnQKByx3cCDMN5dvxB/MFCiKKNhlB6M13ByZ3AYCWi1GNoA/UsK+xo949qWbufSqWUTkMWAcTjYJvgiIqoVNnMWPLuDKefMQKMElBFYVkgiO00Zb+x7CkQCqorH0qSX85czz0LQYhm6gahGgoTCO1eBEAGhP1BMtNbls/uk0Ne3jpRde5OEldzNoeCldOg6mZ814vvj+NXr06EF16ZHIbjeQmvFYoCQeoRbEMh2y+WYkIUIwVOH9zqzEtUGQdZCTgIVh5MhlbaKxGvRsHi0QxbRkFNkE9vLYszdx8onHURGrItmuEQv0BSHKfY8dyvadP/DE4t+Bci83xFYxMxZKdDstiXVo0kAWLXqMS6+aTUDtiE/rCo5GRv+FL1a/w7GTjsHIVhAIVPPnibKtPIZu4Q9GOCCZsYPk0i7+sEAmFScYDZJp19HUELYuovkK/1UBhCbmL5zN/3y2ktvvuJwZx57rjYtdBQRAgHR6Ly8uu4r6tk8ZPWYYP6zZyLlz7qdDbBgy/T1SwnZRNRtIk82bBHxlNDfmqagIEG/LUFqW4Ny5HTl06An8/IPIkiVvga8RCJLPCbz5+tPMPL0ricbuVFX3B1EHx39gzSVSG9hdv4rV6/7BJWfcyBXXPELdLp0H7lmObdvEymSiMRfDzqBKscLcaniBXgo4Ima+0PpcSvI/nz/NT1teZHv9OqI+H9df9jlff7mBfoMqaU3+zK5duyiNdeKoMXMAP9//sBKTHezdk+HUk27B0h1kLVWYiyiYIU9waO9DUNNALXraRAvZ7K7/lC9WfsvsmfNQ1BiCG8AyNBRVLuT1NANplr50O+EozDjyQUQ3hqNs4fV37qepqZHGvQb/uOelwsS55HNxPl/xCd/++A4XXTaHkHoo0dCgwuVcUF4VatCB3Jn9l7rQygHiwYoc/J1s0lqXp6wmjOWuRVYCtMfzBINhNu16neqaEygPDUQ38iiagUAExwDd0dF8CWRKMXIumk/F0nPIPrGQ76UCeVwy5I00P/34Das/f4e+/XsxZtwwPvvqI0454SagKxAkEYdYWDvoVnLhx7XrGTFyGIgOtp0ir6cIBARcN8Hy999ixvEn4+UExbx16wQPKhclMJ2dKGINuBLp5B5C0f2J30FAxmEH735wO7a7l4fv+QWf3ItDRh3JLXefgkUElS60JuvpEBG9AxLh951f8PfFF3Ls1GlMn3QTitPds2eJFtlkjkDEh0ewNAFxWlONlIQ7gdUZUYyBuBbXyCOo/UF3qW/dxserXmTb9k1ce+0iwspg3l9xJdu2rOHd13/n3Te3o2kxJA0Ufzu7921gy5bNfPzxh8jkOGbyKNqydbz43Ccsf70OKw+mCf5II4a9k//5eAPTps0BTNrbGwmGbRrjG/hh3Zf4Qm3srtvA6TMXEMjNoSn3KjfeeQb1e+GwIZO4fuF7npVTagXagc6FGmTgkfs2YPH56hUcNe4ob02IXWluaSCXT9C5YwUOEgIBL28qIGJYcZqaWuhc07dwLM0jGvfHCAqQSscJl8iAn+bmBCeddBKrV6/Gtm0k6YBXsogiiiiiiP8Cij0wiyiiiCL+azhI1iiKcuBZUQDHzLPqs+fo2S9Msj2FY5QAncDVSCUSDB40lD7dR+MSIJO1kRQvlsZBQDdBQCEYFJEkKC+D9mQzu3f/TqItA66IIGXRnVYiJSFsq7CjOiBLsP/tYR04NyPn4A/KLHn6Tp7950NYduIAuaRnQVRFwlGb5168j4sumYVjtlFTW00q00JE1oB2UJMESgq2IkTa4jkuu/hmoByREqT9iigB2toSaGoMVekIVHL+eXcgOrXgRlHVCg6obPZ32Cq8lWhpKb9sXMv4I0Zx+pknI6Gz/qfvOGzkBHrW9AV0qjr0oFP5YO8FUh7XUYBoYU5sdD2JrDjccc/FfPHl+4XncyDhZS/JOqbTwK66Nbz06qOs+3kVkEDW0kASWd4/ahodyrsTi9RgoxKLloKSBzmBILcz+6xhbNv5EU31Gz1yxBRRwiJXX3ciby57gXC4hAULriPi74VP60wqboIDQd9Axo88H9npTyDQCduwDoxHPmMgyUH8wRISrQlApHFfE+nsbvzRfbjiDhY9Oo9PVz7Oa8vuo65xDVrUORBEvHdPHQgSwUCEW29ZQJfOPQEFw7RB9JFp995ZKBTGzPup7XAIk0eex8JLHqIk0gVcjXxGx7KhubUFF4gn2/H7IuiGQ3lFgD/qkpSUBkklTfp2H8jOHXXUN/wBsskjzyxgxsljefqZJZxxxmX45K5U1XpWPifrBwucPBg5g2+//4wnnnyEXzfuRkcnVupn0pTDeWf5P+nSvTvRWCegEluP4qkyRDxSwVM6IaVRgvECiZhg8+bNjB19HCdMncgV8+4mnwkwderpdOs0hKEDhjJz2gkcNWYCmQxkMjlGHXIYYw8Zz6knnQpuFlmz+Nu159AY3wA0ggSWDkhBIOARSIEYes6hS/VgzprzNzS1MyI2gpDHJY/j6EAGiLN977fs+mMd4ZiNP6Sgai5+n8Dx0ydx8skn49phMolAwVoZwecPsX3nDww7pDvPPv8I0Uiho2OhPfu/cMTCnx8mXtB1BjAP2judnWz69TUCIa8OyIofy8wSLa2hqU5mSJ9ZlISrPFepICEgks4m0HXw+zRcRDJ5B01TwDWRNQUja6D5ygAfEEAgRDplsuW3XQzqP4iXX36OG29ayE/rfsR09wJx4sk9REs0cnmw8gffw4iRw8hncuQzCSTJIhiQENARhQ7MmHoxUEsy4Qe35CCBtJ88c0ERXSCJZbUSipbS0pgE/KSSHiki4nDitFkMHNSbnv3CDD20kmipwPpffkOlO6n2EKWRXqTbJXDD1O+u58GH72HYoZ14Z/nzmHa7RyC5kM/KBIJhWhva2R/iHk83URYuRUTCMIzCxCgIcgXYJWRSCtU1/RgyZDguMpoSAGS6d+lCjx7d6NljACIh/AEvmktAomtNN8aOOYK5cy/AlbIMGNSfIYNG4lieCjGdsfH7AacSxR3AsUef6o0pGtFoLbIYpba8FzMmzWLI4EN4/vmNbNq0GUGTaEvsomMX2PI7WE477U37Cp8RObwbI/sZPrlQlzUsV2DM4RMwXRfHFtF1m4ryKjp37EY6l8O0bAQkgoEgIgIvvPg8V111FRvX7/A6JjoHazt4nzXhkjC6kQWgoqIC0zS9JS0UU5CKKKKIIv7bKCqRiiiiiCL+0/gXJZJnZ9PzCq4rsOnXn+jWo5wPP3yKXzbey7nnnUHfHmcCfUg2VqCF0mhBi5wVR5bKEYQQAvKBL9iiC4bl4Dhp/PvbKOt+2nLf8NTzt3P15Q+A3YdHnrqCj1Y+yDnnzuGkSQ8Qb5EoL4+RaG8mEJJwXRtNVkik0kiiSjhYjutKZJPtBKNxnnrxemZMP4WKSH9w+nh7CAmQ4mR5leXvreKwESfSpfYYdL0B3d7Hk89dx5AhQxgxZCqloT5AT2xbRhKlf8mFOvDAwtYdJEXB0FM4joUv6CeXzuIPloArYuQsnn/9StLZFob2n8qEI09n7546artUsmDBOdx77+2Aw76m7Tzz/IOcOO0SuvUs57U3l/L9qgQTJ0xnyrRxhMJ+Mq3V6BkorQHkOJDm7Q8eplffCgb2mAFUYuZkFF8ABJ0lT82nW2+NltYGqjp0Y+KYEzHJ8+ayV9j2+y4uPPdRKsuqMC1QZAXI0xbfS0kp3L/4Gjb/uh5HauOEc7NExOM48pDrwTi0oARqZNmnxzF17P04coJ7778L1RnK/CtvwCEDroxf7XHAPqdbdWi+ysICK7SjckUsy7NMyorM9m3bWP3TfAKxFvbs2cWAAf3Y/Ot2ph47h71/JDj6sLMxHA1VLANqaWzYSiBsEg6GC5MbBQJg+b25UrxdfCrVSjgc+NME7if2RNIZE39QBHRcsggEcFHJZiAYVMnk40R8OVauuJUJk2YBNeyu/5XvNz/J5CMuwSf0RaUPjzw2k1+3f8ngfsdy0dwX0NtACwOKiWXswnFtVH8U1zERRAOwaG5JUlE2HGzZyynyZfjsi9f48quPmHfuUjrUiCQze8gYW3j3g6coLS3llOMupLlVpaJskHdtOmGyCQiEwSGNoGwo2OkqwOgHksXuvd/y5XcvMHjQoQzpN4Vrr7uSfa0ree2tViZOgA/f2A5ODxBzWCSQ7Wpammw0v0M4lgE3BiY0xjdSWVVDe4tItDQGYhsmv/Lokrs45tgxvPnGu1x/1RvIcoRk/gdUn4mR8xEQDkd2tQPTbphtqL4/QEpQ37aZ6pIp4HYGIKPvRRQ0fFo5kETwQsQAiRWfvo4ktxJvbWTWyWcDpUArX2+4lA0bf+Gi014DOvH8S9fSoSrKrz83M/+yZTQ31lNaG8PW/eSMOKLWSi4PZeFetKUaiEREjEyYUDAB2LiugCCUe50XC3ZbPQdaEDzlym+0tvxCWYcSFj98D/XxLYwaOYURw6fQtXIaO3c20a1rt4P1VDABg0TiD5Y+vYhwyM+eP7Zx1x3vg/Wne6MinqVPyIJbaBEm6Gz7fSVfrP6UZDrHhefegqX7iZWEefqft5FO/046DtcvfAGkX4C9gMyPG7cTDtfSq9MsNm2w6DdIRhLjeJ7REE2t33Dx/KO5f/HDdCk9Acvo6JHKAp5ARwTXdcg723jn/SdAsJl98gUIbg8c3YfoawUiYHjdEZEgb+/AsLNEfB1xnRiC+AvQAgwi31aBL+gd15EMRMHAxkTEZdnyJzj2mOmEfLWeCiocAMELwseWvY6H+TZk1UKRAwiyiqVnyOQb+ennb7nt75cycHAnJKeURfd+wjc/XcmHXyylqkJh67oqHlr0E6Cy7sfX+Pzrt7ni4mU4joMkKdi2jSAIKIrkjc1+5m//ekUvzLmER/CCSwqTZrLZJDcuvJbDRh/Kxg1bOPsvF9Knz1hv3TgmyO2FY8YAjZNOOolly5bhum6RSCqiiCKK+C+jSCIVUUQRRfyn4VLIJynsoFz5wP77i6+WMWxUJQsXXErTrvUsvGs8y974in7dz+SYsU9SWaOSt0AMtiMhA8EDElKhUL1tI4uk5fBayetADbARyGCbg3DNjjz+4lxOOeMoygI9keiB6Uiooh/LTfHSK0/R1FzP1ZfPBxSS2SyCGyQcLPPangstmOzBcUQ0sQzo7H2xBxCThbMRAQfTSKGoMradZ/Hih7nkr9fi85eTzrQTCru4BBBQvaGAg2oosbDZsETyuRy+8D6gnX88uoCAv4TTZ11DNNwbKxPh0ef/wsjRPRk9bBaZtL9gO9v/UaaBIzN16lg+/Ph2UplSwkGRDz57jjGHnE0s2pHtu77goxWv0r36BKZNmeMNmQKukMcmDlYVSG3IqoGZrUBRJOLtu/hq7XNMnzK28F7LaE9ZRMMCjz59O3UNO5l90iL69ByEKnYAC1JJnWiZRnPLD+zcs5LuPSpY97VMQ+4Zwr4+nHj82Vx9wym4RgeG9p/OGWcfSaZ+HI+8MYq+Q/3MGH8LoHLX4gUMHDiYdGs1c2ZfhNd2vQmB4QDkchZ+X5BczkSUQNMkvI0a5HJ7CpkhHtmTTVsEgpXeGnQAC3TTRQ79hiR4lq9cTsfvr/TyplzxAHGVzMZRZD9+1bOWpVMQCnPQASl4uUyJVD2RsI8ddZv46IPPiYU7cOacuWT1NtK5Bl5/dQkNv3/PHbe/g20HkYJZoBXDqgGrA6oogboX+AXTVFGEw4AgCCZPP3Utv279iptuvJVorDeY3Umns4RKBFw3jmsHEd0oiAKGvQNVTdOU2EWHwHRQdSBJQ9sXvP72YiRJIJuMcvWlL2OmYl4beMUh3vYb4bAfQbR45MkFhKIuMh04+9QnMfMuSAkU3z5AxTKD6EaKn7e+xFffv8GA/kNY/tZu7rjtU0qiNjZpFLeGxjqDqloVxEbAD3YEhDZam7KUldWy6efdvPXeI+juZu68/UYS7RYhrQ+yz+XJpYsIRR0GDBjAkAHjwenqTW+BbEDyrv1kahN/v38hwweeyqyZV5JOtxEKtdKYrKNDpAdQiu1aOI5FPp8nEgx7C8DNgZBmytRDqK6q4e67nqZDVU8wO5Fstvh41b3saX2Nd9/7hVUfrcPKDkAKmEgEQUrSnPwBVfET0vohid54h329ER0JLRApWAg5UPN2797CvMtO48KLT+P4qbPA9IPSQqY9RzAaZvppfRk+rDftrSqL71lFKpkgHKktLLJCVlkhg8eyUsiyzHPPPMHZ594IhA6WAiEOJLj5jrn06dWTOafOxevIGAZ28/GqTzj2iMvI5ULoRgI1uJWgnGLZ62s5afoNoJkg1BcG2suoggoSiSTzbxpPn65dOOPUS6ipOJZ83sEX0Qv1vRzXBcNKoqlJjFRHL5TdAZQEhlWHIgueNdiq9IrPfjfWnxVjoveEbQu4jkAutY1waYBEayMOEqVlNUAIx1EQBAEXm3Q2jV+LkUnlyLUnqe4SpGHfGqpqq7y/QzWpDATUCIINuu7iDwlemVeTQIrv1r3BfYsWMm7MVC4+9yH2Jt5i/nWXc/y0kRwyYC69Ok3H5w9gC3tY8dmrTJk4HxsXUxeRxICnsnX/9D7YP/cWB5WuGqbhSTcV1Vu/DnF2NXxK96ouLPt4Oc8/+xrvvrYGy9b44osvyBlNHD9lJlALhIokUhFFFFHE/yKKdrYiiiiiiP80Dny/leBPKiKvvXUjP234lPZkE36pC/f/40tmnXEoVd2aeO3te8AFnwyOrZB3mhBdjzw6+JXZwbUyWLkWzj/veK677my+//YZnnvpTn769WskJYiswdChQ1GkErL5UsBHPp/HdnVkQSCvp+jYqQNgktLjaD6JcNBHOpvw7mATQKGGfNqHly9z0AYFGsl4EPDhkOWpl27im/WvIErtXDl/Ab5AOXoOQsEopu3iuF5nKEfMgWR55NF+Asn1PpJMSz8waC0tTcyceQLRcAlgIftg6tEXMXrY+eSzZQSDHanbswvQsZ0GoAnEFiZNGQWotKf2AQ5TJ55MLOonmd7Jy68+Q7fu1Uw5fiCGs8fbW4kgyD5kuQOyJGJb3gZHVnWQBAR8HDPxBAwUXMJAFdFwP1IZ+GHNFo477gRiJSEcx0CUHAQJgkHPSlTRoTsD+o7DJ3di0uTpDOwzkSkT5wIBRo2PMXZCD2afejZQS7AEJo49nxnjF5I1fEAlotWVAb2mMGf2BQBcd8N1CMTYv+O0LM925PcrB2ySuuEpkvz+juQzIbDK0dMlBPy1pOIurgEtjRmQIas3EE/9xlvvPVV4TSHwtjAf+90qkXAEWZZJZ7wFGNofvfRv+7dYOIKIy6qVX9C9Wxcy6XZS6VYCmshPP31DPL6XfQ3bWbt2JXl7G48+fybPvHMNqtyMK+/xhE12NbijUKRRtDemQcyAs4+XXluEJW7ktnuns/jxI8la6/GF40Acw2pHlE1Qsuj5LKpaTaLNT4fYaJChtbEV25SpLOlP7+6jGdCbZikqAAAgAElEQVR3HAFfBYnWNIoPDAMQdvLJFw+RyK0nbzZTW9uJWbNOorRco6l5C4pfQNHCeCoKP7IYIxisZWC/w6mq6E2v7iMYNfJIDEfHxTlwqVfVqIVximO7O0DaC2KGssoYqXiabVvX0bVLOT7NYcOmtcSi1Uh2KblsloGD+nPMxOls21IPaNhWChRoaN5BXq8H9nHxvCM57uRj+cu5kxDkdOF68joRVkYGA9XYThhZ8KNKPhRVxLQEsMMglKLrKcqrHA4d3ZOnl74BThV2DiIVMsdOPpJE9hcW3NSH+x6djRrOIkne9bH51/UsfXIRjz76dyQxx+dfvsnLLz3BO2+/gOYvwdUVjAwkWswDxMiXX7/DmedN4MnnF3DqX8aAHCObdQlGu5NN+enTvScNda38tGYj2CrhSKlX5/49u82VkOUSsP2cfcY8wMDFxD2wJk0MO4ljZ9i1c0vhdQp6QgIkDj/8cBxkNJ9MJFpOUI6QyDRx0imzvDUoAFRi5KvArQRsDGMPsZjOhAk92b17K4sWPQCOgi8QIZWwSKVccpmCuFDRAAvbzXt/WvLqpSqXeAQSGogKruUJpVwK2e+Sgyt6/L1riwgIyLJNONaVPVubuPX2BWzdtYJXl91JKvc7LgaWZaHrOqIoIsoisRI/HWpdrrn6VFauXM76dV8VLmQdW0whKRaiCj6fQC7tYtveuNqOQXV1JV26dmTSpKNxBYmSkh4cPuow1nzbQO9eY/AFyrAsGYkYh448EkjT1PI7muagKAVm+t/rggD/4ilERJbBizLy2ifahOhUPg3og2NUIFFWGLc4rtzAxq0fAHV49ssiiiiiiCL+N1FUIhVRRBFF/MdRyBjar0ByIJMDQUqz8PYp9ByYpzLamVljbuPFt69h6RsfcOzxcMHc66hQr8B1K4gnTKIlOrIT+lPr78KdXSHHC0tvZcjwMIbdworVrzDj5CnUVA6nRPkriDEMcR0q5bhWZ+LpHLGYjESKnBVn/c9f06VrNbVlNeyqr+ejDz/FtQNcfMHfcAwR0xBIJJJU1pYXOqEZ/DmkWM+D7u5A0tr48ecVjD/kdKAGDNmz2wg7UCWNbDaKRSP3P3Az5VVw6bnz8Cw0EXCrvVDmHKh+sK0supFHkm00v5cJ4u0hRZAbAYONG7fzxJJn0Hwi1167AFn2EYv29s4pBVoUEJLkkjJ+XwBUE9No5fXX3mbmzJnUt/xI106DgDZWf/8RdXV1vPTy8/Tr15v5lz5CVeUQ8ikHn8+PY0LeaSAQkoAAGMGCM9HhvfcfY/rxh2JRjWGa+JWo18IcBVyJZGuSSKzUWwPy59y9dCI9oguZdcp1QD1QSqZZ461Vk3lv2XeY6YGc+ZdzmTZjFH6lGoih53RE/+/cftfVnH3OaXSvPgKXLoCEYbqoitfiOpXKEA5r7A+4zWcd/D4vfBynICxTHQw9jurLcvXCufyw/lNs2eXJx+7j21V7mXrsaVR2GHJQbSZYILi4SDQ0NlBVWUZjSx2V5fvtdAUWDgXBdUi21REp8WHaKRQ5xP4deUP9Vlrbt3HTrX/hscdm88YzAU49/Qy+Wv8Wk465kKDcvXDejRw/dTKZbB2V1RapLEyZPIzqyp6cdNI8Whubuee+m7hqwem8s6yNiy78B8l4ikBQJWNsoTm+jXsXLaCirDOXzltILNQTRYogieWeY82GrLmbUFgtXJeVYHtt2V95+3J6DwizeWM9Z8xc4mWziHsL51UJhr+w560Hwl6ItgDI9UAzLgKGWQtKDGjDJYtCJ+LNjaxc/Tq7G16iU+cQa77ZgGP4GNh3AnPn3ghYfLTiEQaPKOPdd5Zzzmn34lcmkjN24A96CkTQSCfbCEVEVn3zBj+uX0lDYx133HoPuQQYQh1Lnr6fSy94nHBwIJLocO2tc+jYqRJZjnL+nIeQJLDcdkQxi54pwS/5yGfBV7qFex8Zz1dfN3HXTQ8j6cPpN/Dw/ft9LOlNZNK89upvnDr1bghlwQ7gulvZ2/op8UQbg/sdT3t6G/G2JtasruODFcsZPOQQjp44jaGDJ2LmXRSfihdk38hr7z6Grgc5buKtxMos7HwpighZ6wvWrvmCxj0Op5xyGygmSA42zoH0Ha+sCiCoHtnpgqskcQgBIpINSCa2WY/t7mPPzgZ69hwPZol3BN9mdFLouT7IRNF88Nmqh9j084dcefmjQDd0EqhEcB2R7354hWUfXs6gnhPoUj2OIydO5+3X3ub7b3/l7nuXkklnCJYmAMhlanEtCIQAKYNjmYhSDMdwEVUBhIxXt5HA9jKb7P2qMuoAC5FycEKegFUApEYwK8FwWbvlXn7c8jRffbONgb0ncu2lrwMRUukEgZAA5Niy53Nee/1aDhs+lF2/auzYrnPfovexBQcEk8+/uYVfN/7EOWdeh+BE0cTOqFopbS3tlFREibfUUVpRRjzdRiBkIOCw+svvmDBuNqIreppa0USkkXc+eYw9u+vBCXP5RTeSN218Sgn71ake9qvI9ktQQ9hmgUQSHaCVnGEgmeWowf1qMxHwk2prR/OJLHv3GWbPno3XqdFfVCIVUUQRRfwvokgiFVFEEUX8x5Er/OsFqx58LsfbHz9MIr2Nc2b+jR0bBB56ZSgl0Vq61kzirDOvYX8feDvfC0kSsRWPCJAEHUFsAdLcd8/5HD6qJzt+30I0HObZ9z5h7FEljDrkWMYOvgWsPmTTDrqVoaQkfDDK5oAFKY9HDOVY/ODfqe3UiSlTpuAYEtFoF3BC3l6gcHfZtPaiqCa6mUZTImRSCsFwkHy+CZ/PC5C1zDJkuxoEsJWdSKILVGOynaeeXsQRR46mf4+JQOeDdhcBEAut6t2DweP785OyqTSBgB9d2IemmBwyuge33jKHrb+txXUkRo86g9GHX04qoREOeBaRbNIlEBQwcyCpIGpgGy6S7LVNR9jL9bdMp75lAwBlZREuOu9mOpZPQfN3p/WPHKFS0IISCD5cXTlgI9wfB5TPpTCsOJFYDY4NrikjaQKQKngOFfIJFV9A4o77L+HahbPA7ItMJYiQza1i/sJTOXS0xphhl9KckKmq7kSH0gFEwr29TbKYxnbrkAQZyyhBlstA3MIt9xxLVVU5F535EZgVuEIOQXXAybN58yruvPcS7r/nGSqrBoFeCoLO9l2ruW/RDcRKVe65azGplE44PBRbDyIpPvRcGi24P+hZIpdW8Wth5l1yFBMnHokj6MycdS667qBptXiqHAcXE8eOFexVOpIb85avAGh7uGz+KGbOnMnunXvYumkPt9+5AjNlooRT3Hb/BXTqVkp9Qwt/u/gf3H3XP9m142euvuZcdu/ZzuSJc7GNIBIF4koE5EZc20awa0i1wXOv3MqkmSbvLX+afr3GY7T3pbnZ5MKL5gMSza2b+G7tZ6xb9wM3X/cItqUiCVXkMw6+sIjltiOLDaRzW7jphuu5/JKFdOk2HIjiEsQmgp5OEgy4uEISQVCB0sJaLYR2FzbJNgoiMmAgkMUwRVQ5Wlg3P/Pjhpd5e8Uijho/m84Vx9Gz6xgSLRKx8nLizX9QWuGjpXUnn658lk2/rqN7l+Gcc9b9YIZY8uRCdO19Xnp5G7WVkGoq59PP3uTbtcv5ZOUTdKs9nDknLEIJhrnv/qk0JzchuOALHsGl8+6kPOQRk+Anl07jDylAKxCnbt92zjv/Sj75YA2WHsExAqiqerBeuHgOOFFH0BxgB4uXXIyLTofyLpwx8wqgEoiRyW1m04b1fL/2F+ZddD2iVI5pgKJ6WTjpTJJgUMFwMmh0wMxb3P3wCET/Zq6/bB1mtguKECYn7savhanb8yPNyc0MG3gkEPFsfYW8OVfMYBNAQCCZShMJhxCwEXABE4FcoZaGcbMhhEAcyJLO2wTVLqSTEI5QsOd6HRgvWzia7Tsb6NQR2uNw5pnTeOqpD7jqsssYN/I6ECpI58CviYiijmnaIDbx4JMn0qXDRPr3PpKBg4byzJKLaGsNcuWlt5PLVhAsK/lTjJmJg4FEHYaVRM9rhEPV4FYcqImWm0OWEthuBaIgIrAHz1oX4LvVjRx22GhQWvnmm1f4/Y+VnHnq9Zgkie/18fOPvzNpel/21f9GTfVRoFd7eWHhb/jx11WM6H+KN5bEvDwp0fPV6elCZpWk4zoSgmgCOa658Tx279nKk088S8TXi1QizxNL57H847eZfcZo/nrOo0AVUE3eyBTmWkSksVA0/eB6XQDzOvgCAHW89M69xGIq3375HXfe9B5mrhSl0DzCsHUUWTvQnU8UPIHs2DETeP/9D4nF/AfrMftt49KfPmuLKKKIIor4Pw3plltuueV/+ySKKKKIIv7/jf3dzmS8XZhNKtvCvoaddOlWzfLl7/Heeytpa7ZQYuu5Yt4iRg6/GCMZxhVS4LpISoRcxkHSZCSx4DIjCaT59LMXqamN0aGsI+PGHE2og01Dg8HRE2ajSZ2QxA4osoDfr2GZNoLo4FgOolgIsxEO3AanPdFGl85dqayoRFU0JEkD1/cvFjxJzrLrj418++0qOnepJBCoBVRkWeWOe67kvY9eIRwqwcz0oLRMQ1Ta0a04shgikdyOaacYNXQ8UOFlwxy4216wQuD+yQ4hYJsGoiSgqAq4FrKq4SKxc/e3bN70P1xz9Xm89uo77Nqxg8GDj6S0vJKGBoOgX8F1BGQFJBEMy0VWBUTZJZ1Kovpdmho2s2Pnei697FxGjx7Bio9Wc/bp1yErNZjpPKGyUmSfDYKLrYuIkgwC5HMg+wEpjUMbgaANtCOIIqIQ8N6GnANSQB5ZjYILow4/DIQIrh1BklUQdZZ/dDfBSIJhgw9jcP+ZdO7cG3/QTyjQGa9FuQ2igSj4gAgiJeTb4byLJjBqnJ8t237i6HFXgRBCkATApmHvTn777TuGDO+IkXepqqxBVCMgZXhi6W1MnjyOYycdQzBQgd/fCZwaRMHLMpE1kfqmdXyz5n1KSv1EIjUgyTTt/Z7jpk1kyPAB5HMGPi0MQhmOpWFaLpIk4IoqHvlkHxwHAZD/oL51FZJk8swzyxl16BF8++UmBgwYgeXY7G1Yz6RpI5EVGcuq5ZBh0znrjLOoKKugtlMXFKkcwQ0iuNpBElQSEMQcOBGcPHTpWkZpVZyJo4+ivHwww4edwSFDjiCXzaFoEb75fhlIaWo7ltOr2whEMQKuhqwKGGYORfHGbukTDyIKLsuXv8SYMYfiD3TAQSOt+4gEwDASyLL3f6Gwo3UV7/oWBDzSQkZAQUAC8kiSD5CxcyLZ/C7W//QlZZVB/FothwycBZTiU6vAVfCHIvy86QPue+giLKuNI44cy2+/bWXcmFPAjfDb5u+o6ZZgzZqddOsaZECvyVx949Ws+r/Ye88oKcr9C/d5K3ae7snDRDKSlKxIUFAxoMeAAcWEWTFnPeacs0eP8SCoGDGDWVFMICpIznlgYufK90M14Lnr//F67pd+1mKNuKCnuqbqLd7d+7f3Dz8wbnwdB405nXjpILBszNwqvv3udzJJ6NOvNwMHHEBQLQXi5LIGmm4jSbuS/0tJtpk8/MST5M1tjBl9gC+GisCeIHwJ0C3akn8SClpAmrUbVtPU2JsN69vo3XN/goGu4IXRVAs9EEIiQFNDH4QU8s+DK7FlUxvlZaWs37iZRCKEZAeRdYmqht/Y3vI7wwZMw8yVIjQFXc/Qun0n0//zCD/88j6jxozC81QUUe3nZQtwRRZBkHwuTTiskzXaUJUAAgXbVhGSgy/cezhumLaOndgORMMxTMP2XWxpC00PAB7p9A6Cka0YzmK6dS8nFqzhpx9/Zf0Gl9uuvxpEbxwCWI6DokpIWCgihOuZaNFl/L7oZ7756gtUz8Sy/+Srz+cx6bhJaLGGwnPAP5eu8F03H3z0FO/PfouR+x2MqkaBAJ4nQAJZsvHwcEUADxkHC9ARxKmI9UBRAbmDmkqVtev/oK6mP6FAKZHwIBb+uJpnp19OZ2Y9Q/YZBXYlwoWO3Da61Q/AD88P4lgGkmqCyGPms+ihYGEN9rBzAjyb9vatbG/5jS3bltLe1kJ9TX/KyrqCu4P6RoVPPv2Sbds6GTp4HBIl2J5J3syjqQGEHwiF/0GK//4lBWw3jSylCZcodOtez9y5b3LEIRcii8DuR6YkeyAE2ZzAdvy1PJ/P89VX3/CPo45F16S/PC/+eqEW3UlFihQp8ndRdCIVKVKkyN/OrhTc3R3wOF6ajs5tnHXecfzz5kvo22cgUj7ETXdO5oF73sIzwwhZA6cCHMFTz11KWszjnFO/IF6SQBLgeq1IIseKNZ9T36UMx1SJlnQBJHKZikI4MnQkVxFPFIKS3TzIy/BHrfoWnDL+yIGZyyArAlnVyGXSBEMhEBJ44d37ZQTYzjYefvR2Bgzsx6ETjkQ4tViGQNFMXn/3NiYffwj+5qQ/kOOlWWeg6RKjh51LQ20JN9x2FaYh8+Ddb4Nb4Z8QYYMw2JWPsWcD4OBYGWS1YIHAAGqwbBtV2cmmTZ9RX5/gsUfv4tLL7sWlHJcYCl3IdEA4Dh3tW4kn4v5Pwsyzau2vXHvjVI6bdBRDBo5nQL9huE4S23bR9Bp25z5hsHXLr1xz7SOM3n8C511wGVbOQA1oWNZOVK2dp1++hgmHjeaeB2/gxMkHUF9+KH3qr/UPVd0CbGfBnx8R0fojnGpuuGMK3RpH8sCdM0CYIJZy74PnccpJp1NfdyB45UCs8PZb8CvYZRw7gixV4logqeA5Jluaf+Pm+w7m0svOZ+/uN2FlIn44tOK7BmAnecMhoFcXzmWO/7x6Dx98/B/Kysp49IFZ2NkuRCIx0vn1RCO1gEMytZVnX7ydEfsOJJPJc9i4c/DHqfyxrrbWdXz99c8sXryefQYczZGHT0FSIZcDLdqGoBOBQOzeMJo8/Og0xh/Sm19/+450pp2Lz7kUGI6Tq0JWa0Bx6UitJxaNIoj5GTkhB3+8ZyO33Hcta1dv5ZXn5uE5ZQih4PeoL8bJNyArtaRaDNTIegIRHSsdQjiVOK6JHpOxcjJqJAdkSKXaiQTqEfIuccQAxSWbkgmFJJC2gshx6cUnctAh45n30wr2HjSS44+7kOV//sHAfv2Y9cZz2I7JiZPOQVFL/zL654Iw8FB9F4yn+veOYgA7ueXuSZj5NCccO5VB+xxLJqUQDtf9RUhNAy3k+YW1W79k/hdZTjtlGoaZIhrYm9Zmh7KqKDnvKzZtWUavuhFALXO+v5+GbjaLf+ngxMPf9I9FTmLmfyOX34gr7eC5F5dzzeVPg6dg5n29Sw34TWc7NzcTj3RBDSVZ3fY8a1ZtZuiggyiLNOKHUQcL90QeaOGdTx+hJFrNtk0uU064Hgjj5EPIqr/GeTakra1EI6HC/ayDp+KYJrKqgXBo3rqBqpoaHClMcodLotThh4V3sPD3T5l21gyQG/E8FYcW7FQWV2zm8usmM2DgSE6YdAGViTH+iKYESEahRc8knU0SCUX9+6hw/nOGyZxPZ7F+0x+s3/wrj90/l1xKIRgCT25BkASybNpiUF8zxH+ryhq++/kpqqoqaKofjCqFef3NGQTVOo4Y+0+UGJiiA0VahUQ3Uq0hotEgaB14fMJHn87i7tvfo2cP6N5Uy88/beHVmV8TKx3kn09PxRP+t5LZyS8/zWHYiOFs37GR6so6/ABwHcMMoalhTBsUFSRsBFl2hYzbRivrN/zOiy//izNPP5+ePU4ilVxKNFEGZNnSPp1XZv6L8854GM0aSyAQwLXLkBQJOWiwbOmPrFj3OansJjQtwIn/uBQ/vDrohzS5ku/aJMOO1l959PEHWLpkDbPf/p1Mu0I40YbNah598nram6u4647nyGU0XGkn4WDQXzussH9NShRey3d7GY6DLpcAYZLJHWRz66ku3wckDUQOhxSCIJbnIgsZgYGHhJmDM04/h9deexNZKjwr9sw5siftv0iRIkWK/B0URaQiRYoU+V/xl9XW8fKYVprHn7qTSy8/h4AIkm530HUVNWQBm5j1wV0cNOwxgnIfzjzncGbNngJMBlQ8FzxsJMkCOgqvGsYwJdq3RqishGQ6SySqogRkEDvx2ME7Hz7HkRMnoVEFXvfC3yuIW54HnoPrOEiqXMg/ssEL+huJXZ/2ig58kUIDAr7gtUv3kdfw6rt38NYbH3D4Qedz9lkns8/Y/pgmXHPxeQjhsWzZKu69/Tmgyh+VA5By+GJbEN8VtSuANQck+XPZN/zy87d0Jjfx1oef0Lt3H7o11BPWQpw99SLCkS64uRIkrW7Ph9EKbG2ex5Jl8xkxYgixUBOCIA89ejOvvvsiH3/yIFWho8Cp8ufcPJV80iMQkUHJAK088NgFXH3pLfgiShQIYxkOqh4CDNo71xCNaSgC8paL5MVR6eafD8XCtrfx0mvX0dRTQg/ChjVJjjjgTkpL9wI6uOTaIRx1xOGkW0s4+uBbQA/tHtFB3cwd959BOBwj2RLngrPuo6y0AiVog7DYtKWV+loDizaMTE90LY4s+7qf7aZwaUUXTWTSfmV92ljDG+8+wviDR1FT1ohOb3BKsS3wXLOQVwMIm2x2G7qu4tgydj5BKKyA+gPPP/8Ao8cP4K233+aC86+gNDIcqANHo7PdpKRcBS+MkQdJsVDVZrK5FHYuQiQQRwq2glDBqSWX20QwEgJXAUp2Gwhy9nqCqlSoqc/yyRePUtVFJhAI0dBlMJFAPyBM23aD5189kmAwQt/e+zJ2zME8/e/bSaVSjB15EiOHHYdp2gTCYSwjjKoJXNdGEvqedrkEIO/ENDNochOuAZa9HT0ms6vtsDXViaQGiAZqUNBZt241XbvW4Hg5li/dSr9++4Ib/suYqIuH5IsargoWmE4GObSeOd/eiGJ34atPNnLvPTMxDBVdD5FLgiKBGoCWZr/1LhD1r2FPuIDf6iaIF6Z1DKCNtkw7Tq6a8kip32CvwvKlK+jVtTeS7nLbXYcQCHkEpe5ccvk9tHWmcF0XPSDxwEPXoWlZFv36M/17D+O2W54EKVC4DyPk04JAuOS/1i0/pMfFs12EAi0t6yiviAEO2VwnwWAEQQiQsUmQy9uEAmpBFrbAMQrjjhnatqyktLYvjleHXBirzXZsJJ1pp7K2HpALIfY6wjVoafmDRKXN70uW88Hsr7jlnzP9ynoKSwZtOGYryUwHkUgMVa3CyykIwqA7IHUCbYw7vBeP3PMhe/UajabHMKwNfPv9+6xY8x3TzrkCaACrBtdKI4U6/LXIDWAbOfJGlki8HvL+upXKLWH216eyYVmEf17/AU57HMmCZ94ez4bmL+nbpyfVld148cW53HrbDcyYPoc7b59RWEuq8DwV14Nsx06ipQ7QQjrfzAcfv00i0cjYsRMJSL3AUUHuQGBhmxUoHiQ74e4HLiNevYrrrjwRl1YeeuwtJu43i6z7G4/96woef+pOVm6czabNazjukFv49detzP7gZcoih3DpFTfz66L3+eXXL1iy8mPuuOs6vvhsPscdfgPNm6NUVVUWzLMenpvFE1kk2aAz2YZlSqjUURKP4ymQNlcR1XKYdgU4UTRV4bXXb2XTxnVUV3bjtDPu+a+R6D2j0Tk8TDRFBgJgK6CsBQwMI4CuNYDowCNF0tvMi8/OpKm+L8cccTJHHX0878+ei2HY6HrwLxfprgW0SJEiRYr8XRRFpCJFihT5u/k/VlnDzLHkz0WUVQRoqq+hM7eZyy89hhf/PR/fCbOZj7+5lsPH3gJWd7JJFWK/IJy9kaQQuhrxB+NcyBjthENRMnmFoA6aA8hZEBk8Ujzx+DMEQi7nnj0FsLCdUhS5MEr218N0XIRmFZw/hbEy9ELVu1L4h79BsnMTsZIERs5FVypAcdmyvpXahgry5kZmvnUHPXv0Ycx+p9DR2cy3Cx4lkYgyqN/xhPQKLFNC12r9jfcuhF0QrXaFNO/KtkixedsCvvr2NVauWIjt7uD3Jc1cdvnVWFmVIw4+DdeNIkkl4Ib9QG0dTAcy+Q38++UbGDq8D0MGjyQeHgZeiKuuvJBrbz2UilgUGAx2BKQsSALbdOloy1FeXYppdCCpSWS3C0KK7ikXwv+ayiQJRc2CS8rFMUPIsurPaex6D55FJtNKKCIXRhBztDZ3UFZVyaYtf1Bfq2KTRqEOvF6QKwEFLBPQtjNj1n2ceeqpgF54nxF8h0AQB0jnkkRC4KLjuQqyJGNZIKsGEgYQw7bB9Ww01cDw2tGFztadO1FEnEiohkhQIFxw7DyyLjBySXRdBxHCsySEkAr6XgZEkukzbmbRH9+wauVaPpy9AKgAAmTa09x46/VceM699OrTwLYdG5j55jVIksIV02b6sVvCBUWibSsowRRXX3cWTz93CzIeEMJBRqYS3OCeoPWAB5LhW2eEH+a+yxmXTq8gkrBxvQ5ennkXPy2YSzxeyn23zgJ6gRcFIXPvwydj5aNMPuEcenQf5W9WZWhpWcNtd13IrbfcSEzvjhoqBZEjl+lADYAi64CG6dooUohUsp2SWJTb7ricyqoEJx1/NolEI7ixPfe5BJ747+mazo5mSkp3ZQ/p2BlQwr4QkctmCYZ2BZCrpDvSRMJlfqC1DULBbzIkz7bmNmoqGuhsh0AY9AC4pMgYnUR1E4OlaPREsXqT6gRD+oHy0m2s376ZpupT8PNvbHwnyDYyznrCcpRv5/3MwL3GES9vAGKk2jw0JYK+y0gkGYWLXwFXJZu00QMyLh2ogTy5fDvBgODqGy6iurqa0tJSJk95GIEvTCrYZNKbePedGaxZOZ+yhEVFWYBtzXDZtR/iuCvQJBXsGnIdBmrJOiTVwCaAQi8kfFHPYQuXXn4RTz7yIlADXumeNdZp5csv3+Gnn+cxYt+hjBt/WEEUUwrvtxUwMbwMd97+GNWV3bjoglvwFSgTaObJFy8nEAggsr046+zbCu5NXwFLpIQAACAASURBVHTEhs70OkoqImzbvJw77jwfxE5Gj+vB/K+3Uhrtz0knTGbR4jmcfPoE1q9fSVPTREDw2uvPMfmk09jRvp3KRA//HqYKj7gfpyVaQKQBB9NK47jQ2p6lrrob2bxEMFCBx0IkTKAHvjssD6zirGkTUaUqrrvqXuorRiMHJExrEe3JDUSCXQiHPX5ZNI+eXfdjztz3WLjkTXr1HMk5p92Ai8D2TB566D6mTbsEWYTo2BmlS9VeZFMQKnFBdvCcFK5nIkkCI+/iuQqaUo6sCGwFTLeddGoDlSUDcW0JSUmSzX5Hy87tfPzet5w/7eXCOk/BcZrjrXdeZ+TI/elSXU8mYxAOx4A2Xpp5LsccfSHx8AGQCkMYTLEBVSxnXct2fvl+HcccdTonHj+V1199D10rFC/spigiFSlSpMjfTXGVLVKkSJH/H9B1ndbWVsrLKwGFe+77J1MvGszGzd+AXUq+vYHDx14PyKCmCJWqBNUKFEXCsozdryNJFEY3ILirplzZgss2Nm5ajsDAUVbSs081HZ0e0BdFTmCbtr8R3xVDBAjVr4C2nA4gieW0AhZ4HmbOAGEBFrGSKO1tLejBEC07O0AY1HQpxzYgECyl317DGLPfRGxTwzFjaKKe0YNPIKLXIlGGrnUBL4znF4jhmB54CrmMw//1WFqwYAHTX3kZVYPlK5o56ZiL2KvpcI44eBpQg2mGAB3byaGX5CCQQQun0XSXAQMGMH70YcTDTRgZBRyFow6fSkTrA3QBIoUJuhQXX3kijzx9PaG43wykKAkUqQmhCFpb15LLtYMM6ZQJMkRLYshyOXgJII6shtn9aTo2O9rm88ob13PT7VMRohzsGsh1oayqimRyNY8+chdr1m1BIoxFG4iWQmA0qEEbVSvhzFOvA6Js2r6K404awx13X+z/0DxwPQgFYngE8cgX3Fw+ngcOEpBDUQw01aG1PYVjxIEKulT0pbK8mlDI9gOh5VbyzlpgIxlzFUgtIFoRWhJUg4zdWnCgtaGEUpw0ZSzb2xye/c8ltCQ/ARYw6/1LOfyovnw971VsJ8lL029n1IHd2G9MIw7bSGUdOjObQTIorYZZH95Mfb/tzHrvn1iuBW437GSjLyBJOVAMtAi+ImMHwNZx8xKO5YECppUiEu0NXhOSaKC2ajDHHXU5Ea0vnhcFgmD6odd5bzGBaCvPvngnhrEDx8uAZPDVNx9zzLFH8p/pz7N67U888cj1QI5gWEeRfecZxNCkCiRKKIlVsHNHM9269uDggw/m1ddmsFtZLDTQe7uERg9yRgqkDr8JzouR7+gBuUpsS+z+Q8GQiu+4S4HXSSQu+41kf6lJ70z6CeXVVeUgoCTGHrMeChE9ATgo9Eexe/vFX+omykuDQG+aqseBV4aZVcEJ4jiV5MwoYbkHUMGY0ScSVOvBi+NaDtGSCIoMbkH462jfXDhG228eCyrgCFQ54bt2zCocXCq6WKzc+hpedA4SO3EAy7MAgzVrl5LLt6PqJitWLaRHr0oamsro6OxAkfJAGiSJYLSEDRtXcvGVZ/DAY7fg7h5PUvh63g+UlJRw7kVnAFkQaXZs3wiAbUrst+8BnDz5DH799VcQFs1bVjOgbxcWLJzNiVP25+Enr0IXCv336stFF1xCLtUOmGTT24AUo/YfTO/eVTR3/EwmvWz3vYbl35emmQVSPPD4uRw3uSdjxnVDcbtQHq9ny5ZVXHb9FCr7/MAL0+/Hs+rBGo5n1jL5pBvwKOXddz9n645tgITp5sjnciBg0cIvuPqqcwEdTa0mqDdRV70PECEUCAJtSMTI5oNAvODe86/tseP3JRhzefDxW7ClHbS1LELTbKrKm9BEPdDEwN5HEdabGDt6AnW1jUTjLm2ZTUhE0EQ111/1BNFADxQpQZfacto7thNKQCadBkyE7CErMkJS8TyJYCSGrAlMCzqTWRRJUFFSQ0dbyp8yxSYUitDQWM/551/oP2s8QFjkzCW4LGLluvd59vkbAZdwoIpki6Bl6zaqKhuIhy0sbyE50UprawuaqETQk/ryQWQzDslkEtu20TUd7//6lKZIkSJFivytFIO1ixQpUuR/iQCEi2Xn+e33hcRKomi6zroNS3jv41cZPqKeytIx2JkYSsjjvY+eRpZNyhID8cxSUkYLiqz5gcCyhBAuEhkkcthWjoAq8dgLk1m9/luQOznh5JOYeOQhHDLuZEKBRuxMFEkEwQ0idpl+8L/aVgeSksUTaR554lZKSiIoIk4oVIZt57Dtdiy7E1W1yOUz6GoY3DBasBMhh5BkAWjU1dYBIbDKCYcT9Og+ED8jqQzcOLian52t2CDlcd08kqzT3moQjmrssfsAePTp3ZVNW5YwceLBXHLBSewz8GRKYt0xDAlJiYEcwrAcNE1FYPoZNyKDpqWoqKjDccJIbg2aGgEPaqrqCOgVIMr9zBSRZ9o1/6D/PnUcf9IE4uEKBGW4jobkKiD/zCPPn0zOWU2PblXoQasw/qYVDFOSLxzZwhfkAhlmvn0p9zx6MT36mlx/2aWAQjrbiWeEMK0V3PfwpQwa1Jemun2Z+fobfPn1h+xo20ivbqOR1NbC6E2J32QkAvzz5vMZc+AAunavpU+PfYEQkpRG9jRadrYTC7eTsbaiiBi4KqaRRiGAkLci0UbG3E4iUkkuHSSoSEguSJJAoqXQXKVx7nknUVUbJG+kSSQqkaUS/I2qhyKpCLsM5HIG9B1GXVU/amoSHD1xCgt+WsxLLz7Ljz99zfXXPM6QYWORFI/Ro4ZQV1VNfXUvJFGKHoyBJCErefJiGX33GsrBo6bQvdtYAorOP285g1Xrvqa9bQU9epSRtn/i6mvP4rDDTiSf1VB0EJrFkmUf8vV3M+m3d8x3oIlOIEmP7kMoj+zLIRMu5IVnnyNvrGfh73NZtWEuz0yfQ9dGwfjxh9Kz25BCCZVBfUMpfXr1Z999BzP7vX9z0skTeP7F5xgxfCQeMaAE4Sq++8kF0AhHYgwc0IuyRILhw/bHd7IEfKeUBMlUmx8jrKioag5YiyTr4MVRLAGKgqKbIErBDvvuKqHT1tJGMBwDVDwLhKQgKeB4Nq6lIMkWqpRFEnmMfIiQXviWAlKpJLouY+Q9VM3g5oe6szX5BDfe8xi/L3qVxb+uYcSIE1AVfyxVkgTZXDsB3SNrdOBYeZ568kmefvJRjjtxClZWQ9FAyICcQQ8mC9eJTj7fgRpchqQ188jT1/Pn8u+obyyhJFrG/sOPojI+iHEjz0dTGpCREJ6NImxqqkoYOmRvhg7rwZ/LF7KjZTPVdT2p7jKcGa/fx5KlC3nygec5bMIE1FAr4yfsjydUutePQhAglzNZv3E5WaOVssoY+w0bCLiEo77bSNgaakAnXlHJ3oP6oWkKjmsw9ZwTufn2abw2/Sly3jY8kWO/QWcgid6oahnHTurG7E+ewJR/Jp+Fz+csoGffEubM+YIxo4/Hzdt0dLSBZ1JSGSCTWUvXvkmW/raRPt3HsnT5cuToCtqTOSYePZzFqxex8o8gU6Y8jJ0OI+QoQoojRIIuNQ38698v8vPCXxk7chyqqmGYBvUNGjXVFQTULuhyOVgRBCoIzc9Oo53fVj3KnM8fYdOmdfTpPQq8IKZRxuAB/8CzaqipHMDeAwfz86IZfDx3JsMG/QNZ9AQvhqLFkeUE0VAJ3bs1MWLQRIJaH5x8A8KOI4iRz+dZunwR01+7l4MO6o0tdhDQ60Ek+eqbd3n4kXvZuaOVocNGFZ5lWba3rKC1cxV6KItp5QnrXZBlifnff8ynX06noa4XoWh3kBUsayuvzHyQWW8/xoTxB9DUvYGtW7YzZJ/9EURBtKNom+m715FAM1/+8ATf/PRv+nU7gaCaIJ9OYHtZhg/en1Agzssvz+TUKVP93oFCq9yuZ0YxVLtIkSJF/l6KIlKRIkWK/N3szoCw8T+SdfAweemlF/j88884/tgTGD74QKyUS0Vtjn8cdSxCbmPosAH06bU38WgDErUI1cEmTTgQRZFVECa57A62bF3A6689RL/eZaxa8R26FuWree9jWp08/8Tr7NXzVCSvErw8ht2JKkUQElx7y6HoAYPGrjUg8kiKf6CypGKYeYYOHkkkVAuoKJrA8VppadvIP2+9lAkTJqBrETS9BETKH+fxp7dAzpPPp9H0BGbORdby/glw43tGfmSDZGYxY8f1I2e0sO++B2EaHsHQrlG2XSNh/u/H7D+CUCjAL7/Op7FuMI5to2oKLgJHKMiyAp7AMTRkKcSaVat4dsYlHDz2TDS1gY4W0IMWQs1gehvI57Louh+27QmX/fYbxoihYwjrtShUAyF/ekoCx/UYMWQifXuMx/PCdHRkCAZ1kNIgd4KcBMWipaWTUKKd+58+mDEHNXD26Vexb78zcax9sM0EqhLE8ZZzx13nUFYZ4IsvP+eUk89i2dLNnDz5PPYeeACSEsZjJ48+fjdfffklo8eMAVyCeph9RxxI/77DUWWN9uRKlMAO8skouuah6itQ5Q5yaY1QoAxdU5CFiiSluO6mqaxbt4iqGg3PzhON1v53iRERNq60OH3q6dR3aaCqojsyNeCUgKuRT0uoQZVUvh3HS6MqHhCgd4+hqEoFb8x8ja6NDVxx5XkE9TF+zpWQQISBBjo7wwg5gCxruHYAIQeRRQUyNaSTGtFwGdBGdV0am/W8P+dRBg8r4/mXH+eaq2/isYef5YBx+5NMbUbStvLW7GcZOmwgL700k5HD+/L0C+ezYds33HDDpZxx5q3g6gwe2pX6Rok+fRp5493pvPrMvfzxR4bJx15Hsl1FD4ZwHZtAIAye3yI3ZHhvXp3xDHWNfZG0IFqwElkJI7xC6ZoHroXfvCY7WE4nslRQYl2Bkc9j2zkisRCW7bFjx3beeOdFkvktzJv3GQ0N5QRj5SAl8dx2PKMMMw+KruA6GV585U4+/eZxvvr+GVLuF3z01fVs3LgYTXGpre6HIkss+fNzLrhsHIcfdiCqVIZteCiqja7nmD79SVqSH/H1129w9fnfM7jndRy03wAOHDMMVSRo6laHI2XwRA5J5Phgzn9I59fyzuwXGbP/AALRDBMmDuar796mf//+pDJtCLWFT799mKVr32PGG/fzw49fsu/wg1DlASCiDNinAhFYx5ffTefZF+5j0D6j6Nf9aIxkLQE9gCRJKELGNAwURQU0NDXCmNGHkjFd/vxzB+PGnkyPnl0YOmgErin4/Iu5HHjQeDxPp3fTGDwqME3Q9SA9u9az79C9WL9tCRdcdCHN25cQUD3S7WnKa3uCLOF6LoqqYdkanogSizQwdvxhOIrG998twMikuP+2j+jTOIry6jJOPHkvRo0v5813P6amrBvjRp3NIQceSS6doEePQQjRSXv2ZzqSG5FcX4TvUl3N9jXdOeDgc/noszvpPlDj4oueYtjeU/Hsfpx5xu0gNJSghJBUHA9cPILhEAcfcCihUJya6gZAxrJMsC1q6voSCJYihIqQ5b88NyRAo6b0YIbsdTpbNuwkUQ75/Bbf4YZOU9c+DOg/BIFHU0Mt9XVdiUQHgaXx2pu38sGHT1JdmcDNVxKPNSKrTeCWICEQgGmAHrFIJIJoOtTX9sAwJHIpCT2Yo2tTGYcfdjBLli5h4IDB+NasNlZv+IZ5383gzTee5pgjjsfIBVC1IPWNZbRlNtC/z0FADdffPIGVaz/j3LPOpLGuP7Pf/pkDx55Kl/KelCRK2LZtEUtWvcGn865m2D5TIT+A7nWHsOIPk+HDD8M2QIu0g7YKmTgQ5523P+aEE07BtkCRpb/oRs5fHrxFihQpUuTvoCgiFSlSpMj/BPcvv2zWrF3NDz9+T1lZGfuN3A9VCdG//1C+/fEZDjt0HCdMOgc/fLUaSarAM9NcfOVRhGIVVFXVgCOjKC6q6vLZpzMIBw3mfzuXRQu/56yzr2Xdho0YOZmRIyZhZhJ+a5Lkh/06VpiVqxfRkvmSiUdOwDQtXNdEkcP4rgqFLjU1aEocCIIrg2SzadNSVq3+gxH77UNTbS9sxwEnjJANXCvi73dkEEoeVRV4joSiy2TzG1BVCdySPadDSnLPA5cwYmQ/Djr4QFQpTiJRVRiZK6Rig1+9JCwsp50XX/w3a9YsZdTI05CkMkDHxCvUqAskIZAlf8M/99NX6TR+Y8jAo1C8CkJhFaF2AC3c9/Dl/PLLQkaPPgKQEAKCWhiZCII4ohDyLCRwSCNLCRSpkmS7QyBUiW1I6IEQe+Zc/PyoTCZLOGKzbPV3HDryWGTRDYk6sCpRNJ1cxuVfz55HaSV0JlPstVdfBu4zhK6Ng6gs34tMRiGoBzj1zGNRZGhorKOpsY5gMEhTQy9i0RpUOYpHin+/dDcrVv5K78ZRRBMRvpr/JDPeeI5EuA+1XfqRTXUgWUFy+S2kM5uobyzj5f88xgnHTgYR2+0G88PRFWQRQAvlAD+XxXdZBdm0sZmy6hiZXDORsI5fvuWSy1ioWoJMq8mwoSMYtv+BaMLCSVYiMGhrXU8oGsHK6oTCJShKHpcMQg7h6zESioCAroDI8fZ7D/Pt97PI5ds5bcoZ/PLjCs47/Vo0pZrR+x8ByOgBgSxyjBi6L9UV3ei/1wGEIxVs3DKfYSP2Il4Sp0ftaGQvgNA8/30QYez+xwESQwYdgyx1QZPiCFnxiwklCdwAQsggtTB3zvskU4Jly9YxetREoBAKXdjQ7xKTkC1kyaYz1eqLl46MHgqjyGC7NpoWIRYLMGDvHnSv78beA3oRDDhcc+MUli1dQFlpKfFYb7SQwHPzSKrNkGE92Lx1GfuPHkpr+0YsJ83i35YioTKgzxEY2TTr1v9ELNFGujNL7z6jEK6LpCgIYbHP3v3p2bWKxb+vo750FC889TJLl37P2PETaKzdB1cGGQ0JBdCoq+9C94YGOpIt9OzWlZrqakKRMI6jUlM5AFWO4LgWfXrUECl1aW/v5LeFG5l0zBVgari2hh7wEGobf/yxCFmRWbm8mX2HHkowHMKzC/qHJ/xsKd/WRCF9nIbG7nhSlNravQlrMoqk06WqBl3XqW/qiipHMZ0QkhRClsDI2+SsVjL2Jr7+9mMymXVs3riR4yedyE/fL2bA3vvvFl4c4WLbGrIURVGihPQ4npAYPmB/OjqamTVjPr16DKT33vV0Zubzx5Jv+WPxWrB0jjr0HGS1lFiwB+FYCUgZ7nnoHH5Z8BMTj7wYTUkgJJ3uDSNo27GdI44agKRFqCs9BMcrp7FuBJoqISSwPAUhaQjJACwkyUNCRg8ECQYK660nUPUS39EoKVj5DPJ/1dbLgEZyi0YgGCASClJeFUEPCIQIAjGEJOHhIMgjCBCJVIBTBg60Zb8kXpFj+7YWhgw5DlmJFFrX2C0kywFAZFAUidqaHghRSbpTEIvG+GjuTN567yUau9Xx5+LV9O+3N8lkK4GgwUvTH6CmWuW1V39i8R/fcfTR59PR2kkg5NG1oQI/u6mMcQd248abb+KYYyfS3mKyV+8heLZEZVUXkGSisTgNddV89Mkz9Ot2IOFYX8y0yj7DRwOdoHQg5AwyUXxXa4Dp01/j5Mkn+88Wdp2rXc/YvzZ8FilSpEiR/68pBmsXKVKkyP+EXS4k/+v5F52LEDL/evJZQGBbEorq8sizB3H5eQ+AV4dnNPkbXYDgKlY030ePqn8ioWM5Mposg5fhjtsu4MorzmDH9g2UJhLEKkaC19MPwwZMuwNZFkiujpAdkHaybP1X9GiyuO2+fyHZcUbuO45xo08nm5KIl5X95biTgMXadb/z1uxnWLn6N/Ye1IP2Foee3UYw+YSbgByeVYXwIJ+FQHwbrteG8EJMu+RiBg4po1/fwYwadqn/kpIFbOGhp6Zx/gVnEpYqgCb8gOYcEPVbrcAPT05u5777bmP/UUM59PBRkOkNAmwJRMClJbOORDiOjEl7x1bK42V8NOcljjh0AI8/+TXzvlrFm2/OBWktLanfefv9xznvlPuBvQAdD5V83iGgy+xsdognZFQdIIfJNrxcFQHtryHg7HFUeX/5f5JNuiNHJBbFyJnoEY9dddOZDodwNMLLM45j/g+zOfroqezY2c4pU05DEbXYViWqXI8ntfPhh6+wV98e9OhWjYcFBBB0AU8vuNma+fDzZxg/6kiC+miaN21i2cbn6T+gN+Ul4zFTYbRwCTgK7S1bSNRkeeKZm7j4/OOBONAbvDKwgruP3VOTCDbywqu3sXXrZqaecRm33/wkAwcMprGpnomHHca6Tc288cY7HHnYafTtNdwPh9bw92uWA5EW8ILccfsUYgnYuj3D3be9Cbg8P+sqUrmtTDvnWVQSgI7kBXEsULRW5s67lVGj+xCmFhgKdh3J9A9cePElzHjlW5JtLcRKQ2ze+iN33XUXjz8yHTfXA10DV1/A6+/cSzCS45hD78LIqpx5xtk8+dgMSsu7gwFEWkm3qXhOAM+FWLkKko2Vy6PK0YJ2ugLowCOBIIHhVKBIheIvkQGawS0HWyOb28KlVx/Nb38s4eyzz2bb1hamnXcP5VWNhRPih1e/+9F0vvv6Bx564EaS1hq+++EN3HwDG1e6XDjtGkAHbFKp7Vx3wzSeeuJVoNwfc1OSwK+0tG6jPH4iODnQNnLljcOoruzOVdOeQ3gRUCpIt7hESiWwYyB0UD8DNjD/l88YOfgW8LqCksV0PDQ5jmsqWAYoWgeybjDrtYfY2rwcVYkzbdoLGCkVVQZJBtNJoYXSGLaJrtSDKWEb4Ng59EQHsA0Xk1ze4t23P+b4409E14JALXZKQQkE/H296l9rhtmOrntYXh4hgsgk/OY2TMAAxybZmSccSSCr0d2+EtPyQGomqLRg08oPCz/ii0/ncev1jxbWjipMxwHh4joKuhLZLZRYDqi6gWE2E9C2Fs57CLB5+927iZeq9O8/kF8XbOSwCWfQ3hogEesDigFiCznmcvddDxDhEK69/kncNHz386Os3fg9qXyWi8+bS3uynXhCw0XCpAUJHcWrBNGB5eRwHIeAppFOpSiJJrBtBVlEEJK0R4vWd7XXbS2csDi4FXta670kqElWrFjEH4sXMukf12G7ARQdUtntREN5hNmE4+SQlSCoOeAToJN7H53BdZd8see1lExhfTcLv+JABDcbJJ2EaAmIYA5o5q0PXiCbynL0kacRClSgqDKQZOHi2dx+2zXccss1dLaUcuCBF5DP2ATCEi7tZGwJnAhRvQWwyKTa0AIWTzx1P1dcdjfpDpdIaKAfXi7B5rUL+HbRA3w770euvORBevbpzSPPn4SQ4dIzP4FUI2kbonE4/LATmDVrFtGo2D0mvkcZkynGvhYpUqTI30dRRCpSpEiRv5vdEQ0G/r/g/eDm+T/+iG3JjBk9nkzaIBTRSWc3ocu1qIqEkHaAU0nnDiipMXh2+sH06n0Mw4aOIqBUolAGyDTvaKWqMsGa9Uvp3tSEvzkK/0Xg6KA9u5Lv5n9BMtnBKcdOxSCHisIll97NiaeOpk/vrkTlQQSCcbLpZkJRjbZtLdzx8OEsXr6Jw4+oJxJzqaxOsG7dKnSpG0t+28mpk+5l8OiDUGjEs0CRXZB+5o03nqG6ai9++XkVF199GhoxoCd70rwtHnzoDiTJY+wBoxkyaCg7W7fhYRUyoSSUICAXNnxWGbjg2CAXzAxt6VU88NgFjBlzAIcddDJQv0d8kgw6Ugt56MmLuPCCS6iJT8Q1SpF0l01bvqW+dgg4cZAzhR/QrhoqC8gUTpwOXhBEhnyulZdfeQItYDL1tDNxsPnk4++ZePhZ4AXAU8jnmwnoJSAChWPIARad7W2UxJt2h5gvXvkfBgwYhL9pC/DCK6cTisisXxbivKl3Ulopk8t1cv9D93LC5MPp2bOeux+6isau3amt6cGIoccSVfv47XqFsTSn0MCmhvL+N9nVqAe4AlyySCKLQMGjBMcWuA6ouodAkE0bqKE2NKkZiw480uRzgliwHqgBcjz4+EROP/1iVv4p2G/oqYWcHwqmsRwerQjitCcXowUswloXoBbI0ZKZQ3k4AQz1BSzvvzd4Ri6JYaaJJWJ0dmznjnvOpmff7ezcpJBpHsY9jzwHciejR5dz74NTwI3QtcsEKuKHosY3kHeWEJBbgSifzZtLRWUcO1fJPn2PINvWSCTexkOP3EHvPl1xvCzHHDsFULnhynu54pJ7QVEorw3gN16F8EO5wcqCWmLzw/xXeHb6VHrUd0f1Ehw07liqmvLMmPk6l19xIboSAo4GqwKAScfH6d6njgumnUlT3TCgGxDHyYeRdVFw3K0m3xlg1dpfWLL6E/YZadG7dipecl9kOYQtVnP73ZcxcMBQJh03Ff+GMNm5YwEbts3niqvuZ8iQKJZRwiP3/YKqFVQaL7LbaeY4eWS9laUrfmDm609x1y1PACGatxqcOvkM5nw6E0m3uOfuKYwZ35NUWuegA59EkYLkchaSpKDrKnvaEk0/Hyqr07z9F7766SFWrllAZ6fBqOEnc8yk03jvvacpr5BZsirJeVPvoaM9T7yke2EtsgstZK5/f6H5uWT/b/7LRLJLHHD+8nswrBye5xHQ9L/8pcJ15QXBBjMLWhhQknzwyRN8+tkbbN7wB9dcfzbzvlnBNVc+A3TSmW0hmyyjpnoYfgucgksUBQ3TTKJrq9iZ+5xXXp7JFRfcC4xg+dJLmPv5q4ze73q61l9DvFrHZRUWNgFvMJ5pIPRtODRh52wUyUXW2zltygHU1FVy2x2PkU7VUBavwnbaUZVEwRlkkMp/zz+OHU9jfV/uu+0dKst7g+I7KQ2njWwuiaP/zBUXPUE8Xsrj9y8AN4hDG0gx3222+7mTZGeymbJYBW3tLrocIxa0ufO+k9menEfPXg1Egr0565Tn/MZMd9fS4WLbBqriryNvvf0Wxx5zPJKk/GUc1gbWAl3A1x1U7wAAIABJREFUieA4nZhWjmCwGlxo7viG1Zs+YfmiHZx1xsPgKris45W3rmbySWeAWUe2tRfx0sqCkLuW7365iWuuf5Ux+3fl3ttmkXV3sGrVCvbufQSO1RNZ9Q9w/IHHM3v2m4QjICl+eLv/IjpFAalIkSJF/l6KIlKRIkWK/E/xN0N/LlvEKzNeZsHCH/h8zhzALowjlLJh8xoa60r8P2t2AwHz57/Jlz/dxVXX/IcAUUw3iCaV4iHhOmA7BrrmYjp5NDkEhPZs1EUO6ODRpx/gsguvIGtASC9j5w6VihIFdINkehOxcBPZ9Gby9jZuu/0CbrjqUdZt+gPT3cbC3+dy/IkTqSttpCMrmP3mz0w4aBI1tXvjEMRzIv6gitcBykJ2tC6jsmw/zEwFWjiMadloSkVh81wQkR68nTPOPJnyskrA5qZbryZRpnHZhY8ieXHaOjZSWr6D2+/7Jz0axnHkxElEox5Qjj+G1cbyVb/Rp+doIAaWumcERLaAHKncYkLBCLmOOoJaGbIOOWMDwVAXsFVQdjVr/WUkQliF/1DAAcNeg67neWP2Sxx/9KEI4MY7bmDyiefSt9doJCLYpoaiJsBTcPIg64Bw/E2Wa5PudEklTWoqyiBgY+dSeE4ANRBkxYrvqW0IEtDKkMxGvOBOZM3EsQRCkpFk6EhuJh6rwN8gVZBKJonGtgFhjGwUPZAoHP+uijAFXMgaHYTCGcDg7Y9fYfu2Vk47ZRrRQHnhesxh2h6a1AUz34IayON4NpZlEQxUYVkyihQl2WFRUmqQS7YSLPEdHJZloqplBcHKbyWzLNCC24AchuGhK1XkzTZ2JL/h628+pWNbIxdfdCNC1v3jFB6+C8KipWUj7733LpOO/weK4oKdI+D1R9ZLILCK2R/cxIiD0tx040eUR8q47oLviJf28ZvMpAz5ToOAXuW/rUAz0OaLKTT458XMgy4DOTLpNfz62zy6NEq0tC9nxMB/ACPBLt1zHchptu78ghtvOY1hQwZy/KRJXHnlZQRDcO+d95OIHcbDD95FWVkFXSpHMG7cschqEDz4feV5uG6Ypb8bnDLlDrLtQULRYOF1bbZuXc/yta/zx6LNnH7K5cQTITqSW0nERuCkC+NF6q/AHH5e+SWL5nucd9qL4JbhmSoilAN2AA6W5SK7fZG0gjjlqRgZCz2kgsiSyv1Ja/t6NmxdxthhRwNB1qxdxWNPXcT/w957BllV5l3fv533PrFzN00DTc5JMmYEBAVRjIhhZvQ2DIYxO4YRHbOY05jGiHHMWREjigqKCJIzTefuk8OO74d9GvC533q+ed9VT51VRRU0p/fZ+0rnXOta/7V2t2znrLPGcvCEWfz70a/526X3AwNIpuKEQwWlGh55y0RTNCzHQREjhbSyNIi/kbcaWLliLZPHnwhSGGgFUty66B+YuQgLr7sP6AaWDJLg94VXMCrfj/fZ2+6/Wyu7IP5e9bf/q1xwXRdZ7pLz4M9dV9tLdiSzG1ix+g1W/fIlq3/8mqef/I325jTltbXgiLiOTSKzh5KSenKpEFoQLBtcN8my5e/zwy9PUFObJdOpEZAG8ufT/sXXy66gosbl1Zc3cMM/3gMR9rQvJ+m8x03X3sKksUewbpXFA/96mWxSJ6hFEdQEq1Y9w+YdP3PjLc/x8w9bkahBcAyQ8kAeK28hSzpNnd+wu3kFTz7xFI/dv5qfvt/AS689zKTDw8w9+iwgz+LnVzD9mFoef/hdTp93KTWVQ1ADBbJdtfhp9Qcs/fI/aLrEOWdfhuT0RhZDZFPbMCItnH/ZUVx++WW8/upyrrz4JfB8xaVXIPoEQoCDi7lfN3X51XWlCm4HNDzPwMxJaFqUfEZAC4ogbAGauOaGi7h14eu+mTx5/vXExaRTJpddcje4Pdm17Td+W/85v278F9Nnjef6q57nr2c/xJHTFoCSB2L45L6Br57SOGLaKbz37qc4jkMoqOy7J1ferxSwiCKKKKKIPwJFqr6IIooo4g9HYTPkUSB2FJ55+gWampq44cYrSeR3s2nnLwDsaFrO6+88QN7NAN1BzdIRX8eaDZ8xbuSJaEQAFVnUAAnbAklS8I8DJFxH3Peee79EK4DGsCHjsD0Vx/KVFuGgTHsb2LZCwPAJkEC4DMu0GT58ONXd+zFx3LEcMnketqORSAhANYYylMkT5qOpPQvXbsSTzEKZVwnQF40hQA2W6QAdqErWf3ZPKSgPFEaNHEdFeU3hHkWOn3six889BQEFzxMIBEI0de7ml9U/ouoO4bACZPA3EQnAoV+foaQT9j4FUhc8CdfUCGi1SFQRMMqQCi9xbNH3BKGrP8R9J+uFdoR9p+2aVsu2bTGOn3MOeTsMVDBq+FSGDZiCSBVQhoAKQhOJ1EakQJpkajeITdjudhCbCZWmqOiW97kvT0ZWdBRNw8lAfd0YQtFeyIZAIuHgOr4HiqSUkoqruGYJJZEheE4UKANHRJM1Mu5GMvZWZDUHeOQzZuF59qkQAkEZyNOa3Mmexm2omkAunwTyOGSwSeMKcRCbaW/bxH13L+K/zjqHO29/EDCQlSAdsTyRqAJWCMmrAUKAjKLsl6Tn+X9VVcBTcRwFTYuCJKFpGk8//RzRSDVlZWUIQmFgCl3lfhbZbCevvraY1rY9PP7EIwQDZQQjfRDUJGgpwKB3j8No2G5w+JQ6zjpnHt98t5RsHCDPji1reOTR+/3rmuClqnFz5dg5wx9vjgZSGM8E1zbRjSj9+4+le/VBTBhxIZlcD/9391n2AG089Nh1fLs8wfRpcyjRxzFsZCnHnNSHzQ3fADBoRD+69azCdD1MZQvIO0GOMXLoTEYPn8P80/5J526NQMjwhTRCJ7Cb2lqPKQcdSbfuPZAUHcsOUBodBU6BgJQAVLbG1rPki8/4/KulfnvJEoKm0d6UwidTK1CUHoiyQC5p7xvXXYyL4KFpGvXd+zB+7OFABAjR1NxCQ8t2+gyCG29bwY5djWjyAHzVmUA4FCSdi+GSAbI4bg7TyaJ0qc8EMLMOsUQOTenJ5EmzQYgCwcL4CDF0+BB27Nzs97HnsHdB8sS94+V36ez/N/XR/q8rzEvX8YlLUQBJLKwt/H79M3M2iA7hcIjDD5zCnGNncNAho8nGJMrLevt1bmKAZ555nqVfvgW0o2v+tVUZdE1kwsTR9O/fn7FjJ1NeUc/qX7aDB2NGnM/gwedheYDUAIJLbcVIupUOJRiCbP5nVKONrJsmFBZAiuGZbdTV9aSqsgenn34EazZ9A+zxvdktX6GqaCEEIYhIgKrKbqSz7aSzmxk0pDdnnnkmX3+1vNDOZZx68rnY+QBDhgxDED3UAu/nOQ6Qp657KWPG9OfHHz9DEjLIsgmCixFR2dO8BQGFXt0GMH3qnH1tJ4BPDuX3/iyTSQEetpcnlW0v/F8ecLn2H9fw6BN3gRBDM4LgqIX1MAeI2AQQ5Sx7Gtdj5+KAwdEz5hPQCmuJZ9OjbwVHHj2ZHj0rGNJ/OIMHjqVfn5H+8mBrvnqRcGE8JGhOriNSCoJoEgyqhT7fby0voogiiijiD0VRiVREEUUU8YfDAqR9ahegpa2JW++4hrGTutHYuoZu1X2YN/dyHnryUs46ez4hRmHHeyJHdvGX8w/m7LPmMWnwbXihVkBCJIhfbgVewQTasrPIsuTH3KPhn8pSOJXNk8mlUKQIiqjgeiDIeVIxDT3ciSLZ4FSCAHcv+jvnnjcXQxyB42h0Ztdw4ZUHc8ABBzB4wCRmHnYtqmxg5iHv7iQQlYDuiC4IgsXnn9/Fhg2rGDVsDhPHzwO1oDjZn+gRXBwrjaQ65HNJNF2kuWUX0WgpTqaeYFADCSYcVMqDD93N2JHHIcohIIFjeUiKStdGJpf10I0y/xT9/9xsii5mNo2qhclnPBQVRC1DLp1H1cOIks3e02u62soqXEDxjWlbU5RVhejsaCSeaOL7H5Zx8imnAYZPThQsON766HK+WPo9Jxz3Zw6afAgOHTz1zL+orIpw3FGn+9cjA1TiOgnS6TThyBDwgrS2fs3CO07g4bs3AQaZXAZdqkIs+C/ZtousWyDYJNoTbN25glsfPAZFrOCx+79EoR7NCPi3LXaVTYrgGHtP5WOxVgytDE2R9o0bGfL5RhZcUMugQWMpKRvI7NnzqK4eTh4FDwkBFcdzCdhl5JJ59KjmX/P/8K/1BL98SNPBc0wERcDMdaDqLms2fMKwgWOAOtIJh2Co3FekCF1lKHlsJ0kulyUUDPvjN6+TybXwj9uPoaZ3E5aVJ95cx3V/W0Io2tMvF7QN3v3kSt78YBHduocY0uNi5p/8zy6v873+7JlcmkA0BcTY0byM5xc/RjgcIRrszZ9OvRrL0VAkEX9z7peNQRObdn1KKpFk9cqtnHnGzSTi64lEdfY0tVFbeWRBPWKBF8ITtuCSI2XGePH5M1Dlek499iE8sw+BUo1cJoMe1smmBUQEJMNDkJKIQEcqQUmoFvD9hhQVPGwSmZWUBg1cDEQiOI5JR6yByvJKcjkPXS8h2SkSDJRiWin0IH6negXSijzICTzSNO5xqa3pg+uCKKfZsO1VHnj0Ii664K888cDnLLrjWzKdFmLIQ9dtFt1/A4lkO2f+6XT61g0rrCkR8lkZTQHLBUdoQlFAQse2Q8iSTM5qQ1FNJJqAAO3teSKBgSiSvrc/9pJIXQGMewmkLuJo/yACkd+VKO03x+1CeavQNR67UjAFDzwFzwJBcUFoZdkPr/Hbxg/ZtvUDrr/4JzS1BlfIIesWDu288eEiTpz5V0xzHKoKpmWhKgqQx6URkSxQQqwDotpAhGCWdCZOUK8hm2/HMHz1Z3PH02Ttj3jn9c+YP+c9jIpDiac+I57cyJIPPuCC8+4nFXfJ2Sb/fOBUTpp/KEPqj6JUPxA3H0JUAKGd1Wu+ZcTwkaRzjXz6xYts39LGxQuuQaAKCJA3G0jEbCqremLlPCTJw/b2oKp+mbOdziIHPRp2L+enX5bT2LSH+af8F8FgDWCzYuUXLPniE4YOHsXso/4KXre9a6ZHKyCSz0Vx3AzBAIBDU/tOln3zHY2NzZz1l/Mw1DDJ1A5eeu0BTpl3PHZiJGWl1f51lPYCkRRkT+dDXHTeIv7zyipweoIUY9kXn1NX259eA+r5582n8OWXHzKgTy8eeexRXCcMbg2i2M83aJfx+1SM05Jazrvvvss/rn6MjeubcGyPSDjEPiXS/qbkRRRRRBFF/BEokkhFFFFEEX848uz9crs34h4Wv/Q43Xt7WN4epkyaikA9TU05KmpsVAyw62lu3sATz9zEeeedQrk+GyHYdTqs4Ln+Jkrp4mb2fmlO8d9JJJt0JkXQKKGzDUorwBN2I1AHNPr3aHcHz8ShHcfbgyqPhbwMRpZvVj5Inz79qC0dCXZff58nAXIrMTNLWOmJ6EFn+0bue+RUzjjjBPr1Pg6sgfs2iuD/XuHvjmWSN2MEwgbpdAvBoIRfstAHL28gKOCKmxAJ+Pfm+goBUSxcR4dEaj2RiMm2hnX07j4UqCST8ggEuhROhfeyk0hqYefqWSRTHYTDXeU6QWxHR5ZUfPIgA7iYjgBOBFU1aWraSiSqcfc9t3LCiXMZPGAwoOO6KpYJmqaxecuv1PcajCz5JVVWPsXmLesYPKw/ic4MkdJKHD7hsceeZeeujQwePIie3cYzYdx0/nzegdxy71z6VV0A9CeZsdDkctSuTbfYztNPX0fO7KS2toS33n6T625aSG3VUAx5lO+PBGSz7RihXGEMuORMixtuvIrqmgouvfAS/NP8Esy8jaqpQJKr/n4qdbVb6N17ErNmXYmvJKnERiHt5lBFAQUR2Y0U4rbkQucDgks6G0OSQFUlRK8UHLByoARgzW+f8PSzD3Ha6SfTsCvOzOmnIMkR0jGBYFTypSRSHttK4Lo2rgu6EcbMCKhKmJvunEXPYZvo33sSB46YD0yiszlLaVUJjplA0jQeePR4ho0uJVqqMGbgBThmBEktw8qmUbQwjz2xiN9a76RX3WBmTDuB995YzZUXPuQ/p1eyVxGTy4JugOOB47qoGrQ0b6Cq2iWV3cK5C+aw+KkMmAZWFpQIJOMO4aiE5eUQJR3L9tDkOGbnbhADaOFq7HwHrtyGqiikshlCxlDSSYlAWMd0s8gie+d0F4mSyVkEtBC5pP+jYBiQLByvgxtuPodgWOSk48+hb48RmJaKJOaQJAeHNBJR4h0SoUA1kvx7wXmX8E6gy5dI8h+eJH7JkF/+55DAIY6vNXMRKRB7RMAV/aKxQlpd3syjqT6Z6rpg2jkk2UWXkvjebAE/eUwAx7KRtBQILmbOAlFDVUr2W7ssTDuDKks4WEgI5O0smtw1V/0H8MvrDH63uFgKrg25vEkgKu8t580ks2iBHILcAcJu3vv4Kjb+GmHl8hhPPv4GWtl6Pl/2Mus3/cqFf3qIq/6xkA/e/4AlH31MQB1EONoNJychaS4I+b334bGbRFYkKvQlls5QUrIHpChWZgdKoNlv3vwUHNlAUrYA29m9Zyt13U6mZUeWqp7V2OJyftz4Et8v+5HhvedxxGFnF54nAYTwTANBsWmOfcjTz93L1Rffhm32QVYVOmM7KC0JkEuXcuddt3PBRWewdtPbbFjzG+vWNHL33R9C1gAjj2c18dLrd7CrcQWbt/zG0H7H8aczL2Ttus2MOeBAdLUWx1EwLdAMcMUUICITIJ5sIRIRSeXaCOs6ix64DzyJyy++lnQGgnoQy9uCJGURnTFgQqwTSmqz/kLthkB8AajFMbshCYNBzuJPoiD5dAObG97kx+9/4LpLXmV3+5ZCG8j+WpVWUAMa199wEZdcfiZlkQiLX3mXM+dfjW2amCaouov/OUthHnUtnEUUUUQRRfwRkBYuXLjwf/smiiiiiCL+30ahlMMT922WRNi6bSO9+3SjV30tYa0UKEWiFkP1N5OZpERpZZiJE0cTDpchSJV4oofneXieH2kvdMWOw34bMZO9G/1C6Uk2nyBgaFg2qIqEJAOCheAFCqfFDohhkNKs27CMp565mZGDJyFJlUiqS2mlR2mw2t9MelG6oqERE8iSRD4fIJsGTbGorPYYOngEZlbGzqvIhgeCiW3msCwLWfENgK28haJKiLKIqkrs3P0b5154PNOOOBI9WApCBoFO/43cUuwur6EugYIEmuHx1gf/4rvvl2B7aXp1H4SiBkjGTDRDBU/ANh1k3SSdaeCbbz7jjTfe4rDDDmTNpm+ZfexRHDZlCpVlNeTMDJaTRpFsbHIoooIkaZj5GJLsEggqmHaWCWPHkbczyKKGIMjIsgyCiKoYZFIuhh4FFyRZRVOiaEYETQuDK3HvfVczdMhwLDvPzJmz6NVjGOFoJaXlNo//+1H69BhPZeVwZCWILEkk4ml0QwAaWfLFM6iBFNEyj0GDBjDpgBNQxCpwy8CR/RKcgEtTyzr+/dyDBMIiS79+HkfayceffUxD67d8uexdnnr6ARqafuPeB69i3OTurF79BcfNOpb6nmMJRwcBpZimAVIIVfBjyEVEhKzti1zcJIKUI5Xeg6q6qIqELMmAguu4iMi++bkIK3/+mEiJwrSpRzFwwAREyVfISKKCKEMy0YlmSIiSgCTryIpBOpHDCEZJxeO0xtYwbNgQBHMgJeGRdDYpVHQPYFkNyFocPJtx44bRp+4AyksGIXs9EJUg0IikJEBwuWHh9fz1siMoDfdj8IADGdLvSMKBQeAGfme7IxRCnkTZ/4eIQDBYyQ8/fMEvq7/mgIkGLTtC9KwdhqRDe/wXSkq7gQCSmEFwNGxL8MuK1CpkLYiZ3YMSTCNJCdJmGyG9GssKosohHDGOIsKePW04roSHTC6fwlAVVFlFEERUxS8RtEwQRQlRlFj1yw+MGDGcNas30qNnPeFgKQ2Na3n0sXvoP7COQMDAMKoQJQ0rgz/XC2sOkgskCyRSFC+n+6VHYgJYg0+gdkPEIWemUCUVkBHQABnbFnEcCU/0yVwPkCWZjo4suq4giiDLMpIoIeKR7LQwMwISCqICogLxxE503UaQrMLc6Uo+9Nk8x80jiR6uZ2G5eTRZAWw6k21cc91VTD5oAkFdZ1/n+cRbOqaiBUDRJfK5BLKiggO27eB6FrLiIgoS3buVomnldLaLTJsyD0lpQzHylEb70r3qIDo6dnH4lKGsXPkzB06eQypmomsF431B9b3OSAEZNKUEOxcEMYGqNRNvTREIDwYxBLafnOchks61oykykXAN847/M+vWbeDQww4h7TWhazoiLq+/9g6jRowmFNLIpDxUpdRf0kWRgOFx8MTJgMpJJ5/GhIkjqanuDZjIaoSdu9bQ2rGNaYcfSmtsC20tSQ495DQ/wtKTyeccBg+vxhFb2blrAxF9EIdPPRlVilBSXkc+I6Bo0n4HEjKSoCIAui7jkCZvphEVl/HjJ3HIxEPJmg4BvQxsBUn2Ch8/frKnbgCyS2d7K8mYxa33n0y/vqMpLR0MRMgkmpEVB0FWkMUcyC306FFLPiUwdcYJ+GpAhY6WOKFoOYlYK9+teJutu76jvu8Q+veewOqfd3LKSSf5JJIm4MsP909nK0qRiiiiiCL+KBRJpCKKKKKIPxxdMTn7yewF6GiPM3DAMEqD3cnZBpJYhabIIBjgRVB0C9iBJGUBCYQwgqAhCJLvK1O4jvDfpPtdMqEujwubZHoPlpsioIuIsoRp2khi2K8mkg32qRIaufiK46jvnyedzjN46GRsR0CTAwhEcDwdUQjsd3mThN1CUK1ClkQad+/g9jsvZuOmXzn0sJnImgA0AJ2Iso6sylh5P35aFmVERd37ADfceBGz5g5l+JCBiAhct/A8GjtW0L1HGQG9DlGSQLZIxEwcT0YxfCPhd957gQmTRnPw+Ik8//JzPPLwQ8yedRySIoOr4DointjEkBH9GTiwFxddeC2Q5Z6HruWAAw5g+/Y9TBh7IKIEV119KR3JBgYM6oci+N5NklSOnQugahX07TMKvDCyVAlOECuvI8klIHioWgNGUMK2IZHIogdVtIBQIKFUQCTTqTL1yDmMHzuVSKAe3egDQpY+9XU0N7UxY9plZEwVSdKIJWOURGHrzhXccvtZbNy8nLIKj93bN7Njezsjhp2CplQhCmF/aMnguh288/7LTJs2hYF9RjBySJSPvnqS/zp3FvNmHUN7soVDDj6QSZNGES0FQW7njBPPp6LyRMKRiZCrI5+OoCkGnikjCTK5tIbgGcTbG/C8DGqggwsun8VTz92KJyfoP2AYihjFtsLIioOTkxElfzj1728waFgdnh1FEuv8gSoJiLLnl6MJaUQxy6JFt/HLqtXs3rWHESMnkE63oEV2M2LQXGojs+hePQFVqcJiF0cdM5znX7mL9uxSfvt1B4PqZ6BqI5DNweCUEW+3+Pz720nmf+Ojj9/kb+c/wZBeC+jbfQ6KN5SAUYUoOiCYIJog5grtJ2N7WSQpCWIWAQPy0L3nUAYNGk3/Xv3oWR9ix+7lvPveE6zb+h9Gj5hSqLUBwVZRRBAVF4Q4bS3LWfzW5QTLmnj0sWeZdujxbNssU17Wg3inR0PnYnRdpSIymICi+2ScAJKoIwguAo1YwiZEsQNJURHQwVWYNOEo+vUZx4ABIykJV+PisPTzNznksPE8+e8HqOtRQ0VpDQiSP+4K6kdPtnHZgUcbAmkEolh5FVz4df2bPPLiqazasJQxI04lb1kE1TIsR0USI9iOgutJyLKMKJnEEttQJFClgF/G6imoql8iKQoueDbNzXsoL61BVVQkBfI5E89L0h7fzGNP3k1tXTmhSBhJKGcfM2zTEWvh62Wf8fkXS/hs6YccfOAkwEbTFCZOHscFCy5g7rFz+d1iikCsM0EwqoKYwfXakGSHTK6DbDZDpDSEILhAGNUaRI8+fRg1bBJGpBbbTVIaHkj3qllglTJs2AiGDKynrbWJ/r2HoAbCeJbqi/BEQBDwyCAUSj0lVcFzNvDLz5/xzlsfMXH0XHCjIFZiESOdE4kYVSQ7w2hGlPreHg1ty3n93Sc5euZ5lOoTqKsZzPjJ3fnTWcdw5vwzUMV+e1WbrteJKFbR0eZgBCqYOnM4/7zlKmYccTaiJANpBo3UWfXLDwweOJU+fStQjSp6VE/wbcckiCcsIqUqFTURevbqjyb0of+AiSiiT9zG460EwgEQwbYFJMn/QPFcQMzx7fLPWLr0EwYPGQieCoKKLlcUPO4ECjV4PsEmAZJMKtFGtNRAkBPMmDqBW276N9OnnwpIrFr9Lp8ufY0+9d1BcNi5ey1vvvUiup5nSL8DMYJ1tDe2Ul7VCxwBLaSy7KdH2dnyMbNnnIaudueD977mpBPn0BVKiNBFIoGvRiqSSEUUUUQRfxSK5WxFFFFEEX84ujZI+8cLyfzyy6/07zsMQRAwjC6hkoWVU1BkaEt/ykdLHqN/vyHUdxvDicefxjvvNlBSEsG2bWRZ5L8lGAG+B5O239ul2LTjOx5/4mEA7rr5IRIZi7DRG8HEr2AR0n68s9eCI+5mzfo3GTn4JPJWOZpS61eBFbyX/C/rVuH9JJI5EQURTYHZcwbw8jvzefKpuxnQZxqTxpzNVdfcSCqb4eTj5zFn1hmAT5LhyngOCLIHosmSzxYz9YiheJQj0I1777mZE08bTV1VH/AGAL5q6vxLxuJ6WWZPv5RZMxeA4OA6nYhSG998/yljx45HEcuQhD5gargWiMEWUrnNhPQaoAfQwQ+/vsL44dOAMjpiJmUlFXTEmwlFBFRBLTRMBPLKvqYt7FntPMjavi5dtfor1jXcS8ioZfbUi4Ay9pF5fpx5OpkhqNSSSK8jUh72n8fTuPq6Q/n1t5Xcv+g5KqPjCFb0Y+OOHdT3qiWT2METTy7i2ONG0dm2hWi4BDOhMXr8cfgmyBpWRkLRZXDzIKeIxZopKalP6it5AAAgAElEQVTF30il+PtV57Fz5w6uvWYhQ4ZPgVxoHwkoJUjFEoQidVgmKDL+gX7XbRdULJs3/czX3z5GW3s7V1zxd5589gmOO+54NK0SkXJ0LYpAGIFmcKv9KhYyoKzAJo3KKDqaopRVB3CdGKLczoOPLCKTSWE5GUaOOIBZM+eRTJhEIr3ANfaLKO9q9wT3PHoOJ5xyID+t2MCsqZcTazH5dOmjrPr1Wy5ccAV13aeQ7owTiMYx7Ti4QRRhILbkoso2JnFUujyv/HIZiAIyHgkEsqTMTkKqzq6mbdTVdMexFDxLRtFq6Gz9kNIaDWwPvDra95RSXt294FuVQdBjiEKaXessPv3mKdbsfIwZR00nGxtCKhbklJPP5ZqbT2b0uBo2bvqUMf0uZ9bMy0FyeemNBXR0xJk0ch4HjJwNegeQIO85aEINECzMewewSGdsgoGSQju143oxHvzXPwgGNf50+kU4lo6mdo0DFwcVDxNwCpR2CMETQXDZvO0Dvvr+CUorKuloquas0y7FskLkcxAK+ApGWQFBtIAYnenNeKZBWelQ7IyCrHf1UZYuHyOPxkK6V8BP8HNNcvlOZM1XLz73wrMcN/c0woH++62RvsdUR6KR0kgYFwsREcsDVQjgIdLQ2EwoGCmkFUp7B2k6uZtg2OSLb97j/Y9eYueOJkKBcp567DXaOzopLQsiUkamIcC3vzzFyl8/pqauhDPn3waUg11QREmAGwMpxjV/X0BNTRV/vfBqZLEbHpG9K7pEM9DGMbMP5cUnPyYUNkCPgxghnRqIbsg4Ejh2DkPUAVi+7HmeeeUKli1vZvqRI1l0y3fgGIV1dSu+EswAty9utqCpCVpAkkSnSSRcCnKWr5a9zCGTzwFhO1BGIrWFSKgc6IlHOwIB8IKYeUDKoCgeDkkkVIRCupqZTCNpIpIqkjdb0VSl8PCVeF6QVBICQQ9J8sMMGtt38sAD93HbjQ+RTJtIVCBLCngxVD0CQooff36VzVvXUlnWi6mHz+OZF25ny47vUAlx2YInCUTqQEwBq1n2w0f8snIHfzr9UgIhgBgHHzKVV154hy1bd7J+84+UlFVz7NFXomghUtYKbrhjDmecdjEj62dz9DELeP/tZfvWh73lbPvGRBFFFFFEEX8MiiRSEUUUUcT/CPxY+31GsQqNe9opiVQidZ1wa02oXg25NIhajB3tD9OtbDQhrR+PPvwws0/sTV3l3/zLeR6IDqZloioqv0um6YrQ7oKQ4NQ/H8GMmQdRXRPhiitvYvr0w7nrpjfAK0EQbMAhE9cIhKC9fReakSAUHuDfuaPsi/IUANHCL5lTwVNwhBQiAT8pSWwF1vLOB89zzFFnAipX3ngms46ZyyGjz8AlAK6GKJZjZ0U/Sj4cIJlsJxwp1Kq5EXZsbqNX3wqQ/Hh6PAUElWVff8o3q69n3vzZ9CyZi50bjCz5Rs8tbZupqhHJWR3oShi8vr6nkwCu3IwoxYAgOHVkMi0Ewg1AAD+xqoRM1iRgBLDdDLIo732+WOJnHv7X7Zx/7iVEg/3wHAlZzwEd+CSEQeOejXSrTeJ7Dg2gZZdDVW0UJIv333qZo2ed5XNKHqD/xMdLXuK3NTsYc8BEktYKJk+eTFAYi6r3paElR2VVd5qad9OjuoR4uoGSYJfZsAJON2INcUp66oVO8XvHsnKFxDT49dfVrF27lp49qmhu2kGvXr0YOXw8gleCqFQUyhEtEJN4tgdyOWBhO1k8x0WWRUSxi6S0WbToai6//AT8zVkI16tCFCowMyFUnYIZbyMCHjh1/m1JCZ5+6a/YTprqkoM4ZsZl/viRUrQnP6c8XENjWyPdKnoDXSyESjwRJxoJ4vvChLGtELLiq+U8LAREclYeQXTRpEriuTfpzC5n9cYXCXMYdnIYUw+6CEFVsNNp5EAVnpTaO4CzGQND8dvM9XlQRFJACMGFbDaHEXS4ZdGfOejQOtLJDMOHHkhd+XjmnTqGU0+bTiRUydihFxAqqwQpBJ7O6+//BdPbTmujyaQhCxh3SA/WbHuSZ555harwKZzzl5uxrVIqqmOkvA2EBA28CeRiefTSGOt338raNRtZ8yPccOVS2ppbKauuRJThn3dcQmmVzZhxg/hoyfNEwj249JxH/HvGKCwreaCR3Y2rqOvWHRB5+bVX+HzpV0w/YirHnnD93th70QVBAk/swLbiKIoOBMhlMmxv3sDA3mN9AmgvkZfHdlKs37iSZcveJxDK0N6apmftWOYefzaJjjiRsjI8O4cgS7S3NPPSm7cyaMBoDj5kFqJbXRibeTwvjmU5qGoFXcmR+9ZIBzCxSSHjsuSr91ny2ScMHzKKk086FVmI4Jt722i67q91XR0pxti153u2bFvN51+9ybChB/DwQ//mxeffo7a6O6+88QQdrRnOmXcrUqQDWMMrH/2d4X0vYkj/Y8GtJp7aSUirQpJ0mndvoLoeftvwHUMGDscv1arD82Rct1AZKGfpSD7JBWdfx4uv/IYZb8QWQZD7g2iQsRNEQiUoJIAMeWcrq9d8x9q16zjppIvQ5UF4BJBwaWlop6qmFFfI0Ny6g25Vw/cGpFnSWhQp6t+DZYCSACTe+eQaWnd246yzLy60Q5d3FFi2h6zmsLw4klCQBhIGFCTSQIqsuZPW9p18u+ITDD3IIYfMIKwNRaI7ggdZczeGZhTIPP8aqbRHKFhOR7uDLEGkpL0wf2PARjyyNLRY1FUdCDSSZyPPPr6UE4+5Gl0PoAUTiMoOsnY7b72+lGRM4i9nn1LwpIN3332V5SvfZeHCKzn7wv/i4buWENIH0dmRJVwW58e1b/P2Wx/yzn9Ws2pFA5IQQBK7Etrk35PPRRRRRBFF/CEolrMVUUQRRfyPoCs3vMswVETXdWRFRJT8NCZRyCIIHrLmIUkQUOow5HoEsYSXFj/LsXNOBqcHnW0dBEIB7HweRdMLsd6C/+XZAQQBx/QQJQHP9dVD773/CvW9avjpl4+YcfQgKqsqGDnsDFwPPFdEEGVyVhpV9zCCKpoWwLREchnQNLlAOLj7Nm1dnkuCSTIeR9ddBCFFlyHswP5H0N4qEwhW8tEn7zH/1HNQhW4IBBEEHdN0MW0bI6gjiKBphU2AJ2M5uyirkvE8G8GNgKDQ1P4Vd95zMQ2NGxnUZzojBs1BkWsQZZXO9jSeI1NSWoHraChKOf7m1CDdKaLqICg5/FN+jVRnmGAkhCe04pJAxAIEFMXf0La15AgGoyRTOTRN5c4HZ1LVo5mm5i0MG3QKnY0egWiShbeczGGHHEkyblMSLkOUGwAZL1dCKFwNSow7bz2Hioo2Bg48GKdZR4wmOWfBQXy38mOmzhjKyp+XceJxFxDVRyAJI8EME476UdaRUBkCGoZaUmhvAwiBG0FXdFDbgA4effrvvPDSgxx48CgEQUSWMjy++Hw8bRXPPvsx8+dfwvDhkxHlUgQput9Q9CPMBFFF8FQEwaW1rZFoJIogBMHTAJ+gmzx5ClAFwDW3nca6TT/y/YpvmDx+Nrt3OIQjEhm7CZlaBE8ulP200ti2ihkzj6Bnr+5kU2DoFaSSCUoibUAp4UAv8HqBV+X7zWBz2x0X8e2K5/loyX0k4u0MHTIT3CiZVAbTa0aRbQRJQhKrETDR5YFo0lBWrdzKzCPmUxEdDq7FhRdO4ZgTjwDRwHITPP/a9bz90X1s2bmSA0YfjQdksyCrWaAJERkECTObQtUDHDJ5NvXdxxMKldK9qgezTxpJe4fFwQfPZvr0vyELPRG0EHgW8XgTo0cdTd+6ozho3EV0r++PZ6d55oW7aWrroKRC4q33X2bGjPlYdjcMqS+ZWBmqEkAO+POoLBJkaL8DOOzQ6biiTbCkBDMDspFjS8ODePImbrnzKep6tTF+7KHUVA1Dk10stiM51eDJIMpEwgbQSUPTGr795n0mjBvF159/wsyjpmO7OoKn+rbochqBX1l401msWvktkyYdQz4J5TVDEQSVvBlHkTPk+Y0bbjyF5xffyuZN33HwwQcw+bDhVFQb3PvgQnbsWsOkA0ehyBqCaAAegYBKTS+d775bxbixh+E5JYii5JfpCRaSZODYOqKogweOA1ZeKKwpKlLB6K2uVzVGwCGd3sms2fM47dRjCBo9cfMgKQJ4zWQzLSiaAW6YaKSG+p6DsG2HIQMPZOmnPzF96nGUlgaR9QTlFeX06DmZeEcaPRDl6efvZdPmLQwaNJCwMQBdjSIqFqCgqiqSGqairDeCUA5EwNP9kDAPf7GVTBIdLoMGHEpdr/5IuoaiyihoKLJOQNNxhRZEIJnLEFRrKa8YxLatGUYOPQQPGRcXXJdgMAyChCCqhEOV/pougu1ZKIpKNt+EIru+J50ImXQL2/d8hRpsZXD/oSQTGTSpbC+JYmZSKFoQSQiRSpl+uSENdJq/EpSiQIKFd/6JZT++zsSD+7N48avMm30m6WwAwY3iOGluuOFYpk2diUCJrx71gqhKAM8DzRDRdRFBSABxLr/uBEaMGUxYryMSHIuViSIpKslEnoMmzqCtpZHy2gizjj6U+af9BUWspG/9QLbv2EhNrUYwUIGdqaR7H5HPln5K2BhOQ9MyvvzyYw6bMpmgUYtIHT2qerFjdzNLPvmWyy++ClHoWtBk9rJHRRKpiCKKKOIPRVGJVEQRRRTxvwTLsgpqD5BEaS/h45eLgWdbCHIWSDFrzgDGjZvA2actRg84lFdFwQsR70iQzcXQAmkMPYpulOMbabjEOjspKS/Hc7J0xLfjCRkW3nwB199wCdWRYezYWUvPnioQBwQy2QCGWo3r+Wa8tp1BEQI4wlY2bPuYV157hj2NO+lR14t/XPE6eN1IxZPoShQ5mAc6uPbGMzjowEOZOXUeibiIKGiEIhrxVBvRUAmprEVba4xgoITKilpsx8TzPBS5QLC5CjsbP+CiS0/nqBkncfrx96KqMuddMpnRY3tz/NzTqC6diG2CrEJ7ewtl0Z4IUrigxrDZvWsDgtKKIGWpLZ8JDmRySQIREScvIMkBbrrlHB5b/AQnnTiS2UefwZRJJwEBMhmdgB4gmTJxHAtFFVm99klGjepHPlFDSWQ0iHDVP8Zw7nlnUR4eQ7Q0wvX/PIEDRpzMgIGDGTroKKxUECUU4933H+LIo+tRmYgb681t983nhFMPIZFuZ8TIoWiiyH/efZFELE9l5ABmz74MRLtghxIqlJ7YQArsOMi6n3bkBkFyaWlZx89r3ufII+bQ2WlSGh2OZSbZ2fIx3XqIBITxQCV707/2r6ikqywROmNxSktUTDdLOpWjNNLLJyWgQBy64MqYXguffXs/Rxw8DZVK8IaS8ocPoWgM6Cr1M3DtLKJcUJKRBYKkEhJvvv0CW3Z/wtzZCxgx7FBwKgsOzRZ3L7qOaUcP4L33F3P5JVdjJsvRxeHImlpQMfmPEouliZYEEYQN5B2DX1b/zFff3cv27WuZfcTZdHZ0MG5iNat+Wsvxx99NW2uGisooAPFknmi4Hg8RF4in2ykNSiQSMaKRCF0EqZOXiMVbef2d+6muE9i25xPsTA2L7vqEeacOpaqqir9fsohEyiUS6oPnurS1N1JZqfPeBw8wefJETEugpnI0UEM6bRMMRvCI0Z7ag+bVEA6XAQliiZ0sfnURbR3bSSWzhLT+XH/1E1idJWg6EN4OWAUdo4jt1CB7fvmVJzkInuR3pwKp5AY+++JpIhGZDz94izvveBw3LyLqo8HWwAUnB1LIpaHhHTTdYvumRob2OxKjqhqHFHk7hCGX+J46QgxoYNXqJWzcvBzLkpl/8j34iW4NPPzU3cRjea685B5ksQ84BWWRtJbmWCcl4T5oYm1hLFm4xBAxwAvhuiBKFpYF6VSegBFCkkGUTTxyiKTZsvsHvl/+Nhu2vkEqrhN253HV5beRZw1vfLoAAZX13w/i+mseQwvlyOTa6Izvob5+DDgKbh7yloMRSYIgEGuziZaoCHIK2MSXy7/g6Sff4pnHfwIP0plGgqFSEATMXBJVN3CsPJJi+GPDk8ATyWXiyJqCLAf8uSR0All+XvEZX3/xI4cfNoPhYw4jYyfB01DEAIoUKPgMQUdHHknyEHBRdRtDN/A8EUGQSCVzhMI6nucbjX/51RI+XXo/4yeMYe6sG7Azhm9lJ6xl5W/vMGbIsUAVmOW4eRADLohtvl+XV8bGjTtQDJPX3rmZXn2DnDzzn0AO2ERLfit33HEL5/zlBgbWTQJ64lgakpJn2bc38MPKbzn//MvR5G4IDAQvgieASxqRTMF0vYM9HV/z76cWc90V94I32D/QkPP4BwtxuhIjv/9+GT9+v54LLlqImc4gynl2Nqzi59Vfk87u4Yx5N7Fy9Ss88+/XOf/iI/n8ky2sWL6ZR+5/D0PpDUae1tg6phw+nZ9WrkURfRPuvYq2ohKpiCKKKOIPR5FEKqKIIor4X8LvSCRB8v2B9kus9l2vO+jo3MzHnz3MvBNOB8azccvXXHbFBTz3xDLCwRpsr4WdrR/wzdffUls1nBnT5hUu4nLpZRfR2dnOQw89hGGEMPMuuh4FdOLtWe546DhGjovy8ovv8+YL28Cq9/2PAEHL+xtCaR2nnj2eu+6+iSefeoRLL7mcsDATrB4gCZCDVM4kVJbh+1WPM3BwHU88/gKlwZGc/ed/gi0XDolbefGV16nv1YfJEw8lb9poqobrOZhWBs8VwJI5am4vXn/3HkRB455bP+TyS27i/Y+fZ97JJ5LK5AgFouStFDfeuJAjpx/DhLFHouslICiFDW+G2+5ewLARvZk97WbSMQhGAyBYZJJpAuEwty86gzVbPuDEYy9izpFnkcwIyFIQQ6sgmTAJh31lVN7MoykK+XQjr7x5Gzu2ZPj71TchG1n/uewqWju28tyrt3PpRYsRxCy2l8Y2S7GdFEbAxmMjLkEEaoi3tFJRNhQvDYIOaB38uvFJevUpIyL3I5nsTjgcwcNFKJSegMuvv37F1q1r6NevH0OHTgannGS7SLgMkFvJZrI4VoCQUbHXy8hxckiaRDZr4jgemhpEUfbbXf2OSOrgnY9fJRoNs37dNs798zVQICn817l4tojtgCt2oCoe6WwaUQgS0MvJZrMYhgZ5ESSwLYt4Zj13P3gJCFlmzpjLwRPOAtP38HG19YiUks96aGoVniNiu3E/sUnK4JdLang45KwMhlIFaD55JqaBBA6bkJiMm5VJJSFStY6ctx5dKOPWO65l7Pg63n//I+5f9D12ohpPbkYJyCQ640RKhoOnkM1maOxYybkLZtC3bzkHHjSRRx58jaefepE+dYegKt1xrBzpbCuRkhzgsuKXrxg7sp7Tzz2JIf2nMaT/ocyZvYBMqpNAROGb5c8RLE+ydXMjx8/8G8l4FWEjQCYJrrSbhL2UT5Yu5sRj/05Q7cHNt11LMKwSKYEzTjuF115/m1OPvxYnX0MmvR3LzFBWOYJ82kIL+eVoectFUV1EUSabLaRhef4fQcziuI1IInR0tFFWNgA77YEYRdZF8BwQY9xz3yUkM+sZOqQvs2cfwRVXXMXuXUmuvu4Vxo+czMbNW/nPf/7DJRcuwAgWyqQ8i2QsRbi0Gj/9MQC2b96dTYIRhd82fMlb7z5DdQ+Ds+ZfCYTBK8dxAMFDknKkMyZBo6CKo4GcJaArUcDAdUUQTBzHRJFt8nY7rp3EkZfx6ZfP0rqrgpPnXkw0MgzP243tJpk4YRp/u+x8Tp93CjniZDImZYERQBm45f8//lo7gXRhnYzg+58pdLbFKa2oKswJf25kMnECgXDhtZr/3IXXe/jm064DshLDJ0rifP3V5/Ts0Y94wuLNt99kyuFHcvDB0wCNbMpE0zRERWH7lg3U9+2LT7JSuH6B8N37QdBV5vcL737yH2Yc9jcUsXZvaSi0AUEgBJZBNgd60EYQdxeeowzXlhAliZ27vuf2u67h7juWYAQM8t52NIHCM5WRzYkYWgTHLqT6CVt575ObaIlvoL0lzxUL3gCvHjzwxFYEEnQ0VVJWo2A6m1jx40+MH3sYslgPDnjkcIUErZ0r2LTlZ9atX8tBk6dRWTKMysrR4MrguKBmSaRW8sQLZ3DZuevo6PySdRt/ZPlPL3PZX98AIrh5G1HogS3kkRWLw4+YwscffYaiaHt9nooooogiivifQbGcrYgiiijifwmu6/opa/8fe+8ZJlWVdv3/Tj4VO3fTDTQ5ZxAExIiIgIqYFTH7jGF0DOiYs6LimHHMOmIajCgqBkQRZRwTooJIznSqrnzq5P+HU93o+7wf33me/4da1wUXDYeqU/vsvbvvtde9FnSSSYESyQPBx7NsBEkkFNJoad6Goik4rsLb7z1FeaXCtCPOQZQiuG6Gha/eRf8BfTn04BkIfhjXsxBFiR9+XMVxxx9NdXUNIS2OLFdhZECR4ugRlQ8/eYyWxBq61JRTHulJfd3oIGTHAyQXkEEwWL9hDYccdASvL/qASRNmEtX7AzqIAq4JekzC9/N0a4jx9D8WkEpmueKS28CLkUtJ+EBTYhO25TJu3HhkKThll0SRgpknpKkosoRt5dnTvJYjDz2YHXt3sGnjdt5/fwmzTz+ZaKSKtmaPWFxj/YY1JBItTD5sKrF4PUV3cBAMUpndxMoUJow/BEWsBt9FUixOO+0YFr/zOo3dGjj2uCOYcfQMhvQ9EIEYmlKGIofI5x0iYa2okCAwL/dEZN3jp/Uv0qVLF4aNmASoGBkPRa8hEq1j4sQpCK4GoocoJJFlnVS6QCgc4uFn7mbh6y+jhsOMGDgM7BiuUYySl2Tqqh0+WPYmL73+KocfdgIiYrHeDeLVwWfx4kVMnXooPXv2BVTampOUV8Vx3QIFezfhcARVD+1TgQCiKIMooSgqsqziuXSmLgWTreMPLpBk7Ybv6d7YwOGHHYFElM6TfQHAR/AFbAtkMYQg6CiKhqoE/liubyFLkc5iPZPJEa8Q+O6Hz5hyxGQmjZ0CfhVeQUOQQZACs/HA60gkm0kRioWxzAKZTBpf0FDkChwcXN9EEYOWzUx7ikxyF++9v5DlK16kX+PRhPVA3SGHcsiCC4RIpRL06tmH7g2D6dlzAkvefof5D1zKm289SnmlTt/eI8hnTcKxMJ99uZD+AyO0JVo499zzWfXVt2z4bQvTpp4Gfhjf8whFQ4BJJt9Mr+59MH0L0S9j+JCD+PCDL6gqb6BHr74UciY9evWhvqqKQf3GIlCJppYHQi4HwhUOzz57PYn2jWzd3M7oERPwBJsvvljOL2t/pLq2kplTTwKi5DI+C1+7nKWfPEddxVAauvcE0SWf8whFDAxvPbKYQ5SjeIIEAuQMF1WRyebTaGqUUKga/ArMnIKqSAiyg2m2Iivt/PDTpxxy8AGsXv09O3du5pNPf+LMs09i/S8C+48dTXtyCz/99DXbt29g1KgJpNvSqEItWrhrsZ9LA1vDs8ApgBaCTMZhy64V+FIbm7dsZeKkI5GFEL4fwnPBcVxkRUFARhIlEBxcmpEkmVw+B76CJMoIgoBX3B+EYnuupts88/zf+PbbjTQ0VNCn5+EYySh6uAs7dq2iNbWW2u4qn362hPc/WEz/AYOIR4IWtHzWRhIlBEkE0ebXjR9TXRkDYrS3uYTCcSBLKKwCGvlsikwmwcZN61i27GM+/uR9Dph4IPsc6WWMgguy1JkPJ4pucS3ZNHRrpLKyAVmWaU9vYNasuTTv/RdDh/SkurYcQTJYt/ZfvP7GCwwb3B0lLNHW3kYkFAUEPF9AECQAUukkhmEg660M7NMPqZgM6ToupplEUWUgaD91bRFRBlEWQcghYON6aSTJJZ3cQ3VlnKqKanr1PgAECVkQius8CsSD9mVVxvX84l6h06dvNbX1UXbsbGXM8GOC5DkBBCFgLY10GaGIRqGQpLGxF4IfwrdjiBIIctCuHY34yKrDr+vWM33KCUQi3YrtceCYAqKsomkuW7d/y7CBswmFZYysxS/rl9OlciSVVT1IprZgGDaReBxQWLLkA049ZTZCp0SxhBJKKKGE/ymUlEgllFBCCf9L+IMSSfLwSSDgEJAHGnjx4BBagHxmK6FYnqtvPguUJm64/kbK5JngV4Fgcvf9J3PJn68mog7As+IIooUg26z8ajGTJo7jmeef58svvmfalNM58cSzi8bKJi0tnzH/oYsQJItvvt7JI3/7BwP6jUEW6kGJB5Wvr4PsgZAGL4Sb05CigLAL17OQhO7s2bWN+m5VBK0LDiDiugqSUA1oZDJpYmWBRMa0HWQpMFKWRHB9G1HwefGVJ9j423eMn7Af0444hlPnHMuO3WuZccxEzj/7WqrjI8DqDmqWPXvXEI2FEQkRiTRiZFxCkSiIaSCHabejyf1ByAM5fJr45xsLGTZsFIP7HYwgdJj6+vi4CMjYjo0ia394RulMkrvvvJJ4eYa96fd58K6PcO1ynn76SaoqunPCcVeBA4UC6HFA3sPyFffx/aomrrzyRdKtSd5f8SKzTppC3raIKAYKVfh2DVbBRY95wA5efuMJTjt+Ng5xZCLB86c8SLWCID2PAp5nIopxzLyNFnbI5nfy4KPXU1YeY/jQsYwZfgzRSF+wxU6LkHzeQhRFdD0wBBZ/f2AvABhknNVce90VDBo4lHPPuQidXsX377gm8ImhWCdnDYiWeWzY8Q6PLLiPc8+6giH9piNLmeK9h8BTgvcQbQKlhYRtCHgeaBEd8HBsC1kJbsSybFQ1RKFgB74rIhRMCCkgdia5J3nwvr+Sy7Vw/c3Xg1MPgoxhJnj0yWsQhBTbtu7goQee5M7bHyGX8Zh35z28uugapkwfTnVFLYbr8/B9Szlh1jn06j0QUW7BIYXMMKAM3y8gCIHRdDqRJ16pABnefu8xtu36npVfrGL00OO49q8PYtspHnn0XqprY/z0w17+Once0WgdcrQFFx+VMjAVrDQAACAASURBVIy0RjgU3P+ObV/w9EsX4NPETTctRqYrAI6fBSHNKafP4MYbb6Zvz3FEtD58tfZk9hs8nPm3J7j+xofpUJZ8+tXjZL0vaGlOMmv6g0T0fggEBviBQ4xDvpAholdg54upe25xa5GSZPM/Ew2X09aco6q6C4gW77zzBNOmnciebVU09o0AbbgYfP/tekYOPhhFiuK7YQRNwzECY25JB/Aw83m0sA5CCthBoMip+d18jmPkQC/6pwsi7N69k5/WruLTL5+kf58xHD75aHrUj8T3dQRBwnE8ZNnDtjMoikNg3LyLV998nMcf+ydLF/+Crg8GPJB2Yvo/8bcH53Hd5TezfNXnvPnapzxy/3NAdeAj5MvgwdvvPsm2ljewbINLzv87utqf5r1b+fHXN/jkk0+5547XMLIWekhFkFwcJ88dd9zCLbfMIzDiV8FTcEUPFxHXA0UAoWhA7vs5ZEHDdSQkOQ8s4+77b2ftL+uYNOkgFDnEO++8x1//ejWtrW1s3ryZSy96hNvufoCLL7yaeKwCRYwH68V2EUQfURSw7e1oqgQ4JNK7+HzFMlavXsNf/nwjFdGhCF4IRHDlon2dD4nket77+GY+/uSfjBs9kj4NM5h2+FkYXndCcQ3byaPICqBgm8E8aWtPEY5ZhNQysFRQwShsIBQKBZ/fL/oudQSO+pDJ2MSqPAr5JHqoDN/SEWSwTQtZdRHkJGDgeAVkMQpUkmvXiESLe4TsgOAGsi4hAYikmxQy/ntcO/dhXnhxMVt3LebdpS9xyblvgV/H8cefwhtvvFpqXSuhhBJK+F9AiUQqoYQSSvhfwh9JJAGfPAIWQfWv/C7m3GPdL5/w58tO5Nb5FzJy1AAyaZv77ljC2NFTOOXU/wI/Sz4jI1GGVuy4MAsWWjSD4zVx5123M+vYExg+9FCC9hIBPBvQeHfxM7z+5mNcffN0nn9hAQdMnMph468iHtuP5qZtVIZ7IMc9kH7ARUeyhvDJyidozX3KkZPP5fHHnuPcsy6nproveJWk21ziFVJwOCxkCTxxguSt32XLF0fBJZlupTweYcFTd3LIoX0Y0vco8LqBaDL2QJ17HjyR4QOPpTpyEBjdghrOyyLKBggeyUSB8oquQZEoeHhOHlERiq1PbQTeH7/vE4RCVkcPleE4EPBGQULd9p2b6datEZHiabyo8tCC05g582Dqa4aiaYPxnVbeW34bB40/g7g0NeBW/D1IaoQdu5Yw96rZ/PPlz8HcP0jDUkyQc3i+xA0PX82nyz/guCOOZcpBRzJq8HT8bHBrqQJEq+HyS4/hgIn74ds1nDr7wiKRES6SMQRJdQDCbsBh0ZtPctTRUzELLhWx3uCXk8/4hKPFdqHfFVmmaSDLMoWChW27lJfFQbBZuOgujjp6Mq7rUh3tDtT+jsCCoPXHBeIBjyEBosHcm47kvP+azaYNTcw49C+k0zuJx7sEnlVyJYV8Dj2q0pnm5yqBB3znfXXEukOnWXvRqwja8CjDzsjoOrQk1zJ24hDq6qBrPfTtdgB33/E0p58zlU1btnPZ3JMZNbaRhS89ihZR0eQaZs+ew5ln3Mx1Vx2Gk+/GtGln8uH7X9C9Rzd2793N2HEHURbrT5CyZxKYrwfMmWuVIf1OXYVk8uQLZ9GjVxW5tMJR009BEgRMJ0tYjpFIGVSWNeL6YRAiBO5FIRwjUOqEQoC8G+RfMJwNhOTpQFcc00BWg+L5o89eYNXXn5HLWvz7X78w59webN+6h1v/uhXcCJmUQSwewhbTKNIGEkaKstABFDDRiGIUIKyLOE4GTRZJJNpRpVpkVPRoDtfdyMqvPmDpslfp0difc866HlWpLq5Ni33sQI6rrriM+fc/BX5NMI9Fg6amLzn1jFksW7oFQRTwPANR1CgYJnpI46dfP2D+QxdS3y3Mpee/SdfaMWTzOUJ6OZIQtOI5Dsiqg0c7ltdOrrCDRa9+wIXnXI7rx7BNFUnUUFQB8LjqmtkUnG/Yb/RoTpl1PVqomp9/+ozmzEe8+MoLJFsE3nzJ65yrZt5CC6vBevECQtvMyciCFJBe8nYKrGLpJ4vZtVnn4v+aB9i0pL5j3boNHDhuDqkExOPliGpHEqWNZTqoWnVgOG+Dqxq4uIF3mV/cXYTfTWsfWpr3UlP/Kz//+i2SIHL//ffz1BMv0Jbaw6WXXMFTTz3Dxt82MWTYESTTNm2tOfr3HoJpgaaG6WhLDnpAFTas/5m3P7yNCYdWMGhIT5a+t5LZM+8EBuCZoaCTVUuCW862tdBjMCC9zJ0PzSafhwZtGhf/ZSEIVbjkkcTiKQWhfYmegknQIieCX4+ZC1SZmUwT8+4/B0HKc8N184hr44Oh6QhWFAzwbDwXBHSEYtqaZ7uIihQwW51tgqFiNCIYZjuSmsK3VTQaWLryCj5Y+iZnHP8EYyYcQPP2Vmobyyl477Pgsee58s+L8N1yjp11EosXL6JQcNBDRf82OoIfSq1tJZRQQgn/SZRIpBJKKKGE/yX8N2Ntt3iaXfz518wV0KIukOXW22fzXxeeQGV1PzRqOO7EE3j1tSdxHAfXrCamjywms7Gv6BXBdTNIaoEPP3qbwycfgSTFAh8KAFHDaNcIRWH33s00dN/JF6tfZPzIQ1CYRD7ZBTVUoKXJ4PUP5pIoLGXM6AkcdeAt3DTvAmbM3B/X6E4sFmVY/ylADW62HEkpvr8MiFmCSqPD56PDu0LAcW1kCTpivYOktBT5TD2qVIthtjL+8BpefPVqRvWbAzSAE5yCFwzQ42m27fiap59+hoYufTjlxIuoqAyUHfgeSG0E6gUN3Mai8TYg7QGguQkqK7ogqwIdJMnTzy9gxIhRjB01CQ8BkQiwimdevIlMNsFlFywCKvC8zYhiBJxB4EHOzCLEDK694yQmT6znmMPmQlsjRCsDc1lfBEFj0vkjOPH0SRxz0MGonkJXdWhAmHkhkBwQUpjuL2iSQnurSEXVSDxTQNTUYo+hiO8HKoM/+rx4eLZJkHQtBua/roDrC8HzwKNgZdBVlZyRQ9fDSIJefB4eYOCSQcLHdF00qe53ZJVHoCxxgEiRUAAwyFjriKmBcq5gx8im9vLiwkXMOf0cdK2MSDy07/n75cFLCIFaYh+83/1ZLP5uYPqb0YVa8GpYueoD1qz9mAMOU2hq3sx+oyZToU9i8VtPMmikgq6HqSk7gHC4B6u+fY8J+00jmYhRXllDKruGsqiGmfPR1DjIXQKCETqNxl0bfAfkcMeaEcmmMkTLqoqf2wDagzmISKC2KWBZYVS5DtuIoIQpkqYOmOUULNBjSWz2IPrgOD6aUoPnOIiyDJRj52QUvcg8iGlgD2CSKSSI6XVAUzB/6YlbiCBpUfDFIFVRTCMJEslMjmhMQyKMgELg47ONcFjG83PYhoiAyvsfPEXOaCEc1hl/wBj2tuxm1NBJeIgINJBMqlSUV1Fo28jhM0ay38QoZWVVfPN1K08//iENjf3J5XbT1LqBs885j+XLlrNnbzMvvrCYLZt3Mm/ePD745HnWbX6Hgw8bweqVjcy9/G58HAR80mmXeCwgJl2hHYndeNg4aKiUY3siilhJOmUHKkMRwOSfb91FvOYH/vnCpzz/5FcsX/kCWWM706ccRFOLwjNPLaK8PMqpx8+jumYwubRBpEwDoQnI8uW/3+NfX/3E7JMvo0t9r+Kz3EHK3M4dt9/FzKPOZNL4w3F9D9+TkaVKPFtj3rx5nH/BydTWVgEmqXSWsngjZt5H0ypAyuLjAfFgiQgUCZgsVi6LGomRbM3hA/GyCJIis/KLZYwfvz+yotPelqSiqq5IstjFqajhuB6K1EEgdawPF2wNx4Y1m55gxbcPUV0T5/3FP/LyU6uBalzHRpILBGrQrpCtgrDJ8i8v5rs1b9OjVxfG9L+S3n1mApWd6sbg9YvJj1Acn3RxT7CR6FPcv3L4fMPC1+/hpzUbmX/zMvAbMb0NmKZJPFZFLpclEgnazVxLQvCjiLJUVL52jFGwj3luURUppIFWMlYTMVVmV/MPPPPCrZw68z561JyAGlICJaz0LTjjOl/nqKOPYcmSd4qKtd+P1b59pIQSSiihhP8MSrtsCSWUUML/T2FZzr4vfJF4rJpEM0BXDth/Fo6f5Lctn/PO+0/tuy6wjuk8wJZUHavgMWTQOCSpAtBADIGg4roWsh5cW11bD1QxqP9UFHphOTLhMhVZE6lvzPHSqy9yyIFHc9SBp2Kxm359RrL/4JNQ5RiRcHnwushISufhf1E5IwXkAXH++C1HRJZkDNPAdm1a2psR0CkUIpiGjCBZxCpEjj56NJXxQQTFewzkNAggiQAOH3y0iGGjujFsVFcqqvVOUsWxfMDh/ItOZur0CaSSCXKZwFM4kdwO2NTW1RV9P4IizbDT9Ovfg0GD+gEOYvF+2xIuslDFeRccDSRJ7GlHFIaRTwWtb74F4WiUZWt/4cNVP/P1z81AJb6qBf8omfiSiitAplDHz+tkyuWDqVInYeQ1wCXVvBU7nQE/jiYBtFBRHQIhh2knisWpHfzqUPL4nbcetK95IXzHA/Js3/4je1t+RVKCCzzfRhACJUAkpCMJkMun6WTW/AiOrQMRFCkoAvehozBTg2s7lU0yMbUHhhPGJRK06Sx9FE/axap/f0QkUoOXi4JdCV55oFRQ0iBn+e/E0e+VYh6goAt9oVADJkwcM405J17FiD5ncMSEG4jrh7Jze5jDJp3LgF4z6VE/jXBoEriDmLDfmRj5KOXljRQKEmXRrviFRrRINxKpPAhikCjnBvPBF8ARDeRYggcevYiDp3Rn9hkHISrZIhkXArcS/F5ghfByGr7TFceuCtrRvEjQLuaAZ0YpZDSMdtBVAIOFL83ntXf+zpKPXgZERKm+mEin4Pk2rgWuCUEhHyeT84jpjQTqqO5AjDPPOoTnX7qT5pbVODQhSiaCH/hWlcVkHMvGcQ3SqXbAJBwWgSxbtn7D/L9dydPP3sGxx5/LrCMvY0DPY3CyAxg1ZCZ5E1oSeQSqqYg24uUi3H7rjRx7whCG7Rfl6x+2cd5Fh3PfA7eQbN1NJNKD3j0O409n341IA2++/QpjD6hhxLgoBXcLp514FkP6HovZPpRzz7wGkDEME/CIx8NYlk9ra5LPV3zEY8/fxz0P3YZKHMMCUQhh26CqGqIYqOYcz+LkWacxcvgkPLsSPInRY3syfuJQCmY9DRVzuPHqfzJuUhceefxaENOEYyY+TaSN34A9jBhbRV03h7y1hYBUjgK1CG41DV27sGLlh4CHa5Uji13wPR9RAUHK8/iTf2P1T1+ws+kXXnvjWSCLFhaC1isEBKR9y0HIAUnuvefPvLH4b8BvlFe7VFR2x7LC+F6YocMmICtVmKaE54dxLB1RigPhQL2DhmN3MvB/3DOFQDXZ2NibM2ZfyswZ5+OZ9UA1uVyCe+67lqGjevHywnvZvfVziCRoa/qeQw88lmOmXcya7wx69x0PVqD885FI55MUnHwweTvXpFKciyFAwsUEATzPJW+JNNQMpCreHd+1sXLNaKpBPCbg+kluv/M67rn3ZsBAUn0Mw+i8932qSDdY9SKB2ToKO5ubWfPTdzzyxFxqKgYydMAR9Os3DrU8R/PenSCa5DM6bq5jLDw8z8LzvD/6vP2fY1ZCCSWUUMJ/BCUlUgkllFDC/xL+2M7mF9vZHIICQgNXw8qBj4WmJ0EtADXk20KE43DceQJTZnTllOMvo0K8As/ySZvfUR7vTpDWI9Kyt42auu7gi/hOkCIkqeC4PnmvjYgeXOe6QauUIul4BDKR9kQTgrSLZ/55HGFxBBef+QaWVUCL7MIz++MWBJSyDQQ/tHcJUpoEBSSDoC3IAr8uSOwSAdWg06gHsehFZNGebkXVfCJaDdiBQsT0f0NTk3zzyxLGDpkLhXiQ+qW8j+wejmeqiOGdrPjmURY8fg+HHTKDs2ffgmf0RJUrECWJHTu28s6ya5h1/OE0VOzHrONn4wsG11z/J8aPOhOsLkFit1hAIIdDFhkXGx/BjyGgIwlxMCGTcInVbw4IBaGO9r0JKqrqcEyLNevfZOFnN/HF3hMYNbSWs489lGEVIwgBrmfgis3YdKG5SePut5/gwj/9iR6Ab0Kt1sazT5+DHrIYMnAiijSIR5+bw/EnTWb7Zol8qo6+/UYxdepxxTGT8IgACpJnBG1TnYfvHgi7+eiz52lu3URFRRkzJt9I4OPi0tq+m23bN7Ns2TLG738ABx0wBdeTEHw96DSRwPEcXNdFU35nqi2YBK1ecYI3K8a/daihitdZtoWs/hjEt1OOmStHU6PFDjU7+H++AoKHg0kH8fjfYSIh4mdlRF0AOYFltuN6EArVkTUcQqEo4HPpxSOprttNPidw782/IMj1eG47oh4DWy56IO8CYmRTOtGISlOzQW2DgkcekxQCUVR8PLby/ofPIogeO3fs4aJzbgcaA2+yourLMpOooRB4GonmLNG4jxoWgDSpZA7HFqiq6g2uCKIJUhLHziMrNfieAqKGV2ydxE8hODpmPkQoqhS5s2CcfNtHEPWgtpcAeQWvvfUO27akmXvFNeD3xs2D5YBa1kI+ZWDkTGrrG0m3b2Tzts/ZsvUHmprXcvIpJ7Lso0854cQbwesNlg6KypNPX0pd7xSZXJLpR15OhT4FnAxPPDma1es34vhw8UVHMqjXeXywuIlZJ55d9BjLBPtQroVwxGXjlnX07TWYgPTS8D0DQfRJtpYTjimomkOgZAuRy3nouowvbaMl+xWP//0ZJo68lKlTZgIyrhOICGUVgg+fJ2fuJqI5JJp8km3Qe3BRbVio7JyKqGvIZSXwuuA6EK8Ms+LLhaz77UsmTBrE8H6TaW+PUlHRG5ygra65dSuhqrWsWPEZUyefjuwMDwQ/pFB0C0jy9AvzCYVFjp11JBs3bGfVl79w8gnnENG7omoBERi0ZQW+TOefN40zz5/IkveeYdr0w3n/vV+48/ZdCNiIOPgUsFwD2/MIK+WksnlCaghFUvA9AUXR8FzwPJA7tsqOFjAvBIJHwVmDrgDEsbK9UVUwvF8peL+y9JO7oV0jkWpm5+5ddO82iov+/BjZdocFj7zCX2+6obgvVwZG7IUdqJqEIujB8/PFzrnuC2D7QQCn1LHWfdi7fStdenQLPrfcxl0PHkU8VsNF515De7rAh0s/ZuYxJxBS6/GsGmRFC84SMIJ5X1RveQ74PkWlZJas/SvPPXspl573FTiQ2OvTJt7Iywvfp2vtOM6bMx/PiYHmIsoWU4+cxuLF76JroY4NkBKBVEIJJZTwP4MSiVRCCSWU8J9GZ6HdIRvpUBjJpFIFyuKxfdd0/LAuQTL1MxdcfDpnnnkm0444HZwIyFLg+SM7/LrhC579x8M0NMp079aL46ffjG9XIwg6jryOa249jUkHDmX6odfh53tgGgXi5ZVBTeIDCuzYs5ob7p5IY+Xx3HbNQix1DZoqkstLPPL8MYw5oD9mqjdHjH0IU1nOw49fweyTzqMxegliOMnN91ewf/8nmT7jbHbuWE+3xq4EBJZFJreBWKQa3G5B3SB5IDYVzZB9kDZy3S1ziJQZHD1rHMN7Xo+R64Lg6+jRDv8MkUxKQAvB3KtP54QzezB+1D34LuSsjdz3wOHU1WXAkzhw7J8YPeIGsDRyGdCrPUSSCATGzvc8cCUzZhxIodDMxnVN9GiYzIRJpwVDL5jF51IcGCi+v4lgVwGwfe8iNm3/gq9XreGauc+x/sckz7x4Pau+W8oZl/amrvscBvcbTbf4IUhGPLCcEsHXdoOynvkP38TeTIp8SuOpe9/CtCCi1vHF8g8ZPao/rrCHE2ZPwXJtzjrjFJxcL6YecTzdGxtoa02iKwMJaQKiFMwPCk6x/9HvtBPyPRNBDr5wPB9ZbAJ8vlzxGT/8spi08Qu5ZJzTTrySIcP244bbptPYo4H/OvN+brzpKnbvaeeCC+YyZtRRiGIUH3DJ4GIgO7U4ro2mSexz1YUOPylwyBubcN0Ejzz2MKJs8+dLLyYqVwO1QCM4CojQlFrO408+xJWX30RUGY2VB09uwfXyRPR68FUQdwEejlGOrMWC9SMkMd0EmqQXByFCh5G7k1eR9TCuk0NSO56jjeU2owgRBDHErbfcQCq/h9NOP5oePXpQU9YHiJPPF/Bdi12tX7DwlQe5+MIrEO0B1NYOIiDQRHCj4O8F2SIouDVso4lnnnuQXgMk/vXdW6xbvwnXhu61x3PH7feiaXVIQqToBxO0bXaMmml8zW23/oWu3RtJJrNcf/0CCvkIergW01DwPRk9JNK6dzfVDRJG3iYUrgsMy52AaPDlAqK8hfMvmcIhB09m/dombr3hUUSvumj2FSTvQQG8niBuIGtuRfLrCSkj2bxzCdfdNpMNGz2+/thDRgB1F1+vvp/Wtj288/Z3PPHId4G5vuCSzewmGouSySSJaD0RRQXkXLBWvHLad0EkDmoEkAPS2HEEZDEwtS4YoIcByeC1xY+yftNKevYVOHnG4yiSjmW3oCrlPPX89XTvE2fFyg+569pPgvF2BfCNopu3RroFYjEQZGhNrKW6rh+p9B7K4hoFvw1d6ALEcC0FUXbwxb1FiiFcbMkUSbTupbKijnzOJRyKBdNa6zAHN0ikDHStjLBeH/y//+biLBdfywO2Y/g7efa5eRx26AwG9RrD8hUbGTb8KKrLw1h2AlXZwwefPcKOnZtZ8PfPWP3lFlrTUBHuiSTnABOPCKKjBWpDKV98fvUIpoDvgRhazbwnJ5FNVHHnNb/iG6FgG5DBlt/mi68X0tbWxG/rtzJ2xCkcMmEuqtilaEsXqKU8v4AoKCx6/SW+++FH7rnzISAa+D15Mq4VHDbgQzJpI6rtxOMVwdxzA+WcpAFKlkJ2EzfcfCHNbXu446YlNPYYgmuDpNv4KHguIK3nt22f8/rrb9Kn52hOO/5GcIqef4pHU2IVdZURkmaWcmUSVg5UBdB/ZtV37/LCc6/zyL3vIuu1IDZhGEmOnHoib77+IVW1XYvtdh3fQh2E/ys5XUIJJZRQwv8rlCj7EkoooYT/cQRqDssuUFYWwXGgYPqB6Wx+3zUrv/qI08+czqj9+mAYSZDCtLe2Iso5Dpvan4H9RjPn1MuIaD04Zvp0wMF1FAo5kBFx/SyjxvVFFVS0UJh4VRwr3/4Hs+W777qKxt4G8coEQgiefn4uV1x7BMnEFnr2LuOAEfsx+aDTAmWFlKS82qRnbXc83+HXtcs48KChHHb4BNKZjTz46LXcM38u4JBL54lF4hhmG4jg2IBgks/upL0p0emsvG3TTuLhSob3HA1UEgrr6BHIZlySCcBVkCQZVc2z/6Qh9OkzhEzBw5UgFipn4vipGBmVIyefwIghY4rpPhCKgI+HRyWmXYbrhxk/dhK9ew3kvSVLGTasH4OG1v/umUh0KsA6fxXJJMWmYLbwyIIFlFdWc+Xcv5DP7WH5ypfxhATde0bo130c+/fvTt94BToeigSaApoIulTGM88+SJdan5bNP3HasWORacZ32kg0Zenf+zAisf5ooXoGD+vLqP0a+PCTJcRiVdTWdMdxXKqq64joQpBSJkK6fR24beC2Bwo1yQbBRZA08DXypowgKIHRj21TVlbG8BH96dWnhqlHHsaQYWOw8hkae8YYN74ve/d+z8DBlaxb/x0PPXI9nt8M2GRzWQQiyJQhyaBpHQRbRy+dRcHKYXtBi0w4JHHRn8+iZ48aJk4cX1QlhYrj6eFLgOiwfPlbGPkWXlz4BL6bQdU9dM0iEvJxnTRtLXtxSQA+shYjl/TIpy0SiZ0sXfoy36/5GMiDHybXHqGQjiNr4UAQohT9jkjw6/ovOHzyAWTzrUCB9Ru/Zk/rR1x/y5ksfHkemUwO0AiHw0RidXz+2VeEQzGeefoFamv7BkU1v/vIcjiYF75Lcm8TSqiSCy6+lsMOOooN6zdxyMGDGDm6OzYushYOjLk7eYeAbBMQEdDQQ1054rDJTJk6kpoGh5/WvckVV8/moYevRwu5FOwkLc07qG6Ic+tt1/L3J+az9pcvKeRMkEDUs0hyKwLNTJw0gv32H0h1bRhRVLGtKNgh/EIUqAEq2bplI2ddcCSPPHEzIV3GM2Hjr0kqyhvo1giymglaUd2u9OpxOGPHnMSUQ88BR6NgtJBMbiIaC9PanCQWK0eUFOw8gIXjtpFMbqOiNkhe84UUrp8BgnYj1y0mGIY69h6NKYeeynVX3EWPxmpyKQMQi0l9EnPmzOHIAyfj2BlamluLS1QAWSaTSpNLJ/HII2iA6FFd14221nbK4hFMEuiCg+3ZpJI2og+CICPiYJMA2hg6op6HH76dyuouIIYJR2PBFqAGc/qJ5x7g+ZeforKsG2G9S6Dc8aKBl5YfIWjtLO7lAnR4voWECvr0G0Mo1AuXegb0P4SK8jIc20FVNGy7nT69qjn00FFUV8OFl59HdbwSSQTTKWBTwDAyWNYfv1fgCwgSiHIwPlOnTqWxsSs7dqxB0MA2AAsUBnHI/icxfsJMvv73LsZPmIEaqgi2Mgl27PiZ5154mO27fgEMxo4dTXk8iucFJwu+G7SuSWrwtq4N5VUC8bhKNt0c7K9ikccTwS14eJaKiEgq3UxVZV0wJD54uHjYZPOw+IPn8Gni+BMOZPfutQS+S0E7aSa1k6efuZcvv19GmdYLxwW1uMwSCZgwZhqGYVKwWylkduBZ7Vx3zeU0N+2kqraaXCrNf4f3f/m7EkoooYQS/l+hpEQqoYQSSvgfxz5FUiqToCwW+d2/RegwOr587qnMv+/OYkR2N3AjGEY7oWiGtVsWMbjXKPKOD1YjIa0Ox7FRNBWcOMhN7Gj9lu7VXcEfGYgpVAvEX7n9jsuoKOvCny+5izvvmcOUE7MM6XUGEWEi73x2KUccMgvddKYXGQAAIABJREFUPhPD24bh2lSGB2KkagiV7cRiM6JfjuwOZ9OmT6np2kY82pXj5hzAQQfvz2Xn3QYM5scff2TD1pX06t2NiDKEgQNH89WXr/D5ysXk2hq5447Had3bRnVDFUgmTj6L7FcFST+yQ2tiD6qqEo9WEZA7OYKWmCYsorgoOI5DTI4HihxNK/qUOAQKIg2XGsQi1yGIgNBCMrmDjz58i2NmHIce7gpiGUEB2KEO0/a1dECxraMFDwvLCBMKRcnl24iEU1x81cksmP93cq6N5DWgyz3xvRyIeQQ/QjapE42rIMLfn7yaCy44iS+//YBJ+02mua1AbdUAki1hyisqKOQd9HgbL712G29/8hj77VdJcscY5t32ZnE+SOBFMI00L7x+Jb9ueQvR6UpdTQ/+csntKGIDoBXb3Wz8olG4TAT8CvDtorJnJ9l8jGh4YHFcfyjOxUa+/X4Rv275kvHjx9HYdTwqQ4AKjJyIroMv5RCR8XwQBQXPA1HYdxZlFuD2e8YwctRg1v60m2uuXIhMA2KH0bpk49OKQJpNO7+kT7fDyObyRCM+c687nwH9h9O7V38OOXgiC574G7FwV0YMnsHo4VOKnSoOM48bxmVXn0hNbTk3XH8j40YdzzVz5we+MlZoH0Eqm1z05xms3/gtJ582jZ9/3Mndt72MGsryz49OYMSYBlR68+PyEZx4wkUgbqVQ8Ph69Sus+HIxklDG1Ze8iCzVgZgLxsrSuOaGs+ndq4qfftzG/fc+j23KhCs0sqldiGoLsmqiaiGgEYiQaPWprFD3mQrj7ZtfDvzjmZt4e9nt9B4Q4ZDDx7Dk3W+4/C93URmbQCTUh4heST6/i8f+cTpf/nsFbc3w6bubkOlNOvcbe1r/zdpNi/nso+3cfvudxPWuQD1Y5X8YC8jR1P4FsYosr776Ouec8gCFVE/0sjbgZ26cP5u6iv05/aRrEK1hxKtNQMa3FdK5nSSMz/jHwseYOHYWRxx6WTAerkYuYxAp38CO5jU8+OCDXHjenfTt3Q2P3eCPQxTKsJ0sSlFl07nGKMe2NAyzhXgsDW6fYperDZaCYfiE4lkcfyey2ADsBaLgdd3XUakm2LjpOxYvfpcTjz+bxh5DgWY++9cStmz7mbNPvgbXq8B3wshqDtgEGHjYzH/gb3z44Yd8unQl+9oqO4hjm+b2dZx66mzuuOUxJoyfXFxDv1O3CBQ9kETwi4oa0aDgNKPLBSCE7cvIQg0eClIxhdDM/cpb7z3Mojde5O57H6dfj6OAShxLRlHd4lqUwJeLCkkrmCi+hmsZyKqOZRio4QL5fIZwWAN88ukIqXaH+m41GPkkoYjArr1r6drQm31+dAawnURuE/PnPcu8OxYUP4xCQIppxQ1Po8NUb8euf3HPg3/ijhtfobysEdxy7DwoIUBuAa8GxHVs2rKM5V8s4bwzHgevEh8dQdyND9h+iJ/W/4N/vHAfD9+1gCWfrOSowy/FtSuQFBXYw/rtS1j8zqecd/rzREOVWJZDNKqAkCCbX09L63Yeeuh2Lr7wIvr1HcOePa2cesrFfPb5z8U9W/k/lEil1rYSSiihhP8kSiRSCSWUUMJ/HMEpe/DDbvGvBMjlEzg08+bi51mzZg23Xnsf8XiXwChCgET7dioragE9MCeWBDxxDd99/yOjRg9EJklQAPQGpzF4Xckhl5GJxAM/EdDwClpwgi2neeWNsxk8UqS6qgvPPf4ja1enmHbUJOacvAA8OPrkCNXV1Ty3YFunQbdhm4RkDcNpIxSygBC7N0FDbwU8FaTtrPjmKXL5JB8v/Yb5d76GJIokrc95/NkbOXr6bOLhvrz98tfMmDmO3j0OBb+hSPokaG1Zz9V/vYqnH12NhYkeNgnSgRxAwSdOJmMRj0XxyOFQIFPIUqU34Ns6ghAUd46RAC1T9FPx8fx6RD/wGPE9EAUPQS1+UZBAlQMFT0f8fEek3O+9fnwwXQ9ZFbEdF0WWAJuHHruDJe8vYr+xI7n6qmuQ3GoqlK6BmkHpSPLSSLVnKKvoyj5FgYLjtPHE03exfcdGQnoZt9z0CKCRz+SRZFjxzQKGDx9OXfkx2DklSP3CAU/Gd+Hr1S/xyls3cc1f76W+vA8uFUh0ob29QEV5GQCWk0OUPGQhaNEpWGC57cSiHlCG4Mk4NshaGhDZvaFAQ18NhBZsL4PtioSVakCkPdtGOBxGE2sIfJkEBFQMwySkhzDNYEh1HRz3B2RFIlAfVRVN1f/osyKQw7R2k2quobq6nKzzHchtxPUhgE6usJGInsP1uyE6jYE3UNEvaG/zKrrUihRoZc3P3zB0wBGElb4EqXHlZNpAViBUblOw1qGrDjatKHQBashmDKKxEIZRIBSqwrfiCDIgJnC9FIb/HVHJJet5RMWDgDIgVZwLXcnby5DUFBJVyHSnkBfQw3E+/+w9XNr49rsvueCii4mHxtPcnKK2qguGESjjOhVJHZ2AUhstLStQwnv56NN3mXLEUVRoI4EKoCv4ccwMaFEwnB8IqbniuA4AO4ptAWIWSW+huamNLl26ABK5jE8k0rAvGV5sQZRM9iVwBaRpOrOJeCxQiBmGzKcff8+yT1Zy/98e2hfa58Eb7zzE3uwiNm5ZzeQDz2XsoL9QV9sHANe1kLQd+KQQCHHfva8w96qbsK0UilRVNPrPUeA3ln7yEul0mpkzzqGQrqWusndnKl0qkaOsMliDudZKFAkUHYRQgudfuI/lXz3DdVc/wICep+1LWRS305xcg2O7LHz+Hf561UNAhrbsTvJGG91rhmHaOppShu0389Jr84jFVcaOGoko2zS37GTZp0s5+aRTWfXVt2z6rY3r5v4t2KcJQgEeeugpBg0czoRxU4iVVXfOYwDEomm0HwruqTNZM0joc/ER0XGRkYNeUxCytOxey+o1PzDlyONw/AokQUfAAD+EWYDA4qcJHx38siKHXEDwdXwbhGALCm5Fb8J1CyAlaG1NU1d5cIdvNUg5EAqBTx0inmMiygXAZPnyVUwYfxB6KIZrO0iKSi6TRpIk9HAE1yngeQ6Kuod2XuHU6W/x6ksfoYm9CYUFWhIbeXnxJfzl3A/wnN2ImsHP676gX+9D0dS64HuWkKbgZNDkOB47WfTaPzjmmJn4ThTBq0ZXapA0mYK5FZQ9rFy5hsmT/oTl2Nhukmg4glPw8Umi6Car177AgsduQ/K78PiCdznq6FN4fdGn6KHKQB3WSSJ5RRKphBJKKKGE/xRKJFIJJZRQwn8caYLT5UgnQZEvWDh+O19+/Sa7m3/i3FMvBn9IoO8XO47aA7NrzwZRjvLMM/OYPFOnofJQVHEkx504lKEju3DDDTeh+gfh5sAoQLQC9jS1UN9QFZhX+wpPPD6fHTvXcOudsyiwhmuuv5W9zTDvxnn0adwfgRFAmq9/vRhRcuhVeRHVVZODFg4BjCyEYltpy//CvXc8zj23vQvkQdB56sU5DByp8PLLL/P3ez4jl+5DJFYFwmZeefNBDpk0i/raQQSE1xYghm92QVAimNbPPPzoHVx++ZU4hT7okQpuvfMq4pUFGnt0Zcb0Y3HNKjSpAVkKyCK3AJIcpItFynI8/tSdbPjtV0456XzGjj0mMKAFEHdjW2UoSiTw2AhDPmMQjoXIJUHXQOpor/kduRfEtFsElXQIBwsPkaAIDzD3+rP59oePOHLq0diWyM1XzUdGDTxD7OJHFbdiOm0seOxh0m0RbrnlYbycTN6yuO3ekzn5tGkMGNSdqNKTbFYgGhlYFCI44PrB6bpiAru4/K9zeOCe1whUBRawE7Bobd7F/fffy4ABgxg2fBSKVMnLzy/lxuseIFxeiS8F/reOA5btI0k+mravwLIdFyvvEtdVfAdSaSivChL21m35iseevBWl7Cfq6mo4a9b71NfXY1p5NLXDF8nG8gxUUWZX0w5uvO5UDjzwEM4+61KgRzB/OuO9bXwyCKhgRfepc0SPfCZHWIsFdbYGiAlAw8qDqkQCMgJAzGJau1FUB5c0Cv3pMJG3CwUUXQc8bDOLokkEA5rjldcfxLcaqK/rzSEHT8VzFfAVJEkIyDQ9sNuxyKNFcuCp5BJlRGLFZymwz+RaANuwUEIqCGlyuT189e2rCPoWfljzOUOH7c+08Y+RyhSIhusREIokjl38EMGYOFYWWevwkxIAFccykFWRex+4iFC8nfNmP0hIbwQ0CrkclpUnXqEHc9MOfLcsE/SKLGDS3r6bkF6GHgoIP8fK8tpbf+fnX75h4OAezDnlNiDCPfdeRtL6mE2bNrHoua+AnrS1b6Gqojv49SA0YRZcVKkaQbHYsP0NKqoU3nrjY2afcCNLP3qD77//jqzRhGklSSTSvPSPpcgMCOyRTBDDwW2adhJNCcz2XVxeXfQOp5x4AXYhhCSDaW7gljv/RFVNiGuvuB0z3x9NKStyunuA7SQL27n1lnt54O5/0tYiUFXTUHwgLXi0IZICRmKYENJkLC+DSATPVVCVEIGvUBt7k7vxTYGqWgVVgB9/W8Fbb73FOWf/ie61/x977xkdR5l1//4qdXWUWsGSnG2Mc8ABnAg2GGzDgMk5mQzDAANDhiENOQwZEwaToxnyAANDxkQDBgM2zkGWrKzOXfH8P1TLNnPv/fbnfde6q/daWsqlJ5zzqOvU2XtPRKEPnqOgGYLrWuh6aRIENNHfaNdpVikHIlsLN54XCEVnc2nicZO8lcM0E2giOJaFoap4dhEtFjjrCQHV1wh1IF4NigKWk+L5V6/mxCPPAxkArgZGFinEg4KnYYFtguGD0kIhG+bxl06mo3sNK35wePqxJaVYK/DZ4g+4794F7LfvQZxw4tnYORVVNdDDPigeuXSWWEWPYL6DVUwz/6Qjuf2Om+jbZwi2rOfJN2czoe9jTJo4F7w4mXQ3iarN/Np+C3+/ROXB+x4P6lRa0GWX7XaJmjpqT0MT29bMKUAmBdW1bCssA0rIR3yVbBYSlQUgjWDQtSVMdU0Ux7ZQw99xz4LzKeY1aquHcuONT7BubUdpb8pFpDLKKKOM/0mUT9kyyiijjP8F2LZNKpXCNE2SySQ51wnYHq4WFCLEDMRsJYqqRwGXd959Fc/zCGkJ3KLP6FHjmTplBiHiALS02MRLjR/1Db0A8PwcKG0U7Cb23W8vHCdKjOHsv8+RVKj9aEjOwi32gWJw8+27IeprhlNbMxXsOIUCgcZQFGALdz9wEWMm9CoVWxzWr/6SCTtNpW/DaHaZuA8QR1fqwNOBWo4+5Dx6140HknhFF6jE92wUvQasMMV0LbN2PwWKI/CKtSARPvvsE4aPGMb06VMJE0ZTdcTXyOcC3ShNBSlSsnbOs3zNV/TfIckuu0wAMRAbct0AaYyQA4qDqgUaGdGKgPIUqww0qa28DT50t3olGQ0Xy24GOoB2HGcLQcGmJdi4khO2YRZJFZo48JA9mTRxF4LuhV8RWksbDL6AqSu0dv7ET8s/4y9/ORVFh3hViCmTd2fSuJloUgskicd7BxfXfFBSoKdB9xE205paSkM/4dV/LcCV9aWxdCKFVhbcew0TJ0ZpbP4nn399B089ew77HbAjISMFihMI7ipBd040qmwtIK1dvxJw8HyLRIlyp4QgWbq5U3V4/eW3mTVjLgcfcAR//uNF1Nf1xfdUzFAY17fwKZAqbEbUDjrzK1DNNo48Yj6ubZQ0r7pBbaPobS4V5lwghmUZJde0NNn82mBfQglQApFkBKxsAsQkFA391sDNjWOGBqMyIIgXvzpw23IN0pk2II1VbMUwDTpa8ti5OL5bwZhxQ5kzex57zprJutanufPRfegovhHUbEs0KkUHQ48ECaQoxCqCsdh2Cyhtwc27mgUljacUg/H4FZjGMPaZcSF7T7mWi057h32n/hUoUJkw0TSbfLGDztQmIIdPBiiQy2fQQ3GgIug2IQkSx7IiOEWVi86/nMGDBxMJW0Ar0I2qF6ioMvBpA9rx6EQNQzgGViFPsZDnyace49q/XUZA/yyQymxB1TzGjBvOl9++hmV1gCgM7r8LB+x7KutW+Rxw4AkAaOF2oAlw8WnCDKfw1Q6QKEMH7ENtbBKnnXAx0WiIgw6aysFHTsSIbWa3mcPZfeZInlt0F6gbIQRqj+45LqYRo2iHgQZ8r47DDj4V14FwRFDUIoZhcOTRBzJi5A6AhhFyA20mAYhgi08yPJSpU3YDOhC1HSjgFiJALSrJUr5COFSF4xqE1Fp8N0pIjwX0wVIXVkNyGL3rxxNS+gHVDOg7nkioL9WVO5JOq8E++BUU8z66HsWxbcRzg9hVHMQNzhHPBtBw3MBtzO5xGtOCccfjFYBGxIyRK+RB8TDCKvg2WqQCKfjgBxRQTQPwSXd3AvDev1+nq7ORLW3rSnQ2AAXHo/Sq3cIqAIpF0e4kEleYOn00U6ePoq1zDVCku3sL6UwHU6ZOYu5+e7Lw8XuBPEU7hR4uUb3ECIr9YhCIlSl4nsecufvw9TeLAZ+QUkVD3UBqa3oHY7A8ElUmDp0sXfYRqpEPUl0AUXGsIvGkTtEWChnIZ3Lg5Uq5AoYJieDfFVLqKAtyXg26GSPB/HwsFITq2kDnzHdMNG0QQwZO4bhjTmPgwMF4LpQd2cooo4wy/ndQ7kQqo4wyyvjd8f+ks7mey5q1v1B0mxg3ahAKlWRae5OoAdfJoZtmoMHRQ59QLTo71xCOekTDdThOkWeeX8Bxx56Arg4k2x4jHC/gSBORiEbBjhAJVQBZXDayfsNaqiv6ke5K8diTNzJ48ED2mnkEAwZOweqOYEYToLexfMMdfP7lhzSvHsCVly8CLUsq24EmDTTn7+aWOy/h/D9ewugBF7F65Wcs/fF9DjvsJsTPlWy9wS/WU90LMLNAM1BN4IhksHr1O3y8+CX+MOtiGnqPAmMtkCWXcejozDNg4EQ2b1lL34YoLkU0oijUbe3isiww9SyoxVInQJ7X3n2VebMPoeiF0NxafNeguWk1z7x4PnNmz2fS+D3xvRh6OERwg+zj2gahUAjf7aaQUYjFezofuvn7PafR2rEa39OYf9wFjByxCz4RoN82Kg2NfL/qTSYMnQFU8PTzT7Ch+VH22vUsdptwYdCZEO6m4Kzgyeev49TjL6ajw8fx0vSt2wGoJ59RiIbrgq4NE2y/kUeeupC1a9ex27T9mDzuePr27839C67jzLOPwSnGCIdjPP3iDRRyq+lcEWHDpmWceNYM3vv0SWbN2YvOdoUpk06ltuYPdDQ51PSJg5IrhV2whgWnhWgoR2t6E1XxUViWRjwSg5KOUjDBOLgmvmujhm06WpupqR0KgO0W0UI5NFw682t59fUn6VVfwfdLv+Sqcz8ExcOxNnDPo2cTqcjx8adf8Owji3HtMahuHEMHQm1cd8feeH6eow+6hRE7HFLqTLLwHQ9VjZY+zwECEt/WnNdDG1J9sl0q8SRYRRszniGwn1dx7BCG1rB1vwr+l4TVkaxbv5IPv7qdI4/en0XPfsKBs+6kuiZO45Yf6Nd/IDZLue+hK4hGqlj9s8v1N/6Vm/5+Mn37J9nSlOGqC14hsLKPkEp5VFZUBQmtgO12snHTahY8fAfTd53EzBlz0JQoyXgFkGNd02oG99mRgCIXRrZ2T3Sj4AEG6ZSDqcUwo2F8twsfFz2kcdzxBzBh4lhatnRw6y2PgxcDcXC9XGDChgGS56fln5NKdbLrtNlsq74FekRFJ0fI2xlxSsLIxlo+//JTdpmwP06himiyG/B5+MFHaS+8waXnX47KcHAD6lrQhdUJ6IjkyOQ3oJndxPQ60oUM4YjCzysWc8r8y9lvzqFcf+1DOJ6BQghdDZPLgGEEBUrdcPEkh6ZoFHJZPH0VmhImEhoCmLi5GI4FkTgQsnCLPo1tH7N87eu89/Z3/Ly0m1eeWUE0AUW3lWffOBHVmsXRR1yIGSKgEG5rHCzlbEBRs7MqoagHqov4GZSA6wsSp5gG1xXi1Uop9hy24x9i5QUzkkAcnaJTRNFdHC9FIhojXxCikapt1DZAFJ9UNkcybvPscw/z7ZeLuePuJ8GLgB/pqd2gKB2AhuekyRWbqUjk+Ps9D3H+n24mn65A033CcY2gEBulmIoTrizw+Tf/4LkXHuXe2y9h1ZYVJIzJNNTMBtGw8nkstw3NbMf1M1RGIyx67WWyGYuTjrspEAnfHqoFFNmw8XvuvPt6Lr/0Bup6DeLVD09k3swHUZVEcC6QJWt/y9ufXcic6QupCI/GcQXX7yIS6qBImjA1pTzp5MFHrmbO7NMYPHAaYOAUBM2wUfUCjpvB0MPk8y7RaB1CHIU2XDrRMYFa0q0KiUQMJQTibMbyNoOqcPjhp/HGm1/gFDyMcHy7TiQHBY1ycamMMsoo4/dDuYhURhlllPE/Dh/B5eNP3kfTYPddp+HhUcikiCeEgt1NJFQFXgP40dIT2yKKIeBFyGSaSSQtIApelA1rMwwcWgtsBDI88PSVuLkdOfn4y4hHewGNFO0U4VAdf/nzqRx14mgWPHQ7e+wxl/nHXE2qeSghJUkkDn84YgCz5o7ignPPx7IG4NMLVzrRqOL0c3dm1pyxnHTomdx174toRivnnHk5MIDrbzmfkKkwadx+zJx6KlrJDQiFrXq62dwmnnnpGkZOUJk+6UR06cvDzx1JZ2otnhti+YpmzjtjEWNHz0KUDK5rE9KrMPWagOZUoj6dcVo/Pv2kmb/f+2fmzv4THr2ACK6noPgWIUPl0otP55xz59G333RwwogfJ2tlCZkqaC4hPYonOXRlC2tWbWTIkJl4xSK2bOS6W06gImkwb/+j2aHfTCKhycEE9MDZCQx8ry+Kb+CRRzdyLP7uSYYP70VtbCiWXYuh9EY1NBw7xZa2n+nfN8mqDT/xzAv3sPOkXZm+81FUVw4Hp4Zsd0BBRG9mxYZFjBi4F1APdi8KGYhUQi5bIBYNuqg+++ItJk/rTYidKKRaiVQKHcUtJBM1OMTY1Cl0dpsM3SFBJaCVXM6QqsBlT2+m4P/Eq68/ieGN57BDz8DDQKUbpcfOnorA0h6VbMcW4r0qgQjFoosZVhAlT1t7E/W1FWxs+ZUB9f0JaHZJ8BVQNYr5NOlshrq6vgScMANBx7LzGHoH361YyC6jxgRzZQJWLoRpmqAXcSwbI1QDSoFAY8YEIuAG7nA9RSPXzWFZDrFYshRwBtlUhnhlj2D6NmqoeAqKFgIxcAo+nidoaqDDY5iAniNd/JSKsEZwszyydI31tHavpy45lNsfOpNoBUybPIdVy9Mcsf85CGF8P4Kmhkv5bfHsS/eioHP0YfPJWWluveOvjBkzkmU/ruC6K+/DdnRUiQb5YYCCg0qajq7NrFuzittuu4pb77iSXlWTMY0qHDdDJFoFRJCCgaJB4+ZN1NbrmFEbRQaCUsBxtmAYBuKHA9qgEi1pjzkgPtluhXgywT9f+xvvLv4bw4aOwC324pJzX8SzYuRyORSjk6zzPR9/8D1z9zqdZGJwsLRqgcDfPSjoZXJtJJIqHVtUamqrSGU2UVm1gY0tG/lq8SoOnnceuh7buv6ZfIpENEGgq6WTSmVJVsbIF1eSKaynvmoCS5c088mXT3Pun64E6YWTUjHiQfhipMm7SzD1CjQawOkX5EcCMH7gnfe+Z+4+xwE6+GDbECppRQPbqGiAaxXQdR00DbtgoetBt6MWUvFsQTOVYD3tTt5+5w2at6zn+OPnEzFrcR0liE0BTwRNa+Ltj55ml0l7UJsICsQ9hSRRgg87Or8hWeXy1utPM7DfRCZMmgN+PXlLIRLRUUjjuWt54OG/UVEZxvM8Tj7hPArFHJHwjuD2ATWHZecwzYpSgctH6OS6m8/np2WrWPTMaxScIqrXDzPcC1wzODeS3UAalyYs1+a5Zxdx6gl/B7/itzRe1Skd1p0UnVYKBYeqir7AcmAAgoFjRQiZMTLZjbz69l0cf/iVeEQQwujk6LA+ZMn3H/HhO19wyH5/4rMvXqLgriKkj+K8s+8gpFcBYfLFTbzzn6fZ3LSeXNbn0gv+DiQo2mE0Pc/d919Jd2ojs2dP5dGHn2LksF249OJHSDWnqeytgWdxzNFn8uwLb22bg9rzv9VC4b+5dGWUUUYZZfzfRPmELaOMMsr4vbFVqNmnxz3MsnN0dnbS1ZkF4qiEUMPN+GzkkitO5m83X4AvhaB4ooKih8EPbo4S8WqyWRekFisfQ1Fd8sUV3HDrX7jqb1dQdFo484yTiEfj4Kk4bhRNqQBMBgyq55kX7uLbpR4zZ+4NFKisqwie+Ouw0+hZVCWGksrmMc16IqFaEuEYquaAV8UO/XfFxuTOu59i7fqlgE5HRwupdCvJapNRY/sHOkMqpZsStr7IV408K1Z9x7qNP6BqNl1dXViWwyGHHEExr3DqKSczYsQowqE4ESNJIlIXaKNIUEAKLmNhOy1cdsVYFDULFLE8B0HB8wTdCJHLZbnk0ovo229YMCk9iqKbJBKVmGYUVMFH8JQczZ3fs/DJm0HtwvY62dj4K75YjBw5kn59BxKJNgTNOR5s7+KmYqB4IFYI31WZPnEGtbGJNLZs4U/nH8KTz92IZ9sYRh39+04Horz8ykucdcZfmDp5Bi8sWsiNt5zP2+8+T7yWgMaGyoiBu5HOOqS6CrQ0eUQq4LtvvyWW8LbG0W7T9iVkNIDhEampJW3FCSfGU2QAeWo44+Jrue+5heT4zX3zNlcwPNq2bGDq5DHM3msGhVxPkaaCoHugCiQK4lDIbuaG287g3HP3AwXCEZ1sLo1KiPraAaQyPr17jQx+hzrApqW5EdAIRwZQVzs+cHAiiScekCUcEjS1mpE77s3mDpvOfDfgYJpxnIIBEsEI+aWx9ig8W8GbCsViDjNuk7c2cP2tp/P8S3fz8acvBz/rx4gnGihkLILiUwfNLd8H8+tx11Ky6GaWcMKjBz3qAAAgAElEQVSlaGUwSnblvy7/hXvvXcCqjRuAGLhJultDwCAMGQr+Dlx4xg2cfvR5TBgynSP2P57ubBYFDU01KBQK+H4QHQcfeARHHzafzu4sMbOCgw86nNn7/IGqZB1g0LS5HVTwtZ4UMYAwtVX9aGxsZOcpw3jyuVsQYwN6qAPHzQEmTRu3oITg6yVf8PBj1/Ly6w+jIKVaWQhDjwEmioRBiQdi7JYJfpyujgyCBUqBPWZM467b7ufYY49nyJCBQJ50Ok1FVRWqCr2rR3PUYReQTA4uJW+WQNst2Jd161dzy+2XsXbdj0QjQTGiMtmX1u5OBtQP4cB5h6JrSfJ5C9vNA9288PJdNHV8D3STznRiGklA57Gnb2bBwzeRyTdju2nShZWsb/oQUTYGIvmlIlAu5RLV+6NRCSjYlh8UkDSABvbcc0/AwvWKoGxfQHK25m3weSagdGkCvk8oFEI1jGCNpYgWdkE80l1dGKEQc/fdmzlzZ5HJduJ5No5jb71ePlek4KX58acveH7RIwRdX+5vzv3m5m7qqqvRFJsXXnqUDz9+A9dpA9XGdYMKu1Ow+XXlUto6V9HRtYlffl5Bc+t6brz5r7S2rkBsD6jCNPuxcuUyfl3/L7Z0/AgkOP3kK1j0zNe4XgV33HUN9zzwV3744QMAYokIkEAI43lxYvogTjr+QoKi7vZnAyUKqkKhmOfzzz/nsssu4qsl7wMxhBwKDoEsnUEivgO7T54f5AkhMmkXiFBt1rLjjjuyZMlyJk+eQZ8+/fjl50Z0Xcd1pZTPGtFwkkP2P5xjjz2e5597BcdRyOZszJCJbfnMmbsPdQ0VnHDKNbSn11BVn2HZ0veprKsj056ioy1NNmP91gThN/D/375YRhlllFHG/y1IGWWUUUYZvy88EfF7PrBFJCsiWbnnvlvk1NPmy4YNm2ThY3fI4u/Pk4ee3U2++uVyEflURFIijoibFRHHE3G7xS740t3eIdlOVyQnIpaISKvcdN90ufKmXeXOe06TF989SkRWiO1kRCwRzwr+tJOzRGS1zD8b+WLpaSKyWUS+F5EmEcmLOCLiiohni9gpufzc62XyxD3l7gf/JK7fJCKeZDOdIrJR3vj3efLrpmtE/J9F7Kwcc+wkWbXuJSlay0WkKCIZEVknIptKH3eJyBL500UN8uVPR4nItyJ+VkSWichK+fj9N0VkbTAO8Upvwbr5bvA+k0qLSEbOOSci2fxl8vb7h8rtC/aVN9+/R/LSKJliOlhmEUl1bAz+tpcX8Wy54brz5c67zpcvvl4kIh3iS1ZE1sgp51aLJy+LyE8islKmTUc2t90rIm9I0X5Njjl8l2Bd7NLa+MVg3H5wXas7JeJ5IsXgS088cYs0df1DGjufERFHxBGxu0XE75BHFp4lntssIlvksefOlQ2tL4glH4ovK6Qr/bOIFMW1RFyxJe2mJFNMyYV/PURuvm9/effTP4vIahHpKK1Nu6TkaynISilIRlIi0iIizSLyzPffyRJpkVXSLY7YpfXPbJ3HLTfNlwE7IHPmIanOb0QkL65XWmc7iCknIyJ+t2QzX8i/3jtYLFlQWtmiiGyRO/5+nkyfPkjaWtaI+CJ2wRfHFhE3L14uLV0tbSKOSL4rWDfX6skBEc/zZMumZhHfk0x6jdx4+/7y/IvXBZfOBWOwio3BeH1HRH4RkR9EZKVkuxtFpEs2bPpALr56vHz23aXywafXyA23HiYiRXHSIl46WPpi8Ue56oa95Opbx8nesweWYnCDnHC2Kq9/MlduXzAlyDFPxHO3lFbvaxH5XER+Eq/oi5MT6Wixg723RKye8PSllMcp8fx8aeFSpf3JlL5XFBFHulJNpb8dfK+7KyupLlcc2SSWrBZHusQVW3xPpLXZFfFENm76WHLuK/LGR/vLmx//Qf71wTkisk5ct1GKzlLJuItE5F/y4ddXieNv2BqfVjEr4ua2xazdM95ikFu+I55VDNbVS4lIZ2lsGREpimenRKRdilabOAURKZTiXtaJyIrgZz2RF187R1Y13iT7H4G4zupS3nbJ59/eKvNPHyEiKyXVZYsvjvjSKrZ8JN+vvVbueWJvEVksm7d8I+KLOHaTbMndJk8sOlwmT4tKe8e3IvJPefDJfUXka2ltWR7ksV8s5Z8jIl3S2b1SRDLS2dom+XSmNL/NpTXOi4hIoVCQbWdRcbszuFGefuYGuebak6Vp01LxrYyIZ4tvNclrL18rF1+8lyy4/yoRSUmhsEZENsi2s6xLRPJi5fJiWwUR6RJfPheRL+WkM3cprVFquyMsL64jpbh6Q9L2bXL7nTMlOP+6pKO9VUQ88ZyNIrJMli67XU47c7DYzsfS3vW85L3H5e775wb76IiIb0t7++dyywM7yhEnqiLSKuKKdDYX5Ltv35Mrb6uV626bKMec1FfEbxdxSue/L7J+/edy6SUnS/OmlcFaeKW97XnzPREpimWtE5E1kreWyJPPnSMiS+SjL66VF/75Z9m44ZPSGeiJ+I50dv4o2UK7ZNPB33jj3evljvv3l+7sv0XcFnGspfLehxdI0V4mHa2bRXxP8umM3HvPVfKXiw6QzVveF5EmyXR1B2d9aaLrN78vz7xypvhytzz4wkA59izksMMGiXi2tG7+UV554SHpW1cjmY7C1rUOjhevdLY7UkYZZZRRxu+HMp2tjDLKKOP3xvaUgRK1o2hnuPiSCxk2bAf+dNbZPPX0gxx/3FyKTg7T6ItPFSLV5LqhshL++dK1DB2ZZNzYEylaCuJWBmLXik97ahl3338Vp5x6IoPqdgB2JOgsKT0R97e5B+VzLoqWJRKPB50ZajceDoKJ61YQLj31P/f0A3nrP69z1W17cdihFxJV9wFXD5pxtBY8WtGIkMvEePChi0DvoF+fERw0+xrMeCXo3axc/iX33LmQ6285h2RVA+m08OuGlxk9cipRfTCBdXoNUB1ohGibgQi+HUPVzGD4BoiURKLVMLgmX3x3M0u+f5OqmiS77zGXgXUzgmvQb7tuEx/wKGaL5O1NXHHTNIaNqmHHwbuw606XUZ0cB0oHban1VFfWY9sakVCYruxaVq7+mJbWFbz+6svcc9d9RI39Aqt6cUFLkys08pdLjuPkk09l8vijQapw0jpbmjbQZ2AlWjSLh4bQG0UCs7VcZwuxWpP29iyReD+iJTkS17PR1RACeH4RhTBftnzLJVdfSFi1OWDGdE48+mgiGISUSlRiCJWAxzPPXY3n24wePYb62uH07zcavOR2FugEgtYSLYkLA2oH1900n+EjBzF39qFURkfi+xEUpSIIzx6RXCVHsdCELwWiURWnEMLQhgWNBOpH3P/gORxwwMEM6PuHUryFaW1to65XFJTEb2LO90DVHXzfRTVMUCw8Wc87/36LN956hlvvOpMKtYHNTb3o22ci+ZRLtNIER8dy27jjvv2ZNH4gbS15Hr7/C159ZTHVDTXAZnDHg+NCJLAux6tB8iXqY7yZdevfp6h/x2MLX2TwgEkcf+xZxI0R5HMammpiRsIEnSoeEHxsFTswwzE8P4KmVFO0wDTBV3y0UjfXhx+9QLf3Ep9+upi/X/cOne0VJKtiiBdCUytBd7dL/kDEKZPJkEhUks85KIpGJNqFIxaGUkM2axGPVmw7M5SeGN7Ipk2f8mvjS3z4wTLm7HU203f+I7rR4/RWgVhBk6Lng6GDY1n4XoFwTOfbr//JD78s4tfVX6P7c7nhxgWluTp0dxRIVvXbli9Kmq16WFs7ObaNvxRAJYkgG7QmbHcVijsAXa8NuiVpo7urm2RyCLbEUdVObFp59sWbKeTaaW/p5NpL7wJUTjj+GLpTHRxw8LEctt/NVFXHyGTbSVSFwAuc59RwM59+fT+fvbeEP//xH0Qq++GpWYQCHoJJbbDv/AJSB/QNBJ4LYNkZ4kkzEKeWUienAq7aRTq/AlXyXHv5Ldx564ugGfzjrotZ+PQDHH1Sb9LZ0VxxxaNAhEw6Q6KiHs9S0EJRxPHJ5YrEq1bzweIHWPz1C3gdB3HN1Y+B0YlvFSlmKti0ZQmfLb2BP+zxN+5beAo5ay1Tpo3jwbu/5qbr7mba1LPAMWhvaaF24CpymSHEwr1xHVj0xnVknWWEIlkq4vXMnfoIz785k6bmpVxx3pe0tnXw9oePsGb9Gk468hEGDKnHVX5lyfJbGV53BrU19WRy1cTDQ/BLmnrrWxayYf1XvPHPd7jz1jWBrlbpvLcKacxYj4hUz967fPrRS+w+czS+FFCVBFs252noOwTI4PETV153BscedA1jxs0j0xomUVcEUlx38/WcfeZtJJO1QBavWEEoZAAWmdx6EgmDl15+nubmLZxz9hVAjEIuRyRWHVBW9cChDTbz0RdvUZmoY8KYY/CtOKrZDDgM6D+SjZsy5HMukWgomGeJzqZhlh3ayiijjDJ+R5RP2DLKKKOM/wUoikI4HGbQoEEA7Df3UPCHEzaGk7MM/EAohVilRzq/Dk9bQ30/GygQNoVINHAD6u5OYxpJJo3fk+rKHQjoSD3uWKUjfqsQMUQrdCKJCI5V2I4uFIiQGnrPzzoM2CHO0cftxOSd9yGq9S9ZD4FIDp8OilYWCBGL9Wblxtdpav2Jru4t2H4LDz10KZ2dS1i8ZCF77NMbVSqAesJGHQMadiOqD8fKVwCDQPqC21NwqAViOE6p+qABYqNoHoqqAD5oBmNH7kXjWpi954kMrJsCJAjcl7abLw6+YxGOq1RVx5g+dQ4NtaMZO2o3qqt6BdfCpFdlPzTihENVQJSqeD/eevMjNqzrYNTwqXh2nB5BatdxAMF14IjDTmby+LmAil3MYySg/8giWnQN8CuwkXR+LariBu5oqgA+tfUQi1nkCk0otOF4m1EUC1VJY2gb0LXNPPPCOSxb8REhYwPHH30UCaWesLIjijcAcWtAdDxfZ+OGNupqBzJ0x9FUJWuC+W8nOh3oCZW+sJX2oXDccSew156zqYzWsnr1KlRV26YbA6AETlHhSJRoNM7111/JeX/+E+kMtLd0ABUs/XYjTzz6Gu0tLTj5HKBS12sQPgF1CbUzcDMzcqjhNOjdqKEU0AU4aEodq1b/zPIVP7Dg/idZvbmRG2+5iJdfvYtoZZFff/0Z1wVTr2X/OWcxZ5/D2WnCMA45ZigvvnYTkCJf6A1AoZgCXLq7fgGtFSXq4/o2mfQannn+Qf5++wMMGzKVynh/FAl4m9FYJWYkFuQKJqDR2f4TZ52+P2Y4RHtrO5pSDR6EQ0EhzJNW2jsa8RybaVP35OB9zmHsiH3J5yqorh6E+ApaSKFobU+l2bawWmDDhaJAJKICRTzJAwUM0y8V/bZ7K9m0u36GhvoBTNl5Dj//0IJGBIjiShHL6YAQeGKhaAUUJUco7Ad6P2KQrOzPEYf9kXn7n8aY0eNId7fTQ++qqPwvYeWtLwl7hKT/v58xih3CsyoI6UMxzCEoXg3YMaAXlRWDQRK4BQWNOIoX54C5xzFl531R/RogQtH2SVbVkM/7fPfNKqrqs2C04SmttLVtQOgEvRuoYPfJZzFz5n7k8l10duQBhc5sCp0o4qngwEfvv8edd91MJt2M7+XxJEe8KoTvZYAivpcl1dWN7wu5XI7q6A4kY6OYsduB4OZAzaPpLsceM4WnH2+mT/0YfC9YZ9NIBvVjUwMlSyq7ATXUhojFzhN3Z87s/Vi54V9gtAAFVDOMYjYyZKTCzlMHkqhS2f+Ag5gyZSbff7+SAw+exRNPPwpaGt/PUNu/Bqjh3D+fyuLFn6FH4MB5h9JQ35vWLXmGD9mDSKXFScdexcRRx4JRR3VNkqOOOoJQSMNxLTTqMBlGRB3Pm289DxgkYvXbmZe5DKyfzJBBk6iv741dbAXVBdWhuWkdZsxkW/FILbm16ey+x77YlnD1VdezaWMjDX2Gku20yKcE24qybnUHJ83/IxtXbyBRXUNQiI1yyknnYhq1+L6JJzFCphEUKlUfTdNobmlkt912R1NNgv9BChEzCZ6BeAT/E/x6ulI+M6cdzoQx+7FhVeo3tPDJk3cGfMKR0H/FcPnWpowyyijj90a5E6mMMsoo4/dGz8N8IHgB7AE2r77+Kv0H9GHcuDEYahzsCEKWjlwTNVV9ABOFDNDB326fTVvnem649isSRh8su4qQHkMEFFVQlKBtx7Z8QoZa6mLwQQncheyCRShslFo0Si0+Xgw0F680wHyuiOe2kaxUOPSwHenXt4a77/4AGASeCVoaSHP/Py7jlPl/JqzvAIVePPbqXpx09E1Ab6656iKOOX4uycp6nnj6fs4953xMf+9gDcI58GNkUzniFbGtjVL/3eiAD75voeo+onSCkkUhBsTxi0lUHdx8Br1CcKw0jqMTjdcGXUgKpfkVKebzhKNFujONJBNVdHS3U5NswLI9zFB/chmNWELBcUBXTRwHQmGf7757h4kTR5QGFAKnH54NWqwAbAEMrKKKadaBEjgaOX4jx8+fw+AhtRx14h94adF/SKhjmb7LvkwYOY1YjcFrTz3AT+3vsseME9h957kU/CIRdSA4gbOQaIJdUPjzTbtw2tnz6Fs9nvrQBDo6bbpbPIaMGAqKj0sGnwIhFIKuthThUC0QASl1syhpgg6N4MZsK7Q0K1b9h4cevo/urgKP/eN1ulNFKiv7l0LUBTw8t4u/XnUu06ZPpH//SsbvtCvQj1yui1jMp7v9JzLZdo485nT2mT2bp556ly+/WENdr0Hgu4h4KLpHzyYX8zZhszbYYDdw2Xv0+TM5+bTD8JwQl15yJZHKdn5ctpwF9zzN4L4HgcQoZnw0JYOR2MDiz55kweN3kC/A/OP+wry5t5c6rTSs/GYuumYaw4eNI8wExo2ZzqPPnUlLWxtnnX4FwwbPZdCgHUrBpiOeBmKgqPGg4KoVeObJizlg3mSOOfoUNm1y+OrzXwnHhgXpqvugdpV+PwJOhK7sMqqqBoMTp30L1PZvAwr4UomqRLdPenL5HNFoFKX0tU2Nm3jwsYuIx8OcPP986qsG4PohdDVa+o1AO+2yy+ex2x4j6Uxt4fgjbwZ/ONjgqqCHmoEC3cU2NNpJhKuCvKYaaCCf84lGE3SlNhKOCBEzAVi0dzRSW9MLSIBUbsubHie8rc5WPUn5X05XPdJuBqBkESuOUnol6Wkuql7ALhpoXjjQNNJ9UFOAgmt7gIIecsjam1nf+A2XXXUmbzy9jLY2h169BmIXVEJGEjsPWqQLzVhJoDU0jEx3DeGEgqoJdlEjooeCsWvL+fGnbxg3ZiYQwrFUUC2WfPs5vyz/niOPOIF4rB9tbR306lVHJqXg20JldQS0JiCD1b0RsXXuuP1JzrvkZuJVvYPlKBkWFu1m3n7vST7/6t8MGVbDmccuBDXGNdfviy2buPGaN8AbEtTojBbQNnLOxTM5/eTbqKmpQUToW9ePb5ctZtmy5cw/5gKgnvaWFLW9hpHOL+HsP17AU0++iucVKMpPfPj+l+w/53y6Mz+R0BNo4TrwYxRzjYQrFLK5buLRSeRSOrE4fLnkJf790ZVURXfmj2c9gmb4uBTIF10qw3Vkskt47oUb8bwazjr9ctrauwibMRTCxBMNBC51xnbdsxYoLaxe+T1PPP48f7t6IaiRUhp10N7+LbvvNoc9dz2KO299DrMmS+CQGCKXriEag0zORSFNosIEHAqFNsIRA9t2+Pc7HzJv3jF0tKao6dUXcV0UIwtWEt8GNRHEuO8lUP1eOGziq6/f4l9vv8kvy5p47bVPgBCCsV3vnIuGWu5EKqOMMsr4HaFdc8011/xvD6KMMsoo4//X2L7Lo0ce2rbJZDJUViapq23AlyJNrV9yyNGTmbn3eKIxhebGFMnKgaDE2GXCDJAKxg2fAYTR1So8B1LdPtGoSrEouI6KGVLYyktSeopJWTQjT3vXOk488SgOP+wwFEUHNbBQU0VDRcUMhQiHBShgu1u45OIbgAGIXY2iqojYCC5TJk3GdsDQE6DG2Wn4Xih6PeBy2dWnctbZhxM2+jBz1/noSh1IHAE2tb9MZWI4oYgHahF8s2SoZYHaRGB9Hgy9UOjECHu8/PoDPPXcAvbecy4QRlGiUADVNMEz0DQTw6igpK673Xq76IbGrXeex1tvv8EeU08kER6JolbhSyeaFiOkx+hKpYhFEwHtTINiQeg/sC/B0/FwyVo+hKoDaisOTWhouMVadDXCV9/8h5dfu59nnn+AO65dygH7n0VDcihvv/Ep1151HwP67EBI90BvZvny95l34KWMHjYb/N4Yfh257hCaEVCRNKOIYmxi3JDJjOw3i7hWw1VXnMf3335IVZ3PoEHV+ORQ0XE9F+ims7uZFxc9y6pVaxgzejxI5Lcx50d/uy6KxQUX/JlRI3bimKPnU1/Xj3A4BmgoJaoleKiqQ0WlwZ4zZ9DQkCBb3MgfLz6An37+jGx3jlEjhnDf/bfRZ3CB4aPrue3Oa6itGoDiVQfX0gxQ0mSyzXR3dZFMDgRPCwzcVNB12GXKFHQlgaEl2W/ugbR1ruPSSy+id/VY8vkwRqiIbgqaHqNjYzerlndw4YWXMGnn8fTuV88Nt53L6lXfssuEg9FVn182PMInn//Irz+vpnHzJu69+3wmTR3FpFF/pDo5hnzOwjBjgI2iuiiqD0ooULf2DcaN34lH7ruOH5ev4tob5/Lav+6iV61Jbd2OZFqLmEYNaCooHlZeQzG6CBmwpTlFptDIZVcfQUfXOiaM25WgM66nOqoQMgxEfApWCkMXKivCzJqxC1OmTaUyEohtq0qYbZaGwVmx96xZNNT2Y/LO+wENuEUDRdHQDPCVPFm7g0UvPcBnnzzBqtVfoxkWd997PzNnHIRpVuL7Cma0Ek1Pks+188KiR3jzXy+z4telTN55MiixYIyilArMPsEmsXXs295viyNRLArOWhQ9habVgtIjf74cRd+EJc1EwrGSbXwhKDoplah+DFWLgBrH0ELUVVUya9+BfPJeO+PGTuGrHx5n0Wu3MX3SsWi6gmNrPPrcJdx0+6Us+349++57LLlMira2Nmqrem3XPJOhvq7nHNDQ9DCK4jGg/wAqKiPU1tajqhFMPYKqVWCaBuFoCHFaUfQczZtWctdd97P3vJPYY9bhhCJxQMN3QNFLMRvyGDmiN8lajWXLP2KPKeeCpzBz1p4U8xmSsQGofgTDiAai5mqSsaNG8OyLT3HAnD9RERsD1NGnvjexigh33nsje804CEWJYBhxTNPnkIOPAHQc2yES0hm240QKeZ9ffv2cp598gA/fe4Xp0yYT0nqjqP0Iaf3wHDBjCqjQr38vYhUtPL7weWbNPgDRXEw9ifgxFNsgEosxesQw1jZ+g2Jk6de/nrfeeY2mzS0MHTo2OPdE2/rgw7dyKEYOIUuhUGDUuF2DorQPEEVXdPr068PgQRMYN3EnmluX8fW3b/PGO8+w+657oKgWWqgV8XPceOO1vPLKIvbee28MI4GuxRk+fDxIiGisilymg1B0PfAdMJhiUWfpyoW8+MoCpk+eDlqIMy8Yx54zZ9DZmeXxx/7FJZdcVAoAHdkaoyrq1nJtGWWUUUYZvwfKRaQyyiijjP9RBDdqumZgWTbJyhpUTSdkeEybNZbX3r6DBQ/cTj6XYfrkA8ENI5aObvRlxPDg5tSyTXQlRDoFVVXBzYNueOiGlBoGlO2eJAuu18oFlxzHl998wCMLFqIoFaVvO2SzeUwjgu+BuFKij5ks/3EdY8bNAEwUzQRfQ5EwilIBaiXtbVtIJMI0tf5I3BhKtriU+x46l/c/28DAIZvpyv7C4AH9QY2BvpHHXzyfr5a8y26Tjy7djxax8zG0sIsozSikgHqsvI3nOHiSJWT6/P3uq5gxcwqDBu6IoQe287adRwuDSBuK4ZPL5gmZsa1zzuddjJBOd1cTRjjLiSecQjHdm4gZwrcVFCOHqkZATCJRjaCNIqB06SEFyCCS4947b+fFZ59jzh8OxfcKiLaBG2+9mN59GqivHwui84/HbsKMpbnyr+eTMMYAgW7U7L3nAlFQQ6WOjS7WtyyntXMzP6xcQOOmtXy7ZBljx45FDy9F07uwCiEuvHI2TWt+wM21MnDHBgrFZk457SQGDRyK61dRyEdxrWqioQSqupau3CZm7robY0bvDIRAYiVqoI5r6aiqGsjYeA6KXgQ8Dj74CKZO2ZP6ugFsKxIYgcsXpQ42HD7++G2++XYx6zes5PkXnmDS1F04dN6J7DLxQBY9/QoNDQM46ND92GPqH4iG+qHQFxRo6/6aux/4E/f94zTe/Wgh6G20t29m8A6DwPBAt7EsC12tBkkGxRxSjB05i4g+ArEHouthRM2g4AEmmqsyatJUVF0jkTD58OMPOf6kw5gx9QAKHfUY0RiNLW9z8cXHcfyRlzN37pG0pH5kQN3O+IVJ+D6YcQ0osnL1V1x6+bm0t29mwvhJFPOBq1+qaR3JaocJUxRefOk9Zs0eimOp1FWOIRbvB74Cuk4m1UGukOKZf15Gyvqct//zGKvWv88ZZx9KQ0MvErER6FqM7XhpgI8nFqYRFGktSaMrITQqaWxKU5HoDWKCqPi+ii9asHd+EjM0ANRw8HteM0ZYpSuVJpezqUjUMXjQYBYuuBtdj7GpsZW/XnYTqlIN6PiqXkoLF123GT58IHP3mc27/3mTPXbbG4hQyBYw9HDprLDJ2+0Igu8raGqI3xRoS21IttWCqrUz78A9OPzg+YhvoIeFd/5zP6+88Q8++M9bDO6jU9XLY9n3b/Pc8wuZOnX3Up7pOA6ouoZgoji12LbNC4sWcvhBhzBt8lQUrQhaBrQUO+00hoMO2Z+VKzsZvsMEEgmDZFWU9pYOotEKUOG5fz7Eon8+za7T90bTEnS124RDFShahOqqelQ1AURR1eCcyOZXcNHlhzNiXIKqiu7BNJMAACAASURBVL4kKvuT7tJ58L57mHvA7qAUsO00uhG4uGVSXZjhgPLVp6E/M6bN5cdlH3DjbacxY06EYUMmc/5fzuCdT6/n868X0VA1nrqGgVQmwXIMdhw8m65WE12JoBk6KDoDBg7iwQUvsPesw0FtA+kVdIYRQTdcwOfOe6/n7f88yQlHX4zrr+ab797kgIPmoRgJnEIOLSwUnJVkC41EwkGXXe/6JEYInnrhIQ7a7wyymQoiph7UP9UiYut89/O/+fmX75i+y0xGjxhH4+ZOBg8aiWt5wVmvBdRYxcjwn/cfZczo/tQ2hIlFa4MxKoAjaDGD0aNHM3rMNLLZIjW13ewwKEpFfRseLZxy1ixefv12jjnsZCZMnMK4cWOpqxsAEgIlQnA4BnS2UFjhg8X/4L4nzmfOnmeCH6O+f45Vq1YxYexudHR00G9oN4s/+ZmT55/Hq6+8xISJk+nbZwCgItvF6X+VPcsoo4wyyvi/jHKvZxlllFHG/ziCo1dTQ6iqFnQFYTDvgF1p2tzKlMk7M23qZMADDxQNVLXHBlzDDMVBIBrdKnNDQF0qiQvjbhNIdn1QXHaaMIIhO/bB8fNACAUTH5dQOAQ+uLYDYqEYOqBz2MGnYuXN0nhLnQk91A7PpHfvHQCfex+4FkVRuODCs/GlwOCBkM1m+XLJW5xy9lzWrvkRyNO8ZT17z/oDKGE8SwWihCJgFXIohHE8DXwwoyGKVp54RSWBzk4fRo8aS9SspKdKFKpQyHavw5MMttVBrMIExccPHLuJRg06OrpIVtWwx7S5mFo1kUhAwVAN0LQShWkr9c3dTovGLV2rgBGCww7/P+y9d5gUVfb//6qqrs6TGQaGISMw5CAwoCRBARXTrmkFc1p33TXuGjFLUNecs7i6BnRNIJhQDKgoEiTDADMMk2c6d1c6vz+qZ9DPfsJf+3mez/fX7+fpp6HndtWte8+9Xedd57zPiWCnUL0Or735KiUlJdkxcb9z7LFzmD59Bj782CrUN+7ghhsvIJ44AJig2IDG7ffcy9bqg3QprWDnnp84bFBPTj39eDx+kz9dfwqnnzOFNV+tZGf1VppbdvDpp+8AFsceN4/GhjiJpI5HLUL3BAmGIJ6Ms3b9am6/42a++PZjwKG1tQEr45BJuj30eDVsS7DNNKrXjRNJp6K4Tpueff3yNkD51btlOUyePIUxY8aw8I5HOOfkv9CzbCxIISefcB6nnPYHepYfie0UkUwGQEpAcXjuxfvZtGUNA4eUMubwARwxeTTDRw7EwU2HhHY0PePaXQIcSwALx/FiZ0JYGRVV08hkOnOm2LJ1PQ8suoFbF/yBppY6Tj3xbLr4RwB5BPLdMJgfv9/Fq39/H4UwLU0NlBUMBvLw+HDTqrJaP3uqdzHz6GmUdSuhre0g/rCXVKyRgooiRkyYwKiR44hEYda0+Rx5xIn4C4rJLj3sTAqfL0BpWSmJdD1dyxW694TZx4+ld2kZ5T2649PzO8/VgfZIOwAZ212jPoXstQUoKe4B6FhZrWxVAU3rUDx2o6SQAC++9Bh3Lb6W7ze8T1FhmNKSXmgUUJLfhz//+Q5mTPsNzQ1JDKvDmJ2sM22ikEEchaC/CFscNm3azE8b1wGCrutZM1DxeHS8PhWfx4tpmqTSqf9EHkkh2hLnmzXfc/IJJ/PMk0+4BeNNmzHDxnD2GeczdsQkHnpkMXNnT+ftd58nEEwRi+4HPQ0KJJNxLMtExUs42IMRI0YzbOgYoBCFLggpIMGV187ntjuuw0Fj6JBRFJaUoHosMulG8gs0kgmHTEaYMWMGRx45mdtvvwvQKSrujuoJu8QcfsCXHUf3Cprb9jJ0RDkfffI2GSMDBJk542R69+uPOG1AEq9PAS1DY8Me8go7IvoCmEYAKGVX9Y8MGhbm+pv+gK51wTDSDBxSgMEOVq76AEQlkbAYOWwyOCpeXUX3AvgpKehJ5cDDKSrohpGxgVhWHZ3O6CrbURg2fAj5hYJlakyfPpfCwnwu+/3F1NWuRw+1s37TKyy5/0qK84MIFhBEpYJjjpnN8JEDEDRCAXf+2iJNgIlHCzCxaiqG4aASALxMGH+EO/8+H6pXIRGL0tpcx7LXX+Cll5/kyuvO5rsfPkacZtAypONx8CpgWZi2m7IazvcDGVoze1m3/lPaYrs5etYoRozpwsL7bqEgvyirAaiBomcjnjpSJd1qAL16DKNPz+Ek4iksC7yU8ZuTLgSKKSnpiyr51OxrJOQvwePx0dzcTFukjRxyyCGHHP53kYtEyiGHHHL4X4cb/WHbDsFgGF33oSgBZkz9HeUlFbS1ttC1qDshbxHoeYAQTTegexPYkkFTVDIZLz4fxOImPr+rAXTIA1FxiQJA85DK1HCgYQNTplVRHO4PTtZpVWy8qg9FyaB505x+2hG0t+1h1IhKPP4KPFqhS6rgAP5DqSMKrnAzSZLGPgYfNoXp0ybRWB/jnruf5qknn6V7jyL69hnAuOHn4A8OwK914/BRU8EpQ0UnE/ciInhDNqCjUdGpPeLzuacwMgaTJk2kvKwnTS1tpJImwXApKDG8QeGZZx5kV/V2KiuHo6pebFtH0yAaS1FUFMT1GANAAI/Xh2k4aJ6syLTiR3BQFMO9ICWrrUKK+oat5Of5EEkyYcJoTEtB0zX279vNWaddQElRDxAdy7Tp2asn3Up74ZDmlntO5oOP7qGwawtv/PNFZs8+DQjQbHhoytjMPOlM+hZMZki/cYS8/VCdAjxei0hiEzdfdwMH6mop6hLhuisXMm3WfKAP6WgFBYWV6Hoppm3SEtnNbQvPYO6cgbz2xgeMHz+JUSPHoSoB8vPKSCVtAmF/VjQ3g+oB1ZOgg7zx6H4gP5v25s2SXB7orGbkEhDJRDuHHz4Gv9+Dbaf5/aVXUzl4PkXhvqiqD80XwIpmUH09UJ0B6NLNtQ/FS8Zox3ZsrrjiD0wdcwZFoWGE/GPAKkJR3eMpqonqFKJqoHiFcy8+hiGDR1Fa1hOxvKg61Nc1UZDfjWefuJ8v1z5PQddW/nL9GSQzGcLBSsx4JZpW5GbgOTDzmKMYO+JI6g/Geebp5/nm27Ws+243VeOPB9VwX1gM6N+XYUNGMXDAUAKBAnBADzjAAXbv+ormZpMjJh3Fffe8x6xZVwBhMql2PIEUqi6I40HVgqSt7fy0+WMOHKinta2ZDVt+ZkDfMfjUIahax0Jxoyz8fi8/b9nAN99+xO0L/8IHq5YRadMYNWIyuhYgnQKv7haasx1B81hAKlsR0IOZSFLb+BN5xSZvvLWUE4+9lETUi1dXQHGo6DmKXr1HMnXqMXj1LrgV1nQUFFQyqGTQ1DwAVEVj4qSxrF37A/16DyUQKiQRTeP1e1nz5cc89dwSvvxqLcfMmIvjgEfzHlr32CAeQr5SuhXmUzVlPDdddRuzZxxHQNMpKCskP68XQwbNpH+/EioG5OOoBuOqhpPOROnSpYBIy0EKSnxkEnXoPnf9q3YF/fuMwXLiXHv97xl/+BzicYejZ0+gLbmNa65ZxK3XP9ehKMUNN5xHXd1O+vWrxBuA/DyVAX37sHdvA6NHHwGOFysNqqdjL/ylzg+ECtoZP2o41bX7GFF5AtFWhXB+F6omj8ewW/CoYTJGmm+//Zxlb71CY9N+hgwZhpnW8Hq7glVM5dDDGDS4J7blMGTApZxyyjkcMa4/H3y4gvKCEzl8xDg0r4/8/L4kEgahfE82qMsBPGhKPhMmTHfnW4uBU+j2UQVUExyNAf36Ud+8jeGVx4BEmDHjFHqVj+Shx2+guv4d6qLLmHTkOLxaJXnBAaTaAjiGSigvwKBhfUgnC/F5XJ20UNhLOl2Dbabo3q2c2tpmhg+ZQjwuhILdENuDoqqgmFhWBNQ0I0f2o/cALyefeiRbtv3A0pdeY9TQSRR06YqdslD9GqqqYVs+VBX2NX3Jzuof+HH951TvrGft1z9w1u9OZv33jUyZfCymKeh6kbv/SHa/USzcCnoeiguHkIim6VYylnAwBFoxPq0P2GGcjI9eFQM4ZuZZiOPn+edeYdGiB9y0SbTs9LoWkotEyiGHHHL49yInrJ1DDjnk8G9HB7FzCCJg2w6eLKnhCOyvbaNnryQP3PsnupWVcdb8G0i1+AgUlSBqihvuvIji4jTjxh7FtAm/w7QCmKZJMKBDNu3HjW4wwXKr3Cg6LF/1APsbPqVnrx4cN/0aMPuDAhkPeAGFBqxMDZ+sfpzHn34Ow4QXX/ie0qLDs4SLiRvh5F5HPBolGNJR1DTRRC0F4UHs3v4jTz93P/klCS699GKK8/vz7VfVTKg6DTIqeGFvwxus+3YXUyaeSdeufTjQvJxHn1jEMUedxrSqP4IKhtmM1x/CMVRSqRTBMChagmQqSibtUFTUDyOaxhv0s2njGvKKApR3H4iiBdH1PDqUWWziYHhxzAISiTiFpUnXUSEAZglokLGa8XkDQOgX2iom0MC33y9n+5atnH3OpUAZZlrQ/R2lzx0cK4nq8YET7tQPaYy+SyRygLZoDeOHH0/M7o2m9WB/XFj5/XL0kMP0ngmeWvwUF17yW5565gGCwTwW3vE2rndpUrvToaJPv6yYM9iKGzTlqHDbXZex5ou3+GLlc4CPutoelFd0JZ6oJxwqwBUUFnSfhk0dQhIzVUws0cg/Xn+OwmKdmdPOpLzsCDfqAUDL4KaC6G5WX7ZMdjx6EH8gjUdXOPvs43n4oacoKJwAtPP0c1fw/dcfoyo+pk05hzPmXQd4cRwb1fFj2hEctZGUWUthaAg4ZWTawRcCy7HxBNzoLycdwrHBsNs42P4RW3d9RGlpGaOHnoRXHQmOTnt7NbUHV9HetgHNozCx6lQyiXJ8wX4k2j2E8rLzZgGeBvBEiUWbyMsvyq6HEFgl4MkyTQiOlUFRFBQlG5pmq6BZrFrxEgMGFvH12i85bu5J/OPVlahKNy686DJELERNoOMF8sHwYdGSFbcOIDTz05ZviLVrTKm6PKsFpGbXI9n1k8GmiabITkRJY8Z70qVoAJk0FBW6emCmnULVTBQlxutvv0Ce12DYkFH07jsdy2zGo7tVEXGGdHARCPuBXkTjTRSEs5Edku8ajZOdU8Uk3mYRLlZBTQHt7pcpBNt7iERV4rSnN/HWGx9z0txzKS7s7gpvd0CxQIQDP6zjvZUPs37LGwwZOIW1X29m6JBR6P4kf134KBhFJONJgsWuJtsPG97ms09X8e1XPzJ96vFsWL+ZE46fzbgJM+na9RSXCNQA39fAPq67/l3+etWDFHXpCsoeMoTxSlcUJcETT5zJ3tqfaKyPsnjhB3gDXbjm5ssoyhOW3P4MkEdrg0pxcUlWEzwb4uVkK4R1is7buFFK+ViGgqChe7OFD0R3RaVpBVKsWLWMKZOPJhQYAFb4F1t6koN1W+hefjiIA3odYIBZBh4Pba3VFBUNBrWFDI04ksKndEclD8cJoqq2K4yvd8mOb6pjI+rca6CF519exMcrX2DOjNOYN+8F8Ozn7eXXsPbnN9j9M7z5QoxYRCUvL5jVxreIyW6CwXwcpztig1cFtP1AA61tBsVFA7FND5oayKZLOlhGEo/PAuJYtoFH87F119/52yN/paYGPlz2AS888y3zf3c5mtoFfBa2kkGVEKkE4P8JwznAvYtv5atPqvls9TpcUXQ/1dV19O07FCOp4/VlF67CId0sfGAHQDtIe3sLiI/Cwv6uinx2SAyzAVWCoHg4/vhj+fDjj4gn4oRC4WzcndopDZ8jkXLIIYcc/n3IpbPlkEMOOfyvwPmXTzya+qs0kUBQxZEElp1kwoSxAKhKwHUGCbFtyz7mHD+RseP7Y9EOSoZgoCPlTHcdHweXdfjF7q6qKtOmTWPm9Jl0KOC2NB3qlThJPD6HohKHkWPzmH3sCEqLPCSS7Vk/Rse9yW8GGjHsRlRNRVGCFIR7A1G27PgcS91D/xEHueXuebS0NjBk4HSMVCOW45Z4/+Tz1/HlNREuioEW5dmXbyRc3IQ31OKKa2txvH4FHBPV4yPgL0DRQoCfG29YwF133QXY6FoBkvIzfPgR9Ok7HK8/DKIhIqQzMeqbatBw0Lx+dC8E/GF2V/9MfdM2IOGOjbjizlkv/BcpO64w7wcfrKChoaljplyNG1sH0wdOINtOOlP87Di01HTjsN6/ZUDFHA40aXi1HpjAsy++wdvLV7HkwYd45uU7GDZ0MMed8AcKu9Zz3Ml9cIwozz2zkHsfOIuKAV0BSCWSmLaDaJB04kjWqZs6bS4wCBhCeffBIMWEQxWAn1g0iu7T2LZjLQ88soCbbvs9gYBG1y6FGFaMgYP6Ut6t/D9YYdZQfvk4SVTC+YV49CAtLU1UVg6loLCIhLmHjGyjNbmGgm6NVE0rIFTYTKR9E8IebG0nGTOC7k/j8zq8+tozXPr7s6mt2YUvq9+s6lHXliwvqs/CE4BgXhG9evZj6Khidu5fwZ+vPRkwiLSnKCzWWf31S/Qb0J2iggpIDcSnDwTLQ6goBZqbfojugJaPWCp5+QVZe/WAbYIn47K22Ygr1ZNPKqGAkgfiJxFPAwGGVM6gX//J/ObUM3j+pacZPKKcUKGDKA6aGkClKxkzDeKmmXqUEuAwkP4o9GL0kGlMmTT7P6R+uWhqbiJjZVBR6VbQle75ZfQqryAY8LpVqxQHw0qiqBlUxaAtfoC00cL+g9+zfNWLgInHEwbyADd6KpUCRzJAFNMRovEkadvM2nR2b+ngIRydcEEAFB+xSIKOCCmARDz+q74W+gs5Z/7ZFBTk/+uFIIBBfeN6ovHtjD68hMrhPsZP7ELfAQqmvZfrLjmJpY/cSjDYE+gKFDK4chSHDexPMKwwbHhv+vctJBGv4ZOP3nLXfrbSezxRQDLTn6NnnEhRaR4oCVojaTwUdI6raccpyNfYsStCaWkxXp/Chg3rqTu4n5TRAhgUd8nLMgkdQuFGNuIlQypZj5nxgHQDpxjb9KAoCqaVRERFLJ14O2D6SKczWI7JnGNmEQoEAAs0p3MoDuw9SPde/UA5yM0LzueWG28APNy56GwuuGg0RSVp2totNu5Yy8uvPUJd0xYUMrTFG3EQBItIvMkl0ZQELmnlVhxMRJNk4joNB+D7Hz+ioSXF+o2rsynFFZx87JVccsHv6dltNOJ4ycsPApFsgT0PXrWctBVD1Dia7tpBa0szH3/2Kmu/+R4I4lg+UPwgkE6k8Ph8gM2TTz/EhRdewP7d+6kcMJapU6sYNEijse0g06dPRwuEsinQWqeZBQIQ9JRR6O3NZRffzFOPLCdyIABOH0xD+PLLr/l582a8gdB/sKmOiqUZIIktMRbe+yeWvfcgsdheRCCTMdzfB58Hj8+PpgaIx9OASjiUT86dySGHHHL430UuEimHHHLI4d+NzmiAFK63oOI4flQl+4RfgUw6js+fwTAO4vVmI4qkq1tdS1yf0FZjKNSTMCPk6z148Kkz+O6btfz92WZw8hAHHC9oNIBddui8noMYRgavtwfYOqlUC3ooQEoJErQOyea2Jav58PO3OPa4YyhQQ24fCIFTjJkEPdwKHOTRFy9m5IjxHD5yLhKfRCDf5oknbqNHHz/LV9/Bn//8Z3p2mU7APJFUOomvaDMeRViy5DZKe7bw/bfV3Lf4HZ547i4uueQOgmpfMplCvL6NLHn0SoYOqWDWEQvRPS7hcfXVFzJ80kFmzTyL7kVTQXqAYrJz78cc1mcUWN3dPKDATp5/9kYMw+SS3y8BetF2UKGoez1DxvZn2Qsr6Nd7Or6wjmnWotOrc/w7q5grB/hx03Ia6pqZM+t0cMpcsWrFcVO/FAtQMTMKuu4FgYwBvoBDU9M3lJYOByPfnTMfxMx6HnjmGlZ/txIUhapBVSy4+h78njirPlnGMTOO5Xen/ZEbbrqJYSNGY9qlqFo+ybRJwK+76U0W6B5IGwYer4HiqSWAguIM6jAn0Ddwy8LfM+PoI1jz2TaqqsYzdvwgCrUpoOVlo8myxAphXI2Yjif8DnAQ7B5IytWPrmv/lEuvmkFZdxjQdzA3/Pk1WuoGUlJukLK+IZ5op7SgH8mkj2BQ4/JrzuKUM8aw6weLiy65hkR7HY2tdVSUD0L3loBSAWZWbFoDtGx/JAiGB3wJZp8UxuOHfB+88kItjpUirXzHrXefxcD+o9m91eSuv/6I6ugQBlv7BI3R2UiwJE8+fyM9+4ao2bePS85ZQCZZQSYdJKgX4Qk6bsQREI9CuARQLEzLQNeCv1ijZOfY1WkC3LLjHhXX0RVXm8wOuhSMliTSXk9N7UYKCsP0rBgIUoaR9qHa4AkCaitGJkNbu0FBuAd7DnzCO+8/SCyxjrtv2gdWgFtvvYQ+I2s497T7sDI98ehhUBuYPqUbxxzdi+tvfhvL7oumFWCZKroG5585Ecc6wLbtNUw+oidzTx3Fq++8RybRnWce34WqBYlHDhIu8ZFuS+Mv9PHA47+hqCyC4ezkolOfAvM0MlEPHh9o4RbAQaT0UFTaL99tIZNO4gt5QW0GbARBIUTaNPDrNtW7P6Nu3zr27d1NfZOHVZ//k2Ej+nPvoucQ6YGihHFTK1WamzX21zQwZvSYQwS4ZpI2duD32jgYWKkw3kAJDq1ctWAG+cXNDOozlYnjj+XAXofJk44GdCy7mJ923kY80s5by77kxquXUhCuxB/MzxJJTvZSUqx47R5eW/YaL7y+HKQXtmWw6uO3+OLrZdxw7RLyAsOINhnkl+9ny843WPbme9x83eugFPL2W/ey6uO3qOhZzo1Xf4iVgNU//Ym62MPMmHQe2zbtZ8b0Z4hGdrKvbj1/vOKvnHfWkYyfMB2vT+G0ebdz+Z+msXlDhPvu+JGmeuhSlg2S9Bqg1ZIxbHzaYZ3pvXgaiCS38tiTN7Hhpy08sGgl3bpXEm2vIb9Q5YcftzBmxGyMjI1PD7s/OVKH6kth40fEh0oeqZiPUH4rsJm3VrzCKXOuZMGC+/jjH/5EfkEYv6+Py7cpgLeWPXu/574ld/HoY0sBlaV/f5rKYf05fOQU3DThngg6JnGQsLt9Zms7KGqUWKSRgDMATxAsXxvvrb6NVatWcd/tHxL0lAAekskEweBBsAaQMXzYngZ0pxXNauTjlSuoGj+T/B5jQAKkDT+qruDN/mBNmzqVD1etxO/3u+v0P5hsDjnkkEMO/z7kNJFyyCGHHP7d6LirVQwOiV74QBQUFQyrjfqG3Tx4782MHjOEO+++k8LCEsrLD3MdVgVQBEVRyBgF6Foejplh3Q/vseSuv4H0QGwf6ApJuxavqgHhQ06xKqgSJBVTUPHgDRmoio2GH49pQLIOnHYCeR76DBqIXylAI+wSWIoHHC9iwYGDO3nkiSVEEtWcfNIZhLQ+YPXASClMrJrBoIFTITmISYdfjFcbgGnamIZKwN8bqMDniRGJ13HFlVcT0Lsxcdxx6MoAUukgul8lQz1ff/MhF5xxPZrWDRRIZ2pIy2Z+d/L55AV6gVNGQ/M+wiGDr797nX69+6MpZVkSqJYPVz7PrFnHUFo6CkkHCBRluPIvk7nmhokMH3AuPqUENIX26HqCeRXgUbPfTYASARp59c0nKS3pymH9BgGF2VQfJTt/NqCgqX6MpIMoCbz+NAuXXELtgXUc1rcnvmAJiVQtDz9zFk+/cDkjRnspCYe4/ILLmHbk6TQ2NLNs2ZtMPnIGeeGujB4zgkGVo4Awqqqj0orPE0PFRFe8eBUVjwM+0VBJs3n7Cn7Y/AE9upXhDQCaF+jKxnUNnP6b3zPliCPp17s3fk8BKH3BCIDjdyNvbC+uYI9b0t3VF2/k4edPob42zuChVaheeOyJmxgwsJRrr7qdoydfhRgDCeX5QHxkEoUUFfQGCmiqF/JCgxk/ejZDBw5j7Og/YLaV4Q8MoKh4NJrei7SRj3h8iEelNR0nZaQI+hxuvvMsvvn2baZMnQkY5OXv54gjKzjv/BNY8f671NS0UL3D5rKLH2PMiDOpGn8cvjyDJ166ns/XvEgq00K/PnPclEIlSP8+gxlROZXDR80Biqne3Uh59wqisQj+vBivvLaA519dQHvqZ0YOPxzEi6b4scVE0SKgtKIoCQ6FEvmxUhpmWsHjCYDjczPFEFcMXwFFSeH3w8efvEtDXQNbf97GkGEjsMwE3pDC+k3/4JNvbuel1+7gN3OPQtVVdlavod8gH4UlSdr3DqCiTz+mHT2UUUMDvL3sO4YOP4L21ho01cO0qtH06TGKsp7jUNWuNNTHEGyamr7l668epVcvByeR5KY/vk2Pbr057rip/PbMJSh2KdiuCL1l7OWH9Wv4aM21RJo0/njhSwwvvxEtkMf7n1/EN1vuwRe26Fo0lWQ0hJ7VJDtEqpkuAa4m8PhS2EYLqsdNA3XoSmObSiBUiIKPaLSVVR8uY+r0Scw98WLmzT+PYUOH8/prnzJm9O/cuVJ1BA/+YA+6datAUQRFsoSmouHxJFn95T9pbGzgk5VrGT16FpGWDCNGl/P4E+9QNeZk/vn6ZuaddisebwFmxodOKeUl4+nTqw9HzZjE2yse5t3332L61DmIVQCOjqg2CiqH9ZpKRfeelPcdAU4Bqsehb/9C8orr2bLpGwb2GYFlOnjDCT75/BW2bv2ZIyecgOaEGTpyCEcdNYGaA5sZNfxUVB36DSjkow/fZNOPG8gkdfyEqeg7gbLSQZw7bx6jR43mxZdepKWljcceuJ2hlVMoKSinoqIvoXAeqYSD7lXA0wy04NG8tDUFCfizgueqhV+voH+PWZx3ziLCwR7gePH5S0ERNm39iDVrX6FHH4W8PB3HSLP804f4++sPMm3yXDTFhyMOPq8fFJVtNesIF6TpXtyXUF6Yhx5ZwhGTRxDwFlFXmyC/MMiata+ycMmVXHDxcfSqGAJ0YeSISaz5ZjV/f+N5upQV061LH1oimVfhSwAAIABJREFUUXx+A5QwimKiKBqKAvc9/CcqhxWQXzgQPBY2IcJ5XenbZyi9uxeiEKSm2qZLcRFtbUle/edNhIuSlHWZgMfj0Fa/nX17f2bX9q955ol7mXXiUVhWmlgiTTAYBEXhtddf56yzzkLTXFbp12UBcsghhxxy+HciF4mUQw455PDvhpB9Gp7JfhD4hchrlBdevYeG+v1cftGFnHLq8bz51tuEA6VAd0SKcKvZmIjoKDYYJnh9e1HwIBkHRbdZt/5H7nl0AUOHDWfBNc/jeh8dERVZnSQM9u/fRa9eg7ENQVPDoNSDto99277h+XdfZdqc+YwfPpOg9AfTT0cFeMuK8uXaf7J9xwYuueg8IIxj+1GVbi6votcCzTS0NFFWeHSWaxHQm9m2ZQ9vvvEaN918Eag2kOLa66/ktN/eyLixc0AgZcRxM/MOgnEYyXQMtHYU/x4WPTCfv1y8llBeAbFmH4q+kXBBhkhqB6pdRl64ClBJpn/msScXMXzYWPr3Gcmrrz7O9Vc9x85dW+g9wE8wGMaRJFdefRFnnvonxo+Zj+pL4IZA+LLvSX7e+j1DK8e682SXgKpiK6BioXQwgrbH1fJQDgBR3njjUX4z9wJUPQBKhnMvmsacUw6jpm43J55wIWHtKLp3mYAADz62kPPPOY1AQOPh+/9GYVEp+XlF/PbUS4ilbfL0cldfxbMfO7OV+sZa7rzjPgoC/bn04ivpM2AM6GFsO4OmtyPEUBgMpg9bYmjeJqIRBdXuSTjf0/l43kgK3qBySHVWySBkUGilrvVzyouPASnFNCLovgNAK3sP1tKn+wk46XxU/17uf+gOBg4cwqyjzsXjzSeTaqepZTcVFf3BKkU84OAgqKQsN/gnbbpi6TYOQgaHBF1oZ1/TCsJBL11Ds7AjfYjH0hR084OnBewkJlF0rTdOOkw6A/4QpOzN+H02qbSK5vQlENR/YecKmXQEn8/DvfffTHnPIDt2beLW6+8Aimlp2UPCaMcf9KJ78/FoIfK8vbAJoeJqwijZlLdfpoJFW8DvBW8I8Bo4ioEiblSVosQRiaEoyeygeunQt3L/neb+x65i5lHH06PbEMKB3ry14lYU/y40cTjpyA945PE7qW36gpHjCph/2ktgRcGzDRjnhoVhgBLCtHVUTSOWaOKFZ2+lvCTG2q+WM3vqMWzfAMPGdeGn3V9w5bXLwKoE4LrrL8QfiHCgtpZHHruJeWefSkF+Ia2tFuMPP5Zrrr6b+vpGPly1nAsvOh3DcdDV7igd5egASLN16+fU1e9kT/U3KIrGhefdQ9qwcaQQny8f2wBFyeBRm/hp3Xts3Pgd51zwCInoAUKFQcyUD10rdQ/nTWDThmV0w+PxoKpRFMn/Bdm+H2jFweLlZz/i7HnX45ighlpIGNsJ+Qa5ZeZNzyHJKRPaGuOEi2LoIRPDrsOrFQL5iHQHx125qnRMjQV4iLdBuBgymf387eEz8Rg61974GkihSyyzl1fffJpoNMEl5y8mHfPiz9MxrG1Iph++QBcQEycS592PruG9f37O/IunsPKDKJdeeBe9DxsEWgpbtrB8xfvMnX2Zmz6mRLnnb+cz86i5jB51PJDPeZccwX33305x8DBa6/tRXJR/aAqyzx4cS1A1BTsDliP48tqBBh5+YhFvvvkmn3/8A2BRfWAV191wA6+9uBnwY4uOJl1Bgbb0T6z5+jlOmHE+yYzDF2s+ZvbM6UA50BXbSKN5t5BiBy+8eCc+xnL+OfewbdtO+g3swd1LFnDSiacwdPBkPEoRNg6KE3CF/LFQyFAf+YJXXnmCqy56CwDHE0AMd+9RPbUolJKO+bANCOXDpz+dya69eznp6G/oWtjKpyvv4ccfVvDh8g0MGAQlJd1RfL0597ybGdBvChDmlFNOYdmyZa62WQ455JBDDv+ryCUR55BDDv/PoaSkpFM497+6wXz55Zd/1U5VVSZOnPgv7a666ipCodCv2g0ZMoTq6ur/sd3EiRPddh1VjTqqpv2iZLZDip82fkXNge14dJg3/zTSRoxY2tX2cKtn2Z3nURxX5sWxEyBlKHoFeDTW/fgFVRMPY8L4sbiEiAkkcVOGNMDhQN0Wvl77IaCi6UFQU+zbvJZzf3sMDz12H7ZqUjW8ChUvVodMRdax8/hSDK7sQ0lJCUIeOAWIHQAnQ1trih83rWTF50/zj2X3ZlOnAE0BYnz1/SvEMtuxTI1U0ksqraDpXvr3HYpjgiMOAZ+CbQewnBAI+LxhgqEC7r//fo48YgpBf1c3rUw8vPf+qzz62G1s3bKRvHA+557zG1qbawj6S/jtaecza8ap/OPNtzlr/il4gkEqh00lGKykrb2WXXu/Zeaswxk7diypVIrOqDDCQCFQSs/yEcQjDhg+nISDrXTUvVORDlZNBZcUjLN7xxpUiaPqpWC60QOnn3oy77+zkbamFC11QrfiUWCUcaC+lVGjDic/VIpH9bFt6w6qJkzkiElTaY+1E/bnIXENHB/VW3/kkacWcOeSP1Dex6K03Mu27ZtBKQMjhEaxSyxiEYnsAT2RreqlkB/uTTjocedCi4KWQfNkje5Xj45cDZ0uBSNJJ3TAg+7zUt+yj6VvPsvXX38FWKg+i0hmHYdP7MmYwwdRU7eZRYuu5M13HqKiIujaGfDVDy/wzid3s7f5ExxPE5oKAR/85ba7mHvmaRxMxvBQgEYx+aEKgr6ugAdNh4JSPzU7a5gzfSrNTdXoWrZMvQeCIVA0MG0/Kl0I+3tjZcI4tkqngLW4elWmoVJY0IVRo0YxatRIMk4CCFFSMoZe3afx0Yof+WD5O3y6+h0yNKCh4BK7ITfaqENHCPfQ+SWg+zOuOLeSOTR04jZQFB8iFq//42XuvmMBifYY9XUJxAoRjxvUHWjhb/c9yjNPv4yR8nLGSZczd/bZ/HbOZXiCQZa9/RJ7923n7WUfs39nLXgsrrjhJBbdeTMoFrHGfaCk0D0ZVCVNQdjPiSf8lu7dhzJn1vkcc9LZXH7LORw2rIR9+7cBUdCSoDqUlZUyYMBAAoEA2DBr1nhOOX0yYyf24Ou1a8kkulHRfRTnnX0VkMKRxuxcWp2XmYzHqKysZMb0KVx4/hm0RvaSTLbh9+roHgdVQFVA13UULciQoeMo69qPSEMMx9YBH5rmxUiBnd3KNDS8uoaq4p5PcTqjngwrRiTRiIrKyafMBQ1UL6DkE/KVYxoZGuv3E09G3AgpJUUyafDByqXooQDYIZLtxbikSDaV85c/AzrgxMBJEC505zGdFHxaMT9+uxO7xcJOpF17oJBxYyfzznuvUFu7E9sMgJ2P19MFX0h1iWRHR5UidKU7Dz3wPMWlBTQ21dN74CDSSbDMAJpSyuw5Z4JSSjqmAQG6dStk8+bVwEEymQbGTxjNBx98QCTZSnFpfmckmGPbYIE4aVRfElSwBTd6CZ1Y3MLnKWPS+ONxbJcMbW5uJi9cTAdjLHJIk68w0IUd22sAH0FfIePHVWGSBGxaGuvQvCrb927mnnvv5os1O6ip3Qd4GDx4DF61kGNnn8yoynHoipd4MolGANUGFV+WhFXJyyug/mALqYSAGkQh2akfZ9qFID40D6DFQYXKykosy0HJeiVHzZrBpX+4EEtgwsQhjBw9kK4lYZa+8NQvFif/LYG0ZMmSX90H/Ge/7wATJ05EVdXOdiUlJSxZsuRXbaqrq/+lXSgU4qqrrvqXdkOGDPkf2+WQQw45/J+H5JBDDjn8P4alS5fK4sWLJRgMyn+2zS1dulQURRFFUaSqqkrmzZsnFRUVAkhFRUVnuyuvvFIA0XW9s11lZaUAEgwGZc+ePSIiMm/evP+2nUhaROLZd1vEFknGRdrb4iJSI5deM0wee/FUSSU/FZE1IvKZiKwVkT3iSEwcyYgjGbHFkVirSDqWcv+eFnGaRUS2yG23HSfNiZfEku0ipohIs4jsEJFdImJIMrlHHn3qQlm38RFJxhpFxJC/v3KT/O60gdLc9K6IrJO91mfSKPukXuqlVVLiOJI9Vkz+9sgZ8vwrF4jIJhE7LmKLOIYpqdRuiUZ3yPG/KZSHn50lIh9IKr1NxEqJ2CIiO2T+pUGpaXlMRFpELBGRVtlf9544hiniiIgkRaRBJOMOj5MUSUcdibW1SmPjT+45JS7imCKmyN9fPk+uv7FcZh+H3PfAcfLTplckkvhJHKmTmFkjprSILU3Za68TsSMiTlxENsv7y/8q3627T0R2iki9OyeWuOdOZ98tESsVFzHTYsfiYopIKvtnSwxxxMj2uUa++PSvctuCvvLl6nPEadkpidqNIs4+EVkvH314rTQceEVEaiRelzUBRyQarxORRhFnv9jpbRKPbBTHqBaRiETiTSK2LW11u2X6zDzJyCuyN7JY3v7skux8NovZ3tkZEYnJ3UtOl0/X3CORxBoR2SORyHYRx5RtG3fJ7XfMksX3zpIv1izJntMdY3fcTXEkIiIREdMSKykitiPiNMufrqnqtEPHbpKDB9fLg0t7yOJHx4rIenn3o0vlyw2XyovvjJPTzwvK7ppXRaRO3lw5QzbUXiwReUos2SwRKym1EUPm/fEO2ZcWaXLPlj1/xO2T1IltbBeR7+TGBSMlad8jIq+IyDaxJC2WiCQNUyyxJZpulqTVLpYYEkmkXXvJuMezMnERiYnYra6tSYu0te4QkaTYbdm5NUQa6naLyG6xZLOI7BZb4uLYIo6VtXe7Ywdokb0178voKmTIKOS6W0pFZKfYEhPHEXFsEXEMSScbRKRGRKqzr1jnuRy7XkQ+FJFPpLH1I3EydtYQdkjaXiNiOCKyTUQ+l207X5Elt98qImul2Zovr//9Flly9+ny2eoF8uHHt4jIZnFku4jUimPWi1hxkXRcxGyUh+6eJNs33CrHH4uIbBSRiDhmVEQi0nDgMxHZJH/8A/L4E6PkhaXHi8g2SaYaRCQpsXitJNOb5M9XTJBE+nNxpN61705bsUWkRhLpNXLcycifri6VJ5/6k6xY8aA7f2ZU7HRcxDHESjeLSKPYmT0iTlpuvulsmX1sf9m86TOJuttO9ry1IqYlImlxZH12LUZEpFk+WHWn/OOtC+X8S/tIMvGN+7ltS13NLmlp2SSGtVVEdotp/ywiu8SWHSJSK1+vXSgPP3KWu7ZtW8Rw59wxRRxHxJaoOHJQ7lx8oqTlcxHZ4k5zdr03166WD5Y+KpLI2oEl2bnaLbvrHpYTTh4oYrjbn/t5rZhOjYgtkm6wRJza7Br9UJqaVrjXKIaYkpT9DdvFdBLumDq2RFp3i2V9KpdcUiB//Uu5JJLrROQHmXf+QBHZ5Z7bkuw+07FvNorInqyNd9hqUkQiYhmt7qZgd7RbL99+91x2o2gR067PnlvEkTqxZauItIlIm1j2Hln91X1ZG06LiCEt0Q9l/bZbZN7FyIerbhRxDPc6k6nsPLWJSLJjG3G7aXas67QY8oPUt7wnTtKdc5Ft4oghVnZOzKRIW+t2sewN8sc/ThKRj8SUr92fG6kVkU9EZJmcdw6y5pP58vXqP0rzgbdk367PRCQppmnK3Llz5b/Dnj17ZPHixbJ48WIBpKqq6l/aVFVVCSDFxcUyb948qaqqEkVRBJDFixd3tisuLv5Vuzlz5nTeX8yZM6ezXcdnlZWVncfTdV0AmTdv3n/b3xxyyCGH/0vIkUg55JDD/7PouPH7j6ioqBBFUWTp0qW/+rzjhrLjc13XRdf1TrKoAx2kUcfN43/Vbs6cOdmbx9+Je5edFhFTxBbJpERaW6JS2/C9fPzNHfLj1kdEZIdcceUEmXtKgfzjrSukqe07cZ0VQ0wzI46kRCQmIo3y4IOzZOUbL4mYSbnrluny+GPzReQH9zyGiEij1NStlAcfPV8ymX0iUi1ffHOfiGwQcUwxzJhccccMWb9tmWQkJs12Qi6991659uXn5Iv2OmkRUzLugUSkRl56/TwR+VxENkgq3uI6FIlWefaFq2XV5wvEvfGPi0hSHnzoCrngwqMklagXx24Ske9EZK3YdqTT0cgY20QkLXW1W6Wm5lsRqRExRDJRkZYWt49ii6SjlpgxEdcxrhOxHXnu+TNlxarzRGSNrN/4rIhskrT8LPF0g8RSSTHFFkvaRKRWEq31YkYyIrYhixf9Ts48q0L++e7VIvZe1zHKknpiui/LEEmlt8t9D5wui+85XhYsmCKmpCVmiaQkKY3RnRJL7RXX6d0hs2ci558bkHPPRt75x+Xy/Wf3icguSTdvdhk+p8X1Oq1Dx3eduQ7Pq03EaRexYyJiiyMiGVkvZ//hMNl08E1pljq59bElcvPfXpJms8O/jYjILkmlt4lpHJBkcpfEM2tEZL10OK6Gs06uvnmg3P90DznmJKRyNHLNX6eISLPrSNoippH1+cSUSOsBcVmPNnecZaPEU2tFZJ9YSZFH//aciHwjLsm5VkTWywOPnSZPvTJNLrtelY27bxaRFln63CXy2P1nSsuB1WJF26W5Ji2xJhHbEIlnomJKvZxz+Rh5Z81xsuqLhWI7eySdrJbWprUiUitt9VvcuTBExHKJneYs99WeOij3PnmBLHriRFn06EniyAZpj28Qw/5J/v76FfLp2qvk/Mvz5Lo7DpPHnj1dDHO7iLSImYyJSLO8+OLlcu5F/aUtsVJcksnuJI0cMcSRuOw/8JNEkztFpEbS8r2s/Wmh3HjXAFn97dmybMWRsmv/++JIrJNgMTMuEWJbeyXa9qOI1Eh78/rsGDZL2vhZ3l5+ldyx6CR5/c2FImLIBysXylsr58tfbzlB9u3fJS6J9IOI1EqkYZfcced4+fS7IXL7TbNFnN0iskMc2SEiu7OvGom0bRFxWuTA9u/l1JlHimRMkZhIutEdNyPl9k+stNjGBlm1/HpZfOdg2bHpfnlg8VniEgBJ2XPwY7n9byfIA89Mkkj6blly/2hpaNkl6XSyc11Emw0RiYlp7JLGprfl4kt7i8gm2bH1dRGpFrHqJd60Q8SJiBjNkkzUiEibGPZ+aYwul7q2N2X+BePcdR9PZ8dmp4idkScfXyS33X+UnHLmcDn3oqMlZW6TtHwsLcln5dSzdVm/8X4RqZbmhh0itkiiPSmffvqKrN/wujzy+GUiUi9G5qBYRpOI7JBnXzxd/nxNP1lw5yTpIF/MmEhLg0ue7GtYJe+vuknWbrpf2o2vxOlkDCNy800zZf+Wt8RpbXX3Biu7VqVFRNaKIzvdzwwRx7IlY+/PrrfdEon+U0R2iJlaIbG2b+WDlTfJLYunyZr194kp68SUpBxsahSRiNhSI6a5T0RaZP/+V+TFl+eIyEERaZRodIuYmcZOgti1je9EpF5Ms8YlJR1TxBLJxE1JxZtEpFFMs0bisWr3b0a2z46R/Xd2n8nCkTr3/4ZIS0OjpJMN0tiy2t0bbBHJiBjWVsk4H8tL/5jt2pxxaE02NO7PHtMW00qJSI0kW5tFpFYaG9eKyG6JW2/LYy8cK2Ilsl/cIZOPQ/5y+yQRWyQVMUWkRazMFtm49Wa5/PczxU4dFEv2yq49b8vFlxwmCxdOlZ1bH5ATZ3UVSW0SSbeLxA2x0hmJx+NywgkniIiIbXeyvv8l/jMSafXq1f/y4EjEJZ8URck+ADr0MOk/I6E67jH27NnzL/cFvzxeMBgURVH+x37mkEMOOfxfQS6dLYcccvj/HQ4cOEBRURHz5s371eeLFi0C4NFHH6W6uhrTNBk7dix9+/b9VbulS5ei6zrffvstL7/88n/Zbvny5QCsXv0FblUsAAEFvF5IpVLYlsKAfiMZdNgY4m1JopEMe6sjKHjpUlgGqDgiqKonq8eTIJ1qIRwqZvS4HuCpw7CbGT16CBAGCeBYACpPPfk8AwcOxOu1iSYamVx1DBACPIgoXHjRpQwbNBGHMLoapKnZYejQifQq6I6JiYqBm9biMHL4eNyKPDr+UAgUN51i2bJlTJo0KdsujWXX0hzdwLEnjMcfDKGoKtBMxN5LIpXuTCvx6kXs2/sz3XvkUVHRBXBorG/CG4TCYkil6kGx8AU1PDo4JAATVINe/QZTWNIPKGPQwMOxsPDhw+8rQPcEME1QMYEMwbwy4jGLaEsd332/htPPPIFj507CsU3SEQ+pdBTUDIlMDEfLkLK24fc1k5GdlPexqGn4CoUMlmkiTopQEMJ+hW071lF/oJrBQ0dSVTWT+Wefy/jJ/Tl8cn/2bP2Sxffe8Qth8wxoTeBpcCVuBLAVnIwD4qZ/YLp5PumUoJHHiJGT6NfNFdtujdqceuZ8PJ6O2dAQNPy+IixTQ9Vslr56L/c9fgUL77maxoMH0ZUgU6ZOorW1laFD/UybFsa0k8QTDYhkyBgGHk+2L+IhP78c/j/23jvMiirr9/9UOrlPZ5puugmiCAioCAIiQUGRIAImUFBxVMQcEMxhMIGKY2R0DBhfFcWcFVBRBAURFFAyTWg6nT45VFj3jzrgzDjze987v3ufe987/X2eehrO2bXPrr3X3lV71fp+l2OQTQvgYeGiRSz7+ktMO47mSzH53HFANXAk2D3JWDm2bf+VoYPH8tjd39HzoPMAlbqGVZRVJGiIfIdm7KK0UiVU6NKdgnqQj975jEMqD+e4Yy6id9cLUM1OkGtPcVlHECiqqAAcUE3Qmtm5axu+vNBz2GfQpkKlR48a2te0RaGIwmA3DLUTI4ZN4bh+ExnY/2SO7T+OAX0mYGhdwCxB94RYvupmmlJfcP7Fw3l14ZO4lK2sW7EDiEHWNKmpqqHAXwaE0KWGfodP4fZZbzG4z9VMOOkROtf0BsDKyzDphpvWT9V8ZDIZALxGCZiVkCvFaxRS0zHI2An92Nf4C3tr9zF88AUce9Q0unYZhOZxOJAFUbzMmDmdL79aSbJFpUuX9qQTfqA9ClVkLT9QwJkTT+OLrz4gHt3AFyteY9CITjTv+w60KN4i1+YMn4Xt5GioaySTEmLRFKdM6MuHHy7kwgung+0nEs+w5Os3aYpupG2bcsLeoykv7IttCx6P78A6VlDoUgV1o5TyssM449QLAIv2NVXunMy0ECwNgZ3h1ltvoLa2FgBFhfKCMiqLKjhhxPGgmHi8sGnTGu65+0ZQM1w07VxOOWU8dXX1rF+/EZ/ux0uAjRvX4/VqLF/+FS3NeyltU07tlhYCfj+9DjsGlQLWrN4EThmZeCGZRAEQZuo5VzBh3NkoWg7YC1oDegBKSgEqaN/mGCqKexJv1lGdYixHJZ5MYEqCihqDX2uXoRSnXNriAaaUFyhCwUcilcV0QNFUPGqQRe+8w3U3XsTaDe8zasQA5j08l1BRZ044cSRtKkp4461nWb1pMQo2XkMDXN0gTdPAKaBtZU+69hgAjh8IUBBqh24U5383zbsfv8iMW6byy+ZvufHWC7jj7umkMztAM/EEwOv1Aj50tZSgvxpsnVQkQd3OPW7GuwPUVYffKIo6qZQDAiVl5Xj9QcpL2gIKyVgaVDC0QjxKKVPOvAYxVaxM/lQF2pSXuOOOja5luOPOU1i87HEiLSsoL1eBBubcN4uiUhu0ZmKpjUCAi6aN5oijSognf8EXNnHSGprRjq6HHMbhPXvxxdLP0UigkeXIXn1JJ3UOPnQwxx4zDrzVoBYCBqIYqKqK/P+UdH377bcBuPzyy//m806dOtGvXz9SqRQAy5cvB+Dll1/+XR3nnnsuAAsXLmTz5s2A+/zw9/VNmDABEfkdTa4VrWhFK/67Qv/Pi7SiFa1oxf9b6NevH+PHj//d5/s3P+A+FAIUFxf/rhxAQUEBAHv27AH4h/UBlJSU5B9GDSCf+UlxsCwvtbW1qHqaI/v0RscH4TBz736a2rpfaFtVCXjJmYKhe3ClH9wl2+cL0/2g4eRYyd13TiIYVvlq2SL69Z8KZFH9AF5mXH0nilHPMy/NpqXZ5JrLZ4PdFhzwaAEOrTieur0tlJaDrsPj91xHHAgAxfjRUwnwOqCV0KvrqdiWBWKg6RpgoepeXn35UwzbD3oE2MxjL1zGgCFHMvLY0YidI5bazh3zTmfgsSdyyrBTEByyacHnL6GwdDO9+1Qz8JijuOSCWzmo4xGgWqgE8QeSbNv5MXfOvpf77llAibccV/BYY+jgswAd2+mIz5vFYQc2DtmkQsAHaK4OSLQuyN1zpnJYH6G4qpbXX38NqAFyXHndRB7604eAScaKo3lBVVSWfv0qm7cuxet3+PTTjxk7+gyS8ThezY+hJtGIse6XVWzbupOTR57JRRffTk1NO0JBL1CPbdk88exTzJn7dN4C9r+rybpjozs4toqqW6i60LB7E599/jm9e/fh0B59QRVijW259g8LqI/V4g9nuGnWVDRMcpaBVwPNCaIQxMqCL5Bk/dZXWL/lbVavhrdfXUhpsBTsEoYPuAEtV85PP6+jxzFHcuygUYSCxdh2Bp/P1Z5ynLx2r5t0Dq+vGJw0fXoPoW1VEEODjLkRX7ASSVaj+CBr7SCZcrjwvDs4pN1RRJoTFJe0ASfEjGuWgZYXFVKyzH/oGopKdQpLImzb/QWdOvuJ535FkrcR9pdhpcFbmOCGm8cydGh/tm/fyosvv8fBXcHna8O8uW+gSppLL7+KB/80l8mnXIBCENdhWo2VS6B7TUpLKsha9Zw67kIKA2VAADO3B8NTyA03TmLsOXswDINBvSdxWKdwflxaQMuCUwQ2eI0id6jymmX7L0On3W+yZP4kYKPrkMuAxwug8cPqVSxd8iGJRIxbbn4QHMimwGu0o0PbEykr7kivQ8oh66V2927a1lQz5axLydEIBMhkFHzeME8uuIdfNg5h/U/fsnH9CnoetZt27cqwbYWSkkqSiRZe/Y/3eP7FByko0pk05SRm3Xoe9zz5MpdNe4gO1RNImi1oKPj0UsrbtgOlgFPHTWXOA0ewZAkMH7GGyupD8RWHmXzqDKKjz8BnBUg1ufc8AAAgAElEQVTtqeK8KfMRPUEq3YShhchlbEKBoOuQIAR4GTZ8Gk89OZP6vfv4avEyjhs8jNKSCs49bxoTJ47l1jtuIRgOc//9TxEOVWARZcrpl5HL5vB4PUCM8acN4NLpI3hs/gJ6dhrC0s9OJxqxSCQ0Vv34Pdtr9+D1FDFy5MmsXbeSwUPCVHc8FARK2xQieiFPPPkIqRahoMBPIgoQROEQBg88hG6HjMuvl3sRtQGHclQpBydIn94ngZoGfIgNgWAIcLjwost55tknGWKm0Y0yUPdr7wSBQ4EEoYIYDpDO+DCMYsaPPZ/uPUu4446JPPjwk3yx9FvIebGp5pTRV1FVVsBXK5eQStdTWFhOJBZHQScYCqOrBrpazVGHnwsSAscCx4Nj66gavPQf81ny9fNonjjPPf8ks26ZxOeLP8Lvb8Z2VDS1EEX35rXAdOyMm6hRC+ykuDBOJr0Ln7ca12GaBgpcX5IaJhDQsFOgaQ7iJFHUNNlsBE33uqtVNseKlctZ9uVH3HjTc+j7xfjVJm65azo1NTVcdM5MslLHBdOPZMlHy/hs8RoWf7qe+fNf5PqZdzBsxCRGHx8hHAhgi8Hx/S9k7U/fUVCgY2Vr0f2l1O/cSZv23fjD9AE8/cg8kJUc1KkXzXuzrFlRi5Vsy/Qr7gYpIhKJEiwowDBUUA1M09Xe+1eFtdu2bUv//v3p16/f776LRqO/++zvXxLtr2M/fv31VwzD+Iflevbs+S+1sRWtaEUr/q/F/+lQqFa0ohWt+N+Ff0Zn+8/KL1269ICOwl/rIvx92ZKSkv9yOZcWEReXGhEVEVs++3SpfPzRYhGxxTYtkZiI5GKSTKwXlyaRpyA4Ipl0PmzfiotYpkg0Iy++1EW27Rkqk6ciTy04UlwtjF2STK0XsVPS0lQnjmyUx549SZri70sysU1SzXJA78OOikhOxEw3ii1NUpv6VZISd2lsSXFllfIUhnREJBeT3zRjHFsiDXmeUUZEnKg4slFuu2tkvu1NIrJHVv3wmog0Siy2R3KSloS1y+0KS2T2vSfIDbcdIm+9d4mI1MqNM8fJ/EdnSy6VljvvO0lm3tFZ3vtyvPy49TqXf2W755kSl73xfZK1RExHpCmxVnbWLROxRaz9bbS2iEhUrr92isx9+HCZ8wxy3oWl8tabs6X/AGT77kdEnJykM3GxbVsSiZg4kpZXFt4vIuslFl8uiz990qWiZUXiTRER+VVmzxki9/xpkDQkXxeXZtQgIglxbFOi9TERyxYzs/uvOs9turX/EFebRaRekon1cuPMcbJx/Ruyb+8XEk9tEEca3dPSIuJkJCcxabEbpdnOSTJPhbOiDSKZprzezjfy8vuD5ZGnRsr23W+KmJk8Vc796yQzYiViLp9M4nnbc/W5bFskmRT5ce0qOWdqb4lE87SZ3G4RiYlYWRHTkmzclliDmafYREXkC7ltTm+596HjZfad54s4pmQScRGJS1YikpaoNKV2y6ada+W1hU+IbdVJMrpeRLaIlfxOXK2q+IHxdP+/4QCl8M3XbxBHXpFkY62INMkTf5kgP6ydLY//eZKIROTXdd/Jlg2fy8SzCmVP7Rqpq63/TdMqt98ebRGpl0jLGrFljYisF7F2iEjclZHJ5g9HRMSdJ47skIaWtXLVdWfKXXMvkbrG5WLJGmlJfCh/eni83Hn3IMnaG8WUZkmnrAO6NZl4WiKNv4irKbNDDmhtSUp+3rhQbrm3qzzy9AhJWUslnYhINLpB0taXkjQjYskW2a9lk4vnZPolVfLUX04SO75UNq65RZ79jytkxu0TxZF6cXWKTLHSCUnH94pjbxOX3va91Na+JG/8xxPusDsi6WyDWE7c7Q877l6/fCYfvnKHzJ55kSTjbgv3pbeIJS6d8L0XH5OZl0yWjVu/zF9DY34ex0WcnJjJtFix/ZzM5ZJLfCIfL7peRFZJcvd7IvKTNNd/LSJ7JOnUimmJJNMiWScn+2m8Ytsi8rWcPRUZPQb54KMbxJF6SSZykoztt4d6qW96T75d9YCIrJY7/jhSnn5liNx21wgRqZcPl8yUW+7tLktWXOWueY4tYufESeQnWDopsaa9v9mXI5K2N8ldjwyX2fcNll9/eE5cnbVdksu40kymIxI1fxFHmqSl2XI1ryQuTl73x8mJ5ExbHFkntqyVrBV157MjkpVN0hRZKiLf5kXqXPpqJi8rJXY6vybWu9RJyz2vPrVTMpKQjORh53WNDughbRKRT+WxBcfn58gOaWz6TlYs/0hEcmJm4rKrdrXMue8i2br9YxHZIYnkKqmtmydfrDhfDuuFrFj+qbg6Xb+6kyPn2oc42XxbmqQpslL+vOBMmX332eJYLXldpV2Sza2Wefedl7eBhIg0Sk6WS8R6Te55dLg0JpfKMy9fIpddgUyc4JN484eye9PaA5p8qcyPko6LNDbEJZn7UfbtyLrrmikiUivLV94kzz53sttnVlxEtsg9M7uIyDfy8cI/yeov38vbiy1NLfvEkohYEslr0omccMIJ8l8F/4SO9o/wwgsvHNA/EvmN5v6P8Nf3/wP3+v+kXCta0YpW/L+A1kikVrSiFa0AunfvTnNzM/3792fIkCGsWLHif+0PKAA+wIdlOWiaSiaTJZXKII6KqgAFaWbeOIihg/sw4pgb0fR2JHJfESry4fUdhJULo3rylISAF5ETuOO2BUyaMoTPPv6C1d/9hd59TyDgryaZ0CgsrMAxK5h+3osoNAI2BLNguW+b1aD7ka6WggOlRjO29QsevQSMTmRj4M0nv/KFf7sOy7bQdZWi0nI3asMEvCYKOV5a9CGOfi23zXwcTSrp1nEQkqrHbziAH8UpIZWGYABunvUQ0dR3KKrD/PnTuWDaH6iqGofuhekX3c28++5k08p2jB44hYED2nH1tTMYPuwC9BKDolAxODa6spGXXphGeWlHzhh7JJovgK0Bio5m7uOO2+7CU6CwZu0LbFv1KM+/PJvl33xDpqUa0gY+v4JpN+L3KSjYnDbubBCNglB7jjvuCOyMgaaBz1ME7OaYPtX06NadskB7sNqjiBfLSaB79xAubwGK0JwqcHRQG4AkkdQeCvwdMLQiHDyAFwcFX7Atd855hBnXnUd5WZCxIwfQvVd3HnzkdvbsiXHf/R9jSGe8FugGbiYrgUzGg1/NklZW89OPP3PywAcJBXu7Y5GFVAYChW4WQCUQQ7M9bkYnK4Gm1+FGaBSRjofxeAu4/74Z1DWvpijcETsNiXgcj15KoNgCJYJpRAh5urr1W2FQBnPt9I8oKFCBelpiy3jmmec4+8zzKKvsD3gJ+cOEa6roVNOTrOngD1eQTgte30HkcEizD0MN4QF0qcbMfsv9TwyhoqaEzoeMprTdVE6fMImff32NPkdVcNEFD3BE93Ykdhl07FDN0y/cxR/n3EFldYbZ915HpNFi3n0vkktBJg3hEhUUjaLCUiwzi+p0Bj0NpECpJ531k0o7lJa3A0pRCIGofP7eaxw/9ChUr4ap6Ch0Juyr4bKLDuaXjZ/jUWMA6J5iN6rDSOMNOXgDXfJRHhbQBKKCspmCoHDVlE/w+4rwqx6Sys88vuAC+h9byvfLarj2ivsByKRb8IWyXHLlLJKpFt5Z/Bbjxp7KoYf3AgnnJ5lDKhEjECxBM4Ik480EC72kUxptK6qYMNHPk8/cwxmTxlPg70Q8alFUAI8/eTOWuoVfv9rLow+/wUmnloKWxXGauHTqUPy+BB2qchzTtyPl1Zv44Zt9HNrpIXC6YeZAFDC8oAeM/XxK0LpiBA1OHHcckCBQVQ7s4dzJo3jh2Q8I+tuiF7iUNs023LXDgWQsSrCsLSX+Q6juCrfefA/Dht2GP+BSr9Ip0NVyigKj6dFlOJDg2htuxq+3cM700TzwxCgun3YfR/c+iTU/bABaQMmB0w5Fg3i0nvWbl7J4xT2cNm4aFeETyMbaUV5Two2XLSDdEuGCk4dBh3oK21Vz621LCFkHE/LB47PvpahA5+Jr5oF4aWiupby0jHgySsjXFsNSyaba4g1H+WrJVRw/dA7JVIhQuC3xlhglBe3JZQw8QUBrwOvPAo2gwqI3n+bRxx9j8ae/oFCJhkGJv20+26MDjoo4OpZTi6ZpqEohWDWgd2DqqYcDAcysQWlJiPd33c538x9j2NBT2bl3CZUdN3DBha/w+Sdb8RlVVFe0o9BfzwfvncMHH3zA0f075BfvFjCKUVARcm5mO1IUFxVz0bk3cNtd92KqLUQam6gor8C0YeDQAfxx3rHces1fgDZYTpxPPnodv1/48P0PmDrpCiJ1DXTv0oZQ8ZGEikrz9NBSNMfAEwBVVfAoBxOo9OSTlKZ585VX2L27lhEjzgLHAMfLmy++wupNvwJ+Thx/MWR00rEs/iKd4sIC4pk0QV8JuawbtOXxeBAyeZo3uLRD9UBG0X8FL774Iueccw6KorBo0aJ/rZJWtKIVrfg3QKsmUita0Yp/e3Tv3p0NGzbQrVu3A/oH/6th2zauFpFGMpnlg/c/ZsuWzezZs4u6ukYi0TgvPD+fgsIso04aihYKQgZCRTpr1r7Lrbdeie7RcLABARWGDj6bM067jtWrNlPZri0VFUFSLQ0IOoGgBwFyOYBSBH+epZNF9j9ga3+l++GAX/fg100gSTzRiLeU3x7IVZOcE2F33a/oehawyWRTOK6EDpGGWiDDqDGdGHRcXwSbXBb8hcV8uex1nn9xLt+vXYHX8BMIunW2tMS5/75HqNvbQDTWTKeDuqN5oCXZREm4lFtuupurrrmbF59dxOy7LuW004eRNRsxMFBQMFQLSNCxfSljR5+IangQZX8maYuMWYenIABSxBG9zqFXjwFMnz4dAF9BJShQt2sXhu5BVXRs00HBB0oYM+OQTmXQ8tIwugeQNI88/BJz7rmTz19/F7JG/jsDmwjCXhpbNqNoOrm0BeQwpZHbbr+E555/EIjnu9vAwY9NEMHPQZ270feovpQWBajf/j2BcJKag31AHABVXMqZqmURieL1Cf/xyvMsWvQ027dvJ1R4sLtxMyGXEwJFDmammUyqAWjgnvsvZ/ad03jzneeIpSPcfvcMbr5jGq+8/iCGL0MsXstllw7GiQXRPKUUtSkkUGLS2LQVSCOO6wzYr6KYiIKhluKIzq76n3nu5XtpaFrLO+++gIpK3u8IefMxDBUb0P0KjgqRVJSxF4zn1ntmsG7jBnC8XHXVNZw4ahBdulfz0hsvc/IZxxGTtQw8vjvduvfBTDskmloIlYGq+bj4kusxlGpWrF1JeUWQ9geF2bV3NY7WyONP3c78J+5j/cafAQPdCIHTQjq6EWhE9WXxF6iUtnEpqdu3NYAToGnPDoYPG8LJo05n9LAzaFvShURKQdGK0PRKuncfgZV1nTmRhp2gW0Rbdrsdv/9iRQe8RBp+4c57p/HeB69RUlaDP1RAvCFGMCAMGNCFjLmH5qZNKKggNr6gwa5dO+jR5QT6HTGBUaOnAO3BCYMD2zZvBrL4AypWLuvasDeMmRb8gTIUzctts6+ivuVb9uz7CRWHwsIgqUyCiy4+l/MuOJc+ffu5/kMli5NpxM5FaVtWyLgxJxEIOBQW21S2VVm/bhlYabBcp45mQCyZIpaIgAamaWHjRQiSSmpg+8DS+GrxYo4d0Jd5985FLyjCsQXLZn+WeTBMgqUamXgTkyadTUPjHoYMPhIzp+CI66zyBdy5pusQ8HsRQqhKMSpVTBh/OkXFQRA/JeFDOH7IBHfhwiaXZwwXFPk4tGsnTh47nAf+dBMbN39FebUPV4ysDH/oUM49+2LWrodgoVAcUAj5Ye/W3Vx/6438uv47IA22Q1GoFJsUih53J6ADXn8Z4GX5Vx+zfuOnhMJpIEeHjoeSTYfx+MIgQfbVb+HL5Qu5atYk9uxeS3mbAkaOOo6LLzsjP69NVAwUVBRsMilQND+GrqMqFjmzmUzGIhPT8AfKMbNJDMPAlAwTTxvFnr3beHfRO5x4/AQyqTQnnjAa8KKpOkg5BeGutK/pwcCBA92O2e9gwQRxAA+CiqAjuP1cWdUJyzFBsxB0gr4Sju5zDDUdSli3aRUrV33N3Ln30KF9Z/odNZhYcxpQ6X3kWAYPPQXQQcmQzuwDJUssFgPFQtMUUAL5Dszi5Boob1NEIm4T8pVBphnUJOPPncjEKeNhv9aRDv5CA0gTT9QR9ulkM3GamxpZ9vVSEokYH3z4Hiu//5Z0Nn3gXuve8/7nsd+BBPD8888zZMiQf62iVrSiFa34N0BrJFIrWtGKf1ts27aN0aNHH3AgrV+//ndlli5dysyZM//l38hkMvh8PldINQ9FsfH6FHJWDFVVaG7ZRdeu3ejSpSuP/2Uj3bos4ORBXTGsMh6ddztZmpkxYz6QRsWL42jkEg7VNd2orgnz9rvzSKVirKzcyPhTBgMhHIFMJkcg6MENHyjF3UT4fxN8Jg2a1938aiZbd67ivY8WUFZaxVmn3uruzxxAwFKaufv+q9B0hzPPmMwh7Qcg6KgEQKC4vBJopChQzbC+o8jmLPxeiEbWsuaXNxlzygQ6tu+FSIJYPEth2MeF0y7i+QUP4fcXcv2s00knPWjBJN+sfYGVy99hSP8hHD9wMnvrNzBi7GggRUVFDYKBLaCIDk4bjh88jUCgPWR0bAFNhyefu4dONTlGHn8lKIXsrt1C3/69yZoR7p13NSOGXsyRR06ibbuOxBstvB4djx/MDKg+EMniLzCAZlDLwQbbcjju+MPZuG4DOUfA47i6KUqWzVt+4cefltGr23DKwpDLWniCHgylkEsuvoaAtxrwoIi7o1bRcBQNCDLtguvQdYeLpgwnFa3lulunEwyXg+Mj1txMQUEJChbQiG03o4d1vl35Ao88ORtXwaoJ1AR4LTyBZqCJ2x6YRkFBkLr6ZoadOJC+fY7BQ3fC/r4M6Duaqo7CYYdUUrvvA267+1w+/HA2h5bu49C+pTz65CQ+X/Y5x/aZRHVFP8489UpsE5LaOgo85YRKfESTu/jxxxW0xH/gw08/pk2JQSjoQyGGQpjf4GCJhaYYqCi8/+H7vPfx+3RqU8M5Zw8i3vADmZSPx+Z/Ck4JzS1x+h81j0P67mT7rzlGHnMtZUYvoB5TNnLpVbcx65oXaN+pKx0rT6WqTQP9eu3XfGkG1jL10u5UFHQlkQphWV62b/2ZxpYFvPfBZ2RSCr26j6ZH9/H07nM8CHTsVMH8v8zilYX38fyClyilGzYBAAKBJjLOXsQy8Es7Zlw9C1uiOGqMe+c8RqzFR2FREPIRSq74fJCX3ryaE05ux5ZfWsDTBCQpaNPIVbNGc+fdN/PxZ7t5891llJVNZ+zISyktrqGy/AgycRvQ8Pk8rmZNyCKR3MlfFtxCOttMJpNl/iOvY2YCGN5CNEIgDmYywx23/JFY7geeeuIVqiYfiW360DSF3bvrKC4tZtK5E5lz/01s3rKDG265l+qOHXjkkffZt2cD8RaLaAQ6dRpAfd1PxJtNbJqJJtLowSANTRvBsQmHjsB2HKKpelTx4TcKiSdaiEd3M2jwiRx71CAee+AlqE8QN5rIqGl8toamZgkFVJZ/+xlLl7zLDTfcjNd/Jb2PGkcyaZPMbCEc0FxBazVMNluE1+PHNr349W401dcy4cQHyZh7+WHVj7zzzlwC/hA33TAb8CNqwtUV0qAoXEVR+HI6tK1l9dpP+X71F0w+/XbCRT5QVE48/0bWXTyENTu+ZvEXrzCk63jaFCnMnTWDeU8sgFwQVC8fvvsli1c+xWG9OnPh5CvAX0kuloRknGP6TuZP8y+n0yEHc+NVj1K7w0tNZS/IQjYHFW16UNGmDW3aBHnt1U8ZOWYYJxzfjmz6y7yNeFHE1WED8HkBRyeVy7B+ww88/vhjPHDffIqL27CnbgN33HU5ndoP47ypf6C05ChGDrkFw6qExBGcPupBisrau3NADSFOHEVznZk9ewzDfdRX3YifvH9GEUDxgFKQvx+YTJ96C+AQKBGiiXoKQ0EgwGmj76bAdxCQI+NspEfXE7AyhUT3/gykGTp4MlYuiW03EomtY+Hrr6Brfi48/2awdcTSXSecZiO5BJYdp98xh/L5kucxlR1cce0VHHVEX6acez6qfZjbLm0raDqXXTyNMyaNp6S0gEBBjnkPPczWLSbPPfsONlF0XWdfXRO9evjY77p2dcr+5/D3DqS/T7rxX0UkEvmXzmtFK1rRiv9uaHUitaIVrfi3xLZt2+jRowepVIr+/fv/LgJp5syZzJo1658+FEYiEdq1a3dAlPPNN9/8h86mVCpFr169iMUSKIpQUBAkHA4yfPggunStIRaP0Pngtghp+vUfzMgR/Vm6dCmfvvEHnnh2JUf16cH7n72BkGPrlnV0qO6FZqj4goCtgxqmX5/x9O1zOD0OG4OVULGzGhmnnsKwB2jAckLoFLoOIYW8krIbzYBigWoDCV5duIANvy7H5w1y1qlXgVqMOD4UQEel88Ht6XJoRyraluCQw+8rcOkJmsW9t19L1o5y8rgzUCnG7ykGsSgsMahrWc+Lr+7jxmsvRFVNCsMaQjMLX13oNkYMnFQ5fr+PMZPGoYe38fi82VQFD8JJhbnu6vngTUFWx4yUYhS7kQqSAcXXiaA/SC6Rw+MRdDULJPEaMPL4P+DQjEqED7++nTMmHssDD93PtAtvpyJ0BKC6zhc9jidUCYARAEji8bsb/4XvPs7Bbc+nc4fDCLcpoGePgTh2ASNPOx2cDKgO33z5PouXv8a0iy6jvLgrWBAq9AFZRHx0O3ggECKVyBIIRfI+PM2NQsFys6Th8M03Wzj7jH7cfM1jrFptMX7sdzz0yFuuv8/SQfGgewp58c93UxQswMxVYhglOJkwqt9LKrqXlxY+TKCoic5dSmnXrootW/306XEuleGjwS7FSjv07DqSiopyHCtCTUUTj/35Bi65+Bz8/Mh7n77GuRf14Yh+FfTreT2G2o5MtgGfH3wUImhYNhQGq+l3RBvgWBJNhYw+aTQ+X3newPaHAribOl1RydlpPJrO6JHDGT1yKDEzTbFeiVW1E11fx7Zffdx5x9eESoroeVwpR1SewdGVlTjZojxNbC+fLHmBx/58Locd2Y3hg4/loQe/ItbSSGlZiFgMCgu7Ah5KjBypuE2oIAhAMBCiuupcjup9KoZuMPfBP7Llkw28+cEDzL79QcCk2+GFvHrWk6z49gdKK47Bp1Xg4MeyCvDqAUwtA3qOP82/m0xmGymzls8+f5/xY252fbR6HGjCdRCU0r66J888+WcOO2Q08XoVzd/Monfno6uFhLRRDO9zLKeu3kJCEjz35AucPuFCLMePryAAmFi5KHqogERiD6ECnW49KykqqeKBBx7hwUdncfVlDwAmrjfVg89fSrrRZtXKXVxz+TVs+fknOrQ7CtVsR7isimRuL0awkTETTkHVfEy79HJeW/g+OdNHScnRnHlGF/bu3UJl2xLaV24lnfHg8yfp0DFANLWBju1tdPxkk7vxBWpobMmAmIhq89Xij9jw83dE6jYRra/nzlvmQYkHXzqEgoVXA7RmQBjQ/yR6dh0MdKD3kceA40XXFJKZJpZ8/R6fL13Iw3c9g9fbEcFGU0NYaSgtqSHTAumcnw4dm7n1j5fw1psfAGHAj+5JuqYnWVB8YJVyw3WPs6n2debedxcXn/eQyxqzIdLswSgtIhn18s3nrzByyHGwq46Qx8ZdXDwgFmNPG4S/dAdfLPuS/ZE8nrAX8NN/YB/6jejFvfffx+vvPUXHmj7UdOiI7QTwBnWwQ6AG6Nr5NLpeczKQJmcm2b1bxc3EZ+xP1OmG+SkgFgT8bTi819HMuM6LP5TFYQ9lbW1Gje1L/W4fbctqwHY4rJeFR1X4ctnrLP7mZY4c0JVjB43HrwwiEHTjHeORHAXhkr+9IanuWoOdp33t1w5XDFANbAc03SQUCgFCNJakMNzDpVQqUfr2GYxf6Q5aBSOG9yYSXUGxF3QjCFoC1chw5lkjeeONRVhOI7pajKCCZuFYTahe4bXXFvD96k944IE70FQ/h/fuwI7dPzL90kt44i8/s+Tz+1my7BlMM8v4CRNYveJzCgs8vPfxQvzFkMpCIreeXzavpaSkhL5HHQuiEo+lyZkpSktDuNFX/zWyxdy5c7n++uuB/28H0hdffPG76KR169Yd+HeXLl349ttv2bZt2+/EtZcuXQpAVVXVf6lNrWhFK1rxfzta6WytaEUr/u3w1w6kyZMn/1MKWyAQYMWKFWzbtu1vPp8yZQoiwtChQxkyZAiGYbBq1arflRs1ahQAnTsfTDgcymd0c9izdxeWk6UgHKCubhc+Q3Oz3wBH9z2WyspKjh82EOwWSkoLqa2t5dVXX+Wgzp3QlHyedxOyiRzpuMnUc2fQ47DjAD/xhIk34CEQ0IEkidxedFVxnT02+U2DlT/yWiX5ncQZp09C1/yMGjmOppZ6wELRyO90DEaNmEjP7oMo9NSQTFq0RFtAhWxyO598tgjLSdK2oppsyiQbz4HobNu2iTYVVfQ+aiCGWoJjCVkzhZKnoYCOIxqqz8e+PVAcOpaD2p2KV+0BVKF6i/nxhyWMOekgzpjYFaPNDvf1h+Xue8QClEI8oXLwWOSsfUAjkydOAqqxcgfjON04qO1UwpzJhBMfp6pgHJrSmVgkBjTzyJ9v4Kf1n4HaQjK5B1FagDhCI/5Qmk6dKjA8ritt+8597K1r4esvvwHHws7G2Fm7hbFjTqa8uBPg+au02jqK4mdffRPpVBZV3d+Zbl2uI8kLhIk1pgj6dLxGOQcfWsalV3Tn9LP6oBhbsXN7QdkH6l5gH7HkeoaNOArD0wVybcEqBTNEwN+RqjY9Ofu06xl49BnEmkIMHjiOkK8zkisFGzLZKFU17YhFTRJRHxAi7D+U9k58lCQAACAASURBVBVTKK8o4ptvvmH3Nh/dq2eiJHtCrgSfV6Mh/jMGBirwyy8bWfndKsCDSIBTx/0BQy0nsi+B625UUdHzh4GKgU8LoKITaWmmpSWJ3ykjk8ghuTAQ5sobh7N2+yOYxjqKCnohdCGZ1UjnIm53OYdz8nH3UbszyGVX9CNYsou6yPuEAhUoUkNhwaEgBSBeDCNIIFCGnfSTbvZTWXE4Bodh6BWARtbazd765YTLWoAIO2q3cPThJ1AcPIKBx4zCtGOYRFABMX0gQXQ9jEM9qVgOn68LJQWdOHHUUSRzP4G+F4jgZi8rB9vPzm3NFIc70dzgUFBczMLXX6aiMsyYMaNo2JOgsPgwbKoJKUdz6bSHaVPaB6/hZrhDAugePygWoYIybMtg7JjTOeigLpx99pmEQj6279gAZLHtNCgmaC2s2/gyH3x+I28vvJ/VKz9j65YlqOWbEG0zjpNmz65mSkuqqGzbkeHDRlJUWE48mqOhKcHefSkMXyW+YDvaVHSjsKANuiGgZmho+pXJ557MxZeeyfqf11C7fQcFwXLCwRJCoRADB/Rn3NhTOKRzF6qr2/H0sw+TrF1LNBLDzgmJWIJ9e+sByKTThIragV0CVhDSOl6PRpuidhzeoy+H9+jLhm2bAduNvlPB3u9tESguLaFtWRleHGrat6GpPorkvGiGFxTI5VzNOJEcYHNITR8mnX4JLS0JUAxUwyDnKHiNcvr2Gsyo4UOgaTNUBWlfXeWuiYoJ6m5aWn7mhOPGMPWcK3GkApwQTibHimWf8OJrj6LaFQzqdzaxaI5XX58PbELzbQPDBBvMpEo2Xgjix8yBxyihuLASRDuQAdBdKxxQXF8S6Bh6mO6HHoHPKETFh4cwpcU15LIODU0R0Lx8t3Yhr713I299/Ee69Qrx08YlFISEQMAANDJJE0MPYab5bT1SLVCaQWkAPeX6rpT8kXcoaQpuBk58ZLIm2WyWrVvX424XfPiVanD8B6JUiwsPAg2ikTigUxKqoSRYwyGde6CrBo4dxQiaoKQwJY5pRxk+YhgHdT4YVfUBBn37DuHnn7dRXd0NHIgnYxSX6jyzYCvRlkb69z6GEcNPpk0ZOCZ07V6EaUfpdFAZixcvJpXKEIuaFBT4KS0t5bcQ2v8cU6ZMYdasWfj9fpYsWfIPHUiXXnopwAEq9F/jgw8+QFEUTj/9dAYMGADAWWed9Tdltm3bxhdffIFhGP9yhFMrWtGKVvzfBkVE5D8v1opWtKIV//1QWlpKc3Mzf7/MBYNBUqkUgUCAXr16/e688ePHM3PmTObOncusWbNQFOVAxFE0GmXDhg0EAgF++uknOnXqxDXXXMODDz74T8slE0m3YjekBFdDxeT+B+dS37CXGTOuok1JO3B0NmxcxEOPnc+Jx05lwsQbePKJ6RzctSvHDbkCRfFDtsTdhKgecFJkc3E8/hyKroMdBNtAVA/1zT/y0KOzGTP2OI7pOxkypW4bNMBIAI4bwWKQ31wksZw9bPzlRyoraygt6oT7lt8CvOSyXuIxk9IS729+EMUiYzaTlVVMu+RsLpx6MUOPOQ0ldwiSLUDzQCSxio3bFzKgzxiy8WPxFmSp3fkTny55lWg0wqWX3oBHC5PN+PB4QyQVqN33Ay8+ewdnTBhPp/JOTJt+IpPOP4wVK1dz2oQ/cGT32yFbCh4/trI/O71gs53nF9xBNLKbqy6/BUMbTCIq+HwKugHZXA6vX3fFfWyIJxMUFG7m5TfmM/HUy1FxHRqJeASPL4ei5ahr2EhNxRiwvaTTG/j8qzc4um9/2pQdBk6ASNM2issLgCRQDXjzjgAF04xi+DSSiWaCwSLE1khHWvB6g2iBItLxHP4Cj9vFGi6VR9IsfmcOnbvU0KH7ULCqMOMKRqgQ0mlXx8pTD4aA0hkcHUmB47jMRLwZUOO4myjd1VLxmriRZ67TcOuuFTz06F2MOGEso4ZdBQTBbgZtOQvffwgzW0jvblfTtctJWGYW3bec5z+cyaEdJlJZUcXGDVvA9nDikJGAxi23zeKgjjUE/DpnTrwNKMJxVCwTPHk/pTjkHZKWqxtkQbQxQmG4mPrIejbsuw9/WQzDaM8hVXeiOEEUFQzWYZADqzPk3FTsBLYBaRx0VEqBIJloGl+wgmzMQddVtACgOKCa2JkYjz/5EC3p71n+3ccMG9aVCePO48fVOxg35iaseDGptEa4zEt9tA5/UCXkKQDHTzoBmg90T5YX37weO72dXNLk4gvnAEWAhmmDoZXh7tbTQAvz599GVrZRt8vk3rvf4r6HT2LH3tV4fbD2Gy+FwYOZesH5VFYcRu/DRxxIzx6JJClu4weJk87E8XurEQsUbwvCbhRsook0haFq9r8HNHNJDE+hy6PyRrjrhvEc3vNoVn+3k1lXLyTjBLFIgZ6gqCiMbQuCjsfvJ5nNYFkW6IKjWBT4A5C0cWxIZfbiDSRZvvp5tmxfQ5/egzhrwhzWrGpE9DBeQ0X15HDS9ezc/isdD2rDtg0rWfDMn9AN4fxL57Hyh+/4bvVXlLRxOOjgKvbV1TP9gruA9mC5NFHHgViqjqJSH5DCthQ03QByZK0GDF2INFv4tW4EwhpffncPP21Yhpku5MqLFuX94Q4odt7O47z1wSOMGzUVnAqww/n55Q5RcxQUbS8F4RQ/LHuCt556iKBRQEusnNlPfopeGELjF1599c8s+7qWRx5+iT27Vaoqy0FtBvbxzvt3MXb0o1gZP6pvJ1+vfJVBRx8LBMnmCvF6OoEYZBI5fCFPXsTaBBRyKR2Pz4+VAd1vufN+v/icLaApZFIJfAGDv/JIY9omCgWoOT+q/yP2NH3ALTc9Rk1NDccMHcLAgWcSZIy7IPJbleLkUIwcd8+5hC07vsEhyVkTL+KEwafhSIhsWsXvb+fOy/0/p7jzx3K28OW3L3P8wCux00VofpNULEEgWOxejgp4Yvl/GIgprn4aKRQtzauvP8kXX37GvXMfpLZ2N2vWrObtRW9w3YwZ9O7VB80IEalrwrZUyqq6g+2nOfUZN902hlwmx9OPLQMOJVNfT+3er1i1/m2GnjyaZ557h4cf+Ji6HRkQ72/afftp2hj8NdlCUZTfRRzvv28D9O/fn3+E/eX36yaWlJTQpUsXAFatWoVpmn9T7/5njn9UbvLkybzwwgv/8Hda0YpWtOK/Hf6P5oZrRSta0Yr/jSgpKfmHqXn52/fAvzv+OhXwCy+8INXV1Qe+UxRFunXrJlu3bv2bOufMmfPPyzl/XdIWkZwkUg1y1uRT5I23nhWRiMSSu0QkISeP6iTf/3CxiHwk1116tLz8/ERpiSwSM7NXRHaJFdsjZnSvSLZZnHSTmIl6sbP51NBmRsTMSSa9U35Y87Lc98BkEflJROrclNGm5LPOR0QkIZITSUbMfEr4hIhTL4n4DhG7RaxsQtx8zPXSEt/pNjsrkom5f9000KbYskdmPzNehk7xyyc/zhFLdrjXeyDVekLc9OKb3Rz3skdENsusm06StLVO3DTiERGJS8LZLFlZKZNneaTenitJWSDHDymRJx+7VDZt+ot8+dUct6wTF5EmNx23WLLPEdltxeS72pdk3Hk+ufehwSKyMd/fe0RkvXyy/Hp5eMFI+WHz/SKyXtLZ5vxF7JDG5hXipq7Puf2UE0lH3L9OWiTXkhExs/l21h3oE0ci4qbPXiMiP4qbCj3pnuSkRSQjVjYmIilJxvZJKl4vdvpzeeLhsbLo9Wtl5YpHZOp5vfNj9KP88eahsu2nh+WTdyfJo/OOkKfmnyirv3tcok3fipgJyTbXidhN8txjf5CvPpkl4qwRM/OzSK5exIyIk6kTkV2yc+sXItIkdqrRzayei+bb/ZOIfCODRiAXX1shIt+Lk0uL5EQyu0VmX3eniOyUeQ+Nkbc+PVXefnu+iCXS0pQRkZWSlu/z1/mDpO0fRGSbmGattETWueMr37vj6dgH0qvbKdfurJTb3Zlki4hkxM4k8zaZkVwiIVauWd78/Bx58IWuctcT/WVHbUayOddk9kU/kktm6PLAY11kT+3rrl1lRay0LTNurpSXFo6UZxacKSJNrt3lROzULkml35Z5j/aRHzZeKUu+eFJEfhaRjWJZv4pIVPZuXy9iNsuj8y6RZ5+eKTt2/CxiiWQjedtNi2ST+0Rkh4jskEjqp7xdbRGxczLvgSvl5UVT5Zqbj5Lmlp3i5EQySRGRlIhZJ1nzE0mmPhGROln07lRJy5/k4ac7y5Iv/ih/vGO8XH97d3n2lUly063jJZH8WUTq8+O0W0QaRCQjZsJti5VJ5+2vSRzLPUR2ybqfF8mYcTVy511j5N45g+TWG9uIyGty9XlFcv3F7WTGZQdLU92XIhKRxL7dIqkWkWxUrJadko5sFpF9kslsl5bUZtkX3yi7m9aLnYlJriUikV1rRMwf5cO3z5ahg5EP3z1LGnd/Kg1bNotkTInv2S52dJPE61bK1h/flnT9SnGiyyTT8oqs/OoamXf3VIk1rpTa7e/LggXnS8Z8T5pib4rIRrf9OZGmPSmRtEhkX5Obzt0x82ndoyJSK+9/Mkuuuv4QOeu8g8WR7WJam0XkWxH5SpZ9+7hrIKZrayIpETvh9svWW+XcC3pILi5iNomY6Yz7vSREnCYRJyciccmlPpbnHxwqV08qlrfm3yC5eIM40iQi6+WrxffIRRf0kZzp2vry71+XPz10jTw470rJxNeJSEqsTFJSid2u7Uk8P9fismXbR/LWe3dIwlx+YK10JJ5fI0xJx2OSibfkz9sjv2x6T6LRX9zvYin3nP2H5dq7I1GJ/A/23jpKrirt//0cP+Vd7d1xd0ISYiRBggULzgDB3SFk0ODuFtwGdyfBIVhgkCghxD3d6bSVVx3d94/TMPPOveudP+5v3nfdu+qTVatXr1RyqvZ+zj5nP+d5vt90UxCXqWYhnMVCiMVCuMvE3I9uFGecP1HcdOss4RX/eY22u+JqgxDi7+Kqm0cIX7wh5n15ihi9K+LqG3cVn3x5rRBiddf7sqKQygXnbE4I398sPv7mnCAu7eBctorbxR/XD+EKUbSWCiG2Ca/kB8ctdr1EuxBioWjNvi7Ov3SPrjVinfjquxe6jpUWws4E8+cIIfJCeLYQQqwVT78wQ5x29kAh7I3BcfLBWiHEuq41aLk46bRpIpfvFEJ0fVe/6/XnwP2Df72uCyHEhAkT/u29wL++X9O0P/8uHA6L/fffX/wr/0/vmzlz5v/tfWXKlCnz/2XKlUhlypQp8z9OUGr/8ScfkkjEGTt2LKoik0238e1Xb/PqOxcycsgoFv64iYcefYRorCe6OZF0egWJZAIQWJk0Rrwa0EDE8G0ZT3ZRNZm29q84YNq+RCNVzP9qKb7tIus64GPlixiRShAR8AxQfCxrO4ZpEjy5DQVPkxUd27YoljIkKqK4vo0qK7S0tlBdXR201XX5cF3+7DWs3rCG3vW9mHXqVVRJtYTU4GvahWb0uEX7jg08/bcH2HlsHz786H0qK/tw5eVPosm98D0ZSXERlMhnPX746S0mjxtNONaD9OYwoaiGHGtHKCq+X4VsFdEiDk35zZiRoeywZSyvjaeeOpEbLjibJA1IDAV0fPLI+GzatpFouApFUQmFIhiaSsHKETYSgIrvOMiqSiFrEY7GsHPgOBCJ0eVO52OVCkiaiiNkTEPHsdt57LHrkfwsPbp34/AjriPoswv0pkp5D9MMB/ZW2IBgnz1jTD+imr33PZwPPvyMrdvaiMQijB45nF1GDeaaqx6i0KlTmRzII088gazVomp1uIUoqg47mjYSiqwjVgXZnEcs2gBE+MN56ZlnHkBC5pRTLwdM8KuCQ7vBr7ffdzK77T6eXccdyo5tMmZIJl4ZDvpE/CiorTzw6HFst75i2qRZTB49E8XrRspeg2d1p6oqhGXnUIgEbZJu16E9AaGmrvgOAUrQ/uPIyJoEeCDngRxgkM3axGIOUAmlKGiQyi4nFlPIFzuIR+txRT+KaYjFIJVeQEVSBpEEu09XRd16INM1tg5PPH07GzetZsuWLYTMBEcdcSK6FmLrVpsZM+4AobJmxQa61fVBkcCIw8JFT/HgE2dwzgVH0bvn8dRX7gNOCEoliHSCvCXomZRqgD5AOghsv4J8ppNIRaA/k8sZGHocTYdsNk3MTIC2BsjTsilBXa84xdxWQtEYfjGJbOogteB6Hp3tHjW13bGKBXzfx7F94rFG/BLYUgeW20IiUUnL9laqkt1RtQoAdrQup6VtLbXdTeoSPfB8ieXf/8yzj9/BfS88BekCi5fsYMDI3clZLrVxix+++pgXX3yeO2+7CRSJx595nsq6RkaOm0KfwTthWTa6p0BJpqo6CqKdRx44B+Q8v63YyN13zUX16rjv9vNZ8Pf57Dx2MJXVvWhpyTN79hwiiQoypQ3ops2O9RXEInUoBnjkSTYGmlmepaHIOi3boa4OQFCyNmHGVLZtWcG8eR9z5tkXAyVsu4NnX3iW2upBHHrIUbheEVWupFhwURUdzTTxHQ9ZjgaVSJKF72eQle28+958Dp0+M6iY0VP88ONctq1bQm7zIvY+8A66Dx0Dylbs/Cq+//on9tj3AjwLlEjQzgoeTz/xJCeeehqoCj4yP32/jB8XLOGkGedT01hNIZciHK0Ex/hHBZAO7ZkFbG5ayMOPzeHxB9YgSTZCFFEkj0KuSNiMBKJuWoFNG5by6JNPcPutz4NfAy64LqihrmuFH1ROoheD34uRoMLISvPg4+cRi/Xi1NOvAs3h3odnc8mZD3VZOlpAAV9k8HwLTVEoWGnCRggo0LxjNX979nFWrVrJuHETsYsmRxx6Mj17TwSvAs/yKbntROItwABwDApWM+FoEVBJpywSFRBUrBrgBfplwgmucEq4CDQTVIdVIAhRtC3Cepc9p+jqpRP/pKwh+eSz7ciaTGdnmtra3qhKCN8DWQaBh+tn8X2fgw86jE8/mR8sQP+6k5EoU6ZMmTL/QcqaSGXKlCnzP06QfAmZMRLxanxPwfPBcWwmT9qdmpokw4cPJZlMkIhXoodr8YqQSNaAU8DOtPDOe6/iWxlwS4CEh4SmaUj4XDH7AoYM7c/Mi2cBIWQ9DOTYtPFnzr/wZFqbtuEWCiBBurMZw1QAh82b1uHbLq4bJLlUVSdsBokqVS7w49I3mfvZQ7z/8cNABtvLs2H9Dl56bT69Bkzm2JMuJWLUouhQtIKvqemC5Ut+5u8/zael/Wfeef8xho6oZ9ZfL0AWKvgykgS2qwIRYmaCfSfNIBztD26SRHUITVNRtRCyrGALkDQdUKiMVOEi8/q7c7n+ljvY2tKKTJSU4wd6K2h4ro7jqfTqNoyqZC8qYt0w1Aos20fXgsRZR2srsuaClCMcL+F6zaClEErnP9pgAMOMomkmiqzTmS6i6yGampo4/PDDOfzIo7o2RX9oPXmYkRCe52EXA/vpHS1bmLbfcMaP3oshA/dgYN+RLFuSZcLYvendczhrVzdj6nDO2ddy3jnXoYd7IkQEMFC7HIdc4ROrSvLcsw/w84+/0bYjRZC0CRTTFy5cyKGHHk4xm8a3LBC5wJipS/OkrnoQu47bn472NLXdKohXKkCKXOevXHP1kSxZ+BmnnXomY3buhet6FItZkKAiWkk8GsJzwLY8VFX6p/YRQAhynTvw/DRQAEogl5A1GyQXIXJks82AjSBLLBbMT6qzgOND646tVCQGoEgDCLkDcOw0Pq2YMUBAwtwF7GEg1YPhgmYBOng9gQaEa7B23Qqm7jOScMzn9DNm0Lw1z+67n8qMI6/kj9aWAUP6oBtgxKCQ6uS7776md+8kO40cTn1lLdDB8kVv8eGH9/H3L56FUgrcwCJ9R1MLqZYC+OGgLQ8l0JoSNYEQsVzAdrLEYgmQ4PeV33H73Zfw5tsvgqsRivYKWkilePB5RA2y342amoGAgRHSufHmSznuhOls2boG2YC8vZann7+Z+x68irr6GlRD+8PVntq63gwaOBzPFQhMXD/Ce+/+nddf+52mxevACzNy5O4YoRpcT2b9+sV8MO9Z1q9byMsvPkSsIc6I4f2pr0ny848/EjerKORLZAvtVDXWYnV2km5u5eADDqNX9/4MGzqSUFUdra3b+H7BPM44/QCWLF7EgP6NbN60AVmOks/pINVRtOP0HDSMWCyBJhkkk/XYGQcn66JoOihQ1wD5AtilFGbMB5q5+sZT2LZjIZs2LgIUdK2WM0+7hkMPObPrfFZBVBEy6oKkhSh0xRiAApKErISBHhx0wHEgZSh528hkmlizbgkrVn7Lkh/n881Xn3YlL6Loke70HzoWRAglFCKdaWL7xoU0r13GjONOwXdDeF4UnUrGjZ/ExMmTSFZGCXTNAlcwy7JBBa8rkVRV0Y1RQydTEe8GgC9cJEngY2MaCqg+KA6IHD171NK7dy/+SIZkUiI43yUnaIOTA82kXLaI7dq4Xfp2i5d+zeqNnxGKlhC+SqHgM3HXMbhe1/mHRSbTgizpaEoUiBE2+lPIVWIXIzTUjqBU9Lnooovp1r2arU2r+fvPnwF5cAsohkwkWoPrVIJvgAzhqEXQLmZx74NX8cvytwm0wP7h+inpICQPkPG9MEHbZxyIIhPFFxogUSxkAAe7sB2kFEgZwEN4IUJGI431Q/B8CQ8HX3FwJfAkhWxGoZDVUOQoIGPbfwj58y9aU2XKlClT5j9FuRKpTJkyZf43ELBh/WYQEvX19YQiGl6pFUUp8tDjJ7Jy5SJ23mkyp5x+HpKoRWYsrtuGagaVEIt+XsDosVPpaElTWTcYuySjmwotO7Zx0627cdF5VzNgwJ6IYg22SLFh2xcsWPAJU/c4iD499wQpRK6YIhrWueGmS9nRuoWRw8dy5hl3gpDJFzJEomHw1UAziU2cNnN/Tjr5GCaN3AOXRiRqgUqWZ6AqHty3JwlSGhrgFjvQTIu775hNyVnPrnvbvPX6D5x22jmMHn4KMJRMMYKiBYdRgLAPyO1AiVKqhBnuBwq0pFcTr0wgUYdJnoefvJGiuZXd9rmJZ1/4isFDu3H8gQO4/+Gz+Oztn/j+vTTCBF+2kOUsEhlAxUVBpRowcGwbXS9x4kl78tfLLmCnYTvz2ttPsmzlPNau2US3upFcOetRamqGdeluGF0P0H2gSDaXIRYBSfpDc6gHQWlOl/MdJsVciVA0TlAt44FIgSSTS7tEE5WBXombAVXqGmcfRDdAw7aa0E0dS4BwKlBkCU0t0tb5GWvWLGXiqOtAUcDzEZ6FpHiks+sxTDDDPcl3OEQqw0ARz/NxSzGMUJy2zp+proKnX76TX5dsY7+ph3PPbXdx3R1/YfyYw9C1KkpuJ65VgyLqCIWquty14uSLHWiGhyaHQeg4lo6mFnD8dm6+/QxGj5nAtH2OxtQr8XwD28kTMiTunTObdLqZpi1bGbbTCD758keevG8x3btXkS81IbkSYbMh2PvKgNoJ5g6yXicxZSRuRyhIk0UIhKyVWFDBVITbbj2L31b9wu0PXkz33vXBOFMNfl/w4+CqCNNBYhuZjg3cfecdzJ79AEa0qqsSYjNINtDAsl8+ZsH3TzFmzCBmX/Eixxx1GG3tIQq2yxlnn0X3blPJtmaJNZQIsgbJYINf2kQ0HAPi4Ki4/i/ccv+hHPGX3bjw1Ff58ss1lLIprrn2cro39uOEE4+hsnrPIExkQCqSK63n48+e5IiDD+DhJ5/h/DNuBzYBBd75aB5TJ59EIjaAUiaKGVUpWdswTLC8ApoaR8HnvjvuZOl3P/Prsp/4esEXRGsSlEScdNbHsxcR0dp54+Xn+PnbHzDD1dz2wOvIWjXtWQ1VjRKLG+xoXUNENVn4/des+PUnZs6cgRQLgxzDTVcy5577KHW+zrqNrcTj0NahceP1j9LQ/QCUSAMlxaHkpAjJGSLhEI5VomTlmDXrYmKJOFfOvozKqgQ33HAdZ599HsuXLeORpy8hWSPQTcFj973HGafexKMPv4RqdAMRwi3K5KytVFRW4ubCqHow/CV3FYZhIHk9g4FU8sFPOwQqOP5aNLUAVCFoQWIHN5x4EGrFccy+53nyznYiYRtQuOvKBxGKzWU3HsX69fN55+0vmXXZ6yASCFdF0nyglSCJksct9UfVDYp2lpApUSgVCZvxrgkNquNAxiWO53VgKAUK7lq++vQ7tmxq44hDT6O6PoSgk3TOoSI2HCcfQzMkSsUiZuwPHaUQuHFQXXKFdqLhKEFF3EZ+3XQnT875iTuvX4UZiYG0Dt+LdyXSijzz4tX8/ut2brh2DuFQj6CoDjji0L1468O/AXk6OzfzzQ+fMmTIEJ5/7hWunHUbMhWEIrUgxYNKKBeKdo5Q7HfufuBu4rFqTjr1EN6eey8H7fYSsWgVSJBJrSWeTIKfpJAtEk7ICOHj+RGyBUEsKmFbRcKmQTa9llhC4dLLTmDqHnuz336HUbIbCRt1+DbIWiD/59KJQOBjIBFBFaD4cMBBh/HhR+/g+z6y/E/VSP4f59T/i+tzmTJlypT5b1Guv/766/+3P0SZMmXK/P8ZQZf7zb/ilMC1SFYnsFMpVDwko8jX839k+lHjGDNhZ5599RY8JUXPbruTy/gYoRAQJlnZHVWLE4omAQVF0di+pYNYqJrfVn7IoYecBlSDnEAy4lRV6Sxa8SN//+krVi1fhqy38/Sb1zFm5734ecFSJowfwtFHTUMRtfiehh52cVhPqnMV4VAIaGDK5NPo03MfbGppR2ChUUChn6qQsCCpgCm1U8huwfdK+L6OpifZdcq+TJo0mldfupYzj7uPocNPwU33oSBrOKZCk2dx/RNz+XbRJkYPa6SQWs/1N15GojpMz97dQDKIGjVoIooKzHnmLNbveI543UIOGX0t0ydMYnRjf6JaFEV7kVNP3Z2EehByyEWWZqrVSAAAIABJREFUZCRMJBJIxFCIIiEj4aMoNlCiR582hg0ZTDEP2zcXWb3hbc6/8HBOOvp8IuFdQUojpAISce67+0KW/PosHR0LGDZkLyS/DqQEruThd9mAC0zARBIqmm7iOwUcO0sx14keimFTTc6sooCBJOVpWv0ln7//DF998yEjJuyDQgN2QaXk5pHUEsLzsQoyYbMCCBMO1dCj2yhwqkh3bsGMCSQljlN0sdw27p0ziykTd8eINIITo5gLo+sJhC9Q9AzhcFC11L/vaA458BQG9B/HXlNPZPjw/ShaJXRN47kXXuD99+bRr18vqqq6B+2PkoWuRVCkGK6nIcsGkupjSQ6yGmGXSdMYMXgqrtcNx0uAGkZSLXxaWbj6Fc499yhGDRnKnIfmcNejp9C/ey+QNHS/Hk2J0dnWQUl0EkrmaEot5Z4HruLWG+7kL0eejOX5qKaCEvJxXQ8ZBTSVpUtu4MNP7yUU3U48aXDv/Y8wfvyeqFIdql4D6Hi+hKQqrFnwLE/dfSGnz9ibD79egqVUUFE3FKhEQQVLcP1fr6BbYx8+/fR7ErUuqdJmTj3/YIaMTPLdj+/z1fw36NUvgi5raIoJapZU20q++OwdhgwbAbhglxBemt594tx95xyevP8VHrn7Efr3D3P/Iw/Qq3EbH7/zLftNPwdXASG5CAwMqZbujbuQK3jsMekIsHuA1xuU3gwZMBrTqAURQzUtrrv1YG667XzWrVvNflPPBz+KJMWYOGkPDj5sH4476QhiDXUs+OILPn3vHSKyS/XAiaQ7U3Srq8HLbiFc0YeqAQeSEfUk4t1IiCxKqYCbl6ntpfHG3DtYvn4Bld17UV09mlSHjmI2sPPosUyeuBumkeSo6cdgtZf4+tP57H3MMdjFFCU5h685uJ6gULDwhIypm0zbaypTxo/hmUfuYNL4/rRv/Jl5HzzJwTPGMXSnWlpbmxncdx/G7DyT6XtdgKxXgbod21tMutBEZVVvPFtCMdNIWhsLFj7Fu++9zrIla9hl9D4AWEUXVdcQooAkqXS0QCTSh2w6j2FGEH41exx4PbsdsC9IGRZ9/iZqsY1ohc6kvUbxy9xXmTBlX5INY2nNGsRjlcSiYSTFAVIsWvAe8977G78t+4xR4/fDlkxkVcdDQ1bDCIK2Nx8NFwOBiQRocgbYwNvzLmTuB6/Qo0c9UyZfhJAq8aUKVD2OIkVQdGjvaEHRsuh6UFLj5SRkOYyvtIHio4hKLNtEUUPUVoxjl7GnoaoNaJqEJIWQZJd8Nk9nR4Zxk4osWb6EiWOnoSlVlPg7ml7HIYdWccnME5m465HE4kMYMuhAksmB7LnHwRiGxvc/fsZ7HzxDj74+8WgUVB1FFtiOxooVK1m7dh27TpjKls023QZECKm9kQQIZRmq6oJTj6brCKUZX0rhSlVohoSQcugqyK6B7xTQzBT77jOSF59+j3HjDsTXa3CsEn6pgGYaSL6Hn3ewSx6+DLqiIEsgyTIvvvQcxx57LJIkIUn/VBlZTiCVKVOmzH+ccjtbmTJlyvwvUSqVKFkFABRFQQqHsXIdLPt1ER9++CHdakbQu8fOTB51MOATrwyT6SyR6SxhhiqxijaO1SV4I1nU94gTqZCY+973bN/sYefjwVNZAR3FFKNHj0LTXfoNrOGZ5+9iwsT+xM2enH7yeTQmJ6MbI7jksoO45qbDkMjy3Mt389orz+GVLDzPAlHCI8/mljXceMM1zHn0QQx0HB/kUB7kFny2EYtBKAyhaFAukO10UNR67GKMzlQBnAJqyMFz8yi4xDSF31d8xxGH70o8LHjksXuYstuuTJo4hcD+2vsvjnCD+o5D83swath4dC0OgGZCIdNMXWMNfWoHkC2m//0EiAip5iTDBx6FrplE43DA9GM4+/j32bn/RUAP7EIrJWHjdzmb/fTLcvr0GsaoUVMA9R8tHKjIvgkYSBSRsMh05EGoyFqY226/hONOngR+CYGGS1CroBDmb0+/yuqVW5m654HImBSKDpIEiXg9htIDXepFIloDQFv7RhatfJWrbzkchCBRWx3YWwkZhMoXn39DQ31PFC3+ZwsKSgaUDA89fgWXXX4OQWtJLfFIn66BKNKtZ+D2FQ1XUyg5pDqLdGvsxS+/LOoafx/huvieh23bqIqKD6QKedwgJYeqhkHEUVDwvT8a7CqxnQYuOOFp4spoUm0dNFbHGdp4BJCkVMqDkSNlbSLZTSVZm8ArVvLuq9+yvW0px58xkk+/nkO8MosW7gSRQtV1hJBItRb4YsXHHHz6eOI9BO++8SrTxo1mxXffYYTDeHiUZI8OPce6Ld/xwsuvsXhxG913PoaDDjyB7vW98BEIqQiSg1fczh77jGO3PaeQqKimR+Mwdt/1aPIdCQb3PYgTj7manvV78MO3TUhSBJdtnHz6KC68cnfWt7zLkl9fpbPzFwjBG2/M5/mXXmTI8DiVdePp1bgfktuXyVPAMBpY9VvXppcU0B78VHwScYfqpATsAI3Aot3SyLTHwasERwU/wtFHzQha9lrWgJTD8Xx8AflsGiUUJxKuhLxNPldi6dKl/PrrYmKhKhrqBjCo/zgqk30ZO3Z3+vbqS1UyhqYVEXI7Qk4TS+ik2rfRUN+dcWMns35tM6YRQ5JUJAk8z6FY8jjgpFNRVJV9DtiXVD4Fiowiq4TMOL6ngEigUIVwYwg/TqiyP/HqoZx3zu0Q2pmD97+MIf0PZsnC7Tz1xLus/H0Hu07cBzwfx3cpZtM49nbOOPs4vv76iyBSiw6SrOMLj169ejB5yhgWLZ0PSg48MOQwflFDkmMgCWoaKkDK8MAjl7Nq40dIcmvgbChs5r35Mnc/cBdvvvcWD9xyHeQ7GTC0P0gakGDyrpNorFMIdH2K4FUyeMAeHH/CRaze+CvgI//LH+mfXvIft9gCIIIgydiRh7FpI5ww43SQLfKFIpZXQpeqyHaq4KpUJRuIROoIqpBS3PPAxdjWCnzyqLKKJMA0NCTAoURtsppIWMIqCUDjoQcf475Hz6auIYTBBE466RRCIQvXsXCKFYDLtm3bGLnTLlQkG1GVMKDioyETAkx2Gj6RMaOm8PFH8wHjz0pMQ0/Sv+8Izj5zJiGjlrGj9yFpDAQfsqkMN9w8i8uuOAEUH9+Bzowgb0WRJLrivA2Z4JpnFWWggvWrOkhGhxOND8DzHaJRg1BcAblA86bfyBc7UDUPuWulkboyRLIsBxVIZcqUKVPmf5xyO1uZMmXK/If5L5VIXTbT4LPw7z9iFfPsuvvu4HiguiCW8NAjtzN57wHsPOx0go2ECtTS3LyK+qpJSJoMvguKAFwQFh0dLaia4Nxzz2X21ccxZPC+QA3CDVGwwQynUMjx0Sdvsf/Uw7nx5tlce8PFQG9wYyBZ3HTDNA49biAjBk/EZSj33vYBF593GnqsglKmgJmIAjYXXnMBfQeN4PgZZ2NIdURp4cprj+LTz7/l0isOY/26ZkaPnMp+e5yHTCPY4Houq9Y9x7CdxhC0GyWx/DCuXE2nk+fpN17guL9Mo49i8ePPnzKg70hqq3oDCSBMkA1xg3/rxjnvrOk8/PSJ4BwJQHvLNqq6e5x+aS96dk8w++wmFEP/NxOj4ubBEc3c8/QUevet4vjpD4O1Czfdfi6+/hvbW7Yw5/5v8EmiiAhuqUQuv4Gq6hC+V49QTEpuDk31UZ04kgKSvAXQcHP1qBqgOTzy1IGMn1LLmCG3ctTpd2Akajn/gvMY1bua1KafULwi1X37Yfk6wtYxzRBgIVwFSY7g5kFSQQlluPexQzhmxv5UiuPxRAehsInsdwPJ5OtvXmf3vYcBDVCqAhUsfzWy3sGb7z7MsYdeDt5wvCKUHAc5tJ6QGQLq8N0isipjW3mamrbSu09f/hCBF74INuZdVt4uMsWSg2ZqNKVbaW1rYXC/QRi2hqkGcV6yfUztjzYTi/tunkG3hk7WrF3P2Rc/ip4YRCjSyKbOAjXJJBoFNASlthzRsATh7YBGLhMlGm4EWcF3LWRNAVSyHRZq1UZMfCR02rdlqYr3gFACFJW85GPjI8jwzWdz2GfEPkQquoOqkc5sJVJZgUcYnWokTwbRTD63nYgZAyMEngRKl024JKCQA2MgIFMobOXVt2/n6BNG8fBjtzF9+gGsWp6jV/eRfP3pVk4/9QqiFc1YbMBw9+0SsYdM9lPikeGIVCNSDXjSVmRsguRjgnVbvuXFl+5C1xSunPUaZ517GPnSNg48aF+OPfwqoAaQ+WXpM5x7wdls3gjbN+8gXywSMiPIvhH0AZXy4DvYxRZSHVux7DxKcgIxzSeiFpC1Itg6TQUTJRIBqYm6ZIq2lhaKmQoWLvuK5b8v4sSTzkCilmi4DxI6lutQGQ/jpLahGw7ptt+Y98HbhMw4K1fluebmZ8jLYfKOhXA1EpEQrlOikG+nJplA0k0KOzKEKyqDuJCh4GwmW9zIs889xuWX3grUdSVFU8y+aTq50maS0dFcfvGThMxGhF9C0grk7EVce8PFnH/eTPo2TgCvD8hqoCX0X2zeBYXiJm689UJmzbocQ/QlnoyAm+fuO66jf59Gli5exHV33cOjt9zC8OETmLDb0WhJAWzj/blvsvSXDq65+m/gQ8nZzMff3Mah+98Mourfrv+5HESj4FkZFNOhkNlIOG4AEtmiQTTUjUJOIfLHeiUDpJkz5xKmH7InmVwLV/z1KuZ9sgqfSoQVR9EhU1zDldedwHFHXcKkcUd2Hc0DLL5efC7vvbaWe2/6nsefu4itzSv464UPkUj0JWi3XQzEgAFk04JoLIrtgyJ7qLKPUyiimfDYk7dx1mlXIxEJWuF0QHYITBosdDMOcjDkltNCU/oRmps2MHLwyQhnGNFEHcIHTwXYiISDTAWSV0OmNU28TgEpC3Y1yBpCdXCcDnTNwcq3MXPmxTzyxIuAhu3qyHIYVQ4E4qZPn87777+PECKoRCpTpkyZMv9jlJNIZcqUKfMfRvCv1fU++B5z33uPUj7PkX85ClBY9O2HLF//AqvXreTIY/dh56E34FsuckRl7rsvsGLDJ1xy3nOoukGwQQqewmZSLYQjGqoGuXw70cgOAjHTGny/G44H2cIOYhEJQ5WDp8q+GXwyZQlOp02uuJHf1rxBKt/Mhk3NaPJEzj7xNdAKkG+CeAykNKefcRJG3GDWpbfQs34kRStKyNjCW+/exl77juXHhfNIdVgM6DuWcSNOBr/nP1yLpBSo24A0lu+jyzvRkYoRrZBw8ZHYzOtv3olXdDjthGvIZhxi0fpgY4j750huXFKi95AqXPcHVHViIKak5OlMrSDLZ/RIDqaQOZBIXPk3M2MBnYDC6o1f0Ld3AzJxZPpy4aVT+WrBMp7/22306X8SptJA23aLRNggGiOoXPHAlov4koWGj0YSiT8cyMKIfAWSobBi+cfMOGN/6ntCdcPemJFdmHHiKQwa0J8K3Sckcl2C3BBseotY1g5uufNixo7biYP3O45SoZpMe4Taxlo8tx3FSBNslDPkckWikVHgaDjeDrRQBpwavFIDJUsiUt0BdODTjEwvcHvh5EEzoOTvwAyrgI5rgapFES44bhFVt8gXOkDJ8Pjjj7PLTtOYPGV3PAwUI4QHFHw4+6LziFUm2GOv3RjZcxUJtZqe3SeC6M1vvy7g+wVvs3XLPE47YR8+mzuXQQMm0bR9KEefPZOMgIKk8vmSD3j+4fvpX9uDR256EjIFiOU5ZsZJ3HX74yQSCeLJMHM/fIYPPnyZvn37cvkl13LPtceSaGhg3D6HUN//UG5+5QPee+czPn/9LeyNOYb2iCJ54OkOitdJLrONd+c+QGtxPQ09evKX/WfjFoagCXB80EJgZQRGTAIfVv86n9feuJfO1GZq6mQG7bwfw0ZMZtCAibTtSFNdE4hoe14ORUlQyNqEo7WkMnl88kQjKrpaAb6MVcxhRHzsrIVMDDVsIhQXCQ8wwAVPdJIrrOXnn75j9NAZlLSFKGYbX331FQfvewFhsz9gc8nV4xk9oQrTiNKtZgqjhx2OoSURIoEkYrRva8M0ZCJxG6vzdzo7mwlVTUDxJXTFR7Vt5Hg3cnmXcNykqfMXHnriEuIRE0PUcOHMixBCQzeryXaGKRZ0JElCj3iETQVNS/DTd3NZ+PMbrF+9hGuvuYm5cxdx7ElXUfIjdKRzoFqYhgOyhUSaeNTAdRwMvYrMdot4VV/8gkNJCMIVXtf5qIIwQXKw7VZ0fStnXDyda668j8bqSahSX5wiaKZL0V3Bjo5VvPLyq1w+62YkDNo6N/PiS89z6CGH07vHSFxH73Kzs4B01wqSJJVuxdRVzJBKkKgnWGOEx903XIeqylx89XUgdJBU3n3jXabsORXF1ElE47TlOqiJNgSiPf8dEl3/vwfEsTs19Cik88u55rbDefCOD+jsSBJPRFAUj0MOnkom18JVV51KNAq/LvmNM8+5BdJJiEk4noomJbFdD93cQVPnD1x+yb3ceetzNDTUAykK1jZUYwe5dJzK2G40b9vM2vXLmLL7TmSyncRj/Vjz+8t8OPcLjjnuRuoaByFEIH0kA3axhOwpaCEBSidQCZ4WfAUVkFysQgHDjCP8oHBLuCDESl5550Ief+wz7r5rFuPGnEWqo5aKeCIYiz9MCrpE/l2niGoWePap6ylmsxzzlzOQ9MFUVCsEVUs2H3/8DvvtfQSSEgPqg+RiV/HRYYcdxjvvvPNv1vgyZcqUKfOfoJxEKlOmTJn/MP81ieQDPr8tW8rxx81g8q4TmPPYo+BY3HfbLPY+uJbZV9/OX46dyoxjPyG4a7c44YQ9eebVmWgMwfZcdKUO3w0hfI1spkBFdQXCyyMpwR22KBhYroYRkfEVgM0otHHrA2dwxKF7MqjXJGAsF108kpoaj1xLHWedfAeHHnsY5160L2edOwcnZ6BFFY7a/0BG7zKGK6+/jEcffxAjqnPqiZcCCYQfxfdcFG070AG0cv/j9yCJCBecdTuy1IiVFximCUqRE0/elUOO2JsjDj4FGI6dBy0waQOtlcefvo5jjzqBZHwnECEK2SzhuI7vlpBVk1ynSzQSw7cc5Nh2cHsAFqgOQYNYCxADuzvo7r+ZGQfXT5PugKpofTBRBjSnPubL+Z8zbe/jqEz0xaEi2Pe4EFL+MaF5qxn0EtlSlsqwgU4ztjDQpSHgR0HOgdvB1deewrJl33DIoftz9OlP4lOJ2RULEh4CQUeqjWQsTCHXSWUiDOSZcfJEBgxqxHN0brr2LfD6gZBx8hZaNM39j5xO0Wpj4IARHHHIbKycyz33X0co3sHMC+8H0R28wDWpkCsG1Q/C69r1/UtwyjkQ4WAi/gxYG5QSb73zGHvttQcV8WFd8RhUInWZRNFlxMeMM4/l0P1XIeXDHHPk5YSU8dw/50a695FIp7+gvkrjy3nLCOsxGhsO4Lwr55AlwpnXXUsoKXP2jAMYUFOL0tFCvDLGy6/dz8Qpe9OzcRQKCcDlgw/f4uADDgcUrJKGtHE1eq8+FCSV35QQT338OaFYnNP3OIC+ZAlTRLSX8BK98NUOVm79nPMv/guvPv8gjeHBwHDSzfXEYxJSl8mdlQPHdohWaJx18jTOv+AgmlpWsnDxRwwbcxCotRwy7RxK+TimGbQ0em5QtNS0NUVjQwWuDCgOEjuQ6YYkoD21iUeePZ7LZs7GoB92aQC6STAngYIwaA4dbYuJxRQ0dcyfDl6e76CI2j9zqQV5KWFzO82prbz2wnw8C5qa09xzz6t0tsnYBYdkPITkbePh+2dRXWnw6+o2rr7uVoqFEg/f9zRb1nbwzHNv4Hk2nc5mCtp2GhsS3Dz7clwfTj31QvoOGEVbk4IkxTBMBaGmsZ082BUI0gh/A+2tG0jGk5hqI4nGkXRuT5OsrcVywRU5wmGFlrbl1FfHeOn1Z1n40yIun3UtdQ0DKKQtwome/CORo4LQ8DwbSbaR5RTQQt7bQljphyRGgAulApiJIr6XRkJHkiop5VxUo0Q6s4MHH7qNG264oSuQPZ596Ta2bP+FM8+4gtr4YfBHiAsI2oEFwskjST6oDq88cRtbNzVz6ey7wYyAWwDdR2DgEcInjk4H895+kUwmw7EnnICVz2PEE8w6/zwuuugieg4YCJQ45Zw9ufuOJ6iKjwS7oUs4PsU3i+7mobve5vWXlwfnndLBK6/eQCRmccllj/PoQwez8tftHLbv7XTvPhUiRTram6iM9gMDkLYCm7oS+X3wPYtzLjqQW+64mOrIdBBhOlLLqIzvHJyoejPQwcknz6KY+5F4LMmTf/sBIcIgxfC7zmoJGXytyx2uDYh3mQoIfDcT5PTRsPIqhqHx+rwbeeWl53jn9TcAD7vQwl33XU1H2ueeO+eRyvjE5QZkIwKA54Osg1XKYoYEOOs4acZURo6cwhmnv0CsVuWa2WeSL6W5994HwNVBTVJoUwgnQkEySoZp06bx8ccfk8lkiMfj/2atL1OmTJky/ycpC2uXKVOmzP8AQRLJ5w+RossvnUVVZSW9e/Vg7KhRaJrKF5+8xOFHT+a3X39lxIjB9O22P6gqdr6NigqT6m4+L776MkJ4dG8YgCRHkWUDMxRDuB6SGiSQip02WiiGqktkcqAYDo60HZ8O6rq7LPj+TT774lMmT5hBrrSMBd8vZ7+9pqG6w/BEK5XJXgwaMJ5QArKt21izeh3XXHcj6AYjhg1l59FjkKUQuayDrsaQJRnLspBkhUyxja/mf88eu+1Pj8ahgIKqeXheHlnxSGe2MHT4YCpreqKIWhQBVhEcO+ggGjt6J0JGFcWsQinvEE1EKBZb0A0NUBBuhFLJQQ25yKoAIl1CqoJgd2EASXDVwEb7v0UGoREJJ2lvhnwGInGIRToZNnQKEXMQrg2yEughqbKDLPnBcdwiulFizYYlLFr8C336N/LSGzfx/LOvMXXScahqDOQ2hGjhmwXvsnJ5MwP7jWb0xOmAhIHdpfEhcNEwzSgPPj6HRb98z7BBA5Cw+WDu28iSTlWyFxNG749dkFENA8VMgdzOcy/MYdnyZRQLBcaN2gvTjLK1aSWqkccq+uhyFF2pQVEkNE3DK0lBK5hc7HIjk7uyd3S1qGgggkgVHkiqBJJHXV2CyopqgvaXQOnI74robLGIqWmAy8+LfqDQ8TOdrTmSiV7U1w8lHIvwzYJvOPmUYxk1YjfWbvidRLKKu+6az0nnnoCh1/Ppt79z3LGnMbixHo0iTzw8m27VEsNH7URD9RBkKgCDbC7PiGFjgBBWScYwGlCUCMhhZLMSVY0zetAIhvceSBwJFZfmps1U1vYkX9RotTfx+PP3c84Fx/LBm18zZezB2FmTSCKBr/jIagkkC9UQ6CGJXGoHe+09mV4De9GjsTt77jedwQN3p3evkahKBaquk8m240s5dMMhX8iTSMSQZQVfAmQfiRwScdra2lm87Aua2ucTiytUJCvRlW5IstW1WZcpZCTuu/9Kvpj/KsuWf8+uk6eBK4OqIssa+U4d4YDwwYzpgEfM7MmE8YfgWmkMLcqQoeOJRmNkMkVMU0W4nVRVyNTXVfL+++9y5NFHISsKjd37kM/YDOk9EEPTcHCRQiaFksOgPj2or+/GD98vpK6mG8mKnkiSge+7WG6GcMTEKijIiksoDJoik0zWEo7VkW7pBOFgRhRyWRfb9nAdl4pYDFfY9O7RD9MIM+/9j9lt973QzDD/SLFL/JEhcB0fSVKQZYXW1HYqwgb5koMuNyJcGU0H2y6i6mEkKQqOhCLLKIqOoYfI5dMMGjwkiHEsfLmTjvR6li5dyYTRxwTLRVciNZux8D0JzQiBEiRYe9bU8dlnn1BfX0k8oqHGooCJTwQwESgo5Ojbq54vv/yciVOmoBo6IPho7nss+P479j/oIKBAZ245Cxb8wqTxe4NI0tqaJxKTUc0Ua37byh6TDkKWTNxSiViiRM/eVbSn5rJ69Wo+nNfEycceT9joh+N1EK2IASbpVBtvvfcE3/00l13H7gdEkWSZUCTHp5+/y8Qxp4EvIalpVC0BsoLjdqAoMt98+w3N2xYzbNhIdt9zOpJkUrQsVBUkPKQ/s8g+SFawLkgCcJBki63b1hCPx8hlLcyoyuDBgh59orzy3JtMnngIvqXy6htPIGkO++93OKahMvuyi0hEa2js0QdZgVzBQlVAVUyQJZb+8hXDhuzMTmOng5enpibB7ytXMXHiBHSzChzQjCilrI8aDvTE3njjjT+FtRXl31WdlilTpkyZ/5OUk0hlypQp8x/H77ox71K5xue3X5fS0tLMtVfPJlFTDXYn9XUlLpx5LrVVPTnq6EMwQj1Bz6HoJfoNHMnxxx7CJZfNZFCfnSiWJDS1CjwF1/ZQDEEqtZHWtg1U1Wnce+81/LRoPrvtMQEheWgYaETYtq2Z5UtXcOpJVxMJjeW9eQ+wx579+OjTD1m0eAU3XvM2u+xyJKF4GGQfIwKaodC9x1CKOQnDrMT1NTQlimHEkSQV3wVNi4AXIhSqIp9R6N19J5KV9UCBvLUB227GMCx2HjmemoruyFI9shwmm/XQdQlJpFBNF5Dx3RC6kcQIaTRvX8KjT1/FiJH9MPUoTjGGmvRxVBePKEVPQVFkBAoSCpIfBV8Nhln5d0kkBdfRKNo7iCUjhCrgkGOGsWTVJ+w15VysQhgj1Bw4u3mgytsoZNdi59vRoxLbt3/PN9/No662nsE9RrJy7RecffqlREJDAY8TZoxl1brvGD68O3fe9SLjx04HuQYDF4UsMjYuCgVivPvtVzz0+GPccO0VeFlBdU0//JLBJTPnMHniCRTaY4STIVBauPGOyYzYBRb/mOaIIw7n3LP+SjgyEFmN8cOCzzn6uL157ZW3efP1D5i61zRUNUw2YxOKqthWHkUrAnYgsiSCBBmyRFBl1IUASRFYxRKxeJJ8roQyf7m4AAAgAElEQVSuV/CH/ZGMQEYQ1iRSHZtJp7Zx7EEHMLDbBHYddxg9eg5HMWPU1O/MlN2OQzfG4tGNc664ikEjR/DE4+cSiQxHlavZe/JEulXECUsRNGwisTbWr99Az8aDMENjEXYlkhzHMJIEdU8OqiqB5JMJ2aCbSJJC3NWotqDegyjQ3KHz8gfL+GHFWjp2LGPw8OHk9RA33vQ8D17/GqKUwAyHQN3E1bcdyYK/P8+vv31Mr95RomEPJJtIshGoQ9X6gugLfh35TCVmSCdj/U48uo7XPrqexSvf4o23n2O/vSaDHEKSdGRJQSKKRJZIJE1dvU5ID7N21W98Of9NJk+c+n+x955BdlRnu/a1Ou6cJifNKI9yzkIEiSBMkMnJZIzBGGzAGOPX5GByMAgDxiQTbLKIxiAyJoOIymk0Oe28d+fvRw/Gb9V36pxT5+M7f/ZV1aWpGc302qu7V+9+9n3fD7fd9Xsef/JPrFv3HnvstZSZs6Ms328c23a+y4xpM/yaCgWyhe2Ew3HUoIaswcat7/CnP9/GqFETSMTaaR3dxsxZS1CUCI5QSGcGCEdliplOhJ1h+6aN7Nq2nQlTp1Hf3IzhuOyzx54E62uQVHDLDkqyCSHCxJUgLa1tTJ02ndq6BvoHMiiKjue5KBoUi3lUEUKSQJEkJEdFEzEkQqxauRe5oa/xjO1oWjU1yWaELVFIu0QirQT1ZsaNXcCM9gWUcibBaBzflqmMbH4ukJBkZEUGT8cwPNZv/pBnnnqJhfP2plg0KJYy2N7QSHaYhlMSSDqg5pAUg4nt4/EtvwEKWY/WlikYZfDMJFMnLfPXh5FN11VURfYLqMLfZyDUTCqikne/4pMv/8HOnZ2MH7sfwtEAGSGyuFYGJRAll80xdvwkRny17LZ4NzZt2sqihYsQwmLihCbeffsrli1diSdFCEUDgEASGvvvt9LPpyolyGdt6ltbiEaq2Hf5cjZu/ADbyFAq9jF7t0XImukP2IqhaiYzZraxveMzprQvxj/jBbGYzLvvfsTuS44BFxQtBaILRBfFcgbhNLF092kIN8MXn2/h4EN+SrFoEwxG8bBGgqsZORbfhb8rfKc5fPrZv/DCi0+i6RITJkxncKCTW/50Bm+9/SRDnfCjJb/GLIZoaLFJ1MojY1NZvfoXvLDmIY7/6SkgBXG8PKocQ3IksKNMGTOO2XMXQEDgWhnC8RieKzOxfTqSp/kyP9NACSsgBIZpsmbNGg4//PBKAalChQoV/i9QsbNVqFChwg+Mh4v4dwEJvlMk/e3hh9hnxXKS1TUg5zj/Z7PYY8/l/PTUx9htL3j0oTc58bSDmTZjDr++8O8UM52Ekn4HMM+JI0Qcx/SQAzbpzDfcfd9lRGKC9d98xPHHncbcmXvg0YjLKPBUBnuL1NYF6On4lPpRYzCtOJrazZIl45k6K8j5557H+LYLfCuDkuamO66gt/9Trr30VmAMuBFsBxQVPCwcz0GgIf8798PGtU0kOQooWEYGNZDh6hvOQvayLJrazrKVF4BbTbmgYogBUHYSC0gILFbfcTcvvfwJzz79LyRFx3Uy/OLX+xBJ9XHqyefSUr8Q1VxKXyCHTIDOfpe/3nM/l1x0BhqgYiF7I1Yt4f5HztD/+MgUS3lUOYGq9QBdPP/etSxffBpB9sC2BYqyC9w28OCtd6/ki8/WsnPLIKqsk2wsM759FgcfeCaZwXriVRaMdDeCHC+suZkFi6ZSXVPHX+56mDVPvsKTrwwjezZYgyBcLDnGTinM8gMO56brLmPF5NHEPIW+7TupbQmBItG/s4eausmYpQGQh/nbc7+hpTXFsrnXIOkuxWyBUGii/7rVIZ557nJWHXgc0AKe4OLLzqaltYaPP/kXN13/Z8LB8eCFR+bJt/L49hXw/VLf4auUHNNG1jQ84f9MII2cww4DXduoboxjFYZQwxq4MZDCmLZDWQriSRrDpsXV19+AHpY57ZQT8YpZZtTVgxf53jon8vjFBPw59AIYpQKm4RCNx0HKADl+deGhnHjKj/n66685ZtWp2MxEJkoxO0Q4rPvnoVWEgEIZ3+C4I9PFxPhYPu2zWPPqe0ydNI7VvzuRuqBNWxU0jpvAeRdcCpTJZnYRi9dw9VVX09o6mR0781z4m5txbZ30MERjoAegt2+IunoFlw4kyjgYyNTjq7Vi/jw6YX+a1DzDwxtIJhtx8gFstwtJ70XVx9DZswnhSWze2MWyZYdhlL7gwUeuIhozWH3zKxx66DXsvsfezJw7Cl8pFqFY2sk32x+gZHbz8YffcNYJt6PKE3y1iesgFJVieRjbyFPq30ZTfYxi505KWZnVjzzO+Rf/nqxZICl5/Onyq9EknZ/dcAddGZtgOI46NAx6Bj1s4XoeQkpQLqnkcgXiqShGqYDqBfFci4Auo9gyuAJZU7jgrFXs2vU2qSponT6D3gGXye1zOOEnFyLLTSAFQEiguiAZ/rknACLfF3Yk8IuFUC47BAIyNl188enXzJ69nPRwB6+8+jTfbn6DBfMXM2nCQlqb9xwJ1C5+fw47YcyyihbQKeTyhBPfKUF1v3Oh9x+dvcR314LhF5PsEEhpkDezZcuX3P7Hh7j55pf834OR7mNlJNUvwhrFInooBB64pomkaeA6fvMDxwQRpVjKIYcdZMIYhsDMGbz55o189tWTbN++g9+efxvtU/YFNLCKdGx5n1yuh+tvuphkPMFvL7uZmrpp4IymmNtFKFHgiWduJBmezvIVp+CUSsghC9DJD4WIJAL+VGjd7Op/gzfefooDd7+DUNTi2cdXc9ixZ4JXh2VKSIoEsjtiZxN+EvZ/+rAlG0QRGODKay5m3332Z/rkFejBJEXjXbZse5WJTT9CzS1CJOD6m5fQNbiBm29ah1sKIIkXuejc1Vxy6V/QkmNx1TKCKBgCScDa53/HM88+QPfgMLetvp9IajSgEY3UkEkPEk8koJiGUAKowvMCHH300TzwwAPouv4/WecrVKhQocL/11R6Y1aoUKHC/yVWrFjB66+/Dq7Ltm++oFAcZteuTo44Yjr77bccKaaiBUz2XbmUUv8QoXgrEMU0VHIZ18/FVgVgY1hDxFMOBx+yG54TJBUfA8QZyBaxbImBfpvamhC4LrF4AMfpJe9sID1cxf33vsHCWafRXLc72ex2UAp4uOjJTk467TDKXonvniZkGYpFABlZKBh2CdsZxg+TLpPNpsGTyQxmUfUolm2SL6QZTvcxb94UMFywNAKhIPGIwtXXnc2fH7mEtz66n56Bbzj5lGORFIVspgfDSjN73hhKVi+RmEtAcpF1KLo2JjoPPfo83QM54DuN10jhSNggsv8LR0AQDEYpZQUeDZhE2LBxBwqjKJdVbFvBMFvJ9DngwZaN65g3ZwKLFk4lGhUM9G0nFvFtRfFEK1jN4KWAMkaxg1gsQnXNKL758nPyuV4OP3qFf9N1FD+w11WRRJAA8MvzLkYLpvDQfYtdIARSEeimZpQMogstEkTYQepji9hjyVmU8ioQQ1eqcIuAAeWMxaoDfwKE8EwXhMNXG17j/U//jqNsJBgs+/kmDiMPiWW+L974///fGy4g4dgSru03NOffBSRfUVfdUMvNV1/OHbfeBJggDQEmmhJGCI0SHp6WQ0r2MHpKI8loLY114wAZI2vjjVR63JzuF5UI4VkK3d096CGNaDI6og6JgBtjwaxDmTH+KI5ZdQ0wEyUfReQhHKrDsQE5iB1I4FCNShOq2cik+DwgSKq6jlOO+THj2yfym/86jmh1P2f/8nCyQwYwhsJwhFh8Bul+i7qa0UyaNIlYPIgkW8i6jaxbaKECnpSmtj5BoRBGMIXO7jok5mCYbXheDcMDij/HEr44xYmQDM4BuwE5GEGPtKBqM3CNKprqZ9PYMIs5M/YFK4geauPEn5zLkYeeQXPDVBRZ55133hqZcwXPhlCogdrkdCa2HcDuC85EVWaS3jUIroqqaBhOgeFMH9FYgEcfe4jfnn02a9Y8T9XoGZz7y98TjDciKQG0qiiWk2bb9i/AySLr4HkekXAVklAZGhqit6+brVs3oukSwaCObdtIkuTbnjyQPRVZCSHQQNE5+MD9CeowbUoDcxdHSNR2smHbs+RL30AoB3oeVIOd6z/inX8+BWYWDx3Pw9+Efx17WNgUkVQbcJEJMWH8NMAlkQyx54o57L7XNP7+1J0899J9IIbBDoJTBU6d3zVNCqEoCkjw8ecv0Tf4KdDtXyiiNGLV8ouhuAZmOYttZUGUyKW3Q9kAmhg7djnLdtsbxBDIBf+4OhKuG/KVfJ6KHoz/++tCwcOzVL9g5gRxs3GwJBQRR0Hys4eESiwSZdWhh3H8SQcRqs6xbuPD9HV8gTWcBaOJllErmTzjcI4/6le4jsSRRx7Or87+KQOdHYRCAcDl8b/9nSefeAKvVEYOhHENF7wYkVgApMLIdR2luWYc49rjxJMqqpbisGPPxBo2wVVQZckXIo50XsRTvi/ofXepe34WGijsu89K5s1ZiudBftgEuxbHDKNF6xAx/3f23HM3OnYOgpdC8qrYsK6feTNWokfGISQNwy3hUcTBBSXLXqtmcNzJezBtejOnn34c0UiQaCTM6rtv49bbbqCY7eGFFx7hnFOOZP1X6xBCYNv/s8y7ChUqVKjwQ1FRIlWoUKHCD44FCLwRu5Cfx2Hz4D2r6dj8JWf97AR+evoR3Pngb/jo4z4+/WSQo445ktETJ7Llq3dprKslmBoNooQt9WASQDLHorhRZNlDqDmgwF1/uosjjjyOZHzEyuEJf2dSCSiPjEUjP1wmkkjhuIL0UIaqGoW+nk5SqWoULYbrgCTbrHnxbn60/0pkkjhOClmSsW0QkoUsC1zXt7Ip2hC//O10ps4cy2GH/Ia4uhiQEJ4fdnrKmUkG02lOPe53HLDblSMZRmkIb+WrzV/T3NSGXcixdcvnzF+wApxZIGfxH+6SdHa/R1NTFLzReKZLSbfZOtTDr868nmce++tIaaPEYHorDYkx9PZlqauuYzgNyZSLQwYFD4h9b3UTLkglPEvFw6ZofkkkPJLY6owFEQYpw0D/u5x+1IkcechRLN59Kr+6+Od4Nlx9zb0MZnewaNF54MSwrUEyOY+q6moK6QzhaA8oG/j5L1Zx4P4raapZxJT23ZDCC/ErCxYIFw8JAwUTEx2HXR1fM7Y5AMLjgnNPp729nZNP+ikoNeT6ykSr6v0xygpWXkJVVQaHi1RV1+AYYJEjECniF/VknnjkQq684m9cf9Mv2HPv45CV0Qiq8JD88xBg5OF9Y26YSCxJT7qXiYkaIi6AiyHZ2GioSEgjwhHDyBEKWDh089ZbbzFv1h6ExHjQPBzPQ9UVHDLceufvUEM2ktA4dOX5xANtBP3oGGzDQAlLFHq+5qbbriRVW8fPzvolrlyL60TRVT9suD/9OjffdjkTxk3jxGOuxC7HUfSQrzzx5BGFRIEb/3geTz33BMlEhL8//DIhaRw4IZCjpM1hosEk0og4LWdkCAdlJEz6Ogeoa6oGtnPL7T/jjbc/YsK4Zi469yHC8jI8S0KLjRw2ZQjT7ELTerni5l9ilZs49aSLaalb/H3L+uIQ4UAKRMG3EmFilUENVIObAEdnqCtLqi4GqgVyLyDo6ZOoq27wBSxqHugEqoEAeEFwpO9j1QIG0E2xnOauO6+lMPQVlp3ismueo7czT11TgB1bPyMkFcj1ZNi1rZdly1eyc7jAqInTWLezg4mjWrCHd6ErgqLhoCSacCyNmKPxyvMXIMtf0t3bz+YdYS69/mXSQ2X6BjpoblIZSncR0KPEwqMY6ikTi6XAM/BEP7LWhaa7GIZNMJICIWGbIRSp1r+uHHj36ft4ac1f+HbrTp78V6e/Xo3kc7kj2e8uYLsgpGGuv+Fo8kNlrrnqKRAShtmHrvWxoetLNn3bzT57no4mNYAp+cfpu4g0UcIwOxjO7OS8X5/Nw/c/B14rw2aWgK4RJM03rz7KP556jK/f/5T5ey7iubffZ+783bjkD2/6dRMxBFo/jjHRV13K4NkWlqmiBcH2QFYNCmYJTdLRlCB4I1lXbsl/IYYEoQiG8PBGYvX9lLd+IM0nHz9DOFLHuHHLUJQUHjEs00TTBJDjV6cfz7V3/pRn1zxBX4fElk1bUZQSV15xGnfdeSdrX/ycae3zufya2zGCcaxiHZ4rE03lgT48bAStYFf566/UjVly0ALNflB70UDVbFTNL4A6JSiaFnrcRS3pCAHoBYbtboLaOASgGCArLp4jITSDTHon8VgbAI6xC9spoYfGgqmCXAIvA4rLc4/+mQOPPXWk6D5ynORv2bDhVd5+4SGmzTicrkw/r737NBdfciFP/+VDTj/79zDUxV23XsYn601u+OODnHj6Kdz7wF9IJJL+/ea7xG2XEWXZ/9ZNukKFChUq/G9QyUSqUKFChR+c797V+g9JAkC4fPDum8hejt0P2ptxjWFKw1tZtN+xTJuwiOqa0chaklRtG2q4hnLJRNFG4dlj0LxmVDeEJCt4jo1QcoDLrMl7EQq14rdjG3kHLUwQac78xRGcedaZLN9zKQ0NY5FkHcn1cN1uHvzrrey2bD6SrOI5Lo5domQOMW3yNCQCQBBJ8rt8WU4BVbXxsDBNE4HO7bddwFD2K2bNmcX4MQvwqEGgYZQkVBU++vAJzj7nTKZN25dAOATWMIQzIILUJOeAVUs8Xk9TcxNQDUYKZBu/iKQTSzj85IT9OWCfY1GCLp998xGTR7VzwP4HEVIDKFiY9hCpkIaHRDScwDYkImHoG1xPLCTY1bORWKQa1wLT8HCcHIYxRDqdIRIvc+fdF3HJZefTUN1CVbgWlTQX//Z4nnjqWm647nZGj55DY9s0LLZw4gnnM37CMlpax5Du9/NUTjpjDmtevYhRo2VGt41m9R9v5LHH7qOrM82pJ16FbO5GRJ6H7ZYw7RyG6WKaDqZlE9Y88kM99HWvR1VMAqpOIVNAElEOP+wEbFvBNi3uf+jPDAx0UJUK4Fo5AlGJru4tpJIxNm1YTywWIBDTAQfbyHDLLdfRmJK58Q9XMnbqCkrDVQwMOwSjGp4o4WGA6+FhYzl5Tjrv5wy6ZTZu2MSiyTPRHDHS91vBEYLMcA/hYAQXF13NUPY62dn9EQ8+cA+bN29hyW4HkC0MIasG+UIXIT3Dg49cwvzZzRx7yHKiYR3ZNOnt6SJSnUTS8+AM8pd7buTUU05k3PgpxKqbSA8ZGCUV11AxjDzX33Qhl156BQ117UTDM7CLESRXIZPup1Q0QQbHK9PaWsX4cXWcfcbplPNZItEojjWIZWXpGuhCLpUo9PcRDsTY2TdMOFGNSRBJ1nFLJmoghYTGlKljmTRpNu3teyErKeQgoBbYsetZEuG52JlalGCCpYv2ZO6MfSlkNCKhOvLFHEIp4Dg5lFICHBBqnvc/+AcffPAed9x+C/uu2AdJFwRjkO77HKs8gB6uYfuOfjKlMqG4juXm0JXv1owCvnJGAvR/Z0+Xihm++vYdPvnsbU464SiW7bUf6z5dx/vvvcP0aZNxbYeAGmHy+KX0dH9DX98O5i2czVCxTM4wcJQwPT29lPNFcpkcnidhOYJMuoRVttHkjXz88d/YsH4rBx92Ck1tSzEMQVNDNRf+5qfMXTQVSVLR1AjJmmZkRUELB7AxeO+jD3jxldfZvH6IVKKJ3196LUt224v0cJmQFkEULUbNmMCU1moSNbWMnrYY27JxbRvHdujc1UkimUASLpl0Px79zJpdR2aoRPu4ZShyEEXVuPKGi5g2bQYzZyxGF40IynieQ7FQRAsEQLIYGtxJNKoQCUdIJuoY3TYNnDhCU3BxKRldfP7G85i5QeZNa+fyP7zF35+7h2AwwJgpu/uVEtXEzzCKY9vgugXkwACOEUZWJSy3RNHJYDkOvb0D5NIFEtEIVi5Nvm8rD9z8e9Y8/ww7dm5lfPtUipaDYRlYRgHHMHHKMqOa2onHR+EQYDhXoGAaGI6JrqmUckWmT5uL5eSZNHk2s2YsZr8V++HaJo8+cgejWoKcePzhfP3Vh/z1kQeZNHc21VX1FPI2t6w+myfW3EF9QxP1yQUITwEsLFPCcoe4697fsnnbO8yZPRvMJI6hUC4V8dQOQpEyDjJ2TkbRBXh5NC1CR08RiSAByUPysgi9iM2HPP/mBVRXJQjqOo6lkC1sIRxqACeIk3eRggWwh/nHi4/y8N13s3T+IgZ6exgY6EIOBEgP99DdtZalS04gnhrPcLrM/HkrmDpuD3RT4tvPXuCZF+9ky7ZeTjvjHO5/6AFOOPkUJEnFRUb8Z2G8UkSqUKFChR+Uip2tQoUKFf7/RoBrlpi/YA6to1tAMpm1z168/so/sHZ1kqhvRA1FcQATGZMgJSWCLVRky68LuSPNtfwC0hBff/kWZ515ysjft/9jMwGLQFDh4FXLmD59KoND3YAFksGzTz9MenAnpjFEodCDkMuoukskpABlugY6RgbtArYfaIyJwETXQdXhi6/+xS/O/B37LzsZnRpkdFxUJEmAKFGTGkdb8yzikRTbtr7Kg49eyp23XIFVlBFECQbjlHMF8ALgJEbsE7K/TznLn++9jv1+tBQtbGOWB1j76mt8sf5LwloAzwWBS1jREbhI/sf+qBq4nkFddYxtO7/k2Wf+Dph4lLHsIoZdwrJMVE3C8wxCoQABTWX+3BkMD3eSy3TQ072ZuhqJUKSG2qZJoNfQ2DKLWKINy1Lp7e1FyGWG0tspmd0sWjgeQRrPySBJCkcedSp33vkokUgj8WQdahhMx8R2TGzbwbY9HFMwOJilVLK44fqbeOaZZ8ilBeFAKwvm7s3woEHXrmFkSaG9fRzjxo9iON2FGrQxzH66ezfxrw9eYczYBgIhAIPenZtQdJ1/vvgcLzy3FtcOgKUQTjTQ2NSC41g4jo3jFnG8PJ5bRJY8li/djRMPOpaD9lmJKvi3pUXyfLFAXVJDIku51IlFP0Hh8O23HzJ7znjqagIghgiHXHRNkIiFAQ/P8/j880+YMe9oLr7kVIZyX1M/JoDndWOXe0HzOPyIo4gn6mkYNQFEkIAW8G1VMYgmk1x9xXWUy2Ua65pBWJQNAwQkqmqwLYVs2kQiSmvjLPZZfjiJWCN1taN54L7bOPf80znn3BN4/a01pOqj1IyuIZ3pobWtGRfIuwaBcIRQrIb8oMac6Qew957HsGThj+jv6QXZACUPYpAHHrmOzz9+n2LZwikpYNcSj7XRVNeGpoHnmpTLZcolF88F25RxTZXWlsnMmrmIvVfsN2IfHOLzz14m0RRmKLOd++67jXBUpn3cGHRFBySKZpYnn3yI519+jB2d6zDMXj9DSALPcQkEZdauXcuGDRu4+pprgRZOPukc1n31AX974h7K5RJbNu/k52eeSL6Y459r32PH9vWoikdDfRW6DC2N9STDQaKhILInMAplHMtC0mVsoGxBy9hGXnzlNUAiHg9TLJSIhmO8+s83uOeeewmF4+QzGT8bSAhC4Tjt7VOYNm0GGzZ+S8euHXiOwaOPPkJtXR226+IqCuZghrr2Kfz4yKNxHA/HcUbOS4vWcU0YpUEy2S4CgTKxoE51tIkZ0xagB2NYpm/tU+QAn3/2Nabh4QvMLFz8LpClQh6wSVVVARKW4zBn9mK+C+7O5IYxMYjoKXZbcQCOnOCA037F8oPG0TRxFiuOOpE/3/RrcPrwk7XCeB6gGCgBC8ighf21XNcVQnqAYrFIdXUtNak6ckPD9PYMcP211/PBe2/SPr6Nji3ryaYHMYs5ysUCpVJpZDMolW2MskU+X6SYL2CaFmbZwigZFItlHNslHmmlmA0S1hpxbZ333v2EBx/q4OiTfkF37y6EYtHZM8DL/3ie7p6dxBMBfvmrs1mzZj2vv/FPhGL6uWaKjUBDCMH0Wa188fVblIxeZM1fz8PxEGqgQNnpRREKgYQLXhZcB6Ns0lSfIBL28OwsqBJQwqSPZLUgFovgeR62U+SlVx6mr3sdOCDpUEpnQQ6y1/L9+GzdJ9x0y0U89fSdKKqB7Ki0jZpEbe0Y0tkiejBEtlCmo7OHsmUyMDzIpNmzmT5jGrsvX0xf3zaE5CLLvp7rvz3OCPt/IQ+vQoUKFSr8n1BRIlWoUKHCD43njSgJvvto1EVSbGqqo0yaM4Et697hzJ8czfFHHUvDrBWUBjwUJYirBijiYaGCEsb0IDjSYV6E8ny78UHeeO8e1rx4E4P9O7j48mshnwZN4AkHsMCzQSryzruvcuppJ1OdbCASTYFtgSjz1CN3cNHlv0FWTK68/FI+/Ph9Zs+ZjEWWvz/9CAKNlsaxuJ6EEBaSsIAcUMSlhO2WOWTVApLRKeTz1ZhuHBcdnCABXQJ2MWX8EqLxSbhemmX7L2fPg5o46ScXISvtZAZKCCwsc5Bi3iWoV/uZQZIFlEHK8PzLd7NoaTuXXXYhL778dy675FZaayegSjoKMq6VxbWL7Nz+DQ/edyfjRjcRCksIOQ/kOP64wzj3vF8Sj9UgSVC2yniS4zsfXIHt5Jk1awKLFi6goamNRG0d//rnE3Ts+AxBgTEzjqCqeQEbt3UxfcZ8JNGEUQgQj0XIZvupawjw9ddv8vPjLkEUG0lG5jBnzt40NDUQiSV5f92L3PzHC3n82TtZeeBK8BSEpyJ5Koqrkc/lMUsltu/cxKGH/Yj65GyywxqSiJBK1SLLAZAcJkyZyMMP/4VnnnuUBYtncfUNVzMw2MXcOTOpbajGM4c4/6zj6dn1DVPHpVj38ZvcfOMdyKmJGMMeSqBmRE1WwhMmAgPhOX4XJ6mGuTPm0dXbw+jqOoRlokolUMsIaYiSsR3b6+fyy8+lt289n3z6InNmTuSKK39FTSrMnnssJpWMI8kRPHRM02NoMIumhDj+2NMI6mn2X3kgrWPGsKSlU/QAACAASURBVH3rV/zlodvo7NjB1GlTCcVbGO4pEdTj4ICmQ0DzkJQAkOH3l58A0jDrN35CKhYjEUvgOAVkYRIOVwMawWCcgb48igij67UYpQxd3ZtZ9eOV7L3fAmJVQa76rwvo2vYtU2ZOQQ6FSHsZFCmKhx/uq8oaSkBCkjxkKUg4Uk0pb+A6RRTV5Ytv3mVX33Oc91+noQW6mD1nKZ7jYRg5LKuAJEuoSoigXofqCeSghGlYhMNxFDlCXW0zhpXhqj+cw+bt73PReb/l43VrOfwne/DF128TiTQR1ZsJKCE0NcDkySE6+7/k5VeeZd68WWhygJ07N5GoSiAkl8WLFrJ08e6YRpAxzcuxSgpHHLcf7ZMbkLwgMiotTWOYOWs0Pz58Kd1du3jhH68yevRo6usakcwCbnoAxbYIqSEEOoFAhF0DndQ3unR2b2TbjgH2PuBkWtoWkC/ZBGTBXvvuRSIep7dnkLlzl6AFovjt/DwsM0c0FqKxoYV9Vixn1Jg29v/RSiRZwvV0IrEUZVugRYNYwqJgg6rE/O6AkgeSjWUOEQxbBHSTUmETgYCDY6nUJKeTz6gEg2GE7DF33nTuu+8hVu13DIIE1934a3Qd2ka3YRglXv3nS1x77VXMmjOdZGIUAb0OvBAYEI4ovlMNm1CykbYx0wk1T2P/Y84gk/EIuCod3Wt49In72GPpPgjRilDySHIPm7Z+zOYtb1Jb04ysakAWQZlCySAVr0JXdHp3ddLS2MCTj95LVEpz/o03klRVqqrrUVUdVUgokoz03SYkLNPFNDzCkTiKUFAlFbNcRpNVYrEYrhnHLIbQlQSlUon9Dz2EOTN0rrr8QoKBIJOmTmXi5Ils7y4wf+5i8vkC1akIhx6xiOefe5n99zsEIUuAjaSoWFaGYAhSqWrGj56B4wheeulF1r7+JPPntaNKUSQSPP7gRWxa9xbV0WpkOYXDAJbZRSjiQMaBQBVGESa1rkCVplEc1NE1DZQOTvrZ8fQPvcy8xXsSiLVQzts4lssZPz+c7Tvf5dtN77LqgEMppCNoopbqqsk0j56GFEkzcUaSV99+lFdfXUtdfRONNdP5/PMdfL35M6bPnsTrb37IMceegW0JhARCgBCubyNFofI5eYUKFSr8cFQykSpUqFDhh8azR4pI0khWqYtMkbVr1/DtV2+yfeOnNDQ1ce5vrweqsK0wiqpTsIZRVTHS0033I1m8HhyzhKy7fPzlq7z++quce/Y5vPzMWn508GlQckGN4xL2g24A5Cw9/RtprG/BsgSqXI9TMrGGuwg0qSMh1BIP/OUhTjj5nJFBGzz2zF/58cHHoYgUuDqy5AIlHn7yj9hOiUMPOYLuzjRfrHuUQw/8IzhhhrJF4qkQOCDLLtnS28TU+WAp3H73z9nnhHnEEs0E2Y0AEXo73uTVf/6N8eOmMn/uweihYXCDviIJyVdSKf3c9MdfMHZcG/uv3AvFW4xrJ5HVIDgOSC4Iiz/eeCmnnHwUrmsTqaplJNCEf3uACOHZLumciaJoCCFjWy6m2Y9t9dLY3ISdHsTIlbji0nNIJGUmTgzTsOzXtE3cnSg6OBYBKYbsSBTTeUJVZbq617Np05tc+otLOPaYszjppMvJmh7JFoXtOz5h5cG7c9/9v2XezFlkcq1IdhWyHUZ4MrKjYVMmmoiwq389NU1Rcn0hJCdINBaiWBomXhWjv28b5/zyZyxZupCjjzkU23NAUfBsh5CmoQmbQnaQB+69lZamEO++8yKe43D1jfcRik3DscJI2liEqmK4BQQmsucguzJ4ErmBIqGqBHJQJVtIo6glQloZKPDxp8+xZs0aLrpoNbZtosgWjz9+P599/gHlcppbbrwJTU/x2F8fZMsOjd/97nYy6RLxWLWvCvCKeHY/Apl0X55EbQRT7kKT6xnszRINNKKpAW69+Qq+/vZTWkaHOO64Y6itbSecqAIhYeXBLMuEow24Vo6dnd9wwy3nMX3WPhx55Gm4joTk6sRjMfAMBgc3U9UgsWvntwi1SFNjg5/BpCXYtKmLsy67gdGTZ1L0glx10R+okSR0ern59gvIF4aIhFOcfeZlKGIsuApD/VlSdSEc8SjrN/+L/MAoFsw7GWwdxy1jugVUNYrjBsANIewsjmugaiOB2I5GqVwAKU84nmPbzi/J5DbxwXsbOP7oS3G9KJYToKo6znedDkHhqhtPZHRbHa++8j533fEEqpKklPcIRmKA4dtZCdC9TaKhTcN1OsnkNhMMKGQyOWKhBAoe6fQQkp0nb0q0TphKR08eqWRwzYW/JiApnPqz82gYM5OCBwN2hri2ldW3XUBHdy8PPPYB2VI9EiESEgjVwHazKEoQ0PFsgVCUkXXDwnMLCMkjN7yLaDJMqThMMFSD48UZGjTRQzUI2aZo96BJElHXt6G6SHiSjaIZuFYf6XQ3b619kk8++oprrn0S5NF+RzUZPKcAShYB2J6MLGrJFD/ksYcfIZ+1OP+8K0bG43D55b/n4otvADfiCyotIJjFD5S3gAjFskMhL4gmUwRkwLS58Q+TWfPKJt58ZxtOrg05mga68YCHHr6W4489G8dxWP3n28gVDY468ueMaZxKIe2QGegiHtHJ9nzLdf91OjffcS80jqY0ZOGoCRyh4KKCJyEBllHGKJVwXZeW0WPJZTLYto0QAs92CIfD5LIm6XQaXfNonlDDlq8+ZFfnV+y+xxzuWv1Hnn3mGe6650Eaxy3BMiVyGROkEkLJUZ2swbRdHDNKMJTE736nUMpbBIO6n1lEluFsD0898Q9OOfk3lIsSEjZa6F3OOeonTJt0EKeetxpCXThiiMsuOp9f/ewqvFAbqWQjZg4cy0LTQQ6plIZ60ROf8+7H97F0yZUUMs3IrkKmfyvhyDYe/fulbNmyhfPPuZea6gPZsaWXtLmNJ567j19f9hOiqkRHbgu/OecP3Hb9PRhDMUI6vP/pg6z+0x189kWRzk6PTMYlEpOQJL8oCMNAYmT9r1ChQoUKPwQVJVKFChUq/NAIZyTMWRppdiPoHezmkUce5vPPP+K4447h6ON/QSf1OCQwPJAlCMoF3PJONKWMQhHJskAkKGQd9FArjjWG/fY+Hckbiyoi/P6Ck9DVDGMmLUJ4CQSqv4kg0UgSPB1ZJMAJIEk6limjhkM45RKSGmPjN11Mmb6EYt5G1SJMbZ+JIoJI6EjCz9oBh2eee4yzTz8TXQpw9733c9ABy4kEJmEbKqGYiicgn4NAQCApg8iEQXHp3PkJh5x6GR9vkAnULqG1QeOWWw+iZKzn0B8fD0qC6247nJqGHJ7RRDjchmdGEWqUob4hxoyrJ1UdQhETkcRIG3Vhj7R0krHyRcZObEWLBLh39fUMD7q01Lcj2RGEnMDMFRF4SJ5DWI+QGy4QDkZxLEEsXItwQtimwhmnn83FF19OIlFPXd1Y7n/5VT7fso58uYPGZCt2uUhQitK3y8Ey80iyyurV1/Pbi6bz2NMP8fSLj3DkcafiuAkCWgvHH3kOYxuWIZltOEIDzyOb7qO6qZbOzV8SCUtAGQsXyxXIsoekmFhuHoRLuVwiHE4yf/7uTJu6mIBWi6bW4dpJFJIIV0W4Nqom89zzj9A7sJ7DjlhBNt/FOx99xMOPPUNP3wBzFy5neLiAJINjO+hKCMeQKJa6ufWeQ+np+hSr1E/bmEaEDCXPQRNBNn2zlZOOOQvTSREOVaMoKn09GY498nT22etwdLkK4aoEAwGWrpiDGvDo6NzIdX+4hldeXsPCeTMJRCM4JQgl2sDVcBwZx4yjq7UgImRzw7z/0UucdPJBwDZeePkOQqle3nr3cdqamwkFUmjRCHgZcuVPeOypKzj21MmMnzidhto2HM8gFvYVEblhA1kECESTBOUY559/Ph0D6xnXOIZQJMqqVYcyakI7u7q7WX3jPQSEjoaDTIbZ8yezx9J9mTl7PqqcQBJBQCUY1vEcCUmupzY4i+a6/cj3x9DUAMUcKIrAcS0Mo0RAd8gWv0KovhoqlazBs0OochRVjuG5im+5q2tm4bz9kEUS1xa+aikawg/hDzCctdl96RJmTV3CiuWrCOj1gO4rd1wZPA1BAFCQdYEQAlmOEQzV0d/7Gf987XG+3fgxg0MSsehEouEAb733Pq+ufYt77r6XfZYuYc95s5jQ2sbL/3iNSdPnUF1TjaI6VIVVli5awsSJc2hqmYmkptBUDUXyg+klRcdXe/gqEHA5+6wzePONN9hrz32Q5BB6UGXblm945tmn+eDD95k/dzdMExQtgqRreCpossel55zMXX+6g2XLFlNV14BtG2SG++ju6CA73MOJx54ObiNyIEm5mEXRDYTsjOg6dSQRolj0CAQMxo0dz5xZiwgGUyOLr8u8uQtQtSTYMgjIpoc4YN/Z9HZtYMzYRqKxJobyFvFUDZ7toeKBI7N4aQsDAwMs2W0VkoiDbGO6ZTw7yISxE9D0MpJUoHtgA3WN1dTXN9Hd3UVjUwvDfduIhj1kuYDkeYwa146qB1GDMUzTQbgCz5XBE3iehCzJBDSdoK5jFfMIz0RXBJ5jYdplypZBITtIdU2YdG4nt9x4Kbs6dnDQgUfj2TWMG72QH686larURAqlEEbZQdOipJJjCYWqAI3X1r7AA/f9jRXLD8UoKJhlh1A0CJJHf18X4XANQb2Oqe0LkJUoiqohayovPfUHNn7+IVYR9tzrCAgI8MpMn9bKL84+i+NOPp1iJo3ldBOu2YUU6OS0Ew+nsXoqjdUTaayZhhIag+KF0AISA11DhHQbXfMYGizQUD+DdJ+GrAtqRuXxlAJj2ubR3x8goc9kwvhpRKNRhGogqxaNjWG6Ovv49LNtnPnz/yIckf3bq/CtzX5hUMf/4KBChQoVKvwQVLSeFSpUqPBD8/+i9ywVLf71/sfsvsfeTJsxny+3buKg44/BBrZ3bAEMTHMQNSCDl8e3dgFukGiqCVCpbWxkW1cvhlfmvU9fZFvvJzz+4h9Ayv/3fXvyv9tP+1/737ekEEg6rhQGwuy2bF9wA7i2DgTx+C5v4rvMCQWQ0fWRlt5oHH3UcdTXTAXJRcg27kir7lDY370qErz/3ss8/tdb+fKLT2kbswgtMoEZsxsAlwMP2pd5c+bgeQLPs9B0j0y+gyuvvJLXX3kdofmvWZWTPPTg47y+9n1/HAI/90K4fNdLfe6cJTimQ2/HNt56503GTpiKGq5B6EmwdbRoFFmWKOQGGO7bRUAVZIYHSFXXIokgEkGKJcGchXsQSzWzcNkBpOom8+nnX7Ft60Zee20NVdEYmmxSzA7g2YJoNE4olMAwZLKlfhpa4OAj9sGhRDZTpL8vS1U8xWC3Rde2HK6posgaiuxSHNjOu+89z1tvvcDgYAfRUBhZCgEOnmTgCQtPuHjCw3Y8qqoaiMaqKJclZBFFcqIIJwxuENfT8dAJhOOceMqZjJs0A4sAQlKYMn0Kk6dOAuERS4TxPJtsdoi+7g7kkE6kWmXI+JREqp831j7KP198ENOxKRtRbOqYMuEAUNqR5SSOrQJR5s3fi3hqHNHkRORAE0Kvx7IlimY/eWMbTz9/NzPm1LPvj2YSq7IY7P+Sa677DR+/+zzFfD+4ETwviIevQpFliQsvuYj2KRO4/77H6dqZoSa8B0cfeA3x5FTuuP16PnjrKcxSJ0E1wc9OvJKJzacxpnkOBSND2chjmEVsxyRZGyNeWwuWQJHDHH3kyYxpm0J180SQoyycu4BDf3wIqw74ERoCgYWCiiBJgNHINBBWWvDzc0qk87tAKpE3hoAs6ze8z2WXnUKkoQAhm3DUw7IsVCWEa3vIukpVTQpZsVn7xktIuvALyeBfg24EnBgy4ymVdCSlSCCUo6YxjFmwyacdNm3e6Qelq0kg7AcUo4L9H2/bvmvDLiAYlbBdvylYvq+ErkWYO3seS5Ysomy4FAoeshph8pSZrFp1BGPaxpKMx6ifOpkpkyZx8MEHki/mGB4egrKJ4sgM9RWoSfnz4I6oKBEj6wkK/90y5DF58mTSw1lcx18r0kNZGhtb2GvPfcilc2z+dgMBRUbywDT8rJ9CJs2ime0sWzybZ558jFI2w8BAGiGCtE+axZZNPUQaxuHYEr0dHbgURnLeyiN79cfiOC6aFKMq2Uoy2UQ+mwfXb5cXCkf/23zFalLMnTOdge5tNDTXsWH9l1QnEsiAThm8Ilh50BvQtQiukcEwTSzbRJOSqGqSSKQFX1maZ/r0KcyePZNYJEpLUxM7Nm/gkot/z0033UisuZmZC5ew+p77uPGa6zDLpf92HxD4DTS/z4O2kXCQsJGFhYTFQH8PwaBGdU2SSFinoSFJbV2S7bu24aKRz0tU1U2kunEy2ZwH7kiBzxPggVn0Q9kXLpzH119/SSGTR9dUbAugH+ihpjYJbgrsBJqWAlHCo4CLYOXKQ6mra2D7jk2gS2BplAsK1fVtTJzUDnYNQT3Aum+e4I47T+Wrbx/id5cfwJ/uP4V0biN4HpmBDJLqz38qGeHll17j1+ddwRNPvMXkhUuJViu0ThpFT/cgzY3VFHMDyJ5LIVdg7Og2AGQlimmG0PUaamtaaGpqQdXE9xMJ/3GfqqRqV6hQocIPSUWJVKFChQo/NMIc+VcZsbNBIp6iULJZsdfejBo1jp+ffTZHn3I4oxoTjK9OcNXV5/H2a0/wrzde4uP3/4Wd92gdNxukAIgiHdl1zN17AoSGWTh3PN9seZmGpj4O/PEsmuv3Ai/JSI/rkScV4/uCi6fgCBh2JLSggoFBOlugrq6NcsEjPFIBEuL/Ye+8ouSqzm39rbVj5arOWS21co4ooYACICEJhEAEGYzhOIBtMGAM2IAB29gGE00wApNNMMEyNkjkKIFAQmARlbPUubpy7Xgfqo3PebsPl/Ny6+uXHj16dO1dvUKtuf9/Ttn/N4z+KPXSh/PRo0eg60EEAUKhOhQvgue1oxhZPOEiRJBszsVUJclkL1u/eJohw3RWrvouS077BTvS8Ofn/kk42M6SibMZMugYfLsKLRCkp+cQTz/1OHff+SYD20bhe4cRSp6d23fT1bOLM1f+BFVtKl2XyFNq+zGAIKoZQ2ouF198Adf99hoq60bhOSF8T0NRBMheUDPc9YfLmL9sAdde9hMCEWgbMRSn4JPNFnEEzD12HmowQm/Bw4y18NTzr1JdVcmd1/6CjgNdxMIWTraHqsoB7O34FKHbzJ19EmFZha4O5qiZK3CIkC1Y1NdXkOs7TEV1lmgsheUFsawihtrDj394Ouees4jRY1rRTYFLmEw+iKLI/vOuxBcKvoB8oYCPwHFtpArFfBEd4+ukP1+C76scf+LphMN1RKKDOHreOfR25zj7nMupqmgFEcfDJZc/hKZlueSSb/P+O89zzXUXcv5lx/Dhm1v42VV/oqVqMFlZh2bW46CTMCuhqKMEAnhCRwiQMowgjKQCRIiuI0fY+uWH5Ao2w1uPYvPH/+K755xHfYuJJvPc++cbOHBgNyOGDyMai2GadYCCJ8CTHqrq4OWTbHx3PcmOfSw79mzeeyvHmFGzufnmHzFrYZiMvYlHnriWV156g5bGUVRHFpIr+rieSixag2v7mIaG5+Q5cnAnkeogQvVoqqujrn4Qnbvaiakhjl1+OsMGDGPkiJGAJE4A6WjkcgqalsAnihBB3nzrFT79agPbd33E4GENuF6O1166iaraXixlC1de/SMO7H+bYEgyYMAU3IJBKFZJsucwHR17uP/+P7N48ULuuP1mZs+e1y/AaP1zUKE330401Iybq0CVlaxbt5p3N93GC6/dxiknnU57ZyWq0FGFjpAm+Aq+5yGUf7eO8XW3ZoEMpq4jJDjFLFbeAS+IqlUxbPgkook4mWwWzUxguQrHLlyEm+njyNaPeeWVdTz65F+Zc+wJFIs5TCtPur2LcKCCbNYj0TAIGx0QpQYhX/avBbKkgOACHpMmTmTW0XMJRSrBVzGDAVRNIWgajB8zhsYBI5AWYCsI4RMPBYkGPAYHe8jni1RWVDJs8iw0JYKQYXQ1xtGzjwdL5+DBFE1tDbzy+pO89NpTbNvxCWPHTMKyVVQlgG5oeK5AiggQQtcj9PZ0EQjq4Lv4roYQGkjoziRJHt5E+76t/P2JP/Otc77Hzh07qa6sQ/RsB7cdu3sPSqiRqbNmkuzbhWscIGjUkc2o+I6PqkVApFl97518tPlTFs8/k1xGI9XtEQvWsnDOXN58/Q0mjhuBWd3MvCXL6U0X+OvTa5g+fTalSHoV4UuEr+ALDykcFCyEsFEp0t15kK6eDuqb60ln00g3iOuAR4qqmggtLYOorx2OrlXT25MklU4SjvYLyiKNoroYehzf1fDJYAQ6OfPMc9i3t4OKRA1CzeNrO/j7iw/zwJ8f5thjziwtpwJQSlWQDgEUDQpdB3h/w0aOOWYxoaqRaGYNnujkmPmTIN9Kps9iyOhGPvzwBd548yWWnnAMp65cyI8uPo3b77qfM884A0NVQc/gFw8wbvQoDKOanl6bwUMHMGhMJfsPbGVw6zTq6mySvQdxbZuAbuD5vfjY2IUqKA7AymWZt3ARb765kVNWno5HyXOwJMj1ty7/Dw/CMmXKlCnz/5qyiFSmTJky3zhfR6l9XTxQsGD3jv3MmT2bTDrLiy/8jQljA4xprSegeGzd/AaXX3ER9z/0CINHTWD5yovwRSXZlIdiepz/89O45Krv8+HHH5Atmpyx+AradwaZPuF7GMF46XAn3NLryiLIHEir9DMhcRSVXb09nHHuyUw/ehKJijiaNNFUAyEAvFKr2NciUv+tCBVTN7FdH8dV0dUKct0am7Y+gQx0EwtW4/oJDENi5SEcruCUM0/gg01vUxVUqR6+hD1uLz3ubr6/8FSizgAo1qJqlRT9DKOHHo+KxpCWmSA9HvjLhbz19rN866wfcfTRY9HkWHwRwhcuPnnARYgQVk6Ao+CLLMGwxoSJY+l1FDQlgaaqSOmR6tzMq2sfYtTwCHGZIxhQmLf8eJxCDil1NFOj6NlY0iZZzFFEEIw3sOyE7zDn6GMI6xnsXpePN73EE4//iWmTl1DZYqOHLPqSJs0V02gdMI3OlAW6RnNDPcnUASqqPJ689wreevlBBo1ajBkIEIvnaKw3ePjB3xCK6tiOTTg6CM1owXNVhF+q9MIvVXoI6aGoDo6XJhgWuF4GRQiQRTzplQQndCCKGWwjla5AiiZGjpmGkzFQtRqyWfDII41ONCPFju2vc/mVZ/G9C85G+JNYtuBycIegGK3kfIOC6iKxCahJUIvYMoDt+lh+FseVmHoCuwCeK4gkwgwdWk9r08mkemqZM3MZrmOiazoX/eSHHDl8iN/fcAeDRxyN6msIVcGTNr508IVNMBgg3d1Lc8Mgjp+9lLaBIxk3ZQy263L0tBU0Vs1h8PCVzBh7EhPHzaWpYSCem0Eq9UiRIJvx8FwHRA4pC8RqNa649Dt8/tl7TJ0xFauQoLZpCO++9CZ333oHo8aPpSJWjY6O8CS4LlpAUHQsMtkMmqEyqLWR5kG1jB4+EQhgqvUklLE0DzqOiA7Pv7COsSPHsfXjI8yefRqeLfGcDKGISy5lMnnSdFw/z9Kli/onj1fqucED6RKJNZNKFcHroDv5KXXNSd7a8AynnH4S0UQLoVA9ploSP7KpPnRd9uu4Fgi734jaByHwhYFHCkX2oBkKu7b2MLh1Fq5TwZ5DX6KG8wiCeCJCOFZFJpVFFLOsf2MtUydP4qwLL8QWOn3dvaz+zW949R/rmDdvEb5iEq1vwkZFIFBFvxZdUi/71xgH8PA9F10PIqWJXfBQNMGnn27mzbfepK25hYAaxsnaGME4tpVn74HtfLXlbZ6/92qOX3wSoxYcx85P91JROxhdr0AqEbK9RXQlTLyqnv0HPmXy1CFU1Gpkc32oWoR4rBHb8lBVDSuvUkiDrknyGYgkQv3roIeQpUrMfBFczWbq9IEsPH4a1aZL04hJSMfllMWLWXXKfB761fk89Y+HWLj8MlD62Lj5Kf7x+s188N5hZs9cgaoLvLxDLtPN9KMX8uGGfzFk6GR8uwpVVFIZa0I4MGPa0WimjhWOYdugmkF6ejKMGTkWUBC+0i8iSTzFBWGj+jYSC5Uiq++/m3ffeYvjli4iWyzgF6rwHRPXy1BdEyMULglmhQLEKgzMCGQKR1CUAL7oQdEsDKOWnp52Vv/5Jp594Q8cN28hFVUtoBSQWgqFIANahrBhwzvMnz+llESoKODEQAZKzly2pG3cII6dNY5zv3cxS064FFUFoRW4/palSNHF0NGTKR5pYsr4hSxa/CM09RgoTqetJc7i5VHWPP0G8ajC/X/6JZs3rWXKpOm88OImevqKnHzmfC6+7kTeff9ZHr77NvYf2MRxSy4kkB9M8kgNfv/DAmFYmHqYWDBMb2cf9/75QUaMGUFzU0N/QV7pC+/fLtvf6KZepkyZMv9fU25nK1OmTJlvGl8tPRn9b21tmgaDhwzgwP49xCJBJo8fx+gBw4loQSwvz6nf/g4FGeWeR56jM+tzpLMd384RjpWi6+2CwZpn3yOdCtLaOgmfKIsXn0skMbq/Zc0F3wZh4wkPV4CLxBMennBwpc3ja//GqLETGd40BOFbSCx8Ca4EV2qkfZc0AdJAUfKf9hkcdEXBUBXwPZ584m5eeunv7NzxJQKJ45TilV3XI9/XRWUE5s+uprGpiTvuvZhn7r+WQK4Ly7PABzcH2V4LhRBOXjJpwhQ6O/aDkuPFdY/ROjiG56SQwgQv1H8R1n87IxTRjCJSy+F6FguPWwYEiZvVGJrR34bjoaphTlhyOnv39hFqHc2sOceTPpzCK3q4doZMXzvxqIJn54hHoqiqSraQpdCXI6ZH8bwi967+Lbfd8WvOXLUSIyDo7UiCo1BbU0nBllh4JOI1+EWDjvbDHBV1AAAAIABJREFU6FKwf9uX7Ni5jZGjB9A4oJZUKkVHe5pBQyYxdspxTJm+mBGT5+P5CsKzUcijYIOv46PhCbD9IoqiITyJk+tDoRdPFvFkEV/m8WWp9U2g0tORIhqN4HsqHQcPoobCJHszxOIhBBDQDYJakCFDR5HLKSiigUENk7FTAlyDg1/tJWqaBBDoeIDVn5YHeSuP64DjltxHFBNUQ5BK5+hK5yjaHoEw5HJQtH1u+O21jB47nknj5xOJDwQcDN1BiiyK76D4HhKXI4e2EW+soLPrMEQaIDyAQCxKLBElU1TRjCZIVWCKwdTWjkILVyBDRfKujaKBrgeJRhIUsgXSmSRuMUk4qmAGwfXyxCtr6Np1iK+272b8pNFs3PghxaKFwC/dmwKQxtAE8WgC11LIFSwMqaJgl5LscKhubgOrAsuOMWliG5s++Iwlxy/HyYAWkmhBHV8WqW8NU8we4bWXX6KzvQf6554ri7hKEVuxcS0IGTrJ1G7+8tgtXHXFj0mEEnzw9hYCGFhWDwCe5xOKRUFK8Gz+x0IClKpaQKPUCvnray7gpVceY+vWt/AdMLQKFD9I3gHH90kmk0TDJu+8+wZvvvM2N91+O8muHqRp0jZiGN+78IfYShQzVktVQwNgf928JvBKFYDCBpkFMpRMmj2kGiRf9HBdBy2gYHsZHv7Lar7c/gmrH1xNX28KFwPXlkhV0NAUpWVQPZWNI3j8qTUU9+znhut+zuEd/2LPFx8gRZZ88jCFbCdOvpvmQc1ksz0MahnICccuY1BLG0IITNPELoJpSMJRBST89sYrueynPyDZe+h/vFOahIgSwUsqYDRzsMMjeyDJWy++CvkkhAXB2hjB6ggUfcBg7qzFTB4/h43vvcSB/ZsBGyk1QokWKBrU1gylqqoNKQzCkTj5fJHuvgxqIEImB1GzikwKhgyeyLGLluFKF1fJ48v81/9LxRPofhGVLKpvg2cwb/6JNAwYguOoaEqCYCROrCKBZkRxXB1VDQOSeDxKb283PZ1dVFZUl6pOob/qzaOqLkBDQxhD6xemEXhksKwAkKCry+OSn1yNSxKfw4CFZ5XEQh+w8x70+aiBWiprG3F8F0UDy/Y595wL2PLZOxza9zmer6FqzZCtACsEfTB63ALGjFvEvm3bueum66mNqmz74gOSySOcesopPPjY4wTMCEsWn0BNTYw9Ozvp7uzh4Fd78aWO7/skotX4jopnW2TznXjkiURNers7WLv2BWyvNP6A/+QolClTpkyZb5RyOluZMmXKfNP0P7n3xdcfdSkWk6x/53WiAY+pMybTc+AwFVWtFBSbLl3hq8MdfPvSq3j18ReIAdX5vah6ruS4TZhdnT73PPgUNQ1VnPOtZUSwMHHIpFOEtThIDRQdFImNgtNvsy3wwLXo8C2uWfM3Th01nwVDKrByu5GmSVEfye4OSNTArFXHMWLaCVzy/QtpBQbr4Ge7kIEMSBccDWSCH31vBHfefz9OMYjQx+GLGJmUj7Q7iFb2MHvYSIww/OWfj3L7vVdw1lnfZXjbf4HTCGoayGLZGjqV4CW55po5nP2tK2lqruWU78xj/PgGLvzew9TUV4E9HtQciAylk78LJLnz3t9TXZ3gtJPPBwJAJT2WIKzrKEAhkyJkmoCPnc3hejZmOAG+Rvrgl1x77X8Ri5s0tTRz9ncuIe+H8XQDV1fw2gVVDQl2736U8y86j1gEVi65iKULf4Yer4FCklT+MEUjSDTmUkiZkGnA944QDrqoWpEzz5iOFujhokvvpWXgbOK1zfSk0ujBMKqQCNfBKSSxskmE30FV42CSHbUknRwimCQeV8gckjQm6kG0M3pIM69+/BkVVSG+2r6FhtomDCWModSg+gGEWkqsc5V9KLIaiIITIpPuIhzPksn2Eg7X4hYiKKbD6vt/SCET48ILbiDdm8eniFRtduzagWkGGD5mCgUkxYJFyIxh2T6O72HqJfNaiYfl5lGUFA4JrIJP1Mywv/0VWmuH03Wgiqp4M2gbwciBZQKDwA+xf/dWbr/nYga21TB65FTmHPVjcGPg5SgG8qQMFdOGkO0h+9Lk93/BU6/8jennnYAZaiVutGLlIaJGMEMOmZ49hON50Pp9iFBp39NLbetIIAt+N7YdKZkt4/T/TgDoYueODtpap5U8w5wcn25/lueevw9QOHnZfzFh7MrS/LW2YugFKAQopEOY8aF092apqAnx3e9Poy32OZ4b4913epg7/2wuueoqXOnhKDaWVPGFQOmLEw8Ljux9jSOHPqPz8FYWnn422EZpbngNONIETaEUflZqG3M9F0XqpaRFVcH3oZjxMDUJWp49nz3Ih5te5bXXPuRPd33Ijt1ZGppr2F/oRUoL3bMI2ElUO0PBKvLOex8w+qg5YCaoraugY/9eKuNz6EjuorKugBHIUhmaAK4G1kEIHuCTTV+x5ZMN3Hb3vfx9zd+pSAwioI1G0cDrF5cUSolfLll+euXlXH3FQ1REB7F/Xx411IurfkkkECTmj4R8J2gOn7y9hgfvu52zzlhJOBxm/cZN7NzbyabPD/LYM8/y3uY36Og6zIHDh7j88l8R0JpBRLBSEj0IqA6IPnozW3jv/Xd58M9P8PQT74IXBYzSW9jVRyEW5GBvN7XROGFVgJXjH3ddz9JLTqVg5NBFBOlPpVg8gKpaKJ7kyWd/yvoNL3D5j5+jadA8SrJaKQXBtQp0J3uJx+N0dHVSV1dL0bbI96UJFHyKXgwlECJHNzJ0GGQOxfdQi/UodpRIOMSTf/4Jr617lB3b8jz990/o9HRClSrNDbUUDwfIaBkcxUL0O1QJHxTfQ/gS6YtSZ6Fw8bQsrq2hKVEilRpwGMjz8EOr+fbZV4GfwFfyeHYFUv1PcVxf7hX2HHiTEQ0XoCuNpc0q1L9/KR7ZVApF9TBDOq5dAOHQm+5iz/4djBw2FsON4xUCaOFAqfhWzWJrKXzhoHfu5Y+/+AHbd33GzIWzWbHqJxTcRsLxWvqsPmytg68+2Yg4fIjXt+zm3IuuIxSO49suXt7BtnyKMgiKT0s97P5qC0tP+TZ33v84s2YtxKfkA9XfwF2mTJkyZb5hyu1sZcqUKfO/hfjPg1Irm2FQUyOP3r+a9evWcewJJ0KwAkeJ8urmbfzx/ueYtvBsho5sJQ9UaHE0Pw7FGrxiFBlKMn92iA+2/4n3t9zFqy8/y9zJp2D1RTHUOKghsL1+Tx0XXXgoOHjFFKomcYoZho0ewaBwBb+45Dzee38dC45fwvp/dfDs39YxZ8Y4Xln7FxbNGM/xI8YTo4ApLYTuce21V/LJnsPkAwkCNUNYuWwmdi6HFqhDijg+BpoiUGSaj9f/neHDDX5+9fepaKzELkSZdtSpQIDzL1jFoMFVRGMBdC3U33KSI9l7gJnzVpHrc3j3/TWcuuIHjBh5AiApphOougZCAT9AyWTb4/PPv+Lkk05HUyuACD1pwV4nx6mrTufZF9Zw0slL0TTwpUvaTqNHg3R07sROf8kdt1/C3j0fM3fudE5cugozOhjpRREE8D2B7qbI9+3jmef+xFFTh3L0jHksXfpjUslS0lpvuoNYrYOv7iWgGqhKGsvdiVfUSWcsHKeHjr5dXHrJr2hsHk8wHMXxXRy7gK/YOHaGeEgjlT5CTV0UOx+kt6NIPBoj2bmfymCEWKiC1KEDRGvi/PzCH3PXPXdS19xCZ/shPnj/HT791+cMaRuBoVWAMJCKC/i0d3/BPXffg+96VCZqCSd0duzczOtvrOOJJx5l9qw5pDK7yPpbWb7kMjyrAalqhCoP8JNfzsA1tjN1+lTcYoiAHsBQNbLZPkKmgaGAgo3npYEChnTwqEDxdEypocgQiXANPd0elfE2yAvaO/bz3nvv8NpbL9J5JM22r75k8qzJTD6qlTnHzKV10FC6OvJk0zqhsIknFBTfR0gLTxbRKjwu/eV3efejV/h861vkk++z/vWnqK9VaWisJ5VKs3PfPuqahpLtFXjFCE5e5eHHbuCrnf9EEVBbN51VZy3goUdu5swzzieZdJk+t55IVHDUtNEoWp507hDBEPi+x4mLv8282cvxXZNIuAXfVVDVaiia4JioehDHLuD4OXQDZkybyfFLVzBtwjKamqex9MQzMcwgAoGPgvRCqE4IVTEo5PuorK2kbuBQ2gaP5PlHnuFvj6/hn39bx/y581AiVUgpyOYyaLpA4OJ6Fr3JLtLpFJFIGCE8VKMAWhqvmCKkjGVI42IWHnMmH255kcFDQwiRo2g5KHj9JegqjtBxfJ224aMJmEESkTB+MUd1LEqys4gRkOiGS3WiklxORVMNtn66haeevJ8TFq1i4tTpLF02jTv++EfWrHmBk5afRbrPxTRL1+n7cYSII4lyzNxZSLL4fh+hgEeuO0+lOQw3V0neV1BNHcUwqKur5e7V97Ftz37e3/IFF13xS+K1gxk3cRbjZ86mpamecCRAJpvjqMlHgwjQ09VNOBYFwLYKSOkSMANUV7Vw9qoLKOZ0VC0EOLz50iP86c5ltIwJE6goYIRUDBkBEWDYpMVg1dHXLpCGiSYrUXUFKSVIi0isC0Xv47Kf3sj6t9dw4infKq1DEnzPpljI4eFgGgrpdBLLyuN7naj6l8Qbm8gkU+haDb4XRLhRpGcg/ZI/VFexl3Gzmti++z2aBiZ44q/Pcta5S3GsHVx50UlMbq0mVFWJJ/uFI7z+vaTk/eMLiScEvh8AL4HnSaSexTBD9HVqmIE26qvGEo4HQHbh040QtQjhIoQNCDS9j3AErvzpTSw6YRkYonR/QCGXQdMUNE3BcQo4jo2UklAgRGNdM9IRKKqOEpBYqW4UAzzp4woVDw07dwgRqmf+su9SO2Au0Zpm1rzyBC+/vQZf8WlqmEht5WAGt7VhxpppGjSSI4e7kVJHomAGAvi+j4pFX+duXnjhRTZt+Yzf3nQ7PpJ/V1iVnZDKlClT5n+HsohUpkyZMv9b/DtIxgdd07HTKW694TesXLacgePHgfRxUdl1JM3eQ1nqB03hquvvZMOGjzl54VSEZaEVNIQBhlFAcohPvnyDWdNH0lI9gLbmozCCpYoTFInrC6Th0dO9m5BZBJHni4/f4rbfXIGV62bG2MnE1QCbN77MpT+/AKEHuHX1XxnaNpxoIMC5J89k7uiBRMhiSA+8HAiHDidL8+Rp3P3Es3zSZTN7ZC333H4nu3cdZszYmfgoKNJG1fI8/vjtbN78Ol/s+Bdf7vyK0067HbyWkt+SupeZ02aiKgEsS0chj/BS1NZUEDAGYkTq6GrvZcqkBURCtaX49GBl/5up9KdESRAe48dNQFMNIIZblKjBIKvXvsiZZ53GD77zPYpeN4bilFqTDJ/tu3dSVanxve/M4YyVM7n4uuuIKDq33vQok8ctIBiuxisWgBzhavCzB3nk0dX84ue/YfCIueSSURw3gq97BKI6V193AVZmG6lOl0OHvuT9Tc9QER9IU2Mz7T07GTJsKM1DF2HlBbZrYTsOUhGo0kNTfTy/wL1/up3hwwZh+Rp9+Q4eefQyZHEPo0e2Qt8RLrl4CQf3v8vKs09BMeqImCbhoEFbawsTxkzGKYpSmpdUkNIFafPD88/hqp9fQ2NDE6F4glT3YU499UTmz5vPqaecgmMXyRdyTBg9l1y2hlAoiFRVDnXtYemJi5k+9jgMrQ6PMNlkD7oqCARMBC49HfsR5DAND0UUEeSQCITQKFopfNGJlH0Egwbp3j5c0cUdd19IJn+I5aecyYRJMxkychSdh3fxzxef5pFHH2Djxg9ZtPgMguEa8qIkeARcB1exKGoWOwr7aC+0M3zUYLLbdvLtpTM5fskyaqobsAsanh6kK9nFNdddQWNjJa2DB+AX81TVxJh/7MmEjFp0o4r9+/ew4uQVPLvmEZRAJxde/G1i4QayuR7ufeCXdPd9xauvr2XhMWdj5WK4ToB4RRU+Hq7tgaUj3DCYUXCzeKIHwyhVBaluBcU+BdVooqVlLKGaGjw3gxAOEh/VCSHdAK500EyVYsbGLQg0rZJhE+cQ1RJ88dlnbNzwJtPmLkLRDKQUSOnSl+pl1bdO5YNNGzjjtBWAjY+J6xkIoSC1JIoaovPQYd5863k++mQNr7/4DuOHLUCVJQ8DITRsGcCSESxfQ0qdgISQb0Mhg6kIfFvB8Qvk8im0YIBQqBohBbUNtYweOw4z0Eq2r5ff3XIVH2/9iKuvuYq66sEgNNKZJC+98iJ/fe5m1q5dy8L5y1HdZpy+MNnuPNFqjcyRHSTqqzF1lbyv4zhFCoUcvnBYsXIlO/cfYdMnX/Dd8y+lecRkWhqH0XW4i0RdNTU1NQjXY926tYyfMJVAKILjSXxPohoKQgo81ycQaMAtBtGMGIVcDtVwaB1aS9zfxx/uuZeNmz5m0aJVCKkhHA+3O8krz/2dRx54gMlTjiJk1uE5RYQmQBS544/XsO7lzVx5+Q9Jdvcwd+Fp/YEDLr5nUSik6Ut2U1sdw7ayGJrgnXee57k1v2fKhJk4rk9FrA4rp4Ov9s8VF4GLE6il6CaZddQk9u3r5uxVl1I3aAiak2PZgjn87rLfsGDZSSDcfiGwJEmWzOlFSUAS4AkV/CCesJB6DtOoxNQi4EE4GsOVPdx1//XUDwiSCDWBEAhUPFdBURx6ervZteMIR8+ZBdLFszSEKlH1Uou057kgfIxAAM91S55ORYn0fLJ9R7jvzt8xZvQg9LCKJxUcEcD3QxSUHNVNY2kcPJN0PkJHzyGmHt3KkKG13HDdr1kwcyVWTgE1gmbEkUoARTEwgzEy+SyqoqCLIpV1MaIBhU2bPmLDB1u48KIryNsuqmJQFpHKlClT5n+PsidSmTJlyvwvIfz+MCMA18VzfOyiw7Qp06C7i117NqGSYfzIQcybPpFnn3iYVStP5ne/vhCAgGmTz+0HtQgOqLRwzKRzqdAmUl8xGPw+/OweXMUuaSuKB+TZ/OFrvPH6M3j5/Wz58DXGjh7AycsWQKYXsik0zScWjrP66ftp7zhEsZBl9KBGnnroz/zyqsuxnQzggpRkrSztPZ385YmHENJhQEsNqXQBz9OZOWMu3cluJC6ZbC/gcuDAAWrrGuju7eOUFWdCIUGx2wAMgiGNnJUlm8ujaxGEqpLJdVLR0Ey6pxNsl/POu5TG5iEIVWIGgv0pc6W2nhIe4FG0MgA4dhbHLfn3jBoxmng0QpE0UU3DwCVX6MYtZKmMRQkFTA4eKHLBBY/SuW0HX3y5k3ETjkKRBjhFBEUUmab9y828+uo/aahtALOWA1/sJ2gmQGpk83nS+Rw+CiMHj6MmUUWmL8eIIaMZMm4QRzq38eAjq/n0010c3LaPULACVYZwLYFnQzZdQPEkRw52UFfbSGV1M7V1CXr6dpHMfEJ390a81Jd07N1MNJ5kwwdrue7Gi6ioiZLpTdLb2UUwXkEhWyAUKHkeSZ9+U3SHuXMWEq9sJBSrBh98V3DxhZczdtRkNMUgGo7Q2Dic3r4KVDVCss+jvTNNQ81UDH8GMB7BAIoFH0OTKLrK3h1fABbxaJBAUAVswMYq9iCwkKSxnR58P4tEIV9IEakOkMruY8asiaw6exX19SOwi6UIdjMQoacnx7BhE6ioaAI1gDAEjlK6BzwP6Us8ofCLm25m7YbN7D6Y4pa7nuLw9j66v+gEvQYnX8o+fPKvjzFp6jBy9gFy+e1c+vMVvL3xwf7RkgLRwcU/+QNzZ36fS39yM1MmLqQuNp9Rw05gSOskxo0bw9RpE7BtGzwd3YigG1HwXIToQTVTSANKUWWAKvBI41gZVD1IIJxAC1SiRetIZvIU030IUUSIItK3kb6H6vcb10uBakRRtQQQgaSL4+jMnj2XzR9tRBX9xupCwXZs0pk+Tl6xnFGjRgAuLgVcv+Qt5mEAOrlcN5W1BlOnj+NH5/+Y3Tv28PknH6G5Dopfqttw0XGEQSBcwZHOJH29SToO7SfZ0Y7q+diFXqx8Ctey0dQg4OF4NgW7SChUS/eRFKF4HZ9++jlDhrbx+OOP4VFElYJEPMZJS09i0ZKZvPjCs/R2d4EHnqUQMky2bXqDM08/nm3rXwYvC46FYxdwHQvfdQhVVzN18hQWHX8C2UwOfIkUOvFENaDi5vMMHtSGqRv8u8WvaOdwXQ88r+Rfjgl+AEUL4hTADIXw3Dw4MHnODxg/YglWJkreVyjiY6kWaqPJ3AUjcK1DPPHI/eAW8F0PfBXPcjl24QpGDh1ATdVAutuzAPjCg/7MTYFDIh7m0IG96CoYmuDYhQupqx5KT08PUEAYHkKmkCKH6G+l9ASElCCFLoliJ8j1aFTGhpA66HH4sE++UMnwUceCL/t9xFyE75Xm+debi4cvPHxZ7E9Wy4OvlwapBMf7t0e/g9Rgw4YNuGQRKICC8AQQor56DJf//NqSEuO5SKV/jfVK662maV+/pOeBFBpgYBdcAobCtm3/4sV1z4LMg3DwkXhIunochBLEFxBNBPni839x2403s3/HHgY1NFJXE6a2KkLO0dH0EHauQDgYwvE8fKmAptDdfZhDX35CPpvlW6vOJhyO4ngupmb+X+2/ZcqUKVPm/x1lT6QyZcqU+aYpRcf8J+DMBywHFHj23rtYcdpyzjtrCcvOmciJp32fzm5BrHI4ncTZ3d3LwMoEcTpZ+7ebqI3AUUcdjxGeSiEVxAz3JyTJLnCzgAdqM3v37qKhPkY2u52PN73I8CE1/Pr6a9m/I8Ojj95GdMBo8BrBTYCW5JpfXUDrlKM46fjrUdGI4nD7H37AMUuXMGrYVFxUJHDFLy9h0MgWps6dzU23/ombfvcgTdglryVUwOi/SwtIgX8ERI4X/vYEs2atIBo6HmzIu90EEnuAqlL7hRtFqh3ccssPaWsdzokrfoSbc1ECCXbu+JAVp53A9757Aef+1/dL1TaoX1cBQBIoAA6WrSGJgFbLfgeqVIdC/jDVAZfxgwZy3rnf4r++exG+GicYMbjsxytYfuICZkw/jsf+8jdWnXEpItwIVjf43Vx5zVl8uH4TM6dP54orrkUzG4AIqjmAZLqIraYRWgHh9ZGwXKSp4RYhm08RTPTywEN3MWnSfBqqplLf2gZKFd2HO9F1iWUXcNwimlYyB06l+6isqSTv9vHe+38n0/MSW954l5njl2DKCm689z6WrxrDsjMuQ7gT6d27hw8+fJcvtm3lV9fdSMES6FoVeiJMunc7kaow+HFy3RkURUGROqoZBFWCUwTdI929j0hVDZ4fwvckigiTz9tYBUkspn49dosFCyPcScf+A9x/3wOMHz+RxScsAkPhkh+dx8hRw1BUl++cdwelRECbA3t20NQ84uuB71uHyRYOohk6QomBF+DrhC+R73fyVcGN4ggDy7QxsnkCeQ8rrJEzJVc/vprTli2nqqDScCDHnm2P8/qGDRzuzPL7x14kl02iBQWaapHOtRMJhihmPfxCNb7dStHtId6g4xcSCA1Q9wF78GlDuI14Xgqp7QHyQAInPxBV1ejs6KW60aPgr0cIMJiKlYyhR32QSX5w7gk0VAzjF1fchFVMEKhVKOQsOo4cor4hzL79W7jr7tv40fd/TFP9GFQZI2+Cj4pwAwhfoHkSLaj2GyOnQKRBtpTGuqD/mmygSFeyA1VVCQQCKIqkSAaNSnS/Giw4svsr6uprybTv5IYbzmXYiCo2f5ThjvueZ9veA4hILZY0cPMZIoaC17WHu2+6lnRvN4Vcht/dciuBmkZsDELV9QRDJg42EpCEEY4Kqo3DZ3z08bu8tPZNrr7yXjqP5KiuS+A5fUjVBkpeRG+/vI6nn/kV69d/QlM9dOyE2RNXcuO9j+DoSVTDxU51ocV1UFycIx2odU1gCXADoNVh5bNAEj0G2Fm62tupqGsj70gMsxa/KNF0wC9i27mS55UvSXZlcPwkVbVaaSxmYniZLLK6EksFBw+fAiFSYCXx9u7n5FXnsOadzRRSLmZFFSh5IM9ba19g1syjkYE6UFR84SOEwHVypHq6UBXB2rX/YMP6t7nt9lvpbu8lqNUSqFIopo9gRBV6e7rR1ACIOLpeg1QM+vYVkYWtJNoi4BqQHsBh26MokmiKR2NlG4gu7rrlWjQjzKqzvk9Pb4qqumb6shlCUZNsPgNkqaqwKOZ1sskYNfUtOJ6Fqtr4dGOTJOfnuOnX1/Obq/8I/gC629NUVif6y9Q8bLsPTTPJpbOYRgipaWRSyX4Tc53/mFh7CE9FyhAU+8A5zDnnnkjRznH3fQ8Sqx6GUBrJFQSqr2CYFtn0YVz7EHu+/JS1z/2Dy39+FWBxwoxZDJ80gRsf+IDfXHUR+VQ3p525inBjG+gqrpUhYrXz3KP38uw/X+MPd6zmlrvv44EnnkPVQvj9im7JE8mj/Iy8TJkyZb5Zyu1sZcqUKfON0++s/e86ewGOC4qmoBsaFS3NjBrRQm/HZl567jHeeGkNf7jxKkaPHcL4tlaE20FMZnjmkXtYeda3MMMN9HVYhOMV/YlpEpwwOAlwKkCRxBMKdqGTcNShtUFy5c9+SECDhQtmsH79h3z49gaGDpxIINLIXb+7ll27PuOyS39Bb1oSM6KopJg2YyiVVW04xPAJ4gFrX3uR555+iI/ffZMRjY1Mam0lHm8CgvC1rWkp8nvH9s959OGHmTZ9LkNHTMMwx9BzsIgvVAJhG6Hq4NaAFyppFUqaV19/hrNW/RDNMJCawC7ASaccy70P3sy0qfPwhE1AN79+H0tiVZZrf305b7z9MguOOQGpaAgMQlIhYPcR0jy2vvIch7/cQnU4yNELlqB5YRzLoJhVWLjiPHq7LKZMnY9DgGR3Nz5JVCPPh5te4Prr/8C8BcsIVg/BzgewXZ183kbRwZcWrusifYNQpBmcDG6ummBiCD/72Ym8/+F6Viw/kaZBM3BTB0llbUzlB22qAAAgAElEQVQjRDaVRJeSSDCIKlSKuSKVlQ1ksi4RNY7qhghr1cQCI1l88mUMHLWIY+YsYMpRp5PPD8BQW3jwwVuIVcQ5beWpxOMJMn0ZwrVVeMn93Hnb5TRUShS3jnBVM6pp4BdzSM3ETbtIM8aOrZu5+eZrufqX5/PprocZ0DiMmpo2fCeFNL7CU79EVfvIZQQBM0Yxv49bb7uVn152GSMnTCGfyaEgsCyXE09awVEz5oAbZvtX7/DwQzdz/+p7WLniuwDk0+1owQy9vUmEDKLIekqlPFqpYsIPlJL3/BCg4QuPdLYLUwVNU8gVchQKReZPW4STk4SVBFWJZu555iqqB8dY/9EGamMR7rvrVh5/8AEWzl+C9FvJpqoIh0dQzLUTrLERvoeq1CJ0G6QDfiX5bBOaHsItShTdoFCwULVqivkAuhHBsSAS10hnD/Piuj/y7vp1aIpGY2sbCJfPP97E9ClTSXYmObh7F6PHj6Avv49wIkCsMsGhfbt4+ZXnSVTEWL36Lk488WQ8z0HR1P45U5JmXCnRjdL3SK8/pjzcv3Z4lKpuAHwCZoiAHkaVJh55THK4dgiFMJn8Tm74/UW8+urzzJiykCXL5zFoYJiOtE7TwLG4CKQqMVVJUAdTdQkFVGYdPYPjjj2WVE87D/zldk498wxMM8bfn1/HE8/9iXc2/JPZs6dRyBt4jo6igSIsGusGMnPWseRTKvGKau68/Spuvf2XLFuyAkUzwc8xYHAFTXUeqfSn3PDbX/D8mtdZMG8J40cPRwnB3Tdexx033cCuLR/Qu283r778Gkd27mHYxOkUkhapgk+4IkEueQQjoJFuP0yiaQBCBnEcSc4BFRNVLbVxWnY3Aourr76SOXNnEK8M8fY7L/LCP57kk41rmXTM0YCLgoqQCj4akjDSiyECFZy0YC5qjYPIGyS7UgTiEbBitA6ajNAipfVWUfCFQAiB73oUC1n6kn2MGj4E6TjEw2Gq64ehiQa++PQ97rr7eqprkmzZ/Dq/veEqXn11AyeedBaOI4gmLLa+cStP3vdz7rrxNt7Y+A6jjp5IS1sNMuqxa08Xbr6DeUuO49EHHmXyhGk0tQ0F2yafTeJ5GTTV5umn7+SNV+5lyoRJxAKtSM1EqodIZj/lt7ddwuDhY6gOtjFvzkK6OncSCjUQDEZAKQAa3e0u4ZgBvoGmBxGqh+/a+L6HEKAo/17jRWmcColEBU2An2fmzEkIfKbOm8fpy08m2dtLQJc01raCk0YP5dj95VpGjRrJ1BHzUOwQaBpu/iuSmRRzjz+D4TUGTz1wC2++vo5vX/BjCIRQFGiskmx5cx2WZ/DYk/9g196DXHTJlbj4/RVV/NshCspNbWXKlCnzjVKW6suUKVPmm+a/1Xv++yholXouaBrcBlIweMJk6uvbGDlsFJ99/Bmzp46jpTqMRp64YgAKixauwAy0AEFilRVgF0qHTWmXPjP7/S/Q3wJjhsL0HNzFzy7+Cd3tsOkDi5HDJ/Dm61swg1XkhQDHYdf2ndQkagigURep6N8YSm0itp/9+k/3pHvZ+P5mlp94MpXRBGOGDqdlwCC+FgPQ+e/byueff8Hs2ccCYax0qcIkknAIVhcQplsSDTyzv9qldPHz5x1LINKIXcgCPpoRYPzEiQweOoRYvA4zEKVU8dR/2O4/0Dz37BpOPeU0QOK6DgJRslr1S5UbR/ZuR8Giq/0Q5PIgNYQaYumSM8ENopkx0kUXPRol77q4vsRxJE1NQ6gfOIxQRRMUJb7QkYqKHlTRdB/PcfBtHwWFdOduPtz0PggVL1ny6Vh4zGQGDB9G9tBuujsOoqk+vX0lA+1YVRg9rGGGNIIBA9/36Ozsprezg5baRsZOO4npM0+lkFHp7chS23gU4fBowkYzAT3A0pNPZvqMo2kaOYJdO3dSURmFYgaZMNm4/hV+/+ufEamqoPfgfpx0N8giqB5C+GAXeeWVtezdv409eyAWdShk+sCy0TWAI6z61nzuWn0hwahNIZXFCEe49je/RVV1cD0C8UqEMJg1ewHBWB3FtA1qjgcfuoHPvnyFcDxPPtNJT3s7/4e9+4qSo74Xff+t2NU5TM55RppRzkISQkIJkEgiCUxmY0w220RjtgNgm2SSBTY5G2FykMhJEgpIIIRyHE3OPZ274nkY2Wffc+/j5ZyH05+1ak13v0yt7n9X+PUvuCPw9HP38vpbzx7NFpH/H2tlJJCkHn0dBCwCbi+SooACbo9C0KOSGewgIFgUhb20JQfotAymLlrAHffczVvvrmL6hGbOPvkEnLSJSwgT8BYxPASqHCST6MV2dABi0VYMvWvkO2lIRKP9SO40CAlUxQe4calBACRFR9cT+P1hpk2ZT1P9BPr7+7DMGHo6RfO4qYxqmcbJJ53IyeeczAN/vJ4///kO2g/tBMugor6Jy6+8gUULl3HZ5VdjWRZafh6SDZJjjpQ1CSaOYI28JRKMpEm5+f+6THMQ/lszYQXHcpFJ2ciOAqLBK6/9BVPsJJrah+w2SUYNsCPMW3gKhiBgY5FORnFJOsmhLtKJIZKZNGoghOoLsHz5cs67YDnJVJQ9e3dzyimncPHFZ1NY4KWv/whetwvTBkEQsJEADREvXk8EgNEttTQ2VXD7r28EdLra9gM246Yu5MzlV1NcOB6P38+sBRMR8h1629u44hdXcdvtt7Nn336WnncBhcXltLZ1Yw0n0QqL8QcCZNMJ/KEQR3bs4Mm/P8XuTVtwTBvHAVFWEIBsOslwtBe3W+L77V9RVRviw4/fwDQSNDePYtqsKfQbB8DqwOjexfDh3cjOyNFrpLhMASnA3r0HeObPv0UKBYiUl+KYaZBltm3YxXv/eB4n2nX00xgJpgiOgOCIVDY0EIzkMW/ucRQVFTPY3kEi6jB6QjNTpoxhx49bqa6qYFTjaAzdpq+vj3h8mM5tm9mw8UtMK4k/ANNmtHDvA79l7ZY1HOneiS/gkDUyWKkUM2fPIWuaJAYGSCWSOLaBbaZIxvqYPK6Zrz7bym9/fRPpZDc3X3sxkCTkDZAXzufFZ1/BRkBE44knHwbS9PUcYHj4MAgm/uDIxDnnXwd9wHEcNK8Xt8/3/1qLOAKWY4EokUxmKSisoKiwnFR3Dx5VZtf2TTz5t3txEgb68DCZvgF27dzD6nfeQykvpaOnCzuZIb+sgd6BBK37f+SGKy+gbe8gA12dxIf7iScTJFJJrESc2soyli5dyvTpM6itrQfANO3/Zaf+1+c5OTk5Of9/y2Ui5eTk5PzU7KO/jAojl7cmoIsCBpCxDWRFBVGmrHYC773+Fg2NVSRSaU4582IkAnR2DRDwllNWOR5ELxAglcygeAUQkyDGQLSwHA1HAFEE0imQBZ5b+QBhr8acGdO56T+vJi/SwllnX0trT5qJcxfhpEUCqszpp5yIKxRBJkR/Xz8+r8Fdd11O256DTJ48HQUFl8vF3t27ufzSS5k6cRbz5p4EWR9Ifhxh5O5XONqjyDYMRo0eQyRciqyEcYwgou7C8Wzg8aevJjrYT13V8SNZVAI4Sh8CaSoqGiFVjuQGx7JwzAgnLV2EI2RxifXIgh8B+WjwSWOk1EfgnHNW4POGsAwNzV3MQHcSj08EMc7K39/MlnUfsOyUE5g5Zw4FDRNICyHStodkwsDj1UijY2CTti00dwifJ4JlKEwcN5OM4SGTdaGbGqLsGtllMUMq3Y8qq7gVH5rL5Ll//oqurgEmTzwOQYpjG1EWz1/MmjeeZcv69fjkCGVNVRhilCcev4c3X3sGPdFLbVUpimoTTSYoqajg26+f5IetH0M2jOMNkFdTjOmBlB5gaMgk4FPRAsNILoWi0kL2795Ow6hR/Pqmm9ixcS3jqwJ8vPpVfG6D2JDClAVzEN0ZsHoQXDJWOouo2HzwwXMUlpoUFqW48er7GNWyFCwVOznIeefN4y/330xRYYSiokr0dAzF4wFAlFQEyQcomKaE15cPtgtZC4PdxcYtT1NRLTN/3hyaxixAdhwkrZf9h7/ioguvIDacRHYV4ogpHDGLI1g4wsjkMkc0ccQUopjBTILq9uOoEpY+iJSOceeVFzPQtZPt+9bR5u1m/ZFhTjvtKjyBck6aOYe6PA/vvPIc0yZNxR2pJ2O6UL2g6gHSGQHV5aWvfz+vvvUgHd070Y1hKqtL0YW9PPH8L/juh4+ZOumkf2dEIWYRpCSSIoDtIhQcRW31LGprx5DJZtHTLkTTi6REuO/31/Lyc38ma+1h4vQZrP/qa2bNOgU7qWJkJArKGqgqr0WQ3YhISKaDhIMtWjiigSEbiJIycgssuBD/VRoqwNGUQ2CkETKoOLaKIGhI+HjtyZfp7tzLfQ//gp9duoRJ00dT11hO49gGjuztpaRsKlECJIwMHreKRho5049HtsiL+MkYJilBwesP89l7/2TX4XX4QhEaGifj9eeRl2dQ1xCkKJwPRDAFCYcslm0giyEEQmDJYBvUNniYNLmUaK+b8ZOm4Q+6efbJh3hj1Uecf/6tDPT5Of2sCymo8CF73bhcxfQPRaluaGLG7OPwlVQxavQUGifMwJtXQzRm4AgSsmhhpofASmHqWVav+Zh5J56OqviwRY34QJpAWEHTDK765emctWIhLWOrefDB+1h++nJEGYrLI6w/8AZzJk9i6MAe7rr1v1h89lmIooOOgCM4SLZOUW012ze+jt9dhc8bQPJmcWzwuBXaOj/h74/fyaJTLsTGhSjIOKaJnkqjCSPH+UR/HxIC/qIgajjLxnXP8vXat2g72Mb5l/2BqS0LcaxiJs+YiT/kxrA0RJfD+6u/5MZbbmHi1NOYesyx1NeV4bZ1fFmVYCRMLJWivq6F0oo6MsksAZ8btxuef+ZhHrn/bq678nJiXYNsXLuB519ciW508u3GLSw84UyaKqfz8vPvsPy0cwCdg0c+4rlnnuX0M05g1Tv3Ul/fjNuVjyNEsfGgZ0GWdARJJB4dJp1M4nK5+O/Be1sQiBsZRMFBc6kIikpdUws9hw5x5+8fxe0aZNqkRqZOPwYpmI+sBSgvbuDTtd9QWBLGXxqmL+kwZsppHHv8GUTcwwzs+ZyIMkgsBuPnHoOphchkkvzw5Tt079/B5GMWc/rZF/HmO6tZsuw03B7/v0+1I3v2ryBSLhspJycn56eS64mUk5OT81OzTUDGEcAS/lXsNbJ9+uXLnDB3CVnDRtU1XG6d1OBePPkjfX/ae+OUF9YTb8vij/i474kb2P79Tp579k0wBExdR/aogAOWNJLJIbhxklEEyeSdVY8h2AMsu/QiyDog5RPv1PFXlpIS0nicABefPAFFHaBp/GSuv/EhJLePrVveY+2X73H1ZdcgiiXgG2mGresGqjrSwDfeZ+IS/agRD5YAIjYCWcDAMnQk5V+ZSdJI/5ss4P6M6286h9/d8RJB18KRy30xiyMNHP1NXwazkFSmC49PwdHzOdL9I1WVeejpEgTBQZH/W4MpkaOlGCagg6ng2DKC7MY025DlFKcdO403/vE00USWcNN4sCMMpjSwXUS8bn55zYXc/JtfUlxaSl//MLIYwu/OZ2hgkIK8IMN6AkESEZGwLAMBC7fLIjk8gN8TxsiY7Nr/OR2xFzj+mF9ixCoR7CRuWUAOK1x02iTu+M9fUzv+bExNIJbp5a7bb2TqpLHs3PE9u/Yd4tRTz2HJiRfj2HmsfvdX2FaSs1bczZFolOKqAI5o4LFrICuwfdOHfPnlK9zwh1fpPLyfwoIgRw4c4tMPP+Kyn61A8KT5dNVfqCjz0zjzRtqHevjw49dRtDSnn3IxvsA4jHiKT758hYUn1SBL+ZCZC4kkBIHUID9u/4Jbb7+exqZaJkwexxlnnc2Nt/2RhvoxaEox/3HpdYiaZ+R9Fw2MdBrF7QbHAmE/ltlHNubC4znuaGLAEA8/fDkdHV38+Z7H0J0iHNHEhpEApCONrGHBRBATSI6NKhfw5BN/Y8ueLdz484uobWiETBqGO6GkgDPuuor5Jz7MkokzGDjSzdRyFy/98Romj29k1PSpOK4yEqYbX6SBWE8nwcJi0uk2BPdejKSF31eOpStIahFPPr2SaXOztB3uZvbkawiGGsBxgTCIrkdRVT84YdCP9omS4yBnSMckRMuHnTZxe9uwjVZefOVPnLriNgKhchBqwHaBYRKP9SIJcQZ7O7n/vvv4y8NPjlSiSiaW4GBKNm41gIiMgOvo/wfn6NFCOLroDTN7dBIh2I6D6FggDoLVDZJAygjS2zWA32sx0PUlGz75gs5DQ0w8/QYqa8dQGAiQ7upg53df8s6bL+MN+Lnp1j/y27tX8vnHn/D2iw8i+Aa58LIb+Oc/11FU0wzCXla9sZKNa7fw57vfwNKKkMkgkSTaa7D2i0385d57mHFsOTXNAgsXz6aq+EZ+e+t1RFM7efCvF3L+Befz7UaoLK1m1UufEwzl44g2lmzjWDqx4SHyCiLoqTQWLtzeEBlbIZ3K4tVkrEwMsgncIR84Fo89cD+/uPHXIIhYaMSj/YRCDpDCpIcHHryPq664DlXxI0k2N95yJeV1ZZz/H+fz4+q1fPfZJk6YcxqjTjgVFBUTmZHcKgcG0qx5/35ee+c7bv3NndSPLwciOINJ4sm1XHjGhbz5TRrL0ZCkJIZhkhgYRpUsNEHin6+8gK5Hee7l+/jTg//FlDnTGTiyn59ffBuvvLSFbEbDcQVJir2oXguNUXg0yPTsQnP7cHQvQkigrfU7brrhCl55Yg09VpqElSE/XIzsuIjFYpQU5oMdIzbcxrq1n5AX8jPtuBNJtP7IR1/8k5defYPXP/iOxKCNL1TDYGyQSEEY2EcqvZG339zBKaecjcubRqICKMNhmFQ6iFfz8fKLjxKN93Lllb9ANy0Exw+Oa2QlCgaOmEWSZGzLRBU0iPeDT+GpB+7grfdfJRDw8/hfH8NfMQUnE8DBQ29vlA3ff8iseU1YloFp5EO6HFsfhuj7fPHKw2xZ+wPT5o5nzZ4Yl/zqbsa3NCP1H+Tp++9my54Yjzyziutuup3nX3uLeDKF2zuSJTVyDrGPzmnLycnJyfmp5DKRcnJycn5qggGICLaAIIAodOHCj+rAqy+dD4lhRjW2IEsqjhXE8ZRgCS4G04d4+uk7ueU/L+XKq2+AVJwtO57nuqtX4AuoIHkY6IzidZfBsHY0q2fkhlJQFCxbpm7UbJqnzicRy6L6C0DyoCghjFQWcyDG8pNOJ25vZtaiIq6/6lf0de5m1Qt34VNMzvrZSoblMFErn6tvmI6VHmDs2ElHx/zYuIQSJLcCchTLjmPZGSRx5DJelGRAYCg2gNslgzAMSi/Y9cydegU+/1gc2UCQdBDBscKIgp+MYWOLSVyaBkg4VpJwJA9jWEd1OUhCFgwTpJFSPGSJZCqDqroZCUKkEMQ4yZ7tHNi7kV9ddiGzp81k2sxTcZfOwrAKSZkePEIWnzRIdng/3Ue2c+zxs2C4h1TnYXyagxpQ8QZc9KZSWKILEzCE1NHPEjIJgcywjpXpIja0lycfv5nJY+ooDpYh2dWYVgG2EEOV07z26gvMnrSYkKAhF4zDLbj54as12OkBDh7axI13/CcLTlqExwry6YufM3vxacw+YQXx4UEG2g7y8etv8NpjK6kLZujb9yV/vfNWqvMjdLeZlOQVI2hhBG+ElqmzSKOy8uEn2LLpEHl546lqPplwaSnvrHmPi35+EZJchq2X4RCgpmE8tiRhOyp6KoPjWAjpNNg6Dz14Jy3jmvj5VdcwaeoCNK2YCaPKWHjcSUwZdwJ22iAT7eHF53/L2q9fJJU8gk8R8YarAR+iGEARJXASEO9n26fvI5mtXHX9dDoOfU3APwZRjNDZniC/sIK0GefuP13DCy89SHFYoa7cT/v+9+hr3cAVPzuX4qJ6yCqglGGIxehpL8c2LOT40eNwhgaoyPcRjSWYsWg5+Y0zSeka111zPScvWYjkNknZBsNWAlsJ8tILz5NNfsWq5+5hetMKRKGCSTOaKfDOoKF8MW41ODLiTtRBN5BQjlZ3ZsFwRhqT632gmkhWGsWvonh8ZKwACbuYGXMuYXBQYnDQwZEcnnj2AV5b9SBdbVsZPrielbddRyi7j319OhVNzYiCzkBPGwV+hVefepAXHr+fTZ+8S1OJHzU/SFqwMG0T23SwLAtVkfhq7Qc8+MhvaO/cRl1TGS6lAVssJWkVEUuaeD0SimjRs2cn1tBBagtlfGVlBMMNWKafdCZMUXEBzaP9OJlOPnjqEQ5/sYGm4gjr9+xg0cIrWbjwEspLahG9aSDD6FEtLFmyHFFW+NMjv+Wfb97PkrktSLEYoyfUEhC3cdWtM+nqGWDVKxtZtGQ6U48PU9OgcunF1/HoAxcxcYxAxBvj9hvvZOv6d9n27VrKa0rJLw7h8Ur8/W/3se/Qbppbmkim4ziWgWBkcdkpYkODBItqcfAiSF6mzj4WhBgYfWz/6gVeW3Mz9z90Iz9s/5qXn/2Ue+98D1WqQ5JCCEIv04914+hxWirPp7qygsFMnGNOPZGnH/87XsVLQWEd8c5eNL8X3DL1E8bzxfpVvLTqr5x33lUQc/HuY0/x1lOvE3RijJ91Cd48P7awE0GSMRwvCT2FpXuZMmUelh2lvKqbH9e2c2RvB9Nmncr0qcuwlEIczUNWNnDnCwgunXQigZ7QEKwijKyKaXWgBDoIFkokoj2MHjeJlBBAUILopo1uGQiSiCOOzGiwJS9l1eP46NM1vP/q79i8aSdnn3E3c487j1CZhyH9AAm7jXCkEQMfLzx1AZ+v3sQVV/4DRaxGpBZDEHGEGDgqLjsMJoydXEFW34YS6EZxZzDNIIaRh2nJmFI/ltzK0NAhNFvnurMuYPbEcZjxPmYsmc77677GEctZcuKlKHKAvoEBjnS1YksO4yfOYLjPgYwbJWujWQO4hDjh/AJeeut9bv7DzdSPaSEbPULb9+uYt/g49m7Zy8qn36a2fhQLFi3h4ZWPcekVV6Gqrv9ZyT1yws2FkHJycnJ+YvL/6R3IycnJ+b+P+O/qlO6uPkavGIseS+EoGpaTHulHIWYp9BRw6GA75114Kaga+ANIQhmff7aTFefPAtOgoKqYIz/upLjQh+oMsX3rBhRfESUlLSTiBjgKoqzjCFFSmT7272ujqX4y/b19BF1umpuaeeXtLxk7LsmunT3s3nWAgweGOHnZDI7sbcU/upK77nqQ/UeiNLTMZM/uVvxqGEEUka0gljKILSaxnJGRz4ZhEIsl8Pv9+P1e+vr6GPbHyaT6qCwR2bJlLcfMOJ79uzYzEO+jsKQA3TCxDI3YcBZvyI2siGDZYDsosoiRTaMn0ziWTSgYZDhmoqoebFFAkCXSmShBn0om2sFtN/ycXdu6+eWvTmfL7r0sWrSIssJiWo/sJ9OTwhA9OLIHl5NEteIk4n0UlVbQu/8wqWSS99/7gK7+GItPPZtQQRmCFkBRRnrjCEIaybEACTIKggGJbIp4PAlikIN7+lj7ybOE/Ec4ZfkF7OvYRSzZTrC2EX/zeNozbjrWfYNb6kPSUowZ10JhRRVh72za9vg4sGsr/3j7HkqmXcvOtmG+2/Itn3/yIVOnTGDBCZN59pWHMbMpvPmQFZNEykswFJEf9u0m6ThUVFby4/bv+eHwYU4/5RTKqyrYuW8bwaIQ48fMof2QRSbVBtYwI2WAGZBigIOeGUCyFWTbQSRLVeMYps2eQLiwnH0He8mLqOhGCW1taQQOoXh0LIb5ft8Grrv2VwwNmRhWJeu+6KKwxKS781s2b3iKLz/4jKmTxhLrM7n7D3fS39rFc89+QMbVyY2/ugevXyU+PIDmMoh3dTG2spqPV73Bhy+8QGWVh1lz5pHNmBiGyM49+/EXgOgNksyYJA2VgR/3M6q+jujAEAG/l+3bthEO+bn1pmsoKy3gsisv4t4/34fsimBh4/F58EoqYxqbyQ6mUAuKsQ3oGuimLK+QdGwQ25KIx5P4fREEQfpv31sDj0tiqP0Q4RKF2355Df5QEfOPW4YsFRAK56G6ZPbuOIKMhqKq2E6W2uo6Ih6wU3E+/XQNoUiIqqoKpkwdi9dlsumbr6msKGXL5l288dZrJOMJFsxbwhPPP8MFN1RhiAqCIyLaEgIOtp4mMRzj+OPm0d5xmPaD++k3EngCAWKmQ3FlOT53AcmkzcQFp+Hze3D0BJXjziZjluL1QFKCkN9L1SiVCVPHcunbJ1Dd5GYg0UE66VBU00Be3I0k6kA3xy8cz8KFx3LLTY9gOyKzZo7h4F6L3/3mHv7r2vtALECTmyE2lRnjFzF7YhXDsWGCgVqKC7LkhUBzhdFcfv75+nccM7uIGVNnsnt/lM4jIoHAIJKapKbBz/tr3uakpQswdA9Gxo8meelNH+L5F57g5OXnkV9Ujqa50FQTRcuCYtPU3MDhTDmRYoXJk47h7NMfIpbYRSBYjZ3SiKciZIzpaHY+fQd7KKjNY97cJaSjw/T29vLNN+sIBQt49tkncdBZcdZ5BPIUDN3BsRVIpUn2ZahubOC7776mZtRo7n/gt/zi5ht5/IWbOOGEM6gsnokkKCiKH5AoLq6lYdTlJHplHnj4Ac48J0lJWREGMkPxGJ5QgP6uftw+AUmSsOwkgmGAfXQbiNPWfgBNySedFDBFC1O0ER2wBAfBga6uIXxuDQEbWZZYsmQBb732Ebu2HSaVkikqrsXQd7P6w5do7Wrj3DMfpCA4mfPPv5ifX3w1A13tDA5J1DRWknUMBMFAsEUkQ0d0QM6kqCiqYt0nXzBr1mIGeg/hGAa2YIPSCUoPQX8hfZk4oVCIP/z2D9x5390c2tfPmSdfREPVWCLBIN9tXk9+UTGaaGMaCQ7s3Ykoikg2yI51tDeYhebxoKg+brvj99z9+zs49dSzaD3Sy+71GxnVPJUTT1rKd9t20Iwr1ygAACAASURBVNnVhcftA8chqxvILuXfRXa5AFJOTk7OTy+XiZSTk5PzkxvJRPp3/x8hi572IEvQ07uFubOWE0uIZFUZTJANA9HUaW8/SO/gMItOOovDfVnCheUUhP2UllejugQkTDra9+IICfyRDN1DW/n7c3cjykFKS+rJZjM4js3AUDs9ffv5ZuMXtLUfZPyEMaRTQ2AYHDN9HieeOJHj559OYWQaPk81EGTy9PkEikbxQ3s7b3zwBb+/6w4iodFo3mpUOR9HlEgbYAi9+FU/dkYgPhhDQSbiD1EYzicxFMclusAQCPpcrFp1Lz3dnfi8Cg31RahKlJde+iubN35KeWkBeZF8FEU72hLbQRIlNE2js6MNQXIIhQIMxwdRI6UYooLhWDhOmqBmURJSufuWn6NluomoFoVhmfYhiRuvv5I//+l3uAMyeRWlOLKF6vahiS5EW0DQXBSUVaJ5/JiOyKdfrefscy+kqLQK24Z4LIkmeUd6l1sZsExE0wFDxbZkDFtE9QYZNXoM6z/dyOzppzJ35mmsXfs12w5spScdRamq5a5XP+Ll9Tv42WmzMYZ3M3/WbFSliMqK5fQN1ZPWC3nuxQe56PKxfPTZV2TSErNnzuXkpcsZ2zyVcLCc3l6D2obpZEwfl1x9Bz2OjOGS0IoKuPr2X/P8m2+wYft28qsqOeVnF7C/b5BIyIuREgl5q7CzeciihiNEEcQEgiMhmMXYdhC8GpIcRFI9CKqGL+LDmxehZyhBqKiBtvY4quTCECSyooEuRjEVnXFTJ2JJBSTTQTT3GLKZHob6trH2q3dZvOAYujuOsPz08zjzzEvJWArX3Xgrxy5ayOjJjeRFCnG7ZLLJGG4nxbIzTqaloIil809kzT/fIZmMs27TNuYvXkGSPKRgOQN2gKt+dx+b9rfz5e6DnDnnOIbbOyjOy6O/p52amhLSqRgTJ49hwQnHMXbSOLweN/nuPFLDcVyih5ryED6tl9ENzaBXIbiDxKzDvP7PR/nhh/WMHTMBny+IIuaRTgpYpjiyWTaDg7t55sWHePeDZ6lvKkbEZNfObUwc04wippCcBC4xRUV+EZGgmyOtB6mvrcEjadRX17N00TJOWnwKZeWNDKZ6eOWVvxHyS3z22XtEIkFuuf3XJDIZzjj/IiRvgEh+JVgi2ALYNo7toMoORUUR8sJ+6mtqSPX1cvOFZ9LXto/jjz8OyeUmaUt4PMUkbA8FFdOIVM1EVTUkNY4i62ieJInBGKpcA04tp5xwCYsWnsWxxy6kW48ytnkcZ5yxjF27NzN/wURmHjMOcPD7PQQDBZREamgsPwZjKMKoptH846m/cfLpyxEjY1HlUjwhL0Y2QHzYoKCgnqUL57J102bee+cjps+oIq3bXPXL66mqrSWheykpLUCSFRxTJhKooKF2HPGhFJg2thVH1TLUNVVy2+23cOKJxxPJ87J69Sr++pff03ZoJ0da97FmzY/8168fwbQcduxazaHW7Wzc+ClNjWORKCTsbaYg1IzbpfHEY4/y6F//SnV1Ncceu4A1az7imFkzWXjqAr7bvJYN67YwY+YcFhy/CLc7REGkkkhFE0Xl5cw69hgKyouYMW8aBcUax8yawMq//55zTjsH2/ZiZQNYVhpZdREI1uEvLsURTBqmTqanp41N337HD9t+QFN95AfzCAcKSDsJbHRs08C0UhhGnJ6uLsKhMiaNO56hfhnBJfOv0QyCMzL4oKggQnRwANvUERwTRZYZHorT0TPAhMkNFDdGGOwfYMrEY9mwdiczpkxFlIeRxIPs2HGYxQsuBkFlcCiF4rJwLHukLNrQwHRQFAuv4vD6K6/TureHCY3zcDkhNFFGkywU0UXbgRR57gBfffgm1117LV1dQzhOOaUFTRT5XHTs20pYTWFlh8gLqCRiQyguF6ZlYeNgCg4WAiYSjilyzKyZfPXVl9iOTEV1Hdt3Hmbdxu9paJpMaVk9u/ftZ/GJJ/GP19/mov+4AkmW/l3dnAsi5eTk5PzvkQsi5eTk5PzkdBCko31fwBF0VHFkKpnPF0e1C/GHKkgIBrJt4bJ1VNvCJascM38ZojsPf1E9Sy44i9OXNFBQ6uY3/3Utc+fMwO128cG7n9HSPJ3WtiHa25MsXLAcIyuhZx0yGROPV+Gtd15lcGiAyy//OXt2H8brdpEfkbBtEbcnj2Cwjv4+CUEOUD9qPP1Dw9iKRjSVoKgoH9G2CSqFFIZKSQ6k0WSTsF8hld7Lnb+5k5amFiJBH0G/C1OPk4j143bJ9HV3UVpUSG9PKzt2rmXFmedyYM9uXnv5WUY3FrN/3w/MmDqBcc0TiQ9n8KkaflnELdpEe9r54M1XmTphNP0dB3lj1QsMD3RQVFhINjVE2CugWnFcQoq1n6/hzVVvcv89v6G37xBXXnMTk2cvxzGG+HbzV8yYPQl/UR7I0siIeUtBsCUMQcBAJJkxCUQKyWShvn4U6UwWyzARRVAdB8FOItrDiHYcx8riUlRSaZOMY5K1bWTNxaTxU3C58vC53GBGqazLY/6Cedx4972cdP71zFt2Lru/fISv3nmf6WPPIz5QSNYpJW4nKKryUVPrZ0zTaGqrpzKm5RiefOwFNq3fyaSxc8imPIxqno8v0MC4yacg+ypoH+qkvLqWlGXx2dq1eAMBrvnPX3GwvZud+w5jCC7KgkEkS8BxHExdx7bTyLKNKAiIgjTSg0qy0Z0MWCBYFjgm/qBKQWGEzq4eBvqTlJXm4ZJ3Yeh9+NxhUjEXmbgLVSzBpYYI+oPE0+2EFBGfqjN+TD2trVuxrQTfbFjL7ONOAKWEBYsvZdLUeUTCJpgaPd2DRML5aHkRuvbvQ/EFkbUCwsX1TJ97PGeeezkpKwCufFKmAKqbweQQJ550PMtOno8v3kHn/q38+tZraawvIxLxY9lZfMEI8Qz4I6VkHS/xJGgFpfTFTTSvxT9evpPNG9aR7FUoKK5F8rUzeVIzFaU1qFIRihTEzHrAkRBlE1HJICoJUnovNQ2lrDj/HBTZZOmSUxBticbqUax8+CHeffs1SvI9vPby39m6+UtmzJiI6Fh4PW5UxcXKRx/l63UbePOD1ejpfm66/moCvgAzpk6ncdQE9rb2MOvYxbT1JimrHQ1pkEwHwbZwnCzYOpaZ5IfvNyFjURgJ4cYh3+8mlU1T1TAaxRvGHyzBQgRBI+OoDGdUPIYLWZb4fvMX9PfvpbyuaWRUfcLgZ6cfz6uv3cn2/Tu5449v4iocpH/oI3yBJNPnnIuSrmZM01xS1kHmLl7ImUvnk1fUQFP1aAZj6wmVDHP/Y7cxZ+48VK/O3p7PCLkb8LvDCJaI5NGoKiommbQ595xLUVx5yEqE4rJqUB0sS0RTwjjZPMaNnoORFsC0cGlJJDmJ5nWjqB6mTZlGdV0t2WSU+ppqIqEA277/gRNOXIqVHUfAV0VZ8ShOPnkpEyZMwrYcmppGg2DhCAmSqX4cTKbOHMPUaZO57fY7OOfsS6ipGU1hQQVd7W00NY4G2834CTMQUCgtqqaoejSIMv39fehApKyCbLqfSCiIZPsR1E4ef2Yls2eegiL6sKVOJNUhFQ+RNjK0TBqNIDq8+c5rrPrH6+zbs48vPl7HuWddjGyrJB0DBGkkOCSYSI7J8y+8wEdrPqWkuIbq2nrSZgpHsJCwEB0bEYfBvh7qa6sY6OtB0xQC7kI8WhPLTl3KA49dw7r1nzBh9Gn41NHMO+48fAGHQ4e+4MabLueeP/2NWMyFKLuIxuP4/O6RIIwtIzoyAg6y6iBgk0lbxKIGTfVTsB0VR3CwRAMciWJfGelEN+2Hv+a9995hyoxjKSmejpUV2PT58+zf8THffPw6H3/4Lp99+B62YzNuyhSiiQyW42A4AoYDliOSSpn0DwyxdOlJKC4vt9z8G86/6AoGh7O0jJuBJ5jH9OnT6emP8vm6DZx7/oX09vbj9Xn/HUAS/lthW05OTk7OTyMXsM/Jycn5P8Q2QdcNUskMtjXSJNfBRHAMBMfE4/GTSVv0DSTYdqQVR5HIL8rHsAwmjB+Lx6thWzrjx4xH8xdTWjSKs8+8Ett0YZkiXk8YlxJAQGP8uCk01DczHM1QUlyFJLt49LEHeOnVJ4gnswwNZZAUFwNDUVSXG8Oy6ek5RL5PpaEizPzpxxByu+nv6sDKphFNCzMzwOq3X2ZsSyN1taXkRTzYVhJRSKPIOjt+/JZnnl6JJJi4FImzzryQ3p4hPvnwM9yaRl4wQDaRIB1PEhuKUZJfiJBJog/307F/F1vWfs4zjz/Ie6+/xKa1nzLU08rcmRM5uP0bOvZsRo+2IxnDOHqCro5Wzr3wdPyFFdS0TKE/YeHx+DFNi8suu4xnn30a2zax7Cy6kUHXdQzDwOfzkcnq7D/YSjJjUVldh+EIaC43gUCAgNeHolioioFL0XEpGVxKBkgiiBlUt4LkkjBFEdHjwxPyk0j1kRdWyPNqdOzby+GdB6kpKiUgqny0eg3LTjqNRMyhpKQOxS1gioMMDh+kaVQDsQGJgoIiuntb+fKrj9iz+3scMnz19WesXPkoO3ftIpSfR+/gEG5ZIxNP41M9LFt8AicvORG3rPLtN5tpqG1i7pz5SI5GdLiPRKqLofgBBCmFrlvoGQFd19GtPkyzD0tPYmeTI38zSQRDR7ZNwj43xfl5CFaKB/58M4899Dv27dhCWPNSFChGtTw4GZvernaqKgIEQyKqIlBVVcEP23ZTWFTBscctIKMbdPb0k0jDA/c/xp133I2ddWisaSSZ0Nm9fQ+mL0xK9dNjKxS2TKGyeRr9MRtvoBDN5UOTFAQjzpLZE5hYn485cADB6mXzt59QWKiwfu2HJGMDyI6DnnVwa/lksyqmECTjDZNx+enPOtial8FEjHETx1BU6EOTUySjncQGk4SDZVimPHLTHIuBYIKYHpmCKEUpLS+hrraRnTu389KLq3j2mZeoKK+jt2eIwd4hxo4ex4MP/IX2jt0MDh5h9erXyWSixOJDaF4FRxapHzMadzjMoYOtbPh6I44poYheurui1FaPIZ0RcbnCCIIbRVRQRQFZdFAkkGQHUbLY9v0WvvrsYwa6uhEch2VnrWDBScuoHTOe6FAMPWMgA44BHgG8soDkwHBHF688/zx/+9uDkI2CaIOTxZITZIBggQvBEwHibN76DTv3fAOxNIHCeiRPGUNDQ4wZC9dcfwbJoe3gSeIOZWiYWEk01c3v7/4Dw9kYtcU1eLwyogKWORJsGBrUKcirZfrMC8iL1FNcPIpo1CbgzUdwBCRZADHL0GAXsWgfpqmjpx1MXULPSMSiWerrRpOJpxAcGcdymDRxJuPHzqCmfiLpdJq6ptE4toKmFhEJ1rDo+LNwuQvxBnxoAQVfCIIlPkTJxO2RaW5uxucNMXr8DBxLo7J+AqVlDZx44jIySYNMyqGwrJ6O/a1Ee3vw+LzkVVWhhQopLasCQyIVE6mtaSI+PITgmKiaRdboI2v0YdoGibRNIm3S3tnFuIkT2LFjBwcPHmTt2vXoGYNMykC0tZHSYwFEwUEUYdasWXi9Xl5/exX9Qx3Yjg62gWNZIycP28Tr0dizayf3/OmPvPDsM1iWRV1DM4apsnz5JTz95DoKC8pQfX4GOoeI9kZpHj2TK6/4FQ8+/Bj+kB8Ei9LSErBBsCUExwHHwMZAFx2Slk1l7cjkvJSeJaOnSBmpo4+zDPZ1UlEcYu/e72jt2M/9D96LL+BHU1Tqa8uYNb2FPTsP0NHaw/ZtbbS3HaLjSCuqKqOqKqrqQlE1ZFWjpLQSRXVj2SrhcAlnnPkzguECpk6bSVrXiScTdPf2I8gyyWQSURQpKioA/ufMOJx/ja3IycnJyfmp5DKRcnJycn5yBnA0E0kAR8ggOhqOA2evmMnPL7kBxVeIaVtkY30c2bcdl1tC0fyIngISWXjoqaeoKK9iVuNMSkK1tO7bS2VhEW5RY+uG72gaP5mfrTiHrK4zZfIsYkMWelYkmxZwqS6qqqrJzysllRDJC9XQ2trOtzs/5IwVy8lmfYhygGRmGEdI4/YohCM+JKGfRE8H5SETzQSXkyGggaBnIBNHcjp59YVHueDCK0il4zz8yD18v20tU6aOJjrczdNPP8bVV/8C2zawBAFbCFEUqUKT/Sw+fi633nwDTY2NtDRPorpyEk5Wpu/wbv7+4N0ENPjo3de47PyzOXHhXD7/8H3GNNbS3FTP1k/eoq7QDYk+Og/tobm5hbffeY+lZ15AVisgUj0B21uGYkl8+uGbrPzrQ9x06y04rhC2oKFpBegJg4JggNa2AxQU5CMrKi6XG8XlAVECxwHTAccmlehi1aon8XhTFOQL/OPlx1m16mUKi4spKC8kqcfRggr9fYdY9frzbPv2M049YQ73/v63/LD5W8477VwmN04hX1RItPYzedQkLDOF6tN54PHfMXnOGMIhH3IK8oUgXYnd1DTlMdB/gF/ffCW63svmTZ+wYPEs6prKGUz24Qt68Yt+BN1GT6WpKi2lurAUTZA4buZcSoIFmAkdEjDQv4Mv173KD7vfYsa06UR7VTxqES7N5v6Hf84P2z+lqrCaIn+QsKYS8Ug8/sgfaT2wk/xAgJKCUr75+BNOmdNEUJXpa9/PU39/GEePMrZ5NEYqiSYKDPW2ser1P7B2/RoSsRRTxp7M7OnnkR8aSzi/kqyQZvXnrxOOKJy/dAWRYC3ZtEJW8BKTROTKCqIuP622GydcRtCfTyJhIkleXJKEnhxCyfSRL/aS5/SR53QwNLAHxZVm7+4tzDtuJmWFJQQDYVRXAWk9gGEFSEsh1OIgt/zlYT7ftI3PvngDyd5BcWGQN15azYEDe8nY7UjU4FVHYelucBQkWSAQdpC1flzeDI889hvWf7OT4WGT2bPnMW3yHCaOOY7OthT5eXVMmTaLlpbxhMIe6upDDET7UT1uvv5mPWs3fIMtWsxfvIDGsU2MmtDC9xu+46UX3uSHH1vZuauDcROOw7C8KFKQvoEU4KLUo2ElY1hWimiiG49HJJnq55hp4/jum3Uc3ruTpsYWEu48fMWV6KZMa3sntZWVKAJogJROo0kiSDEuXjEVlzvK4fbvOfXU01G0MGgypy2bx+4Dn7N+y07OOPcWFFeGxfOmUVM6Cp9chitYBFacghIfpy2dxr4jX/D0U0+x/NTTWbtpDS+++Cx/uvdpxresQJPrcYQQsmSDmEZUDbCyZGJpGpunMq5lMisfe5PmlnnkR+pJRQUiITemMYAgd/H+R8/z9ruvM2/+AjS1Ck2pwrBd6KaAJIj43D6Sw0m8wTwEXaGuZiyyEGLijCospx9BMLF1P3amlEw8jCqEyeqDZLKH8PhFsule/vbkX9j6/UYu/49rEew89KSASJhMwsIwbSRBQpXdSIIXPWHi9brp6m6luLqS5HAC3dJQ3R4wVFxSAfmlfpadcAbZjIAgJXjp5bvo6txJQ/14HDlCz0Abbo+bqqpqLjzvSmqqm3nvnc+49JJLsW0bRQlSGAkjGnFaD+4k4Japr6tF0VR6hzsZP70Wj+YDy8HIpnGrMpFwkOHBfsqKi+hqb+XA3t2MH9dCOp0i4M1jqNvPmadfhMulMDjQTl6BhuYqIhMPUlCUz74DbVTXjCMUycMwQHAEFFHESCXobj/Ix198QPmEWmwcUqkM2ayFkc0Sz8RBtfDm+Vi9+i3avv8UnxbjhJOms3XHXoaSWcZOno/H66BJh+lo3cRwdIips45lztyZfPL1JqYftwjJFcBxBGxHAMdBcAT6uvopyA+DqaPKCqZpUlxSQjAUIpFME87Pw9BNJEXj48++5PyLLsY+mngkwtEAkjmS+ZvLRsrJycn5yeSCSDk5OTk/OWskgOSII62RhCQiHlIpaOtcTeeRfppqmvH7C5DsKJ9++TaJTJyCsjo6+pIEw3mcuHABk8dOolTMJ9bnZmxjDYd2buaJlQ+x/NRFPPbwXVQ1BhGUYUpL6lAkH263F7fmxTB0XJqEZTrkRco4fGCQ519eRe2EGsprSigqmohpaQjyIF6fgMflJhlPsP6LVXz02utsWfca+YF8Coo9DA+3ochugsFiTPoZ1TQGf6gSt8fLvkMHuODi87AFA9uy8HgDtDRPxO0OktYlohkXPtVPKBBhsO8If7n3BXp699E3ECO/YDSlJTWctfwExjbXU11by+y5c7EFmUhhKQuWLGM4bVBdN4r927cytrGeD957nxkzjyEQKmRUywQELZ+47QMtj7Sp8MyjD+CWHS656GKKSmrJEsQRAmSyEmGfn64je2nbv4PV77/JwgUL0dMZBEFGQERwxJFJeg74IxopI0ZTYzGv/ePv7PjhWypKyqlraCEQyUd1aWTTcT544zlcksV/XHYePd3dbN++n1GjJ7NkwWkY8RRCPMaiORfiUgx+98cz6RrYyIqLzkQVKqkubqZz5y6euf96vtq6H6+vjsVzT6bAW0LIVUhNWRMtTTPp60kSjlQTH7ZRFTeCIyIBkmOh2BboWbyShEsQEQ0Ll6Xw9LP34NJ0zr9gGYN9GazM/2DvPoPkqq+933937t05Tg6aGUkzGuWcUEASEggQIGEw0RhjbDA2ThiwD9hE22AbY3LGBgxYJucsskBIQqCAQBrFyd0zncOO98XgU/U8VU/duuden3ufuvOp6uo3PTX/qq7au3rttX4rgqb4cMkSiORZsGA2LQ1TkWwJu2yQGuxD1wSOPmYVDfVNpJIlOsdNp9SdZs9XXby/8SlU3xCKnsVxHVpbp1KuiMhiDC3ezbq1pzCubTZOqZlUv0g83kg614cv4lLT6KepoZbayFiKFZViBVB1lGiAwVKBvnSOa2++k717D1EY7GXO5ClkhzNIlk08HEAw0ohGkr/84WpKwwd55e132bFrF2efdTb7v/qKmdNm4Dg2ihpADyQYSA5RtMoMVLqZN3saM6ZM4cyTlrFkbpxpEyeyat0vmDV1IdVjqgh7pxP0NWEYZQTRQpDzOEIKy0mTzvTj9WlIVPHl7kPUVtWgaWEQw5TKKqm0hah5KONSN6aWCZMmMH7ibObMX057x0w6Jk6jvqEVWfOQqxioPi+nnfItpsxYiOqNI6oB2jumocg6PYe68XkUwn6VZx56gE8/+ZC/PXw3Rx1zBJrXxjDT3HvHn9m44Q1Kw0M01jcyaEBHxwSGBgcI6iqRoA9EG1wTwSqBaIG0jaVzGykXUnzxxX7O/O5P2brxQx64+zaGh3Jc8LPrOeucC5H9CpRiqJ7phGng7LOP4fFHr+LFFx+krn4iDU1rmD3pTJYtuhBfYAotYxezYM46ZKWKYqGIKqroehCEPHYlyaaN73D1FVewcP5iZDTqGzo4ds1plC2JDz94gycf/Q1mJUtjbQ0yQWbPOIps3mHs+E4qbh5bMjBdBVX1YpTyvPnys9x+y5/Z/fl25s5bhKoFQY9hGxLYIbAjYCXA1nFdFVkr8OHW+3n+zWvZvfc92luPZNLkKWSyBSZNnIdZ8SJLARxHBNHEFSpU7BK2LeKUFVRJQ3IrrFq1kE82bWTd2lOxDR8P3nUTWz55j45JE3Hxkhoq4NoWRrmPxtoAb7/+ErNnTUdQm4nHg8QiVSQHciQHLVrbpnL22efRNL4Rw8pjZ4bwSQVuvuESXnz6IRbOm42qhWgeM45gLEpNSwLZVjDLFo///WE+/vB9kgP9LFw4j/7ug4xva2HG1CnEwxGqqxuwDIOaqjihcADLBU33I6sBShUHw3UJh0PMmrMYVfMzmBzCo3lxLQdVVsgN91BbrXF4YA+//cvvWLXkSMSiRSzgJx7QSCb3I1AiV0zTVBtiwz/+xMF922lsHEfG8LHmlG/jqUrgD7l8uOEZPnz3HXZ0DXPGd3/O2MlzaBg3jZrmCVi2iICIiIvsuoi4FPNFNAkK2UE+27qVrj07aWioQVElausSdPd246KheHw899KrnP2tc3AEGCkZfd2B5NogjGwHHTVq1KhR/x6jRaRRo0aN+rdzABlc4etOpBwifmzL5KPN93Det77PUH+RXHcRPWDw0oYnOPO8c8hWwKMl8Hv9yHYesTiMaATx+woYhW289Mxd1ERVnv7n4/zHldfw0ktvMX3qHGobavDoGi4moiRQNjIUS0PkC1mCgRjlEhQqDs1T5hCM+xjoVcHxIwh9SFhoopeot5qnn7iTY5asJlfazZq13+Kci87CUitMnn0URTNKkTyOXEM41Eq57DBl2mwkRcEXCKGpAWrrxnL4UJ5CQUTVY+D1Y9sVSqU00aBDVXWBfCnLjDlzmDRtMZmSw7zFC3hz40bWnH4OariaWNN4lEgjOw6kGDNxHkOGzrKjVpE1Rbp6h4lVNfLTn19GY3MbjY2tGIaNWTbwSCLVUZ0JbW20NLVRKEgUzTCIIRQtQG0iwA/OO5WGmI/vn3s26eEsZqWCYTrIqgcBAcEVEHCwkKiuayQa8fC3++6gs30iHW1Tmdg5n7KhEQjESPX3sX/jBj77ZBPpbJ5o/XgWHXsmdeNnMFwRcSQRURMolwZIpr7kg/c2sOzI1Xj0WjTJR9ir8M5T93Dw05domXYSibrpBLUIZrbIvi/3s33Tp/z1/kfZ/PFW5s1diqz6qCgqtgiuaINggmgiCDZmpYwoCkiSi+SW6OyYwNxZSxDsCEFfA4oikskO4PVqBLxVTJ96JIeSRTRvjJIh0tw2Hl80jKB7yVsicqAeVQkT1iyiNRHe/vhNVp14KpNnrKCtcxVFO4QlyfirvahyK+lBH5m0Q32jh1vu+S7PvPI7Boa30dm+FKcwlaFBDTFaxJVUBEUe2URl5/EqLo2RCNPHTWZ+eyczWqvwiRYiIpWKyWBqGEHVqR43gTHtk6gZO5HW8QtYtWIdAV8V81au5tILzmfH9m109x2ktb0Rj88i4CnQKvYgZQaY3TKW6y+9CM04zPuvb2RSH4M/0wAAIABJREFU84lknHqG3RKakKBcLKH5yvgCDsPZLjQdbFtEEvxUJzqY2DGdxUccQbQ6QWp4CBsvJQMcyYPrsTFFE9Grks/puGKcYllHlOKEIo2Ytoblqii6H8OR6O3tJRqvpqltPJOnTsXFAqdIOChRFRIRrWE6mxqYP2c6Rx93JM++8hgffvQ223d8xOK5Mzl60SKGB3p4543XeO+dN/lq20aWL5jFg3fdzp233sLLzzzN8aecCoJMf28/V37/XPbvynL+5Xdz1NzT8carqG2SmDWvhX2HttM+ZQbJZArBH0UlDCUJJZDg5GMX4AgZtu/YxfMvbmPdmktQtQSBcAIkCRwPjhlBUk0qlZ0EIwGsTJFkcpBANEFD4xgkW2Da5CkUi2UkTaYvdZjm8bXU16tU+bq56tc34poGzU3TyBcUxk2cgiNCRchSdPKIkgdRtHGtIWYdMZnli2Zz5103c+LadaQzaVwXJCKAAoggGl8XhMoovjI1tQo2GT7bup+Vyy9Hlf10tM+ivy+LovhBlChUkvjCZbr7dxCJhVHEAIIpo2k+zNwga05YxGsvv8TqFaspZFSOOLYTPZhhz6Ft6NoERCtIVbWOL+zBa3qJ+qL85tc/5hun/xzbNBnoH6Smqp1otI6tW7qYMGk82eIARXOIqNvPZT88ngsvOI6OcQleefENJnQswXH8aMFaLEkj1T1ALBhgYucEXnvlJR5/9GFWr1xBLBxkz+7d7N69k4GBQ9zyl6vxeyWqq6sJNdYxMLiHSJUPQyiRN0x0X4BipsJA/xC+YBDDMLBsUCUFRREJBWUOHdiKrjukBg5z/KLlPPyXu3hl/RNMaqziR989nzde+Cc/+v751IV1rr3kPgKeDBs39vOdi39PuKYNwh56BvbTXN1AUKtjweozqBk7g7LgwxtrIFe0kSQVyRFRHBfFsZBdG0UVKeeHqK0KUZMI8+Q/HqGuLoamCfzmql/R1NRMKFqLqkd46tkXOOucc4CvR9lcm5G1pxYggTCa2DFq1KhR/y7y/9sHGDVq1Kj//3FAAN2nsGXrJ7iY1Le1k9lr45h5qhtqSGWTmFTh12RkScAxTHyqgSPtwxazPPH0Lbz5xlvMmNbAgnkLwfJx6U9vYN+BbizbYGBwL7gajfUdFEvDjG9vplwu07XnK9rHzmWOO59ySENUBmlsHIdVlLDNPagiOJaNYCl4ZC+JRC3dvT0c7OkmlAgj+zX29/eiEMIX8SG7fsqGgmEqWJUy/pDKli3beeShh/nhRT+nuaWDgb4csuqjaGSQBQvTqaBqAtniMGtOWk3ruClYVMiVRWrb2midOB1/dT25QglJ1skbAkqwjuGKio3K1r2HaIi3UN0yiQf//gQtbe1oigfJdVBtc6Q7xxWYMWM6qYP76D48gB6oQveFGSqWqIr5KRRyTJ82mcHewwQ0lYO9vQTCVdiKjvU/fVuC7KOUL9NfyjJ+3GSWLlpMa+MUMgUBRfOSS5eI+mLMHD8ZI19k3tyFCHqQwYKDI4jYogJODll0kOQeHnn0XhLhSRx71AX0DA9x34O3kerfjzywh5ltY1i8ZgluOE5lqJu/PXAT/Qe7CPkVQhE/U2fOpa7eomugD0tsGnmSL4AgOCPr3wUbZAdBdMB1MawsXjVA0FODIns5cHAPL7z0TzZv+Zg//fEWfEo9mzcdINRSh2XpZI0C/ZkiPaks7VXjKJYqDPYN0ZhQWf/0PaSGelj7zXM5YvHJSEqcrgMi0doEslIm5+7FlRz84TAKMi4SX+zax5HLpjFr1nTiNTHsQIxYbYCUsx0sG9lxEFwHKjm8ko5ZGaLVF8WybIRiiuFMGVkOEo3X4zUsBodSbNt9gFisCX9EJVHREMtlJKfEzrc/4O23P2fVKpXl4+px3GEMy0a2LV792010DZSJV03BSg4yYcxixjW0k80LFL0h5EANdhlU2cKju+SLSd7c8BI7d+7kil/9DsH1kM86+OMaff0HUVSIJ6IYpk7fQAYknVKlgKhaOI6FKITBBllUUdUApWIJUfBjuxVM08S0ZRK1dTiGSTlXQpVV7LJBcqCHDW++iiQUOf30k4j7qjCMMrIHpk6ZiCVZfPb5JmrrEsREL1MmT6Sppo6nX34NsZzGJ5qcsHoFdfXNbN62A6tYQvbH0aJVLF0xkT3bD2Ac3MWtf3mMfYP7ePCJW9F9GmtOuBDMFmLBcZj/SihWgGIeqbqVM35wDW1tR/DaOzvwxwTKRhFZLgFlDCOB6lUBuOHG33LOyb+gY/IaqgLVZAcOIkkSq0/+JuTSuKJL0cjg8Qvs3vspdiFN2NPM2OZaomGNrv3v0NQ+FU1sxBFU8nkNzRNAUVTMcgbXKYLrwRvVWL7iCBxKxJrqSPZkUcP2SH4VFgguOF4y6QKecAvFdA1L5l7KkrkabtlHsZhH80jIko4oioiigygZmE6OXbs3UTEsJrUuwRAAy0IUXBomT+Z311+LFo+RHjbp7d6BI6eJ1qhoqg/J8XLwwFZK2S7axy9k+lQfEyc8ST6XRhBdQv4oRsVlKGXw+OPPIKoiCxa30bVtGw1xkwVzx9F7aAflisHwUB8SKpWSSEVSQQa/P4AgCDiWQXJgkMH+DN2HDlEVjbK/aw8bNmzgcO922tpV9ndtZVL7CRR3pTj/4m8wZ3E71//6RrKlOAODDnFfmFBQRBIVVFVFljUCvjD51AClSorrrrsKRyhzw003gWUyuaUNhtN4XYtjls7gs527+PTD9xjb1sCJJ2j0dptMn7mcQl4mEo+SLPbh8fsIEmL6zCrERC05B9LFLGXDRVI0cGXAQnBBcl0cARRZJFodw67kUCSRSCTMzh3bmDdvFrFIkHff3cBpY6YjSdL/+t46atSoUaP+7UY7kUaNGjXq3839urVeGNnUbSNj4lK2SviCjYztOIJC3iFc20xPQOagz8vfX3+f5bOXEym7yKUSJauCPwSasZF3X3mdfYf2c9HP/0jjuKN58o0trDrhFAb64uSLAnGtnxfvvB1j/xe4fRt44cl7aW9fjCS4XHv5N1jSFqYlqpCtyAQVH8ODKUShjCuI2Igouk7JTjNn/jLUUCezFp5GrLqV6dOn09k2ka4dW5jaFiHdvYuPNzxHqKEeE3BNC69tcdPVlzB7SjMLFo5nuJynKHgRPDq4FcJ+ldRgH17dy8TOmdQ3TSKZNKiua2YglQFPlCkTplPpH8LvSPhEH6FALfv2dRP2+bFyQ/grw/gw+fvDDzKcz3DRz39GS0cHuYpDpSJSKTnUJxLccPUPWH3UMmynguLRkBQXTRMwLBPTlemcuYhxM5cQrG5G1UOkCxUMQcOSPVRFwhjFYVoiIk/fcRGv/eMmFiw+nrTbSduUdVhSE5ok8Kff/Zh03zamTBuDNGYO4+etwBNrQtViSK6ILICOg0eQUF0FwzX4+P2t/PCyK9hyaB+5oMzLjz/OcbOO4Mf/cSXqsvkEY3X07d+HR/fxjydeoapxAt+9+DcsP+F0RH8cPD4UTUYRSpTyfchCiXvuvYUXX36OZauWM5QroPiDGIgEPRFqAn6MbAq5OIhr5hgYznLcid9A94fRPRqK18uXh4aJR6solwpU1cQp5zN4ZKiPhtHsHJ+98ySbX32Uk79xDo2TTiBn1VEqefGYZSRjGFWCfFnHFEE3LPSKiTZcZsXxx9E0ZTa+tjGkuvdx44/O4bO3HkOln2lT23GKKdLDaYLBOKI4slZcck1Eq5eLLziKMU1+nn/uJRYsWkK5XMC08sRCIXTRQ6anhCz62Z9MEm5s4vE3XuHYk9YQqhpDXVULsUgzihSgVBZpbZjKgiPXkqhr5Zi1Z6DHJ+CNTcfVo7iqiOLKSHmHYCjIYHGYvT2HONyzm+VLZuEaZXRVBzmEW7J5av16FDXDh+9tomPMPIb6Mvj8Fo5l4VY86NIYTKcPRSmjKwUqToayDBVRwBIVBNdGxUU1wM6XiXl03GKBgEckURWifcJYkvksQiBAMFhHINHIHTf+nteeeo7vn/196hsmoej1VNeNoX3KLCZNmcbRp3yX+YuPobffYkxbJ2+8/QannL6OmtYxgEqpaDBtwdHMP+pUpGgd7e3jSWWGmDZlHrKnCkhQybrIukj/l3sIxH0g58FT4dxjj+bDFzdw9hnns/TEU0GyEeTDmBxCRkRya8gPgqqLxMIpHrz/blYduw6EClrARqKCKEUZSjq4gstdt17AHddexY++cRaesgepeSqnnf4NorpKum8/r732BkcsPZpi0UXXYrgVF9uxEZ0SsmSQyVkEo2OZPvckzJyLmM/yyfP38OrLLzFzxioUKYyp5kna2wjFRYaKIpbdiCgGMQwRx8gh4OIJhBERsRwDWYdQTMEWSuBYDOw/SFtnO7JgMTzcixrwY5UlfKE6SlkDzaOgecKEA+OJeDuQBR1RzRCIuGzd/gHjxrcwXMoxd96R/PPu2/nrX//CCy88zsrVp2I5ftb/8yNuvPF2fnTx6dh2mkpSp3X8HNRIPaHaSXx1yGH2vJORpChOvkhEttBllXLBoSpUx8KF9djudv7+2P3s+PxDzvn2z+jonMrLb77BypPOYfu+7TS0jaO1vY1la+qob1Koqm7DLlQTDbsITpGQV0GSBAa79hP2+TGNFIKd5MwTpnHkxArj6oPMO+oHHOxOY/rjPP/eJhYfczy7P/+M3Z/tYuWUen5z8bX8/r6/8e6Wvaw67Vy06jqS+RySoiO5Mo4pYAgK3YaF6VbweESsQhJdU5A1L1W19RilPFSyeNUiX2x7lN9ecSGHv/yAF9bfw5I5nTzzxLO0t0RYufII3n7/HcaMn44lqmz9dCunnHwyrm0hiiN5gyNZSMrX76NGjRo16t9ltIg0atSoUf9Nvp5mAyREwLQNhoZKVCXqECwBsWxj++P86e+Ps2D+SmqIEjUUnJKJnghz0SXf5cNXHuHcc3/J51/uYeGSM6hrncmqY1dz4MAXFJIaxXwSr7/EQ3f9nY/f38InW3az9syTaJmwmqJhs+eLt1jUOYlwdS3ZYhGvx4MoWiCaIAggCMiqjIuFK6kUKw66L0y5lEdXPZhFg5eee4rOcfXce8ctLFsym2DdeMJRBcfp49eXnUUi6OHMU7+FR22m7IQpC1CuFAh4ZESrDLZF0Ocjmy/xH1dcg41CNFFLMJagd2CA5poIN19zOddccSlnfvMUJEnkj3+8jscevJUfn7eOgVQ/nmAYC5dvnn4W4UiC5FAOX6iGoiUTr2vm5ltu5vhlM/EFQ6SzeYLxGH0DSRxBwOP1YdgCkupFllWSA30EdRUci+FsHtUXZLC/m7Bf4/Ybfs1QcZATTzuTSfNXoQsaPmyaffDRW09TLOVZetQqcoKfnO3BQkKTtJFMJcdFYiQwdiS1Q8T0B5g4cQpxBKKOQOnQAT7YvJFZK48kWF3D4R2HefbJ5wlHE/gDURYtPZq5C4/EG4iTSmdJVNfS1fUVPo8Hr6zhUxTeevVlYuEQ5511NpQtEsE4kgFCqYKiBwGDluYahga68EXD1I7rJFBVg+GCaRexjBytVVH69+2irTFBbrgX1yrj92pkc1m8usYNv7uCs9YtZ9qCJRzIytiiF8c10MQ80aiGoEikKlBRBDRbRHZkJFcmp3rIql4ymsaJq0/kuHmLqK+Kkcoc5vZb7+SVV1+nZfwUAvF6CmUTy3GRZNBkkeVLljOmYQpz5h3HULoAooEvXOS++3/Dli0vsmTxBAoVha6eXm6+63bmL1vCrFlz6GyfTCxQS8UUqZgylugnmBjHcNHBlXUEVUcW/SPh2RhobhHVsfF7dLLlEobgEo3FmDVzGrFgmJA/gSh7KVkKQamJcS2tNI4domGMhCzUks+IeNUEplNAEg3CsTAHMjaK5kcVwCgbiJKKAKiuSdjMErALBIMhDh48zK03/5nHH3uMrZ9+yqKlS1E0L2MnTSUQryEereFw1162b9mIVS4QCkaobujgywODPPr39Tz014cIhSLUtU2kZAiUy6CrOsGIhxdefJZFK1aAKaF7g+AEwJZAUAjEY8xbvAjZ4wdUQMFxXSRVRCmmkUPKSFePYHLM4kX09yR56eXXWbRiFa7isnHzwzz3woN8+tkHzJoyH5ccjz96DVt2PMa+rl2sPfUUEBQQTERFASHMgQNDGGaB2uoCjRGLv1x5Jydf+Av0mnqGuvfh1TQaGlvY15tjTMc8Sga4hkVAAaswyC03/pI92z/m6LWnYBcNLMeHbFnIYS/G3s3c8pfbOetn3wOjh0suOZfp0yZTFU7gVxX8HgFF1lAdG9fNjox7ug6qoiBgI4oOu3Z9ju71EIlE2LzlU1qbW5A9Xgq2gyF4kDwBJI9M3sgheioIyOBq4PhAcEAsYjsWX3zxFVVVLYhSGK+aYPZRU+n9aojNmw7yhz+t58gVJ3PBBcvY9NFHnHL8KhRbRkRCC3nwx0OEE7WM75xNOmVglPJEAhVefOZ2tu7agOZzCeiN+LQgSxcv57133sSqVLNm3ekEo16OXruE5pZlTJ0xh4bGsSBK6F6H/V19JEITCWjN2KbFUC5FOOSFcpaQV+Uba45n+Yqj0GSNE485ivtu/Rs9vTkmLzyORP0Y+tNFjl27joFkksntrThGjj1b3scyigxLAb71nQsI1zUzXDbwhwKYtovkgIgLgouj+cAqU84OkfCqdH21m6nTp/PKi88ztiGGag5jFJPoQQmjZJAZLlAVr2XRwmXs+upLMjmDdzZu5meXXY3mryZbtHjqqac4ae1J6Lrn6zvs1/vZhNEspFGjRo36dxstIo0aNWrUv5vA/5DxKTISImpUyhSyWcLBADISuVSaUsTLtq/2smj2Irw5hzgacjBAxchww83XcOba1YyddTTV8Sg+Xx3ZoQKiVEHXbIb7HVqaEhik+eSDnez84iDnXbCK/oJLW+dKLMFl0wfPsmbZMRzYewhPPEIwECSVHqKqKk6pUkEQXBRFQXBcRFHEdkwE0UaRXMxKBYB0OklNVYx/PvEP1q07gaIQwxtwKBYO0rXrXS7/2S+JxMbimPWkCiB4BRRNwiNAKZ9FlkVK+QxGpcK+g4dYcMQR1DY0U7EtqqurObh3Jx++8QKzp3dy9Jpj+ezzz+nau5MJYxtoqfPjideRMSw62icgizLDyTReTwBHUMgbDqrPxyeffsLcic1EEzUoqs59f32ESFUdgqigB4I4Dng9Kqro0hgP8dXObRjlIrV1TQxlc+gejYBH4YO3XmbcjJk0tE/BroBi5lGKSR686SoKQ72c+b0f4mpR8NVwxy03c99dd3LSCSdQKZaRFXnk2xYEXARcAXJWhYDfh5zJEHZdPnj2WTbt3krtxLE4ssKh97YzXKpQ2zIGRIl4LIHjOti2SblSwKcruG6FoWSS1ECGmpoajFKRxtoamusayKUyeASZ2lAVTrFCXy7H4cP7yOWGePhv9zGQyVLdNoGS6WBhIWIhugZ1fpXHHroP0TUJ+j0kEhHCkQjJVBLNp7Pxgw3UREQmzZpPT87GFwyTz6ZQKHO45xD5SglH1zEVAcUWER0J0ZXJKwoZ1+HBJ9Zj5wyu/tmv+PjjT9CDIqaj0jFxBgVTZlzHFARJwXFBwMany8SiPjx6iP2HkoRiETx+D59t/4ANb7+AP+ijrbUZb2AMv//zzQxlM+ze8wXzZ81BsMAuWpgWuKKM6PGTHEoTjsQQBJFcJo3f50HCQXItJEwkFxxHwJFEHBwcy6KULyAJMi4KZUvEEVRySZdYUzVXX38yEyY3oEqtZDMCg4NpdL+Jprsk04N4fY2IloXmWIR0P4blIiAguy6qW0ZxTQYzOWLxOPUNddQ3NGA5LjNmzaZUMak4LqbtsmfnDjyKwJzpnWz+5GM8us74qbNJ1DUxdswYDMPg1j/fxO49Xfi9fmbPX0rfwS46pnfi01RqW1rIpopovtBIAUmSQRRwzTJGpYIoCtimiyirSIoELsg+Baw8KA6UskimzYSOiSxdeQyEIjiCQHNdhBkzp/H22++zcN4qZN3DlOlj6Ov7nO3b9jN36lJ+etGlbNr8AdFIhJq6dhTRjyLZ+LxpbrjuDkpph6AepXnqZJxSjmAkgu1KBGta0SN1GAaooohPMgh7XRQ7Q6r3IHNnzaVUKqP7IoiOCVaJl//xAG++tZMzT5mFUivRnPDzxD9eZVxrB1/s/Jj777oZ3dapisR4/qUn+NONf+CLnTuZOnUy4DA42Mfrb7zKokUL6E8O0D55IrFoA+miTaFs4dEjFEp5egcO4PGKBIICtvmv0amvu14EC9M0iMfj1DVORPdWYeTyKNIg/3j4bT7ZdJAD3WW6DuzhxBOPZfrUNmTbwC07+EMCz736OK++8QLJoRQtzR3UNo8lHA+R7d1JY4PKM689yUdbNrPu+PNIDxcwKyZeX4h4rJOWse04koknaFPIBdBUP5LoxcWhWMrR2jIRjxZDcMPo3iBly0Kwi6huGfwetrz9Lid96zzskkUxa1IpuZx+9g944Y03iFXXUTEcREkimxpiQnM9kaCPrR++g+YR2T9cYs68BYh6iIqgUi6XQZQRcZCwEXGwBBlNFHArRagUeP75FwhFIsQiQczcIFf94iK69n5J58x5lIoO4XA1EyfOoq5hLM3jJjF2wlTe++hTxk+eDYofRI13332Pc7/9HVxchH8VkEaNGjVq1H+L0SLSqFGjRv2buV+/C4xEdXxdUiCXGkIVRQTXIeBRCQZkBrI5xrZNpilSRZMeoNyfQfOq5AuHmL1wMktWnkxpSCWaiJNKVUhU19PXvYNYQkEsyOzY/j4X/uKn3PinR1l2zIk0Tx7H5HnL6ekVicVC3H/nVZy06iSikRgX/+Qcnn1mPWPGNFFbE8e0bQRBQFZUcAUkyUbRiwhCAd2jYxkiquonGIjQNq6VpUcuQdYc+tIqHk+RUukgWz55lqfXv0VIb6UqsQS0AEW7H5wiUqWCLDhEQkHue+A+Fi05kgmTp+EPRchXTDweH/FEmGKymwO7NnPEghlcdcVlXHDhd3nhqUdYt3oxH778OB/3DFM/cSo1sQTF3hRaxaEhUUs+V8D1qGTKeWYvmE3co1C2BZLpIvt7BpgxewHBcBRd9+E4JoJVRLbyPHLXTXyx+X3G1FURjsVQvAGSqSFk0WVyx1jCY2ejxpsoZ4dQMnvp3vEWwsDnLJg5jSt+dz8d047k7U37eO7hv9De1MwxRx9N2TAQFR1HFLAFEUsUcUUBxfExbJXw+gRqIl423HY7v/7VpSTqapg0dzFP3Laeb154AdGmBmRVBwEyuQyuWyEW8qApLmYpy2233sLkqYsIBSP4vT5qYzF2b9/JY/feT2MwwZUX/4zXn3iS+cceh+KRkUUXs1Lg2JPWkcpXcEQJv9eD5JTwiya3X/0Lliycia46iHaJO++4hVJxmEopRywaZO+Xn9NQ60dQvfgjMWyrQjzqxSwP4/GrePw6jgCGJCE5I8UzS1AoKBo9uSKbtn/BbX+6i6heTeu4DqbP7mDF6lOYvWgljuBH1kL4/EEECXy6RlfXZt7/6DHWP3UPa085le7BISqmiaDoHLPym8yeuQpNGkO+bHPEiiOZe8Rcjl2zBqtooKKhCx4E2YslyJRNi3gkhmWWyWeyKK5NyKshujYiNhIOjuBiygKWYyA5oIkafj2OqEQwXQ+2oKCoEvGqBBvfeoZJM+K89+7HLFxyBoO9AwQiFg4pECzqQw0ovb3o+UEaPQKqZVO2JRxBoSx5MCWRiqThC+okh5NEIwk6Jk1hfOdkVD2A6g0jKToWMoV0P5oHur78nGeffQrDhpkLllOxNBxHZNmRq1i8YAE9fd188N5GOhpbCPp0vNVhalub2bNlK7VjJ42M1Apfx2C6IigysuYBUUWUFQqVEpKsUC4Mc/3F5/PQo/fS072Hiy76Ht/9znlIiVrQdPqTw7hyGLFSjUI9s6euxC77kGQ/iDKd4+dy8qnXEgrOYs6sBQxnD/PUc09zxKLl2LYX0zaIxFymTGrktZe3IWkhmseN49dXXMHGjZtYuHINJTVO31AZbyCEXCry5Sdvcv0VFzBvUiNmPsuk2fNRPV5cQcYwy8iqREM8Tn/vRg4cfgnZPMi9d9zPdX9+kYCnCs06zD/+fhOvPbeBE49bzZSF02lIRNjw5mvMmDaZeDRGOBxi1/adrH/8n5x88hnkBIeMBY4bAHyooo+hZB+JhMhzzz3ECy/ey4J5RzISLaqMXN0Fk0wmTTweRfVEwfWQTSX59WVn8eMf386lv7yKJUtP5Z57r6e7ezunrZ2PlcngFi3yUi9VLWGymQJ33nkPC+cuJSRBafggzzx5C5s+fpKKFqBk6UyZvIy6ugRfdH1KvDbO/AUnkMxAMFJNupjBI4fBjCOiEAwJhLwtZFICwXCM3HAaMx8kj4Ku2qhqgeHtH7H5ow0sXb4aWfXjq+tkwoSjCVWPZcrkaq644jesXHUsuJCIJcgMDlIVT/Dxxxs51DtITctY5i1cxHChgiWM7EmTRBBdF/Hr/D/HUZEsA9m2aIoHqKuK8fOf/YhlC2Zx/83XcczCiTz7zNuccP4ltI6fxfjJ86lp7sSSQtS0TMKWwhiCn9nzjiRTNCiVKzz00MMcv2YNfr8f8ev/O2rUqFH/O+vq6mLz5s10dXX9l16RSARd1/9bziq4ruv+n39s1KhRo0b9V/0rqFmGkYqS44Dr0L1vL6IiYDgmjbVRRGEIx1PF/pRNpeBQq4YIqxZOeRAxlKMiVUgOBamKdrLt09fpaJ2E3xcA9nPJT77JkbPO5c67/8C3L/wuc+aciSSqBGtKpFKDCPk4B7u28ML6/2DwiwHC4Sh6nUJd20SWHXcqdY1j6cs4OIIHr9eP44CsVigb+0mlUrz87EZ+ctFvSKXSxMNB8sUDaLrFmhMWceV1TzBuXC1erczPLzyNi793KZ38Q7/EAAAgAElEQVTj5uOKjRxIDWHpRVRZQDUsEBxkWeb+Bx7gW+d+m6JRRhRFZNWD4wojP2zT/XRtfYeLzr+GK678DtNmLyTgUVGdMo/cdiPR405j7srjCOQr3PTjn9PgD9PZ2Unz5ElIDXVUNIm8WaHGdClZLrLHS186hz8UxQFUTcanqwhmCaeQ5tbfXclVv7wEr9+PqUXpSjtUN4yhv/sgVX6ZoVIRfyhI76EvuenqH7N4eiffOW4Zf/zdLYyfcxrLjzuLVaeex/fOW0H7xCnE6saQswQcWcH+zw1BDuAiWWGG5RymdZiwaFB44036Nn5OqmhyxjW/5fOSjerTqU5UYRsVNBEGeg4R1DWcSpbrrr2Gq664jIoj01fyU19bg2iXeOrvf2Wwt4ezT17Hd775bX5w3vnMmzsXsXUCulekkh9Gl0y6h7JokVpcWUZ2TMRykpBPwzDLXHfNNUQjAaZM6uCYo5ajaQKSAO9seJ2ufXv54P1NzF+4mB/89DK+7DpELFHDn2+9jdnzFtIyrp1QvJphwUaxJWRbQbB1CoqG49HQY1HcXAmhf5ixYxJ0HXifaLyRdM7AdHUamsZilQsIWHg1l+NXz2f+wjEsOXIlc+acQtH0kS+WcTFRJBFN8uAaHkruEEkjS7S2iv6BAWr8UXwoaCUXwxGwRLAFk8awzOsvvsKrr77O0HCW2+66G1sQMSURQxz5XNksElYEwoIMjkDZ0CiiU7TLqIpDSDfJpfqJxvwMJg9SHZ9APgMPPHwrhvgpHjVMffUMVs88n79ddzKF4UEO7vuK9pkLOPaCyynIOsNqAFsyQDCJukXsYhlR0AgEIgynikSjMUqlEqqq4ooQDRvkM30c2L6ZvkPdbN66k0uuvoV0RUWyXXQZPBRQfC7JvmHqqsaQ6u8hNr6Kd198lmdeeo1odTu/vOaP4Go4Logjk5VYjo0gChQrJTRNo2JXCEgiJHu58dbrueTXl2Dmsvz2P67myt/fApYEgSoMNNQKI7/ZRUAscOtN1zE0vJ8rr/0jGLVkeh1CMRv83RTyffj8zez8PIfXoxCJ9uERMmh2E/msC6rMQN8hXnjpeY497UzcYD1DmTI18QhSqps6b4GeQ59w82+vY0zDBL7oyXDzI49jiD4MV0I0bbyShpH6Jzf95VfoeoBDB12KuQi3PfwY6CaYKXZs2sLEhUtHOrJKJi8++zyrTzkDyg6VYhnNG+Krr/bi6Aqe6jDFokO1txnZVvDYErKbBvEwol7k44+eZNLMc3CcKLgKCDZIadLZw8SrdH55+VUkYg388IKLeW79fWzc1McvLv09/nATlXKGqvoIqb2buPrSi0j19fHbR+8m3jiGW268mxOPP4mA7Ee2C3g1hwN7P2Tfvo1EJxzH/MVrKaQtcrmtWO4+1q//G8esuIKqyBJKpoPiTeJaKai0YJg5qptKmIUaBGRU/wAuBorTQY8Fmp0iVtgGUo7f/vJnDJpezvzOT2ibfBSIIRwzSySc4Z+PP01Vw3hCoRiarCGUc9iFLG2JAI89/CArTjgefyjKoWQOUw2hef3Y0siImYiDgEOxohGUTfySRWV4P36/l6FsjmgkyBvPPcyzD62nc/Z4jjj/BqqqqkinsySicYyKRbZQZHh4mLFt48lkMmi6isfj4aijVuH1+ti5cyfC1+PCo0aNGvW/s8suu4zf//73/+W/f+2111ixYsX/gyf6Xxu94o4aNWrUv9l/7ov5n0r2lmXRn0riCwdJF7Mc2PMZlfIgip1lXGMUr8cAN4MYcBlOd3PTn29A90XJ513Gt3ciCRKVYpGbbryB5qYGZsyYzoknHceE1jqMQhpZFEZWagsutREvf7/nVo46YjaFdAGzlEdVPTQ1NaF7fAwPZf7Hw7kjT3Udx+HZ555m2rRpgIBjw2BqiGyuRKFoMHnKDCZN6qSSlxDsKpYccRaJeAta0IMnlCGSsPGo0n9u0wmFoyRTwyxdvgLLcVFkDUlUyGfTJOJxFMGDiI+7736YlhY/bW2TCYXriEbriUcb2f3FfqZM6GCg+wC9B/dSyAww3LefR+69jfH1MQoDB4h5BJxsknjQTywUxrUdREEmHIpSLpdRVZX9XftwbIvmpgaaGxtwbZNKIUcuO4Tfo9Dd3Y0oijiugM/MUqs73PjbawnXjqOmYxZlfz0F10vn+DZyA4eYNb6B+to6WprHkM1mCQaDOK4wsvlIACwDq5QnLZt8/PHHXPy9H3DnnXcTmNBGV26YhQsXIRtQ8UnIupdMNk+pVCGfz+MLBkjUJFi/fj11dXWYtoPtQKi2hoxZQQkFkAI+9FiYmtYWjll3PJNmz6Bx7Fgcw0JDRnUE/nb3A9THawh6/JRSOQ5+sZsrf/ozHrjnAUwtSrRhLPOXLmfM2AkIOLz10rNcf8UveOSuv/LOS++xetWJCJbIV1u38uRfH2DDS8/TWFvH8ceegFMxUUyLuOyiO2UUt4joFgl7BCSjgFIqotkmVdEw6eEhoolabBR8gTDBYJhk/wCZ9BCOZVLIpDll7Rn85MI/MKn1eHKDQeyyn2iwHlEU0LQKjpACqQdVdYiGw5gVg0goiuAK+FQvxUIBWXK/HlergFgiM7CfqE9i2sR2yuUyoqTgi1bjBOIUJR/+WB3IEk4lh2AW0D0y/oAXSZKoisUppFMEAxHyeQdVjVMsKPj9VSxfuoopkybT19NLfU0T+bLFunPP49Tvns8xJ62hp/cA6eR+SsMH8boDWMM7ufuGn2AZaeobakmns1RMi0w+j2U6qIoHQRjJ7CmU8pSNCtdedz0dEydy5lnfolQ2cAQRBAnTAsN0yGRyKB4d27QxTJtKf5JFa9dx9Opj+XzHbjIDKRChVC7yr0eHtm0DoGsjTy01aWTDGqEQl/zmKhAUFI+XtWvXgiyDJJHODgEWyCWQKiClsSpfEK3KUmE/kAW5QDBmgEcaufq5JlAhEvJ/nUGkki9Z9A4m8QR8FCsGdXU1fPPUb1CTiCM4Jo0NNQz092DZFVBVJN1HdWMb3/n+TwmEa8GUSOcLKLqfki2AHMbxqixZ+U3e+6iHGXNWs2XXNtxKFisJKE1s+3IX3/7mCaS69jPU18fKlSvp3bMHszxSyK6UDBobWqitakSX/SQCUYzhHKXUEKphYAwlEXHJHDhEX9cBREcF519bxgChQizuI5M/xLEnzONgz2ZyxR6WLVvDlddcgugZIlTlIioCuCLhUC2//vUlRGIWl11+OaoU4bxzf0Qi0ohX8/H4o48xlEzROWsuPd1Z7r3/Dn5x+UUIUplYPIjmEamujTKY7EH1SuQKSa6+9nIKhX4kycDvF0kPD+D1ihhGFtkLhWI36KWRW5EjjIyeRSI0N1UjkOPee//AFVd9H9M9hE0SNI3Vq48jHo+j6zqqqiJIMrUNzWRLFl92HeD1NzcQqq4mHAqgSi66R0HCGulCAlxEcG2q4wnSQ0P88cY/EA6F0HQPiCKBUJTGRp3mpjHcfMufQXSpbaglU8pjSQ7egJf6pnrKRglNV9G9GplMBp/Px/e+9z0Mw/i/eYceNWrUqP/vaG1t5dJLL/2/9Dr//PP/28852ok0atSoUf9mBiMVe9llpJDkOpQKGd5+/1260wMcd/IJOEaGv/7xF5z9re9R1zyRA3u+YseOHRzo2sWJJx3LDTdcyQ9/egnBxApEM4Yi9qHaIpILZ5w+n+9deCKzJp1BttBDjT9PrjQWNVhLShhApYh7oIBbPMxz//wNbfWzUfxVdCxegOSNIHijFCpQETwgKHi8PrAdFMUCIcnNN9/MD39wOdgBvHoA2zGxrBxen8Tb777I1GkrMHM6dtlh3KTxlJM7cBnij/8He/cd5VddLfz/ffq31+k9k5nMpE4a6YWEJCShV0GaWEBRvCgKiKICVwVFEREkgCgGQXoLoSR0A1JCGqS3mUwv395O//0RxKvXZz2/e59HXfdZ81rrrFkz63vW97Nmzfec2fvsvT+/+j6RsgZOP/vfKOQtfIqHdDaH1+tHUiUsy0AWLIYG+7DyaTa9vZmTTvsCsm2y9q5bqKyI89lLLmMgWSTR28czDz9AuaSz9MsXk8fBmy9wcNNbPLrmLoaHdH7161t4dMOLlNXX8Pqmtzht4Qoqmtspr23EU15P13CCQCiIYRRoaqjmgfvuZuvm9/n5jdfy9UsvpK6ujsWrz2DA9NAxdylej0puuI9y6zD33H0Hp37hKuRYI7FYGQGjwJJpHUwb18Ly5StZtvpUOvUssuqjiIqt+BAlhXQqQTzkI6KKJEcGWdvfzQPX/IhHv/NdvEEZq9lPX88Rlk2ezYFtB7DH1GMLQSRHRMBGEPSjyYT0CK+/vJHVK1chuC6BWAXDig/RdXHtAq6eIxwIkE8kCKg+jLyBa4lYpoyk57n0sxfyqTNP4cwLPkvOFhFliSsuOZ9FUxpZvPIkgrNWIloFCokefKLFY7/9JW8+/zItjRqnrl7Kn97ZwZevvRcFg69deh6SRyZYVsUVN9xK0fVSXV3Nod27mNRRx+5t2zBdiaa2DkqWQjpfJBwqxzEtVEnGsko4qomNhosCrgqOi54bormliUT3LmTRJRQMY5lB+kdkIuXVmHaJRO4wilSiprIKq2SRLZQoyuLHFUciPlNANV18lk26kET0ymhBiajHJjeUQRRlfKEqCraEFo7TmS+QRmLVGaeTy2Z54hc3sP3pX2Omk6QLIl+67hc0tk6ikOjHR4rhkRpczYM/cgTHcSmmgogC9A5sQvU4mEWZcPlcNvd1015XjtC9jaE977Fp08ts3fYeAiYrF1YwYVwtbw/VM//4ixGVELYlEvBH0fM6Xo9COKCSHOymZlwN7773NvURD9d961pu+8Xd2L46SkII0QXFNfA4BQTNRHI9DA9kuPkH19M7dIDrvvdt5qxchV3wImkRkIoUs2m8wTBHW7COTmfj6BQowEXCAd3EdLMoHshnhplUO4XH//Bbpq84ERTPxzNoElDykktmCVQXgBFefOl5jl9xBdjlGLkiKhKEu+g/tJk77vo13//WQ0hqiJ/eehX9Q7v5ya2/Z7BziFy+hKz389rL66kf08jUhSsQA+VkMllKIwNc/W+fp31CLVdddjVeuwytrhl8Gqgm3f0D1MQauPMHa/jK9fMoZFUUqtBzRTzBFCAgC+OxbIGPuh5n90fvs/6h17j/ySe57cbr6TrSww9v+ikuMo6r4aJhCxKKV8MulCgNJkn09vKtyy/nonNOoW1SDffcezu2VOKm+/6ISRgQQMqB0sP9D9xGpnCA9vZxfPvb9/P6S8+hGG0UpD4kxSVVUKmOzMIsCMRjQOE9MkNb+HDAQ/uEFdhZC6OQpyws8dtf/4gD+3fxw3+/kUzW4LxrVrP8xFV8/dI76e/sIZfrpramCq9vClu3fkikQuPdbX/grZf+xDVX3kapaNI0qYbDOw8QCvsJRJP85v47yae9nHjOjxnXWM2jP7mCdU+u5apvXsqrW7fw/vbtNI0fw6IFxzB54izKa5eCI7Nz70Fsy8WneBjuPsL9v7mH808/lYAK1//gu1TX1HLrHWsYypToGxomGCnHEhWONrSJyJIXzcqjuEV+edP1JLNZvnvTTzBNE59Qwkl0sn3vftLxMUw7ZhbDqRSiKKKoHgRXRHRFRBdEV2Akmaa2roFzzz2P9eufpyxe9vEddvS5+KhRo/5nu+aaa9i8eTMbNmz4L523ceNGli9f/k+tRBqdiTRq1KhR/2A2f+n8OMpFUEWee3UD9z/zKL1GhhtvvomoEOCEpatQNYmIT+W5l57mrAvOpbq2mYb6VspiTQhSGNH2owgpFEdAdF0eefgeJkwehz/QjuzReHztz/jtHzYydsps5Koo2WKe2nAlfb37eetPzyKHmpg6bxVSpImSE6DkBrBED7arAhKKenQbclkUsS2FpobxBP1RTMfCsIr4Ah5Uj5fhRJry8kY8cgiPKuIPSEhOBsstYpjw4kubOO208/D6fNiWTToPsieI6YpYjoAiy5QFvYimzp0//QFzjplFRV0LJVNn1tzpHLtiGVv3HcLUgmiBMLrtMGPqNIhUYNhHZ5GMaW3ludc2snDVUibNmEHnkT4WLDiWV55ZR+7gRxzp7OK2W3/KYDLLrAULyOXzBEJ+HKfEI488zPkXX0I8GsEq5airr+eBPzxKXeskmtsmUSwWUEUB3c4Tq66lsraNoBJl5PARin39uGaBy676FrWTptJt2FiKiCkq4AmR123y2Sxj6utIHNrLs2vv4c31T+L4VO664SZ8OZeAGkaLV5OVZeRghMcfe4jH7rydlcefASgfzxQ5+tfjDwaYOGkqhikSitYwNJzFp4oUkiP4NQlVFAj4/KSzeUxXQXcVSoiYNoiqyIqTVjF38XwG8gXSlo0tQT43xDmnHx2KjFaGrZcI+PyMjCR5+tkXuPVXv2TVGRdS0zqNxadeTEauxpFFZk5tpbKxmo7581HqJuBEa0hbDr5AgJuvvpLBwUFKhk3duHbSOR3ZlfCpPhzHwVHAwkYURFxUBAQEV8Ap5aiMeFHcEjd9/yoyyT185nOXsGBRGTU1MVzBQpZ0Aj4PpYyJnnGJ+Bsxi1nA/STA9DgOFAtE/BLFfB/54iCmJpBQK3B8MVxvCMO08Wgyg8Pd+LwOl192PlddcyVLTvgU11/9VSZE8wTlDDVVAd7b/hHzj12K0d/NFaedyFkXXY03KlF0hhDcErIYZM+enfgCBpYxRH1dNV2DOayKcRzYv595E9vI9PUwf+YMJFfgxOWzeGX9Wwwe6eeDfYOc95nL8XjC6CUD1xaIR4KE/Cpvv7qONbffxKYt2zn73PPwSBJnnnYmkbIq0rqAKWqftAoJgomBQDKtUxavZcXxqzj/MxdSUVOL4g0hqlEMC2yzl+9cezkfbd/M3HnzwJWO/v4BUXA/vj7J6EUZyR/AtA283hBTxjVy249v5azzLgRJQRANvnzhGbzx0geccPrFILogeGgZOw/MGrBEJE0FUeGSs+Zwzz33UhEXeWPjdloaxrFk6Tze3/oWZdFyPMEIhquw+c1n2PPBG2x98ymq4l527dlJZXmIqro6jl22lJ7ebjY+9xrLV18Ampf1a27nhusvZ/mcqYSjEd743RPcufZBPnXhVxFMBS0QwcnnkX3lOEWb3r4eKqqrmTZlHqd/+gsc2XuQFaefxaZNm5i38FgcQcIWFBwUHFQUzUexkMWvlPAoJR5c+wv+9PZrfO2aq5g9/zg++KiHhStW44h/uaYjmEztmMqO7btYMPcEvnb51xnqFZGoRPNV8vUrb+LAoRLnnX8572/ewTEd04nHomjhOlRPOZoQwCML+DSXn/z4awyO7MDjd5m78HgMu5rZS8dw2qqTSQ16kMwoXjlAMQPpYYGa+kokuUBFlcDBnT3Mmz+DaKiakZ4cL2y4n3c3P8eCJXM5fHA3G199lPnz5uI1C0ybNo0t721j74Ek3/z321gybyn33X4LjOyg++AhmqafTclyKRR1Av4QeqHAmLpaKuMxfrPmLlatXMH2j7YhCBKZbJZCscj0aVPJFwq4SLiCiIuAosoMD3TjUQRi0QgTps/FX9kCWoRcSUTxRCivbaWqpp5S0UASFAQUZEFBcmQkRzy6i50r4g/4yRUKbNiwkYsuughN1fhPu1eMGjVq1P9QNTU1zJgx4798ntfrZdmyZUSj0X/Aqv6z0STSqFGjRv2DufxNEkl06U0N8fo7m4i21LOnr5NpM+fylTOuoCpSTn5kAFkW2HN4H5NmzmU4XWBM/XSsogayi2R7UMQMsnM0fiuUhph/7AL8gfEYjsNv7rqBT33uOjJCgJe2byFSVoZYFCivirC3axvnXfpd8NVStCLoeMiZEoYlIcoeBAFURUZwTWQUjKJKeVktw8PDhCI+FFWgWMojSSq5nI7HF2ega4Sxk+Ls3rORK791FvPmLMXUQyw45mLq6yaQLfYwNDKA5K8FWcERJIolA1UCK5tAxiA90MUx06eCL0Qw6kO3soxkhwnXVZNHImvoNLU04VEFikqcou2nhMSwXsT2BVh+2plooShtbVPQdVj3h4epkTKcePIp+Hw+Js+aT3VjMyVTR1VVUqlhHEdg+pzFJJNJli6YQ/vESRiOwJxjV5IpGBQLeeLRMEV/CDtcjexq3PTVr3LonTc45ZhJ1NVWko3U4GmewJZEiaAm4CoeihYIioZPURBNnYBd4vFf/5LJzfWkX9vG4eEhYovmYoQjyIM27d5qjEyO5158nG9f/jlUfw0OGiI2AjauAIrqIZ0pES+voX8gh1fxEzCyxDwanXv38tLzzxPy+QkEoqQzRWxXQVb9eCtjDOdHCFfFGEiPQDiMEIlQFBwmTGwkleyiUMjw1AMPM3XCeAQXyitraJs6F29VK305CTPSTEKMkkQlVUgTjQm8+t5bPPHK69z2xAvsSRaINzURr4gzvHs/55x3EdXNbQzkTWQ1hO2qeLUAOmCoMoYAqusguhIiAqILWDpGdgTRLnDsnA62vf8Wy5ZNobF+AuFQLXfddSfPPPMgs+Y0InCEhx/+OS+9cC8L5yzFQQFAQMBj20Q0jR9c+3UefezXPP/iEyw/91wuvn09sepmYrVj6Dl0iKBsUVEXpzTwEYc/fBXH0Zm+5Byu+/JXWDhOwMl18uSTr/LuR9sYV9/MnTf9kDPmzKRfzpMVC3gUPz61+egubuZ+bv3Vmbzz7ovs3dPJ+Jol1LtHaBJTrP33b/Hob9dy8tlfZOqik3FrpjL/U59j/PJzmDJ1LqWiiWkI2I5LMpGiIhpEk2xaG8s4fsksxs9ajOaL4JQKuJbDjp27CMTrMEUV8eOdr0TXQvSFkGQvuBquIBCOh1D8flxRwRY0XAlUhjlu8Qwsq0R1RS2SGjh6VXKFoxP/AVwZExFHFhBFBdMo0Tp+AmetPhn8QRBkioUDtE4Y4cChvVSX1fGru7/Jk8+sYeXK48GJUjJMbGkEOVvkpE8tpGNckEf+8AK3/2QNZbEqBof7WLp8HsFwHN0CHY35E6porfKR6drCc0+9SHtHK/ev/R3HLF6O1+8lFtQ447iT2L3hPR665WZ+d/ftnHnSDG7+9g8497TjmXfyuZy+8lJ6+veTz/QQjAV5+aE3+M0vfs3zz9/HWZ89DXIhnFIQ17XR/H6K2SJz5s/DlSRsQcJFwUHDFiWyeglZsfF5i/ijIqtXzsGWTKbMXoQuBzjhoisomWkQ9I+3lBfBlcllLXIZifnzz6dzd4nWMTMpFQ1+/tPnufOejbh2E5NnTObZJx/i94/ez2Wf/xapwQjxihDpZD+qoOO6SZrHSGx4/QGax9Uyf/V5qPIYairb2bF1kIs/dRWL5k2lslrkuusuoyzaTNDXiM9TgalLLFm0GMNKMtjr4NeamTDVz75D71BbU0F9XTOz543lqcd+x66t79NU2cKy407nuFMuB60e1VBprwrw3G9fZcniqUjNxxGKxEgkUpimhWsYWKU8rc1NiK7JxEntTJo8gRNOWE1FZQVrf/cAGzdsYO78hTiChCNIuAgU9Ty1FRHi0RCyqqIEKilKUdL60QSSIHpwUOned4R4pAJ/IIZtiwiOguSoyLaCah1NOrsSlEyDjRtf5tJLLv34pjqaRBo1atT/fM3Nzf+tBFI0Gv2nJpDg4zmvo0b9dxw8eJC77777k++XLVv2d0vokskkjz76KAcPHgRgxowZnHXWWf+0dY4a9a/2SQLpk+ZhkYpYGTVV1RQSnVQEPTSUR2hrbyE1eIRITR37d27h5BPOJKSEcIUSnQd7KIuWobg6CDqWoCCIIrLjcPyy5VTXlNHZlcEUXSbOPZErf3IrY6cv5swvnofsShTSBTyOgxKoo3c4g98fxJZdECRECxAFHMFBED6OKZFwBYFAJES+WMACiqU8Xk0EM4ukSfg1EUXyMHbyOLa8vYHXX9tIx7iJ1FVWUMx6CUbj7Nu7A21sANMsMJhI01QeJZ9IMKYmRik/iGVlCAY0zjr9NLz+KAOmQTKRp6IyTkk3GUnmidWMZd/QbhRXIV/MI8gOriMgeVQMFCZNm4miBUgODTOutprDu3cTCgeZNG8+E1asYLsJQtBPLpvGI4o4RpGgV2V8YyPeokl5pJKu7k68Xg/HrjiRrKPgURWC/gCFUomc5OALxvCULCqCIaaPbeKOn/yMoipwyrU30LN/Jy1NYyE9jKObaHoJv2QR0iR6uw5R4ZUopHKUhSsYEdMsXb2KnF1CMRyqZC9GcpCyyiCnrFhFZXMrA0WwRefPW/kBAoZhIEkC2VyKgF9GFV3koo5VKLLlT2+QTyVpaaijbzhFdXkNQymdYkHHtCzi1dUMDvch6jrpoUGCDT66e48wPu7h3gfu59CBg8TVOkRRxKMFSKbyeEJRbFXGVx7FdAVS6RyJfIFJDdXkjnSx5YPt+CNRjp8+ixI6ExvKyfd0cfLpZ2LLAfKlIrGKWoYGU/g1D7ZoIbomAJKj47McDNHF5ejcHN1MUh7zoJfyeCNxgjVjOfH4JYCHAwc6SSaGiYZDeD0yt911F4cOHOTC8y8CwUREQ3IBwUEUdASg88hexk1sZ0z7WLK5IghFXn37dTQFZra0gZnBMVxeen4j8zumsOXAYVqjHrq69jB+7AyqDh/m2NUl1A/7mTN7GvNnzMI+2EWytg5PdQ2FnEPBFBBFCAQCnHTCmWQyFlvfG6Sqtobi4J8IaCqOYDF5xgy+dcP3+e6PbkEKxugdGcTjDRKP1hAORhgaTvPrO+/BNC3OPut0pk6ZQF430bxRaspbePvdLVQFFSY2NtJaq1F0wZIMEGxE20JzTIpmChwR0zTwKBqObSN6vGALR7utRHAsFSlQy6IVDWB5jk78VwEcsExwbRAtvJqXnFHCr0oIqh+sEpTHoZilrb6MPSNbaBwzkcraYcprQ3TMnMyBTuX6QksAACAASURBVHDcPIaRwOOJgqJCQAUpzNRpSzluxYfgCTGUylJZ28xA+gCOY6D5omDY4PFRP3Ea0yfPpe/Ii/jVALLqYWB4hPJwlLr6Zu772T1YB0YY6j7McYtm0TRhEqvPEaCyCrp6oLyC2rFjwU3zpdUrCLpVnHLKSdz1+w246SEsmlBUH6aoUyjmKaus4tDebcQr4ogI2MLRqlFbEEAW0QSXYjpN3skRqatj3YbX+PLXb8ET9FMcGQYFHIG/PCVARZb8LD32BEZ6UtQ1tJJI5ilvKKO+qYPWhjls2/ohr93+W7a/u4EDBz6gWNSpbNDI5rPIoo0/4KG/e4SamiYUtZKungKDh/tJJ21swaK5cSrTp0xmw7MP0XzpKXS01vDGS48zdepCHNMhFKjBtoYpFgUsUSbWFGNg2I8/3ERV7WSwbNz+PKIrk86k2bp1K/PmVICikujuJxoO0zRuBstWT+GZp17hls9FcU0TK5VBVT0INqTyBVxHYtz0WXSNZDFtkTEVtaRKXWR0E92wPk7K/SWpo2geigUDo2iQcxQUTwDZ7yMYCDJy6DCiBxRMnnrkXr5+7XUoSpiBkQIebxgXEVdwQHBwBYesY+D4VVJ6ERsRyzTQFJX/MH2Q0da2UaNG/SOMxr5/MToTadR/25/7L//s6quv5qabbvqr12zevJnly5eTTCb/6uczZsxgzZo1/61s66hR/+O41tFttf/S+4BRKvDixqc52PkBOz78I+eeewEeuR4x4KVvoJ+IN4TfEtGso4FKSRZxRZNqj0ra1kgKYRTXxOPkKXP6ePB393H8RZcTqm0m79aw/OtfYtqxszhv+XImdiVJ79jBk688y2e+9SX6jxxkz979jJ+/hJJu0NDYCq5AMplFU71IokipUCQaCzKc6kPzh8hldSq8Oh4xx9Y/PoFlCEyesRwCU0iFszQ5GnfeeAufPuk0Yo0BasrD/PBrV6C0jOMp8tRMmM6JHaewbe295Pbt5GsXruR3T/+GuslttI+fRNCNcN+da1l04iqmLVjGYNLClrz4w1Vkill0M4Ot53DsDEFiOIJMSc1iSyY+Q0bKWphH+nn7lUew3QzHLJhJ+ZSTWVc4zM6ug2gHBqgezNFz6BBfuvoyksO9vHz/40yumciURcfS41UoqhLe8koKyTQhj4d8IYcrOziOiVHIU+0N0fnudmaNH89jv1nD+eeczEDiIAc699KPzNSLv0sMeG3NbVRYWWbPmERPfz+7ukaQfFWcespZbO0ZJNHgZZLj4BtIcP9Pf8yKb3+Zw4eOkOvKEF29hHh1PXbeIBSNkEgME/T7yKZGCGkCXkXk9Zde5KRVKwgHAzy/fh27tn/IZy68GNOyyRsiOcdPUfSRzulMCFSxXxnEcPN0CCKlbJFsYxUj+7vY9cDDvDWwj/opVZx2yucp94+llFMQNIWCr0i0IYDjWkSkAI6hkZA8eGyTSiHDXT/7LpMmj2PRsnkkR1LsfH87cs5l8gkXkZd8uAIf70zn4PdpuHoCI9XL26+9QLZ/EDHlcMm3ryFnGxzo3UNv925s22XBkpUcSqmEwjWUSzpiMcvrb7zBilWryWazCKJMOp0GRMLhMHrWxhJlXEnAF5IY6drOWy+v5+CeHdx+76McGczixivY2vM+0apJJNMWhhmmNhzH69qUG31UOH3c/uMbMFU/J1/4DcbNXsX2nbvweYvIRg8hzYukRBnOhFCDZei2RcHJ41IiLDhQKmFmC0jBAEPZDEW3RIVm4dVU+np7aa6vZ+G8M5k9q5FLLv4CUyZ1kEvnSGdKVJXFKY0MEfR72b51C+9s286qU8+kqPoZMR0Uv0Y8HMHqH6Je1PCpMh9luik0Bxk+0kVrtJzfXXcDsXEBTjzxFEp5hXXPvs4JJ59LJFZO0YKCZSFKEjlLwJI9SAjkhpN4Yx6Kcg7FKtLmWgxt/YBkKcGfhvZy9qmX0DcsMrZ9CimrhEfJUR1WePjHV7Hjnf38210bsNwSQiCH5C2yc+eHTJ4wg1SfQ2WgneRQgcpImmBUI1swSZsy3SM5RFnDFUBybUTXQnIdKOUpb46T6O6maihForuH4KwpbDnSSdmYdmp8FaTSCdo8Jq+suYWaMQ1s2n2AVVf/kMOJPA3xKN7+Q2htx1BIjeA18vj6D3LjFdfg90PR6+G79z/EjpEcwbI6DN2DoA8xtqGMtqY4jllEDEdxTJXeDCiBCD5NxnPkAIqrUyhlKdZXs++Nnfz+K9+jmBvh3ncfxYjWYjoKoihSKpr09w9iGAaOY2E7Bo7jYCHy1W/eytYtPhxLwzU+ZNP6O3EKeX7/u0f57NVnMljcTcRXg5Qr8Zuf30x9bS0ds5eglY9B9PipLi+jlOqjczhFeXkcOd3JM/fczHmnn8j+ndv43dOvc8djL9I1nEeN1kAxiwEUUSiJEqoqUyrkCCkOVnqY8kiQvv6DaFj8+3e+xxc+fxlLjz+LzhGdbK7A2MZybrz2y3htneMnTWL3wV4SJZUzPn0RBSVAUfOAKpN1Snh9GmIujSiKqKpKIpE4moz2eP7qFuhoPvxph5ypkyjzEkwUqGysokdPUpcp4asM4A9Y/PEPP2X2srMZscsxCCL5qzAKeUTHIKpZ6JLFL9Y9QXciRf+eI7z/whvIfJwLxQJsXEwEPIw+Jx81atT/bf+nse+GDRv+y9VCyWSSjRs3snnz5v/la/52Df8Mo1fYUf9ty5Yt4885SEH4z2XEyWTykw/aI4888kkG9u677+aaa67h0ksv5f333//nLXjUqH8VARDEo18/Hq6tqirNTWO5844fcMEFp6LIPhSfn0DOpkKrIlcqkY956NeOJp4COoQMhZxRQPYGUGUJWzdwRJGrvnUj3/zG5eRKRRKdnZSGPuL6z60iWBNDHdhKo+jj7nX3EPc5VEoDvPvOOtrHTUYVBcorqxjsOYyqqiiSB1s3MSyH8rIy0qlhBKtEYShPbVkl2959nYGePdjGAGed93lKpp9DQwkk2SVvwpe/+nWi4QhHCl18ONDLnt5+FEskNqmNIzt2UzX7FLyzZmCOaUCKN9Gx6GTKm6qpqKjig41vccrZ56JU1GKJPrxeE78/QH/fQQJhP7ZVPFpp4glQyLuAjSm4OLaNaYLH6+OOBx7kS589lZax1fQe2U9Ed1kwdiJ2Ksee7p2khrIsnDmXUjrP+DEtdLa1UDN1En1VMpmgh5Io0p3qwe+I1EbLGB7upbKyjJG+NHVV1fQPDxKbO4V9psHcL1zAjTfdRKskElc1zjnjHDoHTRLk6fHL7NlzhD/d+iEREY5ddSLaMcewSzRJlfmoi5bxs6/8Gw0+LzUzJ7Lmvrsoc3xcf8nVvOWBoCORSetAnipPAEWU0EsGk8ZN5tdr7mLW5MmMdA3z1Ob17N29m0Xz5lHImziuwPPPv0B1/TjUcAW19U14rSE+eulBjGKK3v09tFWNY1c2j5oxCR/cxzcmjEX0NoFYRzEh4BVVsG1EbMKOl3ShiOmPgidEoZAgGonQd7iPsz5zGbFYiIyg8/Qbb1AeKuesT53GYN5BxsVBRHRdEFxKqRRhv4hpuZSyRc7+9IWURWsYKpUQvV40NcS0sVPRTJdg0mZmsJ4d+4cpNESxBIVpS06lM1EAQcO1LUQ1BECyYOOPN5LKlrBdg2JRZ9feTsY2j6OtpoyLzziBL3zlG6x/7V10vYgtPMc5532WWGWIoKQzNNiHL67y4qvvcu7XvsFQuki0tYXn332Ld7d8wPDAIS46YzliIARoKOXlhIwMgpvDdA1Un0J/ZyelXIGmMePYvu8gUiBIZniQ7VteRlNU3vjjm1x55Td5+OFbcGy4+upr6OjooLq6lgsuuJRXX36D115cT0UsyrXXXIO/tg5fNETfcBq8fqrLZT764wt8+NA6/rhtD4FalYu+8SXe//6LBGSJ/so4p331fNb95DZ+suHHXHf9d5k3fTZ33vErPvWZiyAUIlBZRiqdxvHLVA+kCcteEmGBop1jvOanK5GkL+ZSXVfPwOYhurcPYi6Rqa8dR/9gjkBtBaIl0Lm/iyWzVhE33sHq66eppYGhoo7uwMTW2SQzRdSyGEOlIYRymURymJt/8ktiFdUsWX0qpiESisQ+rnR0EF0XwZV4a9OHfPCjVzAFnfO/cymxjoUoJZXJYytxLI1s2kVMa+xOpJhw6WVEIxE40IuvEKQj3kRR0BmpcdBcC49XRQmpWEaIG+76Ebah8+3v/5DB3Z2Mb2gjOZJE8piUsj28/cLz/PTldcw6ZgamBRdc+g3q6iaSzKYpoBCsrOTxX9zMm++/zcXfu445S5dQ9o0Ejz269mhVjO0giAIejwddNxkeGUAQBFzXxXVtXNfFtGMcPlSDbeWZsWAWu3YMcngkQeuYSi74+vnsGRhCCraiORJebE489VQ+ePddFi6Zz/t7+hAk6BsepCYWoj4Qx3EtWuqms2D5iby9dSe2btE8cTLdAylMyUsunccnaggSBDQJycjgET2UiiPkSi719Q0MDw4Sr20nKLt888rv0H34EJ/51Clce8PN1FRXs3//R1z6tSvBKHHfT3/Epy+8lO/98FYWGVlkTUH2yKRyScLlERynhG6auK6LruvIsowo/ucqoKDkUOkVSbkuqWyCtsp6bEentSLK2p99h6mLZnLsigWU5Ah9yRIEVQRJIZ1MEQ36MIo6AG+89gqaZRCVJY6kU0eDGOfjeyzy0fvs6JDtUaNG/YP8V2Lf/zjk+uabb+aaa67h7LPP/i8Nzf5fJaT+1r8iiTR6lR31D7Nx40aSySRr1qz5qxK+Sy65hEsuuYTNmzezcePGf+EKR4365/hkU7a/Gdvg93oxSibxaPnRSiVZpnvvIV545Gk6dx8ga5qMODpJR6dg6lhFHVlRsV0HvVikWMyTKeQZN3kKA+ksoqoSjkWprClj0uTxNNTX4hg6juCyv+swJdclXSwSr6zm4OFOvKpCJpUgHgwQDwYQrBIeEbwyFPMZ9GKekM+LaBv0HtrD7q2bSQ4N4g+E6OobJFUs4QsGwBRwTHBskf5MloRlYns8NLWPxzAc8ok8U1vHI5QydHR0MGnqdLKOTMP46Ui+ODYePIEwJdMlXtPIYCqH7ZhkkkOEPCBaBbLJYfL5PLrpYjpgOg6OZYNpY1suRdOivaODRF6neyBBOBSnMDzCkZ37mDa2nTNXnUxDdT2TJ07GshyOHOyip7MLv99HLp9ioL+X9MgQkmkSk2V2vfU2O998C3dohDLNi5krIHo8DJRy5D0KTixKyrSZMXUuQsHlxQeepnfvYeKRGGUtYxmxTZpbaimPl1HMmciRKAPYeOorcXWTiOKnrW08b+7Yzty5c+kYO5ZMVxeya2IKLnnHxDFMvEWbzne3se7utTx+7/3EvQEUX4BQVRX79h6mpXUijY3NiJLKiy++RFvrOGqqKxk3poGgJrH5jxsY3rODqKVDKs3C6R2UEklCPj9xtYzZx8yhZex4UoaCLmmgytiSi24WKZRKOIrCiCvSnTcYHOijWCxiOeDxR8iULBzZx8rTzmHGomX0ZUxMy8U1LVzT+PgwsfUSj/z+Idave44pk6ZQW1NPXzpFznI50NXLQw8+xrjGcTSU1aEZIqXBNJNa2knnbIpoCN4IjuQlEKlEkL0ongCq5+jud30jaXRHRHcVJDVIe/sUxra0k0qkmdg2jnfffB0jneGU+StoCkQJFEuo6RFIDdIY8xEN+2lqn4gYiKNEy8iYBrsOH2AonyNYXoUtB3AkPwYqOcsmkx1GzyUQrQJWaog3NqznZzfdyPrnnqKxrpr6ijKmt7Ty4dPP886Dj9GmhmjTIlSbEjOrm7j8zPNoDZeT2X8Y27SorK9l8fJlZHWd/V1HMByHkmUjazKRWBh9oJtK2eaU1ccypk4mFvfy1Nrf8JnVJzJlzBjeffuPKJqM39FY2DGB8lCc6VOm0dbWRkVVJbptUnJMkoUMEdVFjcnoSoHhj3aQ3bWHvuFenn7mCT54+U1iYxqoah/H7ImzWffEegL+MKlMnkQ6B6JCKBDjvTe38Nr6d+nat4tiOo1jQCahk0mZWJaM47rgMdEiLmUVURzHIZdJUVNZSUNNFa5VwjVLOJaObek4psX49g70RInUYAb/2DH0e2Wyho0ieFBMGcuV8cfKkSMVDJUgi4d4XSsjmQIFw2IkU8RRghSLOoODgySzGdxAALk8juP3kcgaPPHIo/htATedwivkqIzIdIxvpHVMFapgcnDPDg7v2QFmAQ0HxzCxC0XOuPB8Fh+3lLdeew1sk5ali5A0mSf/8BCSJOG6ApZlAQ6C4OI41icJpKMXfy/JQQ2MImeecwoFU+d7P/whRdtECor87I7f8Kt71xMva6ZvYJDu3l7KK8vo7DyEP6Dh8WkYtoHluKSzOQxbQHfgmHmLaR4/ha6BBHnDpWdwGFdSKRkOtiCj6yaOmcfIDqOne8glu3nuucdJ59Oo/gAjGYMjvUlqahuYO3cuzXWVbH/nNZx8glgkSCJfIm06NHZ0EK6rpXlCG2o4QLqQYmS4F7OUxtGzZEeGUVUVWZZxXRdJkgCwLOuvju79e8gN9qOYOm31NSR6DqOnRnAyKSaOaeTVZ5/i2iuvpGbMRKKV9bjICJKCJLhIwsf7CAoCIi49+w/QVFGBaOhIgPpXcZwISIyGN6NGjfpXuPvuuz+Jff9jm9vVV1/N1Vdf/b+tKPpbZ599NslkkmXLlnHTTTexYcOGv3v8K4wO1h71f8X111/PggUL/uoDs3btWjZt2sSaNWvwer3/6Zy1a9cyceJEFixY8M9c6qhR/3Qm4HycPXIFEAUoFQpIooBHlWlqqEfWAiRKcPsddzBx1gyWnHoifbkEoguaCQHDQbVdCjgUDB1P0EfJLJIpZWid0E5jSzupgk4uXyCrlHHbE89yMFGgvqYdKa8xceEyxq06mR7Fz8QZS/HHGikU8ki2xXNPPcFw3xEmto2lr7uLoFcD16asPMZwYhCPY/OLG79LRUghFgmw/JRT8VQ0kLMVkgUIqCpywUWRfaQlgYTHwhePMLOlneaGNo499RzqK6qpRKe3uw/DFZGiFeTxgOwnkczR1tyKNxxlxPbhD8XRXB0VA0lP4lUEXEnGdFwETxDHUREFEVUw0XAQBZl8UaemaSwVNZVU1Nfx2IN/IHG4n8nHLUREwmtIzJk6EykUIKs4rLn95zhdgwx+uJ+WWBUxLUREd6kVAlRkbXY//yrt4TLKHZH3tm8lVl6GjUDRtNAUDVXWmNMxk7DiZ9tHe1h28pnEO47hgUf+QFE0kWyX9JEhOmbOY84JJ9Pl0eiX4O4n/8DYgsiSpjaOXbaYg/4SJyw7jsmBShK7D5JritDp9ZIRBdSiTixd4plf3Ud7uBxZUtiyayePffAWrQvnMrG2ndaW8fj8ESRRZfv2XcyZPZdSPk9A8/DMk49R7DvAmLif5lgUM5dm0sqVuB2TCM6cSvmyeSSaomTHNNKrRnC8EgUnhSGkUQMGcnkAO+zlp08/z8F0likhh3KvSkMshCaJZPJ5HM3LwEgey1UQJT+qKCEJApIgIgsCCg5+VWakv5flxy5h0vhJ9PT243qCPPn8yxzo6mH5ccsJe71Yusl9v/k9O/Z0MmbyDORoBEHzIAgCtmliGiU0CbKJIcxigbDXgyxr+PwBRNfGtXT8ok1FLE5NRQVtk2czaeZ85i5ejV9QOHnVMqxckmKyG79qYxaSfO2qb9I+bRam4iebtxD8YcJVdUw/5hjaxrYT98SwimBZEoKiYcsuajCM64h4BZlEYpCOaR309HYydUIbuZE+PEaeyVObmHLMVPzlMSbMnknStUm4OuUTWmmZPYX2hTPImyKK5qW5pZWpM2ch+XwYgkTeNslZJvu7DvP+7b8kt38v1SuOoXZaO3HVR13Sobe7jyUXnMPs1ccjIDEh1sCLL7/GUy+8zHGrT6K8rgFHFCnpOh5FJOr14ckPknFHCAZkGlI6Xe+9j298DVOmTCR/uJ9cSCPWWE+7v4at23YSratD8muUN5STGuqmMuSjwjAJiC7vDfUxYcpkdFdFUiN4PFFcR0JCByuBnhtEswXmz1uAK4jEYhHS6QSyJCBiI+Eg4oIgEg1VMXlcM9X1lfjrY9iOSURXEHSbQtEkoQjEWuv54uc/x8DW3axcuAzXkSjF/fQaeSzXosxRqff6oVjAtUxkn4ahiiQMi1mLjuXZdS+xaP4ighEvujTCqy+v4+D+nUyZNIHZs+dgWQKPPv4cK5efjBatQJAUPH4N20gRivg5bvUJZPd1IqbTLPzs+fz036/j1Au/iO2KCAIYZoHOzoOomowggiQebXOTnEo2ru9l7AyRz16ynJYxZZyx+jjCIZEjffvRArN46skj/O63P+eyz51Oa30Z9XVVeINehjIFkGUEVUNRFIazBormQRZdBvoHiVZU8eG+TqYvWMH4Y+ZTsAS8kRh6MYus2KD34JOG0eQkTQ0RXNFgx+5dlNeUMzhgEAtVglki7PdhJLp548XHeev1jQQrqqhum4qr+BnbMg5vKMqE8RMoFIu0NtbhlvK01lZzZM+HNFZVUrBERFHEcRw0TcO27U8qkj45MsNsf+EFNj6/Dl95gB985d8489SVNDXXUG2ZvLzhWdLFPAcy0DZ5Do6rIAkqmqJSyqdxbR0Rm8aGOkqFLFNax7Hvw92cfuqZaOrf/H8pCKMjtkeNGvUP9/di33Xr1rFp0yYeeeSRv3vO2rVrOeuss2hubv7/9R5XXHEFy5YtY8OGDSxYsIDm5ua/e/wrjLazjfqH+3u9n3+ehfS/K88bNer/DX95KvrniiRP0EvJyJMtWaSyFqG4h5xukmmvY29TgJdSnYxXgzToEsO9/aSsAt6WBtKJBKFoiJ7ew9x1/33MmjuHlnETCAleJMUgGvWx4f09tE+YysLFC3A6BwhGVZxgiEFZJyd76R6xcAkQDHi57Sc/ZPXyJaxauYx33nmHPXv303ra6QxnCvQPj2AoPsY0lPH1y79IY3UUTzhIjwuDKQNBDBAI+BAcA0nSKOomeQl0QWAglSTuD1ARF9nXN0wwEkQo5AhFI5iCQtYRMW0VvyDj98bJ2za+eAVDQwZBrxfZlZEUlQ0vv8b0mbNx5QAAluXg8Wu4egknmUd2CmjBOFI4SEp3MDwyH+w6wId7D3PFxZ9nMDmM7A8hySppRaYgQFe+gL+6Erk7i3GwD29Xkve37aGieQxNs+ZQGY0xe8EcyuNl3HbHzxm3YDoVYS99vcPMqmsmm84haWB4wjiTy1nQdhVDqsqRnv0c7jnCCW3zqVjQQtmpMURFZbNRAl8VVv8AF190Aduvv5OWiVPZ19PLxCWLKRrw9G8fosoTpOPcY0kKKn6fB9fKIcd8NC6eTseUDp5+5SU+GujmSzd8H9fSiMYqUVWVXCaL3+/l9PM+QzGbpbquns7DBymLh5l/ynEktm9l66Y/ki863Pf6JkILjsOKRMGv4C/liGs+PIkEpq2julniIQXSg1TrfgpYXLj6OORQGe/9/FoOaV62vP5Hxra0gKqw+IwzqK5uQNctvJKLXizhug5lsTjZ1DAP/PZejnR1UVMR54JzzmGov494rBoDmZNPOA1HVtA8InkhR1HPc8aVl3FoSGdQLSKVikiug+Na+DCRsHFKOTa/up79e3Zz0qqVjBkzBkcPYpVskFU8qsrIQBK/rxJdCtKTM7ENgfJyDw+98izbN/+JsoCXE45fyeGuXubPnkfv4UEWj52FqRkUbIG4R8a1bBRXI+z6MIoW4ViQzqFO+qta6fOG8RUGGaPazF92OunsIFPnzGBw3y5+ffudNHkDJPbuo1CCuuZm9in1bNmzj3e2buWGW36EowmkcwVyPhHbo5G1XURZRXDBVlUEIOBVaQn7WXnxlzm4fw+9okZtx2xaKicSqBnmxjt/weQiOMEAobI4dpPDCZdeysNPraenUMQRRHyyhxrFRs4YqLLIg5vWUZk32TGQ5gvnf5a8kOfgutd4ZccHfPHWH+IWbCJikFC5yLnnnIQeMLECOobRS0WFjKknqW6Mc+RInOOPX00xqqIoEWTXh6VbeEyDoCRz9y/upLo6ygWf+xp9A0mOX30CDzz0IP39AyxZupTKmlqGR9J4vD5yuSzesgBas5/FU+by5u8fZLi3l2Ou/gad+RG0+joCus2Bg+9zw3Xf4PYrv0Olx8f+vk7CoRhKCKKeEKmPepATQe696SaGckl+sOYWdK8XMySjhGDZ5z5NsUIjZZTwhcoJ1oyjmE2x6ORP46us4+wJi2mavhcxUEEmVSIUi5Ip9lAsjVDTVAED/QRDIWiIk+86zPzFy3AsG0FQKJUK/x977x0tV122f392nz29nd5LTspJTkJ6B0IIoYsQRIFIERSx4E9soCI2QKooKiAiBAQEFKRDQg+QQCBASCH99Dq97vr+ccD38X14iuv10een57PWd511yszsOWvmu+e+9n1fF6oqYTtFVM1LsWCQSafp6JjCaH+OWe0l1l60HK/7DvOnBiFTpEoL43ojnLriOPreaee51/YTi9dx302/RNccjlx9FC2NHWzdsZ9wZROjiTTBYAyARLaIGohTcm1OPvsLWIJCumCAKGOUC4QjApl0goYGDw/c+wAnnXgkB/a/wntvv07B9FGcUktX+5Ec3D+KJxxhOJsgXypi58vIlHlj4/NEJy8kFKui0JfDK7qkBpPjvl0bX+HWn9+Ipso01tbyuYu+gi2O782iKGIYBoIwHgRQKpWIRCIYhkFFKMDyU07h4ksvYfmi+WxfvBA7n2Hjs8/whx//hMNWLqHzsCPYI1XgugoVoQiiKGOVipRVEQQF0zIQgeOOWEW5XMYtGXi1f+O99IFyJLgwoSJNMMEE/yz8b/UPnuhEmuBvwkepsevXr2fjxo181EtM1/WPx7ny/QAAIABJREFUvM0EE/wzIvL/BhBLH/zMtE28fh99Q8P4wmFMU6SitoWnht/n6Z4dPP7cej4xdSHrr/wlv7vuFyxZdRiZgEzUH2fne+9w9x03MzgyRNlyeHdvP+FYDQFZwc7leOj2n7Gkq4FaqcTgc09z1bmf5tAVswhGRRwzQX2pSEwRkcNVTJ08iamTWhgdHuDXN/+KqrpaKmuqcWUNyxfkQMklk05hDvey/vFHyRRKhFqmIQVrEQQVzXZxsdHscR8KSwJTMaBcpF0PogsaB/IlfP4AmmFRlmRMSUDAwWNahEQRO19E0FWGU0kqvB7iPoWx4R5kRWbPwYO0TusiW3YoGTY4Irbr4pFgbkst6356HR6/j1A8RkoU0FSNUDDEzI52EMsMOxaCpOLBTwGBvCxQ9gu0+oOEMyUqq2qp6JrCfsmidck89hl5Uh4w4wHSYZV8jY+PH3kYO1/fzK5Nb/DSg09w8M33mNQ8iVB9Hd2qQ6kiyAGnSGN1LfNndrH18fUM9vRQNWMKRb+HUUVCFDQ0C0rFJI1jJtVVleS8CtmKAMJQkcRAigUnHI9bU0U05SFWkJD9CnuEMVKVHsz2OLG2ZmYvWkKtG+GB628jXcri9wXRAyFMRAxXxAISuSyxqkqa29p4u5AjLgQg61ATreWww0+gPthMTAlDMs/g3U/w9FU/5+ML5yNk0jx2xx28eP+DpDa9yWt3P8zQG+9x6LxliIU8r2+4jyWHHELvjp1ccN75VFXXUN/WStEYH1tTAUn3YroOhWKOUNDLxhc3sGrlCpYuX0a5VEb1BujrHeD5p56hoW0KXl+Asm1hmHlM0SRnG7jRIHg0VKOExzaRXRPFMVEci8RgP5hFFs2bT3VlJY1RmfvvvpPnnn6SYq7IzMmTiQQj3HXn79jw6luMZQwmdXWRSu6kZVITzR1tdEzrJFLTSLiqjnnzDyUeqcfMm+iiB0FwcEQTGRvdFCn0jDGpOs7YwB4M4wCX3vs024eyvPP8RtasOhLHzrPrwF4Gxnp56sE/YKbTXPrFrxCZ1sZguUjz3IU8/eZ2jjrzHI4+40z2FfNYkSCDloEoecZTEJGB8Th007LHE79wEDFJaSqVnTMJOH7IC9iqTsYBxVJ59tmX6Jw9j37JIhKMoERjTJo1Gz0URdN0Bvv6qfEHuOJrX2fDHx/mExeeQ10gzo63t3Pnuns4fs3J1LZ10JvNUjdjFl41zOhIgo0vPsUfHn6AuoZKvLqAHoDuAzvAynP1D7/P6+/t4vBzz8YRBdK5IqViCV1TCWgSYiHP4pld5IZSaJWNSP4QiXSOeQvmg+uya9cu6hoaMF1QNB3Vo2FQxvCaDO7bxeADT9JcEhAaYngb4wy4ZaIOVJfLxGNR4rOn4ol6CPpEbvvaV9n15JO8t+lVulauQC87LJ4zn4GhIWYtXkJ/Oku6bIFXxxsPIQY0UqUimYxDQ/NUGttnYIpeTEtDC1ZR3TQVW/RTLpsUEkP84vZrENQ8r7ywgR9f+FWWLjoUNV6J3lDPIfMXYdoSqsdLNpsiGPbwxS99jieffIxSqUQ8Vo1luZx71pn4vRmO/dgCBEqYmRxP3Hs/F130ZV54bCNb30zjU4K8/s7TrDl+KZ31QZpqYlx66cXUNbbQ2NRKJmMQ8IUQBBA/6GkdTyyTsAUFW5BxP0hDEzFRpCJGOYPl5DnYv5cDB/cQCkfomjSV3//mj1R7Je646besXHUcPckclQ1NtNTFSfdvZ8NzCQIBkyOOPwNF0PG6Hg7s2UdDTTVGocjktjZeeu45dM1Lf3c/s+cvxvIH/t05T1VVgsEguVwO13Wpi4QoDyaobWlBra1iQechhCvjlESX4R27+eyXLyRhOgQbp+BxXXyCwGjvQXyKSLmYR9UUSrYLkkC5WEAQJDa8sJFzzvs86WwOzaP+pW40ISJNMMEE/8P8tbXvvn37WLduHWvXrv1vdw9t3LiRjRs3snbt2o+c6vlHMjE0PMEEE0zwP4zggvTB+hDDsbERUXQdQfFgOFDM5mlv6yCRSNExeSr+cJhnX3yJhtZGFixbSigSQVU19r+/h5BHJTEyhCyKhOOVaL4QPo+Xcq5AQ1RnZlMVcnqYFx64h9lt9fgxUNwiqlNGs0rIlknJcqiprUfTNEzDIhqNMmPGDGLxSkRFJW87RFsmIYfjvLvjfRqbW5nRNRtJ9pLNGRTyBqJl4QgOjuAg4CC5DortUBEI0rd/H5lUGkFwEWUFGw1bEHABCZOAbONzHSqDfnLZAuFoBF2wyA52UyzkCUbCtE6bgaPqWOOuGCiSQLmUo1jIMHhgPyFFYtHcWUiiCxJkSwWK5TKhUIhnX3iWvt5eHMNEkVSKRQNBlCmXDHRVZ9mS5QTqq3GiQfwt9ZQCHvJehd5ilr5SllHHoH3+bIYGetixdTO6JIJj0tBQh6jIZAoFJEnCNG3KJZNCPottW+StItNmTAdEXAdkQQTHQtZUIpqHkO7jpttuY/N771LIm6hKgIq2DpSmRlKZMuQtPLaAWSziigKKT0cJeOgZHuCQOXNxSxZRX4h5c+YSr4iSK+RxZQXN66MsigiaTt4wSeRy1HdMRRG9TGrs4IgFh+G3RTY9+Ch7X3yVVsVD6a33mB+uxGdbvLXpddKZIo31HVRH6vCj4iYKOCMJdMtm9tx5tHd0sGTJcsKxSlqa2zENG8cBRRkfucmViqgeDU9Ax3YtlixZTE1dDXV1dcgenXe37+D5lzcyONQ/7q9kmKiiTMjnpyYWI+BREctlfLKI6DofGDAz/r8URCKxCqbPmkdNQzPBWBWG5TA8Nsaxxx6Lazt4PTovP7uBne+8xY4tm3l/6xbKiUEqPSqUTDRRRfOFsSQdU9JJF0wcRAI+P4IjAy6iYCJgIAgGNVVxSsU0jfVRbrj+MuqqvCyZO43mqjCFsUFyqSSNjfWMpLN4whHSeQvFE6CmuZ1lRx1F29RZLD5iNaboZSRjIGgBMiUHPVQxLh654+KrgwyI4AqIrojkjptPUxVjEBM7VaJKDRHUg9h+nUPmz6Wlug6xVKanuxvLdrFdl1AsTsG2SRVz+KIBMsUcRx+7mq6ZM4h4QjjBIM2zZxOtqOAPDz9KpLOd+atW4mQNkDwEq2tZvno1Zdtm7673sQoFAorC5I4Oug6ZTc5xCFbHyAwnUVyBilAACRPbLgAujiih++NM7ZqLLarYkkbJdhFEmUA4RFVtDYrqQdE0TBfKtkOhUEAWJJqaWmifMpWRdBpFVlHV8S4Ts1gipGiMjIwwad5chJCfbKlMje4h6rgERZH9g33kBINYYy2nnnEGsqLj1UMEvWEkZAKBwLhnjyLj80aRJB/FkovuiyIpPmxkCkWDXK6AIkrEAj5EweK1TS/xi5t+RWfHJC677DK0SIiRRBIEjVLRxHEcvD4PqVSSY45dxamnnsKuXTuprasmHo8zY1YnW3dsZCxVJOCvxUFh+fLlzO2chYROLjvE4Sun4tUlFFFBREBXVGrjUV5/5SVG+nrwyAo4ApLrfCAiObiCgC1I2IKEK4yL8iIOkuuC5aLIOp5AJVO7FjNvyTHs3T9CR/M0arwyu19/i+7t77Np4wt4QxGyZQc1FCedKzBrKszt6uLgzl14FY2+/iHuuPN3uIgUSgYjyQStndNY/bETidXWI2ofXdQYhkEikcDr9aLrOplCkT88+jhvvbcTA4F0oUTBsInV1KGHYry8+Q1cSSLo1Rns7iE53E8pnUB2LWTBwbUsXNdFVHQk1UsgGAVJxgZ8QT8OH3gOAuCMt/xOMMEEE/xfzoeG2XPnzuWqq65i/fr1H7n+EUyMs/0LsGXLFr75zW/+VbeZM2fO/6jT+8QY2wT/UtgffP0goM0WwBJcythkbQvBFXBcidS+fk5ecBibX9rIkV0LGSrnuPCWn/DiM0+xpW8PY7ZJhRxn8dz5HLaggy/W1PBe7wiPv7Gf2oZ2rIG91ESi1FQ3YBRs4sFKIr4qGisr8FU202salKTxK9f5nMUIBdJ2Ho+dJhQKU1lZjaLpjCZSlFQfbijKPS++TpNmM9Ddwye/eAEmCrmShOaLoKouoXKWfrGELYrINnhNcGUTYyzBbT/8MSeuOQt13iHkbRNBCGMJOVyxiGZlYHiEja+8zdyly4g3tbLp7c2kXt9AQFE44rS1HOjtJ9QwmaQjUnDziJKAVwJZkZEsg2cfuJ9ptVUM7XsfMxxHDEZxcLGM8av1vfv28ZnTzyGTsYirPnzRMEUPDKd6qZf9rH/wASoXzSEb9lMZq6evmCcYrSTbO0RI8lChRenZf4Bn7r0TT7lA1+Hz0GuqqGpsZcRnEdEV4o6CmTWpEiKYpRx5s8xRnz8d2XZRSy5SzkIRFFI+m5Iu0qH5eeyF5/jE588n3NlGt1lERKFy1jx2hvy4gxaOV8EKeHESCay39iEkR0lu2sU5J3+S119+Ez3SwDEXnIvPTuEKLv5wiJIok8oWcEQPZcFCEUHRVLAEXr7nUTy9g0xdezLXXvUTFi09kpi3imJmD25yH1OmTSXhdXizmMaYMYthRWVox06+8ZVLiVZWQFMDaaHMgiNOBNNl9Zpz2bPnALWtLaRKeURdxxEExjIF1HAIQRXp3rubzS+sZ/aMqbS0NZNMpRAUnZ0HerBlmU+dfTpCIILhuEhlk/c3beKR3/+GlpYWVp1wKkIKJF8YBxlH4IPuHCgggASSK2KXXHyCl09e+A00LUjnPJ3EwEFefeYpTluxkOrGZjJlg3jyANuffYzXdu5Fr6hh9drzUCZFsBSXjCMgiSZZI48qBzElB0Mu4wrj4tVYKo9XzHPfo/dwypmL+davb+ALJy3k1xt+wzN9mznm9JPZPthLS+d0prV0EVmjY9kSD922jmyuzFvv9nLruod4c+dBXnr1OY5ecxyCxyESC5GwB3ARwP3gOSIDRQTXRsRFtl16jTy27dLZ0MBTv17HweF+jj/rZNw6neM7VtE/OMCh9XUURstUVsTpTiQpSyJoEpqkUJRspq1czPTDF5AbsygHKuk4tI6WqnZeefsNdphFpLo6AjkPmZSJ4RqEFJ0v/J/L0MwyRrFA0PQymEqS0Ry+dc3PGTs4QrPl57G7HiZrFjj9vHPIlopknSKirpC3BKhowfAHsBwTPVJJ72iSmvomAuEYiVwOV/aCJGO5IlUV7ST2v0+yVKTqhNW8ZGY4YepM0tkylVqYlJGgx8riiVezrztJQ1Anqvg5+4sX8rNrr2f7u++y5vvz6R3tpSQXSegQKBuYRQdN0Shkk4QjGoVSkppwnHRCIpPN4vXpyGiEfGFcx8XnUVBElVJiFJw8X/nSeVz900s5evVC6sd0zv/ilzmYSBGONmBlCwQrIgwP9RGv9DI0speurhmEw2F27NiNKAoMDQ1wyWWX8OzqZVx+9eP0D6T5xfXfoa4txpe/9j2KWZHbH7qPxq4+/AEbDQ8+USHiDxP1eHjuyfU0NU9j4eEzyGYtFK+AizMuFwnjrlLjpxUH0bWRMJFcsLIyohhiaNRBCsylhEm+3E33jiI3XHw1O1/fQt/mu7jxyh9z52tnsmPffhJSkaNOOJU5HY18/guX8MTGHi79QQPT5yxk9+XfISsIpHAouTbHnH02Y2NjfPIbs0jZLupHnPJ0XScYDDI2NoYsy6RTafTKeja+vpnlio/axiC7e/bi1SIsP/YErvjZVXz3J1dTHhul0q+wa8tG3nhtE6uOOpqOuQsYSmdxfWFEzYcgCGQNm5zhkLUMFFlFBlQcEGxwLRA0Jq6TTzDBvzbf/OY3/yoTa+AfZlL9HxGJRGhtbWX9+vX/aS3/5zCHvyMTItI/I85f9vHOOQSeeer/8zfi3+/Flkwm/50v0odv6n+UGdgEE/xdGZ8/GMcFUXDQFZ1sOce2Xe+xc98eMskiXzv/m4g9SX5w6tnYskvOsBAboiy+8Ew+/62LuPablzE2OsykSW2M9r6HryKOksnx6D13M1kJcvbpR/Pu5pdYsuoT5DQvpgHf+slvSA2M0m875BSJtEdiSPCAXManglywkfwySclh+ZlnYeaLFF2w7BKiXCbTt5+u1Ufw2R9dSXFsEAsRWZbZ+c5b9O3dx5KWerTJ9eNPTXSwxPFiuLK2ARcVbzCIEfSTthxkWcYRJGRHxGs6/OiSb3DND68mXB1lu1kkUy5zYH8vF37uPEYNg9FiiUBAoCzJuIKIx7KxMPDEQjgFB0tRqG3rQA6GKGkKlm2guDKIAiXT5ZAFh2OXXUTHYPeuQR5/fgvzVy6gujFGYWCU1tZZOLFWIpE6irkEjd4Aw72DtASrcQdHCZoZChtepautkznzZrM3kaCtuZUnnnuB7oExzv3E2dxz462sWLSU5QsW4FRF2JsZwQh6GOgbokON4uYMFAlsRSIjWrzfP8jkWTOpqKmiaBhEZQ9l1aXk81ISFCR0ur02pUIviwMBfn/NbXTVNXHcKSch7h8j5gly0Cty869/yRWrVqBWV1B0bEwEXI9CxjYI+/wIRoGiYENfkdxAmml1zfzy5l+i18dZuOYEdhVG6dZG2RcCNTBCtd9m/llnMJB1CWte2taA1FTJwewYjm4zagt40gYNlQ28s7+PWHMHfSUTQw4gSTKuaSCLGoZhMTYyxoP3/4EZkxrYtWMnk1paqaipZ9e+buYvP5yKyiiumcQRXRRBQMpb3H7Tr4hiUdMe4sW7HuLML32dEUsmo8ogOGiWg+w62KgYHgVbkjFtyKbKVMUrGRpNEQoKSJqPsz5/IQ/ecg2177+Lpqhs7RtGTObxKz6qGyO0NLSTtGVsWcYVbUQJTNMC2cESnT+/VR3RJlAdxcgVOfWctbzf/xwP/uoo7Ox+lk2LU+93Oe3YE9HrgjQtOYyTTjwTSVYY1XQ+/oULSKYLfEyr4tWD+7j4yh/gDQa44fF7ePCx37N197vMrg4gOWAJILgioqNiOfL4diFK2KJExABB0thbTrL0pGOYuucgzzz8MEs/dxK2a1Iw0mz/1fNsz1uce/65qEYBfyxEX3oMKRzEVEUk3YtVKpHVNaqTAhgl3FlT6JxahzZcIBSLMRIXqOgr0hgIkFMVXMVhy+tvsnvnNorr7uKnv/4FA2MJdH8NlY0V6CMlLlzzaS796RUkxsbQfF4UCUpmGcHjQZBkXNvGdWQyBYt4pIa9O94i5NMJejxkTIeSK6D5QwwMjlCnVyBHRPbbIxx50RcZS5rYGRNfzIPQ0EahMMjYWJZJkRYKo8N46qKkQzKn/PByZIL0bu+l0O6lWLbImxbloSS18SrKmSwRXSc/OsKT991FMBRhyeqTiXpUXn3+GXZuep4LvnoxWBaWY2KbBt5IGEQR5DJfu/gKPCi8dvPvqJncQDmqs3/sfcQxaIjVURGOY9tJZMVFVnUMSyOT8XDJt67niiuuIlcoMGPOckLx07jv/if54tev59brvk1GdInVahyyOMD3rlhJVJ/M17/yZf7w2x+wc9urnLjmLAbNP/Cxkz7Bnr4saiCK62QQMFFcCUMY328dRDTLRneyIJRxBAfT8SF7fCRLoAUj2FaBVUesxTPSh5DPsG3rQUoJOPmUw9m+aztVzZOIOBmmBOfTu3s7Yt5lyuRKrHyRZceczuqjTyKnevFWVmJ4bbKuQKC5gUzeoskfwerdhyOIWII83mkquOzdtp2339vGyaedgY1ARXUVzbEG+l0LfzRKbmiMK396HRXtDVz+mc/x2W9cAl4/kmPx6kvPsmvrFmLRMPc/eBeXL1qAZRTwxqsoFbLc/etfks/nUUQX4c+RFeDgjI+Luw4IDhMi0gQT/OvwUSLKFVdc8RffC8L/fXOun/3sZ1m/fj2tra2sXLnyI32G/1FM7LD/jDj/jfV34EOB6KPa7CZEpAn+lXAlcD+YVuGDglHGAdci4FfY8tYLtM5qIx0KQT5PUDaximlq9BiRcDVX3/hz/NUK13znAqIVXvrzSRR/JbtzaZTaGB+fP4NPVUfRSeKNQVhw8dkmAUng+9/8MhkhQXVAwD/Uh2Sk6TX6KXhKpA72EBY8yBUNPN03yNm/+R2japxobTvBoIhr7GF1hYDwzma2v/cuRU3B1FWy6T6ef+gu5Ew/bTVx/GUJxRawBZGELjLs1diRLuCtn0JVw2Sy5RK2bFMUM3hVDb8YQC7qTJs0g/f27mSskKQklJi1eClt848l5WsmGYzgaazHSidJJXuIaAqBZJFoRS0lQWa4YDD/Y5+iVN/BAB5yko4sqaiiiCiC4Qkw4/gzcMNRfE1+bvnji7zwpkm8eimJgRTbd5fY2Jun3DCDnoyNXMgTES0iQYmD5TGyAUjZY/Rue4FhxcvbRZlw03R8hhfnYIplsSb+dPUN1KsS1bqMT5MYHRwl4KqoIyU8gk6vY5FvqOCVzCD3PPUEriQzXBFm1pGrEIolMvv2IxZG2Z3ZT8lXIjCcxnGgVvVQZzrkDvSQKed5s2cPmaY43SGRfsVm43MvYO3Yz1M//wXRgEbGTmNTJmdmyKk2iu0gpQqUjDJ+TxO7DIk7d29h1OthzWe+wphYiS00IKf8xBoD+Bsb8Hv9uLsGePvnv2PzTb/Flx1D9hXwxSSsYp6446G2soqewX7CbQ0kVYeMBgYWQjmPz3UIiQ5BS0TMGDRGq4mqIU459mQ00Us+VyZSVY8ajpC1XMqKTtm1QLYpWllOPe8s5q4+FqmynnO+eimjqTLFRAkkkUBMI1Qco8kpcOD5xwjIeUrlITTZZGa4kl9+/bt8+5zz6O8+yKgiM+wPU7VoJceuOZ/Dl5yI1wpQDPiZe/RKEqLJYH4ET0TFEAsoGsiyRCQUQBYtFEtAL6qoeQUvOoVSHkvxMZSSCPgXYZar0UMdrFz7eTpWrmbR4nmsmncoweEcSrGALZn0OSny+SKOA4LgEK0OcOe9t/J/LvkCX/rG+eTcMRqmVOJ1EmjGMH6tjE9z8KkS5XSBiDdGOmcSaGzFU3CQR3MMjWZ5R3IZmtFE09oTSMsCQT1Mc2Mn0xcfyahp4Qn6CUkFPJkeqmWHgG0R9oVJJAr4ghU46rjxeK5QIqsrZFSXCo8H8mnKxjDPPvJbvn3eJ0lsex1JMThk1SK6ls4i3buHOy7/Ltnt76KLMqI3QGNLO9v2HyTc1I4WqmMsaeAkTWJGibuv+y7pfa9Rr5jYmTy6EmI0J2Hhw68HKIz24eRTCJJKKpfFCZZJ+vKkxBxhU6QhLfLMHb+nd8ceysUMif4eKNr4vRqp3BBa2EPKMBhOS+TsCClbRa0IY3h0AkWVWf4mmuQgmmHjdRx8EQ9OUODoBXPQc2naOyrJDe2mqzbArheeAquAm04iSzpYXrA0XNkhZflJlRrJW80ccsJpUA0/vuRkHl/3Izo6KsGSEGQNWXMRFAtXCpNKh+jvreLAPh+jo0EyY1AlRdAZoipWJmuYXH/bk5S1RkytzFEr6/nuV46j1peiu3s72wYSVMxcjlQ3h0+d/212d6dxPX5SokVBKFMy81jpMbKpIQSvjKG4+JwSD954OT1bHmLTq7eQKL9NZa2NkRtAdwycXJZiLk1ZdCkGwlTPXYQnCKee+ilmzeigZ/923KLB0J4kk6umoxVUzjjxY3gEnZTRjNc3jeGcQyHnQkSnZGbpPbCHcjFHbvde7vrGF3jkqh9wy3cuIbd3N426SkfMR0gqkc2OIakSKcPAqYpwwlmnMTpwkJFsH0ccs4Sh/v2kFYtISzOu6kEWRA5ftQo1HGDxysP5xve/zb7ePYQjOh6hTMjN01WpUu0mCZRTBEUBjQ8tkMa9xRA+PNlOMMEE/yq4rvtfrr8HH9a1999//7/73Ye1718jBH0oIO3du5ebb76ZK6+88iPXP4KJXfafEfO/sf4OrFmzhkgk8mcV9UPWr1/PVVdd9WdVdYIJ/tkxcTBx/sKmQQLyo2Pcf+ftNFZEMZKjKGYZzQsVxTLNRZdiMoldKOEpWEzVQnzlogspymALAhlVI1zQqM5KeH0KX7rlci6+8HyevfcBRqUS3UP7ueuG65ntquh2nuHiAOE6HxUqzDJEmosmwdn19JXH2NF3gCdffoWPr1lL2PHjdKd5/c4HePzqa5kXDbJr44vMnTETUVRxLJf6ijhVUR+JsQFEn0pGEykoIqYIsg2aKeFzdb596Q/IqgrDfolXureTzAxg2ibpfAHZ6ydaVcX69U/xxuaXaY9GsUcTHLniSARRQhYcSmNDdOoKnUEPz991Bz+76CIGdr5HYqAHvyKTzucxULFEFRCRnXFPJuGDCLye7bs5uO110r376O7Zw4+vuwol6CNYW8mtT9zDSFChoBpEdBjZtpX7rr0GcTSFx5JJJkqsX/8aqhRmyqJD0RqaGSmaaIqHoKoxq7kZpVhgzozpzJ83mxtu+ilPP/0MhXQBHx4CHj8E/Gzr7+ZgboxlK5YjCyLebSP84te3sctrIDbHee3qW+EPLxPacoA5pp83b3+Yqz7zRe7+wdVkD/bR0tLOyo+fRNGnMlbO4w14mNNYx7JJk1j1iTVkRBfZFulQI3QIPjr1KP68gWvbWJrA96//EZkKl0WnHsNZP/wKCU1izPXRm5QolypYevzZrDz1PLzeOLddezM1ToALTjwDHyq2K2IhEvSE0QsSnpEMDapOfiyB1+8nWUgzmBmliE3WMTBUSJby1DQ3c/InT2PRsmUYjosriAiugOIIaJaI3xDx9uS494obuOW7P6KztYU5yxaz5Iw1zDj1BN5ysxTqI+D1EKwIs6dvP36PwHU/uIyAazE40I3XJ1PMJXk328+uFpXoBUfz9R2P8pbfZMArs+z4NeytjTG48hA6bvw6377yJ0Tq6vnk2Z8GUUCUHHyaQi6VIujV0RUFARsZAV3UCakhBGu8sddGxnZ1HCeOVfSRz0jkRD+FUIRvXHEVp57+aT5+7EmEvH5Ms0xOFemLhEnWVNDvFchnoJSSAAAgAElEQVR4HPJmlpbGGk4+9HBqCyLhwRJP3ncvd9x8LX07NlGpFkjseo3f3/hD1l3zPRpiPnq695F3TKqaG2iqbaTOH8McTDCzopFYwUMx66co1iO0L+arP/op/QWXyvoWrv3J9Tz0wCNkEkVSKQNBCpFKW7RJIcSQj4rJrVh9SeqFMEW/Tr5sEB4oMmf+PFacdByvvPIa4KFsSrRMmcnl19yAJen84pe30xhqRCgpDAgl9g8OsfGR53j3hS1Uh6rJiy5JJ09nfQV7n30GKTFASLSJeCRKmRQxr8LN117BCw/fR2NYISyWqfRJeBwLXIdSIU+xd4x3Hn2eXPcQj993Pz5ZJO71ITsguA6uaGKLNrboYokSlqBgCSKWZFCWwBuPYAVVSnV+dlhDWHGVESNJMQj+lkqmL5nP/t5hGhtamDKpg2JmlGnxZo466hAef/SXWEI3eNPkyylUx4tmR8kmZLRgLQwN8O1zziCaT4NdRvc4gEkhfYBrrr0E00hRW1PFtddcQzaX5tNnfpLLvv0N1t30Mzoadc779JGccvIqhhKjbN+zh0Q2Talo4PeEWDB7Gm45y/Z3tjMymMSVvdR0tKGEfShCCS01wlj3MBseeY4//eYe2iIVBATo33uASjVIZiDJhseeY+a8uXzvxz9k5569YMukhnOE/VFEQaGMguWNEGiaimNKJLpHyI+NUBUJgejira4ho3mIz+miUBVEa6qiMJTh59dcR0D3EHIdpGSKaXqESWoQp1DGp3upr6nGMg3WfvrT3HbbrVx3zZWEfBLxgIZHMjFKaYqDo2QGB9j77rso6QzTW1tYPPMQjj9sBabpMjqSxnIkRG8IV/ERrW+kdfoM1ICPKVNbeW7D4/zq+h8jmzmOPfJwsokU0XAE27D+bhdGJ5hggv+9OI7zX66/Bx/WvlddddVfjNL929r3r01bW7Nmzd/6MP8mTKSz/TNSuvy/7kTSvvc3fciPcqjXdZ2VK1eybt06brnlFtatW8eNN97IjTfeiK7rPPLII9TW1v5Nj2OCCf43Yn8gH0kIfBC8hJ3PIdo2r7zwLN+5+GIOaZ2M3xRJmSO0WQoVlkLGIyPZNmcddQxb7riHOccfSdoTQ7VFMppMY0oiXpAIdE1iT6tO6tmtLGzqpKKtjeikelRFQMlkmTR/OkrZ4MW7H+TVjRs5pmsBpWKWnVY/c5ubKCWSrFi0GN2QmOKJYA4P8+qTD3PB5z+Dq/nZ/Na7TJ88jdHeQfJjabwenXmLFxOpqSLpmiRjAWRHQHFdAoaLx3YJuxKJAz0YVX7Ove1KPFE/y/1xioUCkgKq6vL8+kc5fc148b1542aWz1+CU8xh2TlMK0uT38v663/F3p3bePlPj9HpC7LgYyuwBZOYIlMaGKIxFiUWDlMuFHAFEdkRkVwBrykwI+rn9l9cSvf2bi688GK0Ch8j+V5KcoaBzHucvnYtopumyi3wwj33IGcNjjniY4hinM0bt7LppS2ceeqnMSM+iraBLgloks2777zFwGAP+3t62NW9j/v+9Cf6xkY49ezPEK2sZCyfQwsHSWazNDc309vdy6S2VoxcgdsfvJfmmZNpWTQD0zLxDeaom9OF09HAzrd38/KDjzO1qYaIV+NTa06jsqmRqQsXUvAoeLwaXkmgwraZOakNprTzfjpNe6iBsee3sWvDZm77yQ14LYeWQ6Yw5BaYPGc6x524hNZp1QyM9uKPN3LNz+/mj488TTpfYOHipRwcSTOSN8j25zntpNN44I8P8tD6P7HwiBXIaoByXsJrirx23zp2bn2LltZWkuUit972ayrq66huakDSVfKmQTAeI5kZQ5QlbEw0zYPtuMiSjOCIKA54bLj/l7cQ8Ploamykoa2ZZLFAERdHkig4NjYOVtEgKRnEGuOsu/5n7Nmxk0MPX4FYW4XiD1LOmexyMrz2/jY6Wts5qWsJMwkx1RNDMk1Mv0TCLIIicPvXLmc0X2JfTx+x2jpEUSGg63hFkeLoGBWRMNl8Hk3XKRSLCIKA7djwb9vfBfCLHpyyhaXJFAUXVA8HhkfRAiFQdGxHRJA9FB0V0xZwBPB4PbiOBbaFmzUIuDohyc+MGW1Eon5eeeEZure/yfMP3kmFZNNeF2HGnBkIPg0jEmLv0CD1aoBnb7iZl25bR+9zr3LU8uPZnwrx0ntjfP67N7LzwA5WrTqascF+Zs6aw/vdo3TNWUym7CJYDmahwNN33kl20zvUq14qWxtJjI7x9K338Oarb9Axdz6+gsyszjlEpkxFJoQmhzBtGaUmRtdhy5i5cDmXfPY7LJ6+kD0MM7Ojky1/eJr1jz/Fxz5xMj2eIo7PJlYs8fpDT7B0xSpygOtaqKKFZqQ4culs3n9zI+VCjoa6KigU8As+gqqO5so88+CjbHjoCXYP7aYnM8yKlUcTqqogXy6AIOC6NqqqIMngYo974AgmCBYBRULOZhhODnNQLxCtCWMODRJxXWTVJSordEydRU8mAIaFZThM6WzmuS3Ps+6Bn/H69udZvGIW5eQBFEFGMAP45ACqCbJkcUTHTLY8v4F3XtvOinmrueqqy6ivUalqDxONQKno4FgOI0NjnH/eGvYf3MKbm59GLhU45oSVyLJBZ9dUFi2aw0DfHr5z6cWcd85ncOwwM7pW0btngIFde5gzYwbB2hAJMYMhFIg4JuG+YdrbZrJo5mJeuvcBprU24lVk6ipr2Pny2wiCRlbw0LHiSObMXk1FvB1Zqsarx0hn07gueL06ZcMhHq/Hn0nzzPMvMPOwlVTV1JIrpPH4BIZKGXydk8jVVpEXVFY0H0I4WmTa7CpaJYHswd08c91vCFkKzcuX0Z/L0TVzOrWz5uFvmYSpyMxZPB9dc4AS1bXVOKZBLT7MwRGm1dfzsx9fwdbNb7B65TFUV9Ri2xKmJRHwR0jmHVxZYfrMGYiqyh8ffADMMvNmddF/YA+T29uR9Qg1k7p45tWtnHHeBZRskMTxq+Ii7vgJVpCYiGibYIJ/HawPzPf/syVJ0n99R38F/1Ht29ra+uea9/9v7btu3ToGBgY4//zz/6bH/rdgQkT6ZyT/3xCR9O/9TR+yVCqxcuXKfzeeVltby/nnn09rayu1tbV0dnZy/PHHc+edd06Msk3wL8NHiUiiY7P1tdd48cknOGr5ocR9PnL5FFpQJdczTCgcIWEbSIbB6xueQykWaZ07h5wWQHREDEnGZ8rjCU/VIR7f9DLfPfMCVq88Gq+qs22sl+q2BlraGhk00ux8eTNbn3qJ2avHfXQkVaBFFPntJZfz/kubWDp1JrKsM5BOoNVEmLp0BgRVyoLGzBlziPvC/PzqG8glUkzqmIylSpRliYwMeH1EigK+cVsZiipkjCKKojBq5OgTiiiJNFuuuImm+kaaG5rIlTMsO3whlp3nnR3vcdhhK+kdSlCQHXKihSG6hGSdXU+8yFEnn0RvbzeVio/I0i4Eo4gzNsoz9z+IzxV44vHHmD5tOrYoIvBB14stohRS7Nn9GkcedgYtUyfxpUu+xBtb3ySVcjjppHlYGZmgT8Vvubzz3JtUheqpre2g6ErUTm5F9mlMWzKXDCaiqiK6FsVCiqHEIIcdcRib397KoauPZe25n2XWwmUEqypxFRlLkcmWixSNErqqUltVjWCYUCyhHzULrS9JZyCOx5WIz55GT32QXEWQ+669jUXLDqW+JsSS+fOQY1EGJYlRUUCurqJkFLji+5czsO0tFs6fS7cUBEFDTtncd9NvGOrpp6O5Bcs02dtzEL/HjxaNkcsmEGWRqngF99/3KG+8/h6NjXV85ryzETyQtQzKgsFJxx7DlT+4jFhthM9/40v4K6KMjqXx6T7efPl5xMwgwUiEpmlT0UIRguEQ7e0dOEUTSiZBUcEYSRBWVbBNXAfShRyypuGqKrYw3kFiqi7th83HU19B9bR2QlUVyA6I2RL5g/10RWrQc2XiFRV84ceXcvfD9zG3rYOTTzqZWLwaMxJgJJEmrAVpbGjgnMVHc3i4hcZdaW750rfp2fQ2y+YuQEgViOdE9L4cTY11zF64lJaOKdS3tKOqHoZ6+mhvqGfvtndYc+IJaD4frR0dCKKIIAgYpoEo/5sPnQJ4HRWfx09vJokbDpA0TEqOgCR6cB0RUZDwFB0ahk2UoRQtFRWUSymKVg5XMhF0iZxbJGPnsUQZxefnyCOWEAnotFeGEEoFpndOI9jQQlJSOZDJo+k+PNkivZtew82kSQ0O0zxjKTvSIR5/eS8jTpS4P8XC2TOJeUQK2TSLlixDEiTsUhkzOURYcpjVUkHwnd288cgjvJ7cS9fsGcwTIpTyOQLzp1BTllAckaGIiliU8KoBSoKD2BRm2MmTKZU4umMBF194Hsd+7nSyo2lOXLGaVSceD14VudJLKT+GJ5nATKR4s3eU6QuWkivm8HkUzEIas1yic/pUypbLsxs20NbaRtlQKRkWkqIyefJUFFXDMmDO3IW0zpnOe717CYaCALiug6rJSJKE61ofiEguCC73fuk79D67kRq/l9pD2nAHR3Dfep8NV9xIvn+Ae667iYN7Bgh1LUVDQFUVFhyxlPO+9Tk0XcUULcxCmp9dfxPD/TnmLD4SxxRQZAHByBKVitx91yu0NzdwyvlfZuf2N/j5Tddw2ppjUHUdSQiQTGRpa26ju3sXJxx7KI89dBeyUeLjpxyLKJZBLDE6OkB1VZgnH3+WE088h1BoOgdTFiceu4aTVh2HJCnsywzQ62YwJYfSgV5+8bmvsfpjpxLUdbb88T5KqR4mTarjrrvu5qkHnuCrl/2Q5rlzycVjVAer6O4ZpaqqmbHkCKGQhGXn8fplsoUCrizR1djEO7v2MPewlQwNDRKPBcEpkzeLeKvqSaLjkXwcPrWDeYdNZu/A2+x9/lkOaWqm94W3eGnDy4QOX4hcX4dh2+Q0PzlVp2P6FATZ5d0tL/P4Iw/S19PDwkULqVYC3HzdT9n3/m6OO+FEHn9mPQuWr0ALRjAljUA0TqZgofhiZEslDMsil8+zfNliHr7/Ph57+GHO/sQpBH1hBvIgRRq4/7H1nHP+ZzBtkKXxYTZhQkSaYIJ/SUzT/C9FJFn+21pB/0e1b2dnJ+eff/6fTbE7OztZu3YtN998819d+y5dupQbb7yRLVu2/Pn+/rcwYaz9z8g/INr0P5vHjEQi/ysV1Akm+IciK1TGKzhs6TJUG4rZDK7oMNgzxMEd72PqPtRwEBwLQREgFES0FSQHbEFEtkUyqogsw2D/CMdNX4QSCPHCtq3Eqmqpra1nqPcgT/z29xx/welsHeojG9GZfOgSMqkCPs2Llsmza8sbfPzk04m4AkVJJusXKOsySDKqCBYukUCQYDCMpniYPGkasuSh4IoouhdJNFHN8VQ2jwmGBAUFqhqaKR4YRMubHD5lFrdfcw3ndkzjkJZJOIUSwWiY4cRemupqsd59l9FcGtcTwRuLkswmKQsWw/ky4dpG/BU1NHRMI7VpO3lBQHFs3t3yBu31dSSHhjByBWTXQXLGjb1hPO7Z0DTq2qYQqWgkkRhl//4deAIF+nsKRKQYxy09nf7BXXh0L/HaDkL+MPHqZnrHeumYP4/BwgAJsUDeMNEQkBCJxGJ0dE5HDQWpbWun7EpUNbYgJrKkzBwODiXbQNQk6qtrGEsl0T0+BMsk4vFx8M1NHLjjPhZfXE+ktoKUUSbvlAjrQdSyzazDl1CtFGmoiLMnmaWqcwb7h4cp5AykkkXJdDlmzfGIHhXLFAh7w5jpNDkJ6htqaZrUxiubX+WcT15ArLGa3a5MoeRBsPIc6DvInl3vc9GFn0H3x0inB2ifVk9fuofK+ig9/Xs553NnsPTQpWzc9gbVUxvxmga6V6G1vZHajkr88UrSski2kKWhrh7VddEECU2QUApl/I6IT1TI5MsIXg05EMDCRRQ/nDpxcGUoqyJVk9tRBNi2ezdTahu469bf0L1zNxedfT5b3t7G20NDNE1pYEpNJ/OmzsZjivw/7N13dF3lnej97+5nn17Vq21Jliz3XjAGTDFgektCIKRPkpm5mTsZMskkIZNJJnWSkEwYJoEUICGh92YwxjYGjAE3uVuWZXXp9Lb7/cPJTOZ977rJXe994S7QZ639l85a+mntc46e59m/UjJMFNWPpNqEw2HGjwxhmDZS1ea1F55j6bo1ZKbSaIIEFZtANMJ9j92LVZrgnEtjdMydx959ffQsWEAqFqWYzbD1+ee57tqr2bp1K8vWnkkilUKSpP/5gtPzGB4e5tu3/QtdZyzm8ssvxymbVE0T2fTQFBUfLk/e/jNe79vLp77+edS2OLoqgirhOAZgEQz7yWYMouEkE8VxGmZ1cfDlbYxlMgjH+ik1DlJuakcWJBKhKLprsPH9V7L18Sc5uG8/w/kM3779ViarERA01l65BM8so4dl6pJxhocG8QUjJAJ+7r3tHmpiQc5f2EFza5Kj/TB+/CD5kZMsnt2JUh+hH49ASEfz+ylYaWpCMUyzii3aZI0iDlVCYY1ISGJ+XSejJ0+xbM5icv1juKoPTwKfIyAIKrUtLejr1vCDh7Zyma4jlMs4noMrSAiqn7HxLNHaJsYmXsRDRNJ0LBmKrosoC5x75SUsW3cGqt/HhGfQMqMd17ZOl6n+LyxsbuO1pzZxoj5F79m9xGWZaCLJXgvmNLYxmmrgqYeepuNDf0O5Wj09VcySwBKQ1TjLlq1HF0S6Og6yd/9hEARMTGRRQBU9zt5wMYvmL6Rx+RrwJxGQ0NQAgqejCBGGhwYI6LUcPXqY2lSMUinPF77wBZ6590EmxkeQ/T4izQFmtddx4tQ4F1+ykYrpZzIro4SbODI0zHg5T0NjAn8kQW3Kw6iWiceTzJ7dS6mQxqPKvDkzMMhilNNs2HAWU0enQJYwHIGK7XLw8CG6OucxcOwoQb8PRJuqmcH2IqgBBVEUCNTVcMPHP0E6l6Oxto6hU0dpqQ3jkzQqVRefpxKNhjgysJ+yL08o6ueV/XvIDJygu62NI6OTIEtM5rNEXZFIfQ0jU3l8joekaoiKTGdnJ7lyBce0GB0fplgtcfz1V7jqQx9kRnc3edMk5Lk4ioSiqVQyebAcPFckHI8zNlpiYHCE2tp63nptJ1/9ylf49r/cRk19K4dHC+jBCB4gTe9kpk17z3snppP9qb3vzTff/P/5d3z+858nk8lw3333/U/7LP3BO/H3T2civRsV/oxMpOAt71h406a913inB3kDAuIfHo6WS7zy8nZ0EQ7s2Y2rgpH0s/mJLbxpFNmVHeOCxcvQBYfajmaEpjriQpiqC4JfJewpfOOJe9g80MdbjzzHvCGbmrULKCX8lPxBjh8b5MGf3kNouMSjR/Zwxuf/gp2lNPfsfY0FLXOJ6mGqpUmeef45PvSBG7EMhxHDJj6/m6JjUC/KtLg+ciWTQsXCtlyKhTJnrFuHgUdFBEuScRWFdlOlJutQHZ8i2d3GEb/B3rET1EdidPvixAo2NyxaTXJkgpIJO3e+QaylnkgqQraSpXfxYgiGsXwBbF+Isqph+EOISpCF7fPZm88Qrm9iUe8SxmqDtEZjVMYnmTdrDs8+/gyXX3MNeiCMIcs44unu5bYokZUF2rp6yRfDCAGbzVu3MT5eJiHOYXD3G8xu6AHdTzDayvd+eg9vDoyy6rwLyEp5Tlb6IWyTVyvYRR+6HEdSVQqlImo4iidpzF2yhrq2uZwcK5OpuBiygaiqqIEAhmURi0SwylUEw6AxksDK5DhTqiV6LE3TioXkPAu9IvL4bXeTPzLM567/BLmED5/iMTI1ybd/+wD//JtHeObV/bR2LaSltpnly1ej+jwsVeHUiM2MRDP+cIjv3PUzyiGFi6+9mh/97k5SgTpCFYXRUZtEtBnRlDl5dIA9L+/gonPWUBvXUCMCE84UUkjGsMr4pCp6wGMyN0IRm1RzM5ZlEVQFyuUplJoYRVmgKMu4kowqK2RPDtHsKeQOHOGlX97LHd/5Hntf3cnoiQFmdHWgxWOkCwWUsI4a1JjKTZLL5wioOq5pYZkWAT2IVa7y0vMvsHbNKma1NDE+McqV11zD4g1n0zKnE6Vg05Csx0MmI7oIsg+hZBKugpEKkqv3MzonyYyzl7Fsw1lUi1XKUT/pqJ/9Vo6rzlmPFo1TqJrImo5f1yjl8gQlgbPOWIbfp3HtDTcRSaawHQefz0c4EqZcrSCKIp7noWoqEV+AcDTKi7tf5+DQKRxPoDZZi+ZKqIKIK7iorsWixgS+kMqvH32I9ZdeQS5TIKYHeOzOn7Hpzn+jeHgfHasuYqhkEUrGGMsW6Jm7iJaZveTFAJGOuZwyBJK+EMbEFKFwiLJs0bp0Lquvu5QpUWP3gUnGR0a56uoPcOVFTQQlgzc3P8aWZx9nydLFqKKAXcqzbnEPXc1J7vvxD6lqFYywQOeMVp565BGa53fS2NnKs/ffz649byCmdEphibASRNU0DNFES6momolfcHngR//GsT27ueqjH8LwPAoxnZzs4cki43v2M7lvL3v372TVeWfRvOxcRnMFRAli4RAnRsdpmNFD2pJRwgl6exeQrG9mzPTICi7HMxPUdrSRqZYR/AqGKmIFVCqig+wKiLin74OiIYkynieSSRdIT+VoamzlrI7ZnDrYhy/qo+2M+UR9CvJUnvFTI6y67nIyZZNLP/B+gm315EdPUZ9IUNveQbnsIWkpqmYYn9JOXG9GUnx0zOshY5WxFRdJldDDMcLNM0HSQPBYsnw1Z648i2BLD0ZBxrICuJ4fUdBAAEVWiScSNDc0EUmk8JBxBJdDxw/RNqONufNXc/u/P8mXvvoTntzxGqdGx9hw0YWYssRUJcvw0BAhyUdKCnF092F+89iveG3HcyilcZ57aSdrLzuDePssFs5dyXipxKliGq/Gx8xkHEkC16wiejkiYRvbzmBYBRwkSlWTigCu7kfT/JRzWf7la19h1bxeFFukxt9IrdqKXbIJz4hSNvJU7SJd0RQHTvTzkRs/Ruv8XiaTIRzXI6gqFKsWmj+CZxk4psHM+gR73thFsraZ9o5ubE+ic8E8lq0/i1BjI7NXLIdwhKJjY8sCk7k0gWAAu2ghyQIIHoZhoigqLY2NXHTxxZw6Oci+Q/2kZi3A80V47rnn+PBNN+ABsnC6z+B/PEUVfj/FYtq0ae8Jpmn+yUwkVVXf6TD/t/X19f1Hidz/6rrhhhve9timz+/fjd6mxtnTpk3780j8Z+9Ph9P9Gwj52bx9K7u2buL8s9eyuLGJk4LDpAFqdw8L1ixjvFrFb5fwJBmiEYyqRkjx6B8fYlHrHHx+DccnUzIN1q88gyOlIlXZxhz3qGmdy/Ir3sfTt/+C3rPOw6z4Wb9iI4M+gVykniMiNHS1s/Gfv4jb3oqdNfGrUQ6f7CcVjzGyZTcP/vinNF19IYsu3UChXGHJ+ecwahmIqnL6CbALuglOusD3/+GbRAMhbpzxBfw1oAkC9ZEo++5+ip9+94d0d7ZywTlL+eqt32fZ+RcRCsRJjw1Rl4qz69U97Dl8nMuu+CDuaJaaRIxTnoPluNjBEIJcIRYOkR7YT6izjSODgyw641ycsTx9x0/wmfo2cp6Ni4gjAIKHI9jI0RjjQ2X8IY3J/Ck0Xed9V1/MzPqNPPork9a2RuQaHydGclihVmK19Qy4UBVsXLOErCgoKOiBFna+so+jR97kiqvOw3Ms5GCYbM7li5//BrLgR/ervO/G1czu7sYoFBFlgaETJ/HJMrooIhcrJBUflmOx9qPX0R85vdlJZGHL1BDlQJ6EtJo1YjtTY2lSjfX0j5dwKiEqYyb50QDFUBjJsQmlNI6m+0nN7eHk0VPcfvtPaF+xgI0bNzJYKtC86izmXXs1d3zle7xyqI9vfusHRBNh7vzlvfz3T3yU5qYoZdNgQvQ45bj49BAx28fpFvAGliShqXEyWZDFELlsjtr6BnKOgYuMLZzerkmey6LOTsZ3vsVXbv7vzA1GmdPeTPOcLhauXkU0HiNdMUhEE3iGA4Us+mSONXMXkj6ZxpBETFHEkMFSPP7hh9+mXMpBtcD1Z30CY7TK/lwBdI9oNIEkB7BFA1sQTt9nT6QSD5C3iiCI9MRqMStF+gp56lsbOZXOEwz4WLr2HJx8jkLFIBjQObx/P393899SX5ciFdAIyC4f/ujH6O8/Rvuc+YRCIWzbJpPJoKoqjuv+x2jgk5OD+AMhPvOZTzJpO9z1019wRscCZNfFE2xcwSOrGxSbRBYsvppU/nreGoLu5pXkBk+wKNTFiplltjzxAscW76D93HPImnmKXgDPEYk09tAam0nVH8RnmER0H7lSgVyhTMXwCCgSxWoRf1Lmh9//HNmMiGfJePYbGGaRFWuWkkgEcCWVYtXk61/7Gr1tKT7z0ZuILZnL7h17iYajzLtmNRsXLOH+n9wF4TAf/u4/su3uh7nrhz/lmm9+EUOQMD2omh7JioxoOkQ0hS/881e5LX4buUKBUDBI1igTCkcxMllqEknCcZVXdg3j4FExSzTV1rF358vcu3kT19z4SfqOHCPR0k1ucgwdmZHxDG4oyVh2nANDQxwYHmT94uV/9I3pIXku/zUNSQJPIZvJE482o2tVMlMWR3WHB996DftNkNbNZtWalZgJHeGMXt6IiCz65IdxihUct8jNt/w9GgrPPr8FNxrH80K4HpSyMk2N82jqnkMxP44akChUswhyCKQAMhKe4GHILgFBwxesBTdOtDbO1N4tqLqKJVSxbQtRFJFlP3NWno1RBVX1cfhEH10zexgdGUVPhDh6aoDuxYvZt+VJNo0e4ctf/Uvyk1nqNI0H/vlOrrzkYhILF3LhZ27iIiZ5+Nc/58TufTQvnoGXaiGrpijaRfwhP37BwrFMSuUC+WyRrtZOBgfG8CwFwS6z+cVX6Zl7NrIcxYhrCK0YYbYAACAASURBVNUKNYqIX5ZprkshqQo1tXWkp2xURSZZO4Pd2QP81TWf4MM3XcXqmgau+W+fZcAQMOuiJCSZQv8ogZowqiBTrrrIkoMmyGhymIsufT+BZCN6vI5RYwgrEsFFZMID2xPwDAOfqmEbJVriYUq5Ij3N7Rw6OUCmZCBIIo6sU3E9rKrDnOXnsH79+RweKyLhIOGgwu97rv1x7zKJ6blB06a9t7xdjbPfbu/U5LU/x/S37LvRn8pCend+zqZN+7/WH5a33h9dCLDl5W0Iikx37xyKxSKxYIyFZ57N6EiG+mgjpiyh+DQEz0VxPIRwgIpZIhEMMDI5wgWLltMk+LjhQx+kVBfAyBYIWgIJJcK//fLX/PqZ5wn39jAwkSfhhmhXahjafQIkP0ogQbHiUjezg4LgUZYEBrITjFkliqLDD37wA9x8FU1QcB2YKhRwNJWS4GFJp1uYSq6IbotUXZsjxw5TymQonRhCGsuSMGFo3wFefOIpSuUMgUCAcGcLVkgn0FCDYTrE9Di6q7LpkWfIDIwRdkRm6gGqx/sJVKvI1RKZsRHqkjEOv7WLN7ZuQSvkCfgjjKTzTOZKtLf3MJnJ4wkingCe4J6+RAvXqaLIYRTVRfV5dPd2smD5fBpnNZAxBE6lBxifOEYsGaAqeYTqUgiBIKFInKgvit8JQEYhqCbp23+SiXQFy1XQgnHG0xVKpkjGsJisWoykiyTraglFI0iKjKZp+HWdoO4nogdIj46Sm5xgLCySjSpUXRdJUSnKEvEVc5n9/kvpWrMUt1yhMVWLLKos6F0Mpg6mzh3fvJOolKI2MpOBUxkynsDR0hSjlTySJLFk3gK6Z3QgIrHsvHN5of8or02M0d0xG1V3CUR1lqxZTnv3LPLVMulKETEUIy8GyNk+ikUXRB1PUrFchVJJxKcmMcoK4VAtxVwV2ZGRHQnJO33vRQ9ss8qdP/93Np5zJqtWL2bZOavoXbWYulktFGwDURRxLZumcIL0gWM88pM72fHwk8DpyWeeAB4CwUCYkZERsuk0sgi7drxMemiYsKwSVH0YFZNsNo+LgIuIK5y+cqJNUNFIGiJtYzYNaYf5sUby+QJV2+HEwCmSoQSiP4Ary5iuh2E5XH/DDSxfvpwTA8cZHj7FLf94C5s2bUJVVQzDwPM8DMOgXC5TqVQwTRPbtknWpah6VVRNIRWJcNN1H0B1QHZPH3R4oo0luRAOkHZdvvKd2/j+zx5i9Tnv5+IbPsmPb/8N23bspLU5yhvbXyDig0q1hKhqZKoWU6UqBcsF18Uve4xnJnAkAdt2aatpJiFHMMYzBD2XaukUrj2M7MtiuDbIEpYoUz+zk8mKRaKpnes+8kle23OY/tEpVl/7ftatvZim2k6ERCNqbQsJMcmBXYfZ/NYe5nQs5Pzl50FFRNRCeJIfWQ4TMn3kj46hVRQsZOaffzZKPITlueiOQEhQcEyLxu5ZhBprWLxwEZWpLE2JMCHZIqa5nLmoG8EuEwr4KBQKFAoF/KqKpkqokkIymWLVGWcwODgIgOid7q+mOqA4IP7xwsX7fQtlVySZaKS+rg1ZDFGWRZavXkTML/DIT+9i6sQQlUqFruVLKGgqkxWDTKGIaBks6Z3DjJZmLKOKoog4roUnOIiKi1HNg+WiOS5hSSOg/f49gYKHioeCI4igSNzytX/k+N6DDJ+YJJKowcZFlD1cbGzXxMRlJFfiyMlJKoaKqiYolwwsy0LXVUYmTjE0Msis+XPQVZdTE8ep2jmaQio1xTJP/ug2vvflL6LXBMhbVbrnzGdkqkRq1lxO5lxOpm1aOheSiDfgGeAXNTRRpz7ZgFEykD0Jz/CoSdTj2QqxUAOxSBOyHsYVJcrlMsViAT2oU/JsBnOTiIk4J9IZduzvo7GtB2PK4tZvfZ/7f/UwU2WDvYMnqAguQctlbjBBrU8l4Dr4HYdkIIxdtXFtgWisHlvwky5YSP4QVRdMBBTNjyJrSK6ATxKRDAPZqDJ14jhGdgzJqRIJBNA0DdMByRfCH6uhaUYPmYKJAMieieyZv/82sPnPxa3I9NZm2rT3nj+VhfROlHu9202Xs70bTf4Z5WzxW96x8KZNe+85Xc7mIfznUldw2bZ9K0sWz2PDhvMZOTWMrIQZjdSx6eGXmBGuxRf1EKsZNNOmSa3huF0lEVMYPXoCYkHWxmeyJNJIoLORnf48HY5GvOjwRhle6h9gVksn/+3i62nuncOhwVHuvedBAuFaLq5bjHJsCrmQBVyq+RLJRC39isjnH/0VWQ20dJZOLcQVn/ok+04NkGxvJm1V8XQNRwDFFVCd01PQqkHY+uATBBwBYTxHZ1s7asHgl//0PQb37OfLX7qF9e+7hIlWjYUXbmTe6jPJZktEPYns4X4Kg+NsWHsBarrCc7fexnjfflaft5bq+Bid0RglM88/ffovWaIHmDO3jVIgzkTOoJStkB6bZOHKFZiSSEURsGQPTwAEE7/ooBZTaOoEolZg/soziDc1sGNPP6+9cYJLPtBMSCuQyeVYeOb5nHnBBTzwyEM8+/D9LGrvIS6mCJp1DI/CPb95GD3gp7GtBV8gyDe+9T2WrjiXoN7OQH+WcCjORVcswTQtHNelWilhl8o88uCD/OandzJ05AhexSDY3kis6GFpMpYiY8oyEVtmRaCR/u/ey44dO6hPJRA9hbbZq3jhpROYOYGE18iTD97H8489x4pzl/PE4VfZnO6nM1bHxy+5mnmzZmGMpHnlue0cj+pIy+dz1pVXc86CBsbSR7F8JnNXziOTn0TSVGzNx6AY4vHDExSsAI2Oji56eI6A6/lR/O1857u/4t57HuO8tesICwI+R0BxRUTv9CZNwKOcnWLs5FF6umdy8cXrYUYDQkOKKbeC7fOjawFUR8A5McI9t3yDdXXtLFmwmGPtUfKaRFkRsCWRSiZHo6TSEY7z269/m2NbXmP7k1uYtXIZpk8liEZNOE6uVKWoCniCgG5DwbURdQUbhxgSkckKj/7gDu7/2d0c9KpsOnmYXGuUuVoQQVUpGyb1dTVcefml6LrCpz/xYbo7Wjl/wwYa22ejBkKYlkWlUkEQRUqVMnX19cRiMaqGwVhmBE8FfyiMU7EJ2hJy1UR1HWzJwpYcXNHGO1UmoDYwo+dSnn15gkCqF0dKMlUc5vpPXMK8c5fjCQaNzbXg9+F6IGtBTMPGp6i4Zgm/5pJXXFxVJuwEUEcq5A8PsuuRJ/jtL39KW1cdyXqdtJtDDYcxHQdVU5mqOPjrZnJweAp/vJFLr7iC+uaZTJUFWrqWUA7EiTV14lU02tp62dc/zO9++xi9sxbSPqsHX7SGB57dwfd/fBdm0UYfKfDjL/8jcklEaWrAP7+bgmhg5Ms02zp+QaFqGqSDNkIY9j3zDAc3bePw4DHCUpHjb21l15YnuPzya6laDmgRNFyszEkEx6bshjBwsSyT+XPn4bdcghZojofPAcl1QDz9ufY8AVXxI4k+4rF6bv3B7Xzn2z9i/tzlNDcH8R8aIJmxcI+PsG/HLg5uf5P5688hq2hEchJJwYeRHYWSSSWX59IPvh8pIGEIFTzNRFOqaJILuTK7X97OaG6Yxto6RFdBc0OIroonCLiijepZTIyN8rkvfpWPfuqzvL5nJyW7iBp0kFQHJBtB8lERoly58Ubu/s2T/M1f/y2TmWFqm+oZSU/yzAuv4okqv/rGF7nw8tW0dkepjYo8+71vYTz7Ih2yyuGRo/hWdSBJKisWruK8cy7H37YAO9mBv3kZn/ng53j+sSe44IILUIISRqbClme3YxctZja1okkKIX+MA33DPPPUXlw7SrwtRVBVqQsEqU3GWXrmYkohgTHHJq1GeOXwGH/1D1/m0OHjdJZ1/ubqm9CKFqWOOG09nVgVg8HNr7Ppn37IoZE+aiMxtm57lWMHD7Ns4SJc26LqCJSEICVHIV/MEo7GURQdywbJlZCqBkFRwJ2aQi0U2PTQ/Tz+wL1svPRStHCEsXSGQKyWfMUiX7EIhGK4CNi2hSK4bN70LDfedCOCa5+eovj7EjaP6UK2adPeayqVyp88RPL5fO90mP/bzj33XL761a+yfft2du3aRSaTQdd1YrEYcLpn0qZNm/7LhLi3y/Qh0rvRxJ9xiJS85R0Lb9q09xoPEwewkU6XgQGSIxKyPRolj9cevp9XnnmReSsv4dqvf5brPvsh2utj1JVd/L4QZUEj77owOcXOX9/NpkcfYd36szh89Ah6JEg+XyGqRMkVHIbKNp/7t4dpbJnFrOYW6uI6UqHElgee4kTfETaevQ7Nb0HA4lR5DCme5JWjg2zZf4juhcvIHBykS0/RU9vG935xB3f84kEc06StJYlRzuJWygSVAFbVoGoUKBnjyOUhDh7oww362XD9x9CSjajhMP3ZUWatXUF0/hyOFtPkMXFdH6VCFUkUKRpFvHCUWFsvibbV/NXN/8zBgQNcddP7+dZ3f8z9v32UhhlzGM8bHBsdQ2hpoXXFSu780tfYcu99nHHO2bQsWsJQxcGS/LiiRr5cxUHi/qe3sndAJd7iI2uPki9OkZs0sIsuhw4cRI2UqW0JIYoShikycCzNQ799kp3bTrJ44YXM6JpJ3sliBw8hujIK4Douy1eegWvD0cO7OWvlHDoSOuNH36BrRpDUfBXTtrCLOj63li/d/HUOHuvnIx/7FDlXoG3RUpRAkIpj40kinmVSLedI+FRimsjre7ez5tIziYRcfH6Yqoicdd6lpOpreePNzRS8o/TMb2LpmXN48/UdXNq7iGa/hmDkyY5MYlUsXnzuFRa3dTND8kjkJnDMkwSCGp4L+XQVD4miWSRvlCjl09RJMvVGkZk+hV0H3uSHv76PF946ihDv4oVnn+Vjf/1hkjWjSMEJskINUjCIX5NQqg7Dh07yD5/9BpYb5oZP/y1HikWkSAjDLRIIKVTtKWzLpGqY2F6E86/4MOEZvdT1zMPN5lE9EwWDkjcOfoOxSp60a9E2fyXBVD1HDr5GQzyIXwggSXEGhzOUXYmAIqE7NoKRxl86SDFTZDxnsdet4a6jJ9njA/+8FGeumM3Zc2YyX/YjT5mEszkakPjdHffwpR/ewdd/dh9jyS6eOpqmfd5qogEdn5MjUxpHCCv8/S/u4Q1T47E3duP4VczscZKehN/0kEwb2XYJaAqVSg6wUTwXzYGAJRHzxSg7NlLI4eK13dy0vJ1PrZ9HYPgQQ4f7eO7ZLWz80i2MuQ6eWSIeVDErecKJJKboYLlVJLuA6wXB9SE44EoqUjRFz8rL2T/m8ZPfPcUrfcc5e8N6dMvCwSNnm+Qncvzd+z7CsW2vsnH1aggrHEuP4ipxKoKHXhvFdqp4ioicirJ6/VpmJ3RO7nwKc/wYO597gY98+OPsPXyIXW+9yic/91EOj/axed82Pvjp6xnJnCIU8WNOpEl5Gj5fkNFMmmJAwBIt/CWDI3v7eOTZbVz+oQ/T1Luak2acUG0HlWKZOor0PfsAz99/NyvOP4+7Jooc3D2E5q+HRApNsomNDtGoQV7NsitkMhxMUpqC+0vHidpFaqISuWiZmS0zuOyK6/jMV3/CpZedSWNrMz1rz+KS665n4aKF9B06yMrVK0n6o7iOTNWqIMtFGjs7mL92Nb5oAlPUyOcqeBUbvyBjF7M41gRq0OYv/uIjvO/qq5kaK5/OIjJtBJ/IZG6QgUyYLC3ct+kw7Usu41Nf+Ffuvu9lskWBpvoGTMNmzytPYg2+yJkr1tJ/5CjrLr6MkmaRMQt4TpZrzlnFFWvmERJLRMQywsgQ6mSaebM62Hn8OK+Mj1C7fDVdi9YgS41kCjpmKEIh2EeJowweLpOMNvH8jjs5+8KlYHiYE8fpbE/xzCN30VAToGqCJEfYf9LmJ7/ZxktvDnDdhoVIxgQ5o8B4OcdwpUhRkimYJlO5EaIpj3JhmA29a/iLj5xPPGJx5NggW5/4dy5c1kjMk2ivPZMHN3+P5qjGW6++yCNPb2dsdC8Ll82lpIpkNY1xx8LUFVRBQnN0JNuHWrYJelPEI0WyuZM4aoBJq5bHX9iNpEWpnzefKdckXy3jmRV0wDUqIKuMZCdRNZFsPs3zL27mox/7OC4egvifUxSF6SOkadPecyqVyp98ja7rb0Mk/2f19fXx+OOP09fXx/bt27nvvvu49dZbufXWW9m0aRPbt2/n8ccfZ+PGjTQ0NLytsQnedH7Xu8/+P+Mf6Jzp2z5t2tvFwcBBxEUBTjejs9I5+vftYedTD/LK0w8xa/Y84ksvYJs3wXApjZAu0htM0dXVhYWLaVRoEVUe/fF3iTU30nP2OoI19QyeHCYRrEEUfJzK5yjbNj9/fj9nnbOK2rCCkDlJxBNRbA3DdlAjCnk7gyAJOLLCMy9s4fzLrsayXKqlKjFZJz08zC9+cCsLZ83h1LEprrx2A/FmEUMoUjFMIIRni0gCyEIV3c4SkGMMnByjuXUuZadMoZJGj0hYrkexAvlSnmhSQfAC4MkIgoAkOzi2QDRSy0P3bSM/UeRDV6+jkk8zPpWnajigatS1NOILK1QtA9srkRrKMnzsBE1LlzDmejzw2DMkwlEuPH89WTPH8VPH6V5xJo8+2092fBsfuO4cAmKFclrArCqU3QCTRhpZM/EbFpKtAk0cOZrmrV0ZHCR6u2uZ3RMhEBtANALYVZGmpm727juE5hNBTtNcH0EXfezffYiZs3tJ+0pInoLPEfGMApMjA0iSRKq2jUo1yMnBKVBGaJ9Zg+c5mJaDqgWQ5DC2JfDCC69QW9/GgtYcppHD8Pew55jDwMAYAcHjjOUz0Xwu4+VBErUppLKFUc2hizaqp+LZEo8+sIkrrr4KPeoiKjY5K0u5KiF4fgJ6iqpdAimLINogiAieH9lRCVpB/vWBuzDiDURru5i3cCMHXttHYXKQRTNN1i1vIKkmqE9GCLoWP7zlm3S2d7HzrT2EfUlC8RBaXGbmijUE6/yEYiqWUECQdUTPz4lD40wMjfLq1uep0yXqiyPoNe20dS9EreukgoIoG3huBb9U4OXnn6Yp3kTzzC6qfhV/Qx0l28b1RF567kUO7N5Lb3sHi1c0ocXbKDl+JolSUqr4wy4YY/irEkJFJOpLYWsTxItZyOeYzKTpWH8eA8UCoY4uxkeGqRMVXvr148iFSeINIRasXcuwv4ZssAnBsAk4RWarBezJKqKgYQsitiKhBoPMnDkT0XORPQ/JPV2KZdk2ll8hpwKWxywliFcs0RqP8+qht1CifqbkdoxCnq7aAJ5ZxR9JsP/YKGXTIhEMUp0cwg0pOKKFJI0jCmVEV0GVOikXZ/KdHzzM/kMnWTC3hS/8zWwMXCqeTY0WJPvmMZ5/4il27dnLP95zG0VVpFxy8DkWEgaSZ+IIKpFwEs8wEE4dpUN3yOfzvD5YID53GaH2HgaHB4n6XWp0mBgZJhpNIERC5J0MXbFGnr3tXmR/hK4Vi8jWqahBiE1kUTMFDux9jiUbNjJWcPE3zicejWMXcwSNPIJZ5bHHn2b9de8j09rFF/7yK1xw9bVsGtmHNX6SRz7514z3HYRUgMN+gTpfA9V9wxyvsfjl5/+WBW2N1He3cPNnvw1OkO989wH+8u+vxCcCZhHMNB+94FrGTuV4bE8f+MDTLMrFEf7uxqtJNbbz6b/6LL5Qks0vbKOzs5N///GtyI7FuetXEYgp3PvAL+js6aSndz6S0ojqa2YyU6VUKRBJqhSdNkYnHf7qv32Z+hmLkFUdPIPhY6/yzS9+kIju0CiNsftXP2DBB77IgSmHp3f3s3ThLNqa4tj5QXyRMEXDpkmOMHakn4d/8yvaGmr54Puv44UtL9La2UW4oQVT85Ev5qlUXQQpjJ6wKRbLlNIzqInVMTj8JN09DQiGhZ2bQnQNdr78Ihedfx4v7tiNP1xPS+/5fPzvvk8oXs/f/8UZKEIW5/dloS4CmqaTz+cJhQJ4toMeSHDyeIWkbtEQKhCVG/j5z77G1e9fTTjcBizlyO47GPzFg2SLIEQEspLG0akqM+f30rvmLGbOX8xUJosYV5BdHxgedr6IJmZ4dvNDRJO1LFl1PV/4ym/wbIuP3bSaeHsNFaGEJHpEBAHZOJ1FkLNsPF3DrhrIsswdd9zBgb4DVI0qPu3/mWEw3fJ12rT3kqmpqT/5mkQi8TZE8v+PXbt2sWvXLo4fP86uXbvYtGnTf/n566+/zuLFi9/WmKYLh9+NpnsiTZv2f5U/dGn4w/GuC8i6hhLQqeKgxaPEGuuQFFha14xwaoLRQ0c5MTZMtlLEdV0URLKFIrH6ZjzFh6zrKJoPza/jWCYiHroiEQ3qRH0uulNCdooENJdEVEeWbWIhH65VQZMdNMUl7NcxSmXCuo9EJIKuaHiWievYzJrRzowZMwlFa5HUEJYroGgqluPguh6RYIJYqAZFiGF7UfKGTKJhFqPpKSSfgB7W0PwStmfj0wLEwjEkSUIURURR+n3TWQlRcnDcKrZTYmZHG56sUTA8mto7yZTKbNq8FRAwDZtqxSDoDxFONZBobscSNSKJGkRRpH1GG65pcHD3m4ydGkC0bQb2HWBudy+pSIpitkQ0Gsf0HELxMPuOHkIPBYknovg0Gd0vEk/q1NaGUQX1dPaREMIq+HHxUAMyp4b6OXpoH4X0JD5ZxrQNlEiQxIxmqqqOa6TITjo4rkkgbNHYrtPWEcNyTY4eHeW1Vw8Rj8TxKTI+n4+A34/uC+O6Afb3jTMyIjM1HkH2xRE0HdmncejYEbITIyxdOh/dB7Jsk4iEsM0qlmUhSQr+kJ9iJc/I5DCiX2aqmEYOaliyh6T6qUk2k4g3EPBH8WkBVMWHqmho2unL5/Oh+HRaWmawesUqVq1Ywbq1ZzHx5n5wfJjlMK0181Fdm+LEFMXxKTqb21i3YgVNgQQL53TR0zEDp1xGJopfrUP0ohimimlAtWoSS4bZ9cbL1DVH6ZzTTGNLHYuWLiEeq0H0VCR0XFPGrEAsUseszgWEajuw1ShZ02Q4fYrxzCC2U8Q2K7Q2tdI7ZylatBVBjaCpOgnZoUm1qHUN/IaLQgSEFCXiFOQgVT1OdMZsAqlaJNGlPhbEGDtBnWrTEgnQmKzh+vfdyNmrzqA+FKFGEki5Ni2hACEHFEtC1aPIvgiC5kdQdSRdxxZFLFHGFCUMScISBSS/hqTImJ6NKViMGRlGzAxvjvUjttVgN0RRdI2ZrTOxSgae6TDcP4wqaMiuD1nwI+BHJowsBJFFBUk2kZQKfn+VijHBpRsv5OLzL2L/7j5UEVRZAMvGMS1qGus5+7xzWb5mFbYjkMsVwHPAs8B18HBxcMgVSkxOZfi3O+/k6Re3UPI8Am2NBOoSjKRHcQWbeDiEKsq0NbVTm2jHtXy0tc1gYGCQlSuWs2vHS0T8CgFZwjU8PNmPHmtAk2Fy8DiSU0GVXPL5HOl0Gl80heWLs3j9JVRthYRR4pKzV9A9qxbJ5/LG4T4yrkRV9mOWZMRRg1imSENQJ56u8trWt3j8yWdRCgYUsuBafO7TV3LjB/6JF7e/hS0BXpkNV11FrKmbB37+IulJMAApqPGvP/8lAwMDfOwjH8WuVoiG/HhGiUsvPJfM+DCxcJB4PE6qpgbLrTKRHkJSTDyhSjQWQpIk/HoYxyoRi0icceZiRva9iixWWLd6MZ0zGtFkAUkAxRGxx4pYlkV7dyeuAof7DlCdyqNaUHVtiopHulIkkojhiQIFw2SqkCfV1EiiphZb8LDxCIVlwjERVVU5cRieeeQEr796lErZIpVswbZkJtITmK6CGkrR1buIQsXGtl0GTvaTS4/R29HItZedj6zJiJofRdXRFA2/5KcuXEdYDtMUakIoSZh5hy07X2Gy5GGqImXZoX7mPCpSkLKsUJYcuuYtoyYYpjUVIiqHaArWkASs8TyHtu0kZgtELZGgJqP5BFRdRvMpyEqAhQvO5MjhcVw7wnnnXEUoWE9TSzOW6yCJIiHdT204il8UcItFWlNxjFyeupp6YtFabAtARpZU/t/bmemF7rRp7yXv9p5Iixcv5uMf/zjf/OY3ee6550in09x8880A3HzzzW/7ARJMl7O9Ow39GeVs9be8Y+FNm/ZeI+D9vh/Sfy50JUVmZHKUo/1HqG9rxleTIlKTpCVt88JdvyMQ8LH6ukuQZAm3ahCT/AiiSO+c+USbW1ASSY6fOkUyUYNkuwRkmWx2AlFwWTi7C93O4rMy+L0S5alJNFGhVMwSiqiIQgXRsynlTHyqj/4jxylm8gRlDdm0SYXCdLW1UlfTzpzeszFFEVPKI/s9bNchpNdQnITjh8d5a/shjg+5vNE3zo7XD9OzaC5j2WOoQSgb2dOZLiQxDQ9fQEEkiIgPQRAwrRKKCqVSkcWLl5BM1ZOr2CjhGjwtwNObttDR3X06RVcAVZExDQOBMK4eZ8SqYioSxVyGlUsWYBWmyKVHWbduFWbVJT8pcfaqRWTHx9FkCcPxCESi/O7xx1i74VyyuTFUO0+1MgZKiWBMoLm9hkJxjI5ZtcQiEqpYQol45Ktpnn70CToaG5nX3YEsG3h+j4wiUPApDOU9nrnnDabG0/TMi2O6x0DOY7ommtbMti39GFWd9Wu7qVYmT78vRAXDVrn77hdxvVomJpJYZifJhimCSZmC5+foyWFE1WNuRz2SO4lr50EwECQJTfEjSg6IBoIoIKkqwUQ9rd3zGCsVGU7n8akJTg3k2bv3OIW8SzwRAcHCw8GxLVzTxbZNSvkpZi2YgecX6B88xIGD+6hva6CzvZYLzlxDtZihouUQAgFsSWHW3HmUJZGu5fMQU36CTSmERIQf/+IxZjTPJRxOoIcCOI6AKPqoVAyKxTEuuWIdriwRal1BPqyTDTjkgwWm5DROKIgVjPLGEYNXD2TZ9Op+RqpF5JiOHBQRFIFwUKc51cyM5pm0nhvGbQAAIABJREFU189iDJmpUhUBCApldDOLUMohe0FkdRYVK85YJUpRifPay/0cPlYhqDeiSmGi/hqUMtRLCZxJl45Z86mWygQkD9W1GTp8iIF9+/AbFjMiSYKiRskUMSQFE7AFF1cSiMZjuAI4ooArCICIWjEwDQNd9ohqEsmIzr69b1Hf2UJBgrsfeoCGZIxf3/4thOIAe9/czJFDu2nrnIHmEzGMIpJggtsATgzRExA9EcHTKJUs/AGNRK1D20yXyy6fg2xmkSXQZQlMB7Ncpb2zg/a5vXihAIOjY0TCOj7BRJFcJNHFkzSGJ9JIqsrihXPZ/earnMhmSaxaRX86Q1NrC7GQju4YpE9OENRTeHIjlhhlZPQAM2obqZw8hSZ7NNSlwC9TdSRkJY7lBYhLUxzrP0a2UKGKTG1NI/FEnOHRCYRwDXkphuILMvXWDpasWsBQ9hQ965aTyRWpUxP4lDBiRaI5HCdcyNIvFZgVaubJ47s5kp9kdryGDddcDmIVq5inuets1q5ZTKoxyvJVc+hZcgGvvzXM5//pDpaedxb1syLkKmnCWpwDfYf513+/k21btyHhIAouIU2imJ2ktb2NXNmiob2R7Ts309haxxNPPU537zKqFYkf/eh2ZDlCU1OMsB+WLe5lLDvOlRvPo6U2SM/MWqI+C9csYI8NIR4ZROyZy4htIyeTnNi1l67aRmoCfiqaS0X1iKshBMtidHSYVEMdXXPm4igqJdem5DnkjCrF0gCGlUOVa4n7r6A42cy2Hc9x/oYFjAyOI3o+auqjFAwf+ZKFzx/EdjxEWSZVU0Mg6GfNqkXUJ3yU7Dyu5yLYIoIjIdkKUyMFXnhmO6W8SG/PSiazJTKyyXNPH2DOkihaJExd82oIa5QEieGShawGGd2/lz0nhoi0trH+sis5Z8PFjGYLlF1YunIVhUqZslzF9Rxc28KxbSRRZscrfSxcdDZ/99UfsqdvHE1UuOjyhWQrGXwqCEYFpVgg7Ho8/cB99O1+kyXLlvHjn9yFaclk0kU+8YmbEEXpdE+kP5ro918f20ybNu3drlgs/slDpEAg8E6H+X+MruusX7/+P8rZ/nCg9HaaPkR6Nxr8Mw6RGm95x8KbNu29x0P8o0WtB9ieTTwV4+DRI1RdGy2ZYGJskpe+9VPOX7mWnuUL2TpxguaaBkKyhlSycGSJqVyZREsb3779J8xZMB/BBSObJ6hoZLKTSIKHl86jOwYBPHwiSILOb377JGOjWRYuXkaxkEWWNBzDpq6mnvamNjRBwimbbN/8ArLnIQseW7fuZPPL/4O99w6y477ufD+du2/fnCZHDDAABjkSIJhBiiJFipIlS7JEW+sky+vy2nq2RdvrsrR+2rWSZVnBFi2vJZHKoiIzIJIgBSYABEAQOQzy5Lmxc3p/QGH9vFWS63klP2k+Vae6b9W53afr3urT9e1zzu84vhjT0W9gBU1UI4UYZXh65yvsfe4oplRh1da3smP3YUS1RLW7QrnTJBYjNE3HqqkoUTeSkEOQRZIwSxKbxKGKYRgkSYympbCtiGee2ctTz73ExqtvQFQV0oUCq1avwPUsVE1GVRSiICAQ8wjpIpYY4eEyMtCFqUl05bKkTANZlNjxxPc4cWSSqzasQ4olunt7qLcb1K0GuY4ydcsipekkrRZmSsZKGgRiG1SbUodCzmwhihMY2gyBGmH7PksHR1jSO0xzfhrDlEgyMqda8zi6QirfhXemxsoV/ZSrMpbVRhDLhEEBXeujp6ePVatHcFoTlIoFohA8P0TRcly4XCOTqzIzMYea7UPPjWOWNS7Mtdi0dQvVSoas4iAF80higKgqtC0PWVEQJJ8gaiMpBmqqSEfvBo4ct/n2l5/h1GVYt3oNE5fmCT2ZdWu34DhtEGyEJEQSQBJlJFEgnZWZak+R7UoTCw2QZrnlxiXI4kX6O2N8xeIvPvYRZgoVcqPr0BctYn9tljNJE7c7R9Tfw1En4OolV7Fh1RLCxGKuOYORyRGEMo26R7FUpW21iCUTW04T6yK+kBAIEbKWwXZ0SLLs3HkIO5JJD5qYnTmK1QFUsYQilIhsESURMQwZy57Gin0UUyNWBF4+e46WkOLx5w+jZwfZu+cYTz/5PcZPHKbRnmbF4jGWjY5BklAupolDH0NJQZzhC1/ZwT9/+asMjy2hVCnihiF9nUWWDfXTqtXp7+nl7OV5ZEVEEQIMJUFMXKTEpaOUQST4/iyWBBFQfREpCOlUVFpnTvHIffeTDmMOPf8SV6/YxKruxTy2+0vceNMQ+577CjfesIJG6wJKRqLSlcYJGqi6RyLGCJKLICZADqIqUVhGEESQJoiSM0jyBdJinsgPUBORJIgw0mmm63O0k5C5ZoO+gQFc10ZMPCBCSGICVAQtTZhI5PJpVixbTLW/HznfQaHUwYc/9GH2vvACS4eH6OodoubE/MFffZS9x8/wlju2Up+c5m/f9z6sdp3tt9yIi0gkm1i+RCgamHpAoKR45qWjbL/9l4h9l9i3qWQNGq0mxY5u5poNSouHOTZxhnw5h9CyWFNZRKeWR0FExUM1AmqKx1Xvv4fNa27mRH+RYKiPv3znuyhWywSShJY26O41sZ2Id7/rXUhSHhC46dYtrFy3klxFQcsYFNNl3vgrv8Xf/f2niRWTi5PzSKrBzFwN2wsZHVuBli5juSa9Q4tYNNJHsVxl2Yq1NGoiw4MbeeBrj/HF+x7kLW++HoEG+YzOutXLac9PEHk1lNiilNHw7RbFQp6Xx08wsmUbU7Nz5PJlFo0sJl8p0WrU6dRVjLpFu20hygpLRpfROzRM2/GIVRXRSKGmTfw4RkxCVFUmDFXqM70cOXKKszMPcOMtQ3z6k9/g6195jM1XbUBO5xAUDUWSabXb5DJZ4iRBlmFq8jylokoYxsioKCjISIiCxmPPvMCTe/az//IMuaWriTIa65YNsfvxs2y7vhtJ0GnXuvEEn5broplF5qyY4W0rWPLq7WRXrcAq5pjRZPTF/ay+fTsn3Bp2RkMWFWRBIk4iAt8mJmTd+k1cnp7mphtv5ezpY7zrT36d8UsvI2sCneUMfrNJ2vc59OxzeK0GtWaDkaWr2HPgDC8fPo2m6bz97f8JRflBav2BiBRzZfLggoi0wAK/KLRarR8rIqXT6Z91mP/uHDlyhJ07d7Jt2zaGh4d/qudeaGf7eWShnW2BBf5DIvwvW0EQiRKBIE4wCiUabQdZVpEllWqpSrlYYfniUXzXxbVsoijACwOMbJZDR44y37QolavMNxuomk4URUiShCQJSG5IQdIR7ADPCslmq6h6gbFVmxkfn6ZY6oNEI6UbiElM6HiYqs53vvF1kjDCNE3K5TIvv3KQc7NnGB4Zwo0CJEXBsj0SQeHwkeOkM3lalsuR4xfQtQ46upagaCVkLUcU6wSeTD7fxeWJFjt2PMfk5SYZs5PpCZtHH36G+VmXJNapzduYZpbx8+cJoxjLdbAci46uKo5rEUUBqiYzOXkZQ9X45L3/yFPPPouaMtFSOr7v4thtms0msqJTKHVy7Pgptm2+inbDwfUTZmZaqKqOoakoUoQmiUSOSC61BFnow0gN0rY1GlaMmc4hyAIhHoHfxHbaZLNpEkHACz3MTBrHsVANnfMXL6IoElFs0z+Yoqcnw+zsPMXCKBlzFbZVpdUSKXel0bJtVF3B90CUNQqlKnrKYOs1mylWDcSMhJqqUeosYnkhXhTQ2VlGlCJ8v4mqiggkKIqGkc6RiAlO4BMhEIRg2SGnT02za9dhMJbRVb2KONaZnJoljEW8IMZ1A5IwQVNViBMCz0eIRcIow+GXL5H4KXQpRzGfIQ5r9A/miKI5/LgJvSMUe0ZoRylOXG4RpYrI5TKuqnHgzFn2HD5DLLZpWZeQVRdNT2i1LOJYIIw0NK1CrS6iKSZGOIVhBxhNGXO2ijHRgTaRIm+l2Lp4iE0ruxlb1ceGazZRqg7gtAxUsRtN6EQUDGIgktsoiUO7OUfLsVm27XoOzDrUtQ7O1n1SKYOhvjxvfe0GXnNdN5V8Dds+gazX6BrQ8JjEl+aZC+b53uF92FLCEy/uQ+/opZFcaVFzXIuu7gqzjRm0Qo60IeE356jmU8hBG1OMiK06auSD5xB7DgkicxIEaZPZZp2+7i6WLllEX08XsReCHWHGGq++/U6ypSqLRpaQyqS57fbXYKazXLg0QWdXHxcn5pH0Oi3/OFqmRUQLxRBJ0JGEMqGdx1SGyKgDxCQErsdfv++/s+Oxx/HjCCWdQtJlJBFmL13CNE1kxUAQZZotB0XWCRMRUdGxvAA5ncHM5LCn55G8hEq+xPx8HS2Tpul5CGkdtZjlwMnDnB8/S3dXLys3bGBqvs5c20bX0ziWi6qniASRQCsRGBUWrdzExMwcjt2kYCoIQYuOnExkTSPIEX/69//ERcvByKRJ1duMpUuUdRNVFghFm/PTp2lrIlt/6Zf4x698g5Wbr2fpmq0sGV2LiAkYCGjIAvzZH/8hqgQEQASOm3DN9QOsWNZBT85AAuq+jAPUXfDQsQIBLVdGzhRpJwpzVkym0Mupk1O4vo4gZrFaUCr0cm58ktfe/ka86IpYKCQeVnMGuzGFjEMuJWOoAla7iSzLtEhY9YbXUrfbVLJZjDgm01Hm1Pwsub5eurU8Ha2IgqJRbzZwQ596o4UThCSSjCgrNNstEGIMPU+7FaCokM67jI5lSeXqWN557rrrtciSgUiGOA6J4xg3CDHTORqWg5nJY6RSpDMGjeY8YpQgRwm6KKLJCm3PYfmGtay//hpaKZW5tEZczGPEIr/xtv+EqWRw2hH/4//+CHMzNrJk0qzZyKpJyzCZjAX8dBaxWEbI5UhXK1yozRCqEpgKMToCKoIgIcgJohJjh026+gr40SS/8Tu3IWvzdHZ3YJoGjUYDRVF4+OGHmZmZIV8skyuVKFTLbLvuWgYHBzEMA8fxfia5fIEFFviPxc9rO9v73/9+3v/+9/+rGUj/b36wWttPk4VKpJ9Hzv4ElUj97/mZhbfAAr+QJCKiwL+oR0qihAMHX0aQVMJQ4rsPPcXel16iPDRMnM0gmDpqlKDEIAgJsQitts8DD3+LdddsZX5+ntElo8SWB0FIEEeIiop3dorxI0coFfN85JP30jG8ikefOsD4pRrLVq4llc1SrlZpt6YREBETCRGBHY89zg3XXUdPbxeN5jxDi0fIpsv0jVQRFRtBVYhDlSTOYWoVMrkiU1MTXJhxyRWL3Hrrdg7s383M/Fmq5TKGlsJuK+x94SSHzxzmphuu5Zld+3l85y6uufoGOrtK+L6NIEhIoka1sxctZdDVVUYSA2Q5RBBswsBCV0QkUSDwfOYaAZ19veQqKZAdDDFAjAIkJBIlT9OXWLRiEx3dA8zW2pw8fR7DNFHMmDB28VwLJZJR/A7OH9c49IrH008dpWaXmZ4zIK5iKjkUIYWWRASyRqvtUcp1M3lpFst3MHIqvhzS9nyIEiQ/YFmHipmJ0Iw0Bw42OLA34MBLs3zv2adRM3MYmRqmbhIlKomkYzsxz754gIGRRYSxx/nJY2y8aohcISQWE6ZqDaLIw23PY0ouKfnKEuc1V+LomTmmZ+qk0xlEOSGJRHQtz57nz2JbOUYXb8G1ZC5ffoFrtl3FktHlfOkLX+bIkZdYurQHSUqQSNAkA0UuYjX7OXdWRteXkoRV5Fijt1pGDCFu+2T1Ev19qxnJLeJ739rHizuexZqa4arVI7yy5wW601Xq4w5PfvNezLSFpPmY+TRBqJE2Kzy16wAHDx5n7eoNOFGMbUS4oQiKjqak+exnvsjZc5ewvABJzxLoIqluA1lVsedivvzpr3HwxaNUckXy5TRNp0moOSRtkUyhk2f3H0AbWMzuVy7i+RpTkw3uvG41G8c6SQdnUf02ipwljhRiQWF4uJsY8EIFWxxk0arruO7Graxcu4bYzOPKBm4YInDlt/BFEVs2iGoTdJdNdj70APte/B6LB3oxdY10uoAkpvFcgXMNh5N5hZnQY6C3TISFWNAxuitkBoeJjRJ6toxdWMTUfMzSgbWQlCHqIRSGkZVhEmGI2qxOHHYxNLCJc5cvIGUCzlw+QionYrkOhpJFIkPsy2hpiWKuyKKefl58YQ8vHNlP51APAT6mKpKRBIxKH2oqi9VykASFh3fsZs+Bo6TMLPlcmlxKJnB9snKW2XbIqqtvQtLSPPz447zqNa9itjHPNduvZX7mPNevXExMwpJV61h+1TbSHf14gorjBqiGjCgFTNdmqfQNg5Ii8Cy++43P87l/+Fv2f+8xrr32apqug5QtoG64noce+SJ65HB9sQdjLsbVU7RwsYRZuqpp0At0Da3lhW/t5j2/92vsf3gPv7pxLf6MhRppSIICcgvVSHH4kMef/PFnuPP164gVn3RqmpQmQzOFLMH+szUWj66hkBN45fBpJFkiESRCQcYTNULBwHFEMvkCjufQsnw0rULop4l8g6VLl7N180Zy+RCJEEkQCXwXx2oiCxGe3SKbyWKms8z4NhM5hbQvoEcQI9HIZjh48Swv7d/PKklhfMdTfPxLn+f6227jC1/8Co2WxYo166g3LWzPw0ybBGFA7IskkYKqSyhmTCrXZGRMRyRBEztpt2xWLV+KKM4gxR66In9/YPYVUc8OI2IREklAldMEtkdKFmjWZokFyPZ10RYjTlgtLhKwd+9uri0U+cSH/plXvWozkZ+nr3sdH/roe7nttjv5b+/9GKOjixgdHEETM6i+wsn9x/j0x/+RtGwwOryIJAxQRRHJTyEJCTE+QdwAMWFytsbg8DCJ5OBHF8mXVHxfIBFDRCLkJKG7UOHY8dM0g5Ab3/QmLEWnd2CYjZs28Pjjj/Cu/+t3CYIIWRb50RvSKy2lC5VICyzwi0Oz2fyxIlI2m/1Zh/lv5r3vfS/33nsv9913H+9973t58MEH2blz5w+Ha997772MjY3xs5BzFkSkn0fO/AQi0uB7fmbhLbDALx7Cv9gThRgpERFigZf3v4wsqiS+zINfe4LTQszVv/x6zEKRjC8gxzEICYEcIyBQ7eig2tvFzt27eMMvv5Hz5y5gCAqypNCwHOqWy54Hv8GtN13N1PwEU26bxRu2kO0dQS+W6B8dwonbXJw4R0qJuFL2f2X098aNm+noquBFPm7gIGoig0OdiGKLILEJIxUvkHjqqQN0dPbR1d/BdGOcqbmzvO6uG4EaDz/8Od76ljvxgxaSECKIEpKiUillSOcjisUysiwwsngQRfOJaWGkJGynTbmUp1RKoyQOquyhSC4CNpoGcRQQxhG6nqJSrNDZUURUPcJwHiX2ScKIMDLw9Q4On5shNEs0nRov7DlMJt/B0rFRomCOOLTAaZMKddSwwOmzM8iZAi1JJVLSdA6uZXrCpqNYQhVl5MQmiCVSZpnduw/QsAKUjIlRMBClkM5ckXQk06lnkKI2ieCBIrLjiYP4XidzcyFJkrBhcz/ZogiSB7KCYVZwfJnndh9n+fKNeG5EqZQijmsYpshcbZ58sUQmbSCEDjoemqAQCgo1x+DwqQbr195MyiggiT4CARDS09XL4kUjnBl/mUw64JobRzh95jiHDr/C5MQUv/Vbb0MWHSQxgigiCSAMQdDzZPOLeWbXKSYutjl08BXGFg+RT2XRYoW4HdNj5pk7Ncmhp4/wljtezVWrRjHESbpzCplE5okHdvHOt9/FyOJOsrksKCqJmGa+ZrN79x62bNuAbARcbLU4n+mnLjq0dYcgPUPPWAGtt8p07LP7mVOcrqsc23eU7kofnSmFnpLEXXdsRTdcBDONoBd4dNcxdjx0nHJlgG1XXwtBg0XVEotKZa5fOYYZNQmtGcr5DEmrh698+xiP7XwZLy6zdGAROb2M3ZD54N98kxdeOEV/PkbVVT78j1/l/IzDokXLkPER8YlFAV9U6O+ocPbMaabn5uno6mJgaBQzW8UJTZTMIF6YY+/JCSxNQXYCXvzG11naXaFjoJtWktAy0ojpLiIlw+eeOc6x8WnWLFtNId/PfD1B1Ic5ebbNe/7q73niuy/xwjNNPvHxh/EFGTEFy1avwYtd/MBB12Mk2SFMLGYaNoHlk0bjxu03kOkpU+gqIygxZUVGarX45NefYveeg4SBxKKhURQtz9PP7mF2ts4N127GbkwhiYCsMiemOd0IKfQOccON1xPOT9Kd1dGbE9x+1UqIAqZqdeYlnY/c93W+u/cwi0ZXomsiqtDi6OHnefrhb7B++RIquRRRexbBmmbruuUcPLCPq2+9C6NnlMtzNkPd/bSahxisqGQdh1x1MR976lmeOH6cZctHqSJSn3fobKn86q+/HXOyza9v3wx+gJpJIekiZ30QVI273vrnfOux52mEKv/1r9/P7/znXyEmIQpjVMXEd+Cm7WupmAKCD15jmsSpIxIiCFfutbEg4Ps+QdgmndUQRJkwlEhpBdp2jSCeJ521EIUEUBAEmdDzcSwLy2oxNraSCxcuMVtrYGaLxLGEFgcgRFiqSEvP0Dcyygu7n+PqsSHyRQ1XU1m+ei2yqPH3997LhvVXkc7mSEio1+eRxQRRjFBVhSACnzqyFmA3KhjiCJLksPXqlYTeJLF1ElOOEUlw3Bg9W6FhByRGBqNQwRNUZho10imVwGogJyGf/thH2bJpI8VcnvUbr6JWq9E4e5atg328fOQVNl6zjXotzbnpKW5+3dVouTJHTtQ5dvpplnQt5b5772Pi9CWu27SVybOX6apUWDw6QpCEQIIQqIiSS4yNFzdJBJMoLPJP//RVFCnN8NAgrWYLSRJJxAhBiBESEUXROH7uMgOr1yL0DmDrGoFr4VkNXjm8j9955zuQFbjSJJ78L1lWYEFEWmCBXxwajcaPFZFyudzPOsx/M2NjYxQKBcbGxoArq7QdOXKE3bt3s3v3blzXxTAMdu/ezb59+4ArVUmGYfwfj21BRPp55ORPICItes/PLLwFFvhFI+EHj7PxlU8xkAhIEd8XkRRkT2awbzXuhhEGNq1Cj2Uq9QDEiFCMcZUEJY5wXQ8zZ7Ji41rOn79INpVGixQkZJq2g2IYhBeOki+IlPtKmIOd5AYHkYsdZDtKyKbANx78MucvnGL58ACJICAkV5ZDdnwf23GYr9eQdBndEHDdWcK4hSAJCHIGTS3wzO5DjIyOohgJ6zaPcN3WIWSpiUCdDRuWkzZjwCKIG8QE5IsZegay6KZFyjRYsmQQ222QCE1k1SKImqiqgO87yLGPKLioSkAUNlHkCFURcBwXXdeIY4G8mUMRQiLJRpBdNElCEkQMs5NHnn6FQ6cmkfId9A0W2PfScabnmwwN9KDKLQhscJqYoYksCFRHJTLDPg0mkXMxZ8+fwshq9HfLSOI8AudIMBHIMDvvUe3rp9jVQd2ewVQFMpFELlHRHIVG2yGdSVF3p+noG6S7ZxUTU7PoaoZVqwcREfClyyRihN02mJkJOHRghlJxGFXKMX76JPmsjmLA7Mw0nT09uE4DVYxICSFxCGGiI6T6abp5Du2dYma6Rj6XkNJt4shCU0MqZYlFIymqVR9PaHLixBk81+W2W1+NZzWRJJc49lAFEVU2EFUPVz9K07bxfYGJiXHe8MYbGBpQkWgjxE0kOeTS3EVeOvgyG7bcQLqqE0g1ktQE7XCSVM7k5lvuojOXQ5JE4kTCjRKcQKRYqlLprOAG07ScsyjpGGToUHVSrkQlKNMt93P42RMk7YjRFcuozTQoZlYh2DDYE9LVMYntHiWVC2n7Kfa/PMlLuy1y1RvwbIsUMb3SBL3BDIuVCHG+RhyHIEtcbs7Rbvucqrnk+odYMtaLloxTzjsMVmUsz+YPf/8drOtN8/WvPUjH6FXUWgm93T3kJB8j9hCBUJC4cHGSUmcvXf0DFKs9eLFBR98yxqcC/uG+x/jqQ9/j+LEpfnlsDVfn+3nlnz/P8cceY93qFVQLFdBKnD4xzT9/6vMcSVxOTR7hyce+gJERWLdujBPnxpHTCsOjIwiSzx/9xZvYelMvfUuKPLvnMEZqgD3P1/jQ+z7H5g1bkWUNRYO5po0hp+jOF2m1m7RFH3QB12nywqOPcHzfixiLr2F8osa58QssH1lCPltl3cYtjC5dRtaQkcIWbuTiGCrnQoWH9h5j39HTbF23lqI9g1yb5vKuh3nof36K9Te/CiWbZ07J0rF8M88fOkFPZw8FI6Gc9envzrC6U+eBz/wDLz39GM2pc7zptbey5/lneNPdv4kxtIYJKiSuSNf5k6zYWCCX89mx8zGivpWcLPZyPpYYLHaRmpgnVc1TmmrxgjPOtpEBiD0upaawZY3zgsirP/oB/uHjOwmCLK6q8d6//S+86nVv4nMPPI6k5slnC2R0kLUYNRaRXQtFjpg5fgApbKMmHmISIQghiRCD4FBvTWDmVBBjsmaeRrNFOhMRxbNkyy08V4PERBRkAt/HsiyqHR387d99nCCCkSVLaE41GAjTBIqDpYXUdImvffu7PPzNR7j9xu1Epo1blti8YTNzE/MUih1Igszmq7bh+R5RGCMQUspniZJpZBUCL00ouLi2xKFnq3z0I99k27VlMoU22ZTN4ecfZuLCaXr7F5FIJpN1ByWVx5M0vvjAdzh/eY7Fa5aQxA5ZIaY1M4k/NcXG0eV0GCncOYva+UmuX72WOGyxYvMyvvqtJ/nMF57mxNRRrr1zI7GapWEXuOb2fuwwzZmpSRYvH2PFutUU+7roHB3g5YlTPHV0H54pU9IzyKJFjIUfuZAUMORRJi/G3P/l73Dp1Cwb1m9BkNpEYkxCAoLI0NAoQiZPYWCYU57Ld55+gqqh0lUyOXLkEG97268gS+K/yLI/Wg91gQUW+EWhXq//WBEpn8//rMP8N9Pd3c327du54447+O3f/m3e8573sG3bNsbGxn44A+nIkSM/FJbuu+8H6SbkAAAgAElEQVQ+ALZv3/5/PLaFu+zPIwszkRZY4D8Uwg9bscUrz7kSIMVEUkgsXXnrmogBq9eN8obXvorJS2doNGcJpYBIiInE5AfyE9VKmVatTl43wfOoFIoIYkIQhwgCmKbJ+ptuQK9WmXVdKp1dTE1N4DltrHYd1wtwQ4n+wWVXHrUTiIWQWAwRlZhStUA6o+O2LQLPRdUEdCVBjiN8x8YOHLI9BQ6Mv8Lxy2cJRJiZvYwo+nR1FqhUStRaLWJRJE4SgsDB95tEoYOhSExcHseyZrC9eQIxwhNFWlFCZKTwZJ1GrBNhoMQiUhAjxwlRIuEmGqJSxPVUpDCEwCVOEiRRR8dECBQUI8Vsc5oksVjW3818w6XYWWXx8sVkcyZinCDGAiQyoQieEjBXu0h7/iwGdcYG05TyAYZSR5EsRMFCjD1SWkgc1uno6CQWczTaCqGYBkUjFmJEBZLIJ/AdSBLslk1vTwfZXIKm23T16OSzGiIxSqKhayZGSiOTVenoStPdm0NVPYo5nYHuKn5rCilxGOgeREhSBKFAIinEkQKRiKkk5DMRqgG5YopULoOPiBvGKJqKYzcQ4zaldIyERq5QZWq6zt59+8gWTBRVvdL2KCa0k4B24OOEIp1dOe64fQPrVldRohqCbyPFAbIsE+BT6Suz/pp1rNmyhJo7QbpsUGs2UI00tUaNhjXNtD2NhU+iSihaikRUuDQ/x2WrTkOEs7UmO3c/g+g3SHsBKdtHsyNasw3WrB3jxhs2sn55J0t6NIZ6s6xftRhTitFkCU1RiQSdExcnmbQczMUj9C/q4DV3XEOlqtNqtSDQqNUc8mUDSXNIRIdqVzfpssG2a1ayedMIPV1pNFMnQOLgiXEe37WLZ194hqnJS/zyXbdx/aaV3L59K9VKnliQidCIEwU1Elm6eBN7Xpxg7wGHVKmfyTmbD33g8/y3P/84N998A+/6k/+CpGaw6tPEUYu7f+NN6LkUlh0jk6U5E9Bu+NTrTU6fOESuXMQKPC7Pz/D84RdRFB/Zm2PtUJlX33oVs+4pxGyDbDrhlldfT7W3iCm7LB/t5vEnnmRm1iaJ8/zd177I53Y8zHwCYipDWs2ixxoZJcXWbVsYXr6U5twk1XQKKfDoLJWQYw85ciiaGjMTF9GMFAgSIR7pjMm61WvoKBUwpAjimP7BERKjhyQ3yqW6gI9I7HsM91d48xvvpO2KGNlhpucazEzXaTsxW6++lu233EIQBKRyZd72W79H39I1hJGMGsVkJJGMqtKabtBq+izeeg3zpopYzjPnexy/OI1U7KDVtrFjDz1ncsfrX8OHP/g+PFFilgYSEmvXLEVQZXQj4dDjX2ZFHyxfDOVilmf3HUYwddqEeIkDSUASOECMYaaJBYkIhQTpStsxIdmMwsMPfY35kyfIRAktt01ATEsGJw6IvQgxVhBjBQhJhIBEgDgUSDyFz/7j5/jCP32eaj6PLyqESYYYDRKNm669gU0b1oDgYKRz5CoVzl4+B4qEjMSrrr2Z+fMXSVoNDj73NE8/thNFzBAnBkmiEEoyiVggQGPNusWEBJw8XEemh5Zl09PRQbvdZLYxQyj6pDIaIT6ypiKkDU7PThJKCu1I5rIl8shzx3jy4AV8s4MLczaKodBV1OjuzCJkMhTLBZ55+kn8xnnc+gRuu0U2k2L7rdv43p499PZVeP0b72Tl2qVMzF8CQ8RVYsRCnrPNFsdn5wjF72ewRESIVeRYxJ6fYXF3lX41x9ljL1M7dRY9BDn+fq5MRE4dO0lnuQNFUTHLRaqDfRw5dhQxErAtC03VfpBlf5RjF1hggV84fl5nIv3v2L59O+9+97v51Kc+xd69e0mShB07dvCpT32Kd7/73T+1AdsLlUg/jxz7CSqRlrznZxbeAgv8whEBAkQihCR4xLj4eKLPwUMvEuPghHW8cBJx9iIVMUaXfeKqwYXWHKEqkkqluTgxhRYK6KJM3LQoKDpR20Ikxg8dHLeF77ZpplM09BSefmVlLE3UCCyXjK5juyJelGPpyApSbgMUCTex0fIabmSRhAGh55FCRU4g1EOkOCaLQSiKRLrAaWGeFdu3UujtRLAlOk0FKdFoNEN2PnOATKUbLVOg0W6TTmUQIhlD0ZE8F0URUVQJV4qJzTQzvsqkJdBUcgTZfvadCZifaLPI1FH9EE0zuBQYyJXVjF/0OfVKnaVFBQkXx0ghU0SYl7AaES0lYmSkyKKKzCJN5XM7ThDLPstXDdFZEpg8eYygHYBk0jANZiVoz/v0awX6NYly4tGXk+itmqTVGD3xSUcJUXwRSbLxwn4uT1e5MBmRpGXS5QhJ9XFDH0kSyZgucRhiqB0EroihOphGja5Oh0LGQozbSFEFITDxAwvDTOgakFC1CZLoPGm5QUbySKfnCIIms7MlEqUTxw9R5QTVS5O4EmI8gyidQNUlOnpEZDMgFBQENY8udaJEBqkgQA19WvSAlMcLfJYvH0CSfWI5wvJcQlVBzJlM1OHIgSy6FKEFZxisBIjWNJVCFd8Fs6uD2NSw2xaKDm3nEqYZ4XtNUlIWJTRJiSZq4mAbDdqOhW05qFIRWzSRCmUePLSfl85f4tpf+jW6hsfI+g7pdhvNaaPKLZx0EyvXwlHrKLQY6c9THdEQhHMo7hyN2Rg/rDInDPLw3pO4qsTgqgrXLElQ1ZeQ0nMcuejz4PdCzjZN9L4QKXMZWfMJ7TSekJDTQqomBI0aX/rKd3l452G+8+wkN77+dyh3dKCFs2RTNrF/mZzWhrjO/V/8Ip/+5y8RRxobxjZw772PMzfbyb6Xi3SvjkiikBV9d5NKqjTl72JWPeTMAM8e/Hv2Xnia7555kj/95Cf51d//GJ/4/C4Gx17Fqpuupm/tMDO5FJKf8OobtnPk5DjrN66hN4pIT87QLwrUkwbn5YjTl2d5+ZkXMHsiSr0OA+ZhqvlpLrc8Lp5rks+tw71jiAkR8p19YEvkfRXFFtAFGT8lIVRy9OUL3Lp5A9esGSVuzZMWPEzRQ40tVEPEjhOQBTTRY2YuxKm1ySUWS0sRWUPizKyDsf4dfOrpmOlJi87BDL1lBdG7hBpbPPTACR740iEKnT5LV6wnSfdT6lkMSpqWH9AztpkaBeajAniQt+YwQ4e2mgYtSyiX+ZvvfJfZcjcPPbWbqakp6vU2uUKWRWkFqVIgMjs4p+v8zyee4Hff+k5yyOQRuKarn2eefpRvffq9/OU9v0GZFu7sNNdsHOPru3YwuGolmqITCxIp0SGSVSwv4pXxWT7zlUf5649+muVrrqKjdwARj9rkCbatG+HpD/4DL+/cxfCrb+H5oxf4+O5d3LDpFuJpl2J2EM+P0DMh861LzE63adUSBopjjO8/xtz4BaqDFb4zPcXj39nP9LnTbF5+DcgKp84dZGBIo2BV0Rs2rmHjBxLFsEImMnjgEx/npnWLeOW5pzly+DRr1t5B08kwVfP5wiPf5OVjCf1Dq+npP0tBEnnkazXm5wuUu2M6TIlITdG9agXn23WUbBpfCJj0LU45DZKOHMv6RnniicOcaGQ51spxMe6k44bbOWK77Lmwl87FGn4q5G8/8RXWLVrOprEhTr74KH/5zl+ju78X264z61xkfGKKTWUNgzZq2ICkjSAH2GJMW0/z7Wf304wNtg73occCSSghuBJmlNA+8zIX9n+XO9cuYigOmD1+iIHhATxJRDLTEEIm0ghaHq7vcjauM9Ga48aR1VQEk4e//Si/9tZfwzCzXHlBI5IgECMsSEkLLPALxvz8/I8VkX4Ww6d/WgwPD7N+/Xq2b9/O+vXrfyrnXLjP/jwS/gS2wAILcPfdd7N8+XJKpRJbtmzh/vvv/1c+4+Pj3HbbbfT19f3Q7wMf+MBP5PfD44k/2kiIyICCiByBECQokYSUyISCTigYBIKJJ2R45qVjHDw3w7lWwgVfRutc9BNdlxb7pEKPVOSQihzMqE2H5lOgQZfU4urFebJSmxONFqFmEoQSXiNADRXkWLzSuiPF2LLKnJPGE7uYr0dIUULSrLM4nyXtOngzU+x47HFcK0CWNZJY4fy5KTxf4YUXTzA5AxNzGs/um2K6aeJIOVxMhFSJKFJozjXQBRBdm+60gT11jqB1kY7OFGQNbFXhQhwzp6nc+9XP8p1Hv0zfSIZ6SaSWEsjaMdbcPN888hyv+DOEzTZdgkE1XeRMaLNi+WY2bboRScrz9Qd2MDcX4joSupzFbYZcPj9DvtSNYGaIlBR2opKkcky0PE5cnGXGCmkFCpZWZj7OMFmrc3Df09jz5+hJCxiBi+SGiCFEiYIjpgkEDYQQLbGQgiYDXQX6ezuZbbo0Qok4l+OLDz7Idx56lKOvHKGkGUhegJaAmdZwE5vz8z7FvjUcPTXBrieeZP+LuxF8GySRdLHKtKNS6V7B5nIPw4lKxQ5JpmapjZ+jXZ8jEgLCtIRvSoTRaaq5aVaOCHTnHcy4TkFMSAUx2UhHqgsc2rWP2tkTZOQYQYnwpQS1v5OZjMps2eTDO7/JMxdOYwQCqQBM/0emh6CFoIUiciQjTBVYkb+aEX0d4XhA2VXR5tts6Kly55blOGdeRLl8gk5bJkllcDuKWNkc2SRPb6tAn1PCC0weGx/nY9/+MgebExxuTkLZxJFDXLtGVYflpQwr0wq9eolwVsVwS1gXQ9YOrmVl90oKcR9Koxup0UFkZThwaorxiQZWEDI3f5lbb1jN7//6a/ibP/0VblwisLTDwewysQ0ZQdOAGDVKeMvrXseHP/xBtt18I5N+m9e9Yy2vf2cXf/RnA+TMS4ilFsOv0rj+D1by+nfcxpKlJndt1fnD193FH73h7Qxqqzn4rMDr3/wBrr71Xbzv/q/xnz/5V9z3ymP89i03sXJ0AE/z+c3f+VXU8SmEuSaFoS5OJS0yokqnkkWSFA7YDSqZEbwLMu//4pNcTIpsWbyZxsVZ/uy//zkXD1/GnXUZ7hsgiB1CNSDWEmxJJJTzqJk+zO4OJtxZpuMWfgpsPcJRQjw5xpd+YJDKVTAMA6s5x/FXDpBJa7TdBtmcxlO7vsXs+EFytToFVWIysqgLLpom0+eH+EeOoaoJdcXHtVxkLyIr6dz5qlcjiiKxAIEEjgyWImIpoGU1rPo8VUXld29/LXu++FVyc3U6HZfXbN7A3id2UM3lSIkKqhfzG69/MwceeoQsAmYQIdkWfWqaz3zofbSCEBuRc5ZMsdKHgMeH/+C3KSoJt9z9dv7r330cEJElmYyZxrFavO3Nb+KqDev5vXf+Fkngg+WxyCzw0Ac/waXTp3njXa9Fb3hcdfONLBlexht+8zdJuvuYDU6h5Rs0WwJRMESxNEi6rDCwQqTcl8Io5tix4yWWL+kj8eZQaOHPXaIsKdywchOd5hDHj/hMzhax2zlSWicIJoKY5uLlWfbvP8rtt91F4vl85bP3kkt6Ga1s5I5bruXg44/x7a8+x/T5NNdvX4FS3MvzBz9JobOIUh6hZ9lWLtsy442Yr3z3eZ4+ch5LK1Bduoak2M3DDz5Cd1ZnRX+Bt965jXIH1FqnuVA/wyUcPrv3RR45eACmp/iLP/l9xgZ6+MRHP0ylv4wdtGgEdZ499jx9S3r4QXl7LICYiEixQGA5yLbHm2++lQ5FQ0hEYiQiQSIURUJBZO/Rg5yYPMfpmbMs2zRGqr/CbF4lTunEcUKEQF2JaesCimmwUivzlpGN6H5CKpNG13UefuxRLl+88L/Ng+Pj42zZsoVSqURfXx+33XYb4+Pj/8pv165d/65+CyywwE+fOI5/rP3/gXvuuYebb7753/y9nTt3IgjCj13F7d+TBRHp55GfYjvbzp07ueeee7jnnnt+qn/cBRb4/8L4+DilUon777+fU6dOAfD8889z9913c9ttt/3Qb9euXaxYsYJHHnmEqakpAF544QXe/e53s2XLlh/63X///SxatOhf+P3geHffffe/Ov8VMQnESEAIQYpFpORK+X6CTIxEjMSZc5PMtjy6Bpdwad7i2LmLP9H1STGI8ZWtlMTIcYghhOixjxa1yYkeid/kSw89xkzLRohV4gDUSES6MluWSIBAVNDS3YRCHi1VIKPo5DSViqageA6y75PPZkiZOqHnIwgC+WyBw68cp93y6O0f5dipSeZaAk1Xph1IzDR9bC9mdq7O9OQM5WyWUiZD0KyREkJq0+NIYoDtOzjEqPkqs47LsnWr6Fo2xMzcGWq4tIlREdFVjTijkumtkNINDCRURWE+9KjXmhw/dopz5y9hpLL09g2Sz5eJIxFV1omCmJSZw4slIlEmFGR8ZGptl1g1EFM50E1IVZhohJyfnCRX0FmzYoi0FKKGAWIsICcSJBKhoBIKKkISIyceSuIgRQ6uZyMZJqKWYarVJpQkrtq6hfVr1+G3bOQgJvYdwtAlIEDJVgikLJYf09XRSU9HFUVIUBWdthdy6PQkl2YcFC9E9kMkz8erN2jPz6PIIpEY4yUBDiGy4qBrFsW8hCLYCKGNHIdogBZJxFZAa6aOJgakUwpB5OERMGM1aQgx441ZLE0i29eNHIvft/hHFoEYCwjJFWt39vDopUl2XrzIM6dPcfLyRTo7q3RoKsW2TU/bYpmaQvUiIkkkMAwmLIf5ORvN1UgladpuwvGpKTLDAyy/aj0dQ71ky3kKlQJpQ2X96CLWjS6iUwPPmsZQIfRslo8MsHpsgO6qiRT56IqOqaawmhYnzlxmrtWmZfv09HaxZEk/oyNdlNIhYescumLTCFrM+y6JJCJJErokUi0WQQJRlRDSOrP2FDOt0/j+UaQgIZRMzjmX+B+f+yiz7YhLF2cpKgonj6T56Ed2smfPefoGelm1YZBffutN/PE972DLpi1osYY4UyOxGzz34m6efPxxvvFPn+XkK0fwhIS6GEIYgW0jChGOKuE7kFFKbLruTlwpw8olK7nu6qsxhzu4bt1WVvQvpjU3h6YLIAXEUkiQxLgheKGEEwXY+MQyBHKCl4SEYkIoxiRCAkJCgoiPQC6Xo6ezQkoTiEOfIPCQFegoZ+gZKHKucRlJTMha/w97bx6mV1nf/7/us59nf57ZJ5NkMtkhKyQsCRAWUcBaRQS3AHYLVruIbZV+269t9acS26J+qbXmq1YL1ipWtCphicoiZAIkkIRsJJlJZt+e/XnOvvz+GEiL2tZWpN/SeV3Xuea6zrnnPufMnOe57/t9Pp/3JyRlR2QUFb0rzQDjrF27Gt3xyacyxHGMqqqMj49D+M9iQyQgkGY3J3BJqSpYFs74JOcvWMRvvPFa1i5YgObYvOO6azly4CDNWp1aqcyCliQxoAMJRSepJ5GBdkPl/gcf5NFnDqMlE9Q8DxMJM6rQrpqsXLuRpw8+/4L9soQfuIg4xrZqnH3WMs5Zt45CPo8qQNgu58zv41QJRsdHWNzaxbOHD/P8wefpXH4W1VCgpcAXdVAMHv7hPu766texA4tArtGM6mRa8oyOVVCRmN/VztWvvQw18qlPTlDQkwS1iAfu7+d79+8BUgjJmE0njELMRJrvfW8ng4ODvP6a13Lq+AH8qoshGSQ1Ca29g4nREuWZmBCbNee2sGiZwXRlhootsEKVUEvT1tPHnmefo/+ZA+x67AlWnXcBLfN76Vkwn1RCoytvsKAtwY03XMXCeVm6uwuIpIHS0o6r6Jy9rJeOQo7B48dI55KUrQoQ0NKaxcwZPP1U/4+NPgIBZPQUnbkc9ckJgkoFKRbESC9sgkCC1nld5NpbmWlWaF/UTUtvJ1E2SSgEgRvgBj5qPotvKsSaglZ3USZrdGTyhFFELGDDhg109/T8xPj64pjc39+P4ziUSiV27tzJ8uXLX/Ky6MYbb+TSSy+lv3/2Pl5st3jx4v9UuznmmOO/hlcyne1frn1fNLP+n8iciPRq5BWKRLrlllu48sor2b59O9u3b+fKK6/klltueXk6n2OOXyDveMc7KJVKXHDBBXieR7FYZGBggJ6eHnbu3Hkm0mjr1q1YlsXWrVvPtDt58iQrV66kv7+f97///QD87u/+LgC33nrrT/R3991384m/+MRL7JAUJNRAQvZmKwQRSsiRghKH6KGHHoboYcjlmy+iUakyODhIqVZn4+bNP9P9hZgEIkFAEh+TQOi4YUwYR8iyjxTUUDXw0jnkdDuynETyFfRARokEUiwI5AhbVjk1LfHA4ydpxib1eh09DFiSMEnWKnQbGhlToWnNEIsmphFw9dVbWL9uBW3tOVBkXHSSbQvx9TzPj1bxpAw2JsNjM7TkCsTNBm26RiYK6NIEV59/NgsLCaLAI5ZUZuwALdvKgsXzOXvVfC7dtARJl4hSSSrCZ7I6QyxHqKZGM7Apuxa1wOPEqQEGT+1n1Zo+XvPai1i+egmpTAItqeKFDqoS0rugi6ptcejkKZqxTKCYNCOVRqSi5bqwJINKrDHa0Bm3dTa95grO3bCYQs5Hj6pooUdC1jEVkzCScaUEnqSDiFCxMSUbXXaAGGHkaMY6ZNIUeucRRCHl4gyFRAI9DlEJkXUJXw2Jkx08eWiU6aLD2WetZPWKPiK/QbVZ5/nTY/jZBUTtfVh6iKNHWEqIUUjR1tVGMp0klsCNPNzYIZYk3DBGSyQJECiGRhhHxCLCD1xSaZM1q5ayclkHgV9CkgMUTRBEMQeee46xsQl6FyzGsVziF6YMsWBWcBAxgQyuIuEoGk3V4GvlU3zVHebvx/ajXbUBsbaXp2ujxK1pAkXCc3yaTZuGiGlKCuM1i2PjFSZDjUnZYDzSaWo5lq5Yz6L2HqJyDT2IiFwbVUS0Zk26UhI56mi1UTxpgDhZJNCK5Oc5VPzd6K2DiEQZT6pTC6Y4MfEsl1+yhd7eXmJFwoo9RFJjollirD5FYUELxyeHqGZMKoaOmk4AENQbhFYDM2EgEgojdpVKkEI2C0h+DdM6G9vdwL2PP89573wvP/yRzrzcm/il17yLP/qLo3xvXwtx+0X83p/+MYF3gI7kSRbFR/iNtfP4g80baK2XOKerldetX4c7PcXFF23i0NEjFItFgiCgHjiIoMpZCwq896YbEEFA6MlceekNFFK9VKwia9b38qHfu5HupssVS5aQ9yu0mk3iYAJZqqDJPvghwodkQsdMKCTSGk2/TiTHL5hIx8gxaIFAxDIjVRffcVmxsJMrNm1EESGZfIqZ8hjLl+Z5x81XcMQfYiaqkHDBsEMcu87FN7+O6953E0peJ7AcjhcnmcSjosIjT+2hbtlIsUCJJNRQQg9mxfNaYNGSTuJMTPL9HV/kNy+5nJURXLlgIa89aymG32DlqmVUXIuRiXE++vH/w/DQJBIxeC+IbR5oNFi2Yjl7Dp7gYBUiWeP08YPs++5dfPGzH+fA4VO8/3/dDqhEYYgUxhQSBhlF4cbrruOv/uITnDpxjEwqjef6zG/togw8dmAvt737t2nNtvCnN7+PN175Jj575xewXQ8/9JB0ic6FnSTzWX73D/6AkuXw7ve9lz/8sz/iE5/8c0y/lWY1pjRZRw4D5iWT5InoTGaZnCxzeryIaeYJAo9Y9yjaU5x/+flIhsL41AinBvZz89bLyWijKPYQrXqaP73t9+lsSdOsRzgNeOeNb+S9v/N2WgtJ/ECg6RkadQfPC3j3u9/Dh/74fzOvq5NdD+xkaOAEtXqZlct6aDNtgpnDLJCLLNYdRp56hLdc9jo2rbmY0IKLX7eJxReehRs5jDUmyS1oI6xV8KcmWLawg4RdJxaz3ycgELGEHEl4lTreZJFLz1rFWzZtRokgFBKhkAgkCVeJaFs0n45lC3nDu95GkNPpWbeSSDXxqg6Z2ERF43BlnAeOP8szE4NofkR3pFObKTFdK5NtLbB81dnYtn3GEkkApwYH+dVf/VUA7rrrLprNJs1mk+3btxMEAbfccguDg4M88sgj3H333SQSCR5++GGKxSLNZvOMMe2Lffxr7bZv3/6SdnPMMcd/Ha9UJNKPr303bNjwsq99X4wq+o9s/5nopZ8XEb+anKbmmOUrP0NZ03f+fP/2Xbt2ceWVV7Jt2zZuv/12YDYEb8eOHXz961/n+uuv/7n6n2OOXyRCCHp6ehgefmkY/ODgIIsXL2bevHkMDw8jhGDlypUcPnz4J9r19fXR09PDo48+Sl9fHxdccAG7d+/+qe3OP/98Ht/9BLKQ/rkKMXD65Cn+4atfZfny5UyMnUIKqmiagaybhAh8RaeGghWHlIKA2Pc4e7ae8U/cj+M4VCoVJEmiHmfRU1kq1RLtrS1Mz0ygSAG5bIY48shn0jw7cJpxs5XF6QztnkdWxPiVGWIFKlaDihLSkAs83D+D6wS85bVrccYPklACMprAk3QCoeNICUxGkGKJKDYJyOBLEl7sE+sGR56fplI30HUVqzTIhnPXkdBUxoZPsHh+B7FbJwwcQtcik8/ho6J4PoHlkMq38r0Dh7ELbaxfvZSU2yA9/jwNs5UGEoeGB1ixsJeEFxOFYLSkefAHP6SrpY3Vi9dweMLCzGm0tOeJ7TItgY8IfMrFGTxDJjSzVGsKwp01z44lGJguI+Xn0dHRBVYd1Soy7Uk0bJf2TAs5RUKJHUwqtOZUnLpHHKnoyTbKcYAhCxJhFTVsoKsao5PTaK0LKIUJDp8YYsk5S9GigIwbokYRicAndBs0nSakVSpBnWGnQEgrp445dBd8FnS7tJtVZop5du8fRVuxEaUt5pxOwdjISaKgRErWmN+5ADPOEjkegVuipZDg4QMzLFi4DEORyJoxuFXiYNZUOBIvPo4KcqiDXEMIG2KJMM7QMX8FoQBP8Qkji4KkIsURchyBCGcjSmSVRigTIBFrJkOxRzaZIbI9TCHjahKeJjPuNXjowYdoSbdQPDUIE6P88uXXsHB+L4eOniCzoI/d+/ejKBoTA6Ncu2ULeTxyUQPNryKpCrFiUAllFCGhCo9kWIvdfX8AACAASURBVKOSCIm1BI4doioGQRChyBqqkqLRaJDPZ6lVK2TkAnbsYjlNlLRBprWdRCZDpCQYHJrClgIKvXnGTh7lop6F6I5LzoswzQSnGjXiTJrHjx3FqydJKyGb5+s8uzvD145O4inHYfUqEuM51mUN/r9t51BfcAGjp0Y5+vRRnnn0MQ4++QB//5XP0NJaw/aPYZiCoXqedKaT6ZlxIiJ6OtsoHRtCsQOyuTaeqxdJ5UGJA9RAp66kCSSVbJwg8l1i3UFELnG5QqxkkfBIyhb16QGeeOxhOru6ueiKN1BuSGhGippbQ1IEURQR+hGypCKhkE4kKRcr6IpOU4L9jRqrunvR7SaR26A1L2FmTCwnRGjtlGoKUTqB0V7hrz9/N+euWcz5q9YRjRVoNnXsjkPIqTxP7DnA6zauJyX5FA/tZ+PazWhGFqupYEYSOTnCigMmzIhcvUiLJrNn16MsXX8xQbYDoRnEWkQY1mlpzVDF4NB4nWefO4TfrPPx972XqFkmlUgxPlmjq1NlkgxPDtscHWnwzvPa6Jaq0DjBb37wz3lGX82xI0eZuf9vcRoNkskUu+79Jz7z6U9jGAYf+fjHmZiZJvAdErLLw1/+Eqt+6WJa8638nz/+v3yrVOfBv/kn9pdHKUiC1nafulum3Ciy86Hvc9/3fkQ60cbH/vQTlCeG6O4qUK40+avP7adRniaID/DnH/0TcF1K5VFaF3Rw/64p8p0JlvQaqJGNGkRIMRh+SOw0SRgST+x+gOuuv4qhEyfo6FrCgfEEom0pXhATNhXu+LOP8pGP/g6jU0dZvKyFsBzhylDWwJFk4khCkhRGaxX0+R1M1msc/+HDbH3ta5FLRZICNNcjlkxcWaWqZqipSUIp4EdHHqK9pxt5zyA9a1bQNa+b5VGKmUaZZl8L8tA0siYI/QBT1lBjbfb5CmNCCfwYFE1GCIHreSQzSaaLU6QyOnatBmGAKSQ0IECi7Oks1LI4joOfMTggVZmMbIaPneC6ReeQmmlCSwpHBPz1X/81Tz75JOl0+sxYGEURN910E1/5ylfYunXrGUHoRW688Ubuvvtubr31Vo4ePcrOnTu59dZbueOOO35qu+3bt3PvvffS39/PXXfdxdatW1/S7pprrmHnzp0/9dgcc8zxynHkyJF/t83KlSt/rnPs2LGDW265hW3btvG5z32Ocrl8Zu370EMPvSwV0Xbs2ME999zzn/7922+//RXzRFJekbPM8cryCsiCL6aufe5znzuz7/bbb2fHjh3s3bt3TkSa4/9ZXowyuvTSS3/i2KJFi8jn84yOjp4JUc9msz+1XaFQwLKsM1/2S5Ys+antEokEx48fn90RxSBmRV7fC15YhCs4YYQnBN1tOQI3IvJ9oihGBXQpQBKCSImIJWnWpPvfIV1oZ6zcpLNnGccGjrNq9Rp+9Oj3Mct1WgtpQsNESqRQwgg5jomiAI8IxGyUSSxmq7bJEaxeuYydD/2AgycMVvVkKaR0vOLUbAUdESEJn1j2IZKQkJBjm1BA5FtEkoHnl1m4cBXdHZ2MDwXIIiSOYtrbWpienqSzkCGVzGI1oVguYaRaCVyfpKIix2DKKh3zuqkXS3jNMu26gRuCoqrke+chTJ1sOFv5Z8q10Vtmqx2ZMSyen8YSLrruMjY2RiJhogQBQo0J8HC9Jr6rIAcBiiGh6DrZbIYDgydRVZ3YrlMfOs7SNRsRUY3Qt4gNAy9wcRwH6j7t2XY8x8c0NZrOrNGy7bnEQKaQxrBdZM3AiHSSuoISBUhxCC+8vQ8F+CJGGCpNx571PTJ0RiZKtLX20N0toSjDhFJEMp9l4WKVUWLS7QWO104y1aywZlkPQbHGqYkJejIaLUYK25Vp1JokM11oqS4cu0p9coLWtIT0YgyyCGcjCOIIYhkhZhMpBRJ6JEiGEMeCOAIPCAxptpofL1w/YHkOgZEB3aTmRojxCTo7JaQwJgxjinYE2TRJIw2eYP6ytRT37Qe7zBP9u1F8SKey1EXAZHUSXI9VZ69FqjUoJE1SQQRBNJt6FfnEsoobeUR4mFKMG5tUqyYyKkk1iWJ6WJbDsedOYVsBLW0uG9b3EU/MoEgBhi5TdzysagO33EBOtNK6YDkJEWBTpLtnAeV6gzZVoWE1kRQZXVWpWjaGqtG3bCXlkeM4vs3zJ8bo6OxjOEpSmN9BbajC8VPDuPFC3JlHMYOQTesWccW69Xz73jyJbBtlp4wda+g+VKKIbCjI62kKPe3cv+dRzm1bSEYKkFyPSBUgfPQgJO3ZNDSJUNZpjNTRZQWn1UOXfDoNgSsCVEXGq1ukzQSaqjN8egTfcpAClcBpIoUBEjIyMqqmIysaUQAzpRoJI0W9VOPo5DjDaky3kaFblUioMgldp2l7IFQ0IShkE0wqUIs98kv6eO70aS7YeAGmpoCn0JDAk2JsGSq+A3KMmkyiaRpW0yFyDRLJDFZ5hhm7iljYiaRoIMHixYtRZEEcR4g4JAp94tjnyLGjaB0LkfUECxf18tUv/y1lq0JHMkWIwMhn8HGJgPvuu48n9h3nXRfcBn4IRopf/5VfZ8feIkPHjuH4IXE8q6C2FwokdI1kQqcyM4XveXhhSNMN2PSGN+O2wOnpEsV6Fdn2kW2XHIIW00SOZEwtjWOWEHKTru4O6iWJSjFCNzI4no1uBijCZHiqwvoLV1ANBS2ZLGpQxg8arF+3GD0XEruTIFxCOYIYvAiankekGCRzBabK0+w/+CBdxRE6l2/juelhtBQUUj0kjTwDR8foW9qLUx3HjFXCWEKNYuLYRwplVDWiIIXIgYsvfHq62kAExKGLkFQ0gDBCjiLiKEQJAiwtpL2vl86li2meqDE4PUVh/kKEL6HHGoMjE6xNtFAMqsiyPJsKGfjEYYSumygCROhB4JHJ5alEHoHnEEY+UzN1UgkDRdZxPZcoBknWUCOFyI+xHAeRUGhpL3Bq5DiVSgVHilm8bBEj5UlCQE8mSKRmUxsFs+ksQogzKeo/LiABfPjDH+buu+9+yQufHxeQAFavXg3AwYMHz+z7aSLRpZdeys6dOxkbG/v3B+Y55pjjF8YrERMzMDAA/PPaN5/P88EPfpAdO3awa9eul0VE2rZtG9u2bfu5+3klmBORXo34r9yp9u7de0bxfPHD9XIxMDDwc/V57rnnvqqd+Of4z9Hd3Q1wZqL501AU5cyk8Nprr/2Z+n1x0vnjGIYBMJt6gYB4VkgSmsJkvc5oo0YyCnHTacbdEnok0GPQZJXID0jJMaEsMDWJSFKh+e+H5H79Ow+Q7lrAU8+fouHYNJIZJiWTrkIbib4ujp0+Tj6TpaVYRw8bBIFNPfLRlPAF89sYJZQwYp+CarHhvEVsfuMVnDj4NE8/c5DNi/owggCZCJUmAJEQs8ITLnrsI4SNakZ0pD3s2iDFcJrunIIs1SCMCQKXeT0dNKpVKk2bVCKJlksyZIfooWBRUqPuNDDUCCV0ESJCNUwCBJKUoG5ZpHoKxJaDHoWEQUSz2qClpY1cvoWg1kSXbZzYw6mrBFGDSDawvIhA1WgENrEU0pbLEDdqCK+OLDkkVYXXXraJgZOniF2LzRdswKvbSJKPLXmEpowTClw5Sbatk4rvoBgyuNNoAYRRhGyaxGqG/SPTWLZLyi+RTuVZUEiQ82xiEYIAT5k1MA8VDd8DGQXFcWkzfaasUbxYQygdOFJMwtSxmwF6xsAIfWZmhkCNWLrxfAoZhYo/gpFQ8W2Jcs3GVE00Q5Bt7WRipkStPEWrGaIaaUK3CSICESCImM1sj5HiaDblMgIDmWwERBFK7GGJgCLmC+a5wAuiYzPweLx/N2ahg0TbPNYkTbp8h8BykHxBRzaH3fAIThXZuuoKwgmJAamN6z72K0QnS7gzDZpBwBN7fkTvumXY1Torugu0zlhIzTJR1EQzFWxVxZVVAnO2zLkIJSy/QdUq8I/3HsNQMyztbWHTJfNRJY+WbA+HJsYpVm1i/ySbuwSBCEklk5SaTebPW4ETyjz0yD6O7Pg6HWvOYnJsPxsvOJtrzz8Pt1YhlTOYrkyTaZuHY9lcunYjEyM2S9asRvKP8a7f28ze0TJbrr+WL3zzWyx82xr2PfYADXOMhV6AXmhheKpKmGzl7b9/NQeGDpHrXcyjT0bs23eM4bH7+F9b30lKkXh6zz6GLJvOah1DJIgaDZIdGrovkfB8EoGNLGog6cgoqLJB1bOIhIMmfCzXxVRTNEKF9s5VXPf2NTzRvxs7MmnaFomUSlJLYPvBbJQjMW7g4fhgpjI0QplkzwLWLl1GZXyI9vZWGB8inU5Qr9joLW2UKnU+/mcfYsvrr2WnM8HihRpv2nwdO7/2RbySzc7HnmBizOWX3rqcHCYXrd+MKVuokU++vYswjAmCmFhTGa1XyegKre29lGSBF0mULIv2JX2UXAhVAZKP8F2IfBb2zOP5qQqhJnP15Zfw1tdcQhIo1qcQkoyZbOH7R44wf+kabrvlOt78tveQFICWhDDm3I29fHSjzofe/VZUQI5iiKFZK7JuxVJWrFhBQhbM1GpIyRxGpgc/52EHE+S78tz6kT9B/qu7yKSgM4ZYVHGsAKGHZBI6q1YuZdXSy/j+g8/guyHJtCCOHRTF5/IrN3Jg+hjnv+1aBnWNb97/IAlR4w2XrCRtWqh6E9exiYVPKAcEyLhxFsfMICk6PSsvphFXCOKAv/vy/fzmH95MOu9jpC2qIx7rVy7jH//u81z/1tezaHErshEhSxFaFKHEMcJukjQTJCRwmlWyIqbvrGUIu0kYi1lhNpBQUBCxhBm66FGAIiTGK3XG5CHedfFVPD42yCQaxVKAHcQonR1UBqeRW2NkVSV0I5AUFFWj4dhIUoRhyhAFNIpjpBImlt/EVAWSahIKQYSEpCQgBilW8f0YJ2MiJ1UiRcIbm2J1soO+tWnMQor908NokiBhmIQSxELCCwNUWeaFLNsXXJlmI4EXLVr0krFxaGjoZxrPX+TfmifMMccc/+/wShpn/yLXvv+dmBORXo28AtXXtm3bxo4dO7jhhhvYtm0b+Xye7du3k8/nXzYFdceOHWdyzv8zvFyhhXO8uti6dSs33XQTe/fu/YlJ5t13302pVPq5Q15/GkLMvvmO45gwFngSFBsWE47N6HPP0LQteud3s6S9E7PpIwcRSUlAHBKHIaETEuLzwjvjf5Mli7oYrTVJpNIULY/BsRESmSS1wOU7D+9iwbxW2o0c7UqMCCwi1SOKQ+wwQEUjFLMm20rkYqo+h+xBdu55gGymlXnnXUiz1EQLLAQeCg5BlIJIh0hBiUBIAYaiUq+UWNxZIJLbiEIf1S/iexFCCPREgkp1miAUuGGMFCs8efQkI4ksG89axkhxmLyp0bWolaKwsCJBrKhMxSZRJolLgDRSIpk2qJoRsRKyWGsjX7KQnJgwpdKmuoQeNGyPtJknme6i5tVxvYCGp5LPZFFsF1P2CMIGUqiSlE1mhk+QUCRkPWZ65ATdikmLaTBKwKn6NJakUXIEmpykNnCS7oJJ0i7RpabxhYxNmoGZBnq6g7Z5WTTPQXct2jszBLUKngwNTSKQBY4icejI80ROwNnzFqMHBkpzki1ru5l25lNVHdB0RhujlMZshocbrN2yhUeefowNqy8mOl3FTkI85RBJMScHxunt7UVJmdTcOplMjeGh5xChz7KVZ9GYPE3KMJAjiIQKsQQos8+mzGyZbCHwpJCG4iHiGElq4sUehp9htvWs2BQKyCsm3fl2YjON78tYuSwzIkaTJLJCMFUaRzZNEn6TammS5R1LaLnoAponRqg7PqQ13LrL1ksupTYxTqY9Q9ycQW8xCYRKyZaIpZAJ26LqhNiWR3smTVZSSEo6mYTElvPPIW20kE7Uia0jCN9n3YpLEFFA79IO4ugISsNCCkJcq0571qR04gAtbR1su/pC/Es3sfuZ/SQ3vZVCe5on9+5h46rlTFWKtLZkKBWnUOUkpeOn+cKnHsALQ276rSuxoud4+qm9PPH9v+fmbe/B6Ojmqmt+n32HHsBI96FIGU76Rb773a/Ss6aT/cefY7IWs2bdW+k6ey1TM4f5xt6n2HDJhSTn9/Bra9/E4QcfoqJLqG0JdKtGJuhAimHanEaOmySCiGZbEi/M0KqkkIXFqDOOZEa4kcAxujgyneCLX7ibOI5ZNgoXX7wGRU/iBha2ABSFpiwzWqnxze/ex8IFfdzwlrdzbGSM00ND7HxqD+deew2tAjJGArPQRiWUWLxoIcsXnc0nPvIRPvDUfZRPPE2+YfDbb/hVTo0c49duvJlbtn2A7uBczs4t40h1gsCpk8SnO5VBjmWS2RROqpXRmQkmsFjY2oU/ZiFLOlpKYUYKaCZMPGIEMWYUkohBbXjMN7LYeg53vEFqXgrhOnSk84QImsAHb/8c93z5MwQRbL1iLSYQoxPKOgB5AtwgwBU6ZiwgCkkqKquXL2Xv00/yl3/557zj13+dhUs30qYtZKA+idwoMmMXKczv5It33MGjp47Snk4xJc3QlZXwGg2CMMvK+ZczPlXlmqsuo3cBjJ0eZ16+fdZ7b0sLK6YWcdfjX0PNL+JtV17D3oe+TbEWkgqaVEpDtKY7CISEL8uEQsWXWvnmff0cOXCUD/3Re4ijaUYGW5ADCy/0QC7hByHZVA9veXMLTuXvefj+v+K83/siJXkGT4KACCkOZ4slWBGGmL1nRQUlahD4MZKZJZA0Sp6HpmsgwllrdeETCJXrLvwl3vfnH2HLeR2Mhw7f2P0QF117C88fO8jO5/bzW4vXgTeB5zlIioki64RxTDKfxfcaNL0asgJ+o0jCaCWXNJkcniRZaMFyIxzHQxE6SSNBKGTk+Rl2HnmWhK6zdN4CsvWYbCNAT+VoOCGBIWFIKqqhE4vZOjGyrBDGEcoL4tGFmy6kf08/73jHO34ixfy2224D4L3vfS+f+cxnXqbRfY455viv5pUQka6//nq2b9/ODTfcwAc/+EFg9jvl5Vz7/ndiTkR6NfIKRCL19fVx/fXXs2PHjjODMsyKS319fS/ruV78oP6slMtlduzY8bJewxyvLt73vvfxyU9+klWrVnHLLbfwxje+kc9//vN85StfAeCzn/0se/bsednPGxGDgCCGA8eO8syh/dy/6wEuuGILS5Yt57FHnyR/aQcdSoIwDpDjCFnIRCJCkWNUESN7HsBsBRtJmS22KMm4coQrK8hCYt3yPubXXVItLdy7rx+zoLF26WIqpSnGh5qc3bOaqFiiTdOp+BZxQp41YLaiF9JhBZF44YpFwJr1K9gzPsnhkUnWLzubFgGRFCEREUoBfpxHjXSiGIhdiHSchk8y207Tg8BuokoxSuSj6jqhEDhhgB2GxIpBJDSMXBYLKB5/Huecs9k7NMjSeV3omkKtWSPf3k02kaIxNcPewRP0LlzEqkQLTr3IhOIjqTKS5dGmJohUjZmwTtbxSSomrfk8Q+NlvGqE24zQ1RSR59Go+Qg1RNIU3EglkiQqcoCZ0JBrHqqikkrpiGqDSqPJAb9IavlZ5LQ8GdfguYFTXLXpQpzJEVpUQeg0CH2BmsqT72hjfGyG7nw7iTCkWrPIF7rw6jVeLJEZi5hQwOaLLqUlk+fZR/bRkuuk6tZ4/OBBmopNJS2hyTWMoM7asy/knPU5JkYnWN3dylI9SXl0CEMKIPDJtmQ5bTmouklgqow5ZZSR51izso3Ac2lUhtFTBqo7GzlmegYikl8wyvbxkfAVmVBIuPg0JG/2WqUQgpB0FCKIkF94niUBpiSxesEifDRs2SQp6/xobz9Os8KFq5ejF5LMxA6PBafp27iKQbeB1SyzuGIwbsSoWYPA8ameHuEsI4NiRUzJgmHVJvAjhHDIpZJIqobqBPTNX06zWCZyHcI4TZIpViztwraGSZsWBkPoKY1yZTft87IEUhFJK1LyWoniGEUSKG5INqHTmTYpjxwnb+a4esPZlEyDwcoUPcuXct+e3bzhNVvwmy66EtNVaGX4+SE+dtvHqDgxfrZOIx7nrW/sJSnpfPML3+J3PvonPP7YM5ysWjxV20135wruu/dZZkbqfOrtv83FF76ZL931cX5pQ0SzPsC+hys8Pm7hDw+hVuv01WVa9Cwlt4aWkVHroIQqriJRMgySQYAWKXxv31MYoo3XLlqJljIYswI6TAMrmWRaa6Ezv5B3vP23ePCB+3jkyae47OotRBG4dgNUBVk3kDSJejVAyac5PjnCkdMD9HT0sDyb5e+2fwSxZjVRW4LjzSp5M4PuqkhOk+uuu44bfuVGZiz4xu4DSO96A88ODFJoLdA8fJL8kdMMPXkA3UuTUBRCVcKQDTJSCvQk06rMdLOMoih85pH7cWs2d1z9bnRFw3csHCWmacxOY+QYEihokoTreKTyOWQzy4XnbaKzkOfgow+ALLBKZYz2Nq7cchk6IETIrb/xLv72m19l0ap1LO1bSU6BZOCSiGG0VCLdlgfPp2zZtC3sZaUkse/EST51x538wz88yIc//Bf84w++w71/9ymW9K1mxJ3g6f1P0bbpLKZOnyboyDBTPIrmRJjJ+UhxAkVYzOvUqFQO09aRo2E1MZN5njt2P2/behk/OKKQ6FzPZ2/9APK8Tm655nIazxdJmRnwu4gll1CqEggFR6Q474q3Ugse5f1/+Df8/nt+mTdf+8dokmAwmkaSQxp1H8UPKVvHWLTS5LJ559LwQ2qmioiZTU2LZfRMGt+2SfgRhgyWiEkpMl4YY0U6VqxSzWWwlBCJgEQYkQpclDBk4umDnNXRy7qzVlCZOc2EW+fwxBBGZwvWqaM4hkY9iNGjmG4tyYmJKcbLMyQKGZZ0d+DZoAiJ0tAAzx96hlXnnosuS8Q1FzWRJkqr7D96gq5MC21d3fzwyAFqMpw6sJ+KkLmytY8jTz2NHwU4piC9ch77nz9I6DrM1Co8+cxTKJLMhtVrZ2N9hcQdf3kHX/7yl+nv7+fCCy/kve99LwCf+cxn6O/vp1AosHXr1jkRaY45XkW8EiLSueeey2te8xp27dr1EjPtX8Ta978DcyLSq5FXIKLvRSOxbdu2nfE/uueee9ixYwf5fP6M2fbLwX+0r127ds2JSHP8m9xxxx0cPXqU+++/n09+8pN88pOfPHPsggsuYMuWLWdEpH/pifDzcP99D3Df/TspVcpMVavomRRO6KMTsPuhB3j4W98ijco/HnmOlYuX0JYv0NnRhioryKqErusYiqBN12Yr3MgKnqzhSwpTjTogIVI54iDEaDRpiSWsWonWZV08svtH9MiCwGpQHR7h4LcfZHFrB4MJk2RXK9OTJdrb25H8AKtu47kuM1aTWhQzVbWpyxIVr0aXoeMPHsUVKg1FgCqwzQhJ0zHTCYJGlXRaoWZLNByJtnQP1dERrMoU3a2teG6S4bEpAkXQiCPqgcemzRejKTrT4xOEjTKcPERlYBWXX34N0xPjTI2NEgUBM6VjmF2djB4/xgkvoOOsNUzaEmGgcvDIYfKdLSR6e6nPVGjXVDL1CJuQoGmhaWlStk9SuGTzGY6dOk1HJkWUTTBoV1nYMp+paYnsgg5+8OxuVhc0Vnsaku/jpHREOsfz5QnMX76MXKaNmUeeIz8esqCnwDMnT+GNjDNvZBqzV0Fq+LRFEuXIpl1Oo4yN0BFkqARJBj0ZTzaoTU+gJjTK5SKKpqM1JMbrwyTMPCcmSjxteXSetYnBU+MUVvWS8h2CY4c5euIwqUhmnqfQmhYUZw6TE5BxBZKh0GiWSWRlqtMjjFV9GhmFLs+k7pgokslzh55hsDrNeS0LaWqwXC+gC5VEykRVfSrFEqm2AiBImDpJSUYIBadukU63YOESRRExIa7vEwQBvtPA9wS+H2I1XZ4RUM8qrDjvfKwwgloDH0Gyqwct24b96AArzW4ysiBM1CnXmizOd+JSY6jskETBbmvln473syKVI9W0aY6XyGsJ8rKGe+wIqpIkm81TKoe0+RKuPkUNn2wiTziUIdvazrjrY7dIKPkMI6craJkkGR9SQYxmh7S1zMO3FUQiQVnWmBwaJdOZRcJl/+gQLavX8LcPPsIiyWCFmqY0OEZB0ak6+/EkjcC2UWQb3w/JdPVw3fWXcnLvwxTiEM+TuHfvcxy0nuX8Veezr3SIw7u+QyqhcNOWazn15AnGx8ZY+brXMbH/IPXBSfpSGR77/g/pMXSELjByJomEgV5o4kc+YbnORK1M5Ee0+CFJ3eKx/gfo6Gxj1fJF1AdGeMA6zHee2MPffuyrpOsz3HzBWk5s7kA4NVqVFIgUgSawvBA7tFnUmedxv0Fnays9pk6m0cStTPP+zeto3nMfuT/6Ve7c8xBvuvSNbCj7yLgEaY84raIXi2zdcAn+ycMcmjzOgZNHec2SdfQsyfH0/Q9w+ZYtTIzNMNGhEEY+5pQgaoRMdqXp0gqkJy2k9jZ2P/8wux++j6wk0ZrLEZoqdHcQJMGUVJp1j5mJIjU15pnnjtPQU2SXL6NerPCP33yQxZ0Zsh0ZzLjKm89bwUxtitCymDo1yXePHWS4/xG2brqKlUt6udCWSWkaHWfNhzCgXqlSj1UeenIflmVxZKxILtVCuVwm6EnD/Dam5Jhjzz5Ld0eCWHapTIwjpdOUrIguv51sNo1NTGRWCKISUpxG8hVmnAqSZmKmFM5eupxjExM0D46wOLMWpJi0qqAmsiTyVZTI4KMf/hrbfucmRL5GyZ7B7OygJjn4moaQczy8cy/LbjiHiAZeKiR0FWQEjjtEJpXh/ItvJpUucGxinDhjQtFiPhkqcURVhISE5FSNslWjkog5NTKGcGQmbHDNBA8NDrD0og0Q+iyJIjalC4wODqC0prhkfjuPPfFtqiJkfN9TjJuzqdb+D5/iGUehsS7LfE9igQ2tXR3UMzo/OPAUUSjoMJKEksaGvmV8jIhgywAAIABJREFUZ88ufvDE9zn77AtpCXW0TIpTzSrJ1UvZdc+DLF+5kr5N5/P337iHZfNXcSpS+Gz/k1T9JkNHjyDGZsg9laNcHAAlhrEpPvVXd1IvlkkqGvO75jFvfg8333wzTz/9NJdccgn9/f309/efGYeFEHzzm998Wcb0OeaY438Wt912G7t27XrJ2nfHjh2/kLXvfwfmqrO9GvnUS6uz7R2G2777Y20W/NtpXueee+6/+mEYGBhg8eLFXH/99Xz9619/ybEbbriBe+65h5MnT/7cquyuXbvYtWvXf/hDOTAwcEbg+p+oDM/xszM4OMg999zDwYMHz5TwbTabZ479a1XXAJLJJIZh8OlPf5obb7yRq6++mvvuu+8n2kmSNFvtbWh41hIJsAOPQMTc/8ADvPNdN6FoGoaiItUdbNvG8zyiKMIwDOI4PrMhAlpyJiJSCNGpaSa2ItN93nrGBk7SN28hBcPk6W98Cz2KkTM5um+6hpNDw8SPH0KEHnFWobPhotoBQTJBQ46w4xApitHsAC2ESEBgKDiGQeCrbH796xkdOs740YMonks2iHE8l9hQKUsBZJaSMTW86hSaW0FPpqk0fbKdC5k5dgSi5uyNhzoYGgT+rLGOBAs2nMvMzAzW6dOABLkCNCze8r73840775z9I8qCVD5NY3QEU5Oxexey4KrXM3Tv/TA2zeVvfTPL1qzkb27/U1A0FARa00NJ6fi+j6boyLJCabqIUHVyLQXKM0VWX3Y5vRdcwHc+9wUWXr6ZriULkJIS5cefYXrnYyQUjaHGBGa6nTifovfaK3APDlF+/CBOFOFsbGPDr/8aY9/fC1/ZRTVZQonADmw8NYZ6iBSqLMgv5JQmyF+xmdzUBIP9j5NOGASBRxiBJ0mgmIDC8te9ngHf5qqrruI7n7kT1i+A0SLKkQHCyEZ3PNpKNsPJ2ZDTFkcm5ctMplQcRWbFijWcfPowLOyg95KNHH/0UfAq0NbO8hVrSC7pZt9f/A2sXEh7oDIzMU7kOKQjCBWBZTchDNGzWaQgQgQRsj+bKuI4FrKqgKbgRSFBHCHLKnIEchwhRTF1M8fSN76Oqekxqg8/jmg4KNkMfqsKaobE8xZmJCjmPHpueQsTk5MEx4b4jff8Ll/6+KfxxyfJrV/N2re8hkfu/BxGuUbUqKGEs47ylh+CrIKksvT1v8zMk/2U68OQz4Ad0WknkNyAMZqkLlqP7fqkzBRx3wJqQ8fA1Nmw/hyO3fcodqVGMD5Jy9Y385rXXsn3/uRjNE6ehFwe0lmYrpEXKmq9iu/ZIDwiOUkoJGIREr0QqaVoKlEoYWhJZEnBjxXKjSYICQQosiCbzVAsz4AqwK1DKgXpdkjlYHQMGnXaWtuIyjMQxXhxiC0isikNISIkSUaSVYQQ1C2bGIlYSFi2jdkMmK+keH5RnrNu/U3kHx3hfUvXk0opnMw2kdo7aYxVmS9nyOVTTFamiZKCY0MnyaYzFDJ5zNggasbIqofZGGTgzgd5cFU7h5bm0GyJ3289h7ZIwkkHTIdlDM+lJTSw/JhT8zI0NYnhPc+yJUwxfuwoPWuW0ZdZxOEMNAxBr5bj25/+PDNWk0Pjp0mkM1TbdahO05MtYFeapAyTSqVGrKggK8RBiOpEpLM5Jnwbv7uFjpWraUu2MXzgKG84azXl00fJtScYsYdpmCnCzlbURsDGsJ1DSZ/e1SuZePxpJv0iq20N1Q9odOrEnoyi6CTaOjkyPkokQA9DOgOBbhQ4pWcxCi3ojWnkwEJyisiGwowfIqVSVITMejtGbzRoKjEtne2cs3IVQcMmIRSsOMCXwU+onJ6cpHvxCo4NnqbmSxi6CUHAiq52lGaFllSC2z+5Fz1l8Y5fW8fp8eOMNRVEciOToy7FgVHGDvyId/7yWgwjwNZCqm4FQ5LIoiLcCFdScYhR8lk8z6Jh2YzbFo8+spu2WoTm+viBxZTSRErqyK5HgiS+nEPJ5ln2+qtppBX6Fi7kux/6MwplCyl0sTUHM1JIJtOEikKQT1MOPNxaDVMyCRMaK3/tdRz79iN0jzo0EypTuLSsX8nMkVMYNR8FwUVmnQm1zpTv0yhGzHcK1BIpxoyYJZs2cPJ7PyKdTqOd24fnC8rHhmnfvAFreIrL3vkm8kmDr73/T3BDCymnccHmjUwPDvOj7z1IIZmdfSP+ou3g7A8AHnnkEfbs2cOXvvQljhw58pJx+sILL6S/v5+BgYGf8E76xCc+wQc/+EFuvfVWdu/eTX9//0817n2x3fbt2/nABz7wH5h9zDHHHC8n+/bt+4l9d95550uqtv3LSo7/Gg899NBP3f/i2vfFymz/kiuvvJJdu3b9/+y9eZRcV33v+9n7zHVq7lGtWdZgy5YnyTbGBhuQDXYIYYghEEgCSeCuhAw3yQskuUkIuWtdO/c9bvLeTVauQ8gNMZBgiAlg4olBxkYeJA+yLVuy5m61uru6a64zn73fHyWZwb6BEAyB9Gets3qpeqvqdFWdYX/39/f90Ww2/0Nl8S47kX4U+ZZytu2TcPcvfMuY/+uFD5LvhDMhYi/Uge2GG27g1ltv5ciRI/9mAWfnzp3fVabRhg0b/sOpwct8d6xfv57f/u3fZmRkBPjmboPr169HCMHBgwef9/927dpFEAScf/75z2UsvVD5265du9BaD0O3T9/VCsAzbZRWjBYrWIkiC/oMlMazbDzPw/M8tNbEcYx8rpUWZNJgXmb4KfixQa4ScA2ufscb+Nqje9gqy3itiIOTdQr9jMhQnD05yeDESaI0AylpJQH9JEJqBdIltgQvvfIqHn94L0nUGna40SByhZHmuF6B6aefoLF4EkNn6DRhEGVI16cVhDBWY/Ull/Dj117FrR/9MK2j++n2+yAcfu33/gu//86fAb8Cgx54BsTR6b/GgDTnxL59kMbgO5RWr6f3xEEwXT71F38OQvOzf/QH/O1/+6/0+10qkysoRBFyqs7LLtzExz7y13jVMg/c9c98+a7PY05OUB+t8cY3vIG//O//gwuuvJpUaPY/9QQbzjuX5qOPocOQDS/Zwd6v3Eu3MU/ryQMQdsjMnPmT0xz9xK1gFaiXXBIpGNc1FlOFWuzxzEc/y2jPoh6EJOUyZ7/rndzzxS/A7idZKxQMIChYpDJhx1WvYs99D6CSjImfuZ5jj+wlGi1w9MuP4ekc3e4gsoRCqUQShJjrRsik4oTXo2woPvdXf4ZtwJuvvZZbfv13yecHaEeRaoFCYNgOIoxAaSKpiWwNluLt7/1FPvTe36F56DjPxgFrX3MFay/bRrDUZs/f3wZPPwwjVba+9DKiY7MsNI6BmdJTDtg23vo1nLNlEycOHqI7N49IUwqGCYOcQuqjtaYfRBhFH9c1yVRGnkVkiqF4F8c8+/k7qVRKmJlmVbXGXLdDPjqOCmMqJvSSLhNrz6L993eTNRuIap3P/f5NMNNgYnyMxp4nhqWdvoNQGUpbZJZBKsGdqnHBq6/hwPQ0+ZoSrb02nP9SXvGTr6Nx8BhP/vktCNOBUoXX/MQNnDhxnIf++R7OP+ds9h04BfOL7PncV8FRmOedzQWveiPPPLaff/jYF1jhFei3E2ydoJca+MLEVQrhWOS+wZLs4w8kdj4Mn9dIcgkSgTYNukmIViByg1EMlM7pDUJwLMKix/rzz2N60EKXPZQh0G3F7/3O+/jTD/4hg6RL4+QhPNtFCoEpLUrCwpYOOTmpVqRJRq4FYZIhCj6G44KUhK7gYD8Hw+Hovn3Yi8fIrrqQ5mCJMMroZ5q7nj1A8/gsF27axEXbtuJlMWev3YwKQnSQE0Yd8gzadspDSzP87NvfjL91LTWjzZG5eRo4hK0B9V6ENegjV1TJYoknTcrtBMeEODUZHRtnw3VrmU+6PCRSCv4EnbTLB5+9n0b3CDRiWDlK59LVcN/TlL1x5rKAzElZMgFPMpXa2N0Mw3ToliyO95cgS+DYgNe+99fZ/+jTnH/BVvpBSHG0gukY+LlP+ZKLWEhypO6QzGds9Eqc/PJeygLSepXFXh+ZZFiGg+u7gElj0IWSB6bEciyyKGXQHSC1iZMYqLBFEvZxjZxqeZTFZocwyqhNrGDh1FEqhoXwPGY6IVuFS28QkAFeuYomY26+S618Fg9+8UH8osvFWzdhCEUcRmTthdMh1Dk//vOvxrBahOlBXDvC7scY1iKrzqoyvnol5TVn06/bNMOEPE0Yq4xhpBl2oshMTR843mpgZinnuJP0DIvFS9eiGjPktx+gbrgsnbUCVYlQTx2lMj5K2k9wjJz+4hxH7t3FYjqg/LIrgJTc06hM45sFCrGgmArSXNNodsiKJpRdVm7bxqEnHscZpMiCxaIXQL9HsWCzuH8/xqb1jOQuU1aRp3Z/gY6TkEoLxy2S5SaehElh0n1kH1NK4echxx67D8ssMJWYzD/8ZUaky93/+88QeUItbeBVSoRS8vAdX6bm+RQMG52mYFrA6Q5N4usLqVdddRXT09M8/fTT1Ov1b1roOSMi/cEf/MHzOrnddtttAFx88cU0Gg0eeOAB3vGOd/wfx1122WUvfJOxzDLLfF94oXK2M6WsZ9ixY8d3/fz/0tz3TInb3r17/0Nl8cpvP2SZHzrUd7D9GzgjDu3du/d5vzvz2LIDaJkfFq6//nqazSbXXXfd81r4XnbZZTSbTVavXs2uXbuA4crj9ddfD3z9AnVm3NatW58b9xu/8RvPjfvGXK80Tel2OhhC4jsuRq4p2i7lgo9SalgilKakaYplWdi2jeM4eJ6HUyygtCZTCpnmiHSYVfPk4YMUx6o8/PBDPPbww2CAtEGgmDt6jObMSYqmRckyEAa4JYfqWI1uc5EkiTn/oguJVYbl2Nj2cHMsG9c28aRk7vhhwvYSJhrTNPFcH2k4CNPh3IsvY2TFJJHWNGZmyBaXIIwQfum5lSHDtAHJuh0XsWnHdoTvYxv2189HrgdjI1z/uushVxCnQ7UtjbFcBypl/Fpt6MzKFYPZU9z96VshiyEcUDIlnlZkJ09y9tlnYzg2hAFufYyjjSaEIRsvvhg6LdAZY6umcAoep44dZ/aZZ6Fe5eRTT3B0/5PIcp2aaZOIjFbQxRMmXqUC1TLYJqrkgnBwlaD92AF4ZD/kmiiNMEwfWazA1BQXXnQZ9GKo1Vl32cVQ8wmfeBKiPmXfpWjblByPsmVDnpFFIeWtWwiDLlFrAQ4foCo1zWPHodtnvFiiVKhQ9oo4jodh2vi2S8FxsQouFFzwHfbue4R2cwnHdqgYNs0TM8hBTDjXgFNLMN/ETSE4cYql49MgLRgbh9VrYNUqtlxwIdsvv5LFxQZJq0XcatFsNml1O2ROgcQuYJarrD9nK+ddtAPLG+6LadqYpknFsqlLyYjtoKOQPM/xXQf6AXR7SJFgmZL5uZPk06fwMgO9sIBq9/B9ByyNGnTZWBnFSzRmDqY2QEuUFpxz7rnURuq0Fxscue+rMAiQxSoLnR5P7t1LeeVqfL8EUcyn/vojPPSZ23BNk31/8wk4tkAhkdQLFcbP2sKFGzazqlyj1EuQnQgzyBmrjDJaH6FcLGHaJrnOSPOMTOWQa2zXGR6PtoN7+mcQBCRJQpplZDoHE4RKEXlKtVzA9WwmpyY4e+s5vOraa3nNa1/HK659DRw4wEf+5CZcFcOgy+iqSdySh+e7WJaFKUyCICKME5JUozDQhgG2gwYyQyJr1aHAsmEVhAE/+9NvozN3jNaggbQ1416ZuBuz6ezzefVP/zRfO/QMdz74AKeabZIwxVSQ9UOk0li2gbYMTiUZealE3a9RNQrkAhZ0hKgXqVarlLwi3SSmGYdgGZipwoly1oxNEuYpgSFQvsdc1SE3LGrVMYy1U1g3XIuzbROUPS540+ugWqLbXBzmrzkWlH2II/I0R2cpURTSiHpgZlDywbKp+gWaC/MkYQC2pFApkQmNa3ukuabb6tLpBrSDgLgfUvfKVMsVDA3aMjBLheE5pNcnGAyQQpCpnDTPCPOUkBxhGfi2IOu3KHk2Rd+lWquxsNigVKpQq9RZmJ9H1KuI8THmtGLgFzgZx2TVMrHvcSoMWEpzRlatxTYr3Pfl+/nyHXfRO3WSvNvEzgMcmWMYBlGWUVtZBU+hVIZjWUTdNr3OHIuLJzg+dwhvwudU0GG226bZGwy7oAmTLMwACa6NU6sSmxaxBikcUseFs9agbRtl2ZjjdTZcfAGVyUnCOCZDYxkSzzJoTc9ghTEzTzwJaYBb9TCKDsq2MG2LguNScQtM1UZRcYpdKLBhyybIE049c5g4ipC+S8XzqZou5LD5gvMYqJTBYEB1fArHqWBbPoVCCW1aZFmGIwSiP6DgSCwySmRUhMKKQuy4j+53iGaOEp44StV3kHmMCgImSlWyQYRjmFimRXTaQSzENzvxAd7znve8YBnbhz70ISzL4mMf+xjveMc7OHr0KEePHuX666//puykD37wgwghnhsHPG/cVVdd9V3egSyzzDLfC77Rtf9/2v4tnHEY3XPPPc/7XavVAniuY9uLzZns35tuuukH2h1u2Yn0o0j+4j79hg0b2LlzJzfddBPbt2//pkykm266iZ07d76oItIZtffMQfutLLuQlvlOueWWW7jjjjuet0J5ht27dz+3Wnn11Vc/97gQgre//e3PiU67d+9m69atPP300y847uWnbzDTdGgTrJQroKHkeFiZhiwh0Qrb98jzHCEEQgi01sMMmtMXwDhX4JpYGPi5SZqZNHLBvv/nT2HjGnj6FO2eQrkJIlSYnsOeO+9ECptCqkiyDNvTRHFEFATIagXV7/DE/qeImk0so8AwHRtQGiPPGXROYZoGlitJwxCZKXLDJ5MG2nA4dHKBrKs58ugemG8AJsIronsBd3zyMwi3St6Ypzg5yvrztvDYl+5DD/qM1SeZCwPyMMKpjBGrnH6ng61zPOkQmsOSqQ//9m/xxt/6Tf7xf91MEiVsro6yOHuCMBgggoipkSoLx06gNYyvW8W+e3fzxN5HEWvW8uCDj1OcrMPqjQyyHCYmoFIiCSPi4zOMVMbpPHMQSglnvfrH8TPBicePY6YJLTfH9Rx0M2Likh3kG1YQTfqE+w6z8Ohh1swNWPrEnbB4EjwHVSrR1QIMCVHEkSNzUBiBxR6PHzoAJ2ahMUDaJr2gSyk38QyLuDlgrFQjSyUbi1Ue/sJnGRg5jlNg4bE9fOHpvYxMbUSdaJECmuH3IMsy8jAlTlMSc9hGm1xy21/8KRum1qF6MfMzs8hwwCPHF+g+e4TN5QmWFKxJBNP37GHEsNFpRhDHTO68iEF7iWajy1N7n4JuimV4mMLCyTPSSpGO60CWgW8yevH5bFg9xdf2PYyIU0ytcKRJrz3P6Mgo7ekjlCo+s4M2XsFDhgFVz2ex3SQtDgWvyX6JrsgIxyosLCwx9tKLWXXJNoxWi6N/dzdlaWIiyIUgzySInKf3PMGj994PfgG0hsBgx6azWDc5xdNKEc2dZKpcZWAo9IGnoFKC4w022yMczroEeYhRqZI8fZiZI7OcyO+lbxkIz0Rlitw0aGQ9Vp+/iZ2v3snn//ct9I+eRCaaEdMhE/lQaCBHiBQtFFKDMA2IM8gVqSPpWykogRQQxClq9iRHnt4PBQ9ME2f9OhzbpvPkPtySBXlGFHQwhUGOxBQGprbIJOjTKz9KC3IlAYP3/dEfc9NNN6FNm3f/jw9x81/9FZf/p3fyl7/7h5RHyvi+pKg1nnS5Z89B5uwC6SvGsdetYe9TT1LJM1ZtOpuJUhFBSLvbxSyXsGxJxR3Fcis0nzjG2WeN0V93Fg/ffz9haZRCZFH1y3SdYQg2eYZrSEp+EVmskAjN/l6DibWraOU5C//8IBedcw7rV03Q2JSTLnbhjvswn12AIAbfRzcGeDs2c8HLL+fgfY+QPHCYqlNlMQ1h4xgv+8W3Mv2ZL9I7Ps9/f9/72XrhDrxqiW7SJ88y0n6PlWN1utMdRLuHY1gMJsu0ohiynAKKginRmUblKZ4wKJhFECa9QUK54NCOA4IkYqRaJe62KJqSgmezMDtDqeTT6Q5Yv2kLTxw6ztxShw3nXsixdgPfFyzYJudtP5c/u/1OrnvZKzhn7Rr+4ROfoLG0xGuu+TEuKG3B1RZWmrH3y3fxEz9+La7r0ehHDHJJkkueOvooS6ee5dqtU3RmFxn36izmIb5j0UhCvBWTeNUipXiEvN9jEETIXFI2HVJhkkgYXb+WY0Gfo0s56yjRfOAQlA2KV15M/9Qix7pLbCqeRdbNiFVKoVym2Vik6lcYSzWq02V+5jgTq0ZwihZtPSC2XERXYec5RqZpz/VZv3acZjTgK//0OcqFGt0HnyLPA7KRccYMn8Fim5FRl/FymacfehBRXok96GA5LhYSlWlS2ySKQsxEY8oMXRWcaizgOT55lDDuVQmtnLK0SOsFTAuCg6eQtknJdBGxwjQdRK5Iswi3UCDNUgzDQHyDe/fyyy8nCAKuu+66FxR6PvKRj/Ce97yHW265hVtuueW5xwuFAnv27AGGruSPfvSjvOtd73reuHq9/ty4ZZZZ5gfHix2svX37drZv387NN9/8TZUyZ8ScnTt3viilbGdiYs6UyrVaLa655prnTBvvf//7+eQnP/mCDqkXm+VMpB9F/uj5KzHP4w//bR/7kSNHePOb38zevXufO2harRbbt2/nk5/85IsiIu3du5c3v/nN31Z1Xf5KL/Od8id/8ifcdttt3Hjjjf/iSuKuXbv4p3/6J3bv3s0b3vAGbrjhhudlKJwZ9+EPf5hDhw5907hvzGgAhqENWrO4sMDZm7dg2zYKTZgm/+L+5gJEwcTsZIzmPgPHomUqLvuFG9h15+3UliLKvZQl2acqbGKtaZRMyGF9S6Fkxmw5pZimSCUYmD6ROdw5Q0E5BjcZClaJ1KRCYypQQpEaCkNrpAKRGSROiUAA1TLnX/Ea9t19O6aOcQdLOFaBXJv0E4kOBxR0RCgzsvVjMNeEKKPqFAmDAbEpwZZQMEBDcSnCQNKxLTAlWBarL9nO7NPP4CuQ3T5mnlJwbYIkxXEcLGUgtCYVkq4LqYTQsiiObuSlr3o5d33q78GzueSqKzlr9Wo+9dd/S9ZYomI6GP2Yph/z8l96J7oT8PTffpaCMGkWFLmAsQDa2zYT1sqkeQIHj0OUM2V5zMUdtmzfhu/Y7Nn1ANf+p1+mbcFDt/wdTPehVIKoz9afei37P3Yra4qTLOpp8jymkJrY2sLOTJbCHqZZQNQrqKIDUYO426Zcm2Qx6lBefQ7dp6dBhRRGx5kIYo4ZPaqxopibdFRCd3UJJuqsH1nB4CtP4mUQWOAUKsy0l6h4BUZCxUzcZpMo0vChkCliQ9F1LDZe9xMsnZxhZv9+PMPAGPRxsxxDZ5ha0XRttnzgv9BcmOfE7Z/jup/7WZ7Z+yhHv3IvojtABjF1wyYhxHZthGWxEA2gWoIwphArTKUY2JpcCmQHdog6bTIOih6m4WBsXU/sAb0laEpotKgVfMIoIVU5UoNrWph5CmmOyBIyrQhWjJGpAOKUdbGNp+FE0iapmFQKRYKTSxStSZRKUXmMVxiWjSo0M0sNJlZvZHr6JKtrEzR8RZTOwpoxKNpwtIEfulRjgd+OOWZlJCaM1aqkQYckDilVyiy0umghcUdH+aXf/HUefOQ+HvraA4goJ+lE2KYNWqIxycWw+2EpjylY0It6CGN47Sp4JYQwEMqB3CIXKUrmaASZlOQCwjxjcv16pOMw++wBJs/Zxty+w9iTKxFJjxEz4Pd/+R2YUhN4Zf7x0CL7l/o0ZMBrrriMJ+/7GhcXa7zhwovIl5oIDakBiTRJDUlu2UwsakqmywkR86n8GLmpOLc+ydktTau9xAEjpNfrsXFsnIlIUrJc5pqLfG3mIOdceikqz1npTrHw8DOsnJoiHy3yDw98if3338/b3voOPv7//SW2Hrojs7BHx88pXnoBySDGPLqE7iekRRf9im3k4SIXehMcuGMXkVKs3rKZC7ZfzMn5k4w4LmVp4/QGhBnUV63mRL/NYM0og1YPkoS6Z1OcnqdsS5IkpuQaGImJFBa559MpWPRVil8vEi4tUgZMNSzrVVKhBORCogwHZTiEUUamBLLg0U9jps7bzP1PPMLq+jiXnrONUeFy4shR2u02Z285j9GkzH27PstozSUL53nFK1+KMCTH5xeJhU+cQ3fFao4/8xRXr11LY+YEURTR9Txi26EjDTpRyKhrQxKjwwF1IfAV1DKDVEgWfIuuIzlZNOh0A143GINCgS9tdek/O838UwdZas/AvkcZMSdQdkpr0MEzC1TcAmYnwUozlFAEdsbA1gS2gBUTcGCWtf4YRpShtWYgU3IBnudhpRl2ltN1IJOSyZ7EyqFVMDhaEzjapDbQpL0uJemgc9CWRVZxSdIBVq5AhgzsDC1AxDYik9Rih8GKCrRC2qMGaRqxup8jJeh+goEgyTOm52YRhjFsFfkCXH755dRqtRdcJPpGbrnlFj7+8Y8D8La3ve15ruR/7bhlllnm+8sLZZd+K5dffvm/6TWOHDnCNddcw5EjR54397377rtfFBFJCPFNGcQ33XQT73//+5/rFHcm1Pvw4cPf89f+tvu2LCL9CPL734GI9Mffm4/95ptvfk7U2bBhA+9+97u/J8/7QpwJLtu5c+e/aBlcdiIt8++dM0ffIAqpj44gpcQ2LUT+7VdSev2A2ugYzc4Atz5CFIW89OVX8sCXvshUoYClFN0sRXcivHqFk3QobNpC+akZQLPkJ9SiFDuHwHQIrKE4ZWjwE3DToYgUGUMRycoluVBkhsLQCkOBqS0GhkmgoHjBubzlNW/hr//gd6jVfWT3FJmS2H6NQSzJowEeIQmawAG0xDRtVJQgEWRCg9DDoG0NhXz4z8iwyaUEYYHSVMdHsIRB0G4bQJYEAAAgAElEQVSy3q6QJRltXzAXdfFMm4KQeNlwwjcUkSSF+kqmpqZ4/PHHMQ0D13UxbZN+GJDrDLW0xOToOB0dEIoMIQ1GUgM7zE5PHEFJWHJd1m7cQvOh/ayujdIIezSMNqyv8Npf+jUe/NzdNHbvQ159JWqpzdt/+l3c8t7fgJWT+KMVBkcOMRGkWM0OvUo+FO5wSVONaZVIggjTcsjCgNrYCOHSCSwBPSXZ9Ju/yMryBF/507/ipW99I9NPPAl7n2JeDnBSTQ2bTtAn3DJBff0qqoZD4549uLZDR2bESpLXK6h+jzWTU4xfupWn/+keBgUoBsN6wlSaJNJD90MKUuAIgZ0NRR9QIBRN12TsPe+g1+nSOnwEGoswNw+ZpuxVqNoOg9kGogIizckQ1LadzZrLLuYrH/041VaOm2fMlXNAcE62ApVpjnfnkG6RLFcktgEFk5/6vz/A7Z/8FMb0HO2j06BBFoqoJMVJM0pZhi8kZRRxlDBbd+mLFISgtNhl1K6w6OX0RAxhilGsk9sennCoYZK124QupK5J5DjQ7lEcWYWfCeabJzCuOpdLr72SXEU89Lefxp7uMSYKGEsR3akK7WyAlWU4eULd9zl58hQj4xM0o5hsMMAYHyc3Y+j0QFh40sWMcwRDsVafLrnpOqCylLJtkQQDPFNimzZKG6SY5IaNozMEwwl2LiQaiTINUg1hniMtEyeGNVmJwLOZnptlZcnjN37r53l0ej8P2n02Xvt6bKvCkd17uPKcLcgoZAUGfhhSAKSWKCHIhImhoZRbdEkZxaMXh3zFbnNwdoYL125ipBEha0UiU3KoOUvFd1jVy6gIm7aKmSmZHDh8nPPXbGZjJFmYcOiplLWBzaf/6uM80p/jop9/C9mJJQ7c/TXiRpOCTslW1klaC7BuDTTarNx2IScPHsDacR5XXH4p9/6/f0Gtl7DUXOKy63dy/ksuYfdTjzHhVxg1PJy5LjXfY+bUHGrVGA9UofPsKc5Zu4ENG9Zx6nO7OOu8TUT5AKe/iJPZkEtSw2HgO7TTkNxU+IakpDW2yhEoMjHMvcqEAdIgzwSmNLAwKUWgspyk5jE7aLPz6lfgZBKjHeKbNlpqEiBBkugQv+Sz6/4vsm7DWqZWryQIAtI0IwoTovEp0lbIBqfIqaPHUCKhbabEQCxsHLOEk8dkeUSqQnxDYOUKP9WgDbq2TWgJTpYk+08d5yf1GibSAr+z765hFt2xI2x+0xs5uOs+zOklZJby7t98L//zL/8nUsFYZuAPEgylCC1F11V0Hcmr3/tL3Pnnf0MtMyDJKBU98jzFNk1kEOGqM4sOoITEySVCQwLERZdOGg+depUC1T5YmSa1bI6mbfyCRSnJsVRCoxgTGyaGqLB+Yi3hsws0SxZjosCGV1/Kvicfh6eOkOUxZS3RaUJuSk7MzSJOL9FIhteO5/gOboWXWWaZHw3uv//+bzvmiiuu+J681vdz7iuE4H3ve99zc9szc+EzDaze//73c9NNN31PGlr9a1kuZ/tR5MV19H0TL+aB863cc889z6m9yyzzQ8WZG9vTnWPU6YdSFNgmtutiWxZpu/9tn0pKifZsKLlEwgBtcfDRJ/ATiGVEX2dYlkeoEjxhwup1nHfppTz7zCwCNRRx1HC12BaQyeEm9VBIEvrr+6sYTlqHt+dfd0kJDWJop8LQGfse3wvkeI5JDAih0SIjl5JM5qRKowWgBKZlg9IordBSIgCth2qNRJEaejjpQGHm8vT7ZZCHMUme45dLDJoZUZTQdEwYqxI2m2RuEVMrDKUwNJgKut1FVNSnKDTEKUG3h1fysXyHtNeDiTqhVNiRIgwCpOswkMNyiEIKuYS2BSKJ0Y1FVhd87FzRD3qUd+6ge3gfJw8eo/Gl+8AuU1szwdL9u7ESBTWficu2sWHtKnbPHqPq2PQG7WEXs9wgti1UnpKUC6w6/3xmHtxNZcsGWo156l6ZfnuJkbPP5dl9+3jWrUKlyDmXX8aJQ4fIVY7SKVlukOQJvmnT74e0Ty3QDkKKQhPphFAqyEwsyyCOIzZetI1kZZ2BDZjDz93Oh53VdNjDMQ1kkiEECC3J5ekyKjEsDznxuS+A60KzOcw4Gh2jYNicvWot3flFFtU8SX9A3fVJgoRzt12IrtdBDL9vXqpA5yAlx+yU0M9h9VpWjE5yanoOmi2oVbn7wd30Rgu8YfuP8dmbP0qeK1Q2LOaLdY7KY3IpAE1ChHAqwzDdPMerTRLmGm/1CFnRJpxfIA8yKBuEG1djj4/TPXAIs9Ehbffx165l6uduoNUdcJU3xSc//L/In3yG3bMz0G5CkOGZRQI0WcXErpegE5OpDFcYzM3NMVqrMuj2yTUgzaEY3A3AK+LkkIcxjjCHx9+Zia1QmPUJknaTTJpI0ybq9aiOV4hzRaolhudAeDoEX3/9VBJ0A+pjY4RzC0jHxhQmfdVjNgFWT5C1Y7ads53ShtU8euCLlG2DFY5HeXSMUTQF38eNQqKgh+f7p89HBkKDmYMkoeumeMogTzMmSiVORCl+CmPlEbq2QbDUwsmgYHs4IsA1JFYuqJbL6CDGHGS0dURWqBEHIYnK6QRttGvy6IkDvP4Vr2Xfw49A6hJ0U2zTAs9nZOVqlpKcS3ZezVKWED11lIZZRAQJIs+wAJ0mzM3OUJ8YQ4cZ/Sii7hYwCia2I1GWxBKaciooBJqFkw0SbXAiiZltzLKtYiGFRGmNksPzcKFcotFfouQV6LbbjDru8P0WnO6EB1pluNJC5Qk6i3ATC0NI+llC0RSosI9SBhXbJA8HaKmxXZtEp2BoIlLM+ihLGfhK0Gi3WTlSp1Qq0iClWiqgw4wsSzBdhSkSkOAogRVGeIYm1RBLA9PUQ1dONjzf2SpDZ5JyolnveZimQRZomJmHFaPQjTh1fBpyTWZaFJCsnFqLXamRBAOkZ5MHCQZgKIlUYOUmRx7dD/2QzCmghaaTRbgFB9u0CTtdXMclVimGBrQiNIfvGbGikCp6WU7mmvRlTJZnlLDxKxXIMnSSYuYaL5PYuUkmJJmhuPjSS7j3wOcIel1kxWPFxCSn5mbomNMgcpTS5JlGmBJ1+kok+IaQ1+dZf5dZZpkfdb6fnpjv59z3W9m7dy8bNmx4TjA6Y6r4XjS0+teyHKz9o0j6HWw/pHy/QsuWWebFQjGMLUuAUGfg2cSOZJB/+wNTaCjUarQsxcY3XwNODgWJGWXUMoG2BG0ZkcUpHh6G4eCvXM2BxgJ9yyI2TMDEzgyczMDNhk9h5UMxwVTPvygoDDQGGhOhh6KPylMsAYYp6MxO8/C99+CM+ARJF7soUY4mMVNiKyW3MkJ7WC7jphoVRmRxjPAstFQIoTHR+LnGO11WE5tDYcNWCj9XeHnCVGUEC4mwTRLTJXWKJPU6V/3Ke2DjFGlR0HaGrgGEQpCS5x0WZw6zouhSQzFe8PANkyCNGH/5ZfzYL7+Tjurgac0K26OgNaEzLN3zU0UhHZaE+UqTzS8wJ3o8brUICzEvu+gSOJ7S+Ou7KTQdGGgCnUDB529+7w95ya++h/mswUJRQ2eeY+2TzHkhDhZmDMowwLXhrJWUXr4dLtzCVb/0c7CiSqwkk/U1LB07yUW/8Itsf+tbGHvLG7n1vi8x89gepJRUi/6whXiucIUJ3T7R7Bxpu49jm8SmIndgnVvBWehSckuEzQ73ffJWDK0gV5RjxUioqEcZJU/jGgmOmSGNDCUzYgNCC/r28LtQmmlRP7GEXAqwLQ8OH2XTylUoKTgwO0PgGGBayFSiwozPfeZ2Pn/jh0BZFGOTcm5iZ0PBMEwVXH4+1/3We1m5agPMNKiqCuJgg6WP3sVVV+/k3i/uIu90IE95zbvfxRXveAusnySd8OmNOSxWNZlVodfuDrO81qxjIUiYywWv+pX/TDgyDqMruPTX/jPjb/tpdlxwBWvzEqMnE8zZgInCOIOFDs/evovFO77KJz/1KYgVpYHFipMpm5s258RFkiCk1V2k8saX89bffi/Xvun1aEsSJBGTk5P0ez1saVB2PBzXI1toU0g9rMWEUmxSk87wPUeRGQmxFRNaKUnJwTt3G0EQge1Rdiqk3RBLGXh+gXY8OH0Ephg6x1YZlk4YKzjoTptJv8AKzyMn5OSGjLFfu47KL/wY82HEow8fRPUMLtl0Phvm+1x2uMOry2PUmm3sxgIy6lIf8cllTmYMHXxSSwwNqRlxvBYxWwnpuTFFQ3PB+EpWapvu7CL/8PFb2SDLbBtbT8V0Eb0IJ8oZK5TpLbR55fmXsd6qYlck62dbvGRmwNoTLXqdJrRb6Nu+zG2/eyPemjX87E3/FePsNSStJTAcWoOAta9+FZ+5606iw0cwGymNzz+A00/IopCS4zA5WiOK+wySPjE5WkASpuw58RTeaIn20gITlsNLyqvYGLk4A8HYmrNYWjNOev4GFkRMzxUMHEHoStKCRTMJGF2/miNLc2S2QS4Yhrkjh8HfMBS/45CihBFLEsuQxE3piD5ZTbL35FN89dkHaRcjWsWIph/TdXqYRgtlZ/R0zNrtO3jg2DQzsaK8YhWL7SW+cPunufeOWxHxEqZI0CIhzrugWhiqSTlrMxr28PsBhUGEnSaoPCbJI3I5dKq5WYafZqzqRVxqOPSdPgfdDuODlMrBeWxrlNde/RrGN2wEz0Ypiz/+4I3DgHKhOTXokp12ExlaYioTNzWYvfdxxgojkGpMz2Fy62bm4y4zcZvIhcCBjqeGCxFA04OGDwMbCrHG0ApV99n4xleSrKnRKUvqW9Zx0ateBkiczKAWmlRCg0IqIO7Q6MyT5SGomJPHj3DHZ/+RZx7bQ8GE7HTpZ4Qitw1SIONbesZ8HxdSl1lmmX8fKKW+7fbDypn8o1tvvZVWq/VNHeBeqMnV9wvjAx/4wAd+YK++zIvDP//Rt+/O9uoP/MB277tl//79fP7zn+fd7343nuf9oHdnmWX+dQiFRiMQGECkQVsuXzg+y6o3vp4Lr93JM5/+NCvHRhm0+xTtAv1uD1fbjJSrqCSiVivRDlpk/T7ZXBsRS7JegE5icjsjMyIMS9Er2uRT62n3eyRzM8hjM2S+IHYVo5mH0UwxLYfAj2m5iqDVRgxCaplFVwhCQ2LkFnVdJDA8BkGCn4CKOpw1tZZ+GpAKKBVKBKeWcKWBm2bYMZiJgcTGdYo4hkvaHVDMNZPVMRZFgqElrjbxUo0tLbJcUSmWSeIIfdoFJVLwbZ8w14Q1n9GrdzC142yOzh9HdjroLKdQK4CZUUVy8uF9uBQom2WasWJk8zk04hw/TDBHRpjr9/A2nsVcq4th29g5uGHIM/v2k41MUt24mdnFBRI0jgJXKXIJkQlaWLiNDitHRzhCHyZqEA7oHjhBtR/Qj+aRlZxYdDD2zeD0Qgwylo4cJNl/gNbuvZiZQRUbOzEwqy5Bt0dWKYJOIdcsPvAktDscCBucc/21zC7M0Nm+FSZHyI4f5cjdd7LZguO3fQrUMHg9H+Ssl2V02GJ8fIqlfoeCYeL5PgsTLuWXXkZwaAnZAcMrMggTjh+fxsOjEmj8aOgcic1hKYzcso2RiVXMHj1GkKS4joVGoJFkcig+OkkKWYxFjkhDbNOgO3eK9vFpnDilkGnCTo6WPtb4CmJfwGuuprJqFa19T1JAM6hbpCpC+iV0t82hu+5h9sRx3vjud7JtxwVMN2YJ+z2O7/oq4aAPrgTfZimOOfjkfpjvgD+BasUUmgFVz6Vfd7jiTT/O2h0XcGL3A2A7HPnnL6FOnkJ325x8+EEG9z3J7BP7WDx8kDhoUPQt+mGHaq3Ka2/4KYxqlfnjz0LUR2tNGsfYhkMYxziej1cqM/fU0zx011c4fHSaa970Jg4dP0GYGUSRolCq08pCcksPha4wQ3gOpVyRxH2aDGC0QhAGGLUVJJGkrFfyhrf/DPvu2YXn+DR7S1T8Kr7w2Ppzb+XZJx7D6SeslwVUIjDtEhqHTpjjFIoEYZ80iTCLLlGSMjh4krFjTUa04vJrXopRsfFtm5XKpXfyFCqIECtqxAbYvRwPl1ahSGaVeeTYIp8Le7RGSqzVAjtNqKYaJ8mwGjl+4qNzQTRioNfVeTbxiAsFbt+/m23VUUZtl8DIOexoSqpE5LiIpEOhG+FoB682we0PP0AYRVAqYrY7rJpt8JXPfAZ9zcugG7Nu63m0Dj1J58Qh5OFpKkFEqdUmTvsUbQupcoJ4wHnnnIUvBH6q8FOJm0m0YRGZgoLr45sOY5FB2u4gPUhERJ4PGNGa1YZNr73ISlHGUCaptDlq5ax/5ZX84713UKyNM1IdIcwSlCkYSQzqgUExsphfO8L9FTgYJ6wO6qRBi6gAC2WbnALnvnInC2NVVK3OSFtRSS1UprBkCTvKSQyFnYVs37KZLA0RY2MU7QnMNZuZWrEOxyzgu0VOHD+BkxuU8DBDiSddtMroiJzMFMgkYVWtSmdhkS4pasUIM1FC6NjkpkuOQdpXjDtV7vryF4kvXEXemGWzGGdPcgImyky95GIWF2YgGFAyTeqmJsoHxFZGamgMZaCFoBuF1N0ii2Gfqe3bePXbb+DwXQ/jNRNMw+Vk2aIW5ti5wM0kXiYppAaWYxHqGEsKxm2b8zZdRPvx4/gDwcLCIoudNm4npBxrBIpTJU1kCWp5gdbsIbJ8kaovKEsbM7bIeporf/KNPPbIg1iFAi4CkSl+/Vd/Bccwhg4qGDqQzmzLLLPMfxiOHj36bbuzrVu37ge9m/9qzsx9P//5z/N3f/d3RFHEjTfe+Jzr6Oabb2b//v189KMf/b7v27IT6UeRbycg/ZCKsTfeeCO1Wo0dO3Zw8803c88997zgtswy/54RKIQGR5y+1y1WCIsVupaJWZAEQYDhuKSmgW+VMUyLVq+Pdkw6nTYohaU1bj/C7UVYUf5c8DUoTKVh3Wq27dhOpVLDw8Ru98mTENIBKs1QmAingDAkSdBjYu1KxkfHwbSIHIOejpEFj94goE+OMk0My0QDx2emUZZBphRpEuELC0tnGGpYAoW20dicWlhCmAa26SIxmW+2QA5L44QGA0meazBMmt0enlsChtVOFnJYrmAZkAxoqIDDi7PkQQ+Za0xH0uwuUrItDj60B0OZWLFGKsGFl76EjedeQNYZEPVDKiNjYBnMDfogBVGeQ5igWz3SVg89PYcoliHoIywbX1oIrYjNoSvKzMEt1+hnClKJXyhT2rAZw3FQAoIsQZQtsBTVToQXxIg4QLbbWJnAiHLybgCRxhcevUFIyS1AloOA0fUbcaULQQr9AatXr2bDO9+OuXEtL7tuJ60nn0EfOcbivsdgECKznDCJKVgunulQ9Vcw3V3CMUyMRKMUMDWGVx/D8Sq4tSpLjUWE47BhyxbiZhczlziZQAtJbEBkSLZceAnznT6F8QlGJ6eA0xkjgFTDWwUlvn75MDQYWmMqhZXlOEpjK0XRKtLPNZ1GAxyb173+TYxNrEAVS4SOic5yCBJEEiO6IUQJ5DErN6zi47d/mmZzhsraydM1nxLiFFptrn/lq3jnr/4aFGtsfvkref27f5lKdQKkRuQ5D33tfr76Dx+DqXEgpxZljEYx5ThEpiFVJSigycM+adijHbYJox6Lzx7ito/dwr5PfAJ6bagUufranVx85RWcaDXoSkjynCQIKWFjCZeaV2JycgVrtp1PKg2kU2BpfpGJ87cx9YqroNOA8TK5Suj3+xS0QdEpEIcRuA5xYwkdxnTnGtx6151gCCILGC3RTkOavR7T/TZsOxdzvM5sOmA66jEvFR3PIa6UOJUGDByDsGBy7mWXgF2GRg/35AKuSoiJSEWOjDMkArvs4dfqNNOYzLVxXA9SGIQJSQ4b1m8hcl32HD+GwsRPBKYenqtEIiDXxHlOYGY4ZZclcpKCS3F0nAcef4zppUWCPEWaBp/94p3sfeZJpGESmpKeLek5Bma1zOTWc4AczBwnCZkcGwXTgk6fk9OzrLvoIhgMKMUJdS0plFySoiRBk52u6jO0wtP/P3tvHiXpedf3fp53f2uv6r1n3xdpRhrNaLNWW7JsY8sbmMUbtuFCSLgxcMgFcgKXQE5iXwjkJpB7rNxwyXUCBgMxlmXZ8thaLFmSNaPR7GvPTE/3THd1V9f+1rs+z3P/qLGBEGyHk2th0Z9zntNVp+qcfqqr6q2u3/v9fX6QSxVeNnS1ZQZURsfpxxla2MhOQL6SpycHCCPD8gSq0aA7O4dtmFgpmCkYUlAp14YS/ziBROFhYRv2cFBlrDASjRVrUkwq27fib9xImAim1mxAmiZLgwFlv8rCXINLyyv8+ZNPkRceOWkipIlp+OhIkqYpBdOmPnuJ2ZkLXLm2QJxozEKVmbkFTMdHWRbCdVHaBO1SLIwSpYrUtdCVHAPHZBBFpN0QTwnGR8eod7okeZcLjSXOLS2jHZ9qaQwzEeTWTGPftAP27GD5wiz2rftgbITcmjGcagniFDtKiNsdtFCk19ubv+HvskwDshTLNml023zxK09ScgsUhIswbbRnD3V2wkBoAzcbtq5mUpPkbbQtyAYRV14+zaDTJ5EZpmHQnV/EzRQCRWIOvWuWNJC9GFNJNBE66mMoiZ2Ab3h0kxQqZfT1zxBxvQX7mwWkv/iQXWWVVf6e8e0KSN+rCuhPfOITPPjgg9+cSv4Lv/AL30wiXbx4kU9/+tOvWpfOqhPptcj3cLvat6JarbJ582YOHjzIT/7kT/6N9/tePVCs8tpm6BZS37iCJcAHjv3Jf4UXJ2D+Avn1a7l2oY4erUGvz+jYFP24T+pAGjUp2x4ik7imRb/TRWZgYWIKgWkYCG0hlAFdzU6Vp91KCYQB2qajFP6e3ewQYxx56kViYrIVib1xHfWlOhg+lifI7BgqHo00ZHrPBu550+t55lOfopEo1m3awVJ9Aa0zDMsmCEImcxVWRBdlKKQ0yLRBZBoY4xWWgyYUXIKuwvRcSAfA0DXUE0NfEpaFqFVpLXfxnTIy7aAFpDpDZoq1d9zB/JVL1Hs9SCSO4dDu9/BrFa7OXqK4aRPKtLBsl2ajwb5SiZztgGUwPT3NpYvnoTrChz/4AT75O/8BS2ks0ySOY5ShqG3bxt6NG5nzCuSxyAZd3G8IjK9LdedrOdZu3UXt5Rma53qU79pHc60mmlmmVtpIc74Ouzeggh7aNpBkdIM+OstAKfLlIkmUkcYRpmniY0OjD2un+LF3/zD//pn/nUhqmFvkwmNPMLn3Fi5+5QVG3/Vu5KV5TMtm5dwcNaeMY9n0un2svOBw+xqMOZCFrLFG6Sw1iNwEb8VgaeEE8fIyVz2P6q517D1wC8utBtacSxzLYZuJUKQmICQzR15msFxHtJooLSlZw2l5QgzdVUpxvSWLoWwYAy3U8Eu9OfxSZwvooRi96zYa/Sbm1ASf/Sf/Cq7MwUiB+UHGtMox6fq0WyGRIZCWSZJJ/t3P/jxs3AC1Ct7aMTqNJeyBxO1mjFVKvPBHn2Fmbg5sj2w8z+fPHibRi2wsj5MsXYV+i5GHXo9c6NFe7pOZf+EeM7XCVRHt5Q4U8lCZQkUZOc/GMwxUs42sFemttKnlyxw9cZxWpw0TI/RtF+IYTAcMi7JhEywu88lf/jWoVihph143IG+7VLTJxqn1RHfdy8j4OI0T57EOncHtDRjVHlGjyZt/4iMY5SqPfe7zSO0w+tb92DtKLJ48BTNNYsvFiy1mLpzhwD33cujkC7C1zDt+4h/x57/7Cej3uO+nf4rlq3Oc+sqXkN02Z4I2O/ftY/7EaYJWyGilQrFaoRX0GZ0cJWh08H2Ha0mfo4vX6PU6PLxhNyJMmPTKxK0ensrYEgw4duI0at0mEsNA2pB6mkHBANxhu5OKGbVsGr0VvvjVI/zggw8xM7NCvzKG57nkZMgtb70LLq8QWyALHtLxGBgSOV7idW95Iy+fPc78S4c4PVenUpzgji27eMF4nnRhjpG9G5kTHmYqCU1BveKiXAi7EsfP40uLONIYKCxjKP2XIkMaMLPSp+B4pELj+fawTc/3aMY9HNukXHQwhMDUkqgbY8SQEw5mvcnK80cRiyHbbdgoMuIUuiYE1jCN52Fj1bvMnD6BbAXcUNvFhat9slEfZ2QUudBn+/YRFklYWjmBO5FihAl6wiZL+/jlMkZOszhIsMvT3HLjAX7z/3mEf/oDH0ZYKfamNVSqORavzBNbkswWpHmLMAzQJQ9hW8ynAwZJn9s3rEN3QlztE1ztMb5+giXL5MAb9vDHf/xp4vYy+7buxuwnDHpdbtu2g8XM4ZVPfZU9a97Ey1eWaF9aYNKvMD/Q+EUX0yozkIPrBRoLUw7TPdO2g2j3KI14NOsLdJfmqUYmliP50D/5x/zGJ36D2BJooRBaoYRBbBm0PINBr4NdGyFtrOCfPU04YoMpEGHAmkRRzSAzFLGlmOoNjyvtSoWV/jVylofMwHZ9gkGM63m8/PSTEEZYrvnffryussoqf8/5Xm5X+1ZUq9W/0QX8jdu+2y6kb7DazvZa5LPfQTvbw7/6qm3vb8vb3/52Dh48SLVa5eGHH+bhhx/m7rvv/mvrL/eKrrLK3wm+eWZUDy9KgaHAFPBrv/27PPCBD9DJeUxOjLByZh4mKzi3HyBb7nP7PXfznp/6cZ575XlUO8J1LAxhgRLYwsQxh+PtBcZQLoxB1JcsvnQKOQgIhKKY82gXbCZ3b6V56Sq9NMKwHEoUaEU9fuw3Psb+u+7h0PEj1B68kwc+9H7OHXoJx/fxt65h8cwxUJLABL9aZtDtkKvU0KmiaLj0jAFaKAwUytBEloBSHu3YvOXHPsKFK7PoOMRKEtAm0jCQrkntjgPc/vZ3cPnwK+BVyBKJX/FJkwHa80BL7n/H2zl76hRoQSVfpndtkbVbNrMS9Nj3wBvYsHsnl89fIopixstVrs3Nc+XiDI5l0BXxQdAAACAASURBVFleoDg1RSwz1q/bwIWjJyCK8Q2B1im27zDoBJw59DITfgHCiLLnk2USLYZFJGUIkg1jjN9xN+bhBQy7xOQdt7CYF6xbu436sfPc9s53Mn3rzcy/eIj0uvwZy+BdP/xD2K7L0mKdLE3RpiDOFHnlEeTzaGFw8ugJ8ktdfNNgoGNap84wd+Q0aJMzB5/E9fOkKyvUvCJZu48KY4pejkQqBqNlvPc+RCb79M4usmlyI3GqiBoBaaRwbruZyVqepTNHmZ2bYbm5gGloTJkOi0jXfThaKJJWF9Vts6ZaQUUDbCGuC86H7SaW1hhSf3NKWGqaKMO8PrVKoIUGQ1C85Wb2vOstNLKU6PISXG5CrsADP/fjXLo6izo/Tyk08TCwNbiGBUJgj42S1hfYe+893HDzTZx7+SWU0Oy+/QDz58+hopRUG6jRKfbs3Uvz6izR4jzdeoP82ChTN97Arptv4vQXnwQsPKnRhhrKwYVE9rvsuv9eHnjX9zN9wy0sLHRRysBLEwoqwIn6TBVrtJstdM4hcyxkzuFNP/4Ralu2ca0fQqyIFxfxTAu3VEKFCbLbZ6xcwbVtZq9eYebkScJz52m+dIKovkxoatp5i7ZI0JOjnHvxJeK5Jn5jQG/NKL3WFdovvsy60QnaV2bx+hkjsaC+ME/9+HmsfBVVb9Nb7GNKn6ibMfv5pyikNoO5FcZy4yydn6XRXCZJEmSWYec91m3ZyOzVOVaaDQpejjiOkI5HOl7i7KUZNvhl8qlGCcW461KNMtZuHOfOvTdiRZKUhNTT9IXg9LU6y/2QQZZScx28YMB4vsjY7vWkV9tMTW3GHhnn0IkzeEWflhlQbLYZM11cw6HoFukFERcuX+b5P3+UzPFI5xfB9YmihJv23MT5Lz8BvsPC0UPkhEexJ8C06e/dTPm9byM6fQapBdKwWDc2Qd73sZRAG8MUS2YqGJ/EL1Y4efoMa6Ym0SaEKqM4VsRxTeJ+jyQOyRsWdgqFzMSwLEzHwolT9k+sZY1pU1jqYmeSgW/RL3oEnkWGQA4ydm7YxN7N20hkhOlXGFQqnFEx29sOohtx8MwRvv/ht7G7KzBNwVm3R0FowlQwb4DhT5CrTHH07AW2b9/Iep1y/JXnWD8+StjvYrs23UGfxV6TlTRBlfLMhwFRzkdVcszMzTFVGcXOBLZfILVdLrfbuNURFurLtJYbrB0bIee4mAqOnT7NlcWrdJ59nm179nPs2Sdh9hqZ1Kycu0wu1jjCJg5jpGmTCQewEVgILXBkipUpujmBKHnIQcxkoUSQRiRllytLi7hJ9k2xdWJCaEFXhmx504Pc/IY30HVcsvoKG+64kU233si1s6fZEAi8NCWyhzLuciwAi3t//MOcOX2UomNDZiK0R5RobNNEhm2qOQcjU0MHGvAzP/MzmOZqUWmVVf6+MzMz822TSFu2bHm1t/k/Fd/32bx5M9Vq9VX5/atJpNcir9Ek0sGDB9m8eTOHDh161d4wq6zyPw0FIgTqdcpxSu/KNZozZyiMrqGvFZXJNSx1TvHK0ZMs6QjClJzhkiYhWRbjWx42FkpKBAJpCKRhD4c42ZJoNI+MEoKigUokdDrMz1yG85cpT03RuVKnF/qUH7qNpw8dpmZ6oAXNK4u8+IWvwHyDQdbjyPw8WBa0OuTLo3zkwx/hd//jI0gMkp4g1MMz0LbSWBpMCakBySAGR5Ar5GGlAYaNqSwyQyCFAaaFMzrCscuXYdsWuNzELEDYuTZsLbEN8At89pFHQCvcUpmo02KsNkKjuUKxXOLQ4cNM33gDo1s2ES13CZsdkn6XUqkAKqZSLtIMeqh+wNzMDCXbRaYSzzLpxxmmNPGkIqcgaXZwHYdus4/tucMCEtezY77Nha99hU15yMmMM5/8z1gffBtzC+dhY40Tl84yeOI4nmOBIbBNi1ylRN7zieOYJOjj5wpkaYZdLNPtZEgU5F3MYgHH90iSARga37JJpUYkGfvf9EZeePLLUCrRTTPGKjWkShlkET2p2Hfv97Hl7jdybNc2Zlt/zMypOdZSpOcb5O+8ma333cHRX/9V3HKBWKaQxBiZxpUGlhy2gkgBhlZYhCRGRnOlDqnEzuWGRSTNN6XQ8noBKTENEsNEi2G6TqNwhIlCsv+9b+Xx3/p3MFCQ5CAagO3w5S88AXOLePkagzhGWtmwQCdjhDYxghC0zbE/fZRj7hOwbgJu2IS6YTeD04dxg4RcKujMLfLMv/m/IOxSK+XAT2m2O/RPnGb2wgVwPEg0sQnW9VCqQNF34OjcBY4uL8HIxuGXUGHgWYKsvcJkJY9st5kolpmpL4Kp8O66gy8e/Dy0Q7bfeT9TpTGe/k+PEPTaOBI0EreUo5dFmLaNbTmkQY+1t99Cy5YEl+fRy12qmYslHcyOZjHImG3X0TqDkwGvu+0HufD0BaLZoxQNk/VOCRF02VwdpTXfQJQquKW19I9doZgr4mYO7uQm5k7NYPg2iysdnMoIiRxKuGNbkOZsCiMV7t29k1/7lV/mF37u5+m0m3gJeAPJm++8n5G+xA8TGlmf5X6XzX6VQbiIXajgZiZKGCSpIFKKG/bfwvEj50mSjJpy8NKQud4Cuzfu4bSnsN0yg0Bxz0Nv5TPPfYbdm0a5Ydc2zMWIpC9RMiOvLQ5s2sn2qY18/vHPg59HmCZ23uex3/1NGCszNj1FrEZITy1QsQuE2kB1EkSxwht+6ReY+dJXmX3ma7TilJJ2MK4rlZVQIDIWr1yh5JQYz5chTPB9m3avjV+w6KysUDIdqoUqWSdAWhau6ZJYBuRtkm6P0VyBq1mbPWNFBp0Omelw1VF0k4QsGLDDrlBqx/Q7fS6Ei4yP7iDK51mqXyVX2cbuXbt4z9QOHn3sz7hl2910ox79zXnay138yjjNQcChJ5/nXW9+O/VGj/qJE7z+rtt56923Ur/WotMOcIol0k6b2/cf4HNPPcVSu8sNt9/KkZMnuWHDOqzlHu6OPAsyoDcIeOKlr7F2/SY2z/tMV0ZYu+Umjlw+wpapaQadJkaWwUILRsexN41hzfTIug3+wY/+KP/m5/83br7jDvKuxyvHj9GM+tcF6+BmwxaxIIkplX16noSow66RNZj9mNC2ePbxxxnzy2SYgMLQw8mallZgu0xNTJMlgonxdSz6sywdOskay8Nod4ncPJmQSCFITIvZskVs2viXLxO0elRrZeIwQfgW0oBuGFC0JWYvQtgu2Xf543qVVVb5u81rNYn0yCOPcPHixW97v4997GPfhd38VVadSK9FXqNOJIAHH3xwtYC0yvcsf+Wtp8HwoFCt8tyTXx6OnM9VyVIJ9RX69RVIU9qzc5x6+lmIJCrNEJi4lgtKI2WK1pJeGBAphZkvorw8pH26UZvASmGwQt8SvOFH3sfeW24BpejMzeGUC1SnJxmZHOfCM8/w8gtfh0TB5Wssf+0QBa/COiPHqHLwwgyhbApYPPWFLyMwCRbrKNui0e9gGjamNvAtl5zlYGcaWwLaYDRfAtOELCVWEpldH3Oez7N48hTNixf5wfe+D3ptZBiC64JSYJuQxuD5IEHEGSU/j0Tjui4rS0uQpdz9hjfQuHiJzDBIMolWGXE0wDE0aZoilMYsFjl6+GXSKMTSAhnFmKaJSpPrqRyJZZroTOK6PggT23GwHBvDMNi/Zw8sX6MZ1EmyLsiU7Mmn2HrPfugvMWgvYhRKKDRxHCOEoNfp8txXn6WxtDx8/IDtOoQyRbs2WIL73/12Vk4cpd5vIzwb0piw2yZbaSC0IpQpjJQgjUgdi34aEWcp0hSYvovsBBx/7Enu2H0TcTLAq5YoaQuzmCPIG5y9cgnDz2GnGYQRBdfDyBR5y8UWFipRuIaDGsToJMKzbBzHwcn7KNMiyiSpBoRJkqWEWYIUmmK1iu4P8KtV1m/fieW4JFlKuVzGHy2BYUE7gOUVRu+4GSbKvPvhdwEuqQkLWZ/AUYSWRNogDI0eREOJs+ngCRsaHSa3bsfN5VDdLmk4oJTzMbQEmYLvEQQ9PM/DFAZ5Pw9RChg4rssgjcE2UUqRpQpRtobOozjk1je+gRsfvB9zrEa716Y0WqbZC9BIgl536Ksqlnj/e9/Hxj17oR9w7vEv8PTBg4xvWgsFhyQJMCzBQEaIgkO3u0zmAGSsn57iwN691NZMAZBZ1vXXpsCxfXQaD2OICg598SlG7RxWlJFlilYSkdoukSMwPZu+Awthh92vv4uGL6lbEVdkC3HjGor37WPs4bu540Pfj2W7ePkCqt9lfHqKfD7P+bPneOjBNxLHMV7OZ9TxcWNFQdikUcpyu0c3SxGFHI2oiy5YSEeTc3NYmcbKBFkvYmW5Sb8bMDYyTMC4GYyUS/hhSihSWq0WtVyRT33qU0SGoKo9slRxpbFMfnqCngXGSJkTl85z820HwLUgidGuzQM/9B4Kd90KWrK8vMzk5CRhOGApXsESFvQG3LhuK089cZCVlRXWbtlCqsSwyOl5KMPEMCxM02SyWqXi+kzXRrETRdYbUMsVyfohIpEUbR8VJIyXx8C0wDBxRkq0swR3tMJy2GMlL5hLOwSWRtkGkaHR5QIbb9+HzHkIrUBL3LLPsy88x6GTx9l7z91cXVmiOehyZe4y97z+XkStSEukRIaglUrqvT5bdu8iTjKSKGbn9h2QZfi2xbXLl6l6eSbLNSypKTgecTdgrFxl2/pNtOYX2TI+zeUXj3LzxDpUHLGSDgiKLrU922nJiKlqFS9MqUaa7Zs3kSUxWmvK+QJl24dmh/V7dmLGKcJyePqpg+BaRCrjtvvuZqnfQ8UhFPMoSxCGXVTRY+DbzPfakHNhfJzW/BJJL0Jk4Dl5CuFw+ECSQd7PIwchrhJMVKqcePElXn72ec69cpx2s0M1hCtPHaKsLdKygz1eJYhDgkFEK+sTrRnh5eefozwyxqATYBkurW6fG289gJsvDI/ZSYyxaixYZZVV/hteq06kT3/603z84x//tuvVYLWI9FpEfgfre5D9+/evirNX+d5Ef+OHMbworldzNcRRQP38OTh+GpY7/Mg/+F/AKTJ4/BnwLXAMSDJoRziOhakNDAUGw7PvSijwHca3bUWPjhHbNj/2B78H26fBDLjvX/4yCI1IIJealHFxEPhC0exdo1rJQxSTXaszEgnoxFipRT5UWIMB5eUO6wLJZrdE8/ICJ14+QXLlKrVduyBJKVTKCCdPnApkZhJ2QvLKxugOYHmFT/72b2M6NiQx5uQ4mAb5UgVWWjB/DbptZk8cAQ9I+jAIcGs1yHm85QPvh0EI2qJg2OhMkhiaLEnJe3lwPA4+/SxMTBFlGXtvP0C5WkKQotIBMJTuWkrjSIWjFJZSGHoodBXDOUYYJHwjaZMJE2la9MKYJM0olkusDxNycUjs9EmsHhNTNWg0KGcxGBFELdTSIgCO42Bq0HHK7PkZmgt1LMvGNE3SNMWwwPYMqBa4vLSAdWAPiWfSMxVizRqm9u6FvE/S75KbrpHbugG2bCCzLCTmdU+TIjMzZl88wpXPHOT//egvQbdDliXYBphTRXbes59obp5CpPETzaiTJ20PyJk5Wq0egzDFLVRp9COcYhlXCNIsI3NcslyBptRYo2MMHJfAAGnbGEUXf6RCo75AfseO4VQzL0fUD/D9PN1Ggz/7F78O1+r4jsfmPdu56Y13Ym5dw+FHv4C11GMgJOZkjb6nCO3rUl0UVpJSwmJUOFQzgZuaZMfneem3fo8RK4+XpsRBh9233sAHfuVn2fv21xPnUpppiG87yEEE2Lz1rW/jR973XgrjIwRxhBCCnOujDG9oBu+2aHeWmZwosmHjBCJvszToQcmBnE+QDHA9D4KIP/jtf8vlLx6EdhtaDcYdgzvvu5Odt98CtgVoxtdO8eF//FPc+H0PoHsdrGqVr/3RZ5j5wy+QnpmnvHsrt/3Ee+mM56gbMV4xTy6QuI0eZBFJe4VLrRWu6owwZ7O4dZz4ju3Ut43SGLNJCgZ4ihO9edbdvhOKKbh9Nrz5VlZyffo3TDBXFJhhSnRlnl2vvxftWoS9gKnKCAd23IBIJVprBksNpotVPCy0aTOwbHqug6xVaduQVvJc6bdJPQekpmx4TOQqpIOELdu3MzoxSRhERL2YUEKy1KU0VaW3dJXDX3qc97ztLbTjARVV4Mz5a1zKWXyhPcfxsuBZ2eBEVOeRpx7F2LmRu//pz8KmMR6fP4kzPQKdHmacUM4VYKJCF4t6NuBtb3wbX/3Y76KefoH+S4fYsH49lIqcXFiga5oEShDGGUZqkMsk+TQhlyV4UuJKhokk4VHJj5ClBmkkyKRNv1CgmUmuCZgXGS3TpG8bLE0XWKrYxBNF+lHM+OgUY1NruBj1CfIOKI2VJYxW8zzw3ncwMlajdew0omIS5yVFUzDotfjs8a/z1MxpwkBx8PwsaanKCydPIwxJ1FoipxJu2rYVMk2aasIowzAd0kRS9Ms0ri2yrjRCTcF4CiP9lDdt3cme6gi63cXyXOxqkfzUOMvdFlGjRS3VrBEmBcPEMwSmVthSkW+HIEzOZy1UvYleWOHIE4+DB4ePHuIzj30WLBi55WbW7N5GbfcWDrzz+xh0GshKkdz6NdzzofdBHFLKHGQkiRFYuTy5wKDvl+kIj1YosTBxFdBo0j93ifTCFdyFNgWngLUSUW5llJTDtSzk2OXz+LVxAhzMtz6EGilgOAI7SikZHq6wqU6tIfZ90rzPIM4QqxGkVVZZ5b+DUurbru9FPvaxj/GlL33pr61vCLe/cZ9Xg1Un0muRP/4OnEg/8Kuv2vb+tuzfv59HHnmEw4cPs3nzZqanp1/tLa2yyneGGuqKlACNxjDkdaeD4Fd/8+Pokj+cXCZNXmlehmaIoS3e+Uv/kPOXz6JbbdbFGZ2CwkkMDDSm1mgxHEXvT4yz6757OD8/D40Gs70W4akLYLk0HZvkQp3l+WtcvniJkV6MnTMI4wAv5zI7cxJ6IZM45MKE2DNIhCRIYnzbxc4ZBPGASBgEjo3yXXQxz7vf9R5mzs3g9iM6gz5ZvkSmBQ4WlmNi2TaDNCCNuhhJhDbhg//sn3H02edJ+yGeaZHFIYR9rp4/A/02qIxaIUe/22Vq1w727tvH0ecPYSWKnDBQWtG3JHaqsDCJhCDs9yFO2XXbHbg649qlsziOwDY1aMiM4bxnSwu8TGNpjakl0pBIc1hI0sJACmtYoBE2sVQoQ1AoFanPz3Hm8CGKpoMtLDbuu4lb3/wgJ+fmufbsK+QKNdJOl91vexC11CHs9XEtG1NqHGFiIRAKlNYYCogDyhJ67WXa7RXe/YEP0To7T3txke1vuJvxQpXBwjKpVFy5cp4db3g9U5s3Uz9yknIkcaVGGwnKgLQTY3sWSXOJnLIwO32c0RJL3SW6yx3k145Tk5oMhTRMAqXQtoubL9OX4E5NsuaWvVxbWSKfJQQaItcn0QaYNmGakaERXg6JYkDIIMtgfJq0M+DU8eO0F+sUimV0GCJ6XcxuDBLsgk29t8ilI19HLyzSuTjH2nKFTm8FxzLQOsVSYCmwFRgKLNcmNRTdNCY2TAaLbZAKq9umVPJZ6HZpO3Dk9DHqZ04BKZYUONhYwgQt6PQDnn36SeJBgOc5kKUIZWGv28nP/R8fp7pzJ8//4Se5+MQTtGZOU7ZttIZQCiKtMFwHz3KwlMaLUtw0w8XAQhPVFzl57DCN2UvkhUMug2a7yeFXDlNvLJFzfMwoQQwSgoIgsgTR3AKecjGudhHtCNe0CGo2k3fu5p0f/ShH52axM4tde25m6s33snDyFYx167nv3Q9z4dkXuf/hd/ADH/4Izzz6KP2LF6Ebknc8Fp99EULFPTfewpH/+AfUYgOjmIeCy7r169g5tQ431TiJBEOghKbo5vncsa/z0oUzWE4eq1Diseef5fzZGe68cR8vzZzh9OUrNIKUDdNjJIMA08uhR8b48pEjXJyb5abt2whaLQK/QF1GLPSbTKHJCUkY97ncXGJ9bT3rJ7egR6ocvnIBp1qmFXa4evArDHoD9MwctZv24d60lxtvu4Nzn/xD8m0LbyXk8tI1dM1CWpq4lufA/gMcf+IrEAbkbIeLp89ij4+xYdcO6t0uQgtMYWMnEmVJLJ1hkmFqSE2DzLVYSmK6qUIJB9POc7Xd4WvdOhVd4KoHc4MenYUldtWmGayvkmsEBGFAzcghA017pcOF9gpOBpORxE8lqQxoBTFWL+SAXyKOO6zdNk3SWKHk5phtNbg4N8f+rbfw56fPsm/3PhYGXda7DjtqRUqeQbXoU04g83wCyyV0HK62W0SGJpIZIk2QYUhJC8pSE2QdYh1R8H2czCBtdMgpg91T65jO5ZDpgG6/RWJkiEwTdXpcOXeRYmrQkCENawV1bIHNazcQJA0mSnn6i02yQUgYRmy9aTcHbj3AkZdepLe8CKaN6mR4wqU/VcWpjlE+3aRhaJL1Y1Rv3o1xdUBy937CXsAgDvBMSLIEC03BcvATAz9RuMUqsSnQxTz1QQtMg+rIJIkyuO+H38eiYTO1fjPyzElyvT4VZaOVwVyYUc80YRhS9lxEFGDaDlKvOpFWWWWVv+Ds2bPfNom0ffv2V3ub/8NMT0+zefPmv7b279/PBz/4QT73uc/x3HPP8dGPfvS7vrfVJNJrkddoO9sv/uIv0mq1+PSnP82BAwcQQvx31yqr/N1m+AbUWpEhEZZgzaYN7Ny/D7IMVARKkjctMt9AWgqQeEoTCYnQBob+SyPXBcQq49yVWWg3Yd1amqcvwCCBFHpHjkGcEbd7qHYPQwiklMRJiCskJAMqvocvJWkwIEoT0ClM12i6mhUipG+TuiYZEiWGD6GxvIyRKsxEQqmMPzFODIicP/Rc6BQMhWGZyFiCyuhqCY4DUlG2PDwMTK1hEIAYOnrSQYiTL7BwfXQpcYLQw7NMwjIRjoVtWiAVhuux5uZboFji9ImTnDl3AWGZWK5NkkbAcES5ob/xk6G3A0AMi3Dq+tLiL/6exUqFeDCg2+1i+z7FWo1crkjSjelnijPLi+hgAF1JMTZBODz43h9CqOuR6etuEM+0cS37ukxdIYTA1+BJDbYNUYwtDFYaDUSxTP1qnROnzhL1QuQgANNi/fr1OI4D2sCWw/HZjgRbKRzHop8GMAgpDTLKpk3PkZCGJMfOY3UTbMNCGYJeHGPkc4Tp8HnIfJeRTesY3bwJ5TgIyyTOJNpyIV8Ax4VymfL64RhzaVkYOQ+vVgE0/qYN1HbsBM8n6PWxhEHRz7EusbBkSmJmYCRgGIxv2IxQml7UpWQ75IWBmw29K44cjhLX4rpLS2hiW0A5h71jC9tedwd9QxKQYfoGSbcNl+ehN8BMTRwMhNZYWmAquDYzM3R45TwyKUmSBMd0IDH4L//3f+bR//D7EIZYvkPB97GkREuBsBxiAcK2yJIUM5EUpcJYaZM1lnEGATmVIEwTXB9XGzgScoZNWm+gV5rYCtJ2n4l8kTSOh7lDy+L0s8/T63RBDiP3WdRjbvEaC8tLjG3dSrjcZmVxmdfd9jqIFc1nXmT+1AXM2ODMsRO0VpZZMzaCm2QUpWI01RS1Awsdml8/CaFAhjEWgmunTtFoNCgXiviOi6nBsWxMBKGRseaGrUzu2Myl5UXWbNlGeXQc0/axDY+x4gi7dt3AlaAJBY9YZQRxxOzCVbbduJva2jVcWJynLxTF0UlkMc+gscLEaJmt29bhW3DTxm18+aXDzM8tI3oZGyrjbKyOk88EBBk0B5CYvPL4Mywcv4jRjSEVlGKDreVJXCVYd/9d4KTgSf7kM38GnQ6Tbh76Iabn4vge3STBKpXJDAvL9nAND5AoQ6KFRhoZmaGIlMSrVKitXUtsOfQBd2yM0ob1LId9lOORzxdYXlghl5mIVOFpCyEEViIxVvoUIsGeHTeQLxbIuw4V36eUgegHjNkWhZUuWdxHiYyaZeEmGaWRKg899GbMvgbLYyUYYLkOlk7xkIg4QChJFCUo4SDzOephyHy7ydVOk8r4KJZj47ourhBYWYJZsEh9QRZF5MOUqcxii1lirVckUTGxpXDGChQcD99yMBAYUqOihHwhD7u34fo5OitNfDSq2yaHxtcay7C4dPYcJ18+ggwHdK4tIAcDzH6Kpy1qtVGmJtchtMVKt0dS9Fl3601cG/QpbNoIWzaSFXJktoE2BUpnuKaBrSRWlpFlkvym9fg71jOwBE4qKHtFlptNduzfT7w8YPHMLCJL8DSQStAaJ1ekMDZKYc1alGUhLPd79V/YVVZZ5f9HXqvtbK1W61ve/uCDD3Lx4kUOHz78XdrRX7CaRHot8gffQRLph3/1Vdve35ZTp05900T/rdYHP/jBV3urq6zyVxmGjoYFmOtXtWkgTYNf/5f/ghvuvpM9+/Zxqr7APf/rjzL3+DPk+zFHX/kqDNpgGIh+n6hgUohshB5Ow8pMg9QUiFqFlinA97jjIz/K/KNfoiRyVMcmues972bmma9jxhnFfA43jJA+uKUC/U6AtAycICHr9XG0outksKbG7T/6g8wdP4WwIdApgWWy5e472XPP65g9doyZo0fJ+gH5QcjGhx9kes1arp06Rc7zGciIiIxKMc+gFUBu+PjPfP3rkGgQJpZSqCwkpzS+YWK7ggiNlAZZIsEwSQcxxBmu4ZJ4HtbEGP2RMuVBQrCyQlLI8f6P/DiHPvPZoQE66GH3A2SaEjgmHb9E7NokpoOTGXgZaGEwsAWpaSK0gRYGmWEQmTaxaZKaNvfdez9JHNNtt8n7LmmWYkjYPrGZ48deYamY47YH3kzw/Fl0N0RVK5zNWjRfPErRz2FmChklRGlChkK4DonBcPR4FGOFEYXRcXpJzIljx5ArHch7xCt1skRx4JZbmL8wA2mMlfM5+vgXEIOYWpThSokQmtQwUJUaSdIG28fr+vXMbgAAIABJREFU9/CEy1XZximPsL6tmLZ9WrJH6jtESczNb30LanwMw88TDkKCJGamfhVmL+GbNgOluPFND7H/gTdy4fQFtt3/IK978I2cePEFlG+htYHO5xnfuZsHv++tbNq6lVNf/Rply8bKUrJBj4k0oi4zEktC3uXDH/pptpcnOPLcV4lUyGSpRG95iYJhYGqBqYbT+gKlSXybyNaISo7qts28/R/+JE+/9ByEHQbtLsoxMLCwpEEhNdiMTTeL0aZBmmVYwsTyHAwBstchV/CxLJN+nGJt2Eoh79Fur2CnCVazTS7T5JSNbXsMEoW0LdIspWDYlGwP2gEFDEwpMaRECNCZJI+FHyuIJSYmgyjGEhYlaVDEwB6kTHgVctqmk8WsffgBmoM2iW+iOn3GixWMfszpl44wuDiL089wkoynHvscTrlG0Sxw5fAx1vUFDdXnpa89Sbe5giMVVc9HNAOq2qXs5lmZvcpoqULUXgHLIPEdFmevUMoVaTaaWGgymZDJjPML85ztLCNskwvHzrBhag1HjxzB6kdsLtVIZMq1hWU+/5k/pbh1I6OVMTA9LqYhn33hWc689AITE2P0gh5GvsKhS6c49egXGfVdgqjL1Og4eiBJJ0Z45etH2GjkWOsXyOorfP2xL5EFkqnSGJ2lDix3kRfmaF2cI7l0gWLYx49S7Mkaldt2UV9e5B3/6Kc59WefBaUp6gwfTbfTobpxHeWRCna5wJmTJ4gHIU6QQNlGCYEWoDFJTQPtOESAYdlEcYThusz2elxaXkAv9zB9ixu2bOHM5z7Ptsooi4MWU/1hmaIqXVQQEXZ7zC/XyZot1JUFzFQitUJ4Fuv8HMWFJt0NRQ6dO8PEwCJnV/m9F7+GzpXZUt3M1ZEKwcICSTZAzs2yb3oKPehRyuewUxPyOZakQpQLLPbavHL6JMuLC8jOMGVJkpIqWDD7JIamqjwKXUkpATuRBGGfro7ok3G5fo3BUote0CduDqjPXqNrQG+qjHHXzZgvzxNqKK0dwe8r3K4ipx0MIei2WsRRQLhcx44kE2aBrdVNLC2v0HANrp0+hW5EMFIiImRu/gzT9hhzvdbQFTV3jjiMKPsFkiglNExUkGBJSSdKOfCBt7P+9hs5cfglqq0I13DpZhkvHDtJdm2JbKVJvrtCRZgkYUImDELX4f7vezNrJsc4+8oh1lQqxHGMVsN28J/52dUk0iqrrAJnzpz5tkWknTt3vtrb/B/G9/1vefvBgwd57rnneM973sPmzZu/S7saIvT3amlulb+Zh7+DNM6jq0/7Kqt891D85eCnBHpKYRgG5elJjFqFiZv2ENx8A/LFFyk+dRS50qBBDr1vA+N338bSJ3+fsUCA8ABIDIOBNfyixHiFj/6rX+f//Pf/djjZ7PgiWAb5retZs3MD5x77IpVQkUs1BhmBkxHYDrvf+AMce+5pJqOQIA1Y04lZsBJakx7T734z4uOPkhCTFXK0hGL9A/exfssmnv2jP4Y4xE8TalHKwqYR1Pk6FeFjGBbtkoVSUGtl5EtF5sYs1tywk6sXLmOtDMi6PRgvQbtHbeBSNm1alqS9rkptdJrmsVNMmDZpp41vWFyVEjZvpXzHndh7b0L+9j/Hai2wPD7KVG0TSydPo92M9TmfpJEii0XqYzVK7/sRuv1FHth7C4d+5V+j63XM0QLOHbuon5mldL6FNiWDvMX0bfu4+Y7befST/4V1tQn6l2dpN+pMjFfR/ToF36cdKwJlY9g+Dzz0Fh790z/FdARCDQsMmda4UpNPQBrQVhHehml23XsXR558BsIY4phyKPHT4VjyRgGsO2/i4Q+8j//6+38EqcPNtx7glc89ztRCh6S7SFy2iHKKchucWGDbJeqlPLEnyK/fyJp8gXPPvUDRc4btHno4tUqgSVzI+zXq3T6bfvA9XFIxm40KFx99gvVRQsfuM4gjsm6EXjcCN+5g8qZbsad3Mnf2CjYZ926f4suf+B24mnDr+3+Al574E8p33k7nsc+D9KiGCQJNbClGlM1yGGDkSwSmwfT6TSzPzZHXCtOMScwEtKSYQWS6ZIbFwHTJBgOwBHgWhB1KE2vp4kGzjeU5mL0mlkwxZIqfz6NNQWoI2mHIaKmCSmLilTZjhTJxHDPIUvqmQtgOamqU6Xc+yLVjM6i5OlyoQwKm4zJZK9HrN8Ez6Q4CQDDqFFBRMkxJmSaLQYvi6AihUDjt5vC1kKZ4xRoiEzhKUDANpE6IVYSyLNLQxNcGgc4w9m3CG61w9cRZ1vdN0k4fu1wg0l2yLMa0bYQQJOkwOaWuHyu0MPCyDISi7xgoDBxpUA0MXGwWHBATZeKsg9FpQwaGlUMUC+y9+3Wcv3yB7rnTuFJgRwnSdLBdB8swIZNkcUSulCOMIiKdEicS27TI/BFe/zu/wld+6z/BfAe2jjN66y4aX30OFhoQdsApk29FjKaCqwRkjglZxmR1HL1pknp7ERoRZm0MGQyoWjla7Tpsn+ae9/8wX/3X/x97bx5k2XXXeX7OOXd7e66VtauqpCqpNm0lyS5rsY1K3iSv2NiA8YaRgDaEh5nAYprptpqZAE1DxDRNz2DRNLiNAVsGvMiyLJVkbWWttaoW1Z5ZmVW5v/3d/Zwzf7xCbehpm+ixZVrOT8SNfPlexjs38r577zu/8/1+f/ex+cprOHZgL5WFC/gGvGKBluvQyzIwitvefjuPPPBNKCiwhkqsKWpB6rtEniAerYA1sNBmNBhlPuqCoyCJGa0NIuKIJIzwPYlSgiSLaUoXe/k12LNnkElITab4RUG710a5Dr71KImAVjtGlQtYTyOlgDChIAMasSZyfZw1a0kWjlPUmqpXY+b69UCF4vMXKLgjjP3OL3P06cdZu3Yz1dkZDj/0dYorxvDmZijOLRJkmjwMkcM12llMoopEJYfqhjEuXXcJBx5+nJHYpbXQJHYDqATQq4NOWT40QnduFrfgEnsOkeMgTb+5gZ9LUhmTurCq5VCSBU5sLoFK4HW3MjSZU5+eYuu/+DhHPnUPK4VH4Asu1E+xamiYcyYkq8F6bzVivo2Rgt5Ijfkk4k3/66/z+H3/GQ6cBZVS+dCN8MUnGJUVIidleqjNUK/MQOoTLV9F6W3XM/7F+6kKgxcKZoYUtQ1rab34Esu9IjqQFLO+IvHEMgkSxhrORdt3X50YZSm1oUG0NdSbDXxH4RtBwXVwHIfxyUmsMQgpQbwSP8iSJn2JJX6y+OpXv/oD/+Y973nPq7Anrw579+5l7969r7h0fhzlnCU722uR/J+wLbHEEq8a9nsf2H7rZDe3eIAyAjPfZOHYKdp/8WV6j36HhcVpBkqDFAcHYMUK1l12GSxbRVCt0QxymoEhdnMQGsdmFKOU//gv74H9x+DMDMUsZbDgUYpCTjz+HYQEZTUIc/ELukQLSSPvQScmWmiTIVhQmmG/ApMNLvzNg9SWDYHjIazEtQ7nHnuGp//0ryA0FBMIMglWYmbaMDpKU1lsrcKyoIYX5VD1mMva+ElMLcrxu5a8l4Ljcvtvfhr5+muo5xFtCUGhzC989Be5/WM/x1Xvv52o6hAXJI6vGHVdmJuj9cSTpE/toVFfROPgt2H69HHe8ulfgqDEeLdN8tar2fZbvwRRjxun26w5do7mgw/jteZIdIPINtl41RroThL7PdK0jU5CsqjLwb3PwoVJJk8fRyddRmolkl4bVaqxkOSESPBcoiThiScfhzzF0TkqSwnoB3gLC6mC0AXGhogXF9h46WXQjSHK4eLrVvRtXIUE8mOTHP7yQ/DiSZyzdQ588UuwsEA3M1TKg5T9MjJ3wAuQlSpzEhIHiDVbRlcyogpUvAJEKcpIlJEXJ1GCUrFK3ogZpczZv3kI5to06wuQpfR6PSrCxUk0o2PLGB6sQavJzMMPUdEZV6xZyRXLlyObDWi2IY954a++yPrXv4GrV6+GwQGUSUFoBDnK5pxLO0RjA/RUArrHhYVpAHwNxUxSTgSFTBI7Drnsfw4FcOOtu7h6xw5cI3CFR9huQXeRu/7Nb2MdQ1D0ka6k4BeI2hFJO0W3LTVboj3fJu5pCkNjLFpLx3VRtSGGamMUZAF1ZpHZ3/8S8okjVOZSKFYgAL2yzPkVHu3No9z2mTt5+yd/Aa9WoW1T8sAhCiR6sIiuBDTTLknWpbNpjOkhh7haoRun1AuCmdUlTtW6nA06LFYEMksRJqJVSAjHPBovn6Lx/GFo9zhXzJgdUDRMRs8oQhHQTqCTCqRXeKWABCCsQUtNLu1Fy6VBy5zUt3SdDFO0LF83xpvf/16UdDEW/GKRLIzZvHETV166GemVCYRHOSjjBy55nhPGEYnOEcUSbQ2tRJPIALV6NVm5io27PPY3X4ZTpxgqlGB8ls2iwi+89+dxptuM6SrFuS6lDJpFQX7ZEKz2kTdvY6Yxjz01gzebQM3hXf/3v0K9aTud89Nc0vNh/xRnv/4EKEHx1+6g/Kl3EfsFolqNeQu9MEEpH6UUjzzwDZD9rl/SGroeLBb6581wCMtO1KnMxoDDjb/1SQrbLuH6t72JYNUIDRPSNAlUfSJhaOmELPBwKj433vp6MCFGatxigDGSol+lJCuU0gB6ltEVK2mR0RKGuk3pBIK87DOwfhXa0Xzq7k+zeflOhktXM+MOc+f7PsXKnkeY9ZCyyfwX/gz2Pk02f5iJhx5DpjnZ+SmUycg8SVhU9MYGuFBz6a5fie95eL2E5tET7N/zDLrXJa04xDWPmz/6fl7/6x/jmt/8ZcY+eDszSQu5Zjlp4OFYw2Ccs7KbsbaVsbKbomyONDlaaRLHcMmNN8LON/D2N72ZUkHiDlU48ud/Am/fzlX3fpIzl7rEa5YxbTVCuBCMcsWH30dw61XE8ThuZwpaczz9lb+GyRnwSnD5dtbsfCu9y7ZypiZoOAbfKePFKb08Zlq0OOPH5EpAlFIUDhhoTUxRLQ1QFB6ulji6X0gqxwY34RXbsaD/s1IoUp+bp7VQZ6BQxpUKIQS5MaR5/g8KSP0r3hJLLPGTyGs1WPu22277/4xuue6667jrrrtoNBp85jOf+bHsm/NjGXWJHy3/Y54nP5DbbruNM2fOsGPHDjZs2MCuXbvYsWMHg4ODANx77700Go0fW0r9Ekt8Py462l75xUH0i0lWoOOUvN6C5iI4LpIEFPSyBBpN9h48BMaSaEPm9GX8jgFlcoSR0OlikwTPCfBSTUla8qiL6FgII3wD4uKFoW+pk2ghmDh5nKLj4iuPjskJPcWIdaiIAp1M0stTrKvQ1hBIF5EbtO63pXZtP8PICiCo9LOOVJdQCfJ6k8BKQpOQ+gZbX2T25GlE6vavT77HhcVFrr3lJl7ccwzrB8TWMttYBB82XrOdgw98HSUMcRTiCYeKdug0Fmjve5FCuYSjc/xMkYwMMrZlE9Z1QUBrpMKUpyEO2f/oI8y0pohXjOH4ILQgJeX4gQPQ6+Fr/2J+imXm3Nl+uPlgFRkbCoGPzFNynWL9KmmaI5SPlC6liiLsdnBciWstxuaIXKPo70MuJakjIEvBGnZ/ezfEGcotoE34yiq7sP1MoOj8AlPmKHRzfJGSqxyWj5GN1+l2YzIjMD44bgErHGI0q67azoUXjzB+9Dgqy3GRZBdXosz3rMjPNhapJUWKWlFwC0SnxqnnIdgeXXIGYwc/0eAorr/mah56bg/EhqNPP8Xmbdfx0gvPM5vUodPBD4ZJOg1sq8W5TgNmppEyoL8yYfqfb2UhD6EcwOAITC8CCmEN6uJ5oIXod8ETEotAWti6cSOH9u2FOKXguiQG8pJPo7mAbi2iXZckjnGUh+v6KMdDuAXIM3ACtBKEUhD7HqVSifr0LEQpjnQYqwzgJZbED2iEMZR8KFTYePNOLt22kYf+7q8pVwcIWXjFcqol9OO62ohaidroMB2dMrDtMhYPvYQIc+glbLx+C6VNqzhwej+8dIQ8l7hxQu44JMpiPJ8BKVGxJsxiRm/YTlLv0j01hSd9kixFSYVUgpy+vVLYi90XX7mZG6SVGNH/H2uZY1HkJmPywhS3/fTtHB0aYnZmFo2FNOWpR58gjUKIMuJer5/lFLgoJXAcD2sFqYXIWvB9GB6lODZCp3kad2iITHmsvP56oiOTECUc2/Mcdu0lFIAB4wASTwjmohCqFWg2ue6Ot/DivgnKucUziql6SDQ1h56eg4pDtzoIicvUxAR0W5w9eJTu8bOARFUq1Iol4maLLEoolos0mosMlIrosIe0kKuLa2B5vyjpkmB7Dp1Bj+CSMSJytu+4ijDucWTPM7ieQzeNcbFYKcmzlNQaXj5yAPIItCXLBVKAVB7kol/UN4ZOFJJjCKoVPM+hfX6a0DW4Joc4ZKE+y4U4Z3BsLcwd54V9LzE/eQGSBEe1qR+cgkAw/dijjHR8lGvpdXvoQKKtIReC1HVIK0VWbd5EffxZBoslpqMQMzMPStBoN1ADA1x2zRZatRKLC/OMDY3w0DcfQ0kX4XgYnSPpd5yUFxWv/WDxfifQVMEN27biNGZIui101GOg4KG2XkOjpAlXVmB1FXptwjBm+fByZlpNxNrljHpbaDz+NYpK4ytIJs5BUAAZwOQ0R7/+ENfd/g6OPvtt4mMnKCQZSmsiY2G4yJrNG6nXygRJ3j9wQkCSUi0OoOvdvmqW/r3Mz80rF63+5//iJz/LqRZKWAE6z5HGIoRAW4O1kOm8n3n2PSwVkpZY4ieP16qxaseOHd/3tV27dr3Spe3VZqmI9Fok+3HvwI+GDRs2sHv3bs6cOQP0i0Z///yOHTteCRb7wAc+8H1PuiWWeLX5h2Y2wIIvJBgItCDVIOZb2DjHFhI8XxCLBISDumQttdog9aQfwkrRXmxbD542CCvRUQTKoRj46LBLwffIc0PcXaQkLEo4CNHPntECjJCApHzZOtyZw7iZJLdg166AMy1GExdSl/kkJHZACElBGyoalBXITJPLfiGk4ynoalg/xMZb38zJv/06Ti8kQNH2NNQKVGYjTH2R8sZrSVODUbD/T/6C0rZtoKERJ1gT8fDXvgyVCqOrVkPcw0pJmHYZKpRYXiigWi3CeogIBAthRDAwQmXHDv78Tz8PnS4ML2P58lUcf+Z52HkDYdSGznLm52ahN89lt9zMqReeZX7PYZbpGtUoxZQC6r6iWZ+H4WHu/PSvcd/v3EueGYTuq2umW10wguFloyxOTBJUy7jSgNSoPMOTgixJcTyBQRI7st8CfqDC6qtvZuqRJ6j6ZUy9Q17or7AbQIr+BIrcUjWKyCugJZTf+262X3sVL/8ff0xFCDrEBI5HN86xSsBAkQ07d9A9dJz5yQlc5eB7Cus5RCbDCokVF2/vb7wG+9R5CgsRg4lmfuV65v05Ku+/jc7nvwYXQkZkiVNJi5KrYLEJcQKnTpAMLuOWK7fy5L/7XQY8hUpj/ILH+T3PkJkU6Qe4SdoPKQeUNTA8BFqzbudONq7bwCN/+vl+Hpi0JBJi5ZBIS+T5SCORtt+d7ZlHH2P81EkCA3mS4BZ98jjly//2/8RTDtUgoJukFwOwXXpJhnIVY67PYrOO9jwYrEG3RScJufnjH6V97CxnDh2m1WnTI8HaItSKfOKe3+LZvQeYPHuGk994kCCo8Plf+ZfgOSAElVKZLEn72TpKcvs738n2Hdfw1Ye+yZVbruecGWLqsX0YOiQTi6xYuYp1lVWc12dZpiWlJMSUXQJliVotirEDucNIsYxnLbU1q2hPLxLHkmt3voH56Wnm5y6QmQwtVD9sHoP4e12S7ed5gUVYgaMEsUgh15ipNl/7/F+ghAIhiXUOhSITew+iCkWK1sUvV5ESemkXIR3AoIVHjAWvAGUfNLzzI59EN5p87Q/+gOzISdZdfRNH9h0jCGMWxid4+tAhhgeXMdOYw6BRbpnCqpXc/Nv/Cw8//HWmOs1+B8XuIjWvRlVWOPDpfwdZhx3/+V8zfmEK/uIhOD2NuPl66n/yIJxfgEIRtXETG7dspr7/KOMvvkgjXcQPAtJ2Ez/N8ItBv9Oi6Bf4UgWrK5dwXiYQNfnrf/07cH6Wo4cO0m02cBwH20twcfAEF3OSHKy1LDz9BL5fxAeMscSOhxcExN2E3PMoOJJep0l1pMamrVdyxfbNfOmLf0kS9kOi3eFBPv9Hf8jq296H9ivwfJtj7VkyN6fmBRQWuvh+TMV6DEcRi502sZNSG65x+7vv4Mt/fT/FUhmn1C++b995I08/ug9PwIrKEDMLM7ieS9ruIctVnnpkN02hWHhmH9fd8lOQBqh6SNLtICuKtm9p+xnSCjxtUabfxTF1clLf8NQjj1CfOMNp5aNSh1q5QmvqFPLWrTzxu/fAdJ1/+e8/zx/80R8xc26OYm0ZB6cvcP6JhyAQ+NMN3NoQyUILcsN7P/Fz/N1TD+NduZW9h19ixbp1zJyaxGQROALXcaBeJx6fJFxoIOKYxBNsuuF1LDTrdI7PUAwKtHxNJgzl9GIR6XtWQMXFBQqT5biui7YWm2WgwHp9RR3akGQprtcvIn3vIs1SJWmJJX6y+B9VafSD+OcsjFiys70WeY3a2T73uc9hreWRRx7h937v97jzzjtfSaW///77fyzJ9Ess8d+FBRR0WyFxL6TsFyBMGLWKQPQ7VLXSEKdcYteNNzFSLEGrRcHzKUYCr6cpZBInt4gsQzkC4YEIBLKkaKVddJ5iwogVfhkZJ6AkuSNJrEYYiyMkd9zxDhrzsxSrg9BNueUD7yeVktQkBGFOqBNMyUWLjK6OSUyClhotcxKnn9PS8Ry8YpkNW7Zw/c7Xw/AgRbdI4Pn9QkoSEwhBbjS7fulDeIFLoIEu9B7fRymT2G7I+ve/Dd64g4HRFcw//CSe8HDjlEqtgvEts505ci/BLee4wlAbG2PL+97KVes3wWwHCkW4sEDp2QkqZ0Jufds7KF21GfwC9BK48Rau+dgnoDYC/jBzLU0YlOlleT+4MNf4pQJHXjpM4Lm0Wi10mhJFGUQpV9/yJq65/gbQKXGvQ6VcIM9Toiyjk/QVW0IacpPhBAHUBrjsppt546239TuxJQk+OcVYI5Oc1GoSDJkjqAwNMrs4B6Nlfvqe36A7cZJn9u2l1esy21rA9300Fr9aIrGabTffwlO7H6EXh2AyhteOcfkNV9HzIS4psoESqc1JfYd3feijpCPDnJOCC8pl0+uuglWred0V2yDqMTHscqpsoODz7W8+iGz3GBxeBu0mWy9by8mX9oPrkLY6hJ0F4tYChV5EKcnw4wQjLF2dkkmN4ziInoFMcv7gy3z3oYdBCrKwQyhy5j2LuXQVYcVn0w03ov0Ap1TB8zzGT57GF4pKoUipVCHvpVRDw3KnSrGX4+WWwPWoxxE9x0BZcdfv/jZtJ0cXFKuu2sLOn/0ZqJWhWmJcpxw8+AIdHeEMV7Crq0AHVMh/uv+LHP3mN+gcO4Fyqox1BJfoGkEvY8wro7oJZavQ7RCVGb715b/ld+/+3zj25DN86/f/lGMPPEFoDOdVRj3LePbRPUw9foBC5OD6ZaYLDgtxyEDuUpyNKFZrxEWHXGui549zavdTkEW41QovnzxFdXCQYrmC4/QLf3+vhhIWPBUgMoEKDZXcZUVxsG9XzA1l18dXHvOHXmZmYoqgNti/uAiQxSoDQZnh8iCRMcx3W68UfmOdkWPxgiL4BZxKlZ/+lX/BX/7bP+BLf/bnFMIE5pp899sPEmddXNdC0oK1wyyuqdIdGyUaK3FBd4lm5ji8+1k4NM6F+/6KgcogsXDIxwokK6qIXkI5gRPfeRZz4gLLGgLV1PzSr/wyRDGqMgjSY/2uN/HGj/0C5xfrOMIH3yNRmjDLWD+4HE9DJYaBqN/Fb64Eqz/2diZFB9CI8R5Q4NlvfJup/S/hdSJKGQwJn2KucLo5ZRFQDDXOYsgK4+K1EzItySoV3vqRj5CUCyw4lny4TMkrks+3OHHwKC89f5CCLODmAtPoUgpzCu0eqjlB69QzcOEoNRFD2aNXVPTWrqS35lIWKDKRCtSQSxJkNNImz+x7hoLvkvVCssU2nFvk0ANPcvn2LUxf7Po4LFyqiWGgUMFZ7DD79H4WvvYkrizx4gPfpiYLBNZh2cAQjuOgKj5ypEpCTIcYneWUpEtDp/QCSX3fIaiH3PH+n0FPniWaOY86epr4b3fD+RziGvf+2m8Rey4D12wlnDrHdRu3sPldH4TBdbiV1eSqhFIFBnXK8899Eyb2sXPUxb70DBeeO4rKJJEUNGSKFQa/lTP75w8ykiqyQLHoZ9xw+y623LyTMPBJlw0Rrhhm3kbMORnzvQay6DLXWEQFHonJibMUjSXPc2yuqRRLKKVwPJegVqY8WKNQKpN9r/z+tSlGWGKJJX4Ar1U72z9nlpRIr0X0qz/k3XffzeDg4Kviy/zH0r1Go8G9997Lvffey2c+85klFdIS//y5OEnMjSEzmiQOqZTLyChBOxIpNTYHm2csnr/AYKkA5TLRfBupJMVSibQXAaKvMLqYdaQlfTuL5yBzkMoli1N8r0Csc6zqh5YqC44x7H3uecS6VcTTKYVVa9BSknsuCYY0igmqRS7ZuZPjL74A9Xa/C5bOcYW6qGgCJP0w4DhlbmIKFhbRCLTo25SMAWxfAfX84X3EYZdSLqkqRZ5D2Qpya6l3GqzdthV97ggd6VK0gtQKUq0xQqOKLkZYhCtpzTbxhKS4bADVsjB+HoZ8cByah08S5ZqhYpnpYydgpgnLN7D9llvZe2YcgiJrXr+Tya9+i3CgzIrCIOcWp8FRJAt1zk1NEkcxJd/H8VzSLAXPo91skfVC8FxcxyHPU4JSkSSMwFoyYfEdgc1zsjCkumE9rvJ4+ehxyHMcx8OVDtpolJQYaTASNAblSHAkcmSAC1kXWk1IEkyvhy9chKMQQhKGITpOWLdmNYdPHe1Lmoo+K9bxsnDMAAAgAElEQVSupjhQQRZ8jEl581vfwqPfehCimG984W+wSQwrR2gKy6HJ03DkGEcWcihWyGoe6AwyS9YL8YxFRhk4kse/8yid06dxPI+C6yAKZUyaoIQgzjJSq1ElHzyHNDeoPKdcDei0mmR5TiYu3oysRQvIfUVl9Rh6qIo/OATGoh2BlFAsF4m7XcIwwziSYrlMOSjSmpunWPDI4oQoiQANSkCa8OKhA6D6qq922OPCwjysXw+zs0we2A+DA9Bo0Vycg5rCWX8pW264Hmd4hH1T8xBlaJuz2GkT2Jzh0gDCCtLc4ChBrVRGS0Evz7ACpO/iWEMvislLPuVrrmD1ipW0FxZpn5uknYa052bxxmqkzQYyd1g3sJwFIegIg7SWkRTyoEDbFWRhD6l82o0Gb3j963jgK1/CcfqHFfoFH60UuXIpqQLKGuJeTJykGF8RNnoUCy7DQZl6nPUvLEqxYtMWSu2UhYnzdPMQWSqA0liZI4WDpyS5EWRpjHRc8k6bmclzff9envetsrlFS40R0A17UHPAhAy94RY2JoLnvvLnUCpBAhdeOATNLtve/TOc+asHcALFTNQkySLiWoles4fd/TykOcN1C2ie/ubD4Cl0GLLy3e/i8LmzJI8+TDeKIIrA68tJCsNVphZmUG6AMv1Dn0hIHXDWjyE3rMKcb1C+EGKqCi0NyvRtoo4BHSVIKZFIMBabGoaUi44SdGaQVY88zwlGR2B0AHST6dlpRrWgoFwazQ7T56fpNNtUrINj+ioxdM7inu+ilYIsofvyCRg/xyVveBOzswvohSYUy8RDDk5zGrdUQHiS2YVZlNWI3FCwEBtwWhE9lYIrkUYj8xylFMpYjDaUjSI1OUmvDcuHaU1P4wtLnhoiHYJbQAkNWlAISng2Iw5jnMEhVt+4k/GzkzA3x7LBYdTKMXS9QzFOiRqKilNGpZpIwfING3CEQ3Plcg5/9znyoSJccS3ZxAGMp5G5Ju21CRemQIeceWEPZDG4Lr70yZRCOwKkIOjEOMLgZRZbdBDVAi8c3E+aWzKtGbl0HYun9sFwFdNKKasBsjzHDfoFc9fzsNaitUYqRZ7ndLtdhCfJ8owkTamVK2RoXBSGftbgEkss8ZPJq21n+/u55w977rt79252797Nhg0buPPOO7nvvvteceB8P34ciiX12c9+9rOv+qhL/Gj5k3teCfD9b26f/OwPbbi7776be++9l127dnHTTTf90N73n0qhUGDXrl0cPXqU+++/nzvvvPMHtkRcYolXE3FRXy/+yxPkFrySx/NHDnPyyGGygkcmBIkXk7sSJxcMeDVOnjrF+XPj0F7EjWK6OWSOT5SmlGuDtMIQqRysI1GuAiuxo8uIckFQHiDvZf0JvyfJ3b59yEk11sDMuXNs/+k7GH9iP26xxLHjh2h1Izw/IDERRghuevvtHDt+HKIQx1NYm2GV7dtDhEDjIISk6jrMnDhFd3oOWfDIhUACXt6fwMWOw+KJo6jIoqKYaqWISlNK2uI7kvnuLFfs3MGZrz6MnK8TOB4CyISho1Os72GVIOx12TA8Rm40x08fZ/zQKarFgKQ5h8wzLgmGsdrywt5nodXFb4BtJlCr0PAk3saNrFm5mpnFc7z7Nz/FqFfgwL79MDQIjkc7TvGNQuaWPMvxAxfrl+m2u0xPnKLie7iOxRpDu93EVAZwawMk2uDJHKU8jPSIejmF2hAvHz4KcUzW6+I5Ems01lUknkCr/iTJcwIyqfBXr+RM3GbzW9/KO266hZMPP0bebZDIjDDvMDowDHnO5NQ0ydwcTpojrKVYKXFhdobu+FlwPa657gaOPfdiv8p3oW83Y/sGxj5xBxs3Xcr0Xz7G6NFZpBSM/c/v56pP/ixrK6s4u+d5Rmy/8BhLSTY6wns/8vMc/daDBJ5HPethrMXT4Lk+Vghiz0W7LkI6eFrRzuB1t+6i3mlhdUYFi41jfM8j8SRDl19GeWSMczMtNm/eyhUbL2P82FHiThPlOaiCRygskRQ0F1sUh0fxfJf5xjzDw0O0u20KQwPk1nB+fIJ0fgZMThrHeCOj3Pae93H83Hne+rZ3cPrR3TgFD9FqM5RLRGyYOnWWubk6b3r3e1lIYtKwQypyQpNiFDgWpOuQY2h1OyAFpUIRX7lkUUxiDaYaoMeKpKMlnE3r2HrLjbz80kGuft+7GL3+GqYnz4KqkqcSrzLERFRHV4po30UudCn6Hpkw2CyloAQLM1PkUQcpDXkcIrAXrxkQl6vErk/Yi1HCpZOldB0Q1RJFr0BBuNhORKYcUgHB5ZfSPHWGj/7CL3Lm5VM0mnWiwDBy7Ra6M9OkUYwVCgm4CFxhyRYXWZiZJc9j6HQo5TkSTeLmCCyVDJJlVVb/9B3M2ozzzx8CJ8IRLqanIYyhWOP119zA4ccexy07fStpEPCmX/44p6bOsXwyphBaFvIWYvsGGvtPYBYWYLDGHXd+ksNn91M/fACm29BJ2Pj+d1DcupH6oSOM6DKZsCjTv4qGvkJ7gsPjx7HzC5ALhroCV+a4xuJpi2ssykIUxbh+QCwgynMSnbFq1XJCI8gcl+tufzvjh/ZzsFXnQ5/4OEcOv0SQ5RSjlKBQoC2glyTguLgGfK2R5Dg2Y9t8xurUMlfQVE7OU1m+htJPXc21n/hZTuw5BJ7Hbf/Xv6L9nSdo9jpoASLP8VKDiFNK1sXVgrzTYy5cxLU5pVRj4gjHUaRuvxjv4hLEgt6lVW755Q8x8fIRFIY46VHyPUqOj20keIkgyBwqo8PkoWH7O99BY2yY5aVl1E9OcOzsWbK5C+h6i1WFGjrKWHvp5cxHIYkj8SpVZiemsI06jZcO0Do3xfrXvxG95zCRk+HnOSOOpTEAlBTpuRl8USbYdC0jVtBL5knjHq6EqixSySSBsTQKBq0MV/3Um1m9ag0nvvU0b/7QhzjamYGVY5jpOUZGa8wszOEVKpSqFeqtJuVKhUznWGvxAh+pFNJ3SKVFuAprLVdffTXr122gb9D+r268SyyxxE8Ihw4dwlr7fbft27f/0Ma75557uPfee7nzzjvZunXrD+1977vvPu69917iOOYjH/kId999N1/4whfYs2fP991+HOWcpSLSa5E/vodXMjn/W9udn/2hDLV3714++tGPsmvXLj73uc/9UN7zv5dGo8H999/Prl272LBhw491X5ZY4h9i/0sJ6WI+R2gNM60mX/jb+znfaWKtIR8egnUjMDcHuYBmivFczNQ5cDLSJMF/w+v5+G98msOnT9Pp9XBcD5lDwUrKuPi5oJ7FOKvX06m3KXslMgG65KMdgUgzqtZSlB5tbahvWYM8NQ9JTumqK4hb88TSoE1CVTvsf/pZ6IQgBBKN7yqkNjhaEuSCIFdEaRczu0A8eYFatUYrbpMWPGqxpJwqem6/E1cRl1pmSHRMgyZhSeLFCWVX0Wu3mXj5KMUoQyHI3X6GU2gMQjqY3OBZr58t1OlAkhDnDjYJGVq3iktWLcemXcazJr3AcOltb6Zx7Hk2ORVEvc5cc561a1ayeWiYZ//4P0Kvw2LY5OUnX8AtVEjTBEbHuPW2t3LyO08zODQKQmCwkFkcoylIgUm6oDNSk+MMDvPBX7oLZ3CIC6dO4PqaXjem4JTIOjntxQbXXn8DM415TBbhFl0SrekpQ+5YjBLUpIff0QyoAu1OhJ46z3zU4eCTT1KcaeAS05MJtqToTi9SFgrChFy6VJIcRxvmZ2fIoxS3WMaTLqcOHsHJFcPlIUrbrmbtTbcgAp+5hx7g/PQswek5hrTALQe0VlV5+VsPMbLyCqYf38OIDAiCMs1KEYaqjG1Yz8T+A8StOtSKCOmgw4hCUCGVgkSnOCPDeG6BrBWxYscOrnzjGzhw+CA26qLCkCC3lIVLrmFhvkHj7CTZ2QvMG8uZvXshS/AkdNKIMO6hSz6X7NjBGz/y8xzY+xydpEdloEqz2aTmeAS9lGJmYLHDoOcQhSE2NYSLIacPHsecm+X0k3tw85QgiVg/OoxJU5TrI5BcdtlmTpwep33mLJVNG9n5rttxhio0G3VarTqZr4ilRZUKxHlKlMTEaYIF/IECaafOitGV3HHbu3j2K1/jzPwcjA4x89LLpE4ZNy/yc3f9GsHlGznQnIFywMhl69m641pi19JtNanhENgMaVOETnCFZX5mGkdJwF5c7xHs/MWPceVb38LxI8eIc0OmMzbcegsLaYQ1hizTjBYHSY0mVYrXvecdNDN4fveTLE5O4pQC9FiBLW9/M0QpvXoLx3HQcUJRKVSW4gqQUQ8vTxFZjFECxxhi1+BYw+VujRmr2fGmWxh/6lk412Z5QdKZmMMpVLn+kx9j4y038e2vfAWvG+PrhGCwTGwVwcqVzJ09R2UxYbaQw1qPK3/7V7nw1cdYnpfp1tsc013sJVUYHSZogeyldNYOcsUbdzL5/D5Uy2KUJXYsPU8glMLRgkIkSNsxKJdkrApJiGMMCIsRglwJUiFJfJesFBBbzcad1zMR1WnqjETC5bfeyoQSmIVFzp44RaXZIx2fZLhaYTbskNdK4AqWX3E5zXodSYaRGmSGNgWmtaVR9Lh69RbOnp9iZmaCifEJ3JfGyefmmT19ksrZWYw1+EIhjcZLNa7t3xO0giRPiWxIRSgKSY4Euo6mPRAQi5SwWqKbxP2Ocp5D+/AxSmmOozU5hra1hEJy5S23cGpqkjiMSKKYYNt2zjbmqT++D0qDXLF9M3P1WQaFTzsNCWtlLv21n2NibZmbPvgBXv4Pf4mdbYKbctOHP8C5E0donjjOFfNdFmlSQFPyAxpeAonGzUYJI4lz+5tRFxaQF87h2Bg8xbzQ5MqjkkPP0WRpzHwv4ujel3BjjzPnZ6ntvIo8TZFnJ0kbC2htSB2XD/78z3Hg0EFwFG7g0Q57KNclSVMSmxNbjVCCJE358Ic/zLrVlywVkZZY4iecgwcP/sAi0pVXXvlDGWv37t3cddddfOADH/iRFG9WrlzJTTfdxI4dO4jjmK1bt3LTTTd93+3HEa69ZGd7LfIq2tnuuusuBgcH+fKXv/wjH+u+++6j0Wi8kkb/j/mnyP2WWOLHgfhHDwwglKQbR7x07Ch4CuKY4oplLNs8yviJ42ht+iL9OIYgQIoE40BiM+bJiG0OnkeahXhW4mooZH3LBiuH2Hr99exffJSokzC0bAXnozly0w9zLvgBvl+EOGHNlo00qkcxjS6vu+51PHz6aD/U2nVwctEP6lcgFDgXg32VAUeDsH1lU6foUUr6fYHQBmpFsCCtwM9BC5BYVouAiB7esmGm4mkoWHQXdJ4yrCWzC22EF6A9RYrBSoG1iqHaAHGjRdyOqFSrVCslom6P1kITs2KYba+/FnNmggunc1hehnKZzddu4fRTXyLuddF5D9FzOP3kHuLhESoLXSojZZJTk3hWsNDpwkAJuj0uTM9CoYgVkiTL8VwXFxDaIIW+qA/pH0gtQBUKLLTbUCqRxz2EAKEB5VCoDbNmxWr2PZuAsrR6TVwnwGgD1mCVoiR9hIkpZYLBXDHf7LB54+Uce/BBdBZRLHi0bQZpwtBAmWShS61WJooS3EyjBDh+QKo1Sgokil47RGYaKQKCDas5efIk+cIiqBGYbZJVAxY7KY7Nqe99Gc6cYp8eg0IJ3Y0plMvguiy7bCNPfP2roBT4AVQqqNigm2E/oNkYKFe49LKNRAttps8tMFlf4ME9j0O3ARKq5Qqm0cVJNINBCZMYEmOhUOa2t76F/U88TuPlwwhk38dlBbIYUF01hrNiBFaPwfgEfrVKc3aWYrmKbocEbj8zy+YpFSUxQtGpt8jnWuC4BMUAEcakUQ9RKdEpCDppB6sCjuzb11dpuS7rRpZjuzGnDx+FLIHApTgySJQmJGEICoZXrkRamJ+ewWYplWKR8NApnrzwRSi6lKsjbHzTTvb/wf9Dc89+iqLMX/7NVxm4Yi1r3vFTVMOIyf37KI8ME1y2kunTpynHmsAzxDrHlQbf6Xdkk5i/j9PGCsnRqXNsW7O6P0MuFkGnjK5bS2nNGC/93TdwPYdOJyRNYvDL7D94EG0FSaeDWy7jlzySsMmL+15gWOcYoxGOQgmB0Dkiyyj4PlmeomODF/j0LnZeBNsPPs8M1cDnia9/C+pNxGJEr7NACYiBo+OnuWrDGhiukZ06h44jhE2g5HH4W9+iXByhZ2fBSMDn+IVzFK+5AvXds6yuDjOVJ1Apw+QU1cEB7HCXeaM5tzAPcYyRHoiMREHmQsFCkEOhF6GxxI6heuWltJ6c7ReRAJDkAhJh0HmCG5RAWTZcvZWJbAGiC5DlHB0/w+p16xlfmKd34gQlCgx5Qd+i6zv9LoOu4sqd1/Pw8eNk/VMXKywTgwWSKAXHZ83rrmXP+HGILfmhE1ySG7I4J/ruEaQQFEsuudakpv8FTSmFNQYjLdYBVznIzCARCMchsRE5GciM5ds30SrP05ucYP7Z/QTdlJJ0EFLR9RSZC1QrrHjDNXD4IEPKB5XRjVNYsQKSI1BWbNp0BYefewzHcUhKBXTFZ3JIYaZjmjUXR/oMKZ85LybKQiCC+gLFTOC4CcJIerFFXHo5th2yyq7l1Pg5RrZvRB4+jTKSroYwSWH1IN26Jm3nKNu/V3RfOgbGwXVW0ptbYGVtgIUXX6CqXIqOR5JprO/R7nbI0gRZq6IzjXIdDJY4S9m0cROZIzg7cQbPddm4ceN/fcNdCtZeYomfOF4tO1uj0Xhl7vujEE/848iWO++884c+xg+LJSXSa5H/8E9QIv3qZ/9/D3P33Xdz//338853vpOjR48C/EgVQHfffTf33XcfX/jCF7jnnnt44IEH2Lt3L3v27GHv3r384R/+IVu3bv1nnWS/xE8o2cWe6xIsBoHAtzA/McuXv/Q1uufnoDiISHOGr9vK4vFp/MWU1XKQuRU++DnV4ZUMTIX0mnWO7T1IMbFkswtU/CLdOGZg41oaFY8LKsO/dhurr9nK1OEXSZcPsOzW60hfOMOYP4ArC0wOatZ/5tc4v+cI0bPH6Z07S7Xo4m6sML/vMH6YkreaoFxkEKDdfpCSoxyyOKMqfawxFKpFFnWXxHfQQqBdRW76HXesNSRuTuxqHJsRaEMBh7N5nat/+y4mHnuO5e0iYdnvB612U+JymQ3X76S+EOImgiwz2KEC7/7sr7P/6AuYpM3y2jAn6ynuuiuwl28i8yVne4LK1isZPzjJde96L9e88Tae/uo3KE/PMTCv8UtVCo2MbtGhPXEaCi4pPWS7S31+gTvu+/ec2XY5ZtsW3rbjauYPPsXiwmlUQSNVGW0tSIuRFuMorFIYKXAkHD+0n+aFSXRjDj+1OEKRYzBKo/OIsy8fxskNuhHj4ZOJmIACOvIpDq1iw89+kEkBF+oNvFaDOFogvGIlWWMR0dF0tUFLSXFsFR/6nz7Ns3ufQY8tQ0y1aMqUkZXLUXFMYFNkGiFVSpI2KSkoODB9ZpLs9ElYPM97P30XLx94jm1vvIWz8zN0F9q85QOf4PSpSZg7C/UFhC9o6JhV2y5jdMUosy/ugzCH2hA/8/v/O4dOniXoSrJGC5eAuBDxjj/8LE/91X/CNFOCxS7OVIMkSWFZQBobZC5AOYxZn6YJydII79K19IZdZnY/TdkbIk8EaZgTrLuE99z9Kb7zxb/l2LPf4ebf+FVmvnsIfXqW5YVBbKvFACUm8w7UymRDg2y65WZu//DP8/yhF5EmpmBzylGbgcDB9yS5MVTdIerdiHK5gl7s9js9DZZg03KOnjwG52bBcVi94TLe9+GP4g2OcO7sOCwf40Mf/0WuunoH08fPkIUh3VabSrlM1mvhpT3U1CTjT38HhjyGr17DO+/6GQ782efpzU/TfvoJSsOjzB47wfjjTyJTiZnuMFoeopf287QcII1iCp6LyXMQBotES0H36Enmnt9HNneBVZkkSDMmetM4niE+NYlstVG+9/+y9+ZxclXnnff3nLvWrb137VILLQgQIIFZDTYgr+AEHLCNPbazGOJ4YTKZDM67JJ5JMoHEM4k9eePAOCuJxwEb4g0HJLAJRmySEIv2vaXeu6trvfs95/2jWhpviZ2XeHmd/n4+59PV1bfq3uo699x7fud5fg+rNl1Kcu0FtM5ZSnaqAScmyec8gtkJekwT/9hR0gkfNzPPfB+pECSWJBQQG4LU6pa3L7smfrGb0pcVivjtBCPMEDMtkjgDSxPHCUnvAGs+8l7G7v8q46dqvP9XP8wLzSPER8YRmMjAIbMjbvmD3+KVp5+nXAvBcQl372bTmjXs2/sc5vnDqAs2kT35LJyaRS9awvL1q5keG+fCpcOc+ObThAakpkKj0UKgDYPUEIS2gdFbIq7XeM/tv8yBJ58h5+Rw8nlmazWqroubpJhJhFARiRFxeOw49tVvJXnqAGtvfTfHju+ivms3dBKqEw2ETNBGSlY0SdOUUmywyCyQTDWYnJhA2ZJMaIrFMoEC0yuSzdZYunIZ05PjyMDH7HTIsoBCT55O4hO5OSqWh+0rzEAhTJNEStqOJrIyMjNlWadElmXM5Ds07Ag3gYF2HuZMnJ4esktXER46ATNtqqZJFrUI4xi74tAOIyzh4SUGUwdHsZRiKolonZhmoyzTVHOko/voL3mcGJnGD9okvb0Q+HR2vYh++kXqj3wDs9UgdTRJzmbxa69h/IV9VOoNJlyBMjxyWY4pP2HNu97Om3/1Iyy69EJeeWwbeuQY0Z6jmLrIjGujlg6x8YPvZfKFV6h3NHrVBrL6NP09FfyZGSxiLBUTHjyInJ5DNdsI08Gycnix4NievTimQZYEtMIOiWsQWQbKklz49hu5+PotPLvtERLL5Dd/4+PEpDh0FzS6IXyKrpr/Y73qL7DAAj9Cdu/e/X0jkS644IJXvZ/T888f1dz3J5kFEemnkU/9ACLShz/+qnZxOpQPYO/evTz11FNncjZvuOGGH4on0TnnnEO1WmXx4sWEYcjevXvPiEjbtm0jDENyudwZUQmgWq0u+CMt8OMn40xpajWfqNJu+IyOjvMXn72fy256O8d3vYg502Yq7cCpGpXIYk63ifM+bFzF69/3Hg48+TxpIcfyJYvx5+ZIOi20Y6Icyc/98s/zzAvPgKXIjp6k55yzWXvxRYx8YzvXvfnNzO4+yEhzGm9oEB9Bve6TnJohOz7GwOXrmR45yPi+nayMC8hanbS/D7FkkOXLlzM7OwuWAYaFzjRZEON6HpPNOknRRmuJlUmkFlhaI7XG0F0fDEMrvAQMBY04ITYlozJFjYwR+IoojYnThFhILvqdOxCb1jHdamNPtbE6KW6kIAoZPzWGbeZwOzGZ49Bo1fn13/stnnzyUarFHlasW83o9p20GtMknQajO7YT6AgzMThRtmhWcmgt4KwlDN3+ZoJtz9OuGPQXetl94DDnX3gF60p9fPk//d+Y9XGcnEDHgmpYRugMRPdzSQSGFuQME7/RIm62IQpwtMRUAqENtBAoAcoPyJIYI0rRYYqhTbKcxkkFhuVRHBikf/NGjjzzFBiS3mqJoi3ZeNMNLDvvQk58+Qmk0hh5j6wdEtgmU0lIkgjKgUHpkk2M7TuIOzhAPWiT2CaBJUkcl1AY+FoSBW3YsJJL3v42tn3hczAyyjtvfjfPfv0bWOes41C7BjqCqUlypoVlWYQqpdacY/LkSUgzfuYXbuPA3kPIps/Uc7tx5iJWageZhTStHC9+9UuAy1qjhzpgVwuEKuK2P/kEux55AtKMJG9htnx03saoFLjsjddw7OhRipFFfWKUZKiPYmpSyRd4dsdTWO0Y1UqIwpDmrgPonEVScFDCQguNX3FJg5hOGCF6Kuzc/QJhs0bBy5P5IdW8RyPwEbkc460Wbs8Q7ahFHCU42sI2bdasX8dYfRo1OoNzfIZSJ2IuDXluZA/BUA9Ovky2d4xjX3+GF7Y/zYxuEmcZ5d4eao1ZZNHDiBO8TFBSBu12E39ygpcP7AEhsSpF7MVDWK7JWWvPohZFxPVW1/BZCJRKuv5HGujGYpGmp1NfBQLNoM4RNlsky3poBS1Mx8GfnqB5fIpFgaSUyzMhU6ZqLZZdfzW1XTt400XXcnjXbqyCQ9Sq4cUxMklxtIvUBqf92aSe/8l8v1bzj4WgbUq0H4CVg0STSzW2UkBGYmYQx2DaXPDmazj2zD7UwVMcGDlKUpIMRhbtmTmGRIFmj82UjqkfPEgxUgT1BpklGN27B9AE9QZ66TDVxSsIxmZIXtnDlhuu56UvfpETL+2FuUa32pzsRkUJIUAaZFKw6pyzaWUxSRhx4tQ42UyDTieknSY41RLtVgtpmOQdBy0UYRRAliHXnEs22+YtN72Nl46+1DWoqzVZpgxacZvIlVjSxjNzNDoRHZ1xauwEpY1nE9ZmMAwbPT5HQbo4CkwtGD3RTSPLux5aa6xSmXoUEbkWbVcS+D7FQp6g3kQ6TvdaYChMpXAyTZJ6pGUL3w5JVYLV0ZQSD1MZNOKIwE7RU3PYSYrQijhTpLbJnO8jq33oOGNs/2FK+QJzVja/aGEzOTaCGTUpVwvsf3kXlU0XEi1ayqWbNnFqx/N4jTbFKKaaZEQiQXg2sVfk4quuxUKS7NnDnCsxM4mTGSgvx+QrzzKad3n+M38GY7OI0TFMPyMuVXjT//UfOHDyKL12junHn2Ppla/jrR/4RQ4+u51krkaaJjilPJZjEDSamJnCNAyEAlNLTAWSDCG6UXmOlyNMU9CajVveyPaHvki91iaLFWak+I07/j15ZDetQsy3bkf5EV/kF1hggR8nL7zwwvcVkS688MJXtY8fxdx327Zt3HvvvWcMtn/Q9uNIZ1sQkX4a+aMfQET66Mdf1S5uueUWxsfHueuuu7j//vvPONPfd9997Ny5k/e+972v6v2/F4sXL+a6667j5ptv5o477uCOO+7gui2lzXgAACAASURBVOuuY/HixWdMzfbu3fttJ/YP61gWWOBfxHwUUiJOi0iQcx2e3rGL0VabvZOjdMbHMR2TrDEBYUT/0BKaScL5v/khNtz0JrZ+4fOkh05y6VvfwOVXXcmzWx9BVstkQRtsye4dT3Pdz7+Ho8ePwkyMVyywqFhh9Nk97HtyB0pKwrP7ueXdt3L4s4+QH2vQESmi5HDDr76PV3bvhGova5sOMsiYMDK23PFBNm28kB2PPArVHlScocKIOMlIDQmuS6ISkBZuJjA13epFohsxAN0qSU4mUFLSNDT5RBCOjMDwUi7Ycg0Th45huh79563jkFlj8vHHuenf/RIv3P9lytLEizI67RbN6Rkcw8I1TLKkScFRPPfU44SdGuGxEU6NHKS/2WJ27CDN6VOYYYCrTByvTDuMsM9Zy7tufifHxkbpWdxH9Mhz5F0Ts9EibvuMPv40J554mn4k/Wev4JQpidsZSd2kaIJB2k3jU91UH6FApwoTiYmJyBQCiUCiRXeanqXdilymBkcYWIagQEJqZPgqoeM3OXnkBIQh1UsuZOroQbJE0pCSlZUBRh//JioN6e+pkleSIy/vBtPG6x1kuHc5b/rQB3l+1wv4fof8imXoYgl/chatJFfe8m4awiQYKnDu9W9k0bIhDt3/BRzhcujJ7XRmZlDxHNd+9H0cO3EIjk5RKvfSqdUp5wsEaQTNOiQJzVqD9vERpsaOQdIiJsLIFbCcAq00RhVcVl/xWg6/8BK5Gy6jefIYqJSTrQat3XsxSgWCPBRNh0wpWmnMkeMHiI9PYwYpK995PXrVAJ3dh+mTNnOdBmq2yarYozM1i0gy4nxKUoBwUYXm7BxpzqYvsRDSYmZynHBqEvJFvFyJJFWEKbS0IDRtdL5Au9WCzeew+WfeghNmBOPTzE1MEDVq9DciVpk5ZqIGsuiQKYGenKN96CRuGEMSkKqIVEdgmESp4tzXX00tjgiDGCEMvMygkBp4oUQGKZFnMbRkMW948xt55n/9LWuuuIwgDmjM1Uj8Dr7fwDUNmI+uEUKghSTNFEIbmEpjKbCUSS2J4JLVkAVEcQBWid4GVHSOQBi0enOAJC65xLHk8OcfoX/NMrylPbTCJm6iiFWCNtzueSlAzPdLS2usrLsvU2mkNqgFMe//8EfYfeAQzMzhCAtbAaKbfqWkpuCYiHabQ7tfojTRYUA6zJ46yTW3vJ1XvvYE1XyVYt6jFge0X9kLRZuOH+CZFnEag2tTCAU5q0B46hS33HQTOkmYPHiQl7c+BnMNDD+gYjvoMMCSXbtxhEBKA4Tgw7/679l/8CDNZosgStD1AOU6pIYkyUJWXrwZZdnU601CP6Ja7SXF4p3vuIUXv7GNl576BrQavOeXP0AUtElOzmBIE7/skTQi/FiTO2s5N330dl4M61z/wZ/n+OFjJDNt+hoa17EJAx/Htsm0xsoXqfsBEZJzL72Ci66+lpcO7ueKW9/C0YMHmWs0yOc9lOym3EkNuRTcVDBecAiSFirwyWUSz3TxpUvHkCAl2fgEVtREZDGm7UGpH2doBWtf/wYmXtmDLBexDMlrrryI+lCVLIIL3nAd42P7sf0IJ4rw+4pc85EPMlRdxOg3t+PPTmKpGEGGtMEueEhL4s/UObT3IJMvvkxPEpEKMHV3QSAUimywwntuvZX9L+yn2kpRs1Pk83lmUx/VV6D21D/SfH4PZ6kCx44f4YAIifbtwbFdEiGgWqBDSmabJGlC0c5hBgkmAi0FCDVvLK+Jo4RisUIwU2dgaClTx0epHxzBrfusKPVyxwc/iIy711ctuus18bwH4Xd5JC2wwAI/tezatev7ikibNm16VfvYsmULAB//+Md/aHPf08ba389I+yfBWHthjP1p5PsJSOqffukPwgMPPMDOnTu58847ufPOO6lWq1SrVe666y7uvPNOtm3bxgMPPPDqdvIDUK1Wue6667jrrru455572LFjB1prtm7dyl133cVtt93G5s2bf+jHscACPxCyqyWdPv0y4MiJ44xOTTD18ouwdIgoajBw/RYwFCMz4+RKHit6+yklGnbtAW0QxzF+uwNyfvgWAnwf2dfPyqXLoN6gJGxOvryPpx55DOKUOI6pz06DhCiK8BJFRZj0rFiKTkPGJ0Yh70ES04liLOlBscyRkyc5dmocTIfzLrsMvByYJpgW2jA5a8MGcBwQgkyAojsR1vPuLqcfw/xnl+C6LuRL9A2vZvXZ67oRG4bJ4NLFIG1QLi9+9TE826UThWQllyhng+cQWQaBgELRJWo3iet1iAI8KcjmZukpeuQcCxU0KUnRjWZRGlNaVLwCPcsW0ZqZ4eDnvkq1WsVuhJgWiLQDaYATtvDDDoMXboSoDWtWMbh+Q9fTSX97doTWGinMrlmzYZLp+ZgO0S2GJjXYhokpZDfKw+j60JhhTIYC1+i+4dQs2DaLhldAbxnfj5h68hm2P/YNylaBnGGThgGWAApFqkuXsXHzRUy1W+x55ZWuyZVrc8XrX8+6DRsgzaBcZdmqYbRlQm8VrTOOHDwEUmLGKeHMLEXXAZ3gGQpGjkFPP5s2vwZT2qhUo/2w+0HDiKkTR6mU85AloCPyV12A3+twKq6T+j7W4GJec+UVsLifK258C5QKYFpMPfYE2C5RloKOmYraaFOSz+dhtobhuLQadYpDvWy4+EKsUo4wjlicr+AZJiVhYCYK05LdUDbP5pJrX4ddLmJ4OVSiMOKUSqUHq9JD79AQN958C5HWdKKYQu8AShhQ7YVz15NbvYL+NcN0dEqqU4JOCyfTEIe0O00CmWJIUKPT+C8fohClWI6JWXRx8w5l08YQNkiTNeecQ/+K5aSWQWo7JFoiUomZgBkqGB1nbPvTvLJrN9gOTz66lYnDR9hw7rmcdcFG8HKo+Q6lhSQTkgwThdm1dNHzJepTjXBz5FesgnPOhVIZch4hXT+iRpKA3wbbwp+cZvPQCpip45XzpLYBsU+sNKnSxAbEEtL5Cffpvno6eENqUEKCsDFMF0uaoEB8x42D1ArXMekp5XFaPo4OKZoGpjCw/ASSDJFzaAQdKsoETFAZGAptSkSQgW0jY4WbAq0mX//Klzjx8ougM0hiSvk8BdNAxDE5IecjprrHeJr9+/czMzUN7Q5kGYbtkIYxpCmkCRde/VqWnb0O4TpoJDmZw4oyavv2QU5AGsJUjbjdIopjOnFImioCAbFpYuQ9zFKRWEogY8+hQwRZhkpTTMdFSomUgiRJyISkEfjoOKK6fCW6UKSWJpDPs3T5cqRjgKGJdUo2H5Xa/Q66ltBnX3s1DA7gaJOcMokSTU2ktE1NRILVibB1hpAZShq0M0kzgQ2XvBZ6esmShDiLODE2gtVTJAkC1p69Fkp5CjmXLAggTZmemWV6YpqJ48fJCYlhSJRQJEIRpREqSXBdB2qzuJlCzQtIUnf7gJYJTIzxxINfwt9ziHh2jkxFxEkAScihnTshiCinYHZ8zGqZ4VXLwLAJogi7UCDOEi646gqKA71gCqQQGIj5/jd/WZvvj440seZts48fOIQUJiLOiDsBrmV3N/4Od9dXeYu7wAIL/P+Q7ycgvVrPpHvvvZejR4/+s3Pf01kwr4bbbruNrVu3nmmnLVqGh4e58847v+3502l0Py4blwVj7Z9Gkm//9WgK93a+Y5uPfeyffYvh4eF/0szr9ElyWoH9Vu68807uvvtudu7cyc033/wDH/K/Jt9pSrbAAj92DEj53ze3GvjN//I7PPbkNzm0axesW82177iJxz7zSZZsXMvUk9vRMxH1yUn+4RN/ij89gRsaDLQku77wJXblPHp6BqidOkWuWqVQKTN9+Dgvb3sShEuPn2DUfRpzTZRKKF2xmeaOvTBe53/97h9Q9BQdL+QN772Bb/7hn/HEn/w1ecej4yiOGSlSKt749lt55Mt/z0EloFxm7bnn8vLWbWDZgEXo+2y65FL27H8JXJsAiDJw5j18YoMzwpmhIRMSp7fITLsNuTwzz77IlNkLrRBp5njpa1vBs2E2pXhWHr/VwKkWmMhmYNUGrv/1j2H4MV/87bupzflUSi5pkGL192J3EnzHwI8Tqj39NNp17MxAOoJ2HJMOFZgaHedT//OTsHox1QOajtnBlRY1KyYSMU6WIiODjpfHfv0lsHEpTHU49rfPUHLAUV3DYyUBLRGWTTNpobMMDAPDzSGSBLQEoZC6m2KhlAKVdj2VFBSQTCdx10xdAEEG0yH7jx4CV9KzbDn2mhVMvLgbWyqMvE0ratFsBfRuWMfs+Di7+k6RZjFjf/gJ8muH6czWsTOfnV/7MkQRnBxj/7PPUTt8CCKfPXsOQ7sJxSK62aZYsGi2GxS8Mg//9idgchpWXsTSs9bjBw9SznssqvYRipi5mRl6pSCammSov8pEpimetYiJXa9guRalxKZ5dIyZI6cg6PDCzt0wMg2pgWl7FFPNXBix/JY3ke0+wvieQ5gipbJ4JblqL0NXXsrOrz/Oea+9iqBkMDpZY7Bhk1cQeoKGnaKaIRgObv8S1vUt5dmpGnLpALg5qoakGaYkjTk2bLmWv/7cZyEIEaVebr3tV3hh3yus2XQBn3/sa2TFHEfadcaP7ockoH/ZENNzpzByeVSWUCgVSeOInNZ4xSJhvUmulKfhN0BqypU8aWbS6UQ89Gd/CUsHwBa0VUqaM6hKD6FBJyHS8rByLnse+Tr5gT7CVkjWaBD11VgyMMRRKTGybiWuSEiUEChhkiQphhYYGgyVoiwL0xJ0nnuJ4fM2c9Sb4YO/9Wt8+j/+Jp1WSn7ZUvouOouZLz2CemaK3U/v48KVw7zuHTexf/YUX9uxHWVbpEYe7cozA1CUgpN2J+0S5lPqIDQk9C3mM3/659CsU6n0ozpNEqMrKKTSJJMwHc6hm7CsUCEmpp22SLOIR+75K8zhVcyOjUEa0e9nFISinUu46f/8NbZ+4jP0YTDd8vHMPGG7BTkoqIiRk8egE2AJQRo0sQyBbVoIwyFLk25BgnnfGwF87k8+jejrw+rvJ5mYQhtdgW3wnDVMHtiFb1tQLRH4HQwElpZktQZ7H/4aeClMNxi0e7j/U58GFMv7qqSdGDnURxqPs2LzZgzb4XN/fh/UJ9l/5CT9Z5+PWJ9nZs9x0s4MxUoeP83QnoOWJs7K5cxNjNH/797D3kMHoNlg9yOPoY6dYtGylYwfHyE/0Esqu0JSnIGZSa5/21sZO3wI05dUbIspCebalaSWSXJgH7121+hfy66hv4oyVKjZP1XHu/AS/JeehqDBsQN7wLGgr8SLu3fDsVFaScRgb5VWonn+vodgZJZK0ZlPi0vBMIhVSt52SIOQwVye2sQcpWqFUJvYWYLWGZmRIUxwvBIHH/oSQ4WlREkNZ1EF2ilV5TC3/xjYDippUShXSKcmqUYJXqWHsNni3R/4Jf7i//kE173tbcTZQ+ydmkFnGlcIMq3Q3XISGPPXDUNI5san6C/30JlrY0sDa0k/gpR906f41L338IH3/wK5nIWYf53Nwgr5Agv8W0Op75aPn3zySaanp8/8fvjw4e/7Pv+UIHO6eNP3mvvedttt3H333TzwwAOvOnhheHj42zyW7r77boaHh9mxYwfVavXM89dddx233XYbW7Zs4d577/2ex/XDZmGc/Wkk/fZWVXCd9R1tXmj5p9pPQgTPxz72sa7/wb+Qbdu2IYRg27ZtP4SjWmCB/2+cWUmne6P72suv6F4oTAlpxGMPPQTjdV7488/DaB27HVJyHILj4+BnOEGI0Ame4ZKLMvyxSfLSRjY6dE6Ok7c8Dn59O+VWjKNTRKeDA9CXo+eGK8hVKpizCb2NlNaQpLMEHtr1JLIesqJjM1jPOP9nr6ezuECrqHjyscdgrAmNDszV+cL9D0CSgiHJOQ64Ng89+CCojLXXXA0iQxmatJBj5QXn8pH/405kT4VEpcSmgek6RH6HVddfDTphSHkcuP9Rep0iSRBiOwWGOi6rN6ylcsEqqNpEMoaCRzVfYe/Ol5icnoViDlYspZ5AJoo4VJCyyLJ15zMdScbbKaHwmFMGU30unbyF8+43wtIiYtUwr/u5G5mz2mgkI2WNr028TDIkBH06pYpk2x//FYzUQJlQmyY2FL4FHVvRtqBlSwbPXYsmA9cGAe6SJSjXJYhDwkQRRhEAUmikASkpiUjooDBNIFOINMWTGsoFqobBVTe/g9rEOKs3rKP/wo10bEVDhoSuxiu6zE6OAxnnXPc6VNCgx1QYo0cgqPPU3/8dxdRnkYQhQ/Liow+DP0c5dik0MkhM+hYN4YuYuOgQoSmGmmU1hZkVYGaKv/yLP6dc7qFZbxA1msT1FjnTwq/XKWTQM+FDSzHx0NdgJqBQ77AiEwzVUrb/yd9gBJKpv/oSA3GeRYnE6cSoKEIkiqWLlzB66hRWpUCWZSTHRskPVPD7crDvCC//6d8weN5ZsKhAqhIcQ3DAbrLmHa+nMtiD3cjgpRM8+F8+yZLCAKa2aLgSP4pozNawCgWe/NrXyDptGOjBsA2+9Pdf4PmvfoXP/smniV88SMXNc+j5Z2HZYoorl1KLQ8jbdMqCGTtBNkJCP2D4Z69l2c9dS8dKKYWS9W4/g3aBGUehwpASFijJW2+8kTVbXg+OJKy4vPM3PspFt17PXFhnQJmU/ZQeZWJO1ik3IorKYuLl/ez5x+2UM0FBGgghSKVBW2ncgUGSOEaXiqS2BY5FkoVYWQr7xzj6d1vh4BiPv7wLBkzwMjrNKc7ZuBGrWATDpjdWTJ86xh/+2od56vFHIVQESYo2NfR6vO+3Pkbf+WeDjlEFh9Bkvm9D24HIEVzxsz8Dpo2FiUxSLNciLti0LIGfpqhiBW2Y0FcgiTVRuciI0YEcIA3Szhwb3vcu8AwMEvpcD4TFS6+8jHYtSCFf6mPWVNDfA30FLrr4fN5241spDZTIzIzUEUQGNHVMK+lGxQk9L3gxH5FULKGzDFNINm95A0kUUalU+cX3vw9WruThe/6UHQ//AyLn4Xke9WaDkldkauQUdJogNJ4wYaaF45QZDzuIvgof+OhHuPH3/jNHxkcQcy2s0RkKgUlB5lnV28/qdWvp9LpEvR4zKuSyt1yHM1gGIyGqTbLhlp/hyV1Ps+isFZBzmHnuZQbyVUStSV+5SpAliILLxtddScezaJgpn/79/46a7bCo1E+nGdJRkg/99sd516/fAT15GjJCCwg64DdbGJUyZDFLFvVz4aaNMDsNUmC6eWinbHjzFsK5OstklVLRI7UVOT/GmI54++/8LmnOIRAQCEEnikkygyTWGMIk6jSpeBZxGjFjG2jDxpQGqU4RpiAXxSypDiCjlKjgMmdECKHpa2U4rYS8NGj0OrwUzeB4Ltv/7D78doiyLQ6NnISBJXzyv32SvTt3Q5yh06R7HqQp+jtu+QwEOccljWMsaRAKRStr0HvFeXTMiOdOHCD1LDJBV1w8Uzn0R3BRX2CBBX5iUEp9V1u2bBnr168/077f3PcnMQBh27Zt3Hzzzd8mIJ2mWq1y2223cfTo0X+VKKh/KQsi0k8j+ttbVfzrikin//a9Utbuvffeb9tmgQUW6CK/pQng6quu4oLzNoLrsvrqq2DfQQgkxuEpPF+TT7t303pedWrbUHcVNmAqhZllWAJsKbCUwlIKWymcTOHlXaSETKdQ9Jhs1AmaPp6SCB0hF/ciN3d9xOJOhBsp7DBjYKAfCt00J//kye6NuGlBXy+eY4NtgdYIlWEq1Y0iKBW55pprwHbAMkmikDCJCYIAVatBziVMUgzDIlcqsfGiTchiCTvRFC2HLE7OpMNprcnWDjK7ogglG0wBHYU+MMHRR5/ixW1PQrHC+k0XgDQoFKt02hG5fIWLL76CWJpYXpEsSrCFhW4ECM8lP+2TW7sOOdpg35efgDBG+THC9DBaUEpcLD+mmCmK7QTG2rDjAFctW0fedjF0RiZV1wx3PoJg3XnndQVA1wbL5PxLXkPU8cEw0CrFK+SREoSUaKFQZGRCdSM9tImRgpWBFgriEC/NOPXKPhBQrBTZdMnFhGlCFnWQZjcigySDag9BlkGmqBgGPV4OsoR2o4aFwslSPC0gTUApjE6AFaQQhLzmkougXKQRBGjT6GqCwiJNFc6560FlxHGMbX/LWv58ml4qJbqYh4IHSoFro6RJgCIwU2IjQ5BBLChkkjwO2jTIF0pYlsVLzzwPUTKfBijIS4vREyPdlcFM0lPu5aLXXAzVAlIKYhR4ktWbzsWyTJwkw41S8qnA0gZppomyhDBJEYbENE3IMgh8aDZJgzYTx4+AJWBmGqkFU1sfAyE4++LNqDQj63TIr13HkksuRgwO4Pb10NM/wPnnbmTV8lWIRYOcSNpMExOaEjXToGDY2JmCIGTX9qchDLvRebUZJhqzWEUXzNPm8ho709hKY2YKO1W4Cow0w1AKQ0EUhOQKebBt1m7cCIYkNQy0a9FJAyzToOg4kGQUU42HyYHdu+GiC8A1YeUytm9/BpFkkIEUCm1mkKU0jxzDFg5aA0MDEIRoKejp6YEs64b4zxeOzES3IWH9+edh2TaebVHOe3TCgI7KUHEMUqKECW6xu7EwqccdcIChXjAkrDsL6eXAhIgUrTNo+xzeupV20AHRNWpOig51HUAac+z4EUZGjpOhUaIbuZjNR2h1f37LWNq1XcMyTWg20VrT09ODbVv4nRYv7tgBUzPgh5B1x0bQZEKTSoWSBmddejnLX/MaQjSOXaBk5Ei0YirymTo53l3VbtYZO3QQ2w8pRRlWs0Nf3sPvtMA2wbYhU5y1Zg2O43SLD2QxQ/29tE6dYM3yxYDGTrL58VljolFZRr5Y4JIrruj+8y0HRidpzdbJLIdIGCjL4vDR4+w/cAikIDE1Tt5FA3k3h/JbYCiMuMOBl1/opjV7edKmDxMTHD5xDMeycZIMoTNSlaDihKzVYWZujrbUJI6NMm1INYZhI/RpZ2rIhOpGk1bKtKMUx3KwHYdMK4SWCC2RuRyRY0KSkSUKR5j0DQ0yNLyKpOigyjmUNMDJg2FCotix6yVQkBwbgaaPVN10tlgnpHy38qMEZFqhANO2umOuY3HRlZfDUD+/cNsH6H678yyIRwss8G+S75W+tmzZMtatW3emvRoR6XR00Ol57rdy+rkflgg1Nzf3T/7tdITUP7fND4sFEemnkeQHaK+Cm2++mc2bN/Oxj33s26J9HnjgAe6++242b978r5rKJuZNR3/Qdtr4bIEFfmJQ85Meus3Q4FkGS4cWU1i6lMsuvxxWrGCwUKHkh5QRCJ2QnHZwForMVDSd7g21sEzMfI7UEEQoEvkt/iYaZjpziKqDXchx1vAG3n7OpdAOEQUXs1hEjYyjDp9k1UWXE0mLUBo4uQJbP/0ZOHYKqYAsopq3IGhzzVVXsqiY7woTnSaeUOR0hpvE0Jjj2Se+CQ0fN1+Bhs/I3sN85vf/CLSJFUFJm3SmawRzdQ4/tRP32CyOZVMrSKx8DmGbZAXJZNLg+NF97H74QchC1l98EUaQEu47RnVOER8cZ6BnCW+84a0w0INOI8wwQEbdVJjMzMiVPIh8CrFisG2gay1q921FHZrEOTjN5N9uhZEQhEE5dRkeXE+gbGoipWODjhIYD9hy1Q0c+co2Bq0IW6WYiq75cCYxFHxj2zdAOtAIsJasZMM558NAH298z61QKKCkRBkCZQi0IUktUBbUcxZSW1RCk3wMsZlBo8bYU89y9PNfZmigh5d37cbREqVTAPK2gWy2MIKMVdVF7H/2BV7/gQ8y2wk4NVtnyYXnEeTz1KVJbLikdp7MK8HgEkRPkczS2DmbU0dGwM+IY3B7BpgxDI7oBFYu4e23vh1yJkHqI83TPlYShUkmTFqWzT7RATNh9Tt/Dko2rYrNiVJGo5KQFCIyI2BQ2kRkTMoEf5HDWFwjtiXt3QcYTCysdowjTXKOC/tPkr1yGDJB8+QY//D5h+DgEQrSIulxwTR59pFHGT9whGI+D4BZKHC8OYu3bIir3nMLnSwjly+SIkAqLr3+DSxbvwpHR+R1RE5FVC3BIj+GyWk2bziX5sgYYqaDGxlsXnE2Zmyhaw3Gdcp0J+Czv/tJHvr9P0ZbkuSy9Ywt9pgSCUPOIDIICIIGAz1Vxp/dyaGvbIVjp+jLFfniPffy93/xl+DZJIYilYpMdr1kVBIj571lVBJ3RZ7aDJY00NKGNGPNJRfBhvU4Sxbj25KWmeGqDH9uHKOvgO9m+Phw4jgXrT8PEs01b3gTw8Mrsf0IK+tGu/lWiqyUYa7FytCkkCty/k1vo3fzZv76d+7m5CsHQJtktRZuCm7aNcAX82ZMDz36JZJWjbjTojE7RahS8BzorXLNhz8Kicnrf/6juGddQJLlYM0wi99/Cxe+/xZkuYd333Y7M7U6mAYq79KRCWWRBxyQikgKrBiW/Ow1OK/bBFHK9q1PsPubz2AkYCiJ1CZCS9A2YCK1/La0O+iKKWalSjg6xrNPP41WMard5B+/8iVodSBWeGFCPk0QxIR2TMcG33TZfPHruPStbyPp66EUW8QnZ6GcZ9ml5/PQ7/8Pvvif/wBaCXazRa8tSfw6zbkJFldL2GEEU3WMTkrOLbHjiacJJ2egE+K4Hk/cdx+cOsUTn/lzyq5LRowWqjtGC0G1VGb2xCgHdr6MEQp6rSKX3fCzFFcuZV97mtaSHrBMZkcmOLlrD4QZJBFJalKqlNChT0V3oHaCL37qd5l58lF+/Q//O+/9xdvBzeNdcQVlr8T+xx8j8ASuBN0J0AUbBkscGB+FgTKZLbn5l36Z0vDZ2EYBI3MRyiaWJqEpaeQkxeuuZmjt2bQ7CZg2mRZkccbMTI2bP3Q7WcEml1qkoeKw9jHOGyZcMcDy8zeSSYskDGCoDwx48y/9Ipe/9mqY7jBQWUw1c+gT297eJAAAIABJREFUDiqMiaTG8Kwz36+eFzU7SYS2DJQlqccBBAFIh+f/4XGMTsJFq89GK4VxulN860rNAgss8G+G7xWJ9J3t1XDzzTczPDz8XXPfe++9l3vvvfeHFsk0PDx8Zh/fyelKbvDjCd5YEJF+Gkl/gPYqueeeexgeHmbLli309PTQ09PDLbfcwvDwMPfcc8+r38ECC/w0cdrHY76d9qldvWoV7ekZ/ubTn2bRJZuYLKWEgyXqtiCr5IlMhRsrCoGipwPFWBFamg4xbREjyy5OX5HQUkSGIjIViaEwCw4zSZt2Y4bDX/lHtt75RxippmGGTJcF/aNt+g/WqR2ZJCsWGbc1EzoCabNSuazoaBypqWVNCnmLfS/s5MjuXeRdh5LnYQYBOa3oyecQKuOFB/4eIoXrZwyWh8j5mpKRw42g4CvKkUG/UwJg3/2PsLpjcLI5S60KHVOjpOCyX3kv9HvkDjconkjBl7SnZsl684RFl8SzyTJFY2ScP/7E70Fjgqwzy2DBIZobY8fDD6HiJo3ZESiYpEZMqy+HUyxRetcWoudexDc1y667EmzBrJOw9tYb2HTru2mYitoyjxPlmMmqAXmbKPYZPbCbo8kpJAleosklnJl0Lyn1QCcBbJKjJ/nM794Nrs1Us4lwbTIJYZoRq24Uk3QMhGOAayGUQyGV5FLIDIVR8aiECeu9KrNjJxl96im+dO+fkZcWeddGdEKW2HkGM4dj33gOK3N46ont+Pkq9oqzGLj4MnDyqHIvNbfCSCyhfym9l1zOrD+JP5AjTlrs3/Uig7JAwczTClL6t1wNV5zD+o+8l89+9i+gNU25XCQMQ7SgKyBJSSwNMmFhmQWQFS4vr6LSEni1NoVYQRxjBjFr6glZq820B61+mws//mFYuwhkhpMa9HegmhroKCE0MoZ9wZBvIJKU/ECVbGScnFFANdvM6Q75mk/j6T1UTYe2yKibKbNFibG0H2OoyuGJMcxiAT9NSdIEymUWLxrg1LFDZP4cTtzGCVsUYx9Rq0EYsPPLX2H0hZcZTC0WJy7b/+arnHj0eXoKyyg1gHZAz81vYvBD74a84Pq3v4NrrnwjPUPL6eQdzN4CTsEmbNYop4q+IOP84hC5U1MMzEUsakQsz1dpOd0UMd+C2IBQpSRCk8ru41AoKuUyru1QbzdBSO773N9xzmWX4psa5UjcvgpuGjOYK5BVBee8cwvn33gNCIsd//VPsZXH4//tUxzYt7db5UuaBGZGU0aoqTqLrDx536c9W+fFrQ8zu+8wNCLS8RpmJ2aZVaQUQT4GL+lWCkNBoEIwugbaaRqDISCJOefGG2nbOfB62L9nlHCsgyW74nJh9QqaZKi5Jl/8uweZeHgrpmMTlyyaKqQvNbEiDaZBM+zg1+qsvO5yhq68ABoRuVTg4OBPN7BTEyeV2JmJqYwzwi387zFUAEHHZ83qs7B6+wiCgILnYKNojU+QizOWGg7lKMVLUgQZsZER2wq8Cn933/3c/+CD2CtX0Of20G8UwHNxlg9QjCS9MwkrOmDHCZmOSXoMhs5dwX1/+T/Z8chWlqcWXielImwOPb+bdHSacivCnpxjsB3T1+ww9+zzqNGTNC1Fx8zwLYUyJY4woemz/cGHWZQ4FCYDavUGzrrlMFTg2g++H0zBgMxzltMLU02GrByFfBXTzONKk2Lms7Kag9YExC2++cQ3+Nojj0KhzJILz8VoJ+BYjJUh9QPMVkKnYMLiPMZgD/RWoFykmSqUsCG1EdpCY5FKSccGXIEYXkEbE9vxSDOBUgopTEw7x4tjJyGJ6fdNsiwj7HFZ8XNvJF29iJFjJ+m3yojhVdz46x+FRX0U+nqJMoVjFwhHpiklAjtIMYVEmRCSnUn7hvkoJAnYJr5KscsFtlx/A4N4tJ/bT36yTc5PqSC71TLnhadILAQkLbDAvzV+2CJStVrl/vvv/6657+233/5Dnfue9mi6/fbbWb16NVu2bGHLli1cdNFFbNmyhbm5uTNG3z9qhH61duUL/OTh/QBLMP6/ztd+ulIb/PNm3Ass8G+abxVu5++SMxTjtRrLVixn5cWb2HDxZh6+/0EGJjOmyimYPqQGNCU5wyLw21Q9j7b2SRwLynmG1m+gr1LllX94HFt3LUniJCSIAoxcHpFoSrEkMQzalkYXDQgCKm6e0qqVXPiRD/LFD/0axN3UJyxBrxTYhkGSkyRCYGMzl2kGRYlZQ2MZNj2R5qTToSwN5pI5BtwBpoI2PX19WKN1VBAQuQZxs8OgdBmxI5y8i5yYJgUWVXqZMaHjBxBJcEyu+cB7+MaXv8qi2ZCpoIEwbEzPI0gVSxsJk/j058uMihbkHTzHIzfXomRa+K0mLQeccpkwTiDRVJRLGmjkFevp+w83cexX/gc9l57Dtb/0Lv7qV+7AGcsovOW1VJau58hf/yW9uZjZRg1WDrLsQ3fS2DdC8+GvYLbG8OYEApOGqaBiQ9njPb/8Af7mt/8rtpUnnpnDskyyqkU+FtiZyaxngudCvgzTDTh7DYQNODbB8hCCTotEZERut3KbpVTX6FhCW7ukQULF85gqJjDXYnmuj5G5GfpWraLeDFAVj+JUjcBSxG7W7WRKYbUzdGKQei4U8yy5/DpW9A2w/cHPQ30Gw4LM1JD3uOQXfpFnX9nPVRdcwDN3302cJd1yG4aBkWU4KQjdrThnKjD8iLBYIKdtap0p+nIuBT+kU5QQm8zKPMU0xbNMIqmRy3qYmZ4Crbup1X5XgMsEZJbEzmxC08TXkjRNsYVGR21W5YvUzIBaEmBZLtKXtHMODFToe+3FzDy5HaZmWFlYwujYKIViBZQiSlLMsocf+zieSdZp4Bqim8aZusyIGG2Z5A2b/5e9Nw+3q6zvvj/3vca99nT2GZJzTuYBQpAwBkhARQWVQaU+iooltNUKtdjHSp8Cr9XX9tH2hbRFbWurdFIJWgFnmREIUxIgjCGBhMzTmfe813jf9/vHDqmzT4WWR3o+13Vfuc7aZ629cq413Ou7fr/v12rFCLpJZUoASIS2iGcWOfb8N/Hs1s20n3qWmbpAa2SMvp5B9tQm6HcMtiVouBJPOxTaGiUk0cwiymiod7DCFnGPddjTL01TkiShUCiQqgzH91BKMaMpcHsH2FvyCA+O0zdjPpPFEEd56LGDCEezoG4Yb0xSmzsApy5npZ5BcvaJbPz431A47ThaQcqiU46n/v99FVtKWqP7mTfQixSG/aMH6Av62JFFKB8oSAqRwMZQUxF9iUPdlmRG4YQ+qRZQyTN8xe8x8e1v4218irLjQqmHfSrl8qv/nGs/dy2Mj8Gooq+nj0lVg/4yeD5zjzyKPffdD20NJRs/CkEl3QocSxL7FsYS5BIoJNByNWHgMuPMc2jffC/tMpC1mT+Vsj+nEPmAUgeSdoQu2MhWh4GBhRw4/wTCXbthS41L//zP2LN1KyMHDrJt7T2k+w8wXO6jOj5CUCkzUp3EyrsUkJQTQ03Y1Ao53vXFv+abn/9LeucuxLr7cZLxMSxXEM/wMVFCoQNZKWCqMUE5KBFMtOlYknrJgzhloTvAZG0/M2fNZuvYXugrctwZZ1DfO0p2cIpqo4add6k3RnF8wWC+n7DWoTeokCQZWmi0DcI23Vat2Gb3sINdHuCkY05gwy13Qi0CrwCiSlF5rPz0/6babPHoH38cii0CD4I21Fow7M1iVEjiZXM44ZSTeeLOu2B0D7Zn4WiHsBPxrv/5Yb75za9170GtEKQDYYbn2KTVBr2FAnEnpNyTZ6I6QdaXR5x8JOqZcfRkyFkf/0Pu/uS1cGwFRg5yTLufTXYVUVcM+j0cLFmQpZRsB18KxjsNTKPJiksvZv23bsSKMnJa4nYSpO8R5QI6lkTXmwRHH0tn5y4WWh476nXIBfT196L278GzQJQDRsoB/+ua1Xzn2s8ztuk5csJm767dOI7Vbed7sTWTru/gdDHSNNP89+Hzn//8L/2dj370oy/Ld/3os+/L3X3z877vxdCqH2XhwoVcffXVr1iQ1XQ626uR/8J80wsuuOAVO3inefWycuXKn/vZ4sWLuf7663/h+jt37uSyyy7j1ltvfcn7snbtWr773e9y7bXXvrQNGX58ViskSqVgFNUdO9hqDHRSrMhgHTcX/9QltL/3Q5hsE2aanqOXEG3f253wZ0CjyYzZc1h65BI23XU/JlGkWYwUFiJfQsQZbmpwpUSZDAGYGDCS0AhEGNEcHYXAgTQGWyKN6bbG2XQbmbTAdyRCpWSJIrJSIssgMonO24RpiuMFmE6EbQmmDu6nZBwqQYCQGtNbJAoCzOgeIuFSAWKgZivSzECUIqSLiRK2rXscfWCURgKqxyMflJh31BKqSULr/kexcz5pHIGncbWLHYNlOSRaEfkCLEGsUjzhI6XBNR6+J9m5fTujax8kX62yb98OHl63FmpNVCyZ3LqNyWZKbmAm1r7ncY0gmTHAwuOOZmoq5RmngGklOBRAuiC7bUikMY8+vRFMQsErkuU9fCFpqowg6/q9IIChQU577Rt5+Ms3IQdn0X/CWdSu/SJJ1EQWPUyWYltdQV+LrmZoK/Bsgee5OMqAcHHcIlM6o3jckcybvxDuWk/sgaMVZKDSDCO6PlWWTgAbk4BsC6ojE6ipJtTbWEhU3ASnG7u+e8tmeHYrOzoplVjR8CSh0z1YRdYVjoTpekEBeJaNyOVIajGyv0wjblEGtBQkWYYeLJFMTpGLQ6TKyI1YOElK6kqQEDrgqW47Zyps2q4kMwIjBI6fIy8hUxmNtINIUyxHYCmDLS1wfXB9SkMDTMyZ2TV5PzDVFTzTlCQK6QkqtGONkTbtTgffs8kyhRaQCk2AhYoyMqlQdvdklKa7P6CpVAbYsW8Pj3z7O9BqkC9VcKoxM3I9KKXxiiVkFmLbkJhu4l7JcoiMZsru+v7YxtCPQzsKkVJi2Tae5+E4TvcycOi9nYUgNIZ62CLMGpDzefvrz+TLux/A7JrCSwXSlsQOVCqD1FoJXqUXqj7erGGII2auOB5tddj+3R/gSU1cqzOzUERkELUaADREQrm3SDWMMCYlZ7vYQE0pUiHJcjmQGY5XQVo57CPnMVatkk1MkHcklpTUq028wRk8fO+DMDkKnSaOdIlrI8y68Bz233EfqDbBAug5+kjMhs3Uwza2kQgtSWW3Ggs0lhKIQ5OUGW0YAdz+GXQyCWmMVcjBZAdtS5SJmUo1FT9HNWnTR45WnFKeO49QCGiNs/3gCGGY4fb20mo3KBeKZNrgSo9aGOL1lck8QTTeZCB1qOR8apZDq9WA4VnMGh7kBRUhSBmyiuxrtujkJCJLSDSQ97FcH5cYiUfTcTCuR3WiQd7yUXHUTUPLeeyrTXLG61by4Ne+jxaCzHWoLDuabPs2tNZdzzelDhuEGzSppTBC01NPIZO4+6doZNugVmfoLW+mNjaBc+LradxwJy1pU1MapA9+h0xrLAOuBOKEoNIPp53CnseegUYNz5bIREMhD5Fi3/a9uMqgkiYqAS+XJ1fKkUQRub4yaRRhezbtZotKUKDRSWhv3QYNAaV+SoODYDxYMAuKDmbtCF4pw+TypEqRL+bpbJvAkQ7tJMKUXJAWGx/bAEZBFOK7AeViwGgYkhYr6GYLZs9i+Zlv4f5vfYfm6EGOWLmSbdteoCNsfMtFh3UUGjGjwpqbv4FMItpRGycoYDmyKyC9eFvlPy4erVq16hemNq1bt+6XbuPyyy/n/PPP54wzzvgPfvtPc+655/KFL3yBBQsWvORtTTPNfxf+K2ti/quffV/8vh07dhz2QPrJFLdXgmkR6dXIy9CuNs00ryTr16//uZ9t3br1F667Zs0aLr744pfthrJhwwY++9nP8qUvfYlNmzb9ahO7H20cPjTLlYCloRQUqI9PUp+sYvu9KN+wZNZcjllyIjd27sadP4zJubz3jz7MdR+5khkJeEGOybDOyLadFFIBiYYkQ6kMy7IAg6Uh57gQKTzHIlaKJEyxbRunEdHo7OGeL/4TdELwPc4+/x3cftO3SCwLIySesXEzhd1MCPIuTTtjxtmnsfDII3ju+/fy/nedx4P/fAOy2mDf+Ajlmf20hE3U45E1DflIMHZ0PwO//1648u9gMkTlimhb0wCMBVbOp2C5ICV7n3iUoFLBH2/Rzrk0/YRdQy6FE46lOnUAWnWSakLJL+LEgiyMMAWbcR2T9AagUxAW2VRMMbUwOmWk4sJUG765DquTwIEJtv3jTQw0AqpFi9xxRxI+tZ0PfvAD/MPHL8fkLRhtMPL1O6nsa9E7GdHRDsZkSKUJJHTaKYQJz994C+SKZG2N75UwKsVVGu+QiCQzQV9QxmpE4ATozduxZw+R6ZQmCXkvR6ZTbP+QOIY8bGxczWlkwafvYErvWELZzbFTtpnzumMZXLyEHbc+QGFcI6xuJJGXHTqeDIgYXGlRCxVZ1CZ9YgOdZgeMZqatUCZhdCLB780Y+d53QHns27mLvMrIMolQBiszlI2Nl3VbRDoOpBbUfIeo2eiaKg8WmLXwZGp3rWXStyDJ6Dn9VGp3342XgEgkUTsi8LxuW1/3sOyKlEBoGVJStAXGkmAyomYdLEPLs/CkjW8ETrtrUu1rQ6Yzkuo4iARcmFIN3P5+qmHMgkVLML7L2K7t4MLgsccz8tST2JnBSlNS28GyLAQWWimENgjz7xH3toLqgR3MqcxgIo3JggLtao12M8MvV4h0TG7JIsaeehwLB2UbspJNO9IEPT0gG5CGyEo/k/Umea8HgMxoslRj2y5xHOP6BTqNDpZlEfcWSFQEixdBM6WpIhCSbGyCYeFgSNkTtRjuGWTugYzSzCFC0+HJm7/BEZesYtv4TipDw3SerWHP7ye2FFNJhDEJsYgh8GiamDTr/n3z+QH0CyMIx8XOB2gJH/jjy9muQ9ZedzPkcgwfeyQ7t+6AQ55G9TQm6R0gbjdZf//90I5B2NiVHJ5wOHHFiey//37Qkuc2Pc6y5cexN+gKQrHjIQ8JRq6SCCSWMAgjSS1oCUBo9t3xQ8pZi1xHEKqIMJ/vVsvZAj0nT3UsxHVKePkS+9KUo/c1aWY+6dnLuftL/wK1JswqwuyZ1LfuoG4EQd6mQww6hDCDckC1kWCbBBqaO674U/AFm7ftphL4VKcEB8looTnjovfT2LKHZzY8AWFCYjRRT5lEG3Qzoljpo2pGUbkctYkGs3sG2DfeYNIfY3RwEp2CnS/S9h2icp4BO4/rBZiShyj00G40uyeDyLAzQAiMUcyopcyaNCTPP4tT9nn377yPTSO7meyVPP33N/DwtX8DUy1mpJqxlkWGIXYsOhL2NFuIvgEWLp7J9m/eCkhEovAtB50aUstjw+0/ZGZ/wOREE6vQRzw+xe/9xf+m0ajxr1/8+27KpOci04xer0h9Yoz8mMcMmWfnvhEe/vt/wvI1p5/7NgZnDHDvU58gcz2GQ4vJTp2VF13MD//534gmY7wkRccuYaVE2tsD0SLyfQ6khr0HD0Kph4su+xhNAzdd9xVGqiEkinaPzx/9yZV8/C+uJmw28KIyPaUC49Up7KmUmWkeWeql6rp4noeUkjROcFz3V7i7d7n11luZmpr6ldbduXMny5cvZ2pqisHBwZdFRLrttttYtGgRX/3qV7nooote8vammea/A/8dGqv+bxCOfpRpT6RXIW3l/tIxzTT/N/OzUhbOOeccAE499dSfu97OnTu5+OKLAfjYxz72suzLFVdcwYoVK+h0OixfvvxX28hPRrMd+qeYCwjrTXJYlOwcIk2ZKBg2r1/P7Z//J3L1jKRVJx3Zxc13fp+eUhlHgWqF4PiMPfscD//gVsgUymhioemQITwHHAvpuzQJEY6N4zg4to1Mu21KXjuGHbuwbRvpOkyMjoINmbC7HhnGxdIuWgO2pKNCnMECfUfNotYYZd1DD6AaHSqZRc+CmTSP6ufY3zoXr7dEYPmEns3b/vSP2TExBnVDn8nTsCxMpYIplcCysB1J2GyQtRvYNqStGrZnozsRTLZo3buBwlQEO/dDsUwWRSitMQsHkUvnUiMjZxwKLYPdEfhunoSMwmsWscdNyIoOxaBAaVxxxFHHgPAhcxnWAZmKWHHaSRC1eOHZZxDFPHZQhtEG2//1m4z+4B6cyRqR79K0YkLTwlIxJWwKmSQwAQNOCSyfqTBDF4poup4iHEovGn94PevvuZeKsPnNd76LQSXROiGY2ctYfYreWYMoS5BJSSrtw0N4Pq6wWHryCcSBTRo4eH6Ovfc+yP233IFt23RQaCRGCKSRWFpga4mjBJaRSCMwRkCnDSZhIOeQxSGBgl4NhU5Crq0Ykg7lLKOdk6S2wDWSnJEEabdqyNbdlq+ObePNmg2lMvTP5MSLP0j/KStozhiEvgocsZilbz4L+vLUdEToim5SV5jgHNqOERBbENsQS4NCY8jAlbz/9z8IC4egr0BmItpCoGwfYwRCQNKsko2NMPbMs7D1BTiwn2KPh3YMdo/H0pXH0cgJGO7BPfkYjj/zDAhDjLBIU0VHxyS+hcj7xEZ1W+rkoQowCUYYenNlkvoUutZAdhJQKTiGqOhBweaYt57JnDNf3/WTGeiFgsD4kgNj+/ndv/1repefTGJbHHv+ubSkQ91IWhl0jEUbG+XmaYYKt9gHXpEEReHtb+aCyy7jjPPO5du3fBe2PI9tW9hRjJ1qnL4eDrSqFPsqbLr+Zp78zq2cfv472PbcU5y6bDnu9nF6nTzv/vAHePcffpg0sAgLDmnRo2VptO9AEkOlzOmnvQFXFrBEgO3maSWK5/fv57Ht23COXswpH/hNdk+NwuObcDBEKqIpFZ12FSplfufTn2F4xetxi32EjQkmm2N8/xs3cOoF7+wmBkyM8szdd1MoeuBAamWH/rbdJMIgBT+VWNomtmxqvk0mIbd/H5aVMiNW+FIy6ihoxdA7k5W/9yEq8+YjHIeRZhXSDpu/cyftu9ZiBnJQb3dbcXXCey+6sKvM95XoEEFPno98+k+hv5dUKJoeJGTMTRUVLeh186hnt9Kq1nH9HG3XBcejarnsTiOyRNPn95ClgvGegKowWJlDWo9YceF7aFTKdHr6OZBq/KCPUuay4Y77mei0aNoSXSpx0orXUXHKKOPQVAb6+2jmfFq+R2a5iMzCiS2cSpExO2TbLJsd/Rpabb5+0eWs+6O/4umPfgaBBeM7obmHtCCwewfRfj+RqUDLxhMSs2cX2z9zNTQbEEcgBdK2SMKInOeTd3yyyQYFbUEM/Uct4/pvfYe7Ht/YTV3s7yWyLfxyH5MTDQZ6ZpMz/ZimYbi/h/CZzfh2h41fu5G7/+kGxlWEMjY66iAtQ03G4AnaUYfBnvlo7UGoectvXwrDR3DhH/wJF/z+HyH6ZpGVKuydqDJeb7DsnLPZesedICXKc7nqTz+BRkOzQc0k7M8imkJiOtDcO8HeHXtI0/TwQ6OUL+1RZnJy8qfmGy9WO/f29v7CdV8UkFasWPGyVSa8OHe5+OKLWbt27cuyzWmmebXzn+2J9EqzceNGrrnmGq666qqfOV4JpkWkVyHj5H/pmGaaXyd27tzJ7bffThAEv7BF7bLLLsMYw9VXX324/Wzt2rWsXLmStWvXsmrVKlauXMnKlSu5/PLLD6+3Zs2aw8vPPffcn5q4rVu3jhUrVjA1NcWaNWv+w/tvfmK8iERgCYkwkCYJqY7RJYfjT1mOaLQpKqDTApUy+chj6E4HJQyJUSAFSNl9UCjmu5HTppuiNPuIhcQqoZFGGGxioVGuhfAcUq0QtoVvWRT9AN+AjiOe2fQUABqBRoARKGGhA5eWUFi+w/5Nm3no9juhE7HzmWfIspRQZ0w0pyiceAQDJx9N0fZoTFVpBpKRyUn4wcPkjEecJOA49M+ZzeC8eZDzkVKS91xsDAXXRacJmW1wLQeqCexvsevGu7HbUOpoSm5AoVREHjmMc+x8Us+mB4fyRMJw5OK2EhioMP+1J0F/DufQQ0ZDpMxbfiwkCmm7TIgEkoynfng/tFpsfuJxhGWTxAnYLsVMY3SHDAXzhknzDpknyESKFN2Iep2kKGXIlctkWcpks0UqJYmUpJbstoB5DvlSnnarQcF1OWrRfPAdlNUtf1m4eFFXCEKi6Uaap1JSzGz8SNG7YDbtvGDSUbhawP4q6c5RvFyOumeIbUgkJFa3siMT3TS4DIOyBMaxoFRAeB6plKRAqMAv2ijdrTpQcYJS3aoPq1hAeh7aCDDd/cqkJLYk2CBwICgyeOyJPLt1B08//wImV6By3HKGjjmWdY8+ijV7CAREWoOwkLKbrAUSLbrDcMgoWWvQCssohMq6HkJCgOuw6PSVtCXEjgU5F8uWoDJMo4Hl+WBbWMqQxd0Y9+3btzNVnYJCwGuOO5bnnnsOhINjBK5wIO8zOGuYXKlAliaHz0stuiO1oJHFWMWAQqnUPRNyPqWF86HdhjDm0fUbiOMU1epw3PLlcMRCsiTBRrN18xaM0nj5IkeccBxefy8m8EEYZKlI/9w5BAN9oFJmLpxPZfYwSJv5Rx7F048/QdRs4+VcwGDnuu1A2ndIOzEIQ63iwkSNWdqjYgRsfQFn1yThnlGmsibtMGR8cgIsSaYVURzjOA4qiiCXg07ESLVGZFsozyNKFML2eWjt/bT3HiBttCmVSog0RXQ63SpE28b4DkiJd/TRHJiYoN0KyTpd4220gpFxevN5ZD4PuQDChE6riaU0vCjU8WLboMQ6dCxkUqLs7jEvTUxTRGSmg1IKghxgk3MC+geGyPsloiiCOIMwYdaRi6G/n6W9gwDkSyVoNNi19QVwnO610ZKQZZTzBSzZjaHPlEJY4AiFo1OsMMJyfXSS4rseWarAzZGFikTa3VRNLRDCojJvNiQRgRcQdWKGjlxM3zGvgQVz0AWLJacuh2ZMjx1A4DPT1O2SAAAgAElEQVR04rGgFZO7RnCkg8oMGsnCo5eS2N1rhKYrNgstaGYx+DYtERJaGVJlWGM1KlEGUx2KljwUodehSptZRy9h5sLFJKkkZ1xmCJ9CkkE9Ili0EHpKJFZXIHWLAUqC47lEcYzneYDkqKWvYWrLFvaNjUGWcNxrT2fJ8uUkWhNnKVramEIPWSGPtiXtTg1jKdrPPs/Upi1YCxaAhraO8XMumx99ouu1ZNtMph3SwAMnx7ZN23AKPdSbDerNFpZjo5OEpzY+yn1338kxi+eDSUEoRKpg5x4WH7Os+6ZFZRx58om4A71kRrHjueep1+s/JhyJH2lne7l40TvlW9/61s/9nTVr1hwWkNatW3e4SnnlypWsWrWK1atXH55XrFq1ip07dwLd+cy55557+LOfnFNce+21XH311RhjXrGHw2mm+XXjZ718/snx60i1WmX58uUsX76cq666imuuueZnjleCaRHpVchW+n7pmGaaXyfOO+88jDF86lOf+oW/t2HDBoIg4IorrvixZevXr+fcc89lzZo1h3/+7Gc/y9FHH82qVatYtWoV69evZ8OGDdx222288Y1v/DGRCf49IeELX/jCr/R/+Ml3IFmWUSyVyOdy2FLi5QMYCGDQZ9nJx5M3ApPFePkSCA+qCfnEUJUZpidg/iknQNSEcp4/ufozaJnBzB4QCe/8wEUgM6yBMh07o+YoOiIhylkU5w3RIiNEEbdbdBpNCDukYQzCwiiFIy2UMsSupDFYonfZYnJIiiM1arc/yFAzw040ymgOeJrirDlMPfocD19/C9ELo7R8m7ad8tR9D8Pju0nyDvFACeKIiakqrz/jDMg0SZyB0tgYCGNcx6GZRpg0owfBIAHZ1n30ihwqy9AYGo0GTd/ijPf/D2g1aNYa9FoBWbOFK11wLXRfCRwQe0ZpNqawzl3OxpJC5MtoCfsXecwq91O/Zx2lVDHx7BaEtkB6YEtS00J7gkknYeg33waBIvY1acWnRUJiCzLXJnFt3vfhD8FQL5R8oiik01Mk7i1CpcCbLruEd//W+0nqE3zpC9dy45f/BbKERrtBZeZMjBBYlkOqDAmCMFXY/f1YCOJWhzsevA8GK4RTY7SbTbB84sk6SZJA0Scd7KFpK048+0xEX5l6FjGpUjo5h5QMSjlOPf83MMaiJh2qdoHOjCEORKCHFlDVDpFTJHJyUM7zvt+/hFCnRDmHKhkHCbFm9pHlLDAZ2VSNcv8Qbz3jLOKDE5z/jgtIaxFL5y/mqMH5sHU3//MP/hCkxC4WUJaFtm1y5TJpFJMiEI5Lmir8DApaUMgMXrPDDav/ClNrdaPZZy3gvR/8ENrSNEWHU37jzYicDWlCvh5RaCgWV2aTEwFunGKHETufehomarB/lD3PbGXXfQ9TKPURVzvM6OnHKRW44H3vpd1uM2v2HOJDD9OdThvlSBqqw7jd5kBSZTJuol2Xk08+mbef9zZ6Zs0FJwdPbGPsye1g5XnqsSdYMHseadSkjMv9f/fPVJ9+jrgT88gzzzF0wjEsfu0KcAQf+fSnGDpmKae94zzo7+U9l/wuy04/DYTPUKmX57/xHTbecgdJ1OxGmPcFBEfMZXcyBbaBSpH5551GrqeMmJzglg9/En/SsP5r36Wxbh3zL3sfN//dl3jg1rvwHZ9wYopA2FiJIpAubqRgqsnTzzxO1ZccsDNyc4ZwPBf2j5LLFWDTVu7++KexRqrMwCZttghKZXSSQKWHC37rt7njhz+kvuV5nDBmhpvHsh1EJ+O2L30ZPdkgn0GQGSxh6HVySN298kl0N5XSSOLMUAsjUg3u0DCYjMRNSMuSwswB0nbM/FNPQRR7CfdO8IMvXk9ndBKTKhYU+ulXBd78ofdROX4JT1++GnSE0DEkmufufgDfL8LYFCAgVvzlJ/4Md6pDkEmsTNOK2zS8iEh1iNpVAglFz0emij6vAOMhyyqzOGL+YvKFMp1mh7DT4ZKP/D6Dpy6n2W5TKJX5wd13sOI3L2ToN86GhSXe+rFLGLbyFNopzCzRv/w1UMgzce+ThO0OSZJiOTa1Vgvh2GgpSA8Jp5awaScZlarNoqiHobrLwlw/o72SRR+9AAopiaVxwgbkJfS6vOf9v8kHfu8yisUBhiuzyKTEQhAohw9d/j854+3noHVMPW1x2tvfyqKTjqWWtCHvkVqghKFYLsHQIBe+/yJohaxYeRrHHX88mdakwGSa0jl6Pq/5vQsZaYyS9RXoZCGMNcl14EOXXgpJTC2vSJKI8P4nEU2NKx1GRYuzPvJb0I7Y+W+3sDDn8W+fuoqv/eWnoT2KbI8x9ux62L+Fe6//B4qijRjdgzvZoK88g2jbXihWYKifZWefwZzXncjsM08DVyB8H9u2D1cjScv6le7JP49Vq1YdFod+UXva1772NeDf5wYvsn79em644QauvPLKw/OKNWvWcMwxx7B69WoWLVrEbbfddngu8uLLrR/liiuuIAiCX9q+P80003R5tVYiXXXVVWzcuJGzzjrrcHjVJZdc8mOJbK+UN/G0iPQq5Hn6fumYZppfF1avXs2WLVtYunTpj4lDPw/f93/m8k6nw8c+9jG01uzYsYOlS5eyZcsW1qxZw9KlS9mxYwda68Nl7J/73Od+bP2X4nUg+Pe0mBffmRrTzanWUhBlKa0k4uSzz4LqBGu+8hVGJkZpuBCPT0A1ZE5LkCYJESlhGrJg6ZHdN/b1GrffeQeUSl3T5yzhpptuAiDOUsh5EHe4+I//kI/8yRXUDuwl11sm1IqjXnca2rZA+jiZwMnAywyONiAUsW2o18dZuvx45vdUCA5MMNhMGGwlBFk3D7zhCaIddeY/XKfwvS0kWtCZ2w8ZpI9sQrzpRN79l/+LtJB0Sz927eL7N98Mk5NYRiONRGgbsBBG4louqcloFnIErzuGs774ScaW5FErFtOSHXSaET/wNDf9P9dQnLuYZGYPz+RiRofKLDpzJWSCB1b/HVbbYtgPoOChKpLduoY5MAp9/Rz1J5fSnDzIUKzw21V6PRvdzCCGWUcfTaukOOi2oGhxsNEEpbFmzyJDkPkukWvIVEgoEzY+/VjXjynusOLSSzjrfe9lrFHn2DedwYOPreOxJx/rCgH1GtnYQaQ2lByf6sFR1q99gHatCcIFbXjt299Oo1qj2uMSyg40IwojHXq8Cu5AD0NvOZVF57wWE6cETU2rOg4ze1n2+pW0wzaUi1DI0U4TgiMXc9xbzuSoE0+EmYNg56DQQ0MJ3nH5ldTrTXA9mkZ0bfS8gN379nUrpfIeYcHF6q0wlnbAtfiNSz/EgNDUn36Sr6y+Biar3PKNm2ByiodvuIkHbvg67DvA9756A+QKSGHRRNHKWYxWR6kctRiiEEtYeI6LZcBTmiDV5NOMmcVeGK+BW4JdI1yz+nMQdMW4/kVzSdIQO+dTH2uSL8zghd1jHLByKGGTyzT5RBOEGkKYvGcdjNRo7R9neHg2I5NTpLUGX//K9cSNFp1aA8+yMWmGkw+IVcrSc87kHdd8GvpLUChhpMMT6x7jhs//Da3de8nFGflmhD0VI1Mbf8Fcdn792wwPDndF0JEQ5szmXR+9jB3PbmGyMcWK162EnMs//vN1PPnAfTzyyHrwXb79zZt56P61EMbc9bd/C/UOwUSNQII7c5h3/c5v0cznYPmJHP2edyL6etn2yONEBcF4j+E14ylzJkMy04Ejhti1ZQvUQ/TWnczpGaAUFIk7IaVcHh0l2LHqCqwq4oizXguVPCeuOAXV7uDk8nz0wlXQDBFejmTjU9QadXp7+5mYrEG+As0Od99xJ+zdCyqmbEmiRgelDV7bQAJkmrST0eOWGE9iGkmCq3S3eMZ0TeNDWxC6Frg2weAwv/M7lzKw5CgyB7AUe+MWA7PmsfSEEzA5BywLZ9coExMHEYWA+vgkxVjz5b+/luqmjZQmFU4xoDUxSl5YnHHU8dhhBpkG10UocNsphbaikAp8y0F6DlM5iG2NEmAZDTrDsS3SZpOKW2Dtl7/BjgcfxqgYr+AS5HPc9vWbGHnqabA1bn+edMcO7nz4QQ4+t5m5/+9VrP7ElRiRdlv5rJSiY7Fk3hGUqwlK6m7QQJrw+P0PIFshVhjjSgHSEOuINF9AWTl2kTLWG7A9bMCMAR7dtwsyC9dYzJvULBoFW1l873P/wC3//K/Up0YYs1IOLhuiPjNPp5znX677R9beex/kA5CCE049mVmLF4DJEE63fRnP4r4H7oNqjc3r14Of57qr/5Ibv3gdec/F9RxMXuIeNZtHTQ3mz4feEjglcjKP10753pf/BXwL8g6uJenpGPpaCUGcQMnihald5DwPdu7j+R98B0SHkpfiNseYXTB4URXRmKS57RnytVEGRUqZFHlwhNEHNiBe2Au793L93/w1W++5hdPPfwsMFEniVrdijW7yIS9jhcHOnTu54YYbcBznlxpqV6tV4GfPDYwxLF26FGMMWmvOOeccOp0OV155JbZtc/311x+ei/T29rJ+/fqfqkj6eXOZaaaZ5qd5tYpI1113HQsXLuSuu+46LBZdcMEFXH311Wzfvp1KpXLYbPu/mmkR6VXIfzcR6cXow1fqJJrmP5dPfOITCCG45ZZbXtJ2li5derjFbcGCBWzevPlwGfwtt9xyuBT9oosu4uyzz8YYw+rVq1/azr+I/pFxaL5rRDeKOJOQORLLFjzxvTtgpAHjNeyiTxxEYBsqrk8aV5lyUtwgj3R9Xti0BYQDls+jt/4QJpsQGWShjwOPbcKyAsRkCzsTYLk8sf5RHl/3COSL2AgIcrzxQx+E3j7IDCLKKCaQTzM8lYBIkCTk8xXu/8q/MbprN37OQckUZSmE0di663MyNxjiyJNP44h3nEPrhIW84W3nUlAeHKhjtj3DhnX3QLuGbxRgCPftA627ZrtGgnFQeGTCJVYabAslDR1LU81Lim85nbNWXQBzZpJzPeYNzOGkRcfSPDBKWszBjBLKznD7Knh+AZSDGm/StDM8y4OtIwRLlkDPIPZ4iDxYQ9gOTR1SFZp20sbRkr7SIG857xzIa1LTgSzj9J4lEAyxbPFxyEIvxBGiVIKeANWq8+D3vw+Tk+B41BsRE1MtikOzePqRx0ie3sSTD65nIFegogS5dkyvdEhrLXqdAD+TFFyfXC6PXeohPzADhodZ9cd/CLNn4lgWWa2FlWqidpNT3vwGTjrjdJpxE08BAwMccdzx3PK9W7uBCp0UEk25p5fOrr1senoTX/nkJ2FirNsWmYSQJvT3FiEOQaR4OqTf9fAOtHnwq9+ETIC0UUJgBwFJGEO1jWiHxLX9IENIG1DOUbANvmUQrSmC5hRMjrL9hw/iK5uk2iR1bZSOYKDEWRe+Gwp5kk6MMIL4UKuNkhpBRq02gV0ogFb0n7oStXs/tBKYaPGvf/8lsF2yRFOePYe3XvJhWLyYZt6jkZNo0W3CDDKNH0Ou2Edu7jzOvOhC9jeqqIESeSfHgee2k8cmnmoQ2G5X3DgUCj585GIe2vQslGZ0e9sijWckdsFH6w4iaTFgaWYGZTSS0y76H+CX2J+1CD3Ja4IBGNvPtzY9Dk5Adf1jfPu6L4O2CTc+A42YqWe34jZCdq17jPCFvVg646wL30VBZ1jtKlmziVVrsWfPPlpNxVGvO5vNT27B7NpHa9teTKdJ7MUcFC1G8xpUzJtW/S48sg3P9aHUw4z+foRro21JJDSRNJjAJUFBzufYxUfAgQM8dPONDBfypKMHWP2pTyBsg2nXOXvVe4l9n1BIPLeINDYML+DMU1bQv3ABZB1a7TrKzUMhT9ROoNILSUIiBZNGQ3+ROOdga4mXdQ3fY0vS9CDO2eB7dPbu57s3fpfx53djahmIgMhxGN8zwm1f+AeOfu/ZYMcEUQS9Nka1ySoFGnkbDkxCO+HYd55JOjqC5Vq0dYttW5/riguuTWFGP8YosizDzjSSbnun8lyUkFjawtZdr64ojZB5l46JMSSEYwdIdu4hUzGhq7E92PHDtdjaQI9DfnYfhBFvPu0N+P1z2PPZb8DBFuNuyE67TtnzKG4bZaiVIYsOoRVjiZQe12bQdujXhnKaYaI2mUjQAdSMZOE7z2Pw05cyZ/UfkCwYYqA0g3jD88wQg1Br04+PZwxZlLL7ycfZ+eSjFAvQrB3kfX/+cV7/V58Gp0Dz2R2wf5K8shHa4i+u/Di3f/1GbC9PDgs7VqBCwuYktm3x9N334EcZzvgUZQ2t6jjlGSXC2ij1B+5D5n04GEHfLCR9+HYZicOBTU9DVIdmhIkSUpMhLYMrFKQRO266kRm6w1BOUJAaX2XYYZsAQ9JsEtgufUGBvPHwlYNvOzS8Di4Js4DhRNHrBV2RqNTDN77wdyxdfjLl/gEcxyGO4+7N9GVsZ3v/+9+PMYbPfOYzL2k7juOwefPmwz/feuutLF26FICPfOQjhw2zFyxYcDia/Fetcp5mmmlevSIS/PxKo0qlwiWXXMLGjRtfkWfgaRHpVcgEwS8dv45ceumlCCF+7ERZvnw573nPe7jqqqtYtGgR11133Su4h9O83KxcuZI0TTn77LNfctztSSed9FPLKpUKQRD81Lbf8IY3vKTv+ikM/y4gHRrCsropVUmMTmLSOCE7MAnaRbRjlNEw3AtCk2XdyEXlSdIoRteblBwfxy9AtYmPhZsaaIU4UYaVGnJKYCcKNzNYlsMzj27ksYfX49sunVoDIQS3r3+w62tiu0gtsbXGNrr7dh6FQGM3IwpeESkETZ2gCx6RrTECbK0JUmi1QnJvOoncO06HBf0ct3QZgbEoCRv2jbPrvvUQK0QUYiGQWmO5/qEWF4EREiVsFBbaliAtaITUnt/Nxm/fjh6tMbn3AEQpURTRNzTEEa9ZCmmKZyREKbg5Njy0oVvhpRXl4RmEviQwFhxoMH94LjlpYyZa7H3gcZRrUVeG1AErcAjsHEkn5OGHHwY0Oc+FdsLzdzyMNAGdqTY6UVAoMW/+AohjHC9HUViUHAfZihjsm8HSxUtojlehHYLlQqtFAYu8BjfJ8KXEUgaTZlga2rUWaZqRtSPWPfoY2BYmTACLZhIRBzY1FWF5Odb+4HYeuO0uHBw6JoM0Q2rRbUlsRpTKFYhSRGogVah9I4DBz3mQhhB1wBI8cv89oBOIQwqWpoQhH+muECXtbmJflhG1O3SNbQwP3XkPmcogiyENWX7qCbztvLeSpRE5Gwq2hZ3GiFghM42wbIYXzIPAAxWzd3IMbBuJwJFO18NJajKrWxFSLBXJOm1QGa87842QK0ArJvCLmGYHz3EhTVCOy+5OGxbMhzNeB45Ai+7xKMwhwaLdYfa8uaw48wzoKdIO27hI8p6PYwSOkLSbLYzWXX8Yo1n3yKNUpxoMH38yZBLVjDGpJktTXN/By9lok2CUgk6btishU4Q6grxD1KhDT578/CFotnHyRZLJKlTroKBke3hxihel5OKMwAhUq06ulMOoGBeDQBNWGzy27lGikSmKuRLsHQPLw5JA1L0OTJYhf8oR4DgMKAeM271GpCkHx8eIshRcm1Cl4NnERkHOhSDgiYcehtSA5RA3m1i2hU5CgkIO2nVmL5iD21shzgxZptBxBrU6O57bSnNiAkyKAEKjwXWQlR5OftMbYOH8rgfYzBkUlx8Ps2YiTFekEaYrGGJJEJrCwgVgJCObnwMt8BKglXSrpqQDylBeOBvKPlkSQ8kDoYlcm7QnAONAO6bV74FWuLYDrmTn/r1oCXguR51wLF5vD0iBpuvNlApDhsEyAktLHNX1o0MKlFBkriYmJgh8vEyjdIySGVmW4MUKT2nI2Sw9fim5QpHRHbvw2ync8xSliTZUPMKCIJucYuKJTYxufp6prAOOQKUpKo6wkxRPddMGPUA6AmODzPk06m2OOv4E5i1bBmGbleeezWm/fRH1JKHklslw6eCCCpG2wRIprsjAZNiWi+cWIPOgGWF1UkQ7pmR5XS8pLboeYu2w6ztkFHRa2JnCtDuUpUMJSdGySeMQpOm+ZElTRJKBchg866045FGZIFOawBGgIlwlcZAkjiCxNJDRh4Q0w0kjsqyFQKPSjDTOCLwAKRxUBloJwCZLDZ1EURcZqY7xLQiUwgljCtLu3qcOjnLm6a/FFvI/xQdpzZo1rF+/ntmzZ/8fVT3/IorF4k8tK5fLAJx//vk/tnw6gW2aaV46r1ZPpJ/Fi1WQwOG0tmkRaZqXha30/9Lx68hNN93ESSeddPiEue6669i4cSMnnXTS4d7QV8pcbJqXn7Vr1x72OPpFZtr/pyxbtuxnLv8vKRn/MWdtDUKTCE0M6HKZ3OIlzF7yGkpG0xfamEQxuGQx5//ZJ6GvQmoLQgDVppQrI12fZx98iLTVxMmXmF3sZWjOXGwvj9fROHEEnTZ5Y8ilinwCVivGDlOsVFPK5Vm05Cief+Chw9UrrhHYGqTRiK6lMl5mKHYyzL5JbMdhyoVJETGRs3GVxM8kpUhieS7ffeF+bq0/jXXmSfzDZ/6CyaRBUG8xHOfp3TZCbz2iaAv6XRedRlS8IgYLJWw0sluVYkMK+FowhGTmgSZ860GCe55h3eovQTMhUgmP79zEvc8+Sn7ePJYNH0kxtnH31PBqbZL9/z97bx4tWVke6j/ft+eqXdOZ+/TcDd1AMzfQjQgNCoKiCIoaxxA1ZFATTaImelei3ty7iMk1Jj+TiIkxOBHBmKARUBBoQZChmaRp6On0cOah5trzt7/fH0WzNInXYLwhkn7W+tY5tapq93v61Nm1v7fe93kPs/aVF/OKD72bVtJhyPGoHOww/90HkFGPcWHiP7Qfu2BCFSjDYpSQ6Yy41+PpO78LjYCqsFhZqODseBpvvsvu7z4IMw1OPW0rl7z61VCs4OUmCTlIk5VWiTuvu47PfebT1KoDbDruFAqFIWgEyDDG1SleGpE024w7RfIww7FcbNchQ2GtGqW9MAdLdb74P/43tGKadoJ19gmoZTVEL6Z5xyNMf/v76FqReKwKlRoYJs2HHmblyHJ6E1Mcs2oDPcNkzbbzOGbriyjmEUM6oJB2qVoa0VjgiVu/TdUvUBQ5lo5Zas9hJzElbfdl1MtX8Np3/wZZKqCTMlgaQfe6ZCUwBoqQdYkX5vjuzf+MZQmSICBOuhSMFM8wCOIAo+px3OaToNsGy+L7138JyPGEjQpTlDDoWSZdyyQyJb0wwPYcvFKJe759KywsMGCXKEQmviwQdyJEsUKn3eTB/bt56S+9hfGLLwBDkhhHBOOgpCYPOuy5+24+8alPQmeh76uqL2FJTRB0KVSKuJ6N67pE9TpUKwTTM+RzS5x9zgXQjtCpIktShCWJog7tsI3SCcrQUPPxTBvaPY7dsgV3bLgvuY8D1o6PgNScs/VcUiEoWAWGbQ+j2cYNU1whCPIUW2sqtTLfuO6zxEaOOVAh1TljhRrJVAMhbHQzxjWLnLzhBDooSgFIqwjLPE75jTdCL+XmP/hj/FaACiP8oQEqJ28gXuajbJdYSaxCjTxVOGvXcu6ll7H/oYcxTAuaHYqWh+qGmFrSq8/DaIWv3vJ1EpUQC0iCiKGBEU47+0Xc9+m/JH56F8SqX1TpOmBb5CWPCy55GUNrV4NU1Oen2bRlC+vOOpNM2ChhojHRwuhPTqv4XPHay8H3oRVRxsbJYZlZhCTFdUwwJPd99m8hCHCXj/KS9/4qQ+edS37CSo599QXYkQldxePdKUZGh0ia89Brkho5cRhA0Gbr2VuIF2fJLElqmyRCkGqJyiVSS2zVnz5oK/Acm07QAdcgcQShjhCpQmWK1DMJ4h4FKRk2bFhaYG5igrC5xI7PXEvz+q9ycuawVrjU52Z4yZWXI5oRS4/uZmnfAbKSgcolwrVQKMwkRDXrkMV4IwMYfgWlbYwoZ/H2h/jOb/wR29/5Icov28b85nGeXu0QlxT2skFmEbT8IjiKwFA07YSlZpPh6ijXf+wT3PY7f4AfJhSNnJXSxgsyfNPGc30EBjrSDBkVPKvMmz78IThmFUppHAza9SWKSESjxbKBKvWZGUZcDzHfwG53Icw4beUxONIik9ANe9haIW2D4coynNoQWcEilAmJShjKBLVuTC9sosycTtijWCxhux51ldLqpkijRJiaCFVAGhWU4eGUi+RGTld1yWxFKdeMZiYcXIBA8alffTeNQ4fJ0wS/UIRck6Xpj7zV/rT85m/+JkKIn2p4xnPhP9Iaf5SjHOXf5oVaifTD7WpH9r833ngjjUaDRqPxbPHEkfv+MzmaRHoB8kJtZ2s0Glx44YXP3r799tuBvtTwmmuu4eqrr2b//v3s2LHj+QrxKD9D3vKWt6C15tprr32+Q/mPI+lLkWQGMkURsxR3aAO5U+L1f/hnvOr9v4/hewDoSomppUUevf0BMIpEaJTvgnSJLI+8VOKMd/0SuIK01+BQt84xv/JaMk/jlYeInJRuOaNhRNgFBzMDB5tgqUWv12EmaeIM+AysPQ4STdkr0U0SQtOga9nEhoGlrH7LVM2hYFskfoGL3/Q2KA9TFzbjqoalPdrVArkZsPz2Jyn81bdYMzGF6tZRlYAamnrWIS4IlG+S+xZpqwMS8npK17Zo2Bp35QhOyYAsQOIQJ5rZkmTSD/A9RdqapdROQYO3+VTMMGTunu/Rm28ysdils3E5FIoknTbgMrFrL7fu3Y2XSQ4EC6Q1yeJfX48dLxHbbYL5g5jdALcrka0iFMp03RDtBBS6KYWuS2exSztYJOntwpUhJopBt8TC9Cxff+R+yDRpaiNf/lKOfd+vsRgpyOqkVkAkYtYVBggm5qkUakxZCQfoQtUklQK3J9GWTcfUhELDeJGBC06GxgIDWkImMApFOPkYXvKay/GwsRwX6j0ct0jX6rDy+OOgVCatlBGlEvncIstKA7z4rW8jdS04YQOrzt5Mqi1IyxgAACAASURBVGOWwga6IuiJiKpnM4KDtRRjOFVmikVawxWCMZOOCGDtCrItp/MPe3eRxwrf8nFaTdpxi7rloTohw2tW8YPPfJGJb24Hq4gjCsSWjcpjMgdY5eO+6BjuuOnzOK2MwqEGaAnVKq0oYtgbxGxmyPEVOCeeSFyq4mc2XruFnDpE/e7bKIuMIEnpGi6ZtrEMDyNReEjW9jrM3PAPTH/0f+O2FLYyUVLScnMiJ2fN1lORAxWyiYPIHIr1Br6RERshUSlnXnTICybtoEm5MgBLHdyVq1h1+cv71S1VC3/tcqxSAd8rQKYpFX2kZTIXzULc4amPfRZkkS3HbsZ1SuxzQ0odzdxHPomYPszQS1/Oi6/5KEGmkbmJW3ChYBCuqrH2fb9Ac3kVb6FNbaJF5uZMlXPk8nHq9Q7jXYEm5qlH7iXyIlZfuBlqZVShyonbLoJ5l1uvuRYRd1DpIk7ewuqmFDDYt7rIsj/4NTDKDHd8BpIRihddTtyBQ1qBa6BWLoPVa5gPUkb9FWQHGwx7QxCmNPfvgyxCBxH+0DDtZp2Dj94HaQ/CgCHDB+Hz0g/9Hpe//0PQnuXTf/j7LG6/CzcMIYnZdd032P/dxwgLFTrjawicMkOVMVjsQr3J9276J2S3w7DjEDcXCEtA3GJYZHSdBrSajDzZozrvsDi+nHsXuizOtTjlza9hz6FphoRLoZWTf+dBGs1pRi3wJVSrBcgSLNvj7z76vzANA0Ol/ZY+YVNKfDzlkYqQpCDJLEmShOggRkYxngaRpWRYpLUxTnnZZTCyDDas5aCbk7d6HNuzmLvlTnAi3PYhKnKRPaVFdlkxFWsN5UMWhjdKe6iEHioyEEJBjtGQNsbwIEnaw6s4zKZtDrgWIydtQ+RrqHYSVhmKldOLsLDIlivP5/uf+xuW/r8vwPQC+w/uxbBTjG4dYmDUhdEhVl52JQvawnlyH9bsYfLCfnqVDkY4R7FUYkYrQi/n8t97F6Xj1qFEjcMDK7grVsht5+INLsd0qoRVj7pI8KRN2IlZ4wzhtBS2YbLBL8Ko5o4Pf4i2niBIZxn1LWqGTz48zuorLqe27VzMpsLtKiQwl3WIfY9WuUKqHHA0OumR5wkN38J3KliJCaZLOTHIpcCQBcbmK3g9wfRQzsRQTFcq8vmAcXeIcqpZJwssFwZeliOTCMMUmLYBIv+Rt9vnWqd0RKa9ZcuWo0meoxzl55AXahLpda973bNJo3Xr1j17e2BggIGBgWel20eTSEf5mRBQ+InrhcCOHTuo1WrPJpaOfP3hMr+j/Hzy8Y9/nMnJSbZu3fqCLPWWQNWpYQLYNgeeeor65BROLohtAamCZsTBm++CbgCmJFQpA9KBKKEwNMCpxx4PiwFEoE1Ja3IWQkUvS0CAI0wsDUmSIU2XHAmZxrAL0E2Z2neIc859MUhoJz0y1yaweKbNCJQAjSDLchLXJvM9RpcvB2kiSiXmRUa3aLHY6zBrpeS1AkGzyczdjzDU1dDWGAiUJemZmqDisZjGFHCRoogtTMgzBs87neXnnUHQDrEy81kRr/ihj5S11qg0gyRlzYpVqDCGKMMPQVmSdW+8hKSckucJY4GGPQdpzBwkLMSkZZdUZQzJInk3oCBdQmHRrXhEXl/w7KUaR/WXRKMdE1W0UcUCXc8iLBhkNmjbYO3Jx7Ns2TJQOZEJy8ZHWbFqOT1HwKbjoNFA9CIO7nwSs+LS0gFR1SXT0EkkDRWTlV3aeYK2jL4MPYypWR4kGhODckdRXYphuoWaWaKcCCQCJAysHoeiw8nnboVeyP7t97PcrTBjxExVBPdN7ARtcuD27Tz07duQicbUFnkqMRyXbpSghdG/oEoyXGlCnBEHEQjBsaecgp6Zgcnp/k7MM0mEJu5FyEoNakO8/NJXAZIsTjGEiaENjFxiZIKyWYLUYVV1BSQGMZBaDijByKZNZMUqTaO/zdt43lmc+coLyXoBnlcgrw3QK1qocgEBmLnCyWMcleKpGFelOCpiZtdOpnc9Ad02dp5jPVNRYitAwSkbjqcgLawcPMNCZjlmLjEVz3pwLAWG0hhZjsAgm6uTPnmA/NAcFIt00xjDMCjkEplCqhSHiRBjg3hDg8zOTIFt8tRTTzE7O4tpmoRhSKvVwhCaxx58kN0/2Akln8wUZEKT5rov1w8SPGFh2DY4DuQZjAyzbPVKZMGlnUaQZ3TjHkQJTz30CGQJA6ODrNu4HlNr2Lsf37GxHZPUyMmTFCfRJHunWW/6uIBrmRi25pj1q4CYlYNDoBRSa/zhIUqVWv98YZskWYppSBCCZcceA1pjmiZ5pqjPzoEAwxCkOiMXimG/xMrhEcg17clJiGNErjENg9bkYZiZhKrJqZe+BIYqOLnGVuDHMHtoklxFpKsHiV2BadqkjktoStAC2y2iPJvUd9m05Uyi79wJkzPU90zQm1ug0+kgLQlxjC1NjNxEKFgKIqyhIZRl0222GaxUMZ5tz83RUpGLHLQklwaJlCjbJXMsYkMibYcsTDENm0hCI1eQJVAtQ6lIzzb6Li/jSIpCkD/zrdQaoXPuv+9edBYh8hSdxkgJjTjARuJKkyRTNLsdLMNEpJrpySmaSYgSmtCCSCsIYjr3PAlPHoZUgGOB42A4LjHgOS40I7AKbDp2I26pjGmaCEMiMpDzAQUcUpWTP9OaVq5VsYbKLFQEa1/xIqbvux93toXfy/CCBE/YWIaNMk0CS9JEI10Huxsx/eRuvFiRLjYRscLGomi4JO0QIsX0oUPMTU3i2jbQ9wEd2V5I/cxpJJUU4371qpP1/xaPoGTeryIzcxJL9KeEJhnk/eI1oZ+Z8Sf7bYkaCUhy8cNbGPnMb+S581xk2kc5ylH+a/JCbWf74Ac/yG233fbs7WuvvZYPfvCDrFu37lkn0g033PC8xHY0ifSCZPDfsX4+OVJ9dPvtt7N///4fqUw6KtZ+4XBEpn1khO7PO/rZkWwStEQgUVEPA3jdZVey/eN/wvV/+ueoIKVraQSC2lLKiskIIwc8G2WbGI0IwoRgYZZv/e31rApMjhFl0jThoS/cCBH0CgZoB095+O4gkXBZ1DnrTjkdpIXqZQwbFdLpBo889CBi03pYM8x5V72O2IPI6ktw+zFL4m6Cs3qcxlCR7d+9F1oRWhrMjnrMrKxApchJLz+f2aRNuVzGeXiSopLUco95V5JKA3KDtBWCXyN2fERqMGvn4Hosu+hcxi44GxWBZfpI3XctCUDq/qZSYmAisIXJ1J69WJnmxZvPxsgFHaHpkIEvEb0OK6VmRa45dXwcxoegYJN2WnSGSgxdeiEHhlzOf/9vEjRTqolPJZJU4pxSkuNm/Q1nKHJCU9LVKWHRJVhWgrEy9fYiYshn0PFAmOiKyf7v3MX2274DJ67hzb/7YRhZjl3vks5OkuUNsAOO/6VfgA0n0TOG2HDl5Twe1xGjZYI8ZsDxcDKDM5etYfnIchabTcYKZUpBApOL3Pa315PNN9FBSnFgiHPO3QbDY+x64DE4OIfTTpFZTl4z0X5GZcMY1Oep7jtIcecu/MBCqAJKecS2T1ooElgmeEXIFGYnxO31J9NRsjjupOPg/h2wfxpz9TK6pqJjSFw8ciUw/ArlwVGoDWGWavTijDQT5Epi4uC2DJhKePrbj4GqYtVWkpplKA4yfPLpMD7Mok7JPJdGvQ3aAENin7SRjkm/LaxWpSVStIyxdQ9PdymoHr7qUE16pJMHyA5PUEkiimmGl4Gb9tuTHAWPf/9BjCChqCRmkOIqiakkZm5gK4GTSYxE4yQCJ1L4mOT7pmndcDvb/+TTELQhavcTl7Mtxv0hnEIVjlvDr/z+BznjvLPBkhSGB3jogfsI4gghBK7r4tgmRpqz5+77mN+9j9Vnn85S0qOeRgjXoTMzx+7Pfpl0Yhqr6BEIBcNDnHjKyVglF2eoTEfEiJEyr3ndFQynkqnt94PUTDZnuP2+uygkKZ5RpJRDGHY58WUvRgmDznyd9I7Hefh/Xgtzs/gFyXRzP4/dcyvUJ/nel2+kNrKKS84+j/EVy5jtLSEHi7zsLW/AMAyyRhsyzTt/93dZceZZNGcXMZVERBmma5HrhEBGSE/wreuu4zN/+L/AsvquI52TZBGeZeL5HtgSTtlAVHVAxkwtTDM8NEIcxwTdFhsuvYDm/H4YHSDNbBbznK5l4holZAhLaZfq1hPRAz4MroBewp4v3YTatQftW3RtCVhYugDawUpsqFb4wJ//GctOPonC4AituUW8DByVIUVKYqZkhmL9GefQyzRd2yQcLNMqmKS2RS/TFJ0KcaDJUs2WK9/ACe+4ilUXXwirR1iqODRMTWpIpBJI3T9HAkidYesYHTQoW5qSpajYEMRNxk4/HjvKaR2cwywUqI6MMDYwwkA9YfrQAeIhm9BImBQ9OiQQ50z+zc3IbpGr3/VBOOF4MDzqKkM6JkkYgTBhpsHT9z/GqmUraS/VsXyfXifHpUTi1pgigvUrIU356uf+jtldT9Cx2pQ3DcMTewjuuBfr4CRDccJQboJpsYgiW7+KOdugaVuk3TpPP/EI0sixbIlWisTQHOp0CIo+Q+vXc+C7dzLzyCM4wsAybBzH4ZkzOFL3E0GFxMFXDsXYwUv77dBSgxKayFL0nJS2q5gxclLLwlUWRpDjpv3/XyUhsPorlRIlJP2Uv+RfbmWeayLp0ksv/ZnItI9ylKM8f7xQK5H2799PrVajVqsB/fa2I5PZ6vU611577bP3/WdzNIn0gmTo37F+/jhioD8i0wZ+JIl0pI3t+SjpO8rPjo9//OOkaYppmpxxxhkMDg7+q/Xj2LBhA/V6nYmJiZ95XL/1W78F9GXfzxnxw0uAlviGTVHBzA9+AFkGrQatgg3kFIXEF+BphR2nkGRgSKJykdgEtODwIzsBhdIKgggwwHfQcZPKyAqa3YRGktMrFsF3GN9yGoyPgTSoFiuIKGPyG7eg9+1lZNOxnHjOGWACWmLkElOZWJnJgFngzPPOBSk5+OATGNJnuDbCWz/8OwxtPglj2TKWyQKlVGA1Q4qZYGrEplHQOC89HaKMY9MKY12DStdlwUxRyysc9z/eCbnJE3/9Zf75s39PsTRCYGWkEuw8f3aDltN3qjjCwBWS9t695GjSapFWNSM4sJ+lP/4atSnJmO3ytFxk3uvy6Be+BE/Nw3QDbJ/ScccysbxC4c2v5MCQj3fMiYjYJpUGodWXPGvRr1hwLRuKJfBKLD/rHN70nndBGlIaGuTuG67n23/6lzhBxmkXng+LHZr3P8rpF72Emz73jxAJqkNl6ktTDAxWwLPZ9/QBmA9g5BhKq9ZB0UbrFFSG1Y2JJ6b4wh/9H6YW5sirLse+6WUc8GNYXgBXg28jbQvdS3j41u2wv8HsN74HvYRN553FobyDFUuMZs4Dn/wrKAuisMFIvU7ZqhAKH2NoHB0nFE7aRDRUZSkNkOUCmYZKoYxKBKwY4xuf/1vQgsHKIFf90lugaBIXXHRug+8zcOw6PvX5z4FfIEsidLVKVvBJHY9YGmRpyLDtYS62cewiaa8HrsWr3v5Odt58K6Qhm954GQwUmL1hOw9/8iswWGLzb7+DQnUM1x6F+Q4rfvG19IoGHVvSsQWhKYkNyUKng7RtbMdDKY0GUgm57LvrlYCJp3bRjUJSchKtEI5FZFjE0iQ2TBLDJMwShGX2NWU6xwYqOsdtdyBMsHOB7gX4boleN6bbiuDAPJ/+g49y9/Y7QKeUB8qYJQ+0QuscshSdJogk4ZILLuScU07jYGMWSi6WX6YXxVimx2B5lGOKFaIgRMUJhClPbL+HPXd/j1ZjAb9UAJXy+PbvIg/PMRID7Sb4Jt09OynmmsFIEywu4RQcRrecgH/+6TTLDoVGQHHnYVZUy8x1psCOYGYCoi7FxRad/Qe542s3sfuO27FHa7TjFla1QBB28QwLspyPf/ovmTx4gJHlqzC0wESg8xydJQjfJs4jmrv3Eu87AFZfHo9rU6nWCKIu4eIcAGPKZddfXweLS2x93SuYMtuka6sw4LDtjLMgdXAWUwrFYeSGDVAbIOllFG0f1i5Hrx7iyVv+GXbthTTBboXUKoOc+IrzYeUgrFhGqCWhNMnsAnTbfPJLn2e60yZothh0y7gZ2LkGkZIZEUpmrF17DJgWmevirlsNroV/yibwfUwsSDS4JW789N/w5D0PcGjn01z6K78GBYtIGghhUE0NhDbJMZE6x9Ipdh5D3MHMAvKoiy0UwhEMn7Aez3Ao20Vyx2Wu1aa90KRU7yKSiNMu3krmC+Kwg1IKp1Bgsj5PvtTkjnsfgKUOG196CV0JqWWgQqh5NWiETDz2JLsPHICiRy/LoGgR+C5PezHrfvvtbLj0pQjhoh/ey7F1RbUZ8NCff4ZKs4PstSkWLTzbptdoIVyPlsg55sILYHCUZqaIayZXvucX6VUt4iJQEax+zSUkK6o0qhZrXrIVdI7jeZCkGJZNJ0jIn3FhHUkkdWybhunQsh16lkVsiP5kUiNHyRwlM3Izxzv+GNqZwsttfGVi55BJSWRCbkFkQir7Lr1nfVv8SxfSc9ss7tq1C4A/+qM/+jevN36cI+nItcBb3/rW5/Tv/XuYmJigXq8zOjr6Mz/2UY7yQuSFmkS66KKL/ssOjTqaRHpB8sKsRLrmmmvYvHkzO3bsoNFocPXVV3P11VcD/Ra2G2+8kXXr1h1NIv2cs2XLFrZu3crmzZvZsGHDv7l+HFdccQUA55133rOJpCPH27Jly796/Cte8Qpe8YpX/NgYjjxn+/btfOpTn0IIwXve857n/DOJf1lFqwWWYaLjmL2PPYIjAZGQrBmEVJD0OrRdxZyjsHXOsF2AMGbs1eeBjKAZIIVk0jeZq1mQ5pBEnPC2K2DFCL/6ux8ExyEfGYSSDaNVFgsSc9M6MDUT7TlKxSLDpVFIFSXT4i8/8QnoRpQyAy8CkQgcw8bqKe7+51sgTCgFmoFOhlPv8u1/vInZ+7+PjhO233IrWTekYNg063VEpQRDg4ydeBzG6BjtsI2Hx9vf9stgGLBuFQfSNsJxuORNb2fD+uOJLAcKJikKxzZIs5w0z0mlSZJr8iTHzHMsBKoXcv/tt8LqUTb/6i8z1jEYyQv0woiwZpPYaX8ynOWy0qxSbscMHQrI792NO9lj99dv5vSrXkdw9nGMXXkJ6aa1LBUtGqYm0xlmnFDoZdDOWHpigu988QYK1SF6C4ugbaqZTTHKmH5qN2OyjLUUMf3wE9R212EpYiYPiMsWxvQSw82c02Iflq3BPO0Udnz5a/ixxEjBRlBEM1gsAhp0Aies6Vc+jXjQnudFV14GlQJZrUD12FVMhm1AolIFp6xnWvdAGAzOppyaDmJ3LbBsIhfqQhHYghTFy9/6JnBNTrjoPNRAEYZKNEVCJFLmoh6jK9axcctW2LcPLJtseopvfePrYBtgGMQqRy4b5vVvvwoai4xuPhlcyWvf9Q7SqEUkFapUoGN30aqORwehOuADXs79X/sq7N8HUYtDD38Pqj7jGAzO9yBSfOUDv00w3yJebFMeW8+LX3oxDA4RIeiZLq1ccOrlV2KuO4a64dIqVelqk6RUJLQgLTn0REJWcmCgRHXtcppBEzFUZj7s0SrYJIMV4lwxdNyxBK5J6rukBYuuTogrFjM1g9Az8COFWW9SMV3qRkbmWjhaUO16kAlot1i2ejWvfPkl2EIiRb8Yh2eSkJYpufWGr/C9v/lbfvFjHwLL5MSTT4PcAMALUhrdecwc/NTA6eZYCz0cZTBg2phRRDGImbjrexSUpOB6EPT6XrWhAVrdHsODgxQKPnbR4x/v+BbdYwZgzCYsmBQQREZCPc+oVgs4C00qjoXZ7lDDZrhY4qRLLiZJIzDgm1/+Ap7j4AgBKOLpabacdz5xHNILu1iOQy4FslgkCRKkZaLbXQYGh7nsNa8HaYHl0FIKBQwPjVAyJLPbvw+JwBtcxtOPPAZRCGEP0ozr/vjPGEsk1VTSVpLX/eI7GDvhZGzTIU5TCJpMP7qDTRdfBEkKKiINI1KteSRYgNOOZd3WM4kldByLdhbinXcuvUYDXW9iF8t0W23yPMcwBEmWoaTGtA3uvPU7GMUS1OtccsVlUCrw5qvfyfJjjsEwLBxpQ7PDmeddBI/u5tUvu5xv/vm1sNRGZzlDpQGKqYHxzHld9EcDYOqEStFFoOmFMd0oJUVyzy03kxoGoQGpX8Byi/huET8TbFy7kijtEquAVX4NK8n4xd/+dbhwE6zzKa9exuC6k+kutcnSjCCMqXgFRKQw7CI4DsedtRljcAA0DJVrUChDtczGU05jcf8ky5XDcKAw24voVpNyM8KyBbkbcqCYctDooQsmS7NTFNeuZvfsDCIxsFMDx5BMTR6C+Vm80VEo1zj99M3U1qyGMOSh667DE2CrpD+FT0iU7dDNNVapRJKmCCFY+8oLWFhRYcHXJHGTpgVLYQe74JGmKVrloBSh72L7ZerzdUYHxvrnnUqRDnHf5yWh3g3oJTlDoysQJiw2Oz/05vrcN4pbt25l69atP/Z6Y+XKlf/m897znvcghOBLX/oS27dv/5Hj/VvXFVdccQVbt279sTEcuX6ZmJjg0ksvBeCqq656zj/PUY7y35EXahLpvzLm8x3AUf5f8MJwHv1LarUaDz300I+9/4YbbnjeSvqO8rNj27ZtP7WX4AMf+AB/93d/x65du9i4cSNJkvxfj/eFL3zhJ8bwxS9+kbe97W1orXnf+97H2rVrn3tggv5HpUI++5FpnmWkaUyexFhSERuSkROPY+HgvRiGQWJLtCFxugk6iKFY4qRt57Dnvodhst3v8fYEQR5jmhbO+lWs3XQcTz71JIvdNvjF/oZt9UrWnP8iDi/MUhsfZcGRZGF/JHpab0LZ45TjN0EUsW9ihrwbI22J4VpESmHrDBnFCDPHTFKsRNGYmiHwNSQZed4lFjmOJUmlxvd9luab4FscenIvKk7pmQWCrN8ixsAAtLtEOx6FNKHVazE4Oky+8Vj2HmxhmhlpmsAzU89MzyOLu2gpMIXEQFDyXDpCkgqblszpFl10RdKZVhjCI9UJSaOHLcAtmGijzOL0LJRM6g//AMI6QZZw3LYtjC8f5env3AyVEnm7Q0ELkm6EjBWWgnixSUe1iLstDCFxlaSUQyMPaR+YYqCeYQQRzX0HqU1KHCSZZ9Hp5AyECqsXs/TEXnA9BofKzClwU0liKgydP+sMwZBQ9kGlTOx+GpodGByhKC0cy2KpvcCmy1/FbTf8PZRdpOXgr1/O7IED0Esomi7NehPPcknmGti+hbAEszMNaiedzMYTT4BKhd3798HU4X61hedCtczA4BhTuw7hT4yAkH0ZcdgknZqCOOgnCfwi+eFJbr31ZqiV2bDpOIKwx/DYKCxfBklE1KzjOv2pVuS6/1Vo6ATMLyxBppEVn87EPjBcTGkiTQPCEKSFWSqiU017boF9DzzOpvMuZOdNN0HYhZERSmPjJNZOQKLilONfciF777oZRE7arDOwcQP1g4fBNDhh86nsCFoEk4cxaj6JbUGSwPgYp56zhcmdTxHkKaYC6Tq4g1VOPHcbD1z3FYraYKg8xlJ7kbjsoNE4GdQiTVPGUPMpug4zBw4S1JewLBv5jHenj4YoAr/Ag08+zsDZW0nmeyAkaRSCshH0E0rWM26YI880zb6zBxRkYBU92lkKpuSlr34NHc9kcv8/Mttsok2DRrPN8aecyq6Dk+BKjEqJqNUG00AUIA4jPC0QuabRarDGG2N6YYrzT34rT3znrr4nQvdr/tQzviDbK5IGPSzDAHKCXgeKJjoMsSpl0qUO4BJFESdt3syt99xFMjWDNg38Uo1Go4GUEkoetCPCpSaGoRGZRIY5WkjMPEdJQSYAx6Yxv0jcCbGkgTQlYtkYG1+8hZ033wJZwppXXUzjOw8jHJfI98CRLCwsYHte3yumJC8+ayu3/cM/gRQkUUDRMlF5Drkk55nXIxmmkWEKE6VhfnIaEEweOsji4jxlS5JHOfg+easFaU4wMQXtAKSJUglxkvVF90kEIkfoI5WTEPS6eIUidpajhCDHBi1ohF0qfpGlbpth6WJIgZQ5iwtzBHty/GqVdLrNsmWrsDwHKgYUxjl8+CBLjz6GX6niVCrESwFJGOFXi0hboJKQ088/h6du/wcoWrRmliBTsKrKnTfcRPT0fkS9hd9/FdMyOth5Ri5MWDNOsGcS5ZjU7AIEOb1WA9OxMBVUpEOnk7DngcehpxBWAFmPPfc/THvfJEQajBhDZxi631b27O9UStrdDo4pidOUk158Jk8//Fjf8VSskLc0GAbDo2NM757CKVbBNKHTpRfHFApFlAZt2/TIOHXrWTw6dZB8voVje7jFInOLS+RArVoih2f+op47P+31xtq1a3nve9/LJz/5SS644AI+//nP85a3vOXHHu8DH/gAH/jAB35iDBs3biRNU44//vgf+/ijHOUoP8rPq/PoJ3HhhRdy4403cs011/yX2+MaH/nIRz7yfAdxlJ8tH/1oRD+R9OPXRz4y8PwF+P8Az/NYt24d4+Pjz3coR3meede73kW73eaRRx7hwx/+8H/4eLfeeiu7du3iL/7iL3j/+9//0x3kh9/bhAAhEKZBt9flT/7Px7FtiVkrcuK2bRy692EEiqwgSfOYAia2tOhGIfWSQ2/PfmimFH2f0Yu2sm7rZqafeJq02yUvF2h8/0Eeue++vrC36PKad7yT4eVjPHrPXZx77rnse/B+JDlSZRCHxLZJJjUVt0A4MYcTZDiOx6Kh6PoSqRWkMTKI8dIcU2hGymWCpQZ+wSci5oI3v5q9u3ZhOjaWaVOZj1GpJjm8RFq2WfWai5id2stD+/fAzDy0GjDbhEwxObWPrmtRNDzank02sR8pNVnJB52ThTFKSwqeCkcAYwAAIABJREFUi20ZZDpBNrsUMoPA9Bm77CLWXHA2yy/fxp5v3kYeKDxRYFT5HKt9DsUBnWGfcP0Yr/n1d/Dkg/fD7Dyz+/ZhFYvsSxPiVHHJ5a9m7z13o4IQT+WYCmzDQCgwl5Zw4pS86OA1IowsJS+X0HHKmLIpGhbdTodSOyG3NaEI0K5NNbEZ84cJ6x0a3Tl6SR3mWwwFOV0nJZeKcpITK0WgEjBcll96MdFt38OdaiBzSdDskO2fxTrjeOwT1zO793GWX/UL1GfnOOuKizl00y2Mzkd4y8aYzDN6QlLxhwnaC7RyhSiVCWeneeLgXuKFaX7hl97OY4/v6ic0o5BlLzqLN7/9HXz/ngdJJvaCbWOplGGvQNQJyJFoy2PLZa9k6uEHaDy1F3ohqW2zcnwZ3/zaV2FuClQKaULu5BCkmAhS2yIfGwAp8Z0SdLvIggVCU8xtFsyIRtZlIHcZG1pOtrJGZIQQxkzf+QjHnnAShw8dACkgjqiHEa1Dh8GvQLPN69/1bh6861sUix5xlvLKN7yeJ6enQCmwLNatW81Sr0WaZBiDI+hGHeKY0Y3HcWjvPmxhopUiIyN1LMSK5SxffxzpYoMwCskMTejkCDSu0gykGuVZoDXzu/ew5wc/YGxkhDSKMHSOoG8B1kiSNIeVYyw8cS+Dq45jevsj5HGGHCzi5wrlmaS5wszBfkb2LdEIU4LIkeQ4Kqdjm8wZOSwbY9MJp7Pj6T0s7pwgHarQ6nQolstEpkF4eBbnzDNYV6nSnTjEQtbDqBShFTFaHqZnSArDo6hmgGEatM2M8NAsKs/QQuPHObnMUVKTTs0yf/AQUmekQoNn8L6PfYTJepPm1CIDhSq55RHZBg3HZGDdehYW62C7JAtLlIsloiBk22/8MgcmD0OzxWAnZFUiGQjByvttSV1bErgSwoBDB2fo7TmArRWdoMEbrnoT6waHefSmWyANeeMn/idT9z7J7MEp3G2nMrhuJfWv3kI50khHEPswXB1lavt90AuwBPiehZaC3DbRpkuqLcgFttaYmSLJUlr1RcKpQ+zZvQd16BCWaYNWxL0WM0/vhIUGi3v2Ec/MI2Q/sR/kikYcYRgCQd+jZkiB49hoBPUgQxaqxNLF8qoonVNev5LFLGR4xQr0bAtPC2zbZkF36XUaqKDHKrvCzNwC99x/H/gCLIvgB0/CoWlUr4VBjs41BdumkyvSOIHhQSYsQbI4h2VKxjoptdwnLRUId+ykEhsUHJvMNDkg2rBxCKUUQjhcfs3vsXvffnzHJZypY9aqZEGbLW97I41/foBSu4uvYGapznp/lFI3o9ONaO/cS7WVMJzbNFVEgRSBJhcGoWESWQbbrriMgwcPYUuDOAhpLyvReughjNWrWHHaycQTc4yNjfOqN/4Ck0/uJbFtEnJOf/s7ad2/E8s2mVmcwSp6LNmK1//q29mx42GKSwmWX+F1b3wz+/bt4T3v+TVSBZY80lqhQeeA/Oks28+Riy++mPXr1/PAAw9wwgkncM455/yHj3nNNdfw7ne/m69//es/gwiPcpT/Htx2220/Uax90UUXPd9hPmeiKOLGG2/kxhtvJIoioihi//79/2o9H104Qr9QU3f/jRGi+RMfo3X1PyGSny2f+cxn/l3y7GuuueY/IZqjHOU5cETa8IwXSQFpnvHUU09y2qmnIAyBsD0K42vpzh6GTpuCa+MISbMXYRV9MuGQGxJUzGBllLwVUNt2CuPHH8M9199IYT4lIIOipHjaJnqPPQkDg7zqitfzjS9/EaIWrFsNO58AlVM2i8gQmlWjbz5VBqVQYoYpZq3EwrDN5tdezKM3/iOj7RQz04SOAcLADnPKhkddRcSnr+Udb3orf/Y7f0DmmjBeY81ExsGqYHQ2Yfb4Iba9/U1s//O/gMUeqzZspLD1WA5ffwu9+SYgYWi4X/HyopNxHnyUpL6ALnhQqXHxqy7nW1+6kYoEyxSkKsBPNMr0mF21El79KsamAuIKNK6/nnUvfTG+6zH393cwrhSPjCjYuALn7M2cbA3z4Oeux5pu4ZkQrlvOCe/4FR779rc496QTuPsr1+PPzlAD2lFMiES5PmujnMTIOVRVjC8JhO0wVUgYtAdw6zFIQWABhiSQENcKGJ6LOrxAyfNwZM5iWEfWipgdl4FQM1sNQSYsb6a4wqVTdGnVFemZp2I//ACDaUZW8uhYBsMtzcEBwbnv/03u/sr1XPDOq7nz9z5B+cTVtHfvxW/06KoMhkfZ/No3suOzn8MetCDtoOsdhFNAOyZpp4U3Mo4KU5IowV4+TFI0GVm9nvntj0BzCcNTqCTEcx2KPUmmbTqrV/Km3/0N/v7X302mwRsZJmg1+y/qYhFHJ6ggwE5SgpJNtWfhSZeFosuKN16KX63yxF99iQvO3cad3/2nfg10mELRQQiboSXFQhrx3q/+NXc8dD+Pf/rLDAcFFnQAOsEfKJFFAXme4RQ8OlFGeWCQ9lKL4YJBGIZo20aUS3R7YT9RmyuIAhxbkiaasU2nc8ErX8Y3v3Urzf0HoN7C1oKSZRPrlK7OQbvg+9BtgE6xyh5O0MN6tsBIYtsF0kQhDEmeZ/SiHq5nP+PT6l9OZcJi+NSzOeuSC3lwncvBj/01w5MZURqQrPaIn3oKZ+UQuhNTSMHJ+odPDFCeQS7A0OConPmyz+988k/5k/f+Dm5pOdmKQU4ojvH4vbeyafNWdt5+J97wEDo3GNpyPJM7HmJNlHOgO40zNow+3IDcIPEyqA6xKvVo97o0ZcC48OlmPdoOjPVyelZ/MqPZjXFcH1VwSWxJLw05/pxt7HroEcqhQbi4hLFijKTokps5F7z7Xdx54z/w+pe9kq994s+wWk0MMja97Uru/9o/QbvHMsNBRW1s26VnC2LZ99mEjkXlJecjv/soVrtHaMckNYus2aZsuehuRtPOYeMYPBZDmGL98iWk3UXEHTsZmjuMclzqdgdCi6HhcaKghyah123jl4sEiUIaLkLaaK1wRIwMU2xhkVmSnivIpOpL3esdBCbuyAjhUpMRWUBnCgxJXPZoqx54HsWVy4l/sBNPKSQayzDxS2WSXNBKTS647A3MLjbY8f0H8VSDDb/+Wh697y6uesM7+PZHP4mX5UQyJXAUQggsU9JrBoxUR6nXG+SOTTtsQxZj2y72UgOsAsI0+P/Ze9Nwy6qz3vc3xuxXu9fabVVRPX0PRQ8FIUAgJIGYBDVqSCvoicccj0Zi8/gkeo7HXL1ezdVo1OMxaoiGYIhCSKBCgAqQguobimp3dbt2v1c712zHGPfDKriJx2tyHwnBuH/PMz+s/ew9x9xzzjHnev/jff9v3GuTlYowNgbXXMvZl1/BS//n78PCPGfE0K4MMu1FvOmyGxnftouDsycwrgWrBjn7R2/l+Befwn1xhvI9t3Hsyw9jxYJlLU044DOvOrjvuJXRv9tJraPYF7TRZy9hLBH4keLA5EFcJRnzSrTas7SKhpoEaWwyAtquB7bkvff9Il9+8AHaB8fxMk1kp9CIWbbmDMKSh3+kQVNn1M5fy9SOA4gVI4xdeTELrod46Bly3UH5Ah02IdBYp69G7dzHWDpI2/O55o03sWXzJk4c3oFF/5HSz0TSfRFJ/O+G24ssssgPL9/LIu/v/u7vvgZH8upyyy23vNJU6l/jByHnLJaz/VBS/IGM+sADD7Blyxbuueee74si+sADD3xPE2lRRFrkdcfLK6MvfwQyrQjjCOFaCAEyz2G+0/8m7AiCXFDS0LAFqdC4SGq6wLRrkagcTxua4xO0kwjyiJpdwuk1iJeMse6Si3l6yw5odXjhG0/BQhOsHF7a3w+wM42wFNp1+uNZErKMM8+8gAM79xJnGZQrDJ21CuXkgMYGMqnJhSHXGaNOER3GNBsz7HjsaZY6JU5aGd7l53Ds6POMXHMV6Rc3QWY4tHU3tCJQFl69TP3i0zn+oEVVSEp5QNpImV1eYdk1lzCxdRvStjAYEIaRpUvBscmzFJEbDIYw6mFqHqw7C7dSQX55Hw3moT7KkjddS1E6jD/8HMdkBIMurBrljFVr2Pvn/4g1EzKcKHq+RVayGV66BBY6PLvxWUhy0jRF2TbYEt8vEnoOIo4wKgNb4EqL0NIQWP3L6kks10FnMZFryJF4lsfyVaczngtinQMxdCO8Xo4xHtnLUY/st7eWqcJOFIMi4OSBYyS2IXIExpVoc6pltpTIRghdxf5Hn2GwLWntHQdh8M9YRvfAcZAWS84+Ay46k/TIQaypDhVbkKQJvU6ToF6nmCjarR6WkJy95gx2HjvAzAubKZ59HtnWHZhsAeVbyMCmmDrEiabZDfmnR79CoFIELiJMoFCm12wgZEzRs+hGGVXPIlYWjiwijUWeCiqjp3HhFZez+0tPcvY11/CNbz0MY3WYX4BeSsn1aeUd8C22bd5Ce3IaEBgXnF6KRFGIeriOJEkVnslReYIVtiFs4zoVtJEYI2k3O2D1M4Vc2yHNNVmaMDAwRHOuyfz0PGm3B0gsLGzdP/eeI0mFTRpJVqy/nGOzB2HiCJnTn4OuMqQWNALNcttDRyFh2EJISTHwQet+6/FTmQ9aaFauXYNt28R5BpaLUCme47LmgvPYcfggiZWDBW4usWRfpcqlJrMsjNBo0xeS8GzG52cg08TNDufdcB3ZQgcGBzjzggvZu2k7NVycZsrsroMQxkRxvxTUaIEULqkloOhRXb2c/MA07W4LRsqoZoJj9ceRBozo99QqGoHQOc1OCzFQBqPYu/kFaIQYu4bAIjaGa65fz7MbvsI3nnwaDh4ivdUiP1U6l2cZ+57bAt0EpGTezslLNpbbNz/3M6gkfdFqzZlrmXxiO1amCe0cbUlUJ8R2DXZiaNarcN11uMd2UBQJS1as4sXNU5iFDgVAIViQUPAKiLCHLwzdLGFw6TBZrtFZhCVtAr+EQKHCEFtrCo6kFfaQ0oU8As8G18JzfYxMkZbGRBGWMvSM4swrL2Lzns1gG5ZfegH7du/5f8tRAS0kShu0tLG8AkqG+F4Ja2GW7S/uAhTbd+1Ea02e58SexhiDmxlKhQINOyLOUuwwxZmdo1CsMpXnpHZIWRoUArAwRvSz83RGYekwwdAACLALRbKsw3RFw1mraVk5naiLAWSxiM5ywqkGzmyPampx5JkXoJNgEkmAx3SzBTWPdNcOsjShq3OSwYC1b7iC7s6DuLmB7jhpopmzM2SlAKMeTM2jhcagX1koefKbG2k2W6AV0rb7ixTaQcw06c7nVBIfx7GZPDGJX64SWxZrzz2Xk89vgV4PyxOcd8lF7HtpJ2nWQk1OQFDAzSzyVLFj107SNP1+vrUXWWSRf0f8oHJiXk5w+H7FvnfddRfr1q171ff7arAoIv0wYjmv+ZBbtmz5jo5p34+J9Du/8zs0Go1/cewNGzawYcOGRQFpkdclRkpelpFeTmoII81cO+WOn/oQDz/2VfKFeaxkgbJUdAZtWqmmFWZQL4K2KXZteiphSSciMw3mRjycXkK2/SUGaoPEeY7fc2mdmKFer0C7x1jNZ2r7RqgUoB2DZ3PxRz/M9j/5PK1OB9wOxV6VsGtgZJiXrjyHePship0UZnrkf/UYxemQuTCm4Li0Oim+XyBu95j3QcUdlo07bN31GK00QRV9bqmv5lHzOCMFl8OrfTi+lxMT+7FSzUBPceD4bg58cRpfarxckQ14zKoIcdlFrB2uM6F6VIoVTAxuW7Lzi48yXKyQpB263S71UoGEUbzlK7n3p3+Op/7kfiaP7YTOHJQ1e55+jJLl0ps5QFJy4TjQaOMmPt0Xd4LSNMlZXVxO7ViPPb/6u+AkqPlxsG2qboVOntLxJOfc8Wb2PvYc406P0fogTrvNER+wUy77iQ+x+fc/B1hgFAxI7JPzCNslsQyV1eu57vrLeOpTn+LcH303O/7+ISIFtsiZVy2YTCj5ZURHMUFKb6AETovTblvP5Ne30I5icpGDiDhix5S7sOv/+jR1oHFiDs+R1FoZc3GXyvrLmHMd6Ca89MIzrPmR6zj8B1tQo0MkU/N4SlNyCyQLDSpLXOZEDwKPWVdRv3IdC1GP1ddez+6jL2G3CxTyHK+V4VVrBG5AbiDctINScYDUtmgVBIicYPUYYiHEzjT1Yh2BRosCC9edgzq4n4FY0vmff82JDU8x2ppi44HnoKu46MwrWHPLtXzpvt+gk2oGRodJG/M89Zm/6isMJmAuCsFNQSpmwphaUMRkmjTqgQW9dgfhS+a73f4cS2MsJJ6ysKRH7nmkqkLx0otY2LMFt7WbJ/5sHwobpINyHXoCetIglQKdwKCmtzDOXVeu58DuYXY/8zyOWyOO5hHknK7KTOcnsQOPkusSpjEMVmiEHcg1pJqidPAzzZYv38/mhwyRVgRemZmkzdDpq7n62qvY8dTT0FNgd+lqjZPb2FrgKkmYdtBCgYREQLDg8+C9vwKFAq61wJ7P/zWYHIaKHNr5DE4xYnJ+CifMCRqDsNCAoVGY65B5YHzJkve8i8mvPsTY9TcwPv01dLMJrRYzRY+BKGNZ5OHJAifjBgwO0BscQEQRZmqC06wBFmbblAuKbtRDyBhd8Tj/LZcSDNuwMAkbn4BezEO/91sQKUquT8EpMnF0HhwfhCE1KWQ5lmXhaIFQkhgLmWkmH3oEf3aSsOgR5ilOU3LmstNJJubQeRfyHutHl7OzvBP8gDjsQnMByhlaLKHXnAPLpSdaiNRloDTEnLB536/+KidOHOPhP/9rMq/Gine+g7Axy9Tf/xWjboEoDKm6RbrdlNqq02movifU6uuuZO9X76dg2VScgEgrwlqJ6KIzwbSgEVI91mZFVMJOU1r0yAuKNI1Jk4R6INn0j/fTyxVODgMKOo9tguES5719NdtpUKqXIYzoTixQLQVMG4F1yQU0HIco3sFYXkPlGicokaGoK5u06HKitUBtZJg2grQVkj/yONv+7kFYmEfkOR1hYPIElUqB51/chxktMfjWt+J3IyYe/ArHJx5gGS5RKYNDMzC2Gh0pTi6E2J0Oy1TA4S0H6Xh1GlmK2/NZe/oKHnvhSWaLg1R0hcFmTIsQrj6fgUtOo/HQI4hcUkgNrslJteDoNzdCEFB3yvhRiskMnapNJ5rjtKEVdNKIerPFSGE1k40F0G0mdu7C3/AM9WKJk5UeF33oXWR/nPDSUxsRlQImD7Fdh3KmyafGGSgEyCjHC749lHm5jG0xC2mRRf4j8YMwzt6wYQP33nsv8P2LfV9uIPV6ZNET6YeQT/w2/ffnv7J9/Ndf3THvuOMOJicnAbj77ru/LxNp6dKlr3Rf+/btuuuu4+677+bhhx/mmWee4SMf+cirPvYii/xb+Da73Vc+257D5x78Mk88v4l2mqKTHomdUY80QhvGujCqPJrGoLVEG0FUhe5IlbgTU/A9lnYUlUaK5/lMuRopXVKZ89KBPVQ7miDKyQNBlsQ4qcGq11DDA4S7D/fT/XVEKbSwKZJ6Dmf/wnuZfnoLtpL0aNA8eBziBJMZtOWQSwcsj9x1aOUZ+dAwzTAkclxEtYhJeszMzJE0F5jZs49sdhrHcilkCitJMZ5F2mrB+AzleUUmbRo1AcMF3vKTd7PhY/8dKR3cXgaRIk1SpucX6MRdEqufhWSimK4lCRcm2XJsH3Nf20CSNkDGFNKUztGDtPftZygG23VJUgW5YnL37n6mgSdhbISpyQmiTBNPz5ObkPPfchMzhw9SjjTKCJKyR3nFCponF9BJG9eV6FZEFkhYs5w33nwrOx95ClyH0Wuv4p2f+GX2/v2DCClQKCaPHKStNfGRo6y87Comxo+DV0RPnIAyMDJA2mmzorAMkRjcQhHrgrO47W23s2PTC6x76+1MHz2BmZtnyUCdLOmipUJLhaUFqQXtwQJ+bDF75CjObdfhnbWama8+gTXXpdfsQLuHCTwyCZ04olor0+q0sHyXPMvoHj6CW6qytDrExEsHyPYcoKwkBWws22EBxWzSozI6Rt7t4ViCjko4/bILGVu1gpO7dmHbHl4uEAi0kOSlEnf+4oeY0wnpwRM0F+aYOjmBoxXjB3dCAgsnJpnuJvSOTBA4PlackAoFRnP1W9/CfBIjqkWGzlpBOHkCq1Qm7vbIc40tbbQUaAlKgq0lRhiMAC0MloFSENBLclZcdRVX3ngj0yqFYwdwFThaorAxA2UuuOYqjG8Tzs7iZhkVLclm5tn27As0G22ccomWzsmLHnnJp+Vp/LFBhOvitTMGilUWkog8jvHxGNQ2jjIIS5LmGW5u8HsamSnyoke4MMeL+/aRtUIC4ZGrHn4u8HIbqS0MFkpKhLSQRuPGhijJsGp1HN8mbc4zMFwn7YWYmVlmxsfJF9oULIvESOI0At/FK5URxiJrdaE+xLnrLmNi3yGGV65letNWqsPD5NKgVQ+Zgx0p4twQ1kvgWrz9Fz7KS9/8JuQZnUYT30AgBMIIMtsQ5ymz+8c5uXknMtS40iLPEqylQ5hwgTNvu4mD4/tA5yxft4728aP4BZ/AgJuLU9dMklkWuQUdFRJi6CQR1KtoZbAjQzPsYsZGiITi2M49JIeOk2eK+e4cb3rPT3JkcgpzdAJfG3KRkdsa19hksSHxC5wk5uCRwyTHTvCW936QTQf30z1+BNptXCx0qnE8D1ku0uyGnHndeua1zdy+g1hxQrkRE2gfSzi0spxmt4ua78JMm2TrXmYdw3zRIg9clCXITY6yLCKVESVJ/75wbKZVF8o+WCAcl+nDxzHNkOJCwpryEFao6CWSG97+No4cPYI6cgwrF+S2IfL6KWlBBjka4do00xSlQZYrXHXZFRzbtInA97ByhSdt8jAmyC0GrTLtZTXOuO1G5icmkQeOkOUhnSzBkznGKZA3Y3ALpN02NddGJAlBKaARdVhyxUU0ZiY5tHknHJ7BnGzj93JE0SNxbSKtCV8aZ6SZUYsF1VgCAiUEys54/yd/k+e+8mU6JY+RSODaLo7jkcQxoQX1whDjaZsb7vkJDq8o0Tj4Iva+I+QY0gHJzmc2Mrd5L4OFWj8TteySzTVxfIdUpVi24L/+4n/Bsv65pfZrYIa0yCKLvK549NFHv6sn0m233faqjddoNLjjjjteSW74fsW+r2cWpfofRpzvYXsV+djHPsaWLVu47777Xt0d/zP+pSykb+euu+7i8OHD31PJ2yKLvJZ8u4YLfTHpw7/0UXbu28P4xDHyqA1pjNAuXu5QjW3qqaSWCUZkkYrw0RoGb30jYz9+J3rVKkRo47dtKnaVY815sFM67bl+q/GFmCyDTIPVE5TwqAoHt91l+qGvIdsxY7gMGh9pFJFMoeCwMHUS05slLGRwzQU0rJjMLeC4FRJtYyyPzMD1H/ppWHcJGRrOOYN3/dYvo5MFqBdpHzqIKwN8bVOSRaqZjZsJJBY9YSNliQF7gKopkGLx1l/+ZUgzHvns5yH18NsZdgpBuYpXq5FWAhgoQBJhHIekF4PbpX7rxbBvG4gIBgwUNTVsBk2RIHXwiiVqA8OYTDO8bCWsWAlnns6P/PrHyMI53DdcQeIkqLqLXfa5/KwzQRs6cQsnsKAXMv71DVjNBgVbkvRCKpVC32vn8GG+8Ok/xvP63atm97/EE3/7eTJpyE2GLQ20QxqPfR0qAzz/p5/mypvW856fez+BZYNQvPNTv8klv/azvNiZwkFTbiR0X3iJL/7hn8EV5xKuqqF6IdXERU21yYVN2+9vmdUvA7r63p/GO+csOG0N2bETOLU6zLdpPbeL4nzCUCbIVcLy666EkstM2ENLm2IuGHMCaiIgenozJ/7uHwm/9DgrrSJDtofOMmZMSpecfNko57/xDXTiHpaUuLaDSjJWL19BcckyrFMKqRH9JCLieXY9/DDuVINOoqnd8WbCpcPMtBPoxFhE5I0ZFp55AbvTpdQKMd0ORmfgGE42JxlZPszIaUN85D99GGd4FNWL0FoT+EFfLDo1j8TLJV9IlIDc0fTcnPmshVIdmkf2sfOxrxAfG+8fGxKpwdEaZmaY2L+fs5avgiRjJBhgqGfhpMCKIWI3Ij6tgql6yIJHVnBI6dFwIhZWDjHhOBzKc9bd/WNc9aH39v2rPFgoCuYLmrRYJw0GsIIauXGRysbxy/SOz1BSAqcTUe05FBMHqV2UcIhsh0RIcmHjGo+6dqBgo0qKd/zse8HRdNMYHXapBxUGlcdpbgmrFzM4NgyOhT02zJvvfjc9NNgehYUeL/z+X8KxLi/99ecReUpr/CBqYQ5neAgTFIiwaAOMjkGU8c1nnmPkwovBL1BdthxRqjKvDC0hCKWN65UotzLsRoch4ZG1Q7Bsbrz1Fhgb5Lwbr4FVozBY4Kpb34C96jSSKMHNJV4ucVX/SZhLjbKAepHKe97MWXfeBtIGI5huNgmHa6y950cht+D4NCUkw64DB8ZZeGE76vAxarZH2XYopkBKv4wxTZEITh44QOuFb4E0lOtl5MqlFK65ErKUju2SFYqktkWzMYcbOLzt5htg9gR02lRiC39ghIMkHJYpxnGw9p+kMj5NfaFDsWRzy+9+lIH33k4qEyynQG4cQiAbrnPXPfdiD9TJFRihTpnDG3ZueIZhXcILLTy/zrx2iCqDDEmbJz/9F6Rbd+H7RUQeY2QG5GDlNAJNu5fgWkWMcMB10CojG6pC4BMlijgDcknVr5JGMXkv5oJrr6PdbbFi7UpM0YOKDcMedg5lbWFVBnnv+z8AQqIcm9iGllAwVueGd7wVfIfyZI/LGGOs0UM6NlMFQ6dk48y2qR5vEzoWoWMR2fKUn5eGKOPh/3U/FAch1uRximzF+MIhrBXIsx6HnBa6YHh860Yuv/JyVq67nHJ9mE4cgV2AnuKSW2+jEUdoKVFxTnGgQiQ0HZ2S2PTFO76zdwU/mKqWRRZZ5AfIdxOQXu1yt09+8pOe+LCKAAAgAElEQVQcPnz4+x77vp5ZFJF+GPkuWUiv5lXfsmULn/zkJ7nrrru4+eabX70d/wu83lobLrLI98q/tC46v7BAGIZcsu5ScGwolShkEktLUimIhCRCEEuBsSVObihLn3p9BCsoQlBklpxJnTNw4XngO1jaEMQKMo1xXHoYlDYEto8yCldYoDQFnZO1G7inCuyUUKByzli6pO+RNFDk+ptvAksSKUUkBEqbvvGsMciBGue/5a19YWblGrz6y0b9/cDVVwIn1VipIcsyjGXjeP0VfZ1ENLOEzHMICiXGBkehl1JbuRag71UjbaI8p5smQI61dAmVc87i4svWYQkLKj7LVy0FrSFKQOTgWqhcgHaIUsVcmjO10MCvDzO8ZClWocjAyCinrT0dimUuvOpKKAcoS5PPz7D92eeg06FUrpALRWFoCLBw84xqqYgxmiSLsS2r34VqehbbMpBG6KlJTmzdgnQFSNBxDEmOKJShE4LKWZifQZsMnaeQK6TnMDAyBI5AITCWxBEWqtll/U1vYHTNSlAppeoAnTzilQf3KbEmk5Lzr7iS69/+dhgbBq9I+4mNoCGzBZnO8DVQqrD2nHOg3L9GSoPKc/JejJ/n1ISgqjWDWNhphsbQVRn2YBVKAfWVp7Hm3HMhVzjSwrZtxg8dYuvmLYRz899xbxsBpcBi//ObmTpwCOEHrL7hWli9AoQFxsKkUPTAS1NcNOQZSqeg+90Cj+7Zzcmjhzk5fohN39xIHicIu1+uEqcJ+p9NJqn750VJ+gbxlkbZCsez6C7Mc3z/XuK5ObSQYCSSvojklkosHDjA1m99i2KxRBKlBMUSiWdB0gA74eZ3vo3LL70UP1XQ6oFb5pxf+AUu+sAHCJYsp14b5fobbsIIC9XLkBmgDfgOOoqJw4h2npMhybo9hLRBCGwkZApXSaSRKCHIpCSybfD6/ldK932b0ArylBWrlkO9Rt7tYns+eZSRqpg0yQiEz9z0DKQpldEhvrVnVz/rTmd40mbML7LELoCQVGwLtKYyPMLF6y4jVpoIRYJhcPlyKBeZ27GDs84+G+KUTqaIpSRWhgyJ0ZBqRU8ocgSxURgBlmVxzllngbTZ8I+PwMlZCNvs2beHvNvB5KafdWYkwrx8v/Svl3vhuZxzw9WcdfllIFys4gBYFriSVRefD5kBLGwpSOMQ0pTtT2+EhQWw+sdjSxvXBZVm5CqjVCqx/k23QLkMueK5555h6bIxVqxeBZUqynXIbItcCqTvo/OMZ77xdchThFL4QZGGJSEQEIB2NLYlEXlCrmNaVsx43KSZdMCAK13IDNL2UJ5LcWwY47lY0iEwNm6scbWNHWmEAmM5OKNDTMVtotOGCZOIuuXgK4NqtfF8B9BI0zeKVlLjeR5KaZAW2DZEPTZteAJqNXA9fL9AmuYI3yEDpOswNjZKbaDK2OgweZb1n99eAAIyZfCLBSzHBdsiTFK0lKRpDo5Hu92FsIdn2Zg0R2KwLAujFMYYhFZ4tkvo2ISOTc+R5C9/v9QWs9t3EyiJb2wyzyWzJKJcZPSctVAMIAvBL8DUNIeffJ7jz+8k1pri0DB0e+AGrFpzOlqe8oDKDcJxSYwBNMaS5MKg+2+evnb0cpy4KCQtssh/KF5LEWnDhg2vWez7emaxnO2HkE/8Ht+9nO1VEk7vuOMO4jjm8ccfZ3Jykr/5m795zVP6Dh8+zAMPPMAnPvEJ4jjm4x//+KLgtMjrC9P3sz7lOYoC7rjzTn72g+/j0hvWc2Djk1CoMNgEIwSTA5KGL+nUi7SyNqnvUmgZpmfmiVs58e5xCleew4KI6AWSt/7Cz/DiN59lbD5m1C0y59rceMdbODY9jSVlX4wpuIR5goxSVlYHMGlCDkTKkFU8WOhw5KmvQzeHOGHJ6hWc2HsIhI0eqELJh7FRKBY5Mr/A8NnnM+uXYGQpu770AMw3odllKKiiWiEy1xjXInQEPVeSIBiwC0RnnwaBRacbYtlFNr+0F2vtWnpGwfQMKoqpegENfaq9+Fidt37wbmrVChedex4HNm8j9ixyI4mOzjMSDHP6PT/F9JHjiF6BprDA9Vh2/XrmT06QJz1Sx+Mtd76drU88xYFDR4ilx1UXXs7epzZiyCh6HlMHDlEOSkQmo6NyLGOwexkrixUWWnP0kpxKrUrU7eJJB8tIom4Xt+hTqJZIp6cxnsG2JW5qqEmHvNNFxhnad1k4sJsXJ45iJufQrsWLG57gyJPPgfHIywFzdooOHLx2xgw5OJL53S/ypnf/GHsPHcZLDV4usDTEDuBZbHn4SVqDg3S7s9z2vg9R8mtMHT6GOG8UlbUoJ4ZOL+GKa65l93PPQ5qjkQSui+s5qLiHymOkUAjPJRKKfLhMK2qjPcFdH/8Nzr/4Ur7w2c9hZ6CbC0jXJtI5nYUG9dogoptgm37MlktIO/OM1aoQZkTa5UTRcN5P/gSzTzyP6DawtOk3TxMSnWd4vks3T5GlIkYryDV6cgEvSnjxhef7okyU4rkeeZ5j29Z3xIeu7oswytLgKrA0RvUzHwquQ55EeL5LojS2srC0QBoIo5BStUKSRGRhD9/1aKYx7WGf9b/+81zwo3fy6N9+joXnX2RJSzNqXFSzx3EVM310inzrMfye5vHHv8rEvnFqjYgxq0AU9kiHBhi75ibkYJ1cQ9YL8ZYOM7x8CZ2JEziOSxKH+JaLwiZ0XHquBYEFg5W+4Xq3h6UFUbkAKuPAvoOER45DmmNjk+QpfrFMO0vQtoPIFcXRMZpJl+ErLmH+yFEoeKRaEbXn8C2BNjFZc4G1S09j1blns2vyOFmYo8IMNyjz7o99BDUyzPT4UY6dmAAvwMzNo7wCIihSGxvFeB4qi9AFyB1JaltoS6LThImpGTr7jpBMtqiIAkM3XsXhbzwBnRDXKSLDBAsLIwSZ1e9GhwPnvvPt7D9+nL3bdlGZ6BIdn2b5bdfTLrvs2byNYCFB5hnSs2lGbbyBMlmzAa5LlCfMxyF+pUo361G1Ahw8mo02F7zxag4ceAkyRevQEfyLzuPo85tYuvYsutNz/Y6CtiTuNXCLHkd2bYckY7hcZSGK4aLTWfrT76R267W0ThwjmZxluBogqx7zVpt1P/1+jFOksWMc9/gCpaBIN40xnQZbZ6ZJx4+gjcPpxiZpdam6BSxsOlmOHKxy/o/fyRE3Yv1v3UdzxzZa4+OM1euQZxQKLlmW9p9DOTgaKn6VVrtDXi5TvfQCkmIRLHjDne/gyKYtFFyfwA9oVB2StIfrl5gMFIePHuLIlp2Uj80TmwzT7iFtQdvzyFyfbVu3AIa81aJo2+hUk/dy9u98ETwfjCTVmsJAnbaKUGgKroOKExKtyP0iSlggwDIGiaYQFLj+DTexb8sOSqNjNKIGsUoIa0XOu/1GTmzZxfD6q4l2HMJTFqUXJxls58zbOe/98M+yZftOiBR2UCTPU8JOm6Ll0O60yIUGFMHAAB/+uZ/DEfYrX2/FqfftKy/bRRZZ5D8EjzzyyHcVkW6//fZ/8zgvl7EBP9DY9/XAYibSDyOvUTnby2Vsn/nMZ14T0eaWW25BCPG/bWvXruXee++l0Whw3333/YebxIv8O0CcWivtNxzDpj8Nf+03f5Mtzz4LrgeuzVTV44Rvg2ujbIdOnOBccA61c88kHAw474ar6IwfhqLN0qsuBHKQNl/8xB/CsQVSS7A3nwcTooYCQl/RiUIySxAGEmXlSAnHmvNEriC3LELLQKAJhIC2wVUSP9Js+8svQSThvHP4kf/+G7B8jHe/7z3Q68G2Hez5p6/Clp1cMLgSdo9T7uZUtINutBFCUBqqk1YKqGpA+bJzMb5CrhrhA/fcA76PM1SnlzZQy8rYpy/pd7CLM5RlcbLXQVRKUB/gp37+59nw1FM8/bWvcf+DD2L5BZjThDumEC2btGfx4v4JrvlP/5WOX+Siu+/mjt//Q869/c2YggWFAq1DB5g/egJOztN4ZjvsGGfDp/6y71ysc0hTqtpFhzmlVavAEZSqAyRRxMLCNIFfxA982kmGLT2cxCCTHFxNmoV05mexconRAp0ZbCPQSUYJSWA0Mul3qFKHx/sr9cqGiQTnZIpsR0RnjuC/7WpYVmakUqOzYTP7PvsQ1IvMnzlKesYy0sSwpGsz1rHAklz4E3fAyBhTX38S5ls8+Y0NEEjozHHFTeuhZJiw2gQSHv/Lv6UsPZAuVqFIw2jajmBGZ8QFm3lP0VheZN5PmB/wYNkwFAOefGojzz75NO1dLyHnmwhtyOIESxlsLYgWWtjf5mWpJAyXCjRnZsjCED/wuf5H72LPn/4JQbmMQWLZYLmQyIi05DNvaXRtAAU4lWE84VPLoRzFBLigDI7tYIzBcRxyrdGcWlXU/e5WGgWYvuCU0ldpJQytXokzWCfWCqRFD03PJEijGCoG2CrD1prA9TBCUB8YppC5bPyN3+GRj/wKTExj2QJdtElti8HhJay4/gauvvd9sLJCo+7006qSDo2K4NgSn+6qOle+822cc8UF3PbOt5FlHRgZ4D//2ke5eP1VMFilQ45VLhG7Nm2hSSwDJufSH7uL0kXnceUH3gOBwwI5bjfGChXN3QfwjY0vPUqlEsp3aPqCrOoS1Qt4GNqTMyAlJ6IQrJzlb7sVXbEJzlzGjGmApVg5soT5qRl2vriX3tQsRBHSD3A9m6/+00PsePSfWLXyNOh1od1m1RVXQRiC6/BTH/gAtVoVohhSsDKBFyus3IC0mTiwHyoFaquWYSoBt6y/oZ8iUiiSak3sunSEILUlCoVjGbAtdv39F2n/9UNk+w6RTzUoY3HDu97GDW+/HbYdIpqZQ9suHddAAc6/9GKk74LKSEaqMFpjIShg+x5JlGJShVcs8sj990OjCZ0OCMlZQ0MMrVjJyS07uOWmmwBBu9nAKQRkSYTlOfgY0rkFBrRLcmyW4y8dxj5VVVaSHqLZQze6IOHZP74f6/lDBM2UAScga7Wp2QGUB9CNBgzVuOD26xmXPeKREufcdA3OaJVE5oR5ShB40Gqx4aF/YLJxErdWpNNpoaRmOo/JDASZzUBsY6eSXhRj2y5kGTdfvZ4LL1kHMw32bt6K5XkApI7AOmMF1/7M+wmlYv6ZjbBlG2rLdgZTQU35nObWSTwXZM6P/8ovcet//hkIfKoDNVxcasajrHxIDaxZgvZ9iqUKk40FOmmT+lXnEtYsTEEy4gQU5qEWepTxyHsxNhLpSNbddiPBbVfSLKfg+wSFQTjZ4Ft/90/QSRgbGsSYHE8IRoMS3dlZVNzl8Ow0MrehnTPbaLAwMwlZRoBDoVoFBJUlS8mSFFc6/U6e3/G+/T6+yxdZZJHXJVrr77q9GrxcxvZaxb6vZxZFpB9GxPew/Rv59lS+u+6669++w++BdevWcfPNN/+L2z333MMXvvCFxe5si7yOOSUkCY2kXzV2xvKVdGfnIFNYlTLn3P0OqBQhziFS+BGcuWwl11xzDco1nPXGK8HJIZzn6IH90IrwMgdnsg3GYV6nUAB0zAvbn4deA4p+X6Cpl8GyEdImp59FkKH7pWBjgygVUU4NgYEAgRvlWMYCx0HZNudccgknjxyBKIQ0gxMnIIrJp6axMoWnNK7WGKHJLE0iNLHJoVTiossvh3LArOkRTk7iNWOCVgwFm1W3XUus2/iVcl8AMLrfncqSICWe6xPt3gPK0H1pP9J1cHoaPR9iMk2ea7IduzG9BExOMFwjFhnjBw5i21ZfJFKKbc8+B5aD0BDYLu2Tk7hCgiPxHBdSje/6rLn4IqiWaUcxlYEBpOeC5ZJmBly33zI8UdjSAduCkRpIcKUFRiCNwIi+ybQW/fVxy9AXNpQGp19OVMOlrMBXAiMMschZceP6vljSiXEyAUGRvTMTLL3kQqxCCcsIinYAec7ac8+EowcpGgnNmDVrV6ArNuQxU7v62RdUPGwL8nYLkSWQpdi+h/FcQgOUXCh6aM8m9ySQccObb2flNVfDipXMbt3GoT17QOUUxcv96w3CgCMklpD9FucGtOgnADiWR6YNiVFYOqOz/xDMzhNNThIsXYqxLLo9wJh+YzvPZXjNahCCLM+QtgMoClgvV6e9Qt8PqV9SY1lWv6RGShQGcgXFEkvOOwdvuA7FMnZlgLEzzoBqGVS/FMbzimhypDAYlQEaIw15mjE1fQIx08aXVehZ0A4JVczhcJZD0SwTJBz72lN8648+C0cnccMcZyaiLKvQjknm2njtnN1fepzdOzbz/LNPQ9IDo9i0aRN79uyBqAdSIC0b4drkWQS2BJOzfPkyTj/9dC677NJXMpJso/Fzjac0ju5veZ73z18cIZYvQ1sGiaBcrkCzTe/Rx0Ba3P72O6BeRfmApYnzjLAXE+qUVANRBJaFzlN0HHF8y/Nw4ihHtm6GY8ewK2WuuvJyEAIThmx5/gVmJqdAQT2EegSVDDzVvwfIEnAMLBkgHilx+OB+SJL+vSgEocrI/X6ZrfQcTJ5BHOOMjvUzINs98jzB9wO27d7Onq1bodGlVB0AI8F1YbjOuRecT7FYhsBj7bXXMHz1lZhSmdyAOHWf5mkKzQ4kGQ4C2xjqXsCZS0+DXsTcyZMUPBdU/so9/LLHlqv6/1fQU/D0Via/uR0mFignUNRQSsGPoLNpByc2bccRgkjm2IGLNBqZKOjFUPC57I3r6Q36RHWfs95wJc7wAK7vQafL0WdfgGPT8I1v9e/DU75dBkliSawgAGGhEoPwCyhpMFLj2Bb0Irwkg9wwvWMnjoAsjTE2XHTpOpavWk2apuC4MDIC0sLDwlIGk2py3Z+DwvP6zzEpSfOcTKlT81yD1oyuu5A47FE0FlWvAJWAq3/sbbB6DMu1MEnGyqvWUTpzJR3fInI0TuBgpRlHd75INDUPUQa5hdfJKSSSIeWDsNi1bRsMl2jHDeaclE5BQL3K87u2ozsxnvCYPnSofzy22xeJRd9EW2r6JbZILMSibrTIIv/BeS3K2V6Ofe+7777XLPZ9PWN/919Z5N8d/zzTKD8M4Z99x48+9rF/fRdr1qz5/2wr2Gg0uPfee6nVanzmM5/5Nxzo/z8WBaJF/r1i0Aj6Pg6YfmKSJyUXrV5LPtOgXKpgewFrb7oRN8zYseFRCj2ohAkLJ+dZu1ZAEPC1jRsgngQfwq98lYo9hNPo4g4NMdk5hj1QIHdSSAWdnVvBsnCMS7BkBeveexff+LO/IBufIygVSdCYKIKyxc3vexebP/p/U1GaeV+iJUTdiMLoCL12zD9+/H/wXz72Uf7g534Wx/PRJkOdPAquy96HFvBNhhKaXEJkS3IHep1ZKBYhVSzzBvrZN+P7+Yc/+hO8+ZjlpRFeHCwjPE2wehnRZzdQzqBTcbjkTbey7ZHHIYf/+Yn/0Y8Yei0QMDN1kjFTQKuM2bqL7obQiHnuD/4QeiHf+sJf9Mfd9hLYKVI62EGB3vQ0dHsEAwOkeYIo2KQ6BMfBzlycXBNnNp1yBUaHSPef6PvSBAFhmGAXBoiShGKhRiHV5K4NK4e564Pv54E/+gzBeAuVC4Tp60Xa6osqWuh+cJr17wVV9kHntHuasnRx0gy274Nmgzf86jt48I8fpqptgsyhdP46ZroZl1x6OV/98kaOtdpUhIA0ZcPn7gcrZSwKOTbd4sXP3w8jQ4Dk6INfg6LGGx6mF04wOFCl2QtxR2tEec5pZ5/LiV07CUp1VNyDzPDOe+/lwb/4PEf2HKY5P8973/VuPvt7v4NqxYwWXPxugpYSS/YFJGkE9j8L3pSEXluRlEtI30e25tn22/8HDNQoVYvc+eEP8rlf+23KxQKdvNX/gyxn7PSzOefmW3jqTz9NVK6isLHon7eXM53MqYEsx+4Hx4DjOMRJgl8o0Is7FKyAd7zpTvbv3c/jT2/i4PQMy668gguuX0+52eTZP/1zYmlRsS0khjyLkU6B3BhMySNyJEU8KjNdPGLEcInmiM8HPvXf6M51+MJ/+wM4coKB5Ypb/ug3eO4LDzP31HaibpvCzZehBCQ7XiKY7TK3eTOzM3NUSjXaJ46z8R8epG+e4xGkFipKCNMOxUoFrQ3KL/LlT30af81S2ocPwdxM31Q7UwihkUoiTH/dz+QKp1SlevpKfux97+GPf/GXiNAoYVj/gXvZuOkZSHL+4X/dz9L6ECeffQqKDiVngF5LERQHaUQJV937QSY2bWfyW9vwTU6v24NKgJxvUh1bQn14kLnJCTAKsHnhmY3oxhyWhsDYr6xCWhqkAWU07/roL7Jl8zbmdu/m6c/sAsvu12KVS6y+7FLGd+wAJcmzBCdPCUpV6sJhoZMhQgVlm2h1jT1f+DuwfQaLJVrNBhTKUBuEzgzbX9hOd6oJKM669jqwXLalTzM5tR8hLFzbwZc2YZ6CtBgSgJY8df8DNBsLoHK2fuVRSoGPi+4bQRtQon+OLQNWnrParvHiyQmSdC9WIjECEmwMUExsnFgTdU4QBRmMusgwo4ZgpGsIhU1nZo6HHnmo/zyanmTPkf2cmDhMFUjbDWY3PseKSonW8QbdAviZjZsZlC3AFbQjDb2EgVKN7lgFd26W/4e9Nw+z6yrPfH9r7fmMNWq0ZUueZEuyjeV5BCPmIeCBQELIRJubzmBokrZvkg7xc286JumkMzYddwIXSAOxISRgjImFbWxJliWX5nkoDTWo5jPvea11/zglJ/hCTJ4YzIX6Pc9+VOOprTp7rVPfu7/vfVWekrdzdjz2OBMzsziZwbNt2rPTFH2Xej1k/9Nb2Vr7OlatAcUy69as4fhsB91q0TQGB4ObKNJFg3z+j/6cN73//Zyz7nLObHqaFjGu5dISFliGdq3Fza99HcNPbKKeRlAy7Ny+DYaHkVqRBDZrP3g3zdYsI5//FIgG0+0mKwl4+n99HtIEcc5yjG9RjzvcdPWNHN65C1kpoodPs/6n7mToc3/HaF6HqgO9FZpHj0BT49sWScXhA7/922x77HGmN28jQbG4b5DJEyOsvOBCPARRHOH6QfdiXFCTFljgx5Lv1Gl08OBBWq3Wi+/f/3LFL9+91jxb+65atepVMdMeGhrikUceAXixgaJWqzE0NPRiWvkPmgVPpB9BHvhzvoMPUgDOqheP3/31VS9edN/tWLZs2Xd+/Ace4NFHH+Xee+8lCAKGh4cZHh5maGiIjRs3smbNGpYtW/Zj3+a3wAL/jJr/23a+XcMIUIbeoMR/e/BBRG5o1Nsc2bqLK9ZdxfHTB8gEtPOIgXUX88KWrQzOaeoHDkJzjsXNjCwzeEGRlgvXfORnOGFH9Owfo9IxlOOctgRKAQOJh5I25vxFzG7bQTG2cQoBcZJSVpK4v8CwaLFkNiNvdpgtQF52wXe47LW34pQGaR4aZudTT9GvcnSrRcXWZI5GWwZrsJe8OUtqK2LHoD0JruDSDRuYGT4J9YjhnYfIx2cJAMd3yfKMvB0R1hvUjhwjn2rAgZMoBaaQs/jqK5jcfQgGF0OjzTs+dA9HDh4EA6uvvRp9YphUtwj7NTTrFPMUNw1x7Zy0OQET41yS2mCBnaluslq5SOqAVfJ518+/j/1Hd0MAnLMIZyKinzLjcZvJkUPIN76WDTe+jmM79mBsKHo9tDoRF914PdFMg6wZknsuWSFn1ILk6DBuQ3fv7BubXFoktiCXAiMkAnC1wNWCVEdc90s/w8jB3cQqwc0kdu5iWQFDzzxHv11ApxplFH6pysi2IY7t2AOzM1y24RbG2zU8DNHJEQpRgo2mLiKYaVCZSylOt5B9VXSas2IqRRYUczJh8UXnU++0wXH54Id+iV279+NlmmIuEbbH3lOjmPEGtd3HSWshU8OniNotiEIqKKw8AcdHWhYZBqF01xx6Xt1RElIbevKAmq/QOqU/1yySFpUwYXp6iuCadYztHyethxTyHCELKGwmJ6aYLLrkRR8mxlGeh+/4ZCpDzi+Xs8WhweD5Po7toLIcLQxagrEtskaL7Zu2Mbz/KOQCjKalDee86fVs+x+fAMum5Hkk7QaOY5GaDKsUEIUJpXUXc83/9Wscmx4jHD7NYFBmqlkDL2fnyGn2D+2F47P01eYIT42x5+ROmidOcWHqI/Ocy37mHZw4dhgm6/TPNmnVayxyPazZBouKZZI4RWiBSXK8VFCSHtLJsTONl4GvAG2IGg1qe/d3u5VQ5LYmt3kxXQ4h8J2AdqOB7fls3bwVHScoo3EHB0gKBVrTDYgF4ZYXaI+eYZElqQKzzQjwaMcp1ctWY3pKnBraRZBkeFGbxMsw9Yg+18ZoxeTUDCeGhzGOB3EHHbZxLYFXcJgNBE0HYiFILdFNWbMcDjy/i/rQIWgq+iwXL/CJ2yHB+Ss4/8p1yP4KzVPDWI6kqA2O6zA1PUFvZFgea8bdkA2//2GOPvY0tGKEBX0E5Mpmwwfey7FD+6gdn0B0UrzFyzi4/XmOHjnBNVe9lpO7NhFkAqElWtgkroEkZJVfxFc2I9NT0GhgJxlVyyHQCl8Kcjnf5SYsLG0DkumsyWTWZsVr1tGMO1AKaJmYumeo+4LIMbiZRDsCtczh0v/jLqYP7cfJDUuaCt9ymavN0jl9mmUNh1ajTXN0krjWpCQMvjBUXItmY4ZSyUEpwWBH4mcWmZR0ijbr3vJmpk6eJnYs1v7C3Yzu2o7qdCjaLnQS1GwDK0oIjEZIhZy/gRgOz9BjFVhtVZkwMVOzZ8jGJnG1RWNJEVUJWNzKSJo5uXBZdt4F7Ht+C6YxQ57FJAMV5HnLkb29JAdGWH/7LWw/PEQeWFjYpDuOIuZChNbUbcGxiZCx4ye49vrXMHboMFXfpTU1R91ozNIeqjeuJ1nkcuF73syam69n99NbyNyM1RddRrB8kJkDJyi1EoyBO/7zf+LI3BzB6QZl4dIqg6oWOH3oCEEtJHUNuh2zctk5tBsNPvqRj+C63VG+f94jFrSkBRb4cerwnt4AACAASURBVOMrX/nKd+w8CoKAcrlMuVzmp3/6p1+29v1uYszZ2veee+75gda+Zz2Y7r//fjZv3szmzZtZtmwZGzZsII5j1q5dy5kzZ16VzqiFTqQfRV46pCh7wf529/h/j5n80NAQ0J0L/fjHP/7/+fz9999PrVb7d3cOnV2gvb29rF+/nqGhIWq12st+34+zU/4C/z9gviA2aY5bKBJKG+N63Q/ONHniH78Cyxdz7orzGNm+jQuuWMfJA0cQSlGyXFIhSFVOX18fNduQV8rki3opLl1KR2n6EWQAOXha4rkutUaDkT0HIVPYbveOrTEGfAsRZZintqP1AJnXvfuMUKBzpJT09PQwGhRJpk5jOxoXiGNN5mvwAhYN9nPm1AkUXdEGS4KQrFm3loObnse2HGjHLO3rJ+lMMtds4nkFpOWwohBwavQMjI6DKWL1VFDJNCdPjYLSOIAMCjhJAigQmts3vJGvv7AbnWoo+ag+yJoZVqRxbQdv+RKSepN6mBFFGQN9fVidEFtaqDwl6tS58IrL4NMJDPSy8urLqR/fTBxnKHKwPbwow1tagrJPPDGLUy6Cyrjhhht4YmSSM9Oz2EbBdJvmN5+FWoRS86laFmS2BmFwc43djQ0js7qdDgjFa16znue/8AiEKZZjobKIcl5BKpuZVo2K5ZELzUzUgMkZ0BIG+lh93dUMj52gfWQKX0nyKEH1KEgj3GofotPGQaNtgTQWBWMTeQWcssOa665l7Fuboa1oT86SzTUZqFYJs4w4z9HDp3DdKk6xiOv6jB89RnVxldjkpHY3JTCxA4zJMHmGnaZYWmKEJJeCVEJqKVo67ca0YxBGozoRYRyDMWz7/MMI7RA4AUJDqlOwHUhShDRc8YbXsfvEcUgsOmEIovtipkXXPFsLsFwHu7cCaNrNGiVh0a43QUBQrRLVOuAG4EjIczgzTq8yyBUr0EO7SL0AC5tMgJY2luj6YlV8n7Fjw9z8ulvYvGk3oVBUe3poCAP7jgIFBis99LdCOq5hZHoO7IAzrXFsPKJjY7D7KPg9BI6Lk03SaXbwEUgpcQT4novrFYhrHeI0IrMNBk3Z85ht1QlKiwhJQBpkyUe3WvOdiwKhbWLbBinohG36BhYzd/wUCI0/2NvtmIs6jO3fy23vvpMDm7czrTOKliBQglY7odTXRzqX4Ls+b7nrnXzhz/8IUonrOBgyZLGEok3olYjCBBAEPX1Es3Ucy8a1LYqORSMJodAdK1I52NqAErjFgHBylr5CL8IooixEBx5YkhTYd/gwN15/HaObtyCFoZM0yZMEqiVUpomA0uIBjh8/AnlONaiSqZyslaAduOi8lXzdrlAtpISxIpybhiKgNEdf2D7fv6ZI0aQmh1whlEDaPo12qzs2WCljt3NcoZmMGyxe1IPX6OBIaLmQ2NBxJRQrIAT9l69mdrRI2S8w8fSm7h4nQOQSW0oiFLQbWH1lMKI7WgkkOu3Ox1XKhA0oeBXczKLfK6KSNrYjsYoeUS2n13LxsgSwSC1NLgWInFJvGaSCUpG3vOmt7PmbTyJtiW3b6DRFk1EuV6nHbXoGKrSjNpborr1Spcr01AnsPkk+MwtaYRULmGoJpQxzUYZr28Szc+x/+pu4KFIbsH0qK5bTu2YtRe0w9eR2jg8fhXYLSmVUnGJJB9+xMCohkgJzYhjdnmNENynYNo1TY/ieg9YKqiWWn38OjdMZPT09jE2PEtenwRSwc5uxY2NkStJj+WitWLl4GQiNyVOsYgHqs+zb+E2oNyEo4GFhTIcoivA8D2HbaKWQlvX9f+1eYIEFfmj5TuNq/f393/b+v6c+/EHVvi/l4x//OBs3bmT9+vXcc889fOhDH3rxc729vdxzzz089NBD/8ojfP9YEJF+FPk+P6sPPvjgdxRzhoaGuP/++3nwwQdfEUX0oYce4uMf/zgbNmzgiSee4P7772fjxo0v+32vZIzjAgu8EghjgeiOm0hASEniuew9foolr38jS197Ezv+9E8IZqeJiNlw9zvoOJKRLZuZrLchiWnoNqUswRTKJA5EGvrWruGKN7yOx5/dxrvf9C6+/MhW6qHGVm2K5JhaxjSz3XTk517oCkB0ECEYG2p+Sm9dUtUOCS2mSha9N6ynWK0w+o1vUTtxmrXvuop9zxpQOfUswhWQeoDf9W6K5hIuW38TB3YPzXtrGIhCnvynp0E4iDDFExadTpvMB0cU0camLVKiuTpLfGgn0PZt0qDrXeOnDg2jkTOTeO02X/vrvwQSsF2ef34bJ2QGBZfyqksp37Sc8b97HOlWKWYeFbkE98rFjJ3YRWlijHY7xDLQbjW6xtOuzR/88R9DmEO9zdTMGWwZ0rYNjmXIWi3YtINDgQcXDlKqK7TQ4Et2bXueqbQBZYvcE9C2KaqAOFak0uD1BIRxA4rg5jZLUwulYgS9jFgGViyG6VEee+jziFAipUtkdUgzKBCTN2PyJEb7LlkAK99+LbOHDxFMZWSmyd7jR2hOTYJXJgxtAtuiowSlngqZldCIOnT6HLzOHF7uMC4zso5H7Li03Eo3JjuO+eonPkWpGTIVpSTLShDFFIVF0pjCdgKSxizFoEij3QYUd3z0N/j8Zz/Fa3/1owxv38zYY/+A1+zgSpfQskgrVS6/7iq2b3qMRsWjHHfvZSRCoiyJ8SXFJCY5OYaxJKFxoW8FlQ++iVtXXsSjv/JbRDu2EJ/fB+cuZfnuGknmM2taFBYN0qm1u5HmGJSAwmvWccut1/PwX/8l7dEpbL+7ztK4heVbGJNgC4u02YBOg/3/9Q/RZyYhEZgsJ8cjVxZxptHtFC/V5Nv3ke8/zlAeYTzBLJqK8FlcMyQpKFfTqmji3CCMgkYOXgvdV0DVYuqf+yYkFlQMx5YWKc4WAYiBOI/BEqg0Jk3j7mu0DZkVoAzUVIwsuDSSORAxOAYdd3+JfrOrWyR4vOU3f53jIuLIo48yt+80F0mJ1imTU1PE2AR+QNQ5RWvfDqaPbIcKpJ2QMNcULJdGo8VFXj81Urae2Qs6xkptOqnifCrM2C4973kb9cf3cvO9P8eezU/RfG4Lgecimk1sJFah2t08jA1pzmKvQKtRw7Y9SDNiG8K0QdF2CW0BKgTfQSnNzdfezJkTIxDmpIFEuA7VYoF+O6DmNokuXk5n91EO/9HfQFsS2k2yiktoReClfOoP/xBOzjHnWOACXgg6x66FNCfmqGqLps7IXTBWDFFOwQk43QhRto1laVQUEVeWoicmYNUg7aUDLNt8HBtNLetAucTrf+c3OHqmyemHvwbXX01nj2LZ0uV0nthGq9Ggb/V5REdPUVAKN3CY6kj2/cXf0jctyHyb46ZOXNRgG2zHxvmJN1B/bCM0Y6oqIfY0sQVjcYdKuY98TlG2JK0go+NBW2fYxSrPPfaVrgeea/jfv/UHEGlsv4jJDEbk2CWXWS8jVzGTyoU0xRZlsGC0PYnn5hQ8h06U40uH8U6bc99yN77yOHrmYSp5Sm9UxzuwA9dW1OZTNN/43vfyxa99DeIcrzPF3HiBMmXypiFaWuK8t72VfY98lYtbZQpxh1yfJNOa8PltgMRxi6SOA0rBTJNjX36Mctthz/OHSJM61d4Ci9MKxw+cIdIRXLiSqePDDLoVvvQHf0E+sovBko/2W7hGY2eKsFxkyZvfzNT//Apej0crifB9H2000v52AWmhC2mBBX78eKWMs78bP6ja96U89NBDrFq1ihdeeAHg20Qk4MXOp6GhIdavX/+K//x/jQUR6UeRVyh97bvxchfp+vXrX5HZzLOK8dnHuvvuu3/gC2SBBV5pNGAJTafVYXxkhGZtjsVhCL5HYuXgKabr47Q6EYzPsO+vvwD1Br29vSgi+nKLTpqSOR5ntmxl6tRpaHf48qPfgk6bEIlnd/1kXsrZjxkx72GSS7SAEElkS+ivcMMtNzMwMMBnvr6Jky/s4OSxo5Cm4Eh0AtJ1yLIMURCYwKd+9Bj1PAKpGbhsNdfcdANff/hh5g4fglzgBwGmk5LlCSDJVbf7QkiJV7DoRAqv4NJud7ji7dew/JbX8Niv/jYVr4AqSJp9EmZaVEp9NMkZ2vQkTmpwhKQ1tI9z37WS8XIB3YqZ9i3e+YF3ULrwHHYPX8zhP/zvkHaNoKWw8YRLpiT53uP0FPqQiWDu0ecY7DgsKw8gohazvkM0PskN11zHVTdcx8O7fxev3qHiORzatAUTOOBa3QL83D4++Ev/kT/9vd9DxRqSDPvqS1Fhh+qhKU77CSaBfqWxCyWKN1zB5YvexLN/8RBIg+35OK5FqhJiI0h1Tu/qS3AOjtNq1okOj+Bi45uYSCU0kjaIDPp7cM9bRHTyNP39fcyOnKTSX0YWJBJBpxNCqUIUJlSVhHbCc1/4e+gJQAhmshDpOSRFiw/8zn/mMx9/kM7UHEKCtCwKlTKNZpvKokU0wxZ7tj4HSnLima2Y2jSqEyKKPspyibXN6ssu5dqrr+HA3m3oudaLzbAayC3IjSGRBnwPJYGgyMC7bmPp+tU8+sXHup47zYTDf/sItFNasU2FIosrfUzUpln73jsJyyUGli5m20P/izN7D/LF54awJ2dw3a6JuRFg6HYrSSHJsgy72BVyJkZHcYWPExRI05RMdJPcLM+jx/FwbQsrVDTTNtqX2Hb3RVRlima7Q6lSIUMTZxHywsWEzSbUNZVIEYQxlUKVkbDB+jveySU33cDWXduZ/PuvvPxeIBXCaEy3cQ0/g1x1f3uusvCUZrrqdaPTywOMp00atubyn30fe/7Lxznaibp/xRVheaNMO44oeAEntuzopihagtS3mA4MGINr9XAmzmlkEXzxi9jeIpxak0gaJi3DwNo1vPG229kSV5k6fpjms8+C65J3YpYtOY9ao84ZR4Pl4guFkoqZrE3qCoK+AlGtBuUycSsmjmLOu2k9p/bshVLAL3/oP/CX9/1W1+S/GCDjNoGU1KOQep+Pd8lq1qy/mumTMcq1wYNL3/oG9jz1VS782fdz7NN/Q2tuCoTA8h0Q3U43aTTWvLF3kiQ4RZcchRP4SEtBqjDGkBuDsCQUJIvfeyuTn/kSXLKKlecsZ3zzYcq2hxW4UMuIHt9GXG/A2Bl2/sknoDnF0TRlsVMk6qvwxvfdyRf++lOcMxIzmPqcV+pj7HiTpR2bA2kEFy7j5ne/iS3feJLq6Q6yNoljawJt0Gky/+ybrseSBRjILZtMg5UZ3DRFnmlgSQshXZLpGqPTQzhCYeluMIMSNlpI8jDmAw/833zmT/4MBirkwge3wLp33c7xh/+BTLVRucJg4QU2UXuW3sHlsOZ8mieGoVSFZp1CrsnaCZbr8tSffxJSDZ02S15zBdUlg8zuHsYTFlGcc161l8OBT2O2QewJhLEw2NiOTSAFnhHkRmMHAXGakk/O0EosrrxjA6cnhqkfOY6J2tzzO/+VPY0pTEny9H//E9oipzM2Bn4ZeaaF3bFYMVBlpB5CT4HGmUmCok+mWgir2+Enpewa7IsF6WiBBX6c+X6LSD+o2vel1Gq17+pRfPbnnv26HzQLItKPIq/Ss3rWbOyVWkRnjcPO8q8togUW+KHmO5g0uLbNnp07uHbtWr615bluApYraNWn2P2tjdBOqeCzuAXCrjDWaaKLUE1SwixBlHxEpgjmZjmvtJjYUhzXOTiQhBl23u0GOSsc/UtRyYj5NKIcctlNAoodCY1ZHvv0Z6Dai/BLnLNsKVe97y7+8X/+JSQhvu8ihMDzbJJMYZI2EHRTk7KQuNEgajReHH1Aa5IkomBb+E5Ax7QwjgM4pColNgIhQUsBvkul4PHcs08zMLCIODD84sd+nT/77Q+zyOlhqjEDSyoQWvSmhjjvUKoOcuBvH4agAr6N8Sy27NuGmD6M8ATalqQ5SCMRtksSKxavWEYrlVRSgQ4V9WKVlJAoSsjzkKruo6YiPvtffofK1VeDDX2BT9Kq0VcsMVWrgWVBOUDVZnjmuWcgbYIVkDYS/N4yG268mQP7P4cRKSyqMjcWcW7PcqbSNnt37OomDAmLJMxIBFQGFtNstcHzuPLaq0n1UfyxUY488o8M2D3091RpeQlvffMb+GLUZu70KHf82of4wu//MZfdcivt0+ez99nNVIsFanMN/P5+OnECvWU6Ux36eweZTduQKrBt3njH2/jaF/4OUs0/fOMxLrr1Fo7+70foGVhMbWyKvt5+qtUqrVaDgd5e9n/jCUT/AKe+8g3QCYM9VWbbc7iFAPwe9g4NMXz8KJ0TI5SrPd92vSkBdsEnT9rdRDGlIHeZeXobujkDuw5zTqWP0eYEDDr0vuetlELByFf+CYzEXzpIz5I+Dp4+xvC+rdz4ix9gy4N/iY41F4k+prMGybz7thISJDi2S5ak5FqDlGBL0qIgXT5IsHgAvxpw2803MTZ8kp2f/yJIGzdWkCt0LjBWd7FqYyiWyzSjDgmKa27fwKIV53Jk3yEmduzHdw2T0jCpanBuD0PbNzO0/XmYmKPovvy24OoULUBJiaXBVRI3dbEM2IiuGNcJKa5YRufkJLs/8UlW/+Rd7HnqeQgNfUGFBhHK03RuvozGgQNgbORcnX7H7a7vRJMKB4UhkZ2uL9hVl+D1V9GPDjFQrDBqJTRKBvbu43O//Tvc8Pp38NzDX8CuVMknpvGtgNHpGZTQvP03f4NH//xP0VMtcsBeVKF/xSru/Mn38tB/+2MwHrhQWNzPrbfezGf37ITaDJ/4/d+jb9kS5qYmsdrtblOgZdHJAFnmfR/5KP/Pxx6E5b1QGOA9v/lhjp8ZpadS4tihfVAqwESD4ooLeO8dd/DpT34CW+vu9K3RKNH15fICnzBskUUhRBm2V0BphRJgWQ65bdOamaAkA9p7TrFv+z6cwCUpBSg3A0vywjceQyFZVihTOzVCZBRCCJJWA/p8ojyFisdoKWFKhzRMhxWvW8/RJ3YQ9ZdAgdPbjzYGXXCZHNpKVQtEluP4khQNxkIjSWxJJgWh7UKcUxEuBQTFJCOMWoCgb2CQqbCF4wgsoxFGokT3+6j0c2y2ARddxuXrrmT0xBiLL17FVNgkjCPIUkrSRyQ5wtLM7NxBc+A0P/X7H+Pzn/wM1/b18/wXPkfe7lDJLEQC2aGTDBZ6mLM0p04PQ20STwpEqiDN+dqf/QUoiF2PhmcgtsEYfGmRJhGu7WDlijwOKVkOwkC92sNl6y9n5KkRtAt50eWZ3ds4RUrm5RA1ufM//jKf/fTfgiWolKvkzSbpZI3K0kGm85TpEyeokKG1whfdhEaAPM9xnO/z3dMFFljgh5rvt4j03Xila9/vxL8mEJ0ds3s1fIhf6p6zwI8C1vdwfB9YtWoVDz744KviEL/AAj/cfIet1hgqhQChcq5ffyV4HkUhu2LTzAxMz1LJIVAGC0hdSSQUtm1jLEE7izBpCHFEOH6GvNHC6ilTvmI1WN2CSs0LV2fjq1/anWRp+aKIhCVgYBAqvSxeshwTZwS+z0Bfb/ecLBuNJFM5Qgh0moEy2DrvRnsbQ7te5/jhw+D73e4lrTBGo+Zj1KWUuH6ADApg2aRCYCxIMwVG0ZicojZ8msxo2iXJvto44GC3Mlg2SHHDjRSdAF+DhcHTAmwP4qQr7GQx0wcPM7VjD5PPD2Ej0AgUgsy2WXfrzVz0mitIPYdGGhEKhRaSBhJTLaJwyFTWHZ3KNEsrfRAUMcbgCos8jfGkILAsXKWhE7Pz2c1dUSjLEAjinXvZuel5WlHYjSWPUzzPRecZotWmPnyi+/WpAmFhOx4XXbIGp1gCx2ZkfIzct4ltoFQiiUPSNMayBLue24pudqDWZGjfPkAzXpult38QS0uklmhlyBH0r7mMC264jrzo0btsMSsuvqgr9hUKnLfyfPA98AOaB45w5WVrIShhhNUVejBgFFIryHP8chk/0xSNpM9xyeMEPJc4jhk4dzlkOZ3RMwg9b6n1kusszfPu79QoWDzIBVdcDidHmNuyHRoheTvqRtoVC5SXL2LFrethUQVUQjw9yZannsLUGlBrIztxV6C0LSZMh1y+JEXCSNI0nS8wu2OYGAUFj9J5y1i5fh1LL78EUy0RLBqAvj7wbFJpUEKgjEEpjdLd7oZOFFIsBjiBy/atW3jic1/i6Le2QZgw1W7CxcvhipVQsSCJYGKOpbL4Pe0KtjY42mCE7q5X2dWbFYIEm7ZwqVb7YKrJoCjg5A6jT2+DXUfoMYJKLCllFhTKXHjbjbCoD6RGK4WnBW5ucDOBg41vB+AFsHwxKy5fQ9yKsLUhTxUmVzDYC60Q5po89+UvQ5oi4xjHdghsF6Vz8D3svj5YsoiKlAQSMpXjV8sYZ/7a6URQrBA22zz71NNgW3gDg+h6jXhuBk9rpMqxhEGlGSXbg3rM8MGD3X3k/H4WrVvFk7u2MrRrG/UnN8G2Xd21ZAkSNFbBxdjdJLXutdbdxxzPJYpjyHPKAwNd7znxzyPuRnSDDcJdhxloZHhjdWjE4Ht0dIp95WUQgHRdbEuBiihlKT3a0JOZbjJa2GHv1h3QismLLs2yA4tsSm+6hmbBhlQhxprs/vozMFGjHcX4QmF0CuiuYI6cv6cgUQIyC4ILV0GpSDPN6CQJ5JoiNgXLQeoM1xFIoxHGIM18PgMSggLPDQ3h9vax6PyV2JUK11x7Pdevvw4Q0EnwjI2daRwMTM+Rjoxy6MhhDNBJc0gylBYUC2UsBIGwUGEHWwErL4C+PoQl8W0Lm26iopA2udVNkZO9VSgGpL7PkgtWEesM7dkYS2JbAktCwXV4fvMmZkdGAQ1Cs3vPTuZqM7SOHgUJK1aswCn7IAXac8kwaOj6TjmScy+6kI5O0HSLxbPdR69W8bjAAgv88PBSU+3vdHw/+H7XvqtWreKRRx55USz6lwwNDfHQQw+96B38g2Yhne1HkAc+yXdIZ/v243c/+Oqd3/fKxo0beeihh9i4ceO/6Vgw1l7ghw4NSNDzpqsScIUkzTL++H/8BX65wsrFi4h27MG4DkmY4KaKAWMzmdWx+3uZNTXsa6/AnBgndiWpJ7FsG9eAm2jygkfl+st46z0/y+6vfwMpJDqKKFd70FmOMAbB2RSi7r9+sUIUdqBaBKO441d/BaUl73rL23n+K4/TjGP2Hj+MShJod7C1RtqS2CiEkDhS4mvQlkDbFihFc2ama4rt+egkoVQokERh14zWliy7ZC2vffPbObhtG9oRSNEd67DwGB8dg3qDpNnm/LvewM5vfhUSWNqyqa/qY8PP3MmZRzdhOh1SDMYSJFne9VHKFF6sMa02eqYOM3V6hCFJFUpIdLHI+rveSXnluRw8sp/EJERZG4ouVD3ed/9H2fTURgr9PcRScf1tG3jPW3+CJ596lqxdwxiFVwggU/QUini5xopzZLONnSgqBMRaQ6qJah3iOKPcs4i01kblOc1WjbzZhFprvjOtW9BqLbj19ts5ePggutWgFnUYnZ6mIzLoLaLOTNFTKtDxck4fOoI10yLraOaOHQIUteMnmJiYxmrH+MJGSkkURdx297u58sYbGHr8q/RcdhEmcNnwjrdxcNsLHNi9jyyMIVU4boHD23dSKQTUJ6coFksYFCpLcSwbnSdYRmOnOT2pxBM5ke50RS4/4G3v/3n279wPScKKQoEc1S3W6WqPRkInDDGuBSbnnEtXc/kN1zLdWyAePgzlgGRmDs8I/NUXMz05xfjxUS4oLWVucrSrC03VMCenoNbm9Jbt9F54AVe+8bVMDRRonR7FcX0SY8iUwgsKKAMqTUFK/EKRvBXh11MW9w/Qmalz8rGNHH36BUae2g4jTYqxxJc+Wlj0nbuMN//EO1BGETaaOFpjTA4CMitH1xKW9wxSazdYcsUaXverP8eRrMP5b3gt9R2HsZoR5+cONSd72W2h13IJ45hYGnJHktg2mZTkrk3bhaQoSdKEfsuDqIWloFmrIZWhB4NBUV28hIve/AaO7T5BPDoDc22WFXtoRg206zLrZFRvu47z3nAzE0M7WH/Pz1BdvoSRv/8GdicnVCnKaC7/6XfRyQTp2CRCK6Q02EmCp8HBInFddKXMoWeeZMXtr0cOHSQyhty1aI2OsmP/AZiLsO0iOs0h09THT4BjododClKQNppU/YBC4NOKImShRBZl9BnJwR3PQRTCa1YSnTpNZ8cm3vX+93Hokw9DOYDWLFgO/jnnsnXLZkwSkbdDhJC45R46UUaa5+RZDK7Dr3z0Iwy9MEQaJ3iW3R3fFBqjFOVGwvK2wiamoQWiWEL7Lnd96BfYv/8A52qP2LRJrAwnU3iZwsk0XrVKlmRksy3iuZCVxT7mJiahNyBeNIi37TT9Tpm11iBxO0UScK5bZnJqhEpfBRl4TMzM4pcquE6B1twc2rXQvs17PvabWMuXMLF1C05fL3Yc4UiBtgwd0fWakqZ7WEaihEVuSXSrQe+VV9DpxCRKMzEywcTho7RGx5ndtxdsH68VUw0KeI5LfWKSwPMYeeJbUB1gatferngY5zjaIG2JsQXalUSuYP0ddzA+fJi+KMNLctpxE9vz8KRDGHbgmstZuuw8Wo0axjG85f0/yVTUojE3jbIgiSNyDCYSTJw5BVGISDMKicVlV1/PNbfcxOGnn6Ta08eJw4eYSRowO8VsO2Tp4DmkWMxUDOQd3v6BD3DiwAEsnaOSGK01H/nIR3Dd76Htb4EFFviR5ktf+tLLikh33nnnq32a/2aWLVvGZz/7WR555BFqtdqL6WxDQ0N8+MMfplarce+9974qte+CiPQjyAOf4uVFpF989c7ve+WssfbZSMPv9Vi4pBf4ocMA0pDPv2kBQuXU52r81Sc/yfixI4zt3kPBtpFpxoBXoOS4zGUJjZ4yNSLcDa/jp37uF9j91cfJLIESAsuAxOCWK5zJE5pRm31T05iR09ie19WucoNv2aisWwhrIi1pggAAIABJREFUCbkELSUrVl9CaIGq1wHJRWuvZMtnP8e2Pfu7AkfYRM3OQKOBlWtcW4IlSTAYqbGMxlXdiHWEQc53sQhjUHGM7diYPEcZje87ICQtXEqDSxhpNCAOQWdI0/XVyIUEX1DsGG5855uZ7asQ5h2ax6ZgYpbD3/wWUWMOt1xA24I0S/Esh4JlYyuFnxvKqaaSaMqpQpORaoH2A/BdjjXnGNMZa267gYlnn6Z47dW85YGPcbg9xZKLLuDI/n3k7TZWOeD0czs4se849U4LJXMSlZBIQaFYxLY80nZMIFy0zingoo0g8i16K71E7RgcG5lqbCwcW5KriHKmMDoHup5VYv56GB8doVObBaEo+A63/vz7WXXLjZx45lv0CQupUxpWSiky9BuXqJlg33wVS5Yvp3VmgrzZpCAE0uS0whbFJYs4sGcPx06cIFEptZERGlNTLF16Die2bkdYLqrZAiQl4ZDWm0TNJq608W0blWUIYbAESKGRGCytsRVkOiZ3NUnggXQ4cmYWHSt6S2XiiRGk76KlOBtCCECpVCRsNsB1aY6NcuTAQeLJGUhS6IQIZShryeVvu53b73oXOz/9aeYOjYDdHX/rDxWLckU1Vzheibn6BKO2wr7xSrKd+8i8QjfhMEl493t/krGJCaJOGz/wSMKQ/lKVivE5PXaS1vgYKAjsEqKtkGmO29dPSycoFRMmEaYYkGnNxOHDBLaLZRQIRS41/WsuYaI1h7Ec2tN1juzYy7mlQcR0ncahgxiVEtsK/T14tFiJQZTKxFYOhQJ9K1cSdWKUVvRfu5Yrfu5ORjd/i7Dg0G4n5P0VtJ1glvXRrndoSZgzIeXbb2T08U2QJF1vtSxCS4H2HDLb4pp3vBO8AqOnTrNk3SUc2rOf9PgEmZYo26Y0MMDgJauwaiGNiVlKSYZAd69OYciSDC0lOuzAypW8463v5PnHNkJvL6pa5NJbXsvMkRPYHY2fQZqG9FxwDoPnLKU5Oo5EIFNNyfVwLZdU2nTmRXRVKSHzBrZlKIQRycEj+CNT5AYGUs3pwwe65tzagF/iffd+lN3ffAr6+3GMIdOQ5MCKC6DdRDgSpxgQ5iljJ08TOB7kikhlaFuA0KR2hm27JLmgXbLRSlBQDu1jozRmahTOjKMsi2YBbC2xtCCzLObKDiLK6M0cRJrSaNdYVO2n1WiR7jxMkRLTUY31H/kPbJs4TGxi2q2cnr4CseeRuC5OuY9OM0FiYdkO2rUwUYt9WUySpsRxRD5xBsez0Shyy5BaktQSWEYgEQgjMMJCC7jsDRsYm5lGt9q0du+BsQk6w6eZPXIMzltEqVRApDm5lERGU80sHMclFJJf/uCH2P65z0MU01MoolAoaYgdTehqlBSMn57i6tuu4ehTz6BbDWTRJkk1YGGWnMPbf+1DXNA/SCihvn8PR6MOrePH6F99CZ0zkwTlXnIk5dhCixxQBFpRyFwKg0uZ6bSYHj6O14mYGR9Dpw1+4t4PM6kypsemyH2P5KpVsHoVE7sPUNu1Cy/wIM+xbZuPfvSjSLkwVLHAAj/ufPGLX3xZEemuu+56tU/z38yaNWuI45iNGzeyefNmAA4cOMDmzZuJ45j77rvvFU+E+15Z2Hl/FHmVxtleae655x6eeOKJF4+HH36Y3t5eent7ue+++3j44Yd54oknvm0W9dVaSAss8LKYf7ndalSaUvQ9AssCx4FKiboDOQJnvl2oaWtMTwCLB0hHJ5g9PYUSNsLYeJnsxscbSeRI8LteQ2pkCvr7ycIOqPxF/yP50jEjAZetvxK74EOxCJbNsT37QYEZGwfPhmIAjo1wXDzbQeWGJM3nTYy7HU2gu0Nj849v6e5R8AJcYSGlRAhBlCZ4nkd4eoStLwx1T0BK9Hx0u6QrSmFZqDxj7ws7ac81WXz768ikYplbhrkYbEFkcrBl1yjXKIrFYN4TJQeRY5Hj6BzLsckR3QmtJUsgjGnv28/atZdDpUrY7DByahQuXcNXH38cZmboKZUxeQZGMDU6DuVitzi3LKxSmdlOSEdl5I5FPY+x3BKhkCS+DbYmtASoDFEoEOcJlHwyqbuBXHmONDmie1ZdY2A0YbOB77o4joVMOkjLYtHSJWAMjjEkcYiKWhR9D5NlVPt6SZKYwUIZUSyCMRij0PMClWUM1Oo0T5yCsBsdzmyDZx77JyhVSJMYbMk5F64iDENcy0bkGhvRLdbPtn0LPf/8KozQdFRErNP5NCQJGnrKPXDmDJ0wxLad+Wui2+kG3WtCZTnoricNujtiw0wbJzTQSbCtbjT6jv17eW7fLlizGnqrcFa8QmPNH3maQLUC01OETz7ZHcs7K3gEPhevW8e777oTjMYSknKhSJJniP4y1975TgZuug5cSdRskumcW9/yVj7wf/4nOH8JOBL6ejn0/PMMHzxEz7JlwLx5szFYBqbHT4GVI/orkOdQjxn5p02c+uZz0I7BEcTF7+1Pq2aWQKEAWhNcuJJbN2zA5DlEIasvvABjFPg2WmXgSfK4Dr7hqre/HgILSgEM9nPx1VfDukth+SIoOKQ6JnckYRqDdDm1+wgvfGMTfctXsPNLX6b1xFOUgjL4AlRCGkYc27Of1tQsOsqwFQjTNd3XAlKT4VlW99qYnOEfP/cF8sDrRsK3Glx9001c+7rXIXONL0FUfM658FwWL10O0sGxXHSusKRDkqWkgu7/u7cPhCGReVcUcCz6pEfFSEqdjNNDe0BloA0FrwjawgoCcH1IczKlCar9nH/VNZQuvAikhVGKLE3Yt28faI1SCiyJ63lIx+nutULR8KHlA/0lhO9jZYbWyQlUFOPgzidqWuTCQonuyG9u5xjPw3NsJBrbLZC4gv5VF0K5SssCLljOyQrwphth3UWUL15JO1Hc+ta3c9s7foIwjHH8IkqBTuZHRtMYs3MXvYUitNovjiPnct7ni273kZ7fd8++hkgDrdlp8p1DXL5uLT2rzoe4Q9mx6bEdll+8khVrV9NIQgrnLqWNQhiJJWwQgp3PPNndP3sq1OuzgH6xU1XJ+TU1Mc3c6DjkCeVKd7RXSgu/UMRIm6c2bWXHpk2cGBoC3yc9cJDlV1/HOeesALdAogzayK7Pl2be06l7/gcPHuTA9u0w2I9RmoLjgGVx8aoL8Pt7SYwmMoYLX3MlF629lOmhnXh9A8iFAN4FFljgJbxa42w/CB588EGOHz/OX/3VX3Hfffe9KBwdP378Va17FzqRfgR54LO8fCfSz7565/e90tvby6pVq148HnjgAYaHh3nhhRe4++67WbNmDatWrWLDhg3ce++9PProozz66KPcd999r/apL7DAtzM/zqZE17vB4v9l7z2DJLvOM83nnuvTlunqam9h2gBooNEAGmh4EI4ACBKWgCiQohdJiRyJWkAj7e5ggqMNBYN/pN3YHcaMYnYhURSh0WooUKIIkIRhA23R3lWX9zZ9Xn/O2R8JUJzdmMFKs7EQyXoi7o+Kyor4IjOjMs973+99NUJqHMvia3/wPyGFQXnLOlp9DqqZYLYSYgOsXZeSXnkJD3/xC5z/7psMvHocKw7Jp4LuyOgYNQyTRliFXAlqCZ7Tx2OPfZDTh98C28HVgna9jmNYGPDT7BVMg4FmBTefJ6m3oRWzcHEcLA9MC9IW/fuupz00hJdoPKlRhkYLgbQ6dVIaja0VyjAx3gkCfveKgqAjHgiB47lkaYJh2SSWj/aL3PrhjzB24gioBIHGkgauFJj1kNzalUzrgKyUZ++Ve5h++yzuUou8KQiMFNt2kFJhI0izjFrcIPEEoSNJTUUmFNJUJC5EcQrCYuPeW9hw/V7mjxzj5P6DMFPBa0kmTwzByhUwPg2NEHexRhA2KeW7SVsJGz94B9ffeRtDo+NkUoFlE8UpkaFJTY3evgVj40qC6hzla3by0Fd/ndOHjkAjpXjr1ay64QqWzp2nlGZklkaa+h+Smgw6LoeoxZoVPdhpgIgCTh86xshcBTm5QLlZw7VN6iUDH4dKZZE9H3qIwm27OPunL2KGEXYW4xgK2xV4vkurUSdf6oY0RdVjyplD2SnghJIoioCUru2X8pGPP83hH/6AzHfpw0JKiVQpwhBgKAzzHbuUoVFolGeDb9BOQ1SqQFt86KlPcnZwmKyyhGdkKFug6DiR3j04ZlGnkSoNIxAmvuGyLrbJyRCpIXMNSBOC9iJLs2Ps+fznmf7z7wMKR3WSUWJD0xaaltPJttlx+z1c9YEH2XfvvYwtLhC3G5AmvH7oEKZlUa1WCJst4iDEz+dYaC7Sf9t1rNp5KRMHDoJZAEMwMnSew+1J0E3E5sv4+DPPsKQSYi2JlyrkEomjZefgamSYuS5SBBia2z79CRxtU5leoC+BnO9i2SZB0sLR771i45b6qKkEd991XH7tbl7707/AWGxTFDbDZ88xeeBVsItQDSg5OWIdweoVrN2xjemDJ3DKvch6gwvTE9z93z3LvC1IWovc9fiHGTp+BCwBVo7a0BSqlfHMFz/N0TffhNQim66x49OPsTAxjmhKwskpgkZEybDxkozEhMjWZKbGsW2yVogrTGwtaE/NQNmDvAX33smqnl5OHXobc3YJTUbUDWGfx+zgNNlCA5lIXMvC8TyWWm2yYoGNN99M9zW7CW2LdGSUYr5IzbWIGyHBijJ2oDDCDJ0vQj3BVSaxFkzbHhuu3UNiWsSDI2Rhwpob9zFfLKNGB0EmIDNUu4mdL6AyiUVHgEnTGKIAP5O0Cy6pgA1PPkj9zBBJpU0YBehLytBUCCUIHQszsxDaoukJ1n/8QarHT5MGKba2aHiatq25/QvPMOiBqjR57Gu/z4//8i+5/LGHWRKCe/fexsDxM9hr12H2rmR8sYFop6TthBxQ7isRCIUu9nDfvls4/b3vke9bCXGEUBIDA1PZ2NIkEx3B3XrnpgAGzE+OYfT3ctd11zE/PEh7sYKo17DTlNztV3FxbgJskzs/8TRnz53FrMSkvkuim0ycOkbR95Fhm95cDq0kBp2MLgxFLoNCXTI9eZ7uoo8vILIFcWyAXWDfw48x+OZ+GBklrFTBEODm2Lh+I+dOnEU1E1Sg0YlBQRnEdkJqKzAkBg6B40BXjl/7yhc48fIrWDLBd3OcOXGGucHzgIuKFfrqzUyNj5EbXMAPYixhIOWyE2mZZZb5B77zne+8p4j0+OOPv99j/qOpVqv4vv/T3KN3S6duvvnm9yVM+2dZFpF+AXn+W7ynE+lf/er7N98/lSeeeIIvf/nL/9V/Ai+++CI333zzcrj3Mv/8MEAbik6sqkbFGW65zPP/6nlM12HttstIt20kGptHV9sUV/Zz+299ljPf/lPG2xnp2RlEtYVpgZdp8qkiNY1Ou0+pyBPP/i5n/vZ1spk6Gy/dwMVjRxGlMkY9pM9wkUoRmxBbYEmBEiaUfJL5JqJ/FV1XbScam8eIJV3dfUQb+7nlsYcYfOMIrlRInWJrhWVALDouIjDIJ+/cMRcdR5Kt3gkM9l027NrBwsIspoSi49NuNFFuiXy+xCWXXMrgyWOgJUobONIglwo25boZocmeTz7Gnt3X8P3f+n3kUhNpSAKZoISJnS8SNlp0F7q54a5bGYoqIBIQuhOMLBSBbVC8fg9BqMAuUB8bYcF1uPaOO5l55RXKCcS1Bm6xn5seuIexF/8Cx3TwanUy38HLFYjihKX6EvVqg2BgmC/8i69y9vx50noF1vdz+SMfxNm0iqe//EUOvfIy8fgkowWLZGwSIs1tn3uSjVdexrm//TsKsaaWf8ehY7xb2NdZ41N5l8v37mauugj1AHflRsL5GussD9VukO/uouIayFjR3dXLqTPHmRcR7ugsrlLYWUZsSQKZYkUpBW1RjdtkQUBfqR8rVjjKoNmqYuZ8shVlvJ4ylWaVxdlpUJpiPSDLmcSm7jjXDIPUFiQWaGEglEZ6NjgmIZrt193EFdfdxEvf/R56Ypx8Xxet+hxpoYgyOk4lT3ZcPIZQRGmM7bvYQhAmITU7Qls2LR+USvEzh7hQBK/A9F9+n1XtBCE1ka1JTQhsiF0D7RiQuixcGGPk0AlOvvZDyOeRjRZIDUnK9NwsWRRhWSbFYp52tULBKjB6+hQTP9nP1j03c/+uvXiRYnpqhl0P3MucMNHnRzj++k9oTI4jkwQlDKTUYBhIYZAKQTGwiWsR+Vt2MxAuUTn2NuTy2FGKSDJ0kpGzfZASgUYbGin0Tx13P3u1Y9j14Yfo3biOk3/251hunsJSC1cmFA2H0HNw5mtssErosI6b7yJstZk+dpLeFRu598bb0TgsTs4z/NIPSV5/k2uu3s2b/+eLULC58YmHUau6acoAoipnpobJxschzFjVt4ZbP/s0x//2B+QTC2GZZK0GriGwpUVidl5/hCBLE6SwKHR106rWWbttO/GtN7DxjjuoDl9k6LvfI5qex8EkzlrIkklSmSObjbHz3WjHRnserXYbJ19ANttcvudazhx+s+MWm6jSQKMsjbftcrZ//BEmjp6hnUHWlmwxy0iVYfZ2U7l4gf6d2zGzjPrYJP61VxAWPexcifj0IZzuMtLP0bV6I7LWwlMgk4As71HYuY316zZRuDhFW5jIIOWOT/0a509fpHvjBkIj4aY/+C0uvvo6qep43zruGYPY1XDJKuKz50ncHKkwKPgucbvJ4OIk22+/icU3jnHutUO4J2ZpnRwkPXSa8wcPI6cnmK8s0bIdUBAt1ulbsYKNG1czvTBORoputDn9w1fpXbWa1sIiq70CQZriyM76miMNpNkR8k0l3u3uw8r5JPNzDA+cY2F4CE+mmDJDmDDrxzA/h+juI0lTqidOYJV6aLkKdB2SDNdysA0LkWgEEoFEGxoQOMqgz/FZiisIpWhU24Qqw82XSaKUOx98iOM/+C7pYoVuL4+vBKbWTB4/iWo0uezGfaxds5k41SwQk9gahcCTGm0IslIBPT9LNQgJZueImwFeK6ZWaaBMyJd6yTLJ5577MuOnz2FcmEKrjNTulEyYls3v/NZXMcXPWLTee4t0mWWW+QXkL/7iL95TRHriiSfe7zH/0XzoQx/ihRdeIIoitmzZgu/77/dIP2VZRPoF5Plv895OpF95/+b7p/L888+zZs2a/6KI9G6w9jPPPLMsIi3zz4t3hAOBQGACFobjIrXma//ma8gwpDGzQDRZhbkatiyy1AwYcFLUxAylWKMHTpF2p2SpRGQJFdmkXhKkAuhaT93JEzoKNTfBxfMT4PhowyIXZXQlbZRlUnMVFH26Y49QG9z+7/43Rv/6ILo3T/TojXBwiHWBgdWWNHOa7PrL2bf5WgaHB0mtJrkwoShMtJEjTgyc/Ar8dkDbVkhPgGVSSk3szEAV81z5+Y8yNDTIqmYO3WxgoFmT2RRqbWYvjtAIQ/Bz4JewYrCkYsbLMII25sQEk4cP0GzN0u24FAKJY5Vo79xMWixBK6NdTwkch77b91AbHYLUZFU1ozsV1Hwb/clfo3flVu7ady+Ld19N8HffI+0uE0wOYPoOt33paRxLc/jAD6E9h3QNumIwkoRaXqM8WDFeZ3GxAuVukvkKycw8YZqgPUXpko2Mvfwqhw+ehJElyDSrrSLFVb00liaYPXqC4b/7IUm7TdSTQ+dtcinElolhu7iWj2X7ZDddSe8T9zImM+xJRQ8G9flJEs8m6lnBnBKozCZLFLbnIGtLGGdHsYs5Igu8ZkarnEMVc+QMn9W5buZyCTiCwHcwN25kYW6K3OrVxO+4yMKFBdaZPu25JbrjFDtpsuBGqA2rSBdrZJFJfvvllLddRmV6Bi+1iYMmYZKC4eD1rmLtmrXMXziPoSMMFZKYKc4Vu7nr/ofR0mBheIgwaqNcSZQ3yCwwDYHMmdADbjUjSxTaL+HaBYRSZK0A31BYYZuqLdGr+ij6axGBJosSyJlcaazAqUsu/fr/yMzgGQpRxua1G1gcnYEk5b6PPY3dV2Z+8AxxFFLwHOwkIzQSMFKqcYPRiVEWqrNombA4NY48eZ6c00OKzTO//7vc8NCDnJiaQHo+tzz8MN6GjYwPD9NuQtdll7Py9t3IKCB++yJUmuhVPZRv3MNCMwC3m2BxBuE4BFlCz9aNNJbmkZ6FLBbYdt0eItMkqjSYW6wy9/proA3cMMRNEpRWtGWKNl0SFVFPI1xMZJQhE40yYcMH76SWJJx9+yhuI8BuTiLCBotnTyPjGHtTP/WwycKpt2FpCSMK8SqzJFEAXTlarQqnjg1SNvLEYUDZShFGA6kilNdNK5W4uS5kbIBrcdWnPsENDz/ImZNnuPLqaxh76xDxqQuUBuaQc1VcYdFWLXTBp6eusRYj1uRWU2m3oORxzRc/xczR40jtsjozWTxxBEM1iKaGcfIlhGOTSotMx/RcdRWL7Sa3Pv0kY+cu0DZSJBHdUZuGbhEsTLNw/AhuMcf9z3+JgdYkxg/2k6g5pOPw4Ke+xPxYiL3UJG3MIUiJ+gtc+cnPExW7mD95BiNxMM0Sp/ef4o4nn2bXfXdz+uwpJvafgFTRt/ca2ovzZEuL2DqhIDNqZwbAciANsLddir25TJTWKV5cpPrGYdK4Bo0KawwLpiYJarM88Huf4eLUEMwvEY5Nks4tgGxz/SP38NaZg6TtOroRgBnTJTWtoI2TKrxGwoJn4KWahh1jqQjTUKRxgvZztJQgTjVpqCjni4StKgpJqjIszyCyM/TsEt5SSPdYhcrRExS6+2l0CT7zb7/Bif2voJsZZlLCpoiFBSpEiYx2GqPsPEGWUvVCHMNGSBNLONjKRKchhgy4ePIN4tYiXLqFoFKhq5litRoIDJKVOVbcsY963qfnskvoeu4ztGcCnOmI3qUmLSMizWrkIwnnpmhJC4RNSUrMnE2UpqTVCmQhYz/az8zrBwithGjLKrZ/4DZmxoaJheD3fvt3MLL/PJujc7NmWU1aZplfJr797W+/p4j05JNPvt9j/qN5d8vmpZde4pvf/CbDw8P4vv/P4py77AH9ReQ9BKSf11f93ZrDb37zm/+P3x09epQ//MM//Onjllnm5w2hgUYNchDYEQjI3nobSj47P3g7aU8RPzEpaId1qUNeA7YJMqVv/QaqVsqux++Dnhx0e2AboBXNNKaComEBSoFhECDBhNnhEQiCTt38/AL4Ng0irJwDi0tsWtnPjn17iesNXGXSsqHqCWLfA7+EBhYBZVkgNTJMMTGxsGhVm1w4eaZjt1AGAgeZ92g7gtR3mQ8asLIbPAt6SoQ6I1USRxqUtEN9bJbK2CyYHgIDE0EiE7pX97HrI/fB1ZeAI5mdmqR2aghCAxFrQq2opAm24RK+dRzL1mQFg/Vr+qESsvijgxAapHFGHcmUDGFiGPpXYpXKeFrgIjBMEwxN0wFW9oKRceLUMZQFKgkgjBk5eAjaMfrUOVAScgZmf4mtV+2AMCJYahHON+nNfMoNTWFR4mcmPiZOLDGjDB8TNT3L1Og463buoJlG1D3Qq7vYfe/ttElQYYO+9WshS2m1WuRsl5JhkdQVavNGoq4eVsgyNA2C63dg3nsTCB/I42zZxJ133Q6FHGkWk9kGKmlBs8HAxQuQs4gsgVHsAsthx7X7oLgCYRcoFXsRhktp62WkwsSUGkcZoAXTF0c4eeAQOoixtYGlwMg0stLExWLNurUEMsPybNAWfirw3snxsqUBbXAcj77162BFN40sJdYa4bmEpkbkchQKBbz+fhrzM+TzRQqlbmjFLIZNKrSZGhpi0x17qU8Ncv78cTBj6O9mYG6Sq/de18nd8Uza7YRESTDNzsrNQgUjTrEUFHI5koUFcAyCrAorHIYmxhg+P0D25jHUxAI/+M5fcfTvfwAO0FWgMjLCxf/5T6j/zes4rgtGyrUP3EVufT/d1+0iykK0lyf0c2A69F26g2s+8iSsXM+HP/FpQtuhulRh1Z23drKNVvdA2SNEEqmMmAwhzE6ejwHaFaTCxhQOjmmBgrnhMc6ePAZpTBwGWCJPgk3c3QUFm2vuuZdaLCFzsZoW3aFHT0WSy2xoJrB1M+KStbRX5ol9aGtF0SniWy6NpA6r83iOBWEEK7ro7eshqdVxYsmbh99EL80QtGsktQY9pk8Sx7C5HyUDRD5HClSCVmf3au1Kir1lWL0SHIPYEUSmJtQSCh4t30QEmryywTKpRG02XraTkrah1iAWklQpRCEPYQzNECKJ57pMnjlPcOQkyUIVmhICxcS5i8xODFOzM9q2RWyCiGHuwAmGfryflBRtaTKdQK1CtbbI4cMHcLZugvFR6Otj7ZpVCLuzkvhTOSLJIElBw6UbN7N23QbcUjcijumNTJCAbTFvZ2TlPAhBf75M0fSg0YJaA8IQsozhk6dhchpD6s7fJRBlEstyMD2flmWBMJG+izIMUqlxbA/TtpC+TXnzWhAZRs4HxyXLNHg2xtpuFAJHCkqxQS4RiEKeQJhUGxVotPEaKU5bIjKFlJoMRZimaNHJRLMUeNLAFTam+ocvjFIotNAIIdBa024GYDhcuu0KcH10uUgLhVMogBIMHjhEfWKMtFElbNaJ64uEYRONQL2zKpuZikxolNHpLlXCJEhSSFPsYgHf9ZgZHQU0hDF33nIbV1y2DVKJ+U4um2nys2FRyyyzzC8hv6iZSO/m/372s58FOqVTd999N1u3buW5555jeHj4fZtt2Yn0C8jzL/LeTqSPvn/z/VNZs2YNL774Ii+99BIvvPAC+/fv55VXXuH555/n+eef/2lK/c/jzusyv5xorfna176G1hrLsdl1/z3MrM3BijK7997MzJlh6DOp776E8PRxumYjakmK0gG+bdJUCTguQbWBuW0rlYUpkrkZbn7mScZHh2FhEVRC5ChS14BCEeptui/ZwjUP3sux/+M/4Cwm3H73nWy66WpG//4VjMwgVjFJGDI6cpE3Tx6HuQpms03cVyLJ7CFEAAAgAElEQVTOIvI7ryKrJ2QYsM6HTEM7BSWwDQ8UlPtXMzlwFpSJFxgoLGpFTTtOCMo50nadvU9+hCRv8ZFHHubkkQMgJZ7wyQXgKBPTsAhMcDPwUgG2wZIImTNb3PPxRxk6fxom51lRz7CbiiCOiUt5Etsml5kk54ZpDp3g4rlTzJ4+B4NLGEs17J4SWRgw3apx968+zYXjh3j8i7/B6b/6G1YqF6SmbmlQGfaKXp547quUt1/K+OmTBItz5HvKZEkIi1X8QJFLoWRYBEZCdWGB+aUa2XwFkdrkDY+yVaQdJZjaI1QxtmlTTE28WKPimCDvEBw+yOYPfIC5sSkiM0QHi1zz5KNcePswrOjhY5/6JBOjYwTNBn4mMYVLS+VYv3cfuzfv4vTIKKxeye7f/wpHlyZh3RaYiJALI3R391IZGiVOAm742INMjlyERpui5VGPa8Ra0YhNuPpqbrjpbrZv3cW5Q2eoT0xAocCV117L8JGj5KVCaIFn5cjaMe3FClGjiaM1llJYUhFNBZw/cZKRc2dg6yqSJMLQFt2hiZ/ZZMLCVBbFxGUpzmjrkPv/9b9k5vwIyWIVnXNhbQ/t+QWSMGXvox/GWrOG6sAoRhhj5m2qcYjOFWmMjlE79RbsvIybHvgglSQjHR2nOjzE6YNHodrCihSbyt0spiFKCDAdkCZGNUQGIVqYJCoB18D/0N3suPd2jvwvf8Twwbeg2I1dD+guFQizlI233MiGzzxKsmM90alB3GpCErSgp8Tk0DA9eIi5Fo1GxHX/w+9x9Yc+TP7SHVQDycCFEWhHnD94gGo7wNp+OZfcdC0ztRke/NQzLMVtwoUKaTNAGDaJECjHhp4uwCBJwRI2WkKapcRhGzU3AwLsvE/kF0AYsPNSsGzsfD+1k0NYFQMvNCg6PaySFm6xRE1qLn3wPspbN7H3tlsYnp8lrldRjk291cS7+Wouf/p+6q8doxhmfP5PvsGf/8HXOP/qAdZGFnWqdFLVHZJGnTSLMIo+Dz//Vc69fgjD8AktA3vlCrqv3ckdjzzE+akx6lPTXH7NbqZGhlA5A2VE4Am8PXsRpybxU0FQslh79604F+d581vfhWKJtQ/dTnt8jopQoKEvcTEjRb1dZfrUCVhosyaE3mZKs5UwMz4Dm9ag3BByCuWa6PkAc7iOmpknc5qgO2HxyjOZPXGE6vAFPvKFz3H2xAnu+uD9HHn9DbLJaUqGRd5yaEYB2nfRjgOWi+vkGBw9j1xcYkMTVmmHRcsis0GuyHeyxwoFTu4/SHRxiB63jBMr7ChF6Yz69BTaUHhRhJVB2fVpxoosVSRSEnkGmDYxCgMLR9hYUtEMIrKi4K4vfpoly+Dm627i7MHjUHDZ+NAHWb33ahqHzpBPLHoiC60tZmSbB37nN7kYNaEWceg//Rhvdo6SX6KJi3QdIp0CMZZhkBceOu0I9wKNgYEEpAEZCmGaHcEnySiuWEvNKpJGKa1GBcplojQlF6X4jYDGxbNUF6fp37ebysGjsDCHmcW0VAT+u/2UgkxotCFpt9tkSPBclBBkrYBSrkCxWCII26zasJ7RcwMsXBiiyy/ylc/+Oo5ldT5Q33H8KqMz87IXaZllfnn49re//Z6P+ehHfw4Pv3TMEQ899BCf/exn2bJlC1EUcfToUfbv388f/dEfsX//fp555pn/3+daFpF+AXn+r3jvTKSfQ51l586d7Ny5k+HhYc6ePcvZs2c5evQoMzMzbNmyhWeffZblt/MyP0/8rIhkug6LacSqvbtJ+3vYe9U1DLz0GqrHItmyDn38bUp1C33zLpLrtlAdGmG1kSOQAufhu4i/fwD146PYwmBkcQRHWsh6pxrbuPoSkArqATmriNlTomttP1NHjtIVaFQQsGrNSgbeepXMtkjSiJX5Eu3ZefydV5C1QrLFJRAmdPfx9Kd/g7ePn2HtzsvYcN9eFvYfZd+jT7Dthhs4c+Q4UpvU2i244jI2XnMNS+dHsYp5QkfSdcUVPPVrH+fY+dNMTo6iZIqKAmqVJeKgTWhaSGWCMIkEJCLD9jxUs4klDFqNeWjVmZ+dIblwGjPXhViqksqE0p6rCGoLYNmk1YCCbJEIjdNOyY1VKBgmSc7knq9+msEjJyjOthlZWCRptth6yeUoCRfPnkc7FkoIhOHgpoL5OAGtmD98BCfvsbKYRzfrWFGKGSes6ipgtBO6zAKyGqCTjCzVmIUSFAosZRGlG6+nvrKLNC9I6nXKhkfJ8TBT2cmfUTB37gJW1wo+8ZlPcGzoIhf+/mXAhHqTo/t/Qnt6Bh2FGALE6pVEvSXqJweIRiuYd+/m+k8/xZt//G+hFuNs3oB8620oGcyfG8So1Cjkcjjb17EwOoqJg1yoIMtF8BwodHHTI4+y/wevIYKEpZERSj0lHC25cO44Im9hpRphWYhMYQkD09DYebfjmkNhKoGZ2aQ5G9b2cONXPsnk0ePIzKArMDGVSdMVSMMiDSFb3QtbV8HeK5n7yduw0CDX1c0jX/51LlwYokcKzk+PsW7fjVTOjhLXa6wsF7n89hu45rabGThxEVpNmJwnmqqwwe5ibqEOhg3NkC2lFeSilDhu0co5kGpEnOEmChtN3s5Rjdrc9OjD3PnkU1TPDHP+pb/jwWd/i31PPsqF8UHi8VGiIKQkbLpCSXzHTlZfs4OZ776KVwtJfQEyZZVVZvbUBXQ7IVIh047JxZe+xxwWjZOnYXgYlOIDz/wqw0PnUAPnmTl4gLXX7aE+PU11eoZ0YJBcoUwqJf3bL2X9DbtZGBqCXIG7Pvoxhk6dJUsjev0CQa1Cz6pe0izG7C2y5dEHqNQWeeyzn+Psj4+Q/uQMqxuCIhYLVkxjTRHZV2C81UDrlKVAUjk5xMArb6Bml+i/ZjvVbg9IKK7sZfzEEYzBaXoxeeXkIdT8HG6hRFRZICWju5USySasyiFzJaTOmBuaRow0aMsM9mwmqdVYu2kDCsnZv/kb9tx1Dzftuppzb79NnEaQdzE2bcLacQXRsREKfoHcVZcRpBET//H7iHyZlbt3MmOmqOFp2LqS9duuoHX6IgXbp7muDJUKVCIKUuObPna5i9jUfPjXn+FcZQpjRRc0QqhEmHGMJVNUPsVMJaaUyCwDmYFjUWk2aA2OsHrVGkZPncSKEkQ7RGcK38/RRncch5miMT0DYRMUFEKHlJSaVEjL5LEvfoGzbx6GVoQOEpAJJcMmS5uUDAvT1sRxi1LBQ4UpOQt0lBFZDtg5rEu2sPFjH6Y2MA0bVmE2YqJ2QDHTrO5fwVLBRq1fyWKlyvTbA9CUqJUrqHcVWRy4QGG8gakFmSFYzFmIXZex+YbdhJZN8+hZ8IqskAlzzRa5nTtYseMymjPDpJ5FmCYgBaadI1/qIYljNJ0sJmUosAzSKMEyLXRqIOw8gZGDWpXifXcQDl1EZZJ80KY/UrRVRJa1WL99G3PnLkKtipXF5Ip2J+dKG5gabCUQ2iDTiqd+49eRjs3i5ARduRJxvQ5S4hZ8ho6dZGFiFlM4FIXN737ltzEM8VMBqZM9uCwiLbPMLxvf+ta33tOJ9NRTT73fY/434fs+1157Lc888wzPPPMMMzMznD17luHh4ffl/Ptzuti0zH+VX9B1NoDHH3+cI0eOMDQ0xMsvv8zLL7/805+XW9mW+XknGh4iGJwgPD/AyOwUmUwpbdrBIzfdCUrQRrL1+l2sv20P2FAUDqrV5v4PPwjzFdZj48YpjA1jRQmEEQLBziuvglwe4s46UmV8gpNHDoNpkRFQn5vhxCuvgWOCjABNFITgFdi5dlPnC3x3CdoJRBpXmaAlU7UFSp4HXd3svvkmdu3b21lXQWKUS9xw8z62XXUFsSFJDA3KwHGczppOHEKlSjg9zfHv/4Co0QTXgYJF0u3TMDUtNOQ8lOeSkKGyFEwbJqs03zgCCmR9iVy+TE//erbuvRbKeXBdbNMh73fWcdJaFT+OiNIYmUas2X4JWikKqUnz8BnA5W/++H9lcmYad10fLVPhaIuitDHrMROv/oTT3/pLKJUxUsnE6AS2NpAZpEArS4hNiRsrrFTiaIFZKJLFEVESgG9z2W03svmm63G3boCc11nf04qEGKMd4TsFkCZZtcrJNw7A9CIID0o9IGxEXz9Wfz/kfFJDY5d8Nj7+IGzfRLO+hJckUKvD2DRcmMKpNWHHZshSHKnJCRuhNGd+9Co0mnTly5gIPG1DrQ2+zY5NG4kmRjh14HU8R6CaNRaHh6CxhGoukdgGyhKkSpIkMUEc0s4i2jol1BnYJjnhQM6H7iKhZ4NrgmmSCYtMCDIhiC1BZJoQtaEyz4btl8LSEnm/QDC9yJGfHMA1HcJWGzLJqTOnCYM2hrCZn51h1bq13HrPHZ09liDFiDXVwVGGT57B1gakGWAwXZ2jTYoncihD4zkOvmmTFy4A3jsBlfVKlcroFMb4PEwt0ZqaY3FyCsvphM8XCnnSIGB2YIipnxzj7T/+91iBpOR75Ao5DNuhMTuH6brUgiXWffwj0FWC7dv5zMc+CpaNtXIlH3jwAfocE+ZmQGdQXsHUa2/RGp8mmJzv5JhlGst22bJzB8U1q8C1YXU/e27eR2Z3oo9bQYOy5dBaWiJrhzz98adwfAuWZjh74E0Yn2QNJiWtqCeL4GSITd307bmi06gmNCwt4mQaZpZwvDybNmwG2wIhCOYrcGGcfr8bA0U6OQeZJkkSAgDTYhV+ZzVwRZnezeshy6hdHCefSUp9fVx6xx0U1q9h4Pt/z8E/+d9BCQra4Oibb9JeWMLCwFaQtxzCi4MoQxJammypwdLh47BiBVbRZW5+Bo6dBNOAdWvo2bieFI3t+oAE36Onu4dMK+azkMCGNA3RUQBT052Qc6Whq0RiGGjfQkqNbzsUHYcu0+48x/Ua84ND4Hm8+a1vw9w8Nga+7WJgkKQS0zQBA6RCWDYYFiCYIaKKieW5uG4OsxWDsDtranEGdAQYE0GqU0zTQCkIogglAEuQe/f51IqsUaeqUuxSmd5168l5eUAQyqizXtYKGDpwiOT4SdpDo3iGCfM1ODcIoxPYCqRhUHcFqSfYtH0bBw4cYHpsAnq72XHLTcRaYxRy7LhlLztuuwnKOSgXwHXJbAurVMTv7SYTAml02u0ALGGClJ1+Sa0JwpitV10D/X3cePddoBWUy5iAoRK6HIEr4MTLP4K5OVApWkuieoSTCUwFhhY4EhwJaFi/eRPCMiGMCMOQnOtRcF3CZgunkMd3fHKWgyEVhmVCqv6zz9FO5cMyyyzzy8Qv6jrb/53h4WGee+457r77bl588UWA962lbdmJ9AvI8/+J93YiPfL+zff/Bd3d3WzZsoUtW7awZs2a93ucZZb5R5OmKZZl8Y1vfAMpJcoy0K5NfGIMHQZMN5ZAm+jxCqV6zMTIJAkGc+06cRbj15q0Z5awC0XmbAMrFSSz09RpQ9FFTlVZKTySOGXdlTuZPn4KtI1opaRakVUqOLaHChJsz2VxdBy5bRP33/8Qg6fOk6QSL5enPjhF/+Y1VMYH6TG7cBuK4+dG6N63C6/HZ+Dvvg+NiBOVWS7MTdGemekIPTpl7yP3M7k4S3t+gVZlCfwc3cVCZ+VrZATP9TFSjao2wXHZ9vAHueyjD7Drhms598Z+6O2CnMkNd9/D6JFTuFj09PVQqrboijR1BDguTQvqBYvdH3+ES2/cx8ULIzhTSziEhL5A+w75xKZmGWBK3j5zCuZnCZoxfq4b0UiRArK5aWS3i3Zt/JqkOzHxUk3OK2EaNiIIcYWm7Du4wiI1FGHBpakT2o6BzueoCom/cRUrtqznimv3MDE7C1qyIFPcvMu1H76H4eFhoqlZYpXQVS4jogS7lWCEmrRWo3ZmmFwjQbUySnYO0/LZefnlXHftNYxPjCEsCLKQStbimo/dz9iBg7QPnyA9NUBzdIorM5/J6SEuufVqyn6e+ePnsIWJ4TiE7SZgYzk5olqLvJlHWhaqvcDM2AitRg1aS2BJulVGQacUuhx23XcbC1FGu1IlbztIJTFyFsaqLpSOIQwRbp4gaNN/ww4e+NTH+OEffZ3Vd9/PHXfcxcSJc9TiFmnOAEew9u57uPNLn+GCqwhNSesnZyhXAnKOy9TkOKraxNOKOMugqwfmF1GehxW1OHvxNC+//irmUogtY3KmQGWKUKaovhIkbdi8mszShCoj6yqSJCF2orEkGAraKEIUWd5hYWKS4RPniCcmyOMxPnCBkcNv0z51DlubiCQGE2IXkoPDFC/WWNPWeGWPudocltKd9qwrNuI/cAP6tu2Ef/kyzIxz9Pt/C7NTqNkJqqNDDB1+k6TZxJQpflPjBYpkZgGz2sJqxwgJURQzXl1k6vRRUBbkiuz/4SvQbIEQOJnEURJtaVKpGZwaZurHr0OYsnD8DEXTJpFtRMFiNmtSuGYLpZVdjA4MQCa580ufZ+TECR56/HEunh8gqzeZujgIi1VoxKjZKmtEF1mrRYuUNAWd9yANeezZLxNWW7SnZ2k6Fvc89RSTpy922tkSgakU9Timb+0qZo4excjoiDhBxuiJcywMjZEzTGyVYcYZrWqLh57/GgOvvUpMRjQ4gp1IzO4caWWWJ579Hc688mMuv/022mu7mNq/n3Smich7PPp7v8nJN36Mt7KfdhDQ6soR50zIWpw/+CYYFmk14LPP/vccPXcS5UTc+dGPcPHQMdJQY6fgZgojTTAMQVZvYjRCTAy0aWCmKSIz0IZJLAx6N6yjlcQgU0q2h7Y9ZLuNumozQXsJpR1oRIQTi1TmFztVjKaAtT0o1RE8tJHRVBHa6bStSWGQKYOC9GmYCko57vsXX+L09/6aW/bczrYd2zj/6psYjkE+s2i2mkSuBfUmYFHCx4gy4u5uaDZ54Cu/zewPfkTLhrDXgJUFbr3nfkZOXyB6621+94X/QG5jPwf/+j9ir19PY8Nazo0OQE+RS7dupTI2hl3uph60efIrv8nJM2cImw3KhRxJu42NJs0khuuj38nnuu+Zj1HesoEzgxcIxsYgiMkrH1OmBDoj0WC1UmStAZ5LwfMxw4g0UXSVe4iCmFIiUKkk7Olm/w9fZmFyAmwLSxk4UiKzBGF13kqWNNCpxLUsvvrsb4Nl8E7tKQCG0em+XGaZZX55+LM/+7P3FJF+5Vd+DlulgGq1ygsvvMDnPvc5nnvuOfbv30+1WuXxxx/ny1/+Mt/5znfel7mWRaRfQJ7/Lu+difTh92++/1be3QN94YUXftrI9rPXBz7wgfd7xGWW+X+FEIKvf/3rJEmCIQQqCNhMiapl0rdnF1fffSeTf/sTovMThKaBXunB0BJrhuukkzO0PYNIS9pnRrnuVz/ChdoANOrQTug2bLIkxXBcRofGIE0hlyeNAnpLXST1Np7jEIiItszIZR0H0JXrL+f8sdPQ10XmW8STi9Rnx6HbI6w08YtdNOo17vz44+zedhknvvXnOE6ReGGKsLuInpmCWGKYgrMXTjJ76ihJtYFQkjX5MlpIigWP2dFBskaAbeWQXg5jyyX07t5B5EkWzl1k6dwwZBn0drFm+07mLoxiGCbKEORiA1ObWKZPgAZfgCkZOHKMHqfE0sAILNXxSWl6NhQt2oYD3WU8v4g1tECWF5Su3M7lO3exNDyJZ5lkeZ/f+Ma/4eB3X6LHLJGGCTVhoMMQK00QjkFGRppKVAZtJVAresBxuOmrv8nA0TegaPKxf/37vPrv/x2NRkQ8MsbKfBf1E6dpXBhiOGnB4RP0rFqN5VlM1+ewDYO8NjG0yerb98HkPIVEYdkurTAkaraYvThAKwyp1SoImZAFAXp8mtnaHChJvpVQTjVbtMdAukQmKtSnK/RHNg1DUbp0CwuVRTDzkC+Q1Crs/shjTB+9QFk4BKqOUWkhPQvtdOrWc8ohaNeJs4yKa+D1rKa9VCMXZZg6I9IxssvjwV/9GDP1JlZLoUioTQ4yPD2FuXodte//mMVaGxdIZEwaNSHn0gzaXDh7Hs6dpbW4xNqFGKNep9BdotquYycS5RpkrYxbPv5J2LGV+vwUdq2NZRpkcYybGMSqTeJoZCkHOZt7fucL3PDJp/C2bWDLdVfTzDs0Bgcg1XhZZ8UlMQ2S7jyZAyQhxRWriOaX8HvKNLMQWa9j1lusNXzKYUZmSkJbkRYVTubjWw6zVsRSUqVcLJJLFK4UWF1FNqxfz+jLP4KBUWi1sKI2KmxQLufQKkEHAb2uR1nY6FigpUQGbTwM8oZFkqVow0L5Lqzup2/HLm658WaG3vwJ5BwoFSAM8YWgnSQYviCuN8l7K8gZHmk7Js4JwpUONT8BW0Jq0zx0BmopV+y7iZ7ebgbr09hrupk9sB+yiJLwKMUGZcvDcjxa1TqmV0Dni8QlH50G9Fx3Hbaf5/Rb+2mWHKjFLB0forawCK6D11WiIWJIItLjw5hJgCFTLAmesshhd0Q8JJYCR0kiYVEtlGkfOQoo8llM3oVWswI9JXSquOHOu9m2/TKO7H8VpudAmoRpCnmfuWaV+z7zKU4fOIZ95U5uf+geRs6dwrIMVKy49Z4HeePoGYLTx8hvX8eK9asZPzuF17sSlMATJjKNMFAIJI5WWEqjRYrQILSJNASRZfKlf/ksg4MDtBYW0ElEGmXguTz63G9w7rXX0S2FoQ0WG3UKm9aTRBG43v/F3pnHyVmV+f77nnevtauqt6TT2feQQAh72IREEQSEUXQk4OhoUEZnROca9C5eHecaGGd0xlEHxh2GURjAlSWEJRBITNJkTwgJ3Umn0+m19nr35f5RSUbUuTjXGVGnv5/P+XR11al+T9dbVe85v/M8v4dFb76c4zt3EWoage8SyBBJEkgyxArEGnIYYqc0Oq+4BLU1y+COPRzZtIOXN/UQV6vIpoKry4QJAzmUMJyIuFxFBB6SoRISEzcapCMYfWUfUdbA15uFFCQHBn66nURrJ09vfpbdPVvRbAe/WOTcD93KOILOjkn0/fARJKHjl2uQb2Hb0V78wX7IppEqFXA8hB/iQ9OEuy3Pkj94K08+dB9HNz6NdXyIa29+Lwf6DmOVxiiLCDsO0bMppHEXrasDv1bG8T2yRoGG5+MoKo7rokcqupqkpomm8JZKQaWKKhTUOEAiIjohuoUBqJqOoqvc+id/QoyErL6qPhtIEyLSBBP8V+Lee+99TRFp1apVr/cw/93cfvvtXHPNNfz4xz9+lX3LXXfdxerVq1m2bNnrNjbldTvyBP95/J6e1VKpxA033MD69ev/n/3Wrl37GxrRBBP8+gRBQBiGqH6MGkBVD6HiMPrk04wOD4IcYgUukRWx7PMfp+fP7qBYHKZF1ij5HnrWwC0GbLznXkiF6KZBa9GlJHtYCqhGEimQkKZOJ0oKmNZGY99RcnoCyw9Z9ifvpecHj+C9XIHDx3lm+HFoRHBaG3985//k69e/D2ncJpXLUMsLrIUdUPX50ac/i9aSRiMgGBtl0kXncc1b38ZdL+4gI8k45RKRGhBYFQrZAtWxMoGqMVyqMHj0JRKT2lBdhUjPsnDZWahnL2XLfV8DfxQOjiJbKqFi0rZ8Hpt37QHLwjVTYJUJzp1D5fARtMEGOd2k5AQQCJR6jW1f+Se0pI6tuowrJumGSk0ICFWu/9MPkgoFT3/i8xz1AuKEgnLuXKznn8Ns+GhWyANfuBsChXHbwtNCzKsvpPJ0DwnLpe7XQJVQdBXJljG1DDVLgUyGo0NViHWQNL72oY8g5dqo9PbS3pLBPz5AwVQAD13OcPHq/8Z37/gMSosJGlQFaD6UXYvE5DzjaUFWN3Alged6ZKd0Iclw7JVXyGbT+KUqWTNJKdSR9lQIizXchVMxli7mxXVPIeYsgqBBuKmXQdXCW9LJvFXX4j+3ldL6Xbzrto/yfOUY85dfwt4fbEL2PLJmCtVVqCkGybOW0jg6wPCOfnItM6hWRuB4DQ6OQiiT8SSiOEYTKiNHjrNn64tENZtwpIqr1NBTBuJAH/am3Zi5Dqp7DmEZMq5TJy0EtSBk1Z2f5+GP/HcUkaOybguakqaiBdTCMiQFXtWDpI5WlehZ9yz2OTOhNoonYpI1G0eCQMSYSQPbc1D8gMAJWPfXX24GITgNiFVoeKgoIIUARBLYOkw6axEzFy/g6KHD9P/oWTrzbVSNiNCxm9UCJSg7EZoVIRGjB+C7EV5OpVitgOqDkUQdd/B9DzuTxB08TvEbD9GtZ2gkZewoomvBHBadfyY/uOsuQMHIFLDGKhgo1GQbUiaEMrJm4I2XaEu2g6FzpNbg2j9/L0/c/S0eX/cMJGUu+6ObmDm5m6/d9nFc2UTX0tj4kFQ488MfYMcP16Pu6MW1XBbf9n46l8zliX/+Lt5PeuhKzcD16ux55HH2b90KjXF29+wi3TEFq1ilFtsUFsxl9Qc/wCf+5E94wyc/yPP3PIw3PA4piba3XMMk1WTztx6EDHTf9HbG71lPuVhi+a030SiVeOVHT0O+GY1TqMQcDxwCVUJDQQkDotgjVmV8AWoMImymSbVkUuht3dhH+6mqHo3IIh1q2IeOcnBsHb0LDiGiCHbvhXQaLZUkrDnseWQjc1Zfz756FWoeK5ZczKPf/DqUqwS+x5s/+AE6Zy3m2Uf+Htq6aWzaxXOHBuh4760MP/h9kt15ju3bia41y8KHIkaKI+QYTpb78gXECGJZ8MWvfhX7yEFIJQmKFSShkMu1svUH66EuEKFCKGLMq5eT6WwnX7Lo/+FGpi9cwl7xY6JYRY6br0UsQRgpKKGKEgp8OYAoYPJpM0GX4Og4RCqtNY/Y1Bl1GqBLiLnzibbuoUPWaAQBQV6nEheRlRyqBnvWrUNt0UgoEIw0CHA4OLoRwhBreIArLnknhw4d4tBQCbFwHsWBEerHx1k0qZv+coxqN/ASGsQSZ6xcyQ4d2P0SqUQSHJdWM8n+eqyCY7IAACAASURBVBV0HebMoM8rQamvKYYNuBzdsQfGSzB3KlRLMF7Fk7MU0iHDmoCEQub85Yw8vYOWGbNZcukFPPvMk1jDFpYbQiPitMvOR9EFu7ZtI65Um2fihCdTKABVp+rZeCJETumIE2dLOpmtEjGR0zbBBP/FiKLotTv9DtLT00Mul+Ptb3/76y4a/Ty/w+44E/ybvEYqG/LrN7Rfh9tvv53169ezbNmyU6UOV69ezZo1a07lg05UZpvgd4UgCABob28nkUgQ+iGmEFSE19yJtT0Y6Efr7sIiBFlCb2uB9iw1FUZCDylslmIGYLSGNmJRsCL0MMYnhISCH/koQsZIJxFtOeaffxaO5wKgayaeLsDQ0A0D0i3IPqiSBqrMIz2bQYswZBC2C/kkweQM6oLpYLt4A8eIJVCIKfYPsP35F6DhICwHg4i4XIMA3FIFJYYodFGSOkQ+CxYvpDI6gh2EpNpaGfddKJdgaIycmiID6IHH/GkzWXb2uSAECAl16lSmvelCWDoHT5LQfAlcCdyITk8hE4ck/Ag0Cd+QafEVEnUZ0xUcLo0xLLnNRazQiKoWL5eHQAkQsaCQbKF65Di4EX4cgRzSfslSImxcJULkM5A0CCSBkFVUYUAkQ2Ey1COUUkTaVqHqI1dtUrqKrkpYeHh6TEWyGHxhM2OHjmBoJookQIZQibAkHxI6R3pfQrRmKMsBkxfNBd+iUq9QrlWbZuMNCxMZI5QxfJWoGjAjbkHTUozlEnD5QtIzppNt6Qah4gMENluOHMIyVaIwondwCLmzjQeef4pYN/CDmNCJINZQMnnaZs2GeQsonH42rtDBzEHVBaGQkBSUIEYPQfUjUGUOv7iDxsgYJjJtrTm8kkU+lmiJJBgvQ93GKY4TOxY5zUCPBT2bNtEaaxglG8mLMIjQ0yaW5EJLElQBhChAd6GTSTOngSGjmgk0miKErEiIhkvalUhaPkk5CdUAig4ESdSST4snmC2lEScWmNHJtJekTro1T0fXJFBUcHzsSrUp6mQVUH0qps9YAgIBehiRb0AqkBHpPGrbJLSSTcFMEBBiJSLCpEScNshKGlEEQRAye/EiLEWFRAJ0HUfVCBSDSE1AVwe0Z0CEeKqEoukUG0Vc2wM3YN3DP8Lq7QehQK6FilXn2Z++AKqMHQaEEUSuD91dDHcXqGVMDKMFQp1ZnbM4dKCfzjPOAdXkWKUZZUYYkUACO8QMdeShEulIEONgTcuypdgPqsCf1Ynn2c3P3ZsuxZzSyZGjx5BdAVO6yba1YTkumBJdF51JcvoklKpDorUVlBBPjQnkmEhITcGEGD/ymxW+5KY445+IjH553x78wVFUq4FIqmCAbHu0IcjGAufQS1iHX0E106SyOSRJIvICkpHMlCndBKoKZoaxA0dgpIIkq6DA8dIYD697DGQFGi6KC7Iv0zp/Pm0XLSc1pQtSCTwZPBlCOSKQY0IpJpY41UIBSBL28BBkMwghUBQJXdcpjZXo37YbHFCRwFCZ8+aLGIxtgmwSyTR5/LEnAEHkBWTMNEokmi080SIZK7TJ5LJMnzuTqdO7mwf2A5KERJ6HrqvQlqPr9IUgC9Q4RgHs2AE1JIxtEppCPpkk0CUi36PVgYLjk1M0sBqkOtvY8MNHOPTMJiZn80SVGgmhs3jWPAb2vYLmhEieS4uRhESS05eegTZnNkztaka1hjGB5TT9q3UNIp/a2HEwFYykgRQE7N62DVwXdeFcWDgPDIPCpMkgFLpPWwiT20h0dYAqM3n2LGacsRgI8XQFX5EgCJgxfXozxbvROHW9jKV//ek7Nm2dHaiGju35hDR1owkmmOC/Lr+vnkhr1qyhWCxy1113/VYJSDCRzvZ7yacf47XT2a56/cb3/8u73/1uJk+ezMaNG8nlctxzzz2sXbuW1atXs3r1au6++26AUwLTBBP81hBGzdnviUWJC9iKQp2IgyNDbNm3j9h1SUkadUXA1A5Yfh7Mms7bVr+P3ds3Q3mcsae3YYwHeIpEuKANahGBlAZJIhWFCC0irDoIclSmTKaw7Azs4jiR8PBbQnKyzLQxn/7yGJbsIUUOI/sPkvAVJC/AdVwsKSYxbRLdp5+GPVLBGqkQuCpuGIEjE4/WyHW3Yg/0Q1YjDANaXBXdDTm29yXCE7v2ciIBsUReS9MSm0i+D6qg7jbA0Ljsfe9j9097iBsO/bt3Uty6EaSAmZdciiWblMdqhJkM/f0HOb7zefAr4NVIRTKpS84ml21nynODlOI6diKEmk+b16DSkaFil8jbIbaeYPmt72H/vi0EaYPjW3Zw+LkttAQ+vtqgXh4gmtvOBeeex9jz21DsBp4u4eUMUrpGIKB76mRGduwnaimw6L3vYerKNzJ4bBAsB708QiQHJFMqM2dOYWTnLuzAIRGrTCqFWI5H2JKhno3xQplclCYMTQ7ufwnZD0iqOnalQQIFNZZBVvBLJSLHIXXhWXgXLkEJTLz+Esgy+vQO3Oo4LS0ZUstmM5gViPEatudgzTSxEhLZWQupvLANdfp0vJERZr9nFWPbdiLyHXTPmkJx716O7t1JcesWwvW7SPsCR3JR22Sqdo3Qdym/8jLajC6yS2ZTLA6w5O3XM3yon8nX/CGT33AxL21/npZchnq5hKrEuLoEQpCrxzQA2VDxggBNkZE1cLw6pAzIJKiYBstuuJ6dh/ZTObKfxqQWcCXsmoei5GjYEdk/vJaLbnsfvc++gNrwGDr0MrWeHVBzCQ0d23JQFIOkZ1OVwGvLkluyCG/aVPxKBRQBHa1E1SKBLrCiOnbsI4KQgJAopVI/PMShRzcSbeunnjJR33gutmLQ2j6HZYvOp/9YCZImZGRcQmxFY0qQImjtZPm73kH68vMY2LkfedRG6Fns9rgZhSNBZsym7owjPJ/DLx/i4NbdxHVoyXTglNzmec7nuewza+gbHoWjJahYdKoJbL9B5IfIcUBXKcZ0qxiBg+VVOL5vK+Mv74NGgBr45Aut1C0L0T2ZsYHDsGcn7tgAqQ6DXYe2UM6q2IbCkumzqQ/2E9aGCUSE67lgpggiiekXXIynajTqDo2dB3hp6zZIKwx+/9lmNa4WGVIFKv/8GO6REeLQhbESI89ux/RiSCTYvXkzR186iJNQuPD6P+Dw89tJTp5BJPkkShYtgYoQCaqtSQJVoi3WSdQc6kZIaKoQJlEPH2JuqsDhchHyrWTcHO2JLoKKTVWVSL7lWs567/soJU1qe3dDSsOLHAoJnbGe7diDRxgp9jEjl8MZGqU71cX+PfuRZ3VTuHgJ9R09FOo+uUBn1HF5y6q388L2F8HXQDIgiOC8M2C0RHeUxGnYeKkEcTJD6J8Q9vMaV79vNQee2oyqJwgySSK7AnaDdMpE18DDZ5KRYGjnIWobt0Hgog4fIgwb4Dt02YJhMyBIyrSIFLFTI5fLIhyLcugwurOffd97kiCVgmWziDUTt2ajBzHLr3sX82YuZO8Lz1HNJanZNmlfpy3O0ijZpNKtjOgqrRddSuVgkXSk4qohimWR0HXKaY0gmYBqyIxIJunb7HniB4z89Bkax16mI6nguxZJ06R+fJjK8AjnXHwBpu1wZM9evJTBaORAa5rl77yeowcPIbsh7DsKdZcobHrsYSa47rprKNoVGsVhLv/kGl58agPv+uCf4gud/q3biSplzlqykBeeWEcsgTMyjNKZJpSKVF/YQd/YIPlUhrgRopg5SjUPzzPIvf+d2JUqH/rc53hmwwY+ddtHwPXRpBOl2aRmqt1ENtsEE/zX4tvf/vZrikg333zz6z3MfzczZ858vYfwbzIRifT7iPortN9BTpqI/TIX+lwux5o1a+jp6aGnp+d1GN0Ev8ucf/75FAoFNmzY8AuP9fX1ceWVV1IoFCgUCixcuJA777zz39/v5zZBZEAg2L5rNzQs0FQacgBhSG7KbC5fcDb8cCPfu/NvYWQMKaERDQ7SkjQhCtGuuoJLP/oRwtAlTuu4vkdDFdhplaImc+kfXMdbr78eRkpoo0XoPU7x2W0c2rwDJB/UmNBzEeNV4lIFJ7AhjsGuUR86SnngOKOPr+fM962CrhzXr/001B1kK2B8w/O0eBJirMECKUdMjOU7RHFMpAi8tE5VjnFUmZJtY8sSRroFq9Yg1T4FAplH7vs+uIKMG5FzfDINGxyb3o2bWLT8Ashl6Dh7GdlsFqplFC9AdkP8SpV9/3Q/JQl2Jmx8LQFdeVg4iVI6S8Mqw6QcUTZPsrWDuCOLdMkFtF9yPjQc5JpFJPkIAaRNvAef4rnvP46nKDimSe68pZAIqJeq5CuC3X/7XdBTLF15Ob0vH+blF/dz+gWX4VplEkmBiUu17wA//cY3UCMfJJ9QNFOnMkaaSqnOwuvejtI1jXE7wnPrLHrDBbi41AIXU1Ix/GZkQiKIaKlHUHaZnmhFqjnUel9BSyRJ5Aosf+tVcNpsjqcUyGU457KLMEyNKKMz57zzueDsi6j8w32cf/Vbqf/kEVLTZrNo0SLwDbyHnubQV+6jY7SBNlKCchVkh+i6xVz4uVtwazVSuSSUiigorJgxn2M/eRxKRXb9+EHOvPlGOmZOpR64MHcOvZUatBbwFQMiAbaDosQYvoQeKMiRQixFIEW057PE1Rp4MelknqQvU2jtxHj7W7j8f32UGe+5Dm/eDEbsCsbsmaiSwvp/+CrpKV1YiRAKOnS0cO4H3g3nzIcODS8TUMqbzQJZdZ/R/mGWL78ICq3MX7WKN974Tq758C3k50+jHnlIgYSKQI1UiJIQAIU8Q90FOH0O4oKlcP5pjEkuzz3wQxJ1mCS3c9W17yY9byEEEcdCGyWWWfft7/HiV78D5aD5OXY9CnOWcdXNtzJ99mIioJo1aGRUbNkjSgCTckiTW/nwl++AWW3QnW5Guw2OYeoJ2jIFxm2LKJ+npARIXZM4WB8hOPFdoQUROIADZgAGUB4vg9C4/IwL4MVBGPdQJFC9Ohwag+9uYP7eCr1Pb6IxMoJGRN7QMZUTOe+dbcw+bSGxKqNLCsKPSXgxjJRoqTVYfO4FvPnWD5EZaqByQmhRoTVdwAwiRORDtQoDYzAwwpRlpyP8EHwYGh6mXqqhqll8FBqG0vQuSwjG69Vm1bfYh9Dj4puuJ2hJsb0+QFxQQBOcffMN9KdlhpMSycVzue6aa9m3Zy/jW7ZBJsMl73oXkxfOo+eB7zOyuYc0EUq1QiP08LJZek0BHW20GwmGHnsaHBdblvATCpUNT/Gd//UJ2LKJpWecCeU6M668mtY5cyEWFOs12tumEE9qJyxXmpXWVAXmzmH35h6QZZx6jZaKS8KOSXuChOMRRR6R77D98fVwrI/ln/xT5HPno9a9ZmpVQqOCx5L33oRy2YWUAx8fqLk2spqC6ZMZe6mXbCDAa7D44vOQO7MEeowkwYbvPsT9f/VF0DVC12oKpYkEg/Ua5qyZjGKReeNybDONn2yhrApqhoyZSWFZFng2l9/8DtqXzGcIlzHfAuEjSR5RtYRdLWMIgVeqYYQyhze8wKNf/ya7H3sKWdZQIhUyWRAaHak89I8Q7j2EmWtWdCOXZd6VV9CxeCEPfvELDP/gRySnzmTPk8+CIvMPn/ksO79zH/6hw5iy4NEHHmBwz37qvQPMfcNlSEYS4YEexqTLAU7/MLEVUazXIJeF06cynlNh6iTu/MqXMdJJJMDQT0xq42Y8Uvhzl9u+vr5T1+RfxoYNG07NAQqFAldeeSV9fX2/0O/OO+/8lfpNMMEEv3miKHrN9rvA3XffzcqVK7n99tsBTlVie632evB76p7zX5zfoDR4991309vbC8CyZct+4+lkJ48N/6rWlkql3+gYJvjd5s4772Tz5s1MmTKFSy655FWPbdiwgZUrV+L7Pqqqkk6neemll1izZg3f+ta32LdvH9A09Lv55puJ45hEIoFhGKf6Pfzww2za+Pwpf4aT2TQyzcnu4JGj4AWgKSAisEOsV/oZ1nY0F42vHAU3RFEkPBETGgJcGSybitaAKW0IwyDhhFTq43gClLTGjh3bGDp+GD2WSeNjuQI7ENQ9D9pPpAvVjhOGIVIYNifdnoc8uZPQdhjveREmFZBSGogARwqbxr7EoOkUIp3Q9TBdiUhI+JrAj5vT91mnLeDg7t3g+SjZFJYX4ngeCiC5ITgBpX2HSPgCPWi+HrGgmZNgWbyw4WlQZKIo4p1vv4G71+5CBUIJwiCm44KL6ZgyhdFpBaSBGgiZSZcvZ+SB9TRDUwLKUgTFEi/v209rNsdFZ53Lg49vRMFHkgI8z4PIhFyBhCNwQrAkj6mL5nFU9aCvB5HJwJgDmoYhJJRKjerW5+ibNxtZVbH8OpFQMVSVWEuil8u4kSAQ4MoCRZZR45CsMGjrnMLIcINQjlhywVns3fQ0fhhgGCb4XtPEN2x+ecuxYGTPAcb6gOI4XqYTb+AIvQP9zeiYIYejvf0oWhrHcYiETP/2vYz2HYVAsHTRYjapJlKxSt/LB6BWab7xSlWSvo4lIrwgAF2lKhw8OaZFT9CIgGSCyPHo27IDWZiE9TIsmEHvQB+SfJzS7t3QP0T3aUuYO6ObJx/5PoqkYugafsNCiVLNd7kkQBIIIgLfR1VUVBRqB/rYGUBRimBhN33dB/FbDFa89x08esff4pSGefell3HXlueo9fU3BSrLAVmQyWRYfPZSBlpSlJ59Fho2woO0maA8OMy6v78LdJ2DO/bgdubpe/JRzJZs839Xk0iBgqkZLFl+CfacScTZFLs2bYIpU8jn2qjrMu7+Q0hdHXjFGsf37udJt4zj10A3iYOAoSO9MLkDvXMy7pFxcq1dFN0aQ7v28JOX94MnSFNvvgZKUypGkqE0TjSpEz/yYXgIZs8iLpWh3sCuVZEisOIAfBt0iXrQgISg4UjoUQSxQISgRDEKMUk5SWSYYDd44kePwPE6xBGqArIXkyMBIslLj2wkFB4YBq7VIKHKyEggQpIJk/HjAzRKRUQUIojQJQnLDUkZBZKJBEYA1Vf60VUFAguzu4vGkWECAVIUI4UR+DGEMcFYiUO1Hc0SWo0aqIJKGBEREuBDMkPXktM49uMN+G6EoJl2JXSZmlNrfkUmTdKL5hNlNCqxDQlBV1uenqfWUdy4BewG6AYLJk3mqB9iaAaaBJok4Vse4ymXILCYfOllDD7yBH0vbIVjwxRyacblGr5kgWrA6Ai0tHDWonlsfwTk0CeXzDPm+wg5wUitxsoP3cITn7sLGh5tS5chuidx+IFHEJpCZEWosgKIppBhJmn4VjPq1POgNU9HrkDsh4QRSJpJrKgECJZf8SbUfbvo+fEWQCAHAbGhM3P5efS+8lgz6ilh0rd3H/WBfvAtUqqM8GxCJwbFpeP0+ZTHxpp+ZdkUU89dyr4Xf0rVqsLBQfAa1O0GiiljBz6RIsA0SCdThMTUNAnPdsHQiMOgeTHyQwhlGqFFurULp15uVuzzI1KyBnFIHIBTrbB/81ao2mCaWKENSEw+72zOf+NlWNUS9+/YCJJCY+d+evf2NTdKXAeiCEVTCRwPkBAtOaKGQyLXxjzV4JUDvZSJ8VUVOzhRSjGfB03AWYuhXIOBQbpOW8ax3qaA02g0SBrmv3mNv/jiiykWi6xZs+YXHrvpppu49957Acjn8ziOw6OPPsqsWbP4zne+c8qI91ftN8EEE7w+/CbT1X527btixYr/0IJOvb29r/L+7enpeU0v4NcLKf5dTRKc4N9E+vhr94l/MZDi30VPTw+33HLLKcOvk8LNihUruP/++39ptNCvy6xZs5g5cyZPPPEEpVKJfD5/6njAKdPtbdu2/dbljU7w20lfXx/z5s0D4MCBA8yYMeNVj3d3dzMwMMCqVau45557Tj3nqquuYv/+/dx22238zd/8DYVCgVKpxNq1a/n4xz/+C/3uWLuWj3/8ZyawUnPOXizXaZ8yBYIQlBjCBqaURNgCFRVd0qjFFZJmgppfRmtNUS3XQE3yjr/7LN/7q78B2+FNH76Nxz+6FnnpDLLTOymuewY6czA0gtGImKPkKatQtC3sVIpzPnELi+bP4rt/9AGiCGJJBkklUFVmnraIltY2tjz2OGRTUEg1Iw1EgC4yuKVxOi9dyvgzLyLSOq1WxGgc4qWbApOUSfKxT6xh165drLv3PlANDKEiHJeWKKTkBCiGiaYkUO0ANYqIpRBL86jqJ7yiYg2MFpBVEi0m0vFetNDD9yVcEvidHTCni+s/diuPXvEBlDOmcc5HbuTJj/0FXXXBqFvGSwmI08y7ZiVRUqM8Vmb0qc3QsGk1VCpxDe20mZx+wx/ywp9/GbO1gG14sKCDueY0ALrOWMBzX/segVqFsREkvZNUaOA0yqhJm1i20CWdOJSJyz4FKWI8IaiaErqrYTYEyUyOY0oE7S0QhlAc4owbrmfHwz+EWo20ZiI1bFQUhKQSxTLJZJKB8VGi1hRTr3gD/bv2ccasReyo9zP7onM49P2HYNBFUlXihk3H7FkMHzgIkoKQNaKCChjw8iAs6oSxCgvOWka9UaTxzHYiKaZsxOSkBCXhQDpJy1CVas4k8l3QUrQ0JEQoELkM3lmz0E6bxthDPwYpDUfLzLpqJR0zp9DzwjO4W14kr8goWChhngiFUIoIFJ9ABM1dQDemxcjg1V1SRhpLhVG9Ci0aXL4cqg6s2wS5AtQaCFUnWayTDCScKKKsyRA6MKuL0886g+Ov9DKyYx+dgUzZtTHSecpS01MFtdlXyqaIR0cgnW6abJtJKFZBT8GMdlgwDTqzaF4Sb28fzMvzjmuu5aH/cQf+8RHwHAgtSJhQt2ixY8pzu0gtWUC99yhTW9q4+vpr6B3o59HvfLNpNlypIekJjNESsiwTuBG6kSLSNXwJnLqFNKmDuFIBtwqyTFbVcSwb15CQZnZxzsoV/PRfHqTrqqs59o3vgRuCFGAGIWoIrXqacadORZYhnYIohHQe7BpGdZhEAA1MIjnFvOUXsmfL0yDHFCILUxI0woCS7yNls8S200yVREL1A3RZgBsRyBrVrjZ03UQcLmOlACNm2rlnUnrkeaqaB5FEOhDIkiCUgLROrTKOoRhEToBn6OBGmJ2dJGZ30XH2As5csoR7P/EZstUGUexSExIkc7T6PsKuMRI70NEBjtL0hcMDDYhVZElFkQTuyAipXB6rVCafSlGvVEgnEsSuztiUBNNueDNHVJvUyyNYG3Yxb7SGp0S8kqlDIkm6Iqj5Llo6z5zu2eztPwJenff83ee45/NfQjtewYpCFv7vW3jpk18jb0P3DZezfXA/4rmdRHkVabxObCqkTlvEGy+8iIe+/A9IqkHsuMiqSeiFyMkUoeORkX2qUtzcOfANuHQudHfBP6+DWEbzwBMWK/7qdp7/y2/CeA2/O0/gF5HcmDhokHR9YhvaJnVTFSF//Od/yl1f/xq1gWOQLzDvxndyrFGhPjQMz+7koje+hee+ey9ENXJmGsuxcUUE02ZC3xAUTPAs2hfOY2TrNrRQJ+eraIpBORbUpBjyWXDLaH6MXqsT4yNUjVDXsFwPUyRwXIeoUwMzxa1//WV+8tjjHD30EtFPnyWj6mi2DKGMq8cEkUvCMLHqdYx0hrpQ8YMAOrtpX7gI99AxtF1bGG1V6Vx5GUPjo5x50cUc3rmf4uZNzHnnOxh9Zjuzl5/Nts3Pk3Ftjm7dSlqRm2KmBCAIxb/6an/0ox/lC1/4Aueddx6bNm161fV9w4YNXHrppSQSCR555JFTm0gnN4WgGd3ws/327Nlzap5wsp+iKM1NiQkmmOB14+c3gX8Zvyzb4N9DT08PK1eupFQq/aetfXt7e+nt7SWXy7Fs2TJ6enp+peCI16My+UQ62+8jv4F0tltuuYXe3l7uv/9+isUicRyzdu1a1q9ffyoE7z+aFStWsH79+lMfrtWrV7N+/Xry+Tz5fP6U6faEgDTBr8pVV12F7/t89rOf/QUBCWBgYIAFCxacEpAAZsyYwU9+8hMAHnjgAfr6+igWi5x77rmnBKSf7/fw9x9u3hmfaBHIPjRKFdRYQkskwfFJRgLfbuBILnXJoaZ5ePgk0gYtmo49UgFNpRAKvnfbJ+H4GJgmew+8jIJGGCd5w9XvRJ/UAdU6EKHM6mK37lLKmDRMnUiT2LdpG+vufZAoiBFCEEQhXuQRODbzZ87kHddeDelkU+k6NEib0gK+ilaxSCSSXPXOt+FrAW53C8fkBko2CbaHiCTiwRH+8Qtf4uUXd4HtY8oakeMRS9BQYhLpFPlMFq/aIBBQ16Cmg6U2/aIUI01q9jw+cMdayKawShXkSBA54PoxvpBRR33YcpBtj22gI9VK3F/kyf/2l+TDJLgOk+QsKbUF1VA58OyzHPzRo4xu3wUJAwwNV1PwvZBYaLzi2bS9+XK8TAsoWd63+pO8/NQWXt6yi6GqTZATgEuyo5XJkYJeGeGsSdNI6zp2GFN3HUI/IIWCiEGOIxACVwcrCjE1nYwrQaXGzDdcRHrJGez49n3NHflkippVw1EENU1QNAXjKUF/dZxC9xSoWqx829V0nL2Qvv17YbyGVHNgsEihDPHQKKQUFl1xMa2tHUxSUyieB4YOjSq6LKEO10g1Qvo2b+Xst6yg2G5QbtMhpxFaZaaEGu0Vj3R7G1HsoM6dDpFL7NTJ+h5py6O6eSNtUwsQ2UgjQ+CG+LpBavZs3NEiZjpP0kzRkKGqKVQ0lYqhUNFlapqgEThgakiShCnJaIFPolaDhgck4GiR97/tRii0wdAIkuch1aqohQxDfo3QVBFS01x+amsbOx/4ASPbdkHDZ1gOcPIpyl6JmctOo2PZ4mb0gqoTFyvoagLVizAWz+ZdX/9Lzv/8x0Cx4JU+ZkYaK2edjvfQY0zZeRjjsR6evfOr+KUxCGvc+LnbOe9DfwS+BcRkFRPGy9Sf3MiUV0qMb3yRDHGarAAAIABJREFUL3/mL3j0C39Hu50gf7BKtqESj46z9JKLmTlvASKUUGOJWrmEauoQecTDx5E1g872diTHwvId9NYspy+/iMvf8CZkFxZc9VZSQgVDgaQKqkYgqUSSSsn3qaoG6Bp0TYLLLmD5Fz9O9ztW4qgydUK8WZM4+2M3U75gBpw9h6W3rKIeRFiWhYhiWjMpEoGDCBwSUkRsN8i3pLBsC1SZihIQ+xbO8cFmZFFG45wPv4cjlUGqsQ+GDKrAi2KwPWTLxRoeIWemUP2AFk2FSINEiiXLl6MnExzZuZd7v/QVqJVxhYRkR0xW88jlgETJwqg5TItMtLEQgQ6yhuoGtFkuk4lojRy848fo6sgR1EtEoUsghSipBK4iqOZSoAgmL5jPmWeeRYumoYsQFZpV11JpqDUIA5t2RSVbqXB0Zw+URyH2WffdBwlGx7DqVbBs9j2/AU3oiAi2//hHsGc/BVkFQjpak+izpuMogu19vVBoJfZD0BOois7k1klItTqJWMLVEuDL0NpJ+uyl0JLjgjdfCTNnghwTRCGkTdZ/7ZuoDQs5dAlGR6HskSzVkWKflIBCS4JqeZjIqvL5//4/qQ0OQSoHskLp8DHecuZy5FoEocw5p52GohsQyCiRILR9ujtmkK664PnghSjd03nzJW+EUEONZNLZPEXXo5bRYPF03vPZTzBp3mxCAiIRERGhGiqe75DQVNQgZFK6hbRkwvEyX7n1zxgbG6PQVoC0CVKI51aZlE1jxgEGEZJrowL1Wg1JVvnjj3wMnIAFS86mUhpntCMPZ3az/LprWfHW6xnafZDixh0gJSgeOoxycJBt99wP/QNU+w6jKDIh8asqscknfu3r6+OLX/wiqqpy3333/cL1/Y477gDgU5/61KsWoKtWreLGG28kjmPuvPPOU3Pau+6661XzhFWrVnHFFVfg+/4vTXGfYIIJfnP8JtLZbrjhBgCeeOKJU2vfNWvWsH79+lPfJ78uM2fOZMWKFafWssuWLTsV7fT/aq8HEyLS7yPKr9B+DU76Dq1evfpV6Wtr1qx5lcH1fzRr1qzhiSeeOKX0rl279lRltpPlD09GJU0wwWvx0Y9+lP3796OqKl/60pc4//zzT4WrA6duZ7PZX3jujBkzyOfzWJbFAw88AMDs2bN/ab9EIsGBAy8TRk2fnJMiUhzGNBoNfMfGq1eRDQPFi8DQCZMQTEliGTWCjjRH6qP4kUCOQI5VYstFciWwgcESAz96lJZcJwwM8/B3f4h75DjtqKAnyF56Jpf/1RrqGQGqz5nXvInqphc5+pMnUVUVL4iQNRUhBJqh8OOH/oXPf/YvEHYDOXS58t1/SM0uo6UNTF0l9j3u+/q3QNHh6AioJqLmkIpkDCfEFCbukWGGdrxEQk4g1xwSPshhTF2OsOOAsUYVN6lSTAlKUZWK4uEmFFKJJHlZwxoe5f5/eQiKJQgjfDciljV8IUN3J35ggZmgUqlxOOlRlxzQMjQaNsdaTY53pwhKNUTgw3gZLddKvrsbZAmkEFcVIDSs/f0M/+PDJC5eSHJeFzgujz/4MCvuuwPCkKP3PMqCP/8geDUaw8OEgYcppeg/NkAYxiAglGQaXohrGlRSGlYogRchtbSgt2cZrRUx/Qgcj779+5itp8AKyXggSjUMVcPTJBZdegHt5y2F2IKliwjmTIOOFr7+8Y8x/PxGnLFxTu+ayvDmHjAKZB0fcjmUOTN46pv/SD7fQqlWIlSBoePgW0htOtLYGPNFmkI54KG/ugsaMagqyrzZtF54JgOTBSOmxdHSCGQzvO9DH+Sqm25EVTRcAipOFWQYfekAWiQRV6q0ZlP0793Ji1u2UFh+AbbncrRcQmRy1JM6NjZeIcV1H3o/uA3IpHDkmEroYKlQllxGqSBCiXQ9gm1H+McPfgp6h0BSiWs1MtPbKbZrZN52GTWlTDQ5CakI2lNcv+bP6L7gXFAU4tYEmXMWwNQcvfu2MmfudOaftwxqVTKyhtxwyTUCnA2bue+WP2bTV/8Gwiparc7Adx+g56+/CF6JWjiCMjZGY8d+GC6BHbLxe99n/8atEEUgfI6YLlI+AQoEnkXDrYHswdypjI8MI8Ux1Xqd/MqL2C5V2VU/jpVVqbcneOunbuOyP303TMsw7epLufbWVTh2nTiOmLZkIcvf/CYGhkZY/3df44Uvf4f9//g9DvzDP9H1hku48APvgbRJpCsEpkpJi4nNmPNu/WM+8On/AeUqz3/7nzn6zNMgeZBWiatVXnjoRwx86585+/LL8eUIL5HAUU1sSVCu1VDimISqIEIfXVOolGvIhk4RD2Kf7OIFnPPOt+FoElPPP4d9h18BOYSURu6cc3n///40rqoQplOUCQkl0TTgJyL0XNQQUFV+un4dgz/dRmPTLth+ANI5gmSKqi9jB4J0IUd/bOMWWhi1fTxF48xrroK2NIXT5hKLmEa9jG2VSKYEpVoZVFCzOvXYxZZDGpKPF1Rg5nQ23fl3vHjHVxlY9zSh79Cv+gyrPmojQuhJLE1C8SNSEShxAEoAhBzbvKUZyZZNgKKw/A9vJCREKArMnom27AyqgQNAvdRAPVYh2DtA38adULIgmwNi2s9ewmD9GEEiwNIauBIo+XYWXH4Z6a5OMDMcfnEPCxYvgY48QkBC06DYIG5UyAgDkEnHGnEYEUuCyIWqY+EID891UCUF4UlQrsPAGOWN23lwzf9BbNwJYxW+8ZW/J2jUaVVTRHZAVk8QHhkiOVQmo2lQ8zDHbR746tdQJQU5jCn7FkFKAa8K87p5ZOdmxitFQkJCQxDogjIOvi5hiQBfiXEbdZTjo8gu4AS89dI3sHjGLPAcqg2HKG1wxC0xLgtKUcxYGOIqoumdV6tQGx+FsSE2fONuwOasz3wY2tp4/C/+nt3/55u492/AGKpjmGlOf/8fMDZJQNaEaoNERycy4DhOUzU6ISTVazbQTGOL45iOjg4uvvjiX/AwOrm7/7ObPydZvHgxALt37z513y9LWbv00kt/4b4JJpjgN89/toh0MohhzZo1rxJt1q5dy4oVK/7T1r4/64/0y7j99tuRXqdKAhMi0u8jr1GZ7dc96z8bvvfznBR4/jPMrU/mn548Ri6XY+3atRSLRYrFIvfff/9vtYv9BL89nNyhhGb6lGVZbN68mZtuuokrr7wSgMHBQQCuu+66X+lvnpx0/jyGYSBJErIsN+/wfZxKDUmRmjvQijghRkhIqEhqM1omPXcGzJ4GBJBKUA19EBpxKCEhE7sBQtLADsiecTpjVhnaCnS1TwYfsAKoWhwbH+dwrQROMxpk/qJ54NjISFiWQxzHhGFIGPqoiiBybI73HyGybYQqkZnRgZPX8WIbl4AwDLAHBhF1HwWddDVAD0CJQA3/9efP3pZjkCMQskwkQRhFeFKE1JJk9hWXgy6IHZtGqYIRxcSuz5Sp3U0zW2KEqhEJGWLIz5sDuRRkdC57+7UwI980XhYhfsaA06fTtfJ8HCJC3wUh6MjmuOpNb2561EQhXhSjaRo6CroHo9t3UWjLQBr8Dh1bccGr41eL+H39kGpBM0wcEeMldGxVwg8ilEhC+r/svXm4XVV9//9aa49nvucOuTc3E5nAMEPCEKaAEgUcUfm2DyJttYWqrQNtJfZXqVVbwbaKgrViq9WCE/JDRQWRKSGQhIxkgIw3872505nPnvda3z9OoEWx2hbwW5vX8+znyblnZZ3z3LvO3me99/vz/kgLu1hizlkLmTBA5PKQSs49+2wSSxIIhdAJhAF6aDe7N22hYGUwggRLC4QGopBYpZx+9iIYHIBSkePPO6/T0azlw3gVGQUc2L6Dxv7DMNkgg4kwLc4//3zQMFmrEiQRqYo6GTxKkxnoJhosMlYwGE59DDdHj8hTpMD88jQWnnpmJ4zWMcB1odXm2ae3MHL4EKktUaaBkbVAayae2U1OOti2jTA0jBxmYvmjnHnyAmaeexZYDma2DF1FmDMDLMHUWcd13EV0tNNEdlqp+yaUp03FkCaO4cB4A1ohWA6Ok8XIZfF9H1LFay+6pBNsnGhoBxx49HFW/PAneGOVzoRpymsufx2L33YlxAErH/wJ27dsBtMgDaLO+lEpc8nAhA8jNcgW6HJdioZN3G4BTepqkpbwUTqhKEysdkR17Tbq67Z1HHn9A7z6j97NjFOOh5xN1YxhSo4L/vj3Ofv1r8Xt64FSAV3MUtm7E3/fQWgFiNSEZsTI0H6eWvkkVKrsX7mKh75zL2HdA8tmaGSU+5evYHLbs2BmcLJ58EPKxRInn3A8tm2DH5LGMUHgd1xApmDv3iF+cO/34NAYPLkNDo2DBcpIccbr2LsPw2TC2nt+wNaHHkKnKbJUxCp2kSt20WiFCA1CC9ASJSSpkMhCBhSce/Y5nHb2QpQlcU2L7mye837rtyFjM+24+Qg3C0lC0xCIri4o5vHiiEhpEgSOaXXOb47Vydtp+nQVeiBWnH/5FcjuKVQbTWpxAwa68Kf14DmSvlNOJp3ZDwNlBs4+hSTrEktIRec9KjquRQ3Ph7crocCVnHjyyTBWgYPjSNERx1uWxrcsVGqitAWGhRYWWhlowMpkIAixTBejVKZ8wvHIXA6j2iKOfFJLcOFFFzE49zhSy4YgQQpJKw6AuOO6sSRYNrhuR1hQgOnSObkHCCFQSmGbFjyzi+H1W+gtFSFrk89n0WEItSZZXLKFPGQzhIkmky1DsYRhZ0lFZ8mDwFASQwkwLTBMogMHiQ8fZkCbGElMdWIcdErWzaAFoCV2qnAThaEVWduheXiEpNXGNQ0MS6KFIpPPgNRctORCMq5NVKkgLYNEKyKlUKIjnmvZiStDaEwSbB1DonjmqXU8vWp15xxkQFvFeBLSYpHccXM4/pxzCU2LVAMkbN+6GZIIahMQRdSfWA/P7Mc/NEyrMkm+VCawJUHYYsW6tdCTBdfGmT2HYi5PO4pw3QytVrPTGALIFzLccMMNHDp0CIDR0VFGR0e5//77OeGEE15ws+iXsXv37l957DGOcYxfH7+sM9tLld7zYtUuCxcu/F+Zx3tMRPpN5GUuZ7v00kvRWr+oiPRcRtLLUVK2dOnSl8wueIz/3bz+9a9Ha825556LUorJyUmGhobo7u7m/vvvf1ms6S2vjY5jkBIn4+InCbsPHwCpOPPtb+IDn/hLapjYuRK0Y2Qt5Lrf/cNOLki+SDzQR2BbqEgSdpXBEZSwIFS8eslFlBYvYN4bLuH1r7+cQv9UCAXl/BQuPvti9nz+K52MkUiyee0qspYiJ1Ns2yWTyZAEARpNu1LBdS0cCSXbIp6Y4Ftfur2TRSNSdBqhVQKpxtIKO1SUcRD8WzccqV94cPQ5AeRiyGoDWxqIUo7UUcw/9wzoykGsyDUjvCPD4AVkci79lyyBcheJIWlFPpRyNLvzXPQH74ZKhXtXLad4+RJ41TyoNzGKOfrPPZ2TXruEbKFA6vuY0uTgps1sXrMOKhW6F50JfhvbzWJ4EdHYGMa9Kzi8ajUE4xx54sc88Y73YMQxmYEsu2/9Im4rxTJsajmTUTehQkAqLXKRi4oMQmFROO8ssARBrDBaBjP7puMHVUIzQMmI/NFNYnN8BCE1SRqRy7qoKMbJdbH14UdpjE7iDMwkkx9gX8Nn8HffiXPSIghsiqZJdeQATtCmK43x3RQbyc51m5l72mImD49gFFzQMVM8TcYPScs2137zVg44Hro/x8lXXMZkO6I92ubZ+x6jumUfoqEhdTDNTvnRY3fcxcaHHqctY8Z0m0bUwo4F2c2HkC2BsF3GW0cQOoDaGI/fdw/M6CFzwblUDzahp5tL3vMHzH3dUm7/xKeQvsIMJdm4swZCU+HbmsOtGt3zjuPaD36A4hmnkznpVVDKE/pttDAI9o9RaJis/odvMzczSH7vGDOzvRSFS23XASafHUJiQLXNT//l26z73oPgJRieD+OTWAJClSCzGcZJOQCUjalk/S4YbuM5GeqORWhYnPV7v8M5N/4RsrdAu11HqpiCYVLwE6YEAiuxYaLOI//4jxz64QrKeyboiyGnTSYeXsuR+x7HHh+n2IjpC0wYC2HCgzGf4xIXd7zKmm/8/4w88CjZwdkUAoPM0BiOlyLNLCqMmL1oISe86U2AJqxWsYWiemQfP/n7v+ORz98OLY+CkJgihdjjuk/cRBEYfvxJOFRjRiWiJzRBQRop5uWKzEYwPW4zWAthdBJr9hxank/dkNRbLcr9PehOT3Q6cd0WkTRJgzal1OWJe37El2//AgjFzu8/yIEfrWDo8XUQBRwYrbB3sgGDU0HHaFtROOd0zDmz0Lk8gRK04javfutl/N6fvRfCNtNkhnhyEgpFKoN9qEKGc97/R+DanPGua7jw994JxS4awmbj+g3Q18umbc9Qm6yjcNDaAW0gtcBQAjsFJwEnUWQSxfxLLiE8MAz5Ekw2ybR8ZOCT2BaJ6xI5WegdwF18HipTxlOSyLTQpgQhoNFi6ZJLmDLQi+l7rPjoJyEnGQ8nOVIdo2FL1LQpEEhMIwc9Lhd+4gYG3riE829ahnHi8VAssXPzDkpmnp62xoyBc04inhxnx1NrWHr+ebBjL6x9mqENG2B4HzINkYFHt+EQCcXuxijMm0o0dQoTxRKccQZ1t0wiLEBiphJTGQhtQhiw+MrXgwtdOZN2bT/SUBDXEbOm4ElNw5G0nM652CAhNBMSv0nBNbEdSSIi/LSN79cwkxCEpLppK/sefBTaIblUI4MYS4Og4zTrHBotEjxAmxGQsPHe+5hctR4R0hGwtEWSaAhCLn3/B3jNH76ncyKwTTJZix0bn8J1JbQnKbQbpP/6Q8pbRkh1nbYxydnL3gklDSoh+dy3eN9Nn+K4Bafw2iWXMDE+DoBCYds2URAQ+SE7t+/i1ltvRQjBLbfcQhRFRFHELbfcQpIkvOtd73rJr+/HOMYxfr283E6k/2jve/fdd78sWcC/Cr/O0O1jItJvIsavcLwM3HLLLTz00ENcd911L88LwDGn0TFeEp599lm6u7tfELQ5e/Zs1q1bhxCC22677SV/TSnl83dCojRh45bNbN7+DAz0MeLVWbd/N9a84zhu9jzcNI+/fi9ffv9fgVmC0Qpv//M/hRl9YNj0LzwTa/GZxHFMDot7f/BdTnzLJez+/jf5x4/9Bc3Ux3Zy2KHksS/cBXWL+eOKadWUrQ8+gOe10FaKRNCsNeifMZ3evh7cUgGSGNuQiDimL5PDGvMZbGkYqVNUBnnD5qzLLkFP7cEzPQ6UoOFAaHaOyOjEf8RG59+R0fl5KiDnpVhejG4F6DTlgrdfyf3fuguAknCZLnJMo4vuXJE1DzzA6PgoUxecgHRdKBWZecFicrOmseKWf6B/xilcfv7FNO65n9N75oBRIj1YYfQbP+aHH7+VbDsBrclIE8u2eXrl4zA4lfMvvggGBxBCYts2dl5SFDHs2kXG05ijEafJXo7zPNSRw/SddwpBs4HSBnMuOY+pb1wKXS5epJC+xnJyICV7zRQuew1YNr1mibu//k3IOVByiZRPKQ6ZEkaYOYeGiIhsqIcepiEQXkS5Z5AnvnY34ZNP42/cTeyZDB8YZrbbzRl9s/HrdayMgUoCbFNxUDQJx2uMrN/GnodWUc7mcF0XXIdCs0W2HdLYs52vv/cmnKoA32L2WYvguF6mXX0FXHouD21YB5gQa6SfUGok9KcuuVaItEzMUgZhCqa0UqZOxPiTEYnpYvXlKUYtuuOAYP8uSifM4u0fei8MHs+bPvQnPPqDH7Lnkceg5jPdKlAKIB+BfbSiUwFkbEb3D/GZr30Z78QZmEvO4FXXvZPi0iVIadCFTfPAYSrjk4xNjGOU8xyojdGIKhQvOZ2r7/gUs971JgRZjK2HKB9qMsUoYEzWKEoTHUeQdWiLlHSgSPyGs6kGgtAzQOdpSUk8bSZRXbH27kdZc9cDTA1tCkJQs1IqbsLhoiYpuRgtD3fSpzjpMMPIUuoucCiaoG0EbH9mGwe2P4u2sgzrgPGoCTmHgTdfSuG809iftGhaFtarZjLrbZcx79LFNOMao0GFnJ1HJAJn3nzscpkdm9dDfzeZmf1EeFASIC1yZMjGMXbgYScRRAF3/PUn2fX4Kqx6gBM0qQoPP2qSjyAvYZs/xqGSptVTYvjgEMbIJPH+g7zxzz/C2/7ojxBTB6hMTpIKiRadfpEpJkp0OsrNUhnCoRGot5D5PNnAgB1HOHLvg/ScsYjuvulM1H1oeZz14Q/B/Nmc9obLSZpVokQRKsDS7JzYy7987y6wBaQBs0pTYWKcxvQpcNJ8DggFLYF3qMK6B5+EmiTcfIDXXn4VJ5x2IazbyaAu4cQ2QtlI5WKlNlZq4iaSTAy5WJOPNAcef4o9jzyKDDwKWZucISgJGycW0AqZesH5LH3fe4inTKehDZTMEhsmid8C28BWsOKRh9nx4P1YoQ/1ALwaTCkw5/j5VJ7dgmpMIKwcQjow7rPhuw9y5MfLGdlzgHR4BEzB6pUPUrdDJjM+xXNOYNZZp3RKaYOALy9bBk6RM09ZyOF1a0GH6MQj8mOSOMDoLcJgF5f+6fuQC+aAa3Di29+Kb7igbazEwExNhDJJhYTp/VjTSmAH1KiTLWYgZ8Lsfi74P2/sNCtwIXQhsCA0FJ6tsLpcEjuhlTbxZUiunEMmiqRWIx/Clru+jxgao5QauO2EEpISJk7SqWg0UrBUR0xqOyCmZDoh9EHAaacvpBRLjEZMTmYQ2mX2+z7IA7t288VbPk1m8WIgIfY8VKtOLmjQK1O0X6FZiHCTNnRbkJc8vWk9NAM44tPvdfEPf/VpDmzfxX3//FVytsumTZtY8cRKUqWIj5aMf+KvP47Wmne84x0vKFX78Ic//HyG0Q033PCSX+OPcYxj/Pp4JTKRXoxly5YxNDT0ku5977jjDpYuXcrSpUtZv349d9999/OP//0xd+5c1q9f/4p3Rn+O/2Y6zjH+n+TXIA3ecccdLFu2jIULF3LzzTe/LK9x1VVXcffdd3PzzTf/2hTfY/zP5zmX0TnnnPNzz82ePZtyuczhw4ef/9m/z0T477Di0Ud48Ef3U63WmajVKUwdYO/oMGYuz8iuIUZ2DWGaMD4xhqkl0rCZ0tfHhJkQBAFHhg93bP+2wcDgAIZZ4FB2N4ZKcf2EbQ8+BsKEJAChGIsC8pks1NoUsnnMVptc1kU6Kcpr4GQzpL4DZshxp59GFAVsXPEERqzJZW3CqIVUIQXbJJcIXGESa6hFAZHSRLYEAUYhS1ptgxbIjq/h3xxIz5dpd0oonEgQGClNYhARK3/6MGgXKk1ErsTBdo0e0elONnnwEIyNMdLfjWkoaDQJvBYz81nq2QyjO3fw4L/cSX7mHE4cmMqmZg0rSQnHPThSIVAK05GoIKKYzzPZbsHICDt27oaJOm0voJzNEDarpEaWHKDrLfRkRAuXJgl9M+Yx/9LX8sDGZ1BJggp9ent7GDEkTsYmabeJ200IDfZu2woFF/IlGpVJVCME0wSVkkQxluWgUAjfw5AGApsgCKFYJGy1EbkCZilPEqcwPkxl81o4fx7bn1qNO1pDEZOkNtr38UyHVGtQKfPPO5tdq1chnRztQ/sxShlsBFPcPJNxBDuHiWILMi4Pfu8+kCm9556K681m56rNnRKQJMGUgoxj02zXMAyHoNHEzLsYWvNcYylTgddskUpI2xGmbUKzzZYff5/xI+NwZD+blj/CqxYsYPv6jeQyBVqTVQzdKcNJpOqsiaPlNfRPZXDu8XTPmsPWe75JePEFiFaNpFnDzHYhTJNQJmClCEMhevPojKSyZQPfDX16egfJGAbSiwnjJjEx2WyedhiQ2GanTM8LIVPivN97J1ouZ8+ja2gYMedccyWDM6exY9V6Njz+JIzVaUdpJ+vKtujU22jq7RZT82VEooiCgLEgwVcaSiUQKUxOYBS70J5G5lx6+3o59U2XQneezfvHUN1FgqhNPDnM/tWj0GwgSr04xAShRrou4cbN7Ni1B7J5Lnvj6xkd2sX2qIFWLaK6wrUgQdLbXWayVcXoytFse6AVsZ+SLeZJohpGLMgIjWcA07po1xpgueRyGXJBxFguw8mnLGDTmlXoyQlwXQJhIJXESG2kNtAo0DBuC2JbQpJw+sJzGXlqM95wC2yHK157Gf/6pW+wT6Rwxskc39PP2kqDlff/qKMUTu2C3SPgOhx67AnI2qASCoUpHKmPwrTpFC0XKqOMLB+DsEXjwH5Gt++iq7tAzfMxxsY5+NRqSGJakY9lF0ikxDcFShgYWuImCidNEFoh0YQjw8iebpTXIhYKW0MYtnFzRcJYgYrIpop0zwH8dhMMgWFYILMQBXgiRY8chKl9qHaNnJmhHbWwLJOffO3r4I+B6WDolEbgYxWLtJ/eCfPnMtGOAKNTNiwSiH1QUCr20ti3D+Kg43YyDXpmTuP4005l41NPojOaOAjRroVfKtHIWlCbZMemLaihfRB6TAwPQ6vxbxcTodBCdcrJvAYrHnsYenrIxVAfniQumZB3KeULREeqUHZBGHgmZBOJUNButjARnXOWhMlWm6mlMmmqqWsFcQS5Il4cEluCohAERkxoKsy0E+yXyI4DDECaAhwDo1hm/kkn0hw5xMSRQ4BGEHPJksV85Stfg/Fxznr7m1nx+EpMJRGmjYgSrLxLK/aJ8xkajedKciU7H3gI0duLrnr0lUuM16qo0QlwbeqVCT7+lzfR113m8+0WgwNTmTfvVTz77LMAL2iI8Rxf+MIXmDNnzs91ajvGMY7xP5tfR7P5ZcuWccstt3Dddde9pHvfoaGhFziMqtXq85EuP8ull17KjTfe+KLPvdwcE5F+E/nZcrXJIVj1wsCvZZP/8RRz5sz5lVXV66+/njvuuOP5FocvF8+JSIsWLeLGG2/8ha6kX1dK/THsFm+sAAAgAElEQVT+ZzA4OAjwH9Yvm6bJVVddxY033vgLMxGCIMB13efne+yxx140oLNarTJt2jQuu+xSLnvdUtAQCYt945Os3bqFdTt3ceutn4XWBEk0gdM3n0mpMHNFus9exPDhPeAarPzsPyCzWZRtsObHP2DqvJl4+RCSmMKGIWaKKlt7TYpLT+b0E09mxVfupNL2OPvM83jmySc56LQhBbuZELkm9VaIakvo6yacPYNSsQCr1mNHJqmnMexMZyMWJ7RlQtYuMGoJKPcSeimvveJyVv3kp4hDI6RmDoTA0B2hwdQarVO00sRCE+kYHWsERmeTZEk4fwGs34uxp42LSW1qhgV/8wc8e8ttMHoQggi3q8B7r30Hn/nbT4ArGFu7hvqGTZhegkKSPvAQLUPz4NBucCJMoTDDjlDRyikwDcoNBdUAMWOAU9+4lKfvvx9X2ZRsyVi9Sl+xl5bfQriSrC3IxpKaEkwaXYxV2wxvPAJulrA6xr4Hf0SxXEb6HqmU+E6CYWdI45jZhyeoF3uptNr4OUk2EDjjbVzp0NAp40Lgp4r+NKVNRJjNYnUPErZDBi98NROjh0gO7MSwU8xcgXDrT3njtefz6KI5tJavxYjzmMIkdg18GaObIeTyHJ6ap/9jv0953T4mf1gnN9ZgEoUVtBgY0RhkqM3spd1q4D38BLOuvpINTzwMkYJMGTOIKHX10BjbS1UDjkWqFTnDQXkxSZIwaZjYpkWoVSf/JYnJiDJNr4mc2oM6eIDxeotcocGBf7qd7oFZlBJIx45gFfI08YlcAYZCqhQDTeTF2GYPkxt3MbxiE/m4TuPOOzFJyGcldSPAiCWOYZE4Ck2MoyX+RIihTDiykaragqUUoQtaSELTwTM1FEvcdMvN3PujH7Fl4wYYHefJDy7DnPDBjzG6Ciz/zh1ga0CSiS3yXoCRL1ELQ+jrxjBN0h1D2IlBSEimlKdSSIkHZ3HOkotZMG8m//KJmxjs7adxeIRipojKF5isj/PYPT9AVgJMoSm6kjRtQAgqAicx6Rr3cGKD/T0mtGt0zz4djUnV81i5ZiPt+gS63iIf+JQzZVSQEGctxmkSmzHheJWugV5qgQdnncCcs89k7xe/hsQgVjnCYjfv+OSHmWjV+MlNN0EisNIIJkb43J9+kKDVhDQCy0BLAa86gSte8xa+93d3QLHIOe99D2u+8iXOe/8f053Js3/NJkbMEHqyZGfPYMfGTRiHD5MWNWzex/2PrWValHK4VeWML/wZGz/0Mdy8JAoSygEYky3G8glDUYM+8vQcTunbcRBhg97zNBYBkxtWIRNoyRZ4Hj/55IdRKkHqTrlUKWrTTqD86sVExRLtjZtotVNcK4sOfGqTR3DzOdKghSVAaoUvNZGp0WkTw3EZf/IJHl3+BAOVNhNTivipIu9b5NuKlrbR/Ta0WxT3D9PAIm8WIArh0H4cDVnHJhUpqZYo12FqW1EXEn3SQqKBAYyeQ6SVI9CuYJSmYEUZRh94hlAP02M4TO7eB9MH6HvNYnZEEdpwyDZCWkkImUHO/pP389SODUwbmMbBz34dWchzwgWLsXbuZyxqEZk+hgDbVCQiwcrlcU+YjVUoMrm3QRxosroAogXVMX54+z/TpwTppEFQdGjkI+LQwq41MYSk6OQ5Enj0LDmHZiNkZMUzkM8x7do3MDwxgX58HbFdZtG7r2LLP/4zLasFrsKuJwgBzYyiP9RM63EZrbehu5/UtPHLJYbGqx37aVrHck2+8qd/AAeq0FXCNGIIDAzDwc9bqKBJaFjgZghGPZYs+wDL/+mrOLILGbTx7XGY18vW0V3kDknaWRNci+m5Xr78mVuZOXM6kaWx7RwCyT3f7TS72Lt37891XT1w4MDPXaNfbNxzLF68+D8UnI4cOfILnzvGMY7xyvFiTqOJiQnCMHz+8a/SPfxXFYOe2/ted911fOlLX/rV3+ivwM033/z8+1i6dOnLatD473BMRPpN5Gf/qoUyLHihsPLLdJZf1enzcn6Ifpbnku+Hhoa4/vrrf+G4X4cafYz/OVxzzTVce+21rF+//ue+PN55551UKhUWLFjA7NmzEUKwefPmn5tj+fLleJ7Hqaee+vx8a9as+blxn/70p9Fac8opJ6MxEXTcO6YWTCmVGMgV+NfPfx4qFSABK8vBQxXe+pbf4uGn1rJ577PI+dP47Tf/Lt/6yF/SUwsJtESiOLjpaWb91mvZv/xR2mWXZltDpU5j4zZW+m3Im1BtcM5rlrBh5QpcJAJ1NPBaYCrIO1kOVZts+ua9oBKIk05bZkMRWJ073WWzQL3hEwsBwgI/YPtPf8reOccReh45ywGSTkC0AC0liZYkKSjZ6cIjrQyxFBzy2ohEQZjS5UPPaacxdmgNrjZoh21muA7ybW9i24qVUG0QqJSntmzDLQ0QT1SxFTjNCDs1UVIw2YrRLlQnJgFJaEAqQUsFhuwEIguDWIBZynDmBWezZfMGgr2bKdkufd191L2IpKtA6rdpZiUIG1FPyAlB5Cf49/wU4fiYpovWmla1iZQSQxigBanvg1LURkcpdJWp5BwIPVIVEaEolIp41RhtmaAUI0aAyNhoR0DYhL4+3vrGNzK0/Rnuv3MIoxoSFjwA7vvkbWCa9Jy1kGCigrdlB2XTJrJT2kUHuyHwvvQDvOMc+q68kvMuW8rQV+/lSElCToEn6Aks2qNjUMgy8LoL8YOAqdlBRp54jBNOP5VmZYLhjetx/l1zDy0gFRoci0whRxhHNHRKz6sXM+vay1n3p39Fb6WEmxq84f/7C+76689gP32QHrOMN7Wfg7UxyJgwxaI1UaHLyDCtplAm1GxJbCik7XTcIBkBBYtWSyGSjuNJKpN8bNMVCIyGIkWQGgZBGpAzTVIsOt4Ti8QMOyHLgs4aTIEw4ePXvxdsG7rL/NYNf8K377mbpBpCNovsLXP+O9+C1ZunmM3zg4/dSne2zOHxUZjRx+v/5PdREu7/2C2kTYPYNKkaEUlRwMH9rPnq11ljJEgp8StNunPdhE2fQLdx8lncUhc1VSHxI0S1Qbc2kKEmFRCYkpoL2tWgfc678vXkSoOsWLUWahVaQ/tBKMpnnEJ1w0YKqSSfzTHZapM4kO3tRUURNc+jcMYZnHTOIlY/8BOmGDaxhpZUJIHPXX/yUQja0NWN59cQOYe+0MHZVcVAI+wCY0Lhzejl+EUL+N63PscZn/xjjhuYxr0f+xsKJ5/O4c1b2DY6Sn3jM+AFCMvG27GDp7Zupf/0hfTOn8W2detRjQpemkDNY/NnvgmHQ7oDm9AMSU2/41hJQYgWTStBuDYbf/A99MGtYEqmNE0iDY6Tx4800uwibHtowEZiuRkqUoFp8raLLufHyx+n7cOrr72WDY89Sm3nTnKlbswoRCbPrWKJEmALmyTVaKVIo4AEiPuyJGEbMllaUUTP/Om0Dh6EtkZ4EkPk6M/mGZuo0TNrBpV2Ha19wlYEcUpGuOQiGKeGj0ly/yP0nnAyrXXroRiz4MO/w+FDExgTCcGK3WRDG7+Rki/10goCtm/ewiknngzSxJcxlLvA0xxeu46Fp82ndugIBCE50+bZnzwCQZuymaGBxsw6eJUmhWyWVi2gse4ZSEJKpX7SoEnZyRBX6ojxBsmUXiaKBfraAtNPwA7wp+TIOd3oWgMvaEKpwPlnncMTTz5FNeNgF3JcdeWV3PqRvwDbhP4uRmvD+GG7IzxqSTFxEEIQJ5JYpaSxiyUESasTNL7ih9+BuAVSgswQxylWPSVOEhge5pG/vRX6i7TbLVAR4axujnvdJVxy7nl89YM30FXOgSkIJ45gJBKMbn73bb/Dv976D4QNn6kLT2VkwwbaQjL/Va8CFKZQpHTOH4sXL2b1mtVcffXVPycAPbeJfN/73seGDRtYvXo1N91008+5lu69914AzjzzTMbHx59vvPGz456b/8Wczcc4xjFeOV5MRHJdF8v6N2fFS2UyeCX3vv8vV98cE5F+E/nZcrb8f15E+lV4JT9E0HEivRyB3cf438cHP/hBPvvZz7Jo0SI+97nPcc0113DDDTdw++23I4Tgi1/8ItD5Yrh69WpmzJjBpz71qefHPbfen7sz8Ny4E088kS9+8YssWbLk+fkAbrjxw6RCYtDpxiUllFyLaT29TB48gHBthOuivBizu4fp5y6iN2pR37AKVcuSUZLuYgFV83C1gzQkdcPmtNNPp9qu03jkaZSdg9SGZhtVrXDOW97EmjvvYu3mTSQqQYlOmZmhQR3dcJtSIdME1fbA87AtG6GPlkoYCuTR7mKmRRQrRL6IrneCccMDB8HzwclDdLTF8tG5QYJlECuIlUAriTaAkkPe63RMr63bSnbefLywgWlkoBHx+H0/wnZzODOmE05sAmGw8qFHIEox/U7ZR0k42IDSBqaKiVOFKSSp5nkxASFBKmwjh9fyMM0s8eQEGzdvROkU4VjIWFFptQilQc+CE5l8egwyGZisYyaCvCNIMZjwfXTqE4sYTBNDGqSxQiQRhpBHQ7JTqmNjVKu1jnMBsG2TMIxphB5aSDLdPfgT46BApxHWlB6sTA5veIJnntlKc/QIOdNG0SaSErIlOFKDYpaBaYMU589l/ZYd5LXBmBfD1CJuy+qU1DQneXbD0xTqHjYcVWI6h0+K4bikWnPi+WfxxMrVFPeF4AvKfb3MWTCX4cN7EWOj//b7A6RlEsQRCJNQJeC6jFfG6Apb0DeF8X2jmNg8tW4jvVOmofZ6hIlifLTCtLNOYsr8mWy87x5kbxdUQ7KASiRtQ6OkQhgmYaHA4NwTCFTCxLYxEg0813UKQWjbRIGPbVrkCwXidoNYpQhtYmiBxiTRMYijJTUalAYdxmT6+vHHJ6De4rhpMzj5zIVs3f19SFKiOGLvyGG6zAGsTBbqFQ6nFgwUYXKM5V+8q/PFs9omchzmXngOixcvZu2ap9hy70NgWNhFCx2HoDRBFJDLFQkQNFs+qr4bekugYopdJcyxCpnEIDHU0bI+SAwgChnZv5/D9e1E+w7A3Nkw4wSEYzKzUKS6bhMTBYNYeFAywBF4QQtwkVae1tZ9rH5mGPwmIgVhdERb2l6nTFHYmF5CYhsEGRs9pnCOLo008rGFxNu7l2fbdchYDMzqZ9XyFTA2yRlvmMtoZZz6wYNIKTANiSMFbSVRluD4Rady8qmnsO2h5TTiAJHGEGrSp4foNYrkTQlpm4atSGVnSSoUTRni2AnxoYOgwM250JBoLfBijTJtGnFIzsphWwKdhFRjn8gRUOxlaP1WjmzbDdpm574hau0a6BRPmJSVxNAKJUAfFexBIp9zRurO2qsLjeM4aCHRgz1MP/UkJlsN8hG0WiGUi1T8ACOXpdn20c0m5FwwFdJ0UNqkrTX2lCkkkxNgKia2bAHHhahNfqAPtxWiGw2ypokQOaJWjNISSHnVwrOYOWWAbcU8arQK/f1ML3ZxeNszVNtVvK3PdLoLNlogUqxsBjeW1ISJn4LERMWg4wTbyZE6NrrdxkgTvLBKFkEWm4lGiNaCCgaJDZx9CgKwNh0k1BpNCm2PtU+sYnLnEBnHwR8f65RRTExwxlvfxsZ1axlau4qMbZKYEgeFq46K9akmEhIdGUgcSGLQIc3hJtlcFs/zQRnQ3UO87zBWT4lYJaANcCXku6DVgoxBcdZx7Dy4H0zBqsdXQKsNhoGZGKRBTFT3SOseAoPXXXYF/7Jn99FwNUBrpOisL6Ekn/n0Z/ja17/G6tWrWbx48fPX6WXLlrF69WqmT5/ONddcwzXXXMPtt9/OXXfdxeTkJF/4wheAjsC0evVquru7ueaaazj//PO56667uOuuTn7fxz/+cQCuvvrq58ctWbLkpfhqcoxjHOMlJJvNvuDxSyEivdJ736GhIdavX8911133ohU4y5Yt+09VD72UCH3MtvEbh/jyLx+j/+C/Pn+1WmXZsmWv6IfoGMd4qbniiit44IEHXuBcsyyLT37yky8oS1u8eDGrV69+wf8VQvCOd7zjBXclf9G4D37wg3ziM5/pNKTRR5V7DX6zzcjICGectYhIRSReTHdmKnM+dA2rJw5BqQvuWw57Ryh0FWnW9kHJpUtMoT0+gV3McMIbLiBQEc/89CkKdWi6Ao4fhDRmwcmn8OzyxyEV5A0Dr1LpvDAdkUhqcGONAmxTYigQcYoSisSAtgXKAlKbrF3Ea/j89gfez1PbtjC0ZgW9Z55O9dAhxJFxzLiFoVVnz6YNNDbSsGgp0NqAjAtZAW4Ta4/PAC5p3mI4bWGFCRkMXNdmzALKvVz9kY/wjY98BKRk4NQzOfLkOorSod2sU3bymAgqYQPRXSDbX6a6e3enPXyi0UKRSkVqSrByuBUfYdv4s0uQk3DwMFbbYSCUHM4K1GnzOP8dV/HEx28GBf3jbfIqJjCzTEhNWHaxTBsZRJ3sIkNgYqKiENMQGEJiSomfxlAsYktBXK8h4phssUwjCNDFMu98//tpRynfve1miENOfs1lvPq1l/H5ZR/ptK9XCtu1kX6TREhUrOh2ikw4EooZ5p92MkceWElRSCZVjcAR4EzluDctYd9TKxANA314DNMySYwU++hduShMkdk8SofM/os/Zu/Dayg/sheAasGDU+bCtm1kvbhTfXJUSDIyDlESkekq4TfqCNNFNyOYN50zTzqdHd99GNN2qDsxZBT0ToO94xhdeXTJ4pI3vI560mDdl78KIkN/YGAjiYQglYoko6gJl4GzzmLeGSey8l+/DKFPJgE3cmhYOdJZPeRPnEfrqTUQRh2nXAgyNjGUgaFMlNECOvYTCSgkuXyR6uQEolDEdGziKIY4omvWPC6+6CIyAz188967wGvAggVcdcnlbLrnR+x6/EmyjoOyDaI0QcYpZiqxMlkSS+ITM9PJ4dVqTEQt7N4uCBWpF+JaOcyuMictXMjb330tt93+WfZu2QItj25lUEgFoPBNqGUgMqEgNM16GwamMev0U5l9yUU89uTjOLkc4bot8Oy+Tph+c4ITrrmKgbkzCFoBucmQRz7zT8woTsNIBX6zRqRrBI7Ez1rIBDLNgCI2DSLaXRrMhNJ5l1B/YiP4MX1Rii0UYc6iJTRBHILlgjSh4lGcO43GyCFIFa6dxW531rufxvhFF7oKUPWhHuEM9hCmMUxWGDCKSASTQYuCtJkoeWAkZH0IpSQ1FHL2SdjP7Cco+uCn4HRDLk926nS8tgfVCQjDTqZVu945aWZtqGmyDYMEjd3TQ4tJZl17FftXriJbT7EOHsJUHREpkiaJFEfvTmsMEiytiQxFKCOmGiUqXkT30osYabdg+14Yj5BdeRQ16O/i//zuu/nOso9TlBa9icTXISNCg23A/JlQOwgq5Xf+5ja+/mc341bqpAVBNGhgFqfgjAdk9hyhmRN0yxIjzTrHv/u32Re0OHHWXDZ95RugI17zzqs48sQ6tm1cB1kD+nrhwATd0kFrTdNrkhcmNdfilCsuZ8vDy3GDlDhoI0gwDE2aJpgG5DAo2XnqJgTNgG6zh4N5j8E//G2i3gzie6sJn9qOMiOKqaTZnaXZrkGxBMNtRE+ZE9/xZrb95FHOOf9C1q5fidqzl1xi4UoTJ1IYUYKPolLOkHULJOMtpC1IZAPLCEkjjaUlnl0kHZjO1R/4ECs/+pccCsdQSQKR5Ixl13P8mQsJhqt8/3vfYPGlb2XVrZ+D+hjkHEQKOWUhU5OGAlEsomtt3MHpLHrLJaz8zreYUermwNYtoFK0oUEYCG1AAnsP7uWiiy/i0KFDL7gmT58+nRUrVjzvQL7zzju5/vrr8TzvBeO6u7tZt27df3rcMY5xjF8Pp5122i8d8/TTT/+X569Wq88HXd98882vWA7R3LlzAdizZ8+LPr9o0SKGhoaoVCqvyPv59xwTkX4DEV/95WP07/3X538uSKxcLv9CZ9BPf/rT//oLHOMYrxB79+7ltttuY9WqVVx55ZUvmmn03Li7776be++9lyuvvJKrrrrqRb80Ll++nO9///ts376diy+++Pn5nvva6dBxAnH0qI2NcfrCM2n4TZxQkviK+lsuIi4b0DcA960mO9yi1zYYFeOEfTaMBUCGvlaKzhq0I48sGZS0qU7LM3D1G2j9cCWttZvBtTthrlKBIzvB3BkTinmOP2UBOx96GBJBt3DJmw7tSo1iuRvP90mERrkW1SgEaWE5RU5afC7lwX4efeh+3v+RZdSGD/P1j/8N+aJJHAQAWIZLio1lu/haEieKN7/r3Xx/xY95/V+8mwfeegNzyREKxX6jSXdvL63JKr2ZHMOej1WahhwcIDy4C8pdfOijH+OzH7oRU0hs18KrjkG+CCrBOW6QeSfM47RZc/j2HV/FrNbpMjJEaUKUd2hbEqoBc+fOYY/b5vpP/DlfuuHPYF+dXgwm8lnmvfMqGknM2I8ehnqTKe0W3ZhM5izGkzbFNy/hoikL+OHXvo3juFgCWpPjuNksIg5RSYREYFgmHhpDK+TRoF8/0Yisi1aCvoVnU+rtZ/cPv49pWiQIKBQ6XatcB8YnyM6cirdnF2XPICschotmxxmkJKVsgfrkEexChqhVwzFswnI/nDKNk844nWc/exddwqbmKlSrSQmXQCUkObPjnOrvYelnPsqD71nGvIkyoYo5WGjA7CkwMka27r9ARErjEEoFLrxkCUfGxxja9CwzozwtWzJer9FtFanHbdJT5/Hav13Gzr0HmJbYPPF3fw9NH9KkE/JetsCrw8AUGPfIqRJpvY6b1dRKPZzzuqV0HzfI/X/3Sex8nuhIk3JuClVhkX/TBcw662T2bd7MVNfl3DMXceeHP8Ksiy5l6sB0Vt/zA0TioysVpGFiaMjlCsRRSqBSUq06v1tpIZREpArXdemdPYMD+3d2VCdBpwTO1/R4IaZWhIZEA1ILkiTGyXcTSE3LgVyrQey30L0l4rAJxT5QEst0ib0QAg+6uhkMwbMFNd2GYgZGa5iGheMFuIZFGAcYSYDlZqgZJrpQINURpQsvYHDqVJ797n24LUVvM8SyLPbaAcVzTqY8bSr79x+EDdu48OprOHjwIPs2b6VYqRCYENkaxhvM00UEEQ0pGD2hl9Ovupxtfpv4ew9AtQ2tlP5E4CUBKZAvdNNotnANh0Ql6O48ba8GQpJVknzcWddKaqqOQZx3cEIHXasx9TXncdpFi/nB33+eYuDQcBWYERdc/FusOvA0aX2cLi+mVmsiLz6XS1/3Jh7+6N+ThofpPusMBs+7kNCw6OkfYM/IMOPf+SZL/vxGKqNHKJmw8ht3QqVKftpJuKt3UbRzjBPCxScy/6Kz0e2AI8ufZnL9UziuRStJ0Ln80fLczh8449jErQZJGOAomKqyeIbF2BQXuvNw3Dx4bAPvvvXTbNIVjowe4vCPH4HV2+lKJXPJEqDYZvjQleXqL/0d33jv+2Cgn1e97hK2f/vH9A4HRElEK+N2SlZrTWb/X/beO1qyq77z/ey9T6x48+0cpVZLrVYrS62cULACBiFjg5IJg8dJ8uL5wfLzLMCLeTM29mAZxu/B2OPxwBhb2GBjDAhaOauTOufbfXOsW7lO3vv9UW1szxuPnhOaB/ez1llVteqsql118vd8f9+fX2JKhphmgJ3v5dyHfpymb5MXijd//0+6Fi1HQ7MBUuKtWc77P/AIv//E52G6glIeWZJ2A7B7+7n7Iz/DX332CWg2QUpkkmITIxyIkoiy5yFqIdW+PDg+zMX4t17FNe+5i6f/7y+QH+8QLSyQ5TQDQUrTtghdCZbCznwSW4IVA3nohPS5hsVKlUKhTNpsM2yVCSyJKReYb89w7Qcf5ZUn/hhDRL5X4cgA0pQo1HSsPFg5uORyvJ2vEqo2Xr7AUOiz4ed+Eqvcy5EdrzJ55iRMpThxhGPmcTPdLZczGlHqoa0cEqGgdwDqi7CyH06coujlaIyPgyVBaUCCll1N2eq+fP755/m93/s9KpUKH/vYx/5ex9CXv/xlnnrqKQDuuOMOHnzwwX/SfEssscQPlq1bt77lPP+URjlv17WvEIKPfexjf28m0l+Pa9euXT/wap0lEemHEPHlt57H/BOOezt27Pg7qfH/I/5XDABbYom3i/jso83Z3BYDYZgghGD1xvUkIqNTb1POF5nPIjjvXLyN6wnrDS5ZuYo3n3sOOT5KlgSUf+KdhPtO4u8fRaERrkWu2MtMq8OqR95J4aoLqP/uV6ntOgBKEUhNkrO5/4MPM9+q8/xX/4jlt93Cex54F5/71Y9DLYBKgGPbxHGKbblIA8tzvczXZ2n7CpX3ydpZ16XgOJC0cFavICcVteMnkBbYykJKBVm3qsHN5Ql0NzPoirvvYTprkNu6nLnf/FP6YqiJjMbyAul8BeX4SG0wlkMudGhkCWwcBmVYuXYttSOnaJ/NjTr3vluZnJihs/8gDPeC0axdt4nR51+jxzhYcQwYGjmfW/6PjzL6tac4sns39AvkOSvQx07gNiV+JgjzeXp7V1JYuYwT+1+HggdBG9Ks6zZIIqz1K7nhynfw8nMvE1UqEAXYhSJZ2IYoJOdZCG3oBCHS8RBolElBdEUkt+ASJYCXB23ItTOyNCCxXbRFV0TSMQh49JP/hi9/+cus3juFNgmjPQJsBxoZbgxRnwVWBkGLnobGKQwz16pBTuLZBexE0+y02P7RR4lkxp4nvw2TM1iFIqnSsO08ROLgvX6GQi7PfDHi+ve+k51PP408dPL7ApIGtBLoKATH4tZ77uHpbz6FK/JEgwrqKeuqkGIzsTyD8zdAU5MbHuQ9v/JRvvy/fwq95yDDiWFWVWHQ5s4/+G2+8/t/Cs+cgIUKQ2WHuXYAfX3kVw4RVqegUafgFonjAkE9AZOhynmyoE7fmmUIR1JJQmjW6LvpJmLPo/WVJyEx5ByPLIrx3Ryen2dmYRb6ekEnIB2KtSVMw0oAACAASURBVAShJCmGThojPBsDZ0ueACsFJ4FQs6xhIY1kPifou+ta7nz4fex7bTdv/uevQKWCMClmqBdswfUPPkp/vsiff+4LYNl4nkc4PsX6rMjptEn+vmsYvGwLK/BZJl32/9HXaY5OYLIE4SosadPodP/nlufwjp94N5Vqjd1/+g36/F6GGk0UcErFhGUP0JDB5rvupLe/hzd27SQbG0MZiyzuICyJ3wgZTC1MmtHM29TW9sNwL96ylQQvvAqNAMIMT0CYJVDIc+GV13Ds2EmSqRn6M6gQQNkDIfCilHysv18q1rYlYT5PsZliG8Hy+64nt6yfN/746/TYfdT6HTY+dC+nnjrKrdddy+Fdr1HZuYfYzcHG1VDowT01QVQfZ+3mTYzOVSEMYMNGrrzpJqqLCwTz08S1KnarweSh/Vz7wQ+wsPcY8997FZGGpLZFfUUebAFhBtrDrS+Aa5FYDjrNWHvrbczPz3Pe2lXs/fOvoSyDZwQrrTIzc/NIr0yt3+PR/+sJxscnefoTv8Y5P/1+lm9ay4lnX2fm6ecgynAsSVptdJetY6OlYtnWLcw+t4e851K+dj2Tr75Gb1xCpB6tlUOsu24bx1/cAdUKRa+EqgakUtJa19/t3Fbqg8MT2MUCiYnAAReF6i2x4vxzOPnqC9C/HM7Mgp+jcMUWWqenuefD/5pvfvebMHIK8nmWuznmjx9F6xhNSkG5rI4KHPFDuH4DPZdej/cnu0hOT1OJGjDoUO4boD59nGWNjEgq2o4kdixopTDYy/D1VzD7jecpOXm81iz4JeasjJzI0RtbzImIRGrE2j5ufuS9vPaJ/0QnDsCJ8fvyBI0anlcitHN4526iZ81aZp77NpiYvJ0nPTNH1F/s5tY1Y/CKrIny1DsLRHbMUJKSEhE4iqpJu0fOviHOu/ceLr7nHSzsO8jTn/08y3N5pkbPdIXbgoNBdnMHE7oi0t/KeVtiiSV+uNmyZctbznPo0KF/9Oe/Xde+byUiffGLX+QjH/kI3/ve937gjaWWMpF+GPnvM5H+mbntttuWOqAtscQ/gL82PHz/nFZAajSe7zJfr+GWi8iePPPNRdA2A5nFMulzUFTZdM0leAXFq//hPyKASy++hMWOZPb4HPWwju/7dFQ3tHe40EM538PI5AyGBJUJpBQoBMP9Azh5H7wc08dP8uKOZ886ohQISSIluE43QNtyqIdRN1ckTlA5l5znEyFIlUBninhynFjZ5F2HRBiktM/GIhlc20EnKUpaZEaz+9WX0SqBxX7ySYKRHpELaacFtktm4NyLLubo3r1kiUD5DuWVQwytXcXRr/8FpFY3a8gyWL7N7bffzp8fOUbPBReidcroy28AEBqDJy0sWxLb8PrRQ1y8Zi2LU9PM1ke7LbNtF6UjpOvjOA6tiXEWpqegYDO0ZTNz+3Z1y+9SA5khnVzgma88CaVeyOchDLD9HMIkxEnYdaxY6myWUNfBooVEkiE0mCRBKAdpKTIDWRohUUgp0VkKTg5sHxp1jh08zNYLtjC950z3k/wCpCn4LkkSglJgMpAKjcY1kkFcapaN7Tq06gvYCPaPnqS8YRWqt4S12CBKI4hSGJ3i5gce4oVTc1TiGBoNtl9yCXa9ySuHTv6d9TUNQqTvoaOQN158GSkEay6/kLH1BaKvPcuAM8x0XO2GAh84BE3ozE6z88CbrN20icXFNuHh/ZSHB6l35hk7foot2y5ldsywUKmSxBFWvkgaJrQPHQFX099bprrY5KobbuHMyDwzhw4z0NEstkOisWn8niJ0akDC4q5dqEu2YS1bRnp6nCAL8G0HrTUzszOcd8Wl/NhP/QSHTx7nqT/4Q5RxUZaDFAKExKTdEjhz1n2VKNN1M1gQ2BqpIbEVTZOxkAVMxy0Y6kUGAYQBRmsIEl7e+QZ0ujlYnhDoVhNHSRpRG7tU4JrbbuVU1CDtQJikzCzMI3UEQhNm4JluVhqZIZdqXvjGX3ZdajrrilVFh0gnpMLqOguVBdLh2Cu7kMqQtRsgMuTgAGVniMUTJxAmYzENcC2XapzAaAiVRd7znkf44/0jJIujCKG6omkagCVZdslFHKs3GB5eQbhzd1fckBqShERKUtnNmzq7+8I3XQNIFCUcfG0nBA2wuiHsuZVr2XbZpZz6i120qnVqU7OIVCNcg9l7kG0f/jDTnYC5kf2MHjraLWmzLQgSsnob6i0mvvscWAI3iaEZs3hshFNHjuCJBNcC2xeIIMBUQ0g15AYo5n0qnTZGA36O6266mdHRMdYO9rP3u9/B1TEmTAi0Rvsllp23idqZ47z47acZmRgDZTi547tMnN5AeHAUjANhhdhoSmuX06gsdvPWMpjZe5Tldi+NsMrkoeOgQfo+2i4TD/Sz6ebrOT51Es5okkoLlwxtDDRrkESgBcpoikKxqAWkGVmcEokGJw8cASXZdOnlHG+8DlKy9fprefXM18grCyElZs0KhgaHyMamyFKDrSxSoUhTiNOsu05efzUXX3MT+5/4LlbUwkKQxgH1OADVXY6W0VgaYqNBQXlggOXLhplFYRtBiiaOYli/ijw+jcPjqF6PRMfkEs3rLzxHJ2wifQeNAb8E7ZhQK+x8kZtvvpHC0CBffeZrECQEro1EQTvttvJcNoSX2KhAYzCEUpEhMCRkGIRvYdoGlaRccN4mxsfHaUxOQyfEzZe6xzDRPenVf32s/Rc+B15iiSX+1+Nf2hPzdl777t69+y3fezvCt9UnP/nJT/7Av3WJf1E+dYTvh6r+fdMn31qwXWKJJf6ZkCRI083mADBCEAhFpgRP7drNxLHjpCoF0WJVrkjzzCzzo+OsOG89r+x+laLn0Tg+Qp90yPwCbqXNzNQUbS8mGPLYeu+djB84ysQbBzi59zDx7Ay+64JnEWYJmdbs27OXN199o3vyXguY2XUQmiH5xML2cpDPo0UIPXnKV1xG7fQ4ynaRRRBJhOjEiDRDZAnGsbrXslFELkoItEQrhyw2JEGC57q4jkO7XqfYUyJq17oWrJlZ/FRici61nABbQa4PIrj3X3+EN0dHcGNNrBICL+OqW6/nxM43yKeCIt0ua3MjRzh6cASMg18qcuX27Yy8ua/735YKdJIWHeKuO+fG6zj63/6MdrWK5dponZG3bHqETS1L6IiUvLFxix6BDhncfC7X//i7OP7S6zipIi89vFiQ33Q+wewc1/zY3Yh8joWRU91SKZ2SxBFRkiAtCy08QCIASUbOPhvqG6XIOMJKEiINopAj1SFub4msVoPMgIaJQ6eY2X8Cx3FJlSSIYygVuej2W0l9i874NG5isOOYUBoiqagnAdpV2M2Ysu0jCz7N6VM0T09hTs1QSDWRbboCWAcSJRm49fKu02RygZe/812mJie6Qbb8jdjZ29NL0GxRLpaJWx0cN4e1eT0rrthKq94mGDlF0cpx1UPvZCZsE9fruFIwEwekTo6s08GarSCaDYRymH76JeYnamzacD75YonW1Bkc5ZOzXFxpMeA5zE1XsT2XqGeIlRddxHxjnkZtlsHhfqJGnVatgpUJtJZQadGjcmy/8HzGRk6j4wTHdgijiBVr1nD65DHenB4nUIbc0CDJ+BjNpE0n6yBMim80bpbh6AxERioyTJqBhsiShE43YyUZnebEi6/RHp9k80PvZUVgEJ2EFoYrHn2U6669gbFjJ4nGpihHIYUoxNMZyeAgHZUwMj9BgM3of/06J948Ap2QpM8hsCKydWuJGi1cy8cxAsIARxpEEiFdRZZGzERVFu0Q3eNDowmxQdYThkMoBiGi2cHuK3HlQ++hvlglnZjByRKsoTKLru6GjvcMs2xgFU4MY4eOolsdRCmPvWYF9/3yRzlSXWQyMlx69S0kQUI0coa2jsBTeKtWkbTbaCPJpCCTEiNAJhlJGpN4CmU56NjQm/qYIKXjSI7s3Yd94WYWX3yDzv6DLCu4hO0WvlvAdSzGdz3NcH+RcL5C4eIriYsFOH6C6ShkWbnM/P79+K6Hml2gkBomjp5AN+vIXgt8TbvTppQmFIWLo1zSLEU1m/i2h+XliIWD8fIc2LufkcNHiE6fJmcMUTOgmhquf+xDXHzvnez51veoHjpBsa+Pwe2X0ty9h3T/CNTb3P7u9zAxP0eWxETtTtehGOnuFhKkPPqrn2A6jajOHAelCbAQW7eSnreO45OjSMvF7N6H70rycYYlNC23K9bYUlJuhXiRJopDpLLIBxqVKZJmC664iC0XXsro0RG2bbuCXa8+C6MLTB07QzByhJ/81V8m0yknnn8F6jH9dh6VCrI4o5qF6BVD3P/QQxz4s6eZfeMQqZuj55otnHPXLczu3gsmpBh0e4ZmGCKlyBfLOD1Fpho18tWIqFHFLuSpW4YbPvU4w8tXMrX/OHEWI9odemotqnMj5C2F31siMoYbH/wguRXrmD89ic759PbnmZs+g3XtJTRH5jHVAC0UKjaYgsUNH3mIcgrHjuzvbnNbzyVebCJtTU0lYMN5/Stpzs4xOj7Nqb07mdu9Dykc+pXNLz7+GKDBFiQIMkS3r8KSC2mJJX6k+NznPocx5n86/fzP//zbPcx/MIcPH+ab3/wmvu9z3XXX/Z33duzYweOPP86GDRvelgqgJRHph5BPHeOtRaTz377xLbHEjxxG071PKkB0w39RgsDAfK3OSy+9CJbNcqFZaLZxekugoLJ7P2XjMPHcy2RoOq5iYd9RGhPThHaKXpmHtMM1d7+bwztewFYWZnYBy9M4liJJIoTnUtqwlnatDqlBBClFy8NOwUtiLKOIpSR1ba745Z9lMgi57vY7OL1/HwgLlQXYcYJlBFmckCUxUieoLMGVII0h0BaF1avx+/sAumVVjTpW3kd7EpEklFyHsNbGthwCS7Dl3rtYcH2IBfe/7yG+/vQO0qkx4jCALICcw4lnnkEWeonDNlm7RZJFCEtBBHTabL5uO6/83h90O1H1lLjijtuYzyIymbHxQ+/jnEsvYuwbz9FnLJKwhnPWgXL9HXdxeOQUJClZwaEtU4g61MYmOL7jZfpkARWkpFFEi4SgWQVHslBb5Jart3Pk5HEIGxTWrUa6FhqwlE2qJUIYJN3SH5NqTAaWDVlmSNIMkXfITMKaK6/g7ve+lwMTk1Bvo3JlqDdZky/RDFuEWUIhXyISEbO+ZOtllzD54i4GtEOcRMS9OVJXwhWbeNd7HuD08y9RkC5zKoRQY1c061ZtoB4HpLaERJPTHvU4wtq6hlbQRM01MJVFSrk8QdhBC852tgKRGXynWxYUpylhGNKYqTD/8l7SySn8fIG5zhxjR4/SSesgQghjLrr3XUxOTBCfOk6oY0Q7oGgsPO1jOpqJE6epLszjpglS2WgdI0xMs9Jg2dAAnUBTjxKmD+1BmwXe/0ef59Wxw4i+PGmnidECN8zIKxddqXLy0AEcoFTIk4YhQikWKxXswX7imUnqlQVaI6cQSYr0baRrIS2J0BlgMAJSaciEQBqHUmjTHyjykSLFInUld/6rD7L9mhtZfO0Qx7/3InGzQyIMU4cOcuipp4g6IUVtsFsd0qBDsVhiRmRgC1ZefRlOtUP79BROJ+mGii/PMXjXDVx2512MnThNGiZoIQnSmLatiZUhLbgktsRVAk8rTCelZ+Uabr39DgbcPCdOHcHuK9AiRvsWIwd20zo1Ql/msthpEwz6sGYFG2+4jurh08haxLHFccSyIUyWQhRx2e03s+O734HJObJjU0w8u5OoHdBcnIL+PEOXX8KGdeuYOT4CgBYCZQzSCDquJO0vUy4UaC/W6PcKOLWQKI0wwkdXFtAiJD56kryyaNbmcCTIRpO5mQmMaGK1WwgluOHDj3Ly4D4oALk880fehHaDNA0wQUDJVsjUYGybqNPBGS4StkMKqU0QZcjYoJXEy1K0kjTbIWQwt/cwWSsgqsyCY+FFGZnjk61czmlHsGfH01BvQWa4/8ffya7nnycLE4qFInHJZfu117D3L58iH4MVRahEk2UGfBuGPOY3rub0maPQqXZzwHIlrrv/Ps68/hJbrrqKuS8/SX8YEaYxnuq2qIuTlCxKcbTBTiSucsBkmESTx0eVigSWZGDrVo5853lIbO556BFOrBsiPnCUcHIcCjaHDx9j8tgJWGhSChUxgjDOyBXzdGQAvsWRL/0lzdeOQa9LZrfZ9OA97Pv6N2FuAWSKH4OmKwzGCuIwJqjMkc3NkLRTyrkiNVtjyi5BX5lDO14gawfYUZthP4cbdAh7HZwsI0WT9PTRv3wN+/7q23gbz+GiCzez+zt/wezevVz38AOc2fEGer4JtoXnOaS6wWhlkunX9mL6iuSvuJCB666k9sZuQmXAAVnM4853cFJDEqXEUQMysDNDXKvx8V/9OJBiLNl18CG+35xyiSWW+NHhd37nd95SRPqFX/iFt3uY/2B6e3v50pe+xI4dO/jSl77E4cOHefnll7+fhQTwhS984f9TOd8/N0v72R9G3kJAWlrqSyzxA0YoEHb3EdndDNOMXgHf+8ofsaxUxG5HNDsexi7RCmPSTkjZ8kjGZrD9MvQPQN5Blh08O0U4MXQCiGx2/8aX6S31kxRb5IdT0qiJX6uzKrWJ62023XEjXHsR9OewBvtoRg3svhx4krZnSKRGBx1Ejw/Hxzn27GtgArIwI699claeUBu8Yp5isYBvJI5WZBparsIq97Hmysu5/SOPEARNdCZxZI7Yt4iiBqm0idsReQfIK0KTgIZ33/0uTL3Gyelxbrz6yq4YJBNWBOCMNxFtFz3fYe1P3kecs8GX2I0IZATDLoNXbIZSCRIBYcz49DT33nkPSIt1W8/jpW/9GRuRDCQJRRQqkaTC4Zx33glSUY4dcvUYpxV2y4S0RjmSNGqBSLqLzJFgx2AnBKdP8vpX/4whIWFoAG/jSpZddBE6zhjoHcKxE4Ruk8UhrmXh5BykJ2krSHoczKALnQ5EEWMnx9g1scDW9zzEyvveS5YpDJKwOUtJx1yx7jzqQR1kzJp1q9nzwktYyiG1bDJ8UKWzmSnznLN8LS1gIetAnIJSJH0epQvWcu3/9gvdNtvCQwubdHyC/lqHVbZHtjDNULFMa3KazGiynEsmum3ok0yDtIgyTZp3wFF4tQCvFUMY0LY66JIiC5rkKm38Wky+k7Dvtz6H/t4OZLkEcZug6LPgOqhiGRFGFGyLHIp2aNA5gemR1HULu1gkqEsKWZFCpdOtMysPcObIUXAtPvKb/5Zbf+WjGBsiz9Auapp+CxMn9EkL1Qno9XPd73BdaLZBOtCKQLrYykOmBplk6CyhlabErkTnPGJjITsOXssmEr1MDZSYWVkmLNuQQO31A9T2HuL4gZ0kcYgyUBISGotgQqz2AknWpOPbJOUSiyn0tTOcTsrkt77D7MvP4mZN0riCKNtQzDEPTAR1rHUryYwm7i2TDvZB3oGCzfpHHgTHYcPd76Jd6CMVDhfceRPVHps9x/aRsxxkJskFinNrNixUQWtykejm7TiK7R/5EFOphpxDo1aHc5ezdvuVEGt6tM3rX30S5mdhsYpcmMeTCZ0zx2GwDOev4ryrL2Xfrj3kOwYZJWSdNv2ujxMauPoitrzv3VhGgQmpRFXyK/vxZYmS6uUnPvt5GF4FPSXcbecTF3pohZrMsrDjGFKLKIOOMJw5uhfqNVY//G6Ym+86FKUGx2VAAXFMTjgINENa0WqEUOhhIfZYcftddAolin0lIkdQc1JMSeKZjFWZZKjeQfaVwDbUY0OkfMgXWLdqC8QOFF1Qbf7qK/8Z9h8iF2c0gwq0azz7pa+wEpteoQjI8HtLWMSQdKBoOP3Mc3BiBqIChDY9UcbB//KHMDnGod/4NJQlNTsljyLrLzOTpPRnOZbLPqzMY3Goh3GdoVEMkqdKRCWogyXZunkb1BNoRkx4Du75F0CPgX4NVoZ18CTu+By5GISJaSlIynnq6dlQupkFsA1myIFGEye2efPf/w7Mj4EOsGIIlaJtSyIlkebs4cmyQEi0ndGMm+TsPARN5v7bU3BinMw0saUmSwLmuz+bYi4PnQ7O7Cz7vvV1aM9x5y2X02wtQDvDLg5z9KtfZzBoMywkA5ZH4HcdgBwbxckUXs8gPb3DTO/dR27lauxiHyQS3YippinGdgiDBgRNCBrESZtV61aAyugEdRIyupLY32pescQSS/zI8FYC0v9fI6Bvu+02nnzySTZs2MDIyAhf/OIX+fVf/3V2797Nhg0b+MIXvsADDzzwtoxtyYn0Q8inTvLWTqRNb9/4lljiRw/xd6ZuuRMoIfjlxx+jWamQtxyMtkmVRpkMNzPIdptirkwjimHDan7htz7D4T/5GrbWxFZCphUyVuTrgk4cEOsacZjgJGC0oapDvHI/p0+NcM0772EyCQCNqdSx4hTLpCC6Xai0EEycPgnNDG0kH/i3n2bXk3+F60iqSQgDZTo6I0xicsrB1QqlJcZIMqNo+RaxNFSbbcxUjXy+QCenuPiB+5nZeZDenj6SsEEkQUvF7OkxTo5NkDXqzB7Yy+T4GGmthp8aUikJHBuwkanL1T/zfk5OjVC88Vr8o3MEpSKUfJKcR+fYBHqxCdLQnJzk6J5DUK1zev9OOH4YPVslIqWZc4k8m0xkHO5VRCR4kdMVz0RGejbx3NYGSxsQBiMMsWXAkxB0yEsbk6Y0o4BUp3SkYNWKNcwtLJLr76XRnMBIgywViFoBXqpwUomfCKwgxepkFIs58itWsfzKq8k8j6PPvcCtD/4kpY1rmDx5iJAEUernxOwE9PeA6ra77i/1UBsfIyCj4Pjo2FDctoWo2uSVZ5/FkeKsCypD+jl0p8VMZYFKMc8l7/xxJmpV0tlxRE8PC7sOoE9NYUUpMo1xpCRvuQSNJp7r4xmLQmohggRfObSjGKRi2C6jjUb15AiaNaRrYWcaO5Yo6RApCyFdtOdy4YVbmIs6rD5vMyBYHJ+kXCoRxB2UUFimQCI6JDrCtgVkHsZ4pFIR2QkQUmxlnHxpN4xMcOzoGcZ2HsJfjCgHKU4QIXVKMV9AGwvl5wjiBGNZaAECg9QGpQ12JpBGYIQ5uzV2A8/jJCVKNJ5XIEoFxu0jHizAzRdzzt23UcsSzPgC1cMnOX3kKJ3qHGqwn8DKiKImhZwHQYgvQWmJQKGxyIQilRpbQ08nYaAT47YDClqiQkhmY/KjDRzPpfb0c+SWraF/cIDbH34f+sJNFC65lDOnxzn3su0MJi5TR8cYVHkWkzZH9u8lnZlH9JWoFy0iVzDfqMCQT045tGttHKdE0k6YOHyCrL+fzdsuoRK3ufC+e5jcd5j42CnyicZXkkBlQILJeWSNFkXLQUiJXDfM6V17MCcmsJIUM1hGl3N0opAMi00PvZdYSCrPvE6adkBm1KOI0uBy5uotDvkxPP8cv/h//gY9pR6OvvAyUlpIIbBNhq01Wgo0ivk3T3LeuZey6qJtjH53J+//zGc48PzrUO/g2DYukhhBx9IUE02r4IJyueu+99MayDFz7CRpXMNLNJFSgMHNDLkEqrrDlR/+KcZVBqHhrp/9OU6WerhrzWb05AzzJ/aDq4nma2zqX8F0vYJ/2zWk0+NEcw1yWtMxCQz0EAUBQ6kir2xaSYv3ffrTuJvPYeqVF8D3iTpNsmaDcpLh2T6m1aGQKxN12tSiiPzwEH4oSCyLWhpw1yce5+ShA0SdhEEUVdNGexm4Es/xWJieB5FSEQFhLmO1EtT2HcKpJ/Tli9SDGiJMyOOSe+/NdJaXEadncGVEr8rRKefpv3wr8dgCst3CtR0SlVCWDiLp7me1EBh5NkvIdLcZobtuSgEEnQ7n/vRPEL/wJk6qiYsW5WqAmySkvkOYxrTXrSNarFFYu5HO9CwsW8bRAwdZnK10xeuOoTZyGN2J0ChCqUiJIIlwUkPe8mg1AprVKoMXnUt9zwEyS3HLww9yurqAE2uCToB2JTc+/F62XXkNZ46fwEQhP/vhD5LrK9P1FXZv0Cgj/rsQwiWWWOKHnSeeeOItRaTHHnvs7R7mP4otW7bw2GOPce+99/LAAw/w8MMP8/DDD/PEE0/8wDuy/W2WRKQfQj51mm7b2P/J9Mlz3r7xLbHEEhBFEZZl8ZnPfIYkSTBa40iNJMU2KW6W4UmHuobEdWCgj5GRMXKHx4iVAaGxMoVA0fJ9glaTvDRok+FJSWugSDrYS1xvUowcTr3xGsak/Nj7H6C66wiy2cZB4yXdcoZUCsxsHVRCPD/DxK4TZCajFTQwrkQPlaG/DElEGGmsWGBnFn5m045aRPV55o8eQTc69No56q0GOudzzS23c/rEGPWZWSzHoBwPIxUmScgqC6A1Xt4nnJmiLAS5WFLtPdsFDoVMFCdmZ2HrKi6+824m/nJnt2yo0eTCi7Yy+tIuQICJIUlZaZeJOzGZ1tAyFCOb0LIIbYMJEhAW0cgJ3v3vfo03v/pVMgTSaFLV/RihwdbdZdQtdQIrzpApREoS6A6pa3XTmKcXmJuehXaTK+65A7V8OdWZeUxkMKHBNgplLBQ2IHHxqPg5Ou0mDaHZvHEt46+9wNGj+6klTX76Vz7Krjd3EckAlg/i+r14jZTmyDiNVg2c7gWm04rIZ3Drz32Au995H6/86Z+ilCAKO0idYczZe/JBRDTfIC75rDz/HC648yZGv72Dnk5EKQwpaYsaKU7eQ4QhuVKRRrNJpg1pmmJ5eSpRhxveeR+6WGRhsUI7arLi3PXUq3VMmJFTeVpGdTO+pEQbCa0W9U4b6Ttce/kVnLNqDaMnThGTEaUBSbnIRfffz2xrjmR2it5yH7KlkVqB0KRWjKMT7FqdcmTTv3wNcwdP0JMo/HpAn3JwM9BpQtw7zGIQ0YozQp3ilMuEWQacFZLQ3SB7YXUvmIXBAEmUgDHk/SKtRovcimVk5yxn7btuxlvZy9joabYNqbXrgAAAIABJREFUrWJu10G8KCJJQ0QxT1oEBotgUuJWCweBj4OlBcJYCARtG5IyxEJTDHVXpF05yKKvaMUBrnbpCQQTp05x8RXbue3a6xg5eZLX9+4mFeBnUPvLp1g8s8DYK68iPI9kYYF6swpKkdOSoFWHPhcGCqBheKaJXWtTvG07zgXraTVqIFIoFFh48hmoLDL33VeJx8bAlpg0QcWakA4Mlbj4Ix+gemiCXmMhmjOIKCGemsVxffqWLafengdp0DmPLE654B0/RifoMPPMG8jeAkaAyfm0gjoX3HAtWx64lTPPv8Ybz77E0ddexzICFcdYGAQGLTVGGKS2cdxhZiZnGN1/nMLWSziVtlk/tJqFM6METkIjiNG2JFERFprQUyAlllviyNPfRkiLrLnIYGohjUAayKSi6Ujk2mF6rtvGTG0BZqqIYoHF517h4J9/k+rpo7iuwBaQhilBmrH6+qvZfN12xnbuJAtShOXQRhPLFKUlfprhZRbSyXPMhJw+tBt70zn0DfaSxDFxmhDECcu2XEyl2SEMA/T6NRipSTybVCjqcRsGe7AHCyzs3EVP/wCdxgyprckGuiXKCwcOstxW6MVZmif2oegQ7jlFvNDBdnxs26VDjBjop9Vq8Yuf+zSJjpl49mXK+V46jYC+i7ew7e53cOqVPRhhkVgSwggrsdEYjPwbrUWav5lsA9bZ1oXuyhVccd+tHPyr58iVCoTtFuusHqxU0zEZQb7A9f/+13A2X8Dw8vXMjM3CfBWExT0/9SC+7bM4X4G0Q2w00bIh0nYAUYJLRqohc8GkCpMm3PWv3s+RZ16GLGH7Xbdx4NhBRLVF3AkQRY97P/AQs/NVjr38KjrTfPJTn0CfFSS73dnEkoi0xBI/gvz2b//2W4pIjz/++Ns9zH8SK1asYMOGDd+f3m6WRKQfQj41yls7kd7+dW+JJX7kkVLyxBNPkGUZSgkkMRb6rBtGYGyHqtFQyGOfsxHPyqFPjFLJddUOO1OElsX2n3mYqdEJnFaHMItxVi0jrtdBZ6zasJnm2DiunycFjr/8Kjnl0mw1sJXE0xDYENmSQgjpjds498briZ9+kypB18FhCS6442Y2XrqNiX0HwC8ihIsRFpkR5H3oxG3oxLjCwhU2ynUImx2OHDxCGqcgBUokxFGKjmOkkHhKktbr+FmMjBLyGNxM0ygJSDJIUyytWVnqJb3xQs585S9Ij00zYASWMZwYHyEvHTJp6N96HrE2FKshWdJGRZJVQUKEoKksjO2ywh9ENRPCdkZBWlQ7LbJ6AyMM+mxLaGG6IpKkmw+UKMhHkLNzBI5h4MpLSGwbsdimN7MJOi0QmjNT49T2jUMtxjUunuUTCknHdWjlFGHRobOsh+L117DlppuYevopxne/DjbQbpAcO8ruyWlohVzw8Y8yn3O5fftNHH72BXKFEkmr3lW40hQ/S4lNxr59uzg+NUVnfJws7OC6DrYx6EwjpY20bHS9RXt0lMqxo4zt2oOFwzAejnFomYSOb9FKQyIX2knA2puuxl7WTz0KCJQEC0Ydw5orL2HqyCEgYcPWC1k/vJqZ0WlMIokdH8p9rLr/3Tgz83SqVbIkQUchx195naN730QpC61A9ZfQAyWmL1zP5TdfhSwXmHltL2VyXeeW1nhZjG1iiqU+mkoz16yBLejomKbpME9MwxcEHgRBBr0DkMQwOEjSamGUwADKaLrPDJHKdQUkIZBoir5PGifoDIwWrLnwfO7/+Q+x42tfoXXsGMxVmPnWc+RDzUChhON7tFTK3T//ITZevJXKfJWo2sROBUpaaKkILEVk0V2XEo0bg5NJWo6ikhNkjuGqxz6MvWqIM1ENpheIKlVe3beL5uI8WJpV52ykOTNHp9pBVlrc+OlfYtv9d3Dwzb0Qt0AK8vWI3t4BPvCJf0Pv4DJOPvUcNhrb9fAu2cz0xCxrBjdw0y13cfrYKbLZWbj0XMozVXIIBIZIGiLf4YoPPcLGu97BG8+/hJhp0aosMISg3qighIMwglqjApvPwT9vE2u3Xkw1NYzOzlN59UUkOYQwFIYHiRs1nI1rCWbmObb3DZiYI5cKnExjmm0KtgVZdtblp9FCkChJYlK2PfYo22+7hdLWDSQrC5z44ydBpfzY5z/NiaefJ8tSnCzGgq7byEgWFlqgNa7R5KMOOSw0CiMEkVKkviINW8wcO0TPhgsIF9qsLvcze+gAA7ak5CiCVp00TCnmPVpxRjVOGHvmObB9ZGYIkwD6SxiToH2XKBGIfI7FRp3o2GmYqHDt+VupnDpNc2YSPBd6itzwy4/TWj1Mc/0KLn/wx5l68Vnk1m1cuu1iJk+PQLPFwp4DDLu9lGsRmefQcICgA1mGg6ScZKgkppyzqU1MkJsL0CrHikfvZv6VNynme+kUWzDYxyv/6Y+ZePkNKHkE8yGenSdc1odYPUzlxZ2och86Tjj/qu3MnJxEKYER+vs6i+KsiES3HEzpbouAVppw/PmnKeT6aDsGY0lUkFHVEemaQeJmi7HeXipHTtGbKRZ2vYks92FMRhy1OXZwL7q5iG8sknKBaz7wCOOTk3j1kFwSon2IZYafuWjg0MHdqEaMSSIOvPIiLC7ipRY9tk+r0+H1PW9wcs8+0AI/l+fCzZvYfP5msrO/RHC222H3xRJLLPEjwmc/+9m3FJF+6Zd+6e0e5j+K3bt386lPfYpHHnmEj3/844RhyG233cbu3bt55JFHmJ6e/n+Fbv8gWErH+WHkLVxIqLdvaEsssUQXKbu73yAISNMUcbaNNmjk2dLtyBhwbJACv9DDNTfcSGApsBWxFBgBWkLDFqQiQ/g58CXusuFumrNR3HTjjRR6euhUFzELDaRWLMzNYPeUiFXXUJMJQGo822H7Dddw8eUXEYdNhK3Q7TaWdDi67yBBEIHrQCFH5juEvkXTkkQ6JS8Uvm3Rl8ux2KygjUHk8t1smmYblEWadQ/kruVQsG3CehMLcKREAUGakokMshg7SsglCUJE6PlZCrUWjE8BCUHWZNWyFaAU7UYdLeHCyy5mxbo1ZBgKqoDKMlws2raFtiVYFo1mQELKOaVl7PzGdwhGxxCm6zj6a/T/4MJDa4PJNPge5120hRWrVyG1wcno9j13XKjW8I1FqdCDjjO0EKRkaGkgZ8OyXli3jObkBMXlwyChd80qRKWFH0SQwZa158Dy9QS1NrfdfBvffvKPuPLeO+i0GxRyRaxOhmzH2K5DWyYQRiwcONDdpwuBZUmUUtgCSDNkkiJzeYTyINDQjEkXq1SiNgsiomkbpOcAhvLgACi4/o7buermm86qaDEU8zA/y/rzzgUycF32PvMMs7OzuLaLZTkQJZCkFPoHuOWWW3AdF4Kwm8+Uy4OQlEslkjDEy+WgXMQ9byOv/+7vMv70s5QGBrv/s4RMdpeHEVAJG7RMBL4FfUWQGaxfBQWL1FOkynDxu99FaeNGsBQXXHoZP/34Y/zdUxvdDbKXAi0kWnTvpCRJShwbfNfBmIwzJ0/whd/6D90xnxqDyQoIGweoNessNupkUcg3f+c/8u3f/0OqBw5jYxHFmkxYxFISWpDa3W8dbEE57D6PlYRUQDPE1xaJzkDH5HwXJQGdQF8Jog6nXnuVhddeg1aLnOsQeJJDCxNQmQFHgaXwlE3W7PDU177Bd578GuXBYQKhWTARp3fuIT15mjO79/Hnv/V5opEJSldezKW33EAoEoROUZlG+S5GR5yZmuS1p1+EY+OkzRb5YpHIFzhCkXMdUp2hVq3k8muu5apLLqPk+jC3wGW338rg+9+LDrrOtebpUSiXufSqy6iPT8LEDLQC0kaD9sICRddFYOhWFOrvLx0jNAzl2XLVFnryNlOzZzj9m/+u+3tXLaMyPQk6RZpuR3gjuiKvyEApBa2QqNWmN5cnEZJMAkgMAqRk/TveAdUOd11+PYxMsO9b3wEds9CcZ665gBLw/7D33tGSXPW972fvSl3V6eQw4YwmaGY0ynkkjXIEgUgSwQjpEgwGGxtjzCX4LRuu/Uyw331+tnk211c2YGxAwhgsgZAGoYwGTZBmNHnmTDpzcuhYce9d748eycbXfrLXuheuxfmsVev0WV3dvbur9q7av/39fX8unXTE3BiYWgBtw0IbkymQ0LN0iPLaNRB4ZJZiztFQKiJyG1dbHHj8GWb2Hug0zuRgDO3ckBeLLD3vXIL+Xqh0c/H5F9NuhYBEFEv4QZVoYZ5WWmM6jMAvQ7kbilVcx0dlBg04WtJju9hItG2z/sarMEhsAyzpp9TThdtss8SpQLNJ0NWHdH2iw6O04wSAQlAEP2DN+jPxgsq/6RolcigIG6RLK43Q7Tq4FvM6pi7AXb0cykXyRx6FJ59m74MP4dgWojZPAcXRXdtgYRLcU9e0coWl69dCtUKcpog8x5IdOVRqFDrLYG6ebtuhr1iBKAMsTJiQxyl2LmCh1vFtGhwk1YYH7v8eRv+j14n8J+fWIoss8vPDK9UTadu2bdx444188YtfZGFh4Seeu/DCC1/ySfpZsKhEegXyqTFeXok08rNr3yKLLAJaa6SUfP7zn0cpRWZLQt8mVxI7t6hHCW0ElEtcdtc7OLxtK6pvgKn9L7Dk2o00R/djkBjfY2p+kte99wPs/O73oKfCLe/7RfY9+ATV3iVkScKRqSO4wqI3NpRailbFJbMVmdDIXBI5dNQbcUpjuMjszDRzz+5EpSFDwsNWijBqMXXgAOSSt7//lzlw7DjJ9Dj52tPIGtNUUo2vBVmsSAsuuWtjYkUubc5/7S1MHt6HbcCRnVVuoRJ8KXFsSStKsTybKDdknsCgGWylVIyilkd0hW3Gt2+l0lYkaZsiLgvNOolMQEqQhmNxnaHBAcZ37wUpaLswq1LUuctYfeebWDhyiFRIyqvWMHtilKrrEskYx/XIVNoJxGhFwS9iKYOFIJcCYwlc6REqhRGKwkA/Jc9nbt8RPG3QFiiVwmAPWTsiQWOKPu94//t4bt8eOhNmw0VveiNXXHstk8Ui+x57BMYnUK02g7HCihVeBo3ZkJFlazn81a8yunsPDA8wuGoZqQR14DhdWYKfw5xRMFThrR/6KCvXruPAs1uwbIukGeFYAhuBLTor8kprqs2E7lDRF2fk0qIxGBB7KVm1gKrVCcrdyFZOnKQcPHqC2bFJ2uPzgIclXXKds2RoKbpaojE3BznoVNOq1UFLtLQI1q5h3eWX8uSXvkxcm8ct+miVUfQKiFOqMqtUIPcdNlx6KSdPNuG5PRBmlNMcZbtkS3qZjRZoVyEMJEaAIyxyYZPnBlyHW972VrTvoWxJOj7J5FyLcy66iMi2OfHcdpphSC4M8fw8QeBT8AvEJufmO9/FxssuJY5Tpo8dw5YSz5IYZbBsF51l5AtNmK3hRuC1UqqZwc4h8UC5Eu1JaGfYSY7UFlkjximWSYQgCVxuf/87uew1N7Pjwe+ztiUoOEXmqi5h2KYsqxRil+ObtzB78FinWl6maKZtTMkCT3D9nW/D6Jx6sw2p4uzzz2Vv1mRy336I4UMf+yjLR0Y49PgWmlnClJVy2vlnM7X3IFY7Rrk5GAdyw5LLNjKwfDkLh8foumgdViNkamYM3QrJsoyzbria4k1XMLZ7HwOJR2v7IWzbJvZzmmoO2/FptiIo+5xzyzVsf+oZjj63m8mnnwcjmXBies9bRyWGxsFRykuXc+GVl/HC0cOIfWPoRoLv2LhG40tJrlPy3CAk5BbkUiIESGHQ7Rq79m7lua9/k4Uje6GdwGwTpmY5+cSTdDcNrnQwUUJ1sEpzps3I0pVcfMPNzJ6YAZHT40qOmZhIaUCSJSm3/eovs3HTJrZ86/u8sPlZbOUQ+EWyIAGpMJ4kFw65ynHcIpllYxmLXu1RzgVtEyOG+7nrPe9i6/PPoxt1lt91O2L1EtZccRkz23YSpClpu4nrWGA5HUWMG3DkyWcIY039oR9y7JGn4PACEzv2M39yEtOsQ5pgBz6RELRcG7yA6+98J/VGRDQ+izIOHcs6h0SDSiG0XFS3x2EnwuwfI4xbvOH/+AizP95DODGDI23CJCMTHonSUHXpOnMV9d2HSetN+keWMzo1SWtiFosM8RPBPChWyjTDNo5fwPELRHGML2xix0EGBc594624fT3MT0xDd4lLPvEBjn37AeR8hB9rhuOMYrtORWqUapEQ4hQEtsgY9Huo1Wsc1hl6ahraCV2OoJmkmIKNCaodQ/U0pVqPIUoxro3ShlKmsfKMghsQlgOodnHeVdcytnM3/9dnP8vQ0CCW3VkdFQik6DxaVCItssjPD3/4h3/4skGkD3/4wz/rZv67ufvuu9mzZw+f+cxnePjhh/nUpz7Fpk2buOGGGwCYmJjg/vvv59d+7dfwff+n2rbFINIrkE+N8/JBpGU/u/YtssgiYIxBSsnnPvc5lFKkrsuaW29leucBrKALt9pN4ko4fQWFVSuZ7+piYcszsHIJ6886Gz09S3NyBiwHam1O5JIsbEOjyb6jkxBpkqkZJhfGQUZYmaCagoeg5slOzkKev7TCT56jCxatQ4eo7d6H7xfxLYmXJAg0idAYbSDT7Hr8KbKpKVg6xO0feA97Hn+UIBa4WqKFoFXolE3vdn10HHHZ629k2RlrOLbteSxjOukSuSFViswrYPyAJCiSewGqWCbPFEFPHzPtJpWCg287xM0E24JEahwkWgoyD6z0VCGe+Wnmjp2gbAVokRP7OfQF8IZrqZUL0NsPrubM9/4CttFMHNwNXRZaGco9PVz16ls477KN7Hp2G56RL6nBlIRQpVh9PRilmT96gqndBxCuRZhG2J6DylKuuOkGpjYsRdemIQkpDQxyfM9+aEegBPX9R1l4/iB2QdKYnoLJGUhzhNZ4OBS8MrVGi+ljo1CuwPExqAbU6zUahw4h2xm9TgWdS7KuIjpLsK0ijjacPHEMVW8wMNBFFseAIBedSZQQUFQCH/ARRFIQ6Sa4krs++XGOHR2jeWISKwKlXbJGRLYQ0m8FOPUm5XaG24oY23eI2fEx6O4BS5JMTSMcl6LtolyLdHKc6bBFa98eKiWfRKVgSUwY4eZQdF2yXBPGLaaOjsO+WQYyGFaStNGg3VulNVRlxRtfRXDuWlrjx7AbMX2hoRxLpJLkSrD/yaeonZggPT7FgNOFsSTHtm8jnp+DXLEwfoJ4bhY38IkaNaI4wu7qZv/ze9j53A7mJibwHBfbGETemWfmdGKIvjKUU00pM/jKgDDEjiG2c5TVuQkdoIDVjJDCQfslVBqTBwXwPfY8spkdmx+GaoWkr8xxt0168RpWvv41TB0cJbVdunKHsuuh0gQ3V+SBRAUW+AWW9fSz/8kt6PkarucRoTlt+WqcWopzZIoffus+9mx9lkqlStOFa3/13biDPZzcuh07jNHdAbKmsdauZu11mxivzREdPET7+FHmtu+DPIRKFWM7NFyH6b27eee7foVgqkFr7yFi3UaLiNINlzOYuDTrDUxBMnlgFyQKam0KbYW0JFpmNOpTNLbuxc8kUTvkxN5diHPXUzxcY2n/MEm4gEC/5H+UixyD6SjNAHKBp6CcacR8i6WRQJmcylSTJd2DeHHGSMsh0ikLytDX3894bZZK1yBDq9fy9MQYyclptGuIRUbmZIiggiMshOuzd3Q/W7Y8A7kPjQRTKZKmrc7YN9zDWa+6hcldB7GcMu04QiwdREcJTtpGmJS45JILw9at29EzbUhiltx2MydnZxlcupzprc+QWobUVhhL4+SdKnZlY6FmQ5wT05imwosUG1SZ7raiFodccfebqTkW7YkJ8rJN4aYrOHPjlVix5tDOveRaYGFhpEQ5FtqyQFrEdgiBBc8dAMeFLod9Dz2DOxHSXFElXNZLtwqwT1vGkoFBejecxszsBNmuQzipptmqkwQumByRtLHyjl9YLjoKTG1LsjTGFAu0W3W06zJU7qVWn6f39JVsuOFK9j+3h2Qh7ATu7QQmQoYmZ6koTUCOsjSpZWjaGifwkYmiyysyNzWHGhzm9W96M3sPHGBw+VLmRkfxLYc0yzn/rrejSj76yCHKmcJgSNEYy6KiXXw8YglxQbLqttuYnashwoQvfP73cG2bHEPOqSDSiwPfIoss8nPDH/zBH7xsEOk3fuM3ftbN/Hdz99138973vpfPfOYzAP9DEGl0dJT777+fG2644afuk7SYzvZK5GUCSItHfZFF/vfDCMHaSzaC49OKM9oaEJLlGzdSXjIEx49CpcyZt76KZ594mt5iBcdxEamBRLJ2+WlQrUKaw+4jkEvoLkM1AM/Hyg2ZMKSAo4AMhOkMBp6GUgoK3Ul7aqSklqGMJHdBuTm2zLGMxlIaGm0oVSBVxK0mCEn+TwcYC8gVSRySpW2efOoRJqfGXvLceDFA4wZFUmmhjOm8bsUqoACrzqD7mitJSz4OAQ2dE0todRXBK3T2Fabjh6INhcwAFmQZniUh1x2Fku1z9WVXc92Fl4EVwPIljCUtprM22FbnvYQgShKWn7aCtWeshzT9Hw+Oa5OJHDKNpQTkEk2Otgy2a2FLQTQxTSBk5z2V5sePPo6nQRhDt+WSzMwyc/AIYz94FA4fASNwPR/hFqkjmclinJ4imBBa9U6Z7qNjhIeOQZKhCjbtikfNFVheARLDc48/xqPf/z7S5GA66T1GmJcmhQZAGBLb0JaGOobUNoigCu2M7Y8+RVdPN3R3kcgiuWUDBhN4hCrFETa2JXGFpCABr8RpK1bxujvuAFuQW5BmEbrVBKMID+3H930yrVBZhi0tdJp1gn5pdqqdOYQR1OaJwhbtdhshJXGSsG7TFTTCkPUr10KkT6UG5UijsXSOrXMolXEqVaxCQFE6+FpDEna2LEVaAsvzMEaB54HtcNOrXsXIpish7ATYbNtB/BMj4RfJhcIIg5EGZRlSy5DYnRQ7kYOroOh4+K5HohU6iymtX9dJ8ZQSggrIAp6wWdBN6Cuy/qpNyJ4qI7fdyMCVFzCTN5jSIcJ3yVRCGkegFMzN88S3voNVD7FbCXk7pB21eH7bNsZ2PMfcxDh4DhRcNDkmDHnkvm+x5Wv3gWOTdAFhyIBXwn5hjGf/4l7mH3qcwlnrYeUIFIByFd1okqcJ4bExMC4/fuiHPPnU4+SBhTIRBAWuvukW+rsGsLXsBKnPPwvZ1w2eRcEWqFaDc9duAAN+blEwFqYewqqVnH3NJuajFvNhiBacOh//cdO56fR3Y0B3/ggjcTOJ7RRoNdqUZJlDjXkmVEKMRdMLsAb6GJ+bg8Fu6vUaz/94C10b1nXSfVcsJYxa0NdFnqUYY1BKQRYzdM5Zpw5yBj0Ba265HqFths48l4s3XQPCJrVt8FwuvOVasA05EicIMJ7oHJuZOXpzF5TFvq/eC3M1Xnjkyc44JF8cv3MQGq9gkauIwBaopIEwMbFtqCV1UmIs3+OKa6/l9DM2gLChZ4iBpSsoeBbbf/QkevwEXq6RuSYjJcsVGQqdnzJqa7co5B1jeVIFc00c6bDhza9naNNFLBjFza97DZds2kjSbtN+4inIMoYqVbAsLr7uKgg8cvGTt4JaQhSH4Dkok4ErwRKcnJ4Ay6bcVeXH27ZSsTxYiKCZsW7tOTDXRluS1BLUUdRsi3kpyHJIjADloZqnPmtugS0Pfh/iiDOvuASKPrawQXosu+A8rOEBcrszbmkMSoI2CcazyWxBmCv8tau5YONGQqVwCx5xalDqn6ewLaa0LbLIzxuv1HQ2gO7u7n/1uX+e4vbTZDGc8ErE/jdsiyyyyP9eSJvHDx5j5a1vAK+Myi1e94mPc+Kpx9h78jj+xktgZBl1Aew5xJEf72I4qFKNckoNiRcaOHIEEsmIPQhpxlmvu4XSeesg1rjG0PIM876hGkNfC/ysY/zblUF/ZkDkrAwNp2UWqYqg0SB0M+YLGSkJbpxSbMeMeBWsqVms+Qb3/+EfgxRoHMDuBJMsoOgijWJ5bw+TW59m54P3d5QfpzaQNOOM3PLA82HFGv7Txz6NOP9a1r37g+R33g7XXUPUFrQrfbB2NUvuuoMzbnkd5AJbAwoqGfSmIJoKoSxoJzhGYGtJ39EWe7/wd7zw2b+Fh3ax9qIrkRm09x5ghVWGsToFaaPqNe795n387d/+LRQKP+GRBEBXCWfpEGeffQFOM2aJ39XxT+kOSC3wpWT6yR1ED27BOdGkX1RwJqbwo4iqZdNKmigPQtqU4oTe3EVoizjW1I1ArVxO0h3Q1gt45y/D7XJBZwyEOZVjc6wodKGLNqvfcgvdV19MmOV4eRmRW+gwJp6fp9JdYmJ8DuhMoXI6CgNbQL1omO42jA9A5EmGY8FI3s2hBx7n6LbtYFJKt13Hub/1K4x88C7UWctIzhlhdonHST9mym8ym87DbJOjT23p3LR4Fjg5qQk5bbAHoRKsVguVRaQmo9rbRZrG9FYqOAJkltFdLHYMsD3Jxs9/BL1+gAk/wQxWwZJM7z7BWtHHD3/rz+idtdHkzPmauptTd3PaXg6DZbK0QT7QxdHmHNHMBF2epCIyynmGaTVxco2KIkgT0BmPb9nCfCuE7m6QFlnWSeMU+T/eAilpaLuGRkG/tNV8Q+watDRYBioJzNamaaQRVrUIywZ49298mNve+z6Yb1EJYShx6T5Rh+N12DnJ/t/9Cof/9F60sFh62Xmsfu9bEV1FVBjTWywRWBZuZijaBfq1zWDbcLrXzbKgSjw9CckCXHE23sVnwJkrYaDC7OwM6wdW4ByaozqeUR6PoOhTzD1mWwuUC0HHZ+n0JWx831sYbFkQ23CyRfGcs7n5kx+hf9MVMDrP7oefJDQp01WFcAyomAfu+WuO7DyABIJyF69+4+sxUQvCOqEJ6a0UmLr/EdiyE29yoWOcLF1WnH8BW48fZODKS5h3JKkFyur8fkp2ggLCs7BdB8f2cB0z4cbXAAAgAElEQVQHPJ+kf5i2W2asWoaRIU6WfLj1Cs74g08yOtRLcuMlvOpjH8I/fXXHF2v1Cm75xEdhwyq4YAOv/e2PwdoRbvvkb4K0KPolHMfhrt//PWR/N5RdNv3Wh+Cm81h9x01UdZGopXj4kafA9iHN4PSVVC7ZAEVDq2Qxm0ecftmFp0qXOTgLC/SqEkHfCi45+zJ4YQy7BaWWoRgrfGXIhaKRRtTzNq0BUF2KC3/ptbhvvpiJ5QFzfT5hr8uffeUv2fr0FqiBOB5x/L4n2PLlvyKdHMW3FEHapCwTpEzJ7RRjK7AUvdKjW9sEYchgPaYUdhRKk80FVKUCI0thRRfj7TlmWguMPf0kWBZ92BSThKUDvZ3KcE7+E95vhs6aA57NG955V6dv95Sh6pGXCtiuw5FnnmF6+3bGHt3CWqtKL1X2/+nfUKnnLHSXmCoHTAQujeVDZEuHWXf7WyC0KDhDRKGDb3tYUczM83soDA3zyMP343RVSWNFuTLAo4cOMeXkZIFF5lkkBYvUF1ApMGdipk1EYikG1q7iqR3baUcxC9MzeK7Esv+xHy/qjxZZ5OcTY8zLbv9R2bZt27/63ObNm4GOP9JPm8V0tlcgn5rlZY21f2fwZ9e+RRb5ueNfWACRUhK32/zupz+NBDIjuOyGVxH0lTnx4x+DlESqTX1iHPXUM6hnnoXJQzQe/TZYITQi+puCovaZKGa03nQ5yf3PIQYHqeczUF9ANZpU+4ep75sksX3c09dQLVWZrk+R9BZxwohib5WZVo0YQ9ktESaKvOChMk1/0A0hyEyicEhdj8RzqKPIHYvcaESi8DKbth3T7HWJ2hEVr0iSJUilCZoxDVeAkDhOkXa3xYrbX8vJ3UdxtIeWCkQGsxPs+cZ9OLM1qnbGga/fAyeOYC/M47frJLFN/eARnLe+lrk9+1GNFqU0Y6i/j9FkAZycPuMQKBuRSxrGEHoebc+lvfsgrCoxd3A7zX/4LtXplLYVYWJFV+ZhS5+wHbEwPY8lJFXHx4QxaINnW0Sug1mylLfdeRdPbf4BTSfn9DfcwvzoQUS5G6ksbNuhXhU40qKa5BQdj6jiEJcs8pLLAA79+ARWDEIjAh8ReKhymVvf+mZCKWjMTmMVfF5zx+0cmBjDaiXYUYJJMtpxC7+/wkXnns2B7dsp0WkXlsb2Apy5BiXh0bAlVauHLlXGlLtJpIfKc0S5DPV5hru60a0Ut9rNrEq58k/+iOMHRxkeWsEh2WRh306WrD8DN1VceuOVNKWBiTpLWoJ6ABjFsRcOdCbfkSKvVKk16kjXo0flpK4kO2OEc+58E+NxnZASYeYSRjlnv+V16DdtojlxkLHvPkY2NY+tBXYzJdA2teMTjO3dD6kiUoo8SqhYZXQkwA5QUcbNd99F2lth47WbGGvMImshUoNBkggL43goA7gB0ivhl3ppjc9gz02RqRry/NO5/eMf4sjcDAutBiLNEEmM8Qza88ijHEt7COGiUoVl+fTEHiSKOpAvXUKsFV0XncfbP/br/PnXv8S+b90H5RJJrUUr08iCh+emlD0HJ47RC3Uau/cQ7t7LxNNPQHsWYye05iVJUkArH2M8WnFCzRPMOopWl4vJQvwzz8ZybEx/wJve9Dq63SJTR44zVZvEFHySWoP3fPgTPFvuIjs8xxmf+DDDF1zA2M7doHOObt2FvXeKzBj8UkA4cZzDO3ZR2T9GkjYwQQ0GCnBsjmENMlYkSRthImyhUc0aex/YDAsJZA5u1xBCBojaLDLKaGcNtEwxMiQ5fARr11Eaew4jwpghXaSYO+RJQqozli7pwrNymvMtUiHo3bCB2cYMycazkKMLpHGb67/2hxxqTzBcyxieaXPiwG4uuv4qju06wsyP9nHVRz5MX/cgT/zN14l37qJ3+QD7Nm9GOYYlBo5u2UbkWWgMgxdvZPzkJO3nnufMM9dw6B/+nsNfvxcrSmkfP05zz37cVOPYAjUxzpEfPQOZIsfCuBVe98Ff57kf7QDl0BvbzOkG17/lVgKdUN/xPM2wieMVkYmkJcoorwQUwPfJ8wSyhKQe0zw0wbo73szYs9vwRRVzaJLs5DT4EtoNSrUW/SYnazawjEXBLzHbauMXy1RKFeJajSW93ehEYwkLPIvcFQgrxwls8D30dI2VFDm58wAzz+5gbM+ejvpLJeRC0zIxcbvF9PN78ZoxlTAlMZqsItFJQp+WDLQFFy8/gx9PTcJZK1j92tcz9/B2rCUDGCvjF37307xwZD9zY8fAKLy5NsO2i9fbRTKX4L3jzTiXX0pWLnHOdVdx/KnnyELN0sxl1mRYroNqNClNzyEbDWyVgZQkWUb0wkHYvouyzgiMoICDh4VwC6RS4PRU0Trjyutu4oLLrmL7Aw/hx5r//J5fwrZkR+EqJAKBWKwes8giP3d87nOfe1kl0kc/+tGfdTP/3UxMTHDvvfe+VJHtxXS2Cy+8kE996lN85Stf4YYbbuC9733vT71tIv+PrO9a5F9E7H35ffIz/te3Y5FFFjnFvzLKNms1hoaGyPOcxPEwg0tgeR9s3Y0sVTHxLGiFbbm4jSahC90ajAX14W4qxyDBkFx3NpddeT37vvUDLvvVO/nuxz7MYEOykMakpQCLKnnF572f/Ah/9psfR/YHmJlJEDZWoilVK9gFn/n5eSq2R56l5EAUJ1SlR57nRK5Aeza5JcjSFGE6VZIcDYlSVG+8GLdSZOI7j1B2izTtDC/VDEc5RwMNloQop/LGG7n06qt4+Lf/BH8+JvISsDSWiumLcxaw0T1d6KwGroNsZgyW+plox7B8EHH7q8i/9BWYqdGrLEJfEPW7EKUUGzl+kpMiaHT5nHbplVx76y385e9+FtYNceeHPsj3/+JLyMe2M53MMdTdhWpkJJZN0+2sxgsDVpji2JLE5BiZQdALboCtQbXrUCnygd/9GF/4wh/BTIMuY1GKFPOWoqA6ihWAugfJKeVnKe0ovzI7IrEhlj5KWiSWy5ve/gvU6zU2//U9UCkhgoB8cpqKU4FGhFPwaFUskqgOBRcWQpb6A/g9Q1gXrWL/I9+j6vVQn5zGKhVZTjcTwpCs7YcDxzjjmmvo6Svz1De/hhcluKlA2QWiFSMEr7qO005fzZ7f/31Of987mdq2i8aOPVBrgJOBTsByCOoxynMouD5R27Dmggs588LzuO/b34Soja0U5VaLNhp92jI0hsJppxM/uQdLSXrxmK5kcPESmJ6AEyFuZjpm6yqnkcX0n3Em01PTnHn767nk4ot54qt/zeGnngUs7K5eMhSULDAJxCk0WgS5hZUbtAAlJUoKjDYMr1rN0pEVHD85xvSBQ/TrlBknhXIAQ0vh+DQkmkqmcCzVKQ0eF5haWuam3/5VCo7DA5/+Y/TkPPK8VZx5w5Xkw1288JffAKcAe/dDtQdm5zv/a836yy7nrLPO5L6vfBmas6By6Onq+AlVKtBudUrct0KkMpgVy1l1+1tZOzzMg9/4Oowe4+rrr2P1yAjf+cbXmJ+bxrQECAtKGjwLERnyNIOygGoZhEPRGaR95CQ4Dgz2gJXzjne/k2a7wd9/+S87lfp6ezGjY1AugFKdoEi4wM2f+TDHDh7m8De+T5bGkMVUbBs7h/zU6q1XqTLdipDVbgpLRui2fOztu4hQqB6H+XC2o2vP6KgKZcfj6VVn3Mz3fvwIVCSEM/RmAicX1HqrxINDMBtz4Rtfw5ho0f6vf4c10E34zo2MFLs4/F/+O6dVehjL26iqC04Z2jnBbVcSPrkVJueh3gBH0JMK5q0UVITb203m+eTYvPP3P8MPfvADjj/2KLTrMDuLV3Ag9xHmVKW4PCdKYgpdFeKwQe+Gdcwt1KCZwZIlMDmNyC38epusapMNBtBu4U23SMpAtZ/iwZhf+dIX+exD9xEYi9MVPP/odzppdAtN5LWvYWTNaQSpZs8938T3XCITM/Tay5l89ElYiMGKwRIgHYqDw2gjiet1bHJ6pI2M22SWfClFVaIBSI1BeiVCbSEtl6TRps/qLFIYmRHqEFybMEo6ZTilC7ZDMRYoR5OVJRhFJcopxQK7VOWoCFnx8Q8w0N3Lc3/0FbJjo3SdtZ7zzzmXH37tb8DyoBVRwqWlI+jOsS64jLd98BNs/q9fYnLHVlgdwPZ9UKlClLL2Vddw4PsPE5Sq2PM1evuqnGw3MK6DsQuYdkpPXze6MYafgW06FfbqUhB5LtooQDC8dgMTc/N45W6qCw2mDu+BTIMv6OwhsV683i7KkhZZ5OeG3t7el91nbm7up9CS/7mMjo5y0UUX/UTa2qpVqxgdHQU6qW4PP/zwz0SJtJjO9kpk0RNpkUX+Q6CUQgjRydWWAvu05TB+AgBTX+hMEj0PkcvO/bAlELmknLmQQuJ7mJ5e1txyPRM791PoLuH2laGdUrUDAhxwHGzPxsQRW3dsRSIh1uB4kBt6q33UFxrMJSF5ySNHoGIF0sGUAyIrR8nOfMjV4CuBqzo+Si/6yTiWy4ply7n68k1QKtJst4BO2pp+8cue2rcxPsHzW54FnSFy82LxMmTH1gfftcnTEHIHtIWxXZqVTuWekcuu4OyhFfStPx2rUqBNCoUAYgWpoq0Ntu+T2zmkLSb27WbXU090StWPTTO9ZSfpyRlSV+I5LmEYoqQhtRS57Bgp5wLsok8eBJiSB5UAwhg3SlHT0/hGwvQ8O554CqFzykFAUPDIM001hiDrfE8tOoblBdUJtGkBkQOZtDBY5EK+9Lt879vf4elHHun4TC3UyBdqIB1UmqHJaeuURCVQ8EDaFCoVwkaTJdV+rr/qWli1kobQYIEtLdI8w17SRdfGs6CrRCThwssvg0qJnr5eSkGp4/UShYSPP87C8RNwzpkc/Pp9tI8ch7kaPZ4PUQrSAVuQdhXQmSIL044vcW8vZ56+jpGREQgjAsdDIhmQZfSxKZhY4LpNVzGw8QK0b5H1Bh2T8eeOwLEabmawjIZck1kKuxwwPXEUsgZHxo/x2I+eYLo2Sy4VuWeRxXVoN2B+DqQNqcbFxso7hrovGsTbGiQWSimuvukGrrj26o51TW7ALUIKjB6H2ODiIHTHiydONA4WWBbekgFEbwU9MwWpwmSKUCnKw4Pc/P5385b33AWDAzBXx7KLyDTHcX3WrV1N33A/VP2OI7vlcPWd72Dt3b9A4YLzYMkwCBeUjYsNJiJa3cNzrXH8c1ZD1eaxpx/jnnv+G7MnxqjIAgM49OYOCB8WQrxQITIFQZEL3vF2znjtq2mfGKVnZJA1l58DEydhdpx7v/01Hn/iBxA2QC/gr+yHgg+Dw5xz66sJCwWcvkFOW76WuG3IvBL09kLg4yqJbQTWKfV/lCaQa0yrxpvffSd5xSe0XNzeftrITt/2g05fcQFXIS9Yx5qLz++UYswTKAZYxsPBJ7YkK6/ZhBhexqHRMab2HiCQBapuEbeRkU3XsZQgCZOO341XYPjGayCp07+0H6unC1yLoBBQUDndSjJk+ZR8jzSKyRtNKBTY/MAD6DDGHxjCdtxOd1OnvHZExwdIScBziFUKAm597Ws6ndKz4MgoUlrYwpAWLTJPwNg4xBnKsmCkH+/CDTiexwMPfw96fLpXLSWsd6oW2qes2nqk4OiOZ6l6DpiUSCewpJ+zr78KhILeIvRUwNIU169h022vJpY5+AUUAq9QIEkyDLIzbuSyk6uaCyQWRmlc20ZlGUG5DEhEDnZu4RiLuJ1BLvFOWwErl4MtyIo+2rIxCnLh0DCKsBIwb5mOsf9Uk93PbicbKoOA2tY9/PDL92LLoOMb51q0HAOegN4i59x2PaPbnqe1Yz9BCBw8TikoQNSEJQErNl4ABZtQ5hjXRucWjlsgtyyMbSF6u1lIYnJAi06BBiMkOstwcgGpwnU8ZsbGoNnASWPi5kLnftaz0PxjGu+/tmizyCKLvHJ5pXoirVq1iq1bt/6E0ujFANIdd9zxMwsgwaIS6RWJOPzy++Sr/9e3Y5FFFjnFvzDK5koxMTHBhg0biKIIXSxx+Yc+yBNPPgQnF+DYOBvvehOzh45w6Omt9CSG+aoFxmVp4jOeRvhr19B9yVlMnD+E+cr9sH8MiuCm0NtoESKo95UhdaAgIbBxaxptC+7+zV/mnr/9MuWdkwyfvZZwpJexgy8gDjao6py60OQjZWjHyFjjpoailtgItNZksmPenFpQKFVoDhbZeNUmnv72/fhaEKUhhURTiXNmCxpjSRA+7/+//0+e3/UCT/+/X6aUuWip0NIgyPBMRiJzjAZDgEbiXXwpZvUystlpupcsY2HLDoiOwMQcZRnQNDYX/PJ7aDabHPz6t3DDJlok6KqFPatRFjDUT3/LJa43SGxJ2isImikmT8lPebfkQgASW9lI4ZEKw4W334Z9+nK2ffoLDGcWUdpC2i5tFG1i6KvgJBm2yllqF3FbOZEN9cKpktlpJ7CRC6gVIHQ6wQ6Ri1NG5KcWy3XHoNySGt+1yFMbRzo0202cUpHcd9FdPmp6GpTByQsEmaSegbN+GUFfkfru/RBHuAN92DiEWQv7lqvoKvQz++hjkKUIoclHj7G2Z5jaQoOsu5sFlcJADwiFnI2w0aRuDlETt5VSABpaQbcHcwZH2JQcn4Ukwa2WyTyLPAmxtcFrxZTJKA6u4EjaxBRieNebufj665jbsR/1/WepPfQkHrpz3K0cLSFxIFOKDbfeymlnrOe7f/FXYLvQqINlQ1DhrBuvo5GmREnIzA+fgEgzHBlCNyc7VWzQOqVewPOo6wT6KhC1wXUoj08jSmUyIcgiQ0n45EqT5BGy6FFYNoQuVqiPn+wEHR0bYoWvAgr1iCYpankPrCriFgukT2zHix2CLKVqV5hUDdL+KiZqQFCEKAA09BZxXn0Dvb39TD6/C55+Hmc+ZolXZPnv/RIHTAs710ijGfuTL9CJwkgIDcw1GKaHFMN8RSLDJiVlKNo+syu6Ka5ewcLzL0BbcdbdN5H3l9n9/3wNCg74BVy3SNqMuOlTH4KZBg/9zp9w1Ud+mdl2gz333EuhMkCcNEDn2EPLufx33s/jf/bH9D+2EyFzdJ6R5YaGMS+9J+vPgMzAoRNQLNB/yfmsGe6nYHJ+eM9fgQ3WmWvpWjbE3NNTsK4Pzl7F+kKJuc9/lS4n4OC6LrjmUq4c3MATP3yES684j33/5c/IpUfjrG6ohQw3JHmumZRNzr/7Drp7+3nkv/0Vy15zNWMPPQknpinnFiLP6Ms0bd+mnkYUuntpKY3KBfT08rZ3vouHv/0tZnfvoiJzVG6IHb9ToSwHQ05uNHYxQHgOF2+6nKfv/w74PnIhZSioMt6ch9X9vPotd/DQPV9DNdoElTI3fv0zjB05wQvv/2MSV3PWPZ/hhb/7HnzzEYrdJdqzk1AtcMMtb2Tzg/dDbx8cHIfBPrrPWUfllo0ce24X7/uFd/PnH/818D1uu+PtPPjA90j3HYFSN8zPUzFg5hYQlSJagmM0dq4QOfi+z3wrxC52k5mcVGvKlkBog5UkGJURORaRLXnLxz/K1plJDn33ezA+y+kbzubgzh1YXRU2XHIBu7b8qGNmLwpsuPhK2kXBsjdezlMf/D0GZw1GRYTSpt1rgSehNgc9VZa+5lqG15/N1v/852D5VND4rSlmghCjgGW9nPaf3sXRP/3voC26vSrJwjxOXzd1ldK9bi1nnHc+T3/77ygsTGPlYOuOoiiLM2y3QKoygq4qUZaS2xI7UQx1lXh21zaCSokQicTCQeIqFhdMF1nk54z/P/PpF/lZmlD/W9m8eTObN29+qRrbP2d0dJSFhYWfWeDon7LoifQK5FMtXt4Tqfo/7/NePKH/LR14kUV+LhH/7LGAVGXUajX+/ItfJE4SKLgcO7KPt378w7zwnQcpVro5svVHbDjvPGaPniTQgpYtQdk0bSDoITt/JfbpI0Rf/BJ3fPb32PP3DyFcHy/J6LHKrLvgfI6WgDShcs56zrn1Bk78aDt5tczuqRPoUoHgWJ1V55/D0MazufTOO5h4dDtWMyULPK79rV9hdOdWcgwq01iZITcGiSC1IHYgczvpbDk5J7ZvB1d2TI0ROKpj4GpEjkGA7bH14Yc5sf8A/f3DpLUGnsmRuSCzJJFjEK6hDAhlk+UFrvnFX+KQq+k95wzmH/geHDhJpZyTtCJ6vSot5dC7dgMXnn8JuzY/QVEopAuZUZRyqPZWabfm6W1AFZtZk8Blp5ONzZLbdid4gsYyEldDQVkETkCYpUycHOMkCmdmlkZ9imJPN4mT45Y9pO9AlFAwApFlRFGMCnzmA0GjIohdgZcJXC3wtKDtCCJHoCwPLaxO0CPPcbXBRO2O6XSaIKXEbmdUXZ/cdWilLbRj8cnPfpbHf7wVlCDHJUbDSA+m0caMTlOOFIWCjzcywOWvv4XDP9qB2XccZ2QZ19z+BgZGRjjx5FMUpEvabEHeSSWzcnDaEatLPYjjEzSLktNuvpRa/Tg60hAqRtyAWhQjenvQuSaOE7xKkZSs42eVRRhbQqFAQ2bUXUlBSLK5BPaNMv7gZhb270F09VI/OgXY2CZEW5BLQ2Z31ERplLGyZwjPrjC9+xAFy8E2oLRm6Oz1HDi4l741I9Sf3wmFABk2MLbzUqUpR3c6V54LEpOBjqFUABQEBcJmGzR02QVMqlBo7GoX7TTi1R98HxvecAu7tu/GnVVccMaFvP3DH+KZsUO0ZmfAC2C2Ba06enwc2imuyfEdj1YW4rgOcdjCLfjoRgs/d0FIjMox+w7R2vkCHDkBSQsjNfU84pJVZ3Doq9+l9o3NFJ88gDMf0ZcWseOctOIi1y2j0WwQ9QQg2+SuhSs87ETRCEPiqbmOuqcRMbH9eWYe38nSrEilrqnUbUoLmnYt5Ny15/HYt3+At1Dn4I7HmDmyB6KEfsun3QyxYs3Q0CAvbP0+nL6C5MAxMhsyYVAC3CBABz5WqUzeanP3b32C5w9tZ/mvf4AVZ69n7vgE9eka8dEZyqkkOT5O+8AxCApc8YtvQych0YFDFE/OkURtQlfQt3wJJ0cPYTkwfuwYXSdDjGNx3d1v4+BTWxFGUFo2hH3BeiaOj3Hwvn+gZyFhanIMxicp2japSkhKFq7rMiXauI5HXG/jWjaZkIDg+IEDLOzbh287BNLGRoKWWKfOfZlDuVQmnK9hkowTu/fhd3ejoiZLYkM51QgM1pkjLB1ewuhDTzMS9DA7P8f+nTuYuPcfsJWLWDnC5JNPw4HjrLzkIrw1QzTq8zBdZ2biGFlgw/Qsw90DtGZnibOEC19zC0ce28L4wXFaW7cxsmINh/ceorX7APgBN7/6NZSqVcbHThDHLXRQQUkLhMDKO5eSVq1JpdxNvd3CcQtknk3YWyAShjAKsZEUgyrtWpMXjo9x1a2vZdmllzO6axcf//gnefiB75OnCXf9zid4+rHNnfRL6TH/o/+PvTcPt+uu6/1f3zWvted9piQnQ5uhTdMhbZMONB0opIgMpVjbCghFZVIRHFAL6LWKwuX3UxS8F7WPeq/kolAQoULpnJQ2nZM2TZM0OZlOcnLGPQ9rXt/v/WMHruOv/kDBW87redY/++xnffd5ztrr7O97vz/v9z76CzWiMYfeky8wmhul6Qf4eZOf/vhHqMd92qemYbZFd+9Rph94GkyXLX/8QZZdtZ7o6WdoyBAiGJE5xAXr6XZ7XH7zzeSChE6zTV+TKJlR3nAWtTTF378PhSIyTo+lCp2SYaMFKY7Q6YY+xVIeO4oJ23WyyOejH/sN+oSkGCh0DE6XLmgsjrMtssgPEZ/4xCde0on04Q9/+N9tvV27dhGG4b/73veOO+7gk5/8JN+WZ6677jr279/P1q1bgYFYtmzZsn/XNb9bFnX6lyPfp3G22267jWq1ypo1a1izZg3VapXbbrvt3+fkiyzycuO0eKQYHJZtc/T4MQzLRDN0bNuEZotqPg+tJlG/B5bNo/fcSxSdHuvIFMQClpbhinWMb30FzT3Pgarw+Of/DjSBajTwsxTf1CgsW8Kmq7eApZErF9h85RVABlGf+OBBePFFkizh6NGjPPXUU0xNTWHbNiEhrutSHhni6p+5FUwBeQenUkSZBpGmMAseTrlwWpjWoN6CVILMwLO/82snp+vRdclghCoZZMIsTE/heDYKia0bJCnguSgTogiKwsHFZPczT8Gxw9TnZyEIWLl0OX5r0Bnd73SxhMkLd36Ze7/8FQwpSIMEvxdDCt0UOkEXCg59AmIERrnA2ddeCdUywjTIohQzAz3OKBg2ZgayH0KUgeVy8cZNRFpKasJc1kWM5CmtXEqiJNqgwxzbdLDKJfpDOXxPo7DpfOi1yFwHX0q6UUC5UEaFKTfe8hOoRhNd19EQGMBIpUy/2yZDUSiXyTkumhAog8H9OvTZvv1hLNMBP0QpCeUShF0qF55PEkWARr/TpnnwCFrLx/GKDIs8V1x4IWkYMj15HNwcURThJzG9NMLzHFylsFJJ7eQpCobDqvFlbDjrbBgdhSjBsWyCJAFTQwX+4G+ds4iyEEhZcfF55M89C2RKYumggeknGLUO6zKL4aaC2RBaGa1Hnianu9iagbQM3GIezTJRKeiagX9qgQe++FVO7nqBPA75SGKHGSSK579+N5ya4sTExOBi0jNMr4DSxCCkPgoxbAs/DQnSGGuoCuPjvOod74CVK4nDAGtkiDRLKVTLRCIjszW6cRdci7/96y9w959+DhZmiT2op31ac3NEnVNwURV5bh6Vz9D6AXYnwtI0UkPRFBFJ3qSXRVgKrH5IQRkYiU9ZZbh+BLUOzLXRLAcckz/44p/z9t98P7URg6buk5ARRAEOGpmh0Yg7nP9TN2DceDlYKTg6Z97wBjAE3aBHRDbIxopDsixGEzZWZlLKLDpJQrmwlKZM6OZzyPPPQl+zku45K+j6Tci74PcASTAx3EYAACAASURBVLwwy5hjMmab2P0u69/8JogjMhURuxahkmAZBL6P6vpk9RaVfJWn7nsQzjqb5swMT3zxSxw+eBjHsEmCGOKUvNIZshywJPsffIjpbz3C7FPP0OjWiAgo9kPmH91J55EH8Q/tJT56hCCLWLp6BfX6AmiCbuRz461vo35wH8H8PLrr4OkGBAF6Loff75NmCVkY0uv1Ts/NariuiwBMpRBBRHd2HtMdvJ/SNEVlUNAt9DiDOMXRDLIgQleCipvH1iyCuTqEKTEZBcNFktLd8wL3feFOTCDrh9i2Ayfb4OsYAtKpk3CqidaRnLv5InoVG/Imnu0R+l1UrwU69BoNPK8As/M89P98GvYfZuaeHeiZwYknn6X+/IsgNYgSxoaH0IQijX1yY8NkcYhMEjZv2UKQpCSZwrIcEplh2zYK8MpFWFIFS4JnkgiF7/toukkug2hmgYnHn4Ew5oEHt4Nlga5z744dOJdeQuH88xDo2Coln2bM/MXnIVO84afeirZ8DEoO9aDPieOTaJlgmZXDCRUlKwd+n7bsc2DuGEcaTRhzB9l5MVx+0SUwOka5UGRmZoZOr0vW6YDrUKvVOHPlKnBdCpUqSElmGaSGhh9E5GyXvJejWCxSbzWJs5RyvkCxWESh0BeDtBdZ5Iee78c4W7PZ/M7ed/PmzT/0e99FJ9LLkN8OeGknUv57W+Pmm2/mjjvu4I1vfCO33347N910E2EYcscddzAzM8Mb3/jG722BRRZ5GaH4B7Xr/+A4cOggf7VtG4VSiW6jCUoyG3TpT9cQ3QBpDDKD9GyQreObYjAqs3yEc269Aa/W59ylqzl+/046+w/CuiGs2RZZpUgvDTk0fYLLr9/Ki9sfoef3eHbiIOr4DAwPUbniUsKDBymLHLNzp4iaC5x49BHCeR9ParSCLvsPPMvkzBSbrr6Gaq7I5OEjJEqi2ybdoEucxqy46AJ+5Vd/nR133Y09MsKyKy6ic+woZAI7UwQmWJlCKEGmG9ixwsgUmZYRZiGu1MmUxrmvfRUzUxOoKMVWgoLmgYDGiSPQnOK1b72ZoeoIB++9j0wDdJNhlSdO+iSmiV9bwAtCFIrEELCyCn2fNFYQp0SpQcszkatGWPeqV6DVujT3T1C0bDQ1cK9o6GRBQskuECQZme8zc/gwJP7A1TJWQR8b5urXbGVucgblJwRxAq5LL2fjbFzL2dduQS/lWbr+XE4ePEK/38MuFAmQ2J7HhZdeynS9Rr82jy1ASyKUTOmFPka5RCNJiDo9DNOg7nfQVyxFSTjx7B6yVp+lF20iv3oVa199NbMv7GfFxot5xdar2fv0TkzTZtQPmNp1kFhm2Ar2HHiWY3ufp/3CAcwoxUTHLOXRch7NVpuC69EMunS1GHSD5lyN2rEpVg0tp3bsFJpp0yLmkne+hWXrNtANQ+J2ZyCKxn0C1+K1b34T5dWrmTpyDG1khHR6ARNBAZ2+TEgsUDICKUj8jFCGiCEbP4nQDBNL6FS9MkQCFWZo0qBge5hJiJlJMgWJPvj24+2/9AEOz54imZ4hUxItkaAUtu3QjkKkZ1MeX0J3YRZ6PY6dOMno2nXEq1aSHDk+CMOWksTViLQMZDAIgvYTwgNHQUnQUprzU+zesR00g9e95z1cctU17N3zLPmFLsVUkTFwm0lbkMgEPZfDDDJ0KbGVJFEpIglxsoQcg8ezXgeGPO7ds53nd3yd40/vg3YfREpgRHSrHt2oBabAtnLU/+Yb4JtsuOBilAaNI0fJmR6ZzEjOHOWWT/4WftWjdvQA2dkrMM8+h96wzoKWkhRdok3r4HWXsG/Hdlg3RmW2Rjg9A5qiHEFZ6HTSPqHfgV6byReegUMvsnTLVVx40YWcOLAPxUBgdTDQUkVvpk5t70FWFUYZ7cYsPPoUBBHzE0eRfg+zkqeTdAgsCVGfcGICZmvg+3ilHEpJrDCkYNr0jGQQki5B6wfUky6TU0ew0RlfvRJzpMShbg0mp1Bpj54pyF20jqqbJ2h0cVKwhEk5U2TZoCFRKBCowUiUUlhSYiiJjgQEmoI0SHBdF9Mw6Ps+Sikc0yLs97ClhuV5xDkb08jRCX28XIXQ8dCEiSt1ojQBQ2NpF0qxItAhCXxW+SY5v82u1ilCWmhrzsbbdRxlRqRCQ0hFKdTQMwjiGIYqUA/J9xRLwggvSdARGBKk0Jg6eZxTJ4+RyQQhYrJCGYaGuXDzRex//HEqIyNImWE6Do1+jyQO+fGffRd7W3MwN4s3Pk6wUEOXCs8y6M7XmXxhH40DB6Hb48ie3QMxcuko848/xuvf8lYuWXs2uz9/JyNejqC1gGUXyI2PE52xhKP1aZAhB3fsgJl5SqHCjnxSYdLJ6WBYzD/6BP4Tu0Ef5NTpokxvbJgmGb37tnN4/yH6h4+RK+ZIwh54NhdfsYWnv3kPBDHh7Bxv++ht7N2zG+V5eAnoQUyWSTpmSuAYBHGKbro4lsUHf+VDg/s2GjoaOgOX1re/tFlkkUV+OPi93/u9lxSRPvKRj3xPa1x//fVs27btH+19Z2Zm2LZt23fa075Xdu3axQMPPMD+/fvZtWsXO3fuJAxD9u/f/51Rt3/p+PdY+/8vi5lIL0PEvyF8Xr10iP2/yq5du9i8eTM33XQTd9555z/62Xvf+17uuOMOnnnmmf8U85qLLPKfgW+LSP8QqSSf+cxnuP322ykUCsxOT2PkXBIZYIQGRpoSFl2QYCWDdq9GgUHYdq0LK1YOGoo8F6KEylCZ83/+RiY+8VfMxC2wnEGmTNXBWAiQhRwyDcEaJr9xA2+99a3c+YnfRZxq0vS74BrgWFitCDORpIaGGq8Qt+u4y5Yx6haZOXIcFadoQiA1gZvz6DRqFM84E73Rp9mscckvv4On/+6rMO+TizL6tiLfzxBKo2vbDAeDCNSaJ9E9B70WkGHwht/4Nb626yF4/DlyqYHea2NiEhUteiLCXbOWs5ev5rm7tsNwCVwX4+QcSyyLea1LLBVGDKldwF63hut/7T186aO/ipiLKeDQEQmsHoJOkzNe83qO330/K4w8rdoCeCbdKIAso1oeJWt0UQpSXRDnTMqWRbPdIsvbEPVhdIy1I2dw6tBxjNEKIufROboP68IL2HrVNdz9119C13SyMIAoYs3GCznyzHO4bo6g18RwLApq0PDdnp+nsnQpU7UFMExYuoRcp4vfrKOKpwOwlQaJAZgwVGHJdVvwKx651GTmmw9DaxbCFo5TYO1CynHNp2enoCwY8tCCCCOQVHWPRuwTlyyqy5dTdDyOP7Gb/PAQUdUjmVnANXNk7T5CQeQag+yTkodRHUa1fLKFBnqni2drJCIjdI1B81iQsPTcC7jyPbfwpY99DBY62HNdhi2PZhzi53Sca7ew7qotmFHC7k/+EabrYSpB0uuRxBJyBaxKFVWukpycxFYJbhgRS43ANFE6gyBfU2ChIWcWKBkuqWkgHIuOkMiCS7E6xLvf8z7++FOfIZ6a4oyt17HmzW/ioTv+EjVXg/o0b3nPOzg1P823djwMcx2MVCe1NMxgkIye2Say6qLVfM7N8kiZcdKISUnQlCTRINEHphFdt8j6Pnkvj2OZSAS+pRMFEaqbgJODJBy4yqwERvLQaUKag9hn9J3Xc/mbXstdTzzEa7ZcS+35I+z+6B+xkgo1BH7ShxEH+j5mJ8HRdKKNZxBrMUh487t/gb/7+zu55kfewMMPP8Q1Gy/j0S/fRdbrQRxC3YdiDpo1XvXed3By8gRHv/4QpUKJhugAGkv0MnUiEteiunwVvblp0lqN0VKJXr1OlgpSBAkaIssYJiPGpjM+hAq6UCiAm4PpKcj8gRuxPghgxoC1r7yGqaf2oscZ/SigsHIp3XYT3dDRmm3GzAJtS9C1JFZH4hTKdJL+oE1vpglDNiw0uO43f5GdX7iL9FQN208J05RlqUUzp5GRoKvBnVaob99xB+Kj+geCguXkqbeaKAGF4SrdZhPDcdAzhZZKgiyBTRug1yOnefRfPDzIgTJStPERZLuBKWxKQYaMEjoqxSqVGGonOMBEWXHJH3yEUVyeeNfvkFltOraGLgVDfQMzX+Rkt8EH/uwP+MyHP47d6DKipySaJLRsUsMgsS3iKAAUnqVjpBEdb4gt73ovO//0s4yMLWPh8ASVXI5MSlLXwe/12PqTb+XB5/ei9u7hfbf/Jn/6W78JXR/L1NFS0DUbTTOwhEVdJeSvvJgfefMN/O1/+yycakA/YKyaZ642y7JSibjVpza+BAgYufktyJM16l+7m6Fqld7ccTRAFVzCLEVYVYZaHSqFChNOHULQ1l+MXHsm3H0vxBLbtNEjHz/2sc9cytKVKzlrw0bu+8o3sEyLVGScefUmhK1z+JHHKTUi7FoPTJ15rY95/lmsXbeRA/ftYM3QMIcPPI9KEuTpcG2N04HmiyLSIov8UOF53ks+x/f97/r83977/vqv//o/yyu6+eab+dKXvsSRI0dYvXr1d70GDNxOmzdv/k549r+VH4Scs+hEehny2wkvOc52u/Pdn3/btm088MADfPrTn/5nbxbXddm2bRurV6/myiuv/O4XWWSRlxHfaY35B8RpzGf/5E9YumwZz+56BtewsaKE2DMpheAqA98E1CDjwZQQGlBt9CiYFtbsPOH6QWht5blJkkabiUpGT7YZuuIVBM9PgGlhWw7j7YS8NOkIAe2YuN3h8IlJov37yDSJqUNes9B7IboA3dbQVEbWaDFUGKE9OU3Y7JD5EWSD8TPVD3HRkUGELyBpdPDKZY5HNV715jdz7PHd2KkitsGOFLoShLpGNR24ArqmRMUBw+WlGLbLc/ue5aJfeB+9Wkx/YhJPKFARdhTjpRlRs8bUoQm0Uhn71ddx8euv5+TDO/GskFBEZIlEKgnFMlm5SO+MFbQf2s6QMULVT2lW81z08V9lVjdp/fU3IMmwGn00z6UtMpZfdhHG6BCNk8dJDQ2DbLD9jEPybZ/R1CaRkORK0ItoHDtF5uSIVMLq617J+htez7HPf43GgRMUpvto3YiICJaPcckNP8qRiSOkPZ+lK8fpTJ/EJiULA0aGhwmEoq8UjI7ymne9m2MH9pJGfXA0fuG3f4eLNl3GroefRMuVUFlMb3mVaLzM2IpVBAdOkB2ZoThSxfd71IyE4o+9guyMMbJj09hhQDlOKUuBGaQkjkWc+ASWxo/ccgvHJ6cIGl2GAo1w3XKyJRXS2jzZ8BCcNc6ySzfRffZFzKk+SZzgZRqVWGImMVai8MMQMtDcAt2jp9j/t/fBbBuCGJU3CbUEYenITEPvSqKZDrUDR4m6HWS7h2G5mLoNhTyZjMmWDbP+vW9n+JWbmN3zBKFMUJnASAdVf8VcgWh2nrLUKCQxNjY+GV2/hzE+guzUiBp1Hn9uD1nbx3HydFoBh/cdZsN5F2Ir6Bw/wgv7dzN57AhWJqm2U0oqBanImyZLpEkhlXSjPnJMMD+WsWAHyBQiWyN2NDKlUYg0yolGPtYwdJtOFuDLkGCsQpoAls2Kt93MeT95Cycnj8CSEa699d1U7SFmJltQr1POF+nsOsSxr20nfWA3J+9+nKl7HsdycjQCH+eSczjjdVdzwfXXcfzZZ5GdgCFl0K61BipWK+Hk3z+CE8Qcuv9+huohB+77Bqo1A2GAU29iODGVdof43Ath9TpmGz2i6R6BobHhwz/HNW9/K3sfegKzL3FSndbkKfKZhpMkpH5AkiSEQiJtA61aBFOnICP6jiKVHVa/7SZu/dVf4okHd6B1AtxuSD6QDKkK3bXLWfYTN7DmFVcw8bc7UHYJuWqEn/z9j/PCfU+Snphnja4hAp9ARUSaZFRZtBsNZBJBkHCxMUzc6jFqFNj9zJMkcw00yyXQBJe/7ccor17JxNQBEk3HzORAPxAZupJoqEHzIhqZGGTtdPwOyzduID8+Sn16kvOvu5Zm2CfqdUhR2OvX8MoPvI8Tq0aIshTmariJTaoS3vKpjxKM5Km9eBBf+QTDeQqY9JI+fZUSqQyqVU4+v4+Je7dTlS5m0CfWBbrUsDPBfNRCHynz+OQ+aNTQHYfA6NOzM0JLEJsKpQtMobCEpJRJnCBk6Q1vRlSqzO7diz87A7bDJZsuYr5Ro9ftQMFjZHScqQd3UV2+mu7CLLMnj2LmDYShsG2BpUnIAvKhoqMSLr75jTSjLtP3PcyawhjjmkO9fpKoAKGKWCWGWLAz1r7/fWzcsJE9f/IFRnoZVt+nrYckeUh7KeOiQCf2qRaHmO/MkSQJTnU5F/3aL1GprGL+wZ0Ugj52FFHxXNyhHO35aXwUh599AaMVoscpSbeLceZyfF0S7DtAEkq0OCZBEQ+7/MRHP4Q5Ms6Rx58j5xb55fe9G4GOJgSaUGiIgXa0KCAtssgPFR/72Mde0on0G7/xG9/1+T/zmc+wc+dOPve5z/2zHKRKpcK2bdu48sorOffcc7+n38N1XT74wQ9y5ZVXsmzZMmZmZti0aRM33XQTV1555b96/CCcSMb3fcVF/uP5D066+na6/b90wX77sf8bEvAXWeT7yT/9TGsZJkkUs+bM1SAVlmWhSQH9BGnY5HNlFpIWCEGqDVrQhFQgE7TIHkSAXHgOr/yR17Dv7v3I2Id9L4KM8Uoe0fgSaHbR+jGuV+Jk7A+yjYSEXp/2CwcwwpBqcZhup4PIBDnLIiBDaYPmIoAg8rFsG1MpNCFxXZckibFNHV1JdBRuprArRTJLgJ/SeXESTWoYmQBT0bV07BQ0peiLFOu0S0DLV5hLY7RyBTTFGq/M0HkX8MCDjwIZOoOuqnYGjmtBqhMlIauWLGHDhg08NVRiNkjBMqBgQCsbOC8adfonZ6E0yro1FxLsnwI5y1KriHfOhexM7wWRoZVLhCoFmXLm2evw05jGkYNksSCzLMwMtAhSUnTHJQubCE2i4hirVEXIlChX4sDjj7Fh6NWwdBn9hT6rvCJT7QWcoRJhs0fQ6bFs/VlM79yFvmIYcTJH3nRo9VrM6BkGFoQZzDfp1Zq88ooreWLHQ7Q7TQ4dOsQZS1Zg5l0yJOg6hCGv2HgRldRk+JyzOXpkkmarg0oylKlhO3nOHB3nxeJRRKuOIQyErhOoBCUs0ExodfjKts+TLNQp2S5nrliNs26EVRvW80gvgclZ1p1zPtf/2Jv59DMH8SbrZGFMliakmoahOwghsZSOlS/R63QhyigkGp5XpBv38NOEWKZoCHRpkS3UabdD0qCHKDso22Pdxgs447z13PUX/wPOWs0Zl29CqIj9n/kjUBnidAC4Oj2iEosUDElIQs6wSdMIy8zT11NWXH4xR7s1eHIXpBG60okaHczUhEKRKA6ZOrgfigXoLoCQyHQQp2NggsrwkxShdDQ0NMvk/He+hf6Qy8RD3yK5Zy/Yg8BsNB1dadhIIiIsYUOmsMaXcu07b2V2ps6ep3fTnZrhxV4AY2Os3HQx+yZPMP/wE9DL8IpVWq06umWRNNqsKAyhdyR+qOiriNhVdI8eIMspDh3bB50Qx/ZIvBz0muRSDdXxGRIOpyanwIJ6+xQsH4VOk5zlYXdD+pqiryCtzXHkS3dCrAbWHE2R1wTNmRmCxgLLnBLzrRoIKGgFulGKZpikBQtlKrAGIeb4bdpKEWYSNJOFAwf5RmMbHDsCwkagMNTpzXyzQW3qFA89thuvVEFzbXqmwcSe50maTZYtW4HRnMWXMRKBaZm0a00yBblKhX6nx1xWR9pi0ByGwC2NEMzWYGmFlVsuQhydhYdi0EBqEhRYGehKMJCRNHzDINUFaBrIlDUXbkQIwfShCS6+9FK6QcDxhRpkCaOlEv70NGq+BkePDsYl8y5Bt8VQoYRKUvD7A7fV2BDCVTB5DMPz0GOB0e4TyxCcHPWoj3AsQkcDJbBSjZLpUK93YdiBNCAWAmEMbs2GlINrD0maJSgESmgoBdZ8k2d3bIOhIfAjbNvhqhvfxNPHD1IxKpRKJZ6862uQ2XRPTfPci88ztKRCs7uAlOnAyZcMMupiPYVijmMTE8w9/TQkEr/WpBc1KTu5gQtMBy1nQFCHbpNd998L9QZlHHr4eMUSfdUGMcigAjDHlwycc8rn2h+/kXsf34ncfRzN0sj8DB0NqWLiYDCqrfwA2QmxhEvBdiFfYGH/XmjMg1lABm0Mx0HpCpotahNHOXaqA2FAeTw3+HYmBfTB/1jF4NJe1JAWWeSHi++XE+dfchp9+7Fdu3Zx0003fU/nP3r0KEePHmXr1q1s3bqVXbt2sWnTpn+1re0HyeI428sQEbz0c5T73Z//tttu45Of/OS/+oYVQvyLdr9FFlnk/9Dv97nnnnv48Ic/TL1ep9vuoSuHzNJJ0hAKuUGGmVIMLV9B/cWD6F6Osp/hRxFyfAnR5jOgUoCn92Aea2DLCN9WyFVjLHWXMPPUCwyLEo28wfB1F7Nh0wXs+O9/zqqeht9u0DdjdMMgkdkgoFUoNF0nUQkIQZzEg7G4TJEPY7xMkqaSQAMsgyxWVN0KWr/FdEmCAV7ksqSnM0lEhTy1Gzeh9UE++iTEbSiCXgeraCLbNtG1l3LVu2/lkQ9+lJwS6LaBf2qaMUwyMgLToO2moElIoRRI4jPXE5gGLMzyil/7EI/ffzdbb7yJB/78L2DiMEgw0EmF4v1/9hkeeuRR9v/d1/H0Ap6E2vQ0uQvPon9s/6BCXiYU169hZNVyjjz1GDh53vnOn2XnPduZfv4QfbMOacjSyEMDAtugFQ3cSUo38D2d7soK1/3cr3Hyq9tZeOZZ6nMnONspEkvFMTem/JpraT21F/f6zWycSjm18zmmsy7ZChvPHMZ/+gBlHDpVm1KS0G01SC1gfJRNl13GxN4X6RyZBKGDSlm5eRPzxycxTJPe7BwiV0JFCQWvSLdWZ2j9Ouq1GrmoT9hpowwNM+cS9XvYbg799EbbzCDRBcmqZbB0mLHhcfpTNeaeexHMFIbLYCtEo0tupktiQlbNkaYhdHuYmoUtdDKVEYgMSyqM0yKhLgcbVsMwiIWknyWYnkPsh7i6h1Q60YohuGgtbN89CGbXYtADqCV4eY24K3F1A7s6hLQNGt0aWBp0A3KWzupwCS+KiOSMIao3XYNRzjP/wkH46sNYFCnqNrVGHUoW6974OkgjJr55P7YfI+IQm5QAsIZy9Fp9kGCWKyjbIk1CIATLhnYPO9UoxCkR0B0qYocOVr8NhsSWCYk0aAsdLjwLFk5AT7GkFSFRzDsmnDnOle//eQ48tp/6i5OIqcOoEtx0289yZOIwu//mq6yoB5h+RKinLJQFQ0ri+ykdQ8Nr55Cmy1kf+RmkLTjwXz9LvhchVUoPC5UzueyX3s2hiWM073kEgpRCHCKKisQB6Svs081kAIEpCUUCSlLQbUoh9LKYlpkxEngYyqKj6fTPXcKFb3sjji544uOfQjQjhANuAuVMG4zvkdEremRpAlGGrkxsR+ATATpLfIntVZgyU6pnrCA+uUCcswkW5lkiHPrWYERQCbAyiaZACYlvQmpoYDsw02Xdr/w0E3/0ZUYD6A6bBJcuZeTwHAuHp6Ag0KWOHktykYGtOYQIWiLDvXITpY1nMbtvP5yosfGyLUzs3Y8/N8ul125h38H99CcmIFOUdJMw6aKEIsMkE9pAOJQpuZEK/eY8mm0gz9/MG376Z/j6n/4x7q4jZDIgZ5l4vZCZsQpSqMEY6qZz0TauRx46DrtmGJntYzsaU2IBrADag1HHoXKJcKHN0pEREqXoyYxYZXQDn2qpynAjIzUMjnoZFbtCs91h+Nat1LbfT/VoGzeMCMsubWzKuoNe71EwHWqJj3RNOoYEU0cXGlnVgSDimutuYM8jT5DNNpG9LqYOhpmRaTFhMmi67FsM7jupznCaRwskvspQy8fod6Yh9CkWCnRailtu/x12TR7j8D1fYe1bb+HIXd9AnZgG3R+8v2PFuJPDcxzmZUJHKRQG3sg4RiemisWZv3Mr2z/1WYZDDb9WAw+0NMXsB8ich0gdtExQcB2Onzwx+Dr8tMteCUiQmGiLQtIii/wQYZrmSz4nSZLv+vzfr73vP13nuuuu+08rIi06kV6OvPT7aJFFFvkBYxgGw8PDtNttsixD2CapY+OUClx6+SU8setpstoCYnSU93zgZ/nEf/ktsl5AYAjKdpXZ+SZvvuJdHG/M8ez0dkrSQKkEw7JoLbSYcQScOU7tZA0SjaTVo3XkBPS7TPsxhq0TmA7CGDTbhFEEhoFjO8T1Ppgm17/9ndTDkJ1fvJMghlKxQK/dxh2p0GgNmnVaSEzSwaf3VOEbKTMGuLkS9VIepMamzRfy9MI8nDxAvljC9GsUfJ2+kyfaf5RHfuu/Qsmg31kY5P8szTPbSfCUSc/vgmV+J2AcID5ycKBOVErUnnyE5cUchx/8JstcjWm/Rdnz8Nt9sPL8tw/9OnTb4BVIuk0a/RDd1tl69Rb2Lx9i4qFHyGk6/osnOLLnIDg2hAs88fX76dXbhHEEpg1BiAxiApWR2DkkAzeZlYEWpHTn2tz/R38M7R5eEFLMecw7Gs12C0ojXH3pFSQbLuGbn/40Tzgm1RCWCZf2LLzml9/E3Hnn8fSf34kMA5qBhueVSV0dah127djJ0vIIkdSwTB1pmJx6dg9FyyJOMrAMlBWB7LH2HTfy7NfupT0zTTGBIOqjuzbC0In8PiMrVtBqNEBCJgZ7466lyJqTLDvVZaa9h8A2YWUJmgEEHagFqKhLb8kQo8uW0o37pBM1nHIVNd9G10HoAmHqINPvXOPydC5JqlJiJdFzDrHfA8NCZhJDM1GTTbTjuyimCQaKLgHa8jJtawEfYNShWynRTWy8QFJtS0aw6GLQUbDXqg/WnOnT+B9fhZoPUUapVKVd0KmtqPL6X/gQj979IBNf+ApuIliJxhwJoa4TFgQMVYhn5sEx0YKMtB+iwojXEFKQYgAAIABJREFU/tStZAWT+//qc2C75DRBHPdwTJNuKyIa94hWVKHeoltPoGKiGR7yeB3IwCvRDAZjNhQdmJnhue3b2XzZ1eyO+nQOPgahxlc+/P8OnH+NOrP5AvZQkV6jQa5vkyRdLAM828MvaqBlPP/ZvwCVQdCnbxnYSsfAIQkiXvj7h+kfO8y517+B1vw8p/bsgrgHqcRG+47DUApIhTHILFLQTQW+lJh2HtsDH9ANh1BJTGFiL3R54pt3Q5yhVzzSrk9sChYMSOIMyxnkQpHLgWeRBT7+iAdTIUXLpGalCDvFyjSaCzXStIWdDlNwCqRpH02BKTU0BVaqYWUaUoCdgFAabhCjbVjP0qVLmSgL5l2LM2odrG8eI3YUC6MGBGBJC8sxCcjoezZxFIOhcfartvD8/Ele/c638+Dvfoo9X/sKWC70uzx199chS8F1oDm4nnOJRqpB3zBAE6AbjK87i7kTk1QKYzRnZuDRfXzj+B9C7SReIoiqRZr1BsVSFRn0Ie+BTBkeGkVYDls+9AG++v5fYqHi8L6f/wB/+oFfZNwsEMsUpUx6UhCOOBx2E0RiMNIVDCkXz3aZSxMaSwzo1Fl3w01MfGkH9CKWyjy11KFTFjSCPpRMaPjUDY1SyaEXhOjVHJ1+D0OZmJ0YkWbY9S4pNo9+4S6yLBy4VNcOQRJBYx7Tc0gDcDPBcBe0TCfWNOoFgao44Hlc/fo38q3/9Tms1EfGMYbj8dxjj3J4Yj9Xv//9fOubd8HcDIR90HUKmoMjFAVp0Oj2aNtApQi2zQ2/8l52fP0+jj/wGMe/cR/M1rHXnkMt6uPECWYqwNZpF0w0H8xYoesSqSk0TfyjDKTF2ulFFvnhQ8p/mjy6yH80i/falyMvkYe0+FdfZJEfPEIICoUCURQNqqcFpMS4QwXO37yRZavGIQlRjQX27d8Lhgaxjy9jEh1UkrDvsadpHzt1+pt/0KRCCAH9GNot6LXRz10HtkFz4jDP7XgEgggsjUBLIe+iwgAVR4NWKsMgUmowMiUEY0uWctY5GwCDTIEwbJRpIA0LEGCYhGFEihiEB2tAziAQ8aByOq/B83uZPn6c8uoz4OzziOa7+KEkyFL0M8eg3YVT89BoQBLA8jEou2QqJrV1DN0YOFpOu1qUAEfFLMl7mEnExN3foH50guMPPcD0oQPkPRtin7JzWk2PosFrTWKETJFpiBCSmRPHWTU6hqPpOFJQNVxywiGnLHTd4+j+g8ycOgWGDlEMmSDvFUg1DWkYoA9ei6kEZqrQwhRaTUgiLAOUTGm7AlaOQbHA7p3PECYpOb0IvQghdBzDIh9Idt7/EAePTRBqMSiFsCz8MBlUwlsOdPrMHJuEOMKIEpwkI68JZLePESdoSTZwrZVdujkBBYO038fohTiWjTI0LM+hOr6MhZMnBhldAjLt/xzYBnYQMoZOQTfB1KHqQtGFfvv0GF0bd7TEDTf/OCgIW20MBEJp6IaFSrOBcHQaJQaHVyyQZgljy5dBuQBZisokqWOgOxaeMIhRmJZHySnRnlpAc0yWhQ7UEkhSNr/jJm75xEfR167FFzo5PJZHDkWhDy4MmaH5Ia4Q5AwdIRS06nBykna9QTh1CtN2GPIKWKZDBFByIe9x8XVbYWgY0zQxNB1NKkgzZJzQqTchk5BkpFFMCphuDs0pcP7Pvwv3mkvBMcAF4gDZa4EfwAXr2fzOW1j1hmsITAlZBinkphv09uzHrtVhuAoI1HwbsxUANomh08tS8Ar0+5IkHlz7QacPhINwtAzoRgPRI2ciUsmZThkvM+gfPQ4bzsC9bD3FV25EO28NJIJ8YGBnoCl5WkgaZAQhFRgmS87fSJbLE4YxUT/CNwW+o5GJlAs3bCCcWoBgIBCmaYqhCRIBsaWjTEFqGuiGA4mCfg8cg7VbLsXQTGSUkdomiamRxilpP4RVKyCDLIiQIkNDYUiJLhm0a6GhKR0jM0Hp1HTIsozZL++AzAYUCwikbRJrAjoZRb2ATBVS6YSaIE4TyDuwfh0HTxxD+iGOaUKvB5aFLcRAgDQ00AQiTXAMAxUlGBJ0aSDRQRigaVzx6q0oIQh7IbaCPA6cqoPUSLOEXjJobesribZ8GedcfRVIqD37IguPP8vBnU+BB1x+Dv2lHmgZytDoypSgWiDs+2AU0KwSupcjHCkx7Uj6KqOamYPGs7XLqCxfMgjcNwyO7T0I9Q7OsuUgM1ZdfRVUyigyEkcnNAWRKcCzMCyTnG5R1hxGcHEAoWuD0HVXZ/21V7H2qisG49XCwBA6Ch03NcgpAyvTUZpidOuViPPWYo8Ng9CQKSRxhFApB596HObnOP/MVeQREMYUcjnsFUvoiogF6dO3wMy5aGi4mgmRwJhp05upwfgw9AKojHDJFVdCPgfCQEiNBB10kJZBpFL6aUz6L3ymXXQgLbLIDx8vlYf0f9vg1W233cYDDzxAs9mk2Wz+fzazPfDAAz+Q17joRHoZov7JP9Rdu3Zx2223/aPHrnuJc/xbrHPNZvOfhYstZiEtssi/DSEEY2Nj3xGRUmOgSiwszLP9/vsRcQKFErTa3PWX/xNMa7ABtw1qtR4jlWEO3fMg2DrYLnEvIVUZSZZw9Rt+nG899jj0Wpz36quYfmGIhYd2YugGtmZhegatfofX3fp27r/3XpKTUxhLxrn6FVt46It3QrEEScqdX72L8tLloFvYeZfZVgfNtml1ewxtvIDLLt3C3X/+VxT0EkgI3BIXvvVGnvuzv6Y7X6dy8w00v/wgpx7cQf6cDVy95jKefeR50mqJBS3muj/4ee5/y0fQYx3ZaDK8rEJu7dlUR5ew+3/eOQhnlQItHmRCSQ26FgxhYiYpepaSODbBocNQKkKnTWSZ9DLFWN6lFGq0682BAEKEmy+QrxRIheKp++8FpShbLkk3IPNDCppNFkRYjk07jgFFVvIoFsbpHJ+iLSV+zkIagCXoxhmWEqAUlVThz9UICgZpqlN0c3QzH23zebzlNTfx+fd/mKlndoOZMpJV6HdaHBVdZNHE23eEftCB1SMwXUPliyy5YDWzR1+EJESsXI41V6Oka4gsRWYBWZbheS52Co4fMyd9yJuILIGREm65S6ENp9IuaRShORa/+IFf4FOf+hRhtz8QLbVBhoiVSeJGQF2X5NHJ+RHdoz3WvetNvGLL5Xzz9/870fNH6IiUyZ2PoPwAp1ohafXQLZPIMhhddwbF5VVOPPStQTvSaZSAWrMBpo5TKXLz61/Dc996kvpzR6hXBWgmQSfEvOoyWk8+CwttRvIFFoIurVQw7o0wPRnyzB9u45mCDVEX1ldhrg6dlOFuxJipEYsUP+4hTYcgDlmxah0/98u/y8nmAttu/zirfItpTzFlRYPNeOoMxJ66Ru/QHOtWruPIrl0YaULBzaFMg/v+6vMD0aaQw7A1ZK9DAPjdDnhlJo9PEXzjPugEOKZOKASYeeyujTgc0reOcej5pyFNIEwgk8wdOsBcc4o1r3klr7piA1/85B9iOXmCIERUqyjDQIyOcstNt3B83wQHv/klLBkz5OaovOVHGVqxkqm/uJv2gYN0zYw0CPB1kyPtucHIkevA1DGe2XHXQKRaUkYkFl4YoqxBvhpCojBQms74ZZdz+bWvZO/eg8w+dxBWrob6LK/6yVvY/sROOHGSpx94CFodcC1QgnOvuYr5HU+x4Hchb4EEqek4UYbpWnSqJS750VeTH8pxWEKUZRCDKBSwPJvhZUt4w3veyd/c/gc4ugn0MdLBTFImGOQXCRMpBo1miQ7JkgL+oUm8g1MMn7uG2rHD+CMFWu0IlQGjIyS+RAqLQGlgW1x8/evY/cJeaHUJ7t7OiuteyzN/8zWozWLpLrHfx7Nswn4fKTJUkGEJA1vooHRSoaMsAwwBtsY8KVk/JBA6VS2PmUkC2cdaMkYvnIWCBUsq1I7MsPHi61i9dh2H/u5RCgfn0Wf7HHjsjxHv+hGUB9t+/2NQKTDdqcNZo9z4/l/ha3/516THTyGjkNy5a/43e+8dZtdV33t/1tr9tDlTNaPeLMuW3CRZtoxcwDYGjAsGmwTTEi7cm0JPYgg3Cb7JJRiS3CSEhOuEnhCCKTEYMFiWjZtsq1iyehmVUZnRlNPP2XWtdf84woSbPG+evJckb+47n+fZf4z2zGn77HP2+ur3/X65/IareeKxJ+jsPsZQxVAZyCEHRzi+9UW8UglH2MwbHuFQ3uPK669n05e+yLqXv5r6c3upVVt07BiTd1CdCgwPE52tIDOwsTkjM1qWIVgyRDZ2DPrKXH7JGkZ37mZUFMgmmuTcgNCxCaVBaouOLcEYNmy8mr2HDvPUc1ugE2LLrkbqFBzSuAO9ZT79gV+DmSmIUxIT8Z4v/RmfvO+TsPcgVd9GtzsUgxxZK8bpKL79iU/TSENWffzX2fu3Xwfps//YCci7RNMCO5XoogsFuv/h0RNg+wGZI5B0DxF0BSTJrJA0yyz/f+OfmkT60Ic+xPbt21/6+cYb/7nVLzzyyCP/4vv+h/fxf8q73vUu7r//fu677z7uu+++l27//vvv/3/8u38PkWw2E2mWfzEPPPAAd911F1/72tf+UYDYpk2buPHGG//JfbPMMstPSNOUMAwZGBggyzKcwCf5sQBszm1JgrDsn3w5OHDFh3+Z/Q8+QbTzBEneZtEVazh9egx1bAxMhHE1F624ksWXruE73/57GBnE15Lc6RncTgJJg+msSZZ3GLrqKgq5PEc3P4a7dCnXX3Md3//s56BQhHYH/AD6+uDkOIV8kajRraePCg7Dy87j1tfdwWf/4vMMHjnBWSKsBYPMu+5yTvzwKfJn2+g3X8/NucV8/St/17WkpQ59zRoVJ4ThHFy9Ep6vIY+M00sLB8OE44Dj4hsLESbkEdhA09FENihfk9d5OvU2xpasv/MNPP/cs9DfC6fGulMpQiAShTs1g2/7CEuSGEWoUrx8jiiOQAhyfkCnHdJbKGF1FEIbtDbMqBg8ibVsMcoV3PObH+HPP/EHNF88zNwrL6Z04UIO7NkJe8dYqH2iNEEUXPxmzGRe4GU2lnboefstLL7iMja//3dwepdw3c+/jk2n92K+uJkhv8BkWuWmj3+AH3zsT2CqRjDYR1ivQKEPsfICVq+9iN07nuO69Vfy+F/8JYEyWGQYS9DWKSjwU7jA62cirhG7HrUFZXQWw9kGjpMnlbq7orIs8n5A++wkdqEA8JK1yVOaXDti0oPcwDBe29CsN8iGfehUoKcH+8Q0TrFEYhQqTvCLPag0Q2WmG2ZcDhi45Xqmv/IgfmZeSiRRRqOMIbP5SXZJIvFaisFfej2rL7qU57Y8T3XA4ar+BYw+/DiNp7YS9vlYIoeqJQRWnjDvQtaB84e466MfQVUbfOPDv0PQaOJHCa5wEKnGy+UZbzXI+spoE3eFD2zmno04E4Sw7gLW3nIT27/1CEzW4dBZAstHyQwpEhwNwthkUtBxbNDhuRE4yMcZlIu0ww4Mj8BUu3uihg0CkyFzeazBQd7/F5/hTz/2p1Rf3A59HkxNU2gr8kZjA9MYEtshkJoo76Bl1rWnmRyYbljw0IYNTDYnYfcLeM0Qv3+A3rtvRFkWU596kME042RR0R2ZgZEPv5fXX7aR5/7oC2x9eDMMlyivWMLAeUs48ncPQnEAp3IKP+vmDWlcmr4D84fpX7IYY/tUntgCvg9GEVx0HuGO56BYhqkWfW5ApVphzW03sGDZEp7+8y9gApeKSTGtEN/PY7VCpOXTLDhd+16rBc02uB6DImCq3QRH4i6Yj5hqETdbDI/0ktbGIARH2sRBQFVkMHdOd9omKEOlwmXvuJv2Fx/hUO0M17/1Th798pfBwPpX3szo959hZv18FhuX4y+8iHAdRpYv5YqNG/nWF78ISmIlEi+TIBISp0qQGGwFwhgaIiMoFmg2WpRtFzsWpEJSWr6UU47m6ltfwxPf/y7uggUkW3dBolle7KMWRUxXp/iFT/0+n//AR3BeuYGF8+cz+lcPQDGATkiBIpntENQ6OMU8k2IKAqc7uXmyBksG4cK5LLBGOPn4E9Drs/JNd3HgwYegkUGtxYDtY3SG9F2mz07TW+qhYhSyv8jbPvIbfOG7D2EOH4ZmBNJlTqtJHMekwtAWCXOuuIQbXnUTf/OJP+iq8bU2lB0GL7uMNavW8INvfBuUjSMljiXoTIyx6OLVNGt1omqLThZD3gfPRyYGnamukKMz0BFWp44SEpEvYDRg291pok5IKbDJux5m2Qom9hyid2gQmg3qYRNtpZQvvJDaocMgAugvMfiWO2huO0j07D4Imyz/L2/kyOe/zlBhkNAkzPnFmzhy/5e49a3v4KkfPsLYzj1UK1Xm9fX+A+FIMztyP8sss/wsue+++/jQhz7Etm3bWLt27U/t+/G6+JFHHvmZtKQdPXqUBx54gGq1ygMPPMDSpUv/0X3+7/x7ZCbNikiz/IupVqv09fVxww03/CPF9q677uKBBx5gdHT0n0ywn2WWWbporQnDkHK5TJZl5HI5Mq2Q5+wc0kAul6PSqOEHAbHKSEo+fTdfjXVoGrPnDNNpA3f1eSxfcyH7vvS3WL6NikKIbHoH51LttLq5HI4PE5MgLJw0ZMHgEMemzmBKDqQZ9PRAnCGDHDqMkI6FrtV4+Z13snzNWv7y45/EbrRwtSITCnugl061An1zYKrGoizHpJcSugpEjC1L5Csd6uUMZJGCsWiFbVhzKTy7lfJwH7WJs8iN65CjM6hqDRPPUHYtklCQ88vUojo524cswscmsjSRA0mgIXUhyqBcpnT+BTiDg7zqNa/hbz7x+6y+4RW86obr+YO3vx0v1ViJwjIC4Tu0bIMVeKTNBqVcD6YTk7qSKI7wcbGkBMsitCXakyy8fB2LLl3Fk9/6JkxVIIRlN27Emz/IVOUsUw9upl9Z4DuEluqG/brdJrIMj8qiEswd6i7aTle47tabec6aoWffBPFT+2iRseBXX8fRLc/C3nEWVxXTly6glc/BwQMUr30ZOcui38txeut20jOTGJWSWBpFjF0s40YKd6bFHFEiNZqWa9Hqy9FRbRgagsmp7ppKa4hTivkicafbvqDP2c1sDSN+geOVKVbd+hoWXXA+3/vbb8CJCUr5PI20Av05+scbKCyycolWluGXikT1Jgz2wlA/jPTA87txmyE6U0htsCwLrTWZBGXRXdspSQGfVkGCFTBUnsPkyaPQibBUxnAhx+mkjl8a4LxXXEP5ZWs40qxxwfkr2fy7fwQTFaSS6JkZLBSFICCOY3oG+zlbn+q2r4WtrgDS7IDjgNOGxAYZQCejVO6hHYWoRgtfusg0RnsaaSS2slFC0P6xiGR3p83cTozyBargc97td9C7p8HRZx9DORadtA52kTjnweqlyGfG0KS4OQsVNXB0gm3ZtHVKMDJMJ00YqLWZ9jPoteGClbz7be/msx/4GJ2JKuQtuGQRTFaRZ6fR2oATQy7Am84oJYZKkKEsDb7NvM/8Hs0XD9P4zN9TqKSEWYxyXbyVS3j7Bz/A1h0vsOOL/5NcnHQtY9qm6VqoYgBhh0tufwNL5s7n7//6b1h422tZMX+ETZ/4BAwMsHb+Yg7s2oXje9TCNoRtyvkSrVqdkleg1W4ipE1sNN7gAHG7A1rjhhFJwQbHoacaUu6fy4mcBmnIjXWgN08oIvJZnVLqIJWgk3epqDqXf/iDzFu8mL//75/kHR/5KN9/7mmm//w7ODetRjTatPYe5pI7biPuK3LgM99i2a+/jeqjm6ns2A22jSUlarqOncuTTyCfQGC67X6ThSZBLLC7Wf3UdAaOBMvGSQ15x6MRx+i8yxt+/QOonE8lCSHO+NGf/jkozUi+zHh1itzq8xALhrl07nmc9iDv5dn7ua9D1OgK55lk6O4bmPzqd6HepidXJFeLsMkoU2SvDNE5A5YPgcOiO27hwvNXsvlrXyc5eIK8EYg4xNiC3iyPl4BMUs7OD6ibNvQUYXqS9/3NV9nzzDYe/YO/pKSaWELi+z5nWjNccNO1BH097Pj7b4FXhFYEJuaSl72c0Z2HITa0WlFX+COFy8/jFW9/PZvv/RjWGYVaOsj6197I85ufgF0nGQi7y4ZpW4Onuo2FnSbYcOn1N7Lz4UfwjIubKXAMxpa0gh7c/iGSY0cRUoInKCwY5ObXvY6v/s/PQgyUS7BiAetXXsTzn/5rgpE5/Pwf/xaf+7UPQwTXrNvA5NyAA99/hNfffTcP/u1XqZ84hU03ClSca3CcFZFmmWWWnzVHjx5l2bJl3HnnnXzta1/7qX033ngjmzZtolKp/COHzv8ps8Has/xfRW9vL/fccw/33XffSycUdJXYo0ePcs8998wKSLPM8s8ghMCyrJ/6WepzsWXmXA1zFL+0P8lS8EpUduyC8YTeZvcCPZmeptro1iznLJdmFlIq5dBxm7LvU0sUy1et4Ei7BWGHVNl04hRXOsS218376EQgLXSzge24CKXR2tCozJALXIJSAd1sYRmN0hkiS7tZKu02KIN0HUJCcG3ILHzRXTiSGSjZdKohODarX/1y9uzYSq0yjac18TN70dICxwbfJqIb7aMzRSYEDRXTly+SdcKuTUEDGoQtMUKDVjSOHYGwQ7MyA71ljuzbx/M5H3I+cb1JIAUYCy0tFi5fTEjK2QM1dJphaYMrLCJtwLNItSbTGdr2IYoYO36cJReuhCgGz4NOgkgMItZM7doDiaJQKqFtSS3tWp1kYmGMIbEMzLThzG4oFcBkbHlsE3HZYIsCVhrhAEcffxraFfA8Yur0zZ3HhvVr2WwMzUOHabY7nJ2eIVcaJI1SLEsgHBdsi6wdkWVQmDuPk2cm6Pd6kJnGSQUMDLL88jUc+e7DkCkc2wULsijGEd0FlhJdIUnbMKMTMJIjh44QlwssvmItx098j7jdweotoZIIF4jQhHGHvkULWbl6Nc/86BkII/LFHm656y18dduH0aI7gSTOvY+F6QqjWoM5N2UXmQxEEcfYTB4+hmMERZHD86DaqmD1B4iSjzuvjzAnGd99lAuG50Pb4NcyAkuSuC7Sdkk1RDohqlRgsNB9o2gJzQ6iGbL2ykvZJifgSJ18bFOKDPFMG0skKNuQCdXNlRICukNHL+ENDxMnHZiewXYdLKkImyGHH36YoFGihE8rDbGDApEddPN1whhDhoWhR1uERtASGjtnYzR0mnUIgm77oW91X5RKheeffJK42SRfzNHuL/K69/wq3/74H6Km5Dm/jgDhksmUjqOxtcbWENuScO8JGqOnIGrRovurvSND9M2Zx7NPbmHXjp0gxLnn1g3YdrRBxSGUCvgm46kfPgyNKnKgl207XgAtuHrtFQzmfbY/+ThQBCFxB+fQUiGZyXAzg4dFBODBnEvOZ+y5naAFRa/ATNpC+gG28JloVLsW3cCnY2pImcM4DrHlE4YZIs0wgQeDcyj39fDcs1ug1MNn7/sDmJqm1FemUT8LR0+DNnTGpzl8YB+kKaOTEzA5ASpDSIGJYtAZnsqwz4kLyoCS6qVja7qHu3u7rRY4LmmaEWUKbVKKA8P88KGHaLRavOzVr+LQnn3dKLggR7vTBGHoTM/AiWO0Xj7I8fETDC1eApUmrFgAUQi1BksuWsnkg9+FjiZQhhIKQ4IjJJ7jE7oWzB/qil9TTVrmGPHx0yAUkRQ40uBkirNRi5GeQcxMSJrFYCI4XYeREVSzQfX0aYZ7SoxPnMUWFrbrIIxk/7NbIed3s7QQoDVWrsSux5/CFXkCvwBGc9nLr2VGR4w1T/L4C1shicj5BUpzRxgslrr5clmMofs95WcQOd0X0V28lGCgzMJly9np/QgZC2xpkaCIlQbbMHzRSsSS+ZzY/Bhuvod5c+cyp6cPYWyszCCaCWqqxs7Gc8jAJS8Fjz38fSCFNKEyNcWBI2dAKR7dtAmTZt22zE6Mm/N+Nl/Ms8wyyyz/BEuXLv1n174/awEJ/t/Z6/6tsD760Y9+9N/7QczyH48bbriBVatWUa1Wuf/++3n66adZunQpH/3oR7nnnnv+vR/eLLP8fx4hBEIIfvd3fxdjDF7gk+hzC5xzEyKJMIic17UT9BehUYcQ8jMpI7g0cz4q7rBkwxomD46Sr7YpaEHLz0AlxPUmIoE1t7yS0T4fzpvPuhtu5NAT27CEQ5B18JTGzRROpvGFJGrUkSrBCzzGjhziue3byGpVvDQmhyFwLKI4xAiBlRmKjkc1bKKGCwxdvZ4rr76Wgz96ltg15ISLWLOEbOwk+Dmuu/N29u56BqpNLA2Duof2qqUgY0gzZJRRcHuYyTrICxdgCjZh1EAj8DKDo0EbQ16FuFojVIQKOzA1ycFnn4VGnezMGU5seQa0AsdGGwlYpFLwune+nZFli9m7bz9uKillNvJcppHtuIRRhF8ukdXrWP0DmLMznNh3mJs+8D5KK85n4okXqBw+xtShUUg0CwnIKjWiuEM7J7HcgJLysKVH6PvYoaa/PEDb1aCb0KiTCzOs0zOUjaSvp4eqyjCZoH/Z+Sw5/1L2PbOFUj6H325S27cPhAOpwWmneKkg5+ZotdoUyn3QSFC9BdpDLsHVlzM1dhTtFBCZoHDeIq665WYKQnL6wGF0nJATNgHWObFSdEUTIUhtSawTsHOotqZy5BjFC1cycvEFxIFHePwUJTuHG0eYnE/byghLOaxinvVXXs3ozv2kR06zZ8suZNzB6G6NrmXAMxKpDbY+57zSII1AOzZrL1nLFa+9CevChUwcPEIUtmiqEMoeWRSR6QZ68TwO/+1D8OxRTn7jcfoqDXJYRCKmXZYkqSAt9kKQA2O47dfey8K1azi6+0X8FEakS3hqmsW3vo7qwVNE03XmuEXCpI5QGuWCslKUk6EsAUYikWghyCzJq++4lWa7QataJRf4yDjCcyDGJstZsGL23UqPAAAgAElEQVQ+A0vnMz1+CuM7cM3VXPFzb8XOp1SnzyDCFpqErN9DqxBGhsiRh6kOtgVJlkAmYLrF6a07MUlMmoTQqnNqzwHiE2Ndq5tjU6wm9DQzWrmM1FcUQsinYKUWtcf3wcETsHCA/LqV3PPx3yO24IXvPMzZE2e64k1jGqG6Ify+MgijSVSKaTU5vXsXIgpJ5/TjXH8NlW98H1qKsb37OHBqFHpcEBmWcckqDYrXX0I8MU1fx8a2XOpSYb3mCq540+1MHh9HthKa7RpSulipoWUSbv+Nd7P4olUcefJxitesBySq1UCLDMsvUQp6SNKUC6/ZwDNbnqG57QUYPcucOvhZnlqfzyW/+U7ObnocZI7anpOYfIELXvtqhjZewdQDX6cgJG6WIsKQgWIespjMUrS8lFqQ0fJUVwTRAoFFJi1aCFCKwfNX0qk1yVRGb3+JdqNKeHIcRwmO/+hpOidOUxQOTtydYOvz87QnZyAocXbrYbAC2vtGEXaBX773Q7SkZnr/ISaOjmEa09Dbi5mYZACPNooDvqL4sks5/8orufIX3sjBF3bR2L6f6PAYZSOJVEiadcDW5AVEN6wnf9XF1MZO006buMUc54k8qtrgR89sZnz3LnQ7JB2Q5JcvpjoxSX9QQMYK2UlxnRx6pkWgbXQcYxXzWEMDvPItb+RAZZzXvOOtTDbr9PYNMb3paQgNTiehfvQkx7dsR52cAM8msTWpZQiExsIiHRzmnffcw7bRA+x78inAwmpnuFoQSsikhKFebn3vezgxfob65AQKRdQOOXbgEI2jZ1js9+HWO6RnJ4izFr3SpT0xzvT4cdxr1qIaNZrHJukJDTGCsNGg6Hh86APvJ3Dsl6y5CDAYxGwq0iyzzPIz5sdr36NHj/LlL3/532ztW61Wuffee7nvvvv48pe/TBRFrF27lqNHj76Um/TvMbwxa2ebZZZZZvnXxtCtWPqpf5PdwQLPB3TXghM1ERqk6dZbG9fpVk8Lw53vfQ8PfOFLcHKGBaKAbRJq+R6qVgJuAs2EJU4OqRWjukHf8kVUzkxT1j3UULCgCMWAiy+/hhe//CCFKKaUNJC2RZQlaCnJ0Nh+1xpkhAWuS2xJlEiRcUJvpDBKoQBZLtFsdShZeSquA3YIrsX8RedTPXSMtpdRrMB5v3Y3B55+gc7uw5BEUFZ42iLWilzT501f+COe2bGVk5//JpwdJ3FLxK7ikl94I9e84lo+9avvQ1QS+qMM0CSWxs4Uw0WHE80U40Cu1IuwLeo6I2nWyBUKuF6e4oYrOfXci5jpejdfRaTYw0NkZyfIWXncOEVYApWEpEhCFKte83L2HjwEJybxcj3EjRb9r3wZV2zcyPd+5w9xgKCngDYRXr2BTYKRNpMyQ3o5irEEY1EvOIyUR1i7ejXLrrmEP/ncH5OrJujJCsNYRF6OibgN+QKECgKba977Szzxua9RtBKa1Rls2ybLEnK5Ej31DIxNFnhMmTZX3/Ja9j/2FNO1CVg9zNv+4lM8951HOfSZb0KrgxYh9OQRcYap1MmXCmRRTGA5xHGM1PIlO1tkw6t+5Z0QKR7+7FfBOBAIuPoi1l17NY0fPkXlkUeIcxbNNO0KCl4eanXweim0BDoJybslpuw6UgocY/AU2KnGGME/fPdnFoS2jy4E2BcvIbt0MfzdQyxcu5HK9AStnS/QL4tURISdCpwwI++VqcRtVF++m42kNSXboXHVFaxffy0vPPQI1t5jENZIycgP9dBoTiJti0Gnl6zqIOeWqaZtsuYMCIED2EYRknTb6JTBVhJLdycEEykxJoW8h2VLVL2CKBUwqQY8uHYdI/OHGf/hjxCOT7D6YobnLaV6YIzqs9+HMKUvVrRMTLKgiFi2kLd96B6+8Ov/DU5PQ9ym3/aQzQSlM2S+QFrKkQpD2o7JZ4La+fNZfd3LmG/5PP/JTzNInoPFEFxNsaHxMmi6Lm/5pXvoeIav3P/HEOSwOgrV7sCi+VzzS7+IVS7z2D2/QdCOcc9FKSUWNC2FdCQ6TfBjTTTQy7q/+gu2/fx76bMC6mkLtajIdXfezuP3fxY3yvOmN72J0cUOT/7e/6Ac5Sj3DXC8cgYWFrj6Q+/nyY/8PjQVq6+7hj3fexTpOOii7DYVTtVhzhD/6WO/xV998LegWuOqX/pPPPNnX4JqGzfwSBzV/Szs6aM00aRg5agsHOaa/3w3P/jt32O4NIeJqXHO++DbGbj6CirHz3LwL7+LPP4iVtJEZ4pi4JMkCcKxiW1N5nBuzBGCjkUsBH4GUklaJQcG+nj3f3k3n/rgvSBigpwgabaYU+6lUqvSXxqk3m4SqQgJFIMcM1HCnCVLaZ6p0htZjPeW0Hkbcg4UVHcyajJloXIYsyqQc8nVInrtHBNZBzUUsOK//iaFUpkdH/tjSDTv/cPf5ztf+Soz395MvzJoT3JSx5gV81n2vrcStSJOfuSPIU4oD/QRjE9i5Xs5le+2tSF97PXLeMtr7+Dzv/bfWGQViZttlFLYno2jwRMWU4Gi5hjmrFrF4KLF7Pnew2C5UOyDw6cZDMrd88dKGbHyCKXJHMmYbGNcQBnybYOrLarFHig4IDvdcHe7gHOiSsFkNFyDCgQYl6GL1jC5/yDoDgzlGRqew+ToccgUWDZMVhnKFJPlPAVcoloDd8NqejZcxPhDD8OxkFyq0T0FonaFhQsXc3jvXlzPOSce/YRZCWmWWWb5v4Ht27dz4403/lRx1T333POSva2vr4+lS5eybdu2f/PHNmsanmWWWWb518bo7obqblrTqja6F73SYcEdrwOVgM6Qvo/KFMay2XDHHeAFkCtTyM+FmsLzLGpWSF0YwrSGlXYgVliO5KwOGSfBS3yGr7ma237/d6i1WiyoWzBWhxNTLK426MsrhBMijSRTCmODsaCRZlSaTVIsOpGGjqC3CSQaPdJPS2nKdoFBClRbIf7QEHWVQM4GfxAxLWg+v5t2cxoaDdxSkbFH9+LNPx+KZQbihHwIVpxAEtEpG6oH93LD8uU0Z8Zx+gYwgQ/5Mkee2cWJp/dAFJAzLl6pgPIlDUshEUw0U9oChhcsplNpMjU5TaI6sGCQjmtRCxNe/Su/jEljKBYghR5RxD/TQMQGLRU1L6VRdskwlK0AEOQuXkr/FasAEK0ORWxmtjzP9/7wj3BsgycUaatKq15DlfI0EBjbIZ9BqZNRFxF1E0HOMN4c45CqUz9dpzzvfDrVBFvmmLFtJuwEChboDkHewheaZz71Z/RENdo6BB1iOxIC6MiIJA0Js4S45MOiAU7253nNB99Jed5imBHsuP+bpDtGKTdTtAkhMMhmg3IzxDUaK02Jk5Ba0iY0CZGJ8aUkrzRuHHPshZ3M820KAZDUIV+CJ19k1zd+wKljR6C/QOhZ4MNg3zDe6Sq9mcuCYkCQVFkuXZJkHMuSeMLBVRIvMjjGwrU9Ip0RFIporbGVhZUKrEgxL/a4oGJB0zDQ08d7fuUDrHv9m5iJI0wmUCYj9iR108J2DOU4pWgsAsuhLTXs2Mvzn76fdHQUR6bkA4+5Q4O0pyYpOB5lP2CyMol0NHpmhlwrhqAAfUXSkkcoJbbVR77h47UtfOFhOTb5YgEThTiZwU0ybKUg52Dd9DrWfeLTzHnT22BsgvG//iY0IvIzbS7t2AwcGCPcsp1+LSjbFhViZI8HlTb5qYgv/PdPwcqVzPnND7JowxXMNFpYvTlS3yI0Ca1mnajVJCWjJiIYKWHm9LD74H6MHZDZFv2JjZ3ZtAoW070WcR80zu/noG6ANswJbXoiRU9PCarHObjpIUa/+EV6koweAzLLaJuu+LR4wwbW3nwzIt+L4xeYOzKf0z/4IbRCPCFQnuCKd76FU5Ua+L0EToF9Lx5EbT8NiUctcDhemwbhUmwGbP345yFN4Py53HTTTeCCzkvQMRwf63rKDh1ly+e+DKrFTb/yi4yfmoK+HvAt1GAvxeG5YBcw1RYm5zNtZ2y84WU8+cQmMKJ7MZ2zCS5bwp5nn2L6yS1wdgxhWaRIrN4+alrDwABtBAYf2bTIR3mCGUmvyqEdi1R4lGURfIvixnU8vnkLRW2BkyfMJL4TkNRbFIVFq12hbSVkhYDEcag7RRZ96Fep37iBjpVDoNDVGchlcGkv5asvgp4AL0uomkY3tCeLwZEIy8XBgayXs4cn2bF5a/d8U5rxLMb0FtFph5puMpMDJWxufdsHGf3ydzj7N9/EEpKSnac1XiUYWs4pzwfhwoJFsHiYeV4P+596Hi8xmCjCsSXaZEhXEouMyFLoTotymNF5fjeH/+7b0Em71uYzpygM9TLdnGSg3EePlGiR0lER9ahGEBqcNjiRQAgLC4v5jgv1Kqy7CG57LcwZopDvx8cw0FOEtAVezOSu5yGsAxHBsnmsPu98+lJJoR5CUoUeC5s8fixoKUVWLrLgoouYPlWFpoGhEXrmLyWKO7iWTY/RuA6QhigyEiDlJ4UBs8wyyyz/0bnvvvuoVqvcc889VCqVf7T/Xe9618+0He5fwqydbZZZZpnlXxtzLin7x2iBI2yEbXHvZz/Pz73vvcxdtYrRTZtxtSSzXApDc8gtmMdkpQLtDjuf3wpugBc2u/XslkEag60N7o/tSVKCELh2DzMXzqNWDGgcPkmuaWj5Ctotjh46SLs+QxJIGo5D2zWklkAJQU+xgMwcCm6RgteDpS1UGhKVPFAhKpUoI4ldm9DTJHGIKwPmv//t1LcdYJ5xadkxl/zJu8nWLmf6iW1ETZsVv/BGCpesoPnc01iJRqaGILER7YhjL+xl5xNPk7iSUKUU+oeI2xHp2WkObt3eDQM30G7XUCi8okPJ76MRZWSlHPVWyEBPP6njct7tr6KSZZix09gmz9YdO7nytls5NXWG4uqlNCqnSXIWgWMhm3U8YRN3g34oOB4doZju9br5Sqcq5LSNMIrYykBnOFpjG4MBnFKeZqfZrZTPUgbsAokKiYsBKMPIhrW0pGBm/wF2PrmVKIsg0midEts/adUCcBSIOCHv2LRJMFFCwc3RqTaQqxcxdNF5TB05CcUibal48x9+kic+8zl2bX6KNJQYJZgc3U916RLCseNd62OUsSDNEaYpkWsTZRHewhFU1ILAx1g2WaaxhY3leJw5NcYLW54mURHkcwwvXk7r7DR6YpLMRHSaNQYWrWTe5es4+fxu5gZDOF6OU/VJ3GIf7TSl6gtM3sPSAltYWApCndFQEbqYoxm3EZZNakw3kyvsUD95hulDo+D5jB8+wpOPbubMgUPgepAmCEBb3XPINoaCsbDO5RZFtsBJBV6qcXWGZTIQmnanSWo0OA6tsIPfU0ILjTQGSTeg/dJbb+IVd7+Rs1lGc3SMwC/Q8SSJnZHKlDBs4ZdKBAY8IWi3WngDvSx7xe0cOD5O4+Hvd4OTwzYugqTdYWzsJGfOjGMsQ5a1CR0DBRddD1mgCrhnGzgn2zg6R3Jqiqkje8CBUGUoAyJV5IyNlxr81FC0fTonTjP19Faa0w0iC+qOJnQMQmh8ZQgyjUgFu158kfH9e6GRUG4oCr5LYhlCO6V9+DicqWLCVtcy67mYUpE053LZa24isySnnt+GtDzqp8dpbn0RkfdorRqmvPFiRp/aRusbTzBUt5mOq5zOh5x8cT8sHIHzh2HRALf/xnuQjsWpZ5+HkRHyPWV+9IUHoFCANOSmd/8Ko/sPQ7WFkwkmDh0FYTh96gy+V6KxaycEHne+7c3sfOZZ6ISAwbIFWZpwZNceslPTDLahqCSRyqi1avRPt0lfOEyx1qFlqtz0n99BoViicWwCvxaTSy086dIxKWtuexWhZzMR1inecAXKElQrM1x073s4RcTZbz/EHW95J3uqp6Ddwck0jlYIDKlliAte1wLaO4C2XBbfeQunz5yCWofGdB2cDLIO89atYWr7bjh8gsBySYlRsvumtQ3YSpAZDYV+XvXmuwlzLldsXM/opufY++wWagf2kRhDqRRQadVBFamtXk3zh99FTU1iEo2UNrbtMdls8Iu/89u8cOoES191I/3Ll3LsK1/j1N5DuCk4lk1iGZo6IXMFcZKQaYXt28hE4yWGAIHnOITtJrguKssoB0WqjRqiENCxJJEliZE4jouNhYVEm267XRTWiQOfpXfdTrE8wNDgAk4/uYOcUcR2RKwS1vzqO4lmQqKpGmSwcsM6juzbT2tiimICbZOBsLEziTAWidUtOZiZmeGWu9/CmcxQKJSZ2r8PenxIQwqOzXve/14QmkxKDFa3iPIfWNtmmWWWWf4jc9ddd3HDDTfwpS99iSAIuPfee9m4ceNLLXDbt29n06ZNbNy48d/c0jYrIs0yyyyz/GsjBIofZzWAQCBkdwT/3o/8Nkempzm8Ywe5k2fJaZsoSYibbaw5/Vz982+g2deD6esjPXYMJ4n/we3y0u05RmAbgaOgriTZ/H4aP/wBuAGtZoOBay+nk3fQMxXIu5BCPgkIMomnJI62qDRbpAM9JPP7aaom4dwyUbsFgYsYnsNrb7ud3aMHCHOGwRuvpoPBn2pSzvVy4aJl7N27i8xKaZuMpYPzGT9wFBNpzj75AtUde1AmRTo+lpPDc3MkUUYuKBC2Yzwvh217tM5M8vp3/AInRUpSmYDebgxtwbFBK6xMUetkiFKJzFLdoOJOjPY8JhvTXLx+A7VWRDCTEHc6jCydy5prrmT+Jcs5Mj4KSZOsWqekwBc27UCSGxyiMjODNoYsiWCyip9IbKXJjCJ1UxAJtu4KEVpAmIbQU8JEKcYNaMUxlhSkKGRiQFhcff0rOTZ6HBwHd80qVKbQYQV0cq4i2+AYGxVrglIPNTJ0MaA/83HqLcr5Eo0eWHjlZVxwwSqO7t8HSciLu/ayYN4KGqfGMbj03/hywoVzwJKsuO02BlevYnrLduqtjLhgYWQCxTzv/Ohv8eL4OGpqGoxBC0ksBInS4Ljgie7EhFasuPY6rnvDGzh85hTZxBglx6XStMnPGeGii9dzbPQUM+0mzBsg6nToCMGSt7+R2o7tqE5EHCe4nk/iW6SuhVEhSIMKPJROyVs2RmqEDZoMojZYElotLASm0cRDIoRBy+7iW5ruMRN0bXhKdsOhbRSW0SAMWhpiIDfQSydNQGsyzyGTXTGge84YTu/by+5HH6FdmcYbnkOnU4OBgIUv38Dam29gUieEZycxSYaHwLYssizl7Av7ULt2c+FlF7E8n+PU3l2osIPVX0ZLIHAwnoOYaaNiRc72yQmHspunnjQxlk1dd0imz8D4DD0djYhiCsbFsV2UBbFlaLuQlFw2/uLb2fD61xFVm1T2HKIQQX8qyGUaLQxKCowQyGqM6kQEvo8VRkwnbXQu4Kq7f55WpUPnTBWraNEiI3Ms4k4HAo/je3dzesc26B8km6xQcH18bXB681x3+6txBEx8+zFWyn60Cmku6OfnPv177Dl4hJfdcjOtZofoxd0cGBtjYscWsMHtG2BeeYDGqSrGCOjtZXR6Eqo18HJIZVGwfHQnI5lp0Dh0CIIApGTvo49AEiHIcATYaDKVYFSCTFKUL6j7Cu1L0hNnqB89QhhWCVYsoGMpLl53OccOHKJ+5GR3Ys3ziS1D78Ur6Fm1lIO7nmf1ba+kb6ifM7t2QjEHPT7tw0eYf9UGztYmqe7bBUYhlELQfZ1jW0CpQGnhQq6/6ZUcO3yc8b37wPfpXXMeV77xtchUUT14Arbuxztdw3F92kkLS0jMuc9q20CWpRT8PI12hf17t1Pb9yKVsEm0df85+7IGkYIjSMMYModW1qC4YjnJ5DR4LpnjkOY8yDsoW3D20AFUFDG+czdM1iDOsISknkZ0HIMY6iPSGUYIwnZM4kGmwXEdlIRKp83gkoVcvPYyTo6OUsznaWYJ8Zw+kv4yaa2CygckSUxiMlIMNgYpBLm+AVqdNtUTp6lPVmmcHkefOUnmW8SqjRaG9TffzIEfPI1db7HAKnJo9wuEtWmUMni49CSSAg4ty5yzSEiUEdCqYy2YR6Pd4vKNV3H0yEGoT2MN9FIIfN733vcQJynCtgELi3MFDOdy6GeZZZZZ/iNz7733cuedd74kGv3vItLTTz/Npk2beOtb3/pvLiLN2tlmmWWWWf6VMYBC0l2S8JOLWwNYFvW9+wj3H0SjsSyLQDpI20FFIYO9ZQZ7eli8aD7IbqPWj7dMdjd1bkEN3cU1SnHVtdfD8AJGbn0tDPayct065i1b0V05CBsycJWFm9k4SiK1xPZz0Gmy/Mp1sGop69/1Zij6EEa4WjCwYD7uooXgW1x5/bXMW7oEEyUcfmgzE5Nnu1fvQtB4dh97vvp9aLRZsGolnK1gn6zh4NI7Mo/8yAiTUhEGDlWlkK6HqUfkOobAyzF65DArV6+EwX6WXHk5OouIVYaUEjKFdBxiAeS6C09j2ahmgzkrV7Jr0ybiSh2VZhTLRbY//QzbnniC/c8+R29PX9ceaIGRkg4KigWuv+1mjAC/rwwT09BOEEpjjEFLQbcIvFsNp0V3wxLdKQur+5iM5REZBdKi6OdoHh3j0a9/CyoV6LRYs24tl9/8KoQjEfLczSmDVAJjBPVanSWXr8e/5CIyKVAYin4BTo2z/9HNHD9+HAIfBgbg5EnOW7IMZ8NayDrMGRxg8cXroJNyaNdu3MCHeSPgS7AtkDakCQeOHsXYNvT2Qd9gN5fLyHOh1N3nQZZBYLP74H527d6JUgohbaxMQ7PF2NZtHDx4kDBNcAYGuw19rgO9ffTMGUYsXIiVz2N7HkZArLJuMPTQQPeKI+rgFotkSYjRKY40CJ2BbWFlKUJrnDTFt7v5LeJcm9u5Yr6fQgASjWUy5Lm9hu750KxWoVymcP4FkCbdY4ZGkOFqBUJCoQdabe78uddz4bVXgVaM/egxNm9+lPbYCcgFpFphjMG1HdIoRhgFKmXfU0+w5QffZ+68EXoGe8niDtfcdQdv/uD7WbL2MoTjIr0cUaaphR2mRUIdaJcsSKahAMMrlpLYFlq6JBZoDOpcTKUATJpx5MBBdm3byZEjo7jFEk4hh0EijMTSAsuAq6CcGtw0Q2uFdm3cXIEVq1ezcOlSWlGC5QZEmep+Psju1GLPgoWsv/U2vJUXwnSFoFCgE7XoqBhXG578+oPs/NZ3wUBTd6jSwS+4PPaDH8LEOE9//UGq334MJkLYexKcPBjNnW+9m3UbN6CSuPtMKnVQmtU3vwbR30emMjqdiDwu/W4ep1SCsAOVGbxcDoHp5lWh0DpDWEDeRQtD5Gi0pzEBFIQFQsGiORSXz4NM8Z2vPMDxbS/QO3cOMyRM64iqimi0mjz3pb+GVouTx0/w4iNPwPgMNFpMfu07cHqKG9dezuiO7eAHYDRKgkGihUQJiarX2HjN1axfv56sXoXjJxm0A5atPI++ZfMYnxyHTLGUAiUDuhWCIzGie7yE6X7w20LQiVuAgtoMjI9RfWYLCE3/letg0WLIDO16A0oB9BXhootYsGQpOB6UeiBudRWpNOLFp5+AVKEmpnHrLSwjcSyne5IELgQOxf/F3nsH2XXdd56fc258uSPQjRwIgmACRTAHkSIpJpEKpETJsiyTTrJGnrU8ljVjj3csy+vZoVd22Z71bKjZnSl7rPVIK9mWZFsmRTEBJEGCIFIjo4EGGt2Nji/eeML+cSGOZ2ur9i/aNa73qep6Xff90V3v3nfeO7/7DWtGIYuxXgCei7aQWoV1JE7g44cBGzdu5Ipt26gODRVtdVohr9jClXfcUWSG+V7RpOlIrBRFC6M0ZG7R+Mb0JTh8DHXoMLiGgc3jIASNsMx3/q9vkqcZgQhIsgynOgDlGlRrGEdSvK0MuQQjLK4xOMaAHzA+MsJNN+3iB3tegeYiuILa6lGs72OsRXj/peW0T58+ff6xMTk5+f/73D9EsHZfidSnT58+fw8USqTixwWwEtWL+dq/+3conYMU5NISpUkxuHAk3YszHDzwDvOvvsbCgQmIM7QH2hVoTxSPrkC5ksyRKEeipMAfWcvQ+Ho233gzx85Psfnu2zHdmCqSS+8cJghKaA1JUCaT4l01k/Fc1PgoXqPO6ttvJul2WS1dlk5dQF1qMmM13vgq4ulJ/LH11GJDdvw8wdaNXJw5A6MNGqLE6EIKi22SgRqf+9IXOfjSa5SlRAqXj/3C59j+0L3MjJUYv/dmFt/eh2gMMd4V+FGHWCVcWJhlZnkO6mWe/KlnmDg8Qbq8TKNSJe700JUKOkl4+iu/ztT0DPFCk8rq1Tzy2U9xeN87MLOITTKSeAGbK7pT07QPn8KbXiK7uEQtCOmonHy4gu11WX/7HVyYmyWbX6Q2MIJtR5DnGKsxLmgnQ1KoXqAY2BnfY8fdd3Hfx55k4sxZEBYhc2yqEHlO2auSCgFGsesnf5yjk6fJtCaeOomTZ5i0uChcLRkcWo2o1pl3DHc9/SmOv7KHOFbITKNGBzHWJTlxEd2NIEu57id+jKOHD3Pjw7cw3Vlm4bmXae4/DlPzPPnwIxw9sp9r3r+Li6oLs3Nc+cgjtKTL5N/+ANPusePmO3jqE5/C80pcOHkKXB+kX9hxQgHlkE/93OfYu+cN0uPHqAcBttOhNraKSHVIel3cOGFopMGn/vsv8c73X4Bmh7lzkwzhkc4uFq+B4yNDn0znrL96O7/wK19m3753SBcWCKXA9R10nqLynLLnIpKUgVIZehFl6YCmGKj9SG1jBYH0EBTHlBS4Nr+sQjKFOklIsjiBWp1r77yDDz/1cWIpaE6ewteF9TNU4KYa0YlQQnDo0DssHJ8AWYY444qrdlCtD9E6fgppJZ4QaAGpNPhC49sM22sSupbAkSzNtyjVG5zZ+xaH9u2jee4sZlUD62rs6ACf/OIXONNdJEqbaBnD2kE233sb2+++nZMH9qEGq2SOIHdcpDJ4QDkXeFFKvpQzfegkiBtV9GYAACAASURBVBwtu8SBolt1SIBybikpGEjBs4bEscSeIfM9kixlrrnAof170anGKAcpElwp8XHIE83d997HiYnjtI8ep9EYIV9YpFGqMLR+hIWLlxhzQtR8C0drIgeykk8SLdOdOMLQnR8g3nOADQlcpX3WRi5L3QS1ZpjJ5gLvvPg8+DUYGuSaBz/IxhuuZeLsGfT8LMHq1eSLK4yWG7RbC6hek6FSSDXwyTodyr6H4xSrpTHF0FhhCOMcNeCDkwIOq5dz2q7h2o8+yPTiLO7xJcKuolxvsNicQ4/VyEvgbVpDcmkREgsyID1/kdFLGQMmxGslDNkS9vwib37nb5BRilhsY12LFYVyVEtB7jiA5dS587z0V399OcXZIzo/zcwP/5Zjf/s3qPPz1KyLazvUayPELiSeQSiBpChMkFaAK4mVwfoWPAFWwXwPd2SED/3aP2Ul7iEPTjLQqPDgF3+GfNUwg+ObuDhxjPzMJE996ZeYOPg25HGhapSSMFPYhQVKrR6hlTgKrCsxAxXu/OQT3PP4o+x/6RVsWIPcsPaGa+hEEXmSYmxxk2PbdVez3Frh9L63qDYaDO+4iq1PfpSgXmV2716QDgwN4joujiMReUamFVEa4ZZrXLP1WuZn56AUULn2Cj7yiQ+z/7kXcFOFiCHvdEkDSW+ojOk2i1bCWJFkClUtE/kCLXM8bfF1MSDNspRlF44/97eAZvsnnmRpeYltO2+gPXuJX/z853Gkg0XgAA6i6LDoK5H69Onzj4CjR4/yzW9+kzVr1rBr167/Son07LPP8uyzz77bEPf3Tb+drU+fPn3ea2zxfVkBAkOAKSREuUbUB2CwVrSpTexDhkPYZg/fD0itKhQTFoK8UGUkNQt5xmd/9cv88f/yP4PnUV+zlvbBw0VgcBSDGCw2cCrj+l/+WQ59+xuw2EMKD7/doubBrR/9EN87e4irb7iFo1//v2FhhYr0yTONWy7D4CDR4jykCRUkdmiEyDewfSt4EvYfgk6Mm+eYz3+U60bWcfjPn8McvwAlwHchivE3byDrXQIcSGpQc2F8BMaH+PBjj/Kd//H3oZNQW06oJIoMzbKnYLQOG9dDpuHkJLVqnc78IuMDVVpaEOUp3rb1bBwY5dzr76BMDusHi83dfIs1UUAcGJTRWKtxXZc4jimFPq7r0mw3oVZFGY3YdT1l16c3cYJ6DLLdI/Y0RhTnS5QMaaqoSYc8M2jHI5cG/+qraVSGWHh7PwQhpE3KqcTVRT5HxxdQceCKDaxdv42LU+fh5EH8PCXLiuuiVhogySymUkLXXSoP3Y2OuySv7WN02RC1mziOYCCHRc8h8i27vvR5zr60l+UT+8FIwhZUCFC+R75xlPJAwOKBA0VLVBc+8szPsWnLJv7g934PFpcBUUw1HR/SDFFr8EvPPsu//6Pfpj15rFAMNUYpD68jmr5ITcWUky6mFrKgYspOiWpbQSVgPu9Ss3WGjce5rE05DHGTnEC4WGtRFZ9m3IGhOqQZdBIEhpJXnKofNcRZa6mFZbIoxjeiCOD2KizpDOsYCEMEgpqSNMpVVuIupuwzWA3oLC2htSZJNYOjq2hHMZkAyiGiWsMuL9JIYlzpEboeeTMitxkaSeL4ZKGBwSHqK4o06pHKDCT4tRpukuE4AuNKeqpX5FhZg2NN0XKmJZ4X0k0NmfCK/LPxEbb85Ee4essVfO/ZPyCsDZBMTxdqm16bVY1BugsrRKtHoZcUm3NhefoLP8+R44fZt3t3EUYc+tBxYdM2Vt28g4c/8RhvvfYax/7Pr+P0NKEq1FWONThRzkrJ8sF//gWy+Q4v/+c/L1R2P/cM7alLHHlhD3bmNKEyCCsxBESuS+5JkOBEKaPCJUs7+MNVkmpIc3qO0LpUjUvHd0htBjWHKz/zKU6mMRw4hTg4QyNJUVjigRJaR5BlxfU1NsZ9P/VZ2u02+154DgaqvO/2O6Dd5Z0//TZOJ6HmSIQTv9usZYUgMxrjCMJShThLKQdlSo6Hv9BhseSQDoQ0cBib7WI3rCYea3D2wEFKVPC8AHyXdq/FHR97jM1XbOVP/49/D70Y/IDh9etQcYo+v0DDDYk7zUL1KS3NLGJ1Y4B2a4WkJhGAr3wsksQTEHrQ64IBJ6zhJAqAzNWFPVXZd5vvUtegHYrXNi+OSVtc77IWoIUma3cplR2ySBdDH69CvmUclhYZKQ+zOHcGto3B+RXu+uqz7P7934c8Z+fDD9DutLj91pv4+rPPQqooZ4pAgWcgtS4AKvDo1UvsePQDiEqZo3/2DRhaw+YNV7Drnl18+z/9CXKuhY8giiK8gTLGk+heTKNURQ006I2v4iNPP8Nf/otfBenw23/4b/kPv/s1zkwcw4kSlE5hZIgdm6/i/p238b//yX8ky2O4YhyiDsw3GTCSIHO5VDZwwzZu/LGPsfjSfs5/68XipPuS8Ufv4Y7bbuZv/uiP8Fci6GoU0P3RGlqrMPSBexGex3XXX8+BH7yAnJxm/vAhVJ4VJQRIHGTxQSvpey369Onz3zx/t51ty5YtTE5Ovqs6+pEK6fnnn3/X3vb3SV+J1KdPnz7vNbpwkBRDCYGDAa1Bevzmb/0mzsgQN99xGyuhQ7K4Ar2UoXqDLEmQxuJpSyXXeAZiacF18eo1ZhYXkCNDfPannuHE/DxZs1X8PelQ0wFZO0KPVAmu3Ury2kFK3QR0TKe7wqWFBZJWwtUbN3Nh4hg2jgh9D9eXGDRx1MV1HYb9AIGgE3iwegC5dSv2rWMMqBKVsESvnGGnztE538ZOLzFqPKJeBElKGJZx8py8HBBs2YLeOsb6G3exeXwDl779HCe/vxsWlqDbIRsJ6foKFxhfs4bW4jybtu/guquv48LUDOniEqXBBivdFiLNCT2PpLvC8qkzDHsh5UqJqLdcbPBxGO5luHkOwiMFuiZGD1ZJJES9iECWsInFCQcZvWY7tQ1jtBYXSKfnKSGIPY1yNYHW5MZirYUMtLYobaFapjG2mrvvuoN2mtBZuAQmp5oIckdghEQNNyAUPPP7v8MrX/1DWGxClOA4HiYMwfX5sc9+lkwpLi3MQxiQ9zrUrtnK8JatzL2yj/UDI9g4o2YNNizTc2F2/17ikxfZ1ElwtCJwXLo6p0dMXsmJzkxRyz2yTsyqtRvY/8MXeWvPa9iVJtWBQbI0xSsFSGExKgWtef2V3aR5jC8ULg6+9YnnlvFcB18YdJogUUQOVAOPpJOijcKMjeIlBpvEuLUGucqolSoopZCuy3LSLawwaQLCYcSroPME60q0FGjhoKTEGEtuBUYW+WHKgBOWyTwHW/bBqKL1Kwjp9Hp45RJOpYSVLr0kxS2V8b2AuNujEpSK95e1OFmKiROGnBIrKqcZRZhqFZs7WOuiPY/69m0k0zOIKKckXbKyi3UddBThez5R1CPLM6gEhTVPWIQVONZBWhfPDVGZIvQDPNdhqFQlP3KWqe++ijm/AHNdrAE3rCBdl2xphZqQbHr6k6z64D0s7N8La8bptjocfX0fTqoZkCFuJ6N2991sef9tTLWXmD57jkE8Lr15jKHYkniWOBCkZUmSGKh5TCYrTL3+FvQ0tLqcPXyQmf37Ua02LgrXXM5ksy65I9GBC1mClQJrNNZzWXY1SbPNqoFxysZj3ir0oITN44xtuZapv/gB3ofvZvUtO+nUMtJ7riMTLZ75n36Ld/76B2wKRwm7Kd3VNZaSHmf374ez09DpMjdxlLmDByAM8ZKMMHDISTFSYGShPDPSASdEWchSTaIVXZ1S2raF993/fs4cfofY5gw9eDfHjx2kuTiPKA+QBw6pzjHGUs8dWkcmufD2EeJOhBmscsX9d/LQU0/yxsHDZKZHJ03QjQE6Tpf6g7fTm72IUYK05mNtVmTfGxeQKOHyld/9Gi89/zwIge0llAS4VlHONF6mi4BnB7JAYx1bTP2NRaLxtItjJZnjk+UJQ1dehQh9orkmgQZVgdVpQCdVsHYtX/zqr/HqSy/ASpdaXub0vlfB8yBOufTOARqNBsnCEjOnJ3G0xbVczgSDzCnsip6VWNdluRexvLSCHhiGxSbNhUWmohWyybOYDCp+iFAaHIHAYJXGRhFJEkOpzMWJo2TzC1Au8/ZLLzN7ZAKynGqlSprnIB1kGPLic8+hbcbAqmGSS3OQZpcHwpoRE7A8FEJdMluy3Lr1es68+CZepY5xFYO33MjS0hLLBw5AlCKswHoOzvAAKo0Jt22jc/Is8b4DnLtwgeTEGWqVBl/++c/hGol0CrVXMZGmGCD1lUh9+vT5b5w1a9bwwAMPMDk5+W4L28rKyrtDpW984xv/IAMk6M/p+/Tp0+e9x1AMkv7uMQGowsamO03OnZtktNqA5RZSGZbn5wubDgYrDEoWj1JJXOuz7+XXYXYBE+UcePsg68bXMbB+E7gBNEqoPGO4UWfxlZe5edeNVAYHMUlMtV7FYIhaTTjb5NRfvUwt0QxUaygych8SX0NooeqS2ZzIGig5cNMNDG5Yx5prbiBINDpXUDEgauTHzlPraYQ2bNy4kYHVq0jimDDOWbusGLzUZfy661k/uprH7r0PckupGzNUqhD4AUJnkCU4wpL2IlAwNXECtdTGdmPIDYnSUHKROiM0xd1/z3NxVEbSbhb5H0Zhs5iYHhGSTEpkGEK5WmwwXI9wwwbiSkjuuehuyvU7ruHO++7lzic/Cpf3INopzpFjirgPRwaEYZlyWCXwS+C4LF84T9ZpUQk9iLpAIVT5UVYVvTaEHq+9uZfBtRshszSCAbLUYnMNecabhw4xMDJU7HfSnE1rNzIQVlg9PAI4pFaTOtAiJ8MQVqvg11hVGsAgiIxF+CWCoAZ+hVUPPADSLTajjsf87Cx4LtIanDCgu7yIF3pIB1TSJRhpMHLtlZfVMJKsGRMkCrPcQmaKwEKWZXglD1d4uF5AnIN1XUY2bUE1V+hIQRzWaacxKYoITe5LMk9cbqDTyNFhpOvQjNqEXqXImqHIi0FI6mNjqDxHlkrE1pI7DnGeoy2QJDA0BEKSJglhvUGqDTfcdDOPP/kEfrlKt9UlV4ZapY4wGtcaqhZCpam7PrFSeCODNHZcQVxy6QpF14Ha6lV87hf/O9bedTvB8DBNMowLVEMYrCMDj1qthue4EKVILXC0xNUOwhRSE20gt+CVA3Aly3MzrFcOqyPFGB6uzjBCkic9VNpBjg3S9OHoN7/HxH/8NsQSFjqc3vMWRmus57ActeiEgqUjpznx/Vexy0123n8XlW3rIITUgXIOlQRELMF1YXCQ6hXboT6MyDRkBvLLoemXM2yU5N3H3AHiLriCoU3r6AmFO1TDL1egVGJ+ZZluloErYcc2rn3iI+zYvgMSh/y5Pcz+2bfY/tgjWCen+viDvLjnVUhiLnWbxK7D45/+JL7KYXoGEo1vXVhqFYHyGIxOyfMUJSVKCJQQaCFxwwoKQaoNTqlUNPWVfbhyLbVN68CVODfvpHLfjTAUQqWEFQLyHIzFGEO9WiO3Gb1em1q5Aq0OZ4+d5K++/Zdw7gJsWk/phmvJLMgP3M7YrTuhXELkBuP+KNr57yI5euQYpBnSC5CqaAOUtshI05fXZzD/JcDLAJcD4YtyTolFMnzN9dx8z70QlHE9j5pfwqRgbApSIjyf6alpaLZB6SKPrFJl2803QeBB4DF1+CgHXt6Dd1l9ZIRECUnqSLRr0cIUSqrcks3Ok00c54FHHivynrTmtrvugrBMtVolT1MCx0VogzQW35F4jktogcVlumcmi1y1ZpPWhQvg+ThhiSRXxcWUKuYXFworrO/QXFqATOOnmixJiXNFRAKOCzOzDI+t4/Tho3j1BnkaQ7XChR+8zKnnXyLvRLhCIhyJwRL3ujA0zP133k0QlGBkHKYuQLmKijMwkPdi+Lueiv7wqE+fPv+I2LVrF88//zxnzpzh+eef5/nnn2ffvn2cOXPmH2yABH0lUp8+ffq89xQ+NoTzozBgLmc2CH7zd/4NqJzWxYusnJrC1y7rakMMlMp085TMNWhpyZzChlLOoE5ImmYYpSFKuXjwEN3MsH3DFrrtiHUfugd7bo7O4hJ6yOe8m8OBk5RTxVKyCDXQnkvNG6DZXCQ3UdGSpVKcNKOUaeq5IOzlgMUMD5BvHeeuL/4TThw/yarZmPTUaZbSLmv/9U/T2bOfba0SXt5hOhTUfu9n2PS5j3Dx+y+zarFL5FuWspjO1DIXXniFIwcOoaIu6BTiiBBLJc4Y9cpU/YClVpNwcIi0HTN95CQjtQEoBxhfUtq8Bn92kaq1tHsJDVfQ0II8S4nLEqKYQAgqtsT8zs0kuSJvdhjWJUrKx7EeETlP/MFXOXZoP3Yp5czcNEfOHWa+18Wbb0ESk/kaBFQyg1MewAlKxO0eUgmsBO1YyGNOvbWP5fPnkNUKVmkGckHbE2inqBSrffBuqFdZ+PNXwAh8pckAKhWolFicm+P8yZOUa1U8YOHEcXrS4eJLb1CNBS2ZkDZ8rOvRk5o86kIzYzi1nF9dRY2PYttQ6QJ5yOgtN8LQaoa2XYl71/tIThyDOMHkCVanXHvTDcxdmESrFIbr6DwiHWiw6UNP0Hx9N2tDHxMnjFCiWq5jlSYlIctzStRpG4EiIBwcY+zGG9j5C5/jzGtvkHklxj/zSXrRCun8HKoSksRdyls3sPP+93Px1HFsFOM4PnGeIh2vqOUWEqQktZba2BhRu1NsUv0QbcEGPgzW+fTP/Sw7776bybNTdBeXIfA5d+4sh0+fJe1G+PUGoeMTLS8TCInMckoUioqS77OiLOvvvJkbHrkfMT7K8vkpEII4Tth9coLOhUlSNAz4oDpgUgh9HOGQrbQIpEvJ9QhTSaicQlliXKxwUIAOXSITk9uM2rZxzi6fY1F16YUlUikIrruCWz7yCPN5Sjo5hYdEhw1Ka9exZu1GWtOzbN24hfjiHKXMMFau43Ri4lqdoauvIkq6nP2Lv+LC/uM0LsaMJxYNxJ5AlQVjO2/i6sceZinpkb68jyvcQQaNS6/bxKYpNSNIfEMuC6Vc5rhYT7Ll4fu47SOPsBi36U6fI2nHjDcd2jeu5Z7f+TWCtauYf+0Io/4garbNod2vgvDh1CIspmStLjds2s7ZF/bS/M4PoTGA2r6K8oO7OPidbxOdnoFOwlZZQ3SXqeCTW0XebDNerSOEpeMatJQo6WCEQ9aNGVm3HhyfrBMVQzA3pNtqcmbPYYQJWbVhPadkGy42YUkwtBIzmAWUPJ80isgbIe28R1Ivk+QpNb+KP9MiOjWLaqzmM1/7KpUenH/xTcY/fDenZ6dg3xmuyRrMpS08xxZKJOsikOTSZeLQQRAOvpS4SYTnFOtAJzDkvsEAnoZ6WmT6SAtKFnZDz7gIK0ndgFXXX8NCt8fCOwcI3QoytgyZjNzziSqA1Rz+yxdxjMJIha5Uuf79D2CW54nm53GSHLcTU9UCT1lAkLqCzJUoV6KlRVpBSTm4RlIZGiEygk3XXcfZiaMwNEI4XGPxyDF0lOFoqAchyiis1vhC4AMelmqmKGUZydIyIk4IpIvNDSbNMEClVif3A4jaMFTBr1XQvR4juaSswQl9RDnETSVRIKFR567b7+HtP/0uJvSg5vLAF77A5N+8hm9dyvTwpYcSllwItCcJhkZYPTDEmZfegJUeWz72BCunz5GtdPhXX/pnOJ4HQlye1F2eIPUzkfr06fOPjMHBQbZs2cKWLVtYs2bNP/S/0x8i9enTp897jgScy99zAayg2+rgewF/+Hu/h1WWUHrkcYR2Bfd/6iluffxD7N7zanHnOY0QDgTkDJVLyBCanQ7ggvXAuKg4ZvbMabJOl7pXY8fN1zOzdIFSa5n4zFHotYmHQuyHboNjPUReJbULIA0jpQCbpkWei+PieCWyRDNYGqFWGsQKl96FWc7/9fNUV3pcOnAAJRXa11RKNa7ZcDUHJw6h6lWyRkD7uRdYudAkPz0DmcPq0bUszCyAycHJSTqLuDqhlitKYQVRrbLoaMYee4jz0xdJOl1UWMFaw/DVO3j8Z3+at958C/+anTz0408z98PXyOKYaCCg2pGkQYW82iDtZrDjClQzopN6DDx2Cx+9/yGOHDiIO1CiZZfZ8MS9qPUNDvynr8PcEtgudJdgahp98hRSG7Qj0cIBA0kYkN24iyf/1W9w+NhpdByjkgzPgrEWhAfCx2YO5C71W3bRXlWHpRVwXLJmm87KYlFvbg2+ifDKljxtU/UlYqVNwyjCqIvNE3TNRc1MwUqHLPUYuf8Rnvj1X+etIwex5y4ymgsqVtNZVSWzMWzawNNf+gK7J/aRxQssn5ggnjiKiluMlQIGSjVW5lbACWBgnKHrbuG6Dz3BudkF1tx5F2ZsjHT6PM239wAZaZaAEGg3YCGJsG5Akrko7VOnULPkDmQi49LxY5x5/Q3oxhC3Wbt2FbSWyDsxupMSunXiDEbHNrL93vuYOjtZqDxcgZtEaCnAccBzWXfddfzkT/8kqzet5/iRdzAorE1BZRBHHH75dY68sgcnu2wvxEIYEjYzjBZI3yPKIkrlKmU/wCQpK+T0yg7dmsDmEXJumZM/eJ3545OwaS1rPvYId3ziCc78xctsLI9y/aP3oEbrdJY7sGoNTz3zOaRX5uL582SlgNSBRgyBFvR8Q7ekyByNlgZ8Hzs0yOYP3scdTzzB2bcnUN0EUQqwnuDK8XEWTp1k5cRpHG3xpEsu4b4HH+b4cy8yaKA9c46S5yM8l6bW2GqND370STaMjHJy9+t47ZihVKPaK3RFjlgzTFZy0c0m3dk5lk+covfGAWpuCd916agE4QVk2oLnU68OETUjXOmjTQKbBtn185/izNIM57/+l2xVg9QyRTMIyZyIqbcP05m4wOhiE9lRzExN8r4nH2buyH5qKqFuBc25SS7OXIB2DE0Jac4zv/RFyj1N++jpQkmy81pW7riJNbfdzrJOKC0sUtYZsuKQmBRPBKRKE8SSqqmQXLWWj/+b32AxSWhOnIWRwSLTKBeUvDJapbSnzvL+xx+lsnoNV9+wk+P7jrDB1Ik0dNYPcvs3/jVT3/ku9DKGCdmUCKbsEqoscJdbHHjuh5zfvQdRKdN5bR9MLlBXkJgOylO4wiIjy4AcJM8cEmHxb70OfekcWudsdUssJTHG96gENdJeypaf+TGSVk57uUtqXFStzpW/8tMsnJ0ia0U0/JAgTVk8O0lvehrd7bLKOji6SyesszIYQi+DlZihXOHUfYw1VLs9Llw8ycLCafKoR+g4VCKDozXCuLilOjZ0ybMM15HYVoSWilBJ0tUNhpZyvFaXI2cPI3ttbLLIyokTlJXBw2DJyaRFuUVgfWwNsZRo69JtZ9z6T5/m7Inj4LmMRJrYl9hAg6vJBx1QHT76y1/m/JkFssUONo5xQgh9iY5TKqmDwiF+7GbGHriTQ7/9v0LUg80D0Fxi3a13MfXaMWQ3wXG6xNLgGJeykgyLKlk348zpKaxjGL7zFu7/4D1cXJijWvZ5+unP4ocuUipAgciBrGgg7U+R+vTp0+c9o29n69OnT5/3GPv/kc/geR64DjrNcJQi6baLJ1xJ5AjKq0cLi4oVEFSoSZ88gaWozUJ7GRF4ICWUS1x9912EQ6NQreINNpg7McneN18nai9TMgaWMlxXYgKHdQ/eB6PrkCJADA4gjEZFCR6SKNFo16UZ9aivHmcpjjm3skiUG7Cwdmwt3QOHcYRC+wKEZe6VfZw/NAFC03V0oSwa3ED0zmlIDJnvo3OoyRL+j+rercKxmlBKrDHEWQ4jI1x77z2su/JKkBKTpZClLM3N0DUaVo2StlocPX4GhcB4HjgOUvosRTHtJMcf38S2e+6HdRuK9uxDE0y8tR/ynDRNYdUAC3GHLVdcAZeaEGWFtcYYap5H3Q2xSYK1mncnf0bD4gLfe+N1Nlx9DSZN8f0AaQ3ysl0FQBoJTomBDRt48KmniqDtzHD1zhuh2QFSgkoAAz69PAEF8VKXkUq1OO1ugJJgpaAxMgI6h5Fh5ps99p06x9DVVzNcbVCXHhJF7OqiJm56hpfeeBkrYyiBVApXGOLpC5zavZvmhYuFHcnzIOoxF0ecX1lGbt6Cki533vl+tt58G8QxTqZwTNFwtpT10A4ktYBP/sovQ6mCcCRlL4AsAQz+yBBuovCLQnpOfO+7dJcvoVWG54CDhVRz8OXX2P3cC9DuQZJDqnjX6SYECMH08eP84Pnn2fvGaxDHRYYSGonC0wbfGFxrSOOIcrWEVy6BMch6FeNb7Ko67//MU3SjJktpgnU9yoMN3GoFog5BxUN0IsbdMhWvSmnDRnBdzsxNg7C05i6x57kfQJTCYgsmL3B0/wSnTp0proVMQS8ubGCyCE4u0pINjVoVN9Ww3OHimQvsfnE3+UIXElVYkZKYUwcOsHBmiopw8F0Xg4UNa3nuW98kSyJ0mhDigAMphgRDVxv+6o//hO/+hz+GWJF3IhZn56BRJq6HLC3Mki4vwfAons2RzRZunBEAMyvzZNJiXEllcAjl+iwvLTE4tgY3DKFUJVy3gfnzF1m+OAeOh1RgMCS+A1nG9rvezxVbtmLxSCqSrXfcyMbNG0AKXM9BSAXC0LjrNkZu3YWUxXr1ra//GXu+8306UxdoXHct933m07BtI+vvvYOoFJJlGRXPITYZnUgVdiTfw7oe0g+p77qBN44c5typk8hyCUYaPP7bvwXrNtBbnEelPahVeOVb3+H2XTcjKiFUQpqhy4prwWr2HD0Eo6uh0qATd4qBb8mFwOKiKBkLnou1CUFtEJa6pL0eHZkThD7CkUiK2nkhHFi9iuEtG2BkmHDdOEnco1IqI6VL3OqBG7L6yq1s23Uj+GHRdlgqcdOjD4F0EY7EWoshRqoMTyv80KeXdbAYOpli+0MPQm4JFDhIMmEpOR414eBJnrt0pQAAIABJREFUVTS5lQCV44uQgCpBeYDFbpso6oE2lIRLWQBhiHFduo7GGEXVcfGyhKDVhqhLuZch2j0CK9BpjjAWoU0RFI+La12kdbCeT7BmDKp1CAJcLFoC7uUPtFzDunUkWU7USzFKIOuD2LLLSpahAE8EeASs3nUNw1duxHFdyBUstyDRvP3mXuTaEdRgGUNhtdTSFJ+TyhIIB9PpMHrrLTTziD27X2Lp/Fm6SRdZ8lHvLsOXPYTCXv69T58+ffq8V/SVSH369OnzHvP/vh9qBTi+hxHwP3ztWWKdE1YrKKEQlSqn9u9nz943C5VLs0vJSrwoYjAs0QxcMgG2XoPhBvRarLlpJxs3jHNh35uYOEJ3WtQSS9bp0ZEZjK9mxB2iO7/C2KaNLO1/h1XbNtE9P4tjPFwjSZSmtGqQXtSCaolOu0m4eT2b772b6XNHYccWPv7MTzDXadK5eBE3zSgHAa6EpNVFBgFaWCqrhvmNr36FM6dPkeQZSa/L8soSvudRVwKLRmDxDORxSsmvIIRDlOa40mXMK3F+agovCMAPsEpx9NBBmD4P3S7Lx48RryxCIFCOJRcOA36VOMvRFcmWnTvJY4VdaBd5PQdOsVaUSdttcuORHp9k7p2jrF1zFWI5Iaj4pFmGSTV5qijh4VuBqzWO1niOT/mWXXT2vU3r7bdBaUJhEVYVFeDW4BoItCXwAi4ePcRcd5n87DRIwZrhYdZsWc/cgQncbkS8ugbKMjq4nrIsMdfrEa8dobdlHVm3h5A1ktlZGGzw6V/9lxx+8YcsvPoK8enTxCuL+KGD63mIHGTqY6OcxROnIVYQK1xlsVojG1WsA3JhhZonyYXGDPp85HOf4dW//jZ24h16E0eY3PsWKweOsDYVVFSRASUtpGUfGiWso5gINOtvuYGVtw8QC432BLfc9wF+4sc/w6Wz51mamyfwgyLXJmphHYX1FEJYtEqAHDs3xzq/Qr27Qk0rcuGCdDEKrC2GNJdOnaU7PcdAuY6TK4QBgyyUYa5Au1BaO4YOPbJOh807trPzqUeZ7M1ilqc5X/NAKbRbVIPnEhqrh7n+/vu4sLwExqPZicgTRTa7QOfoKZZPnQI3J8l7+Lmheeg0lOoE1UFmz13EtHuYlS5+ZlkfNGgKRTsUGN+CNHgZqKUOQ5lHyZbgUpOVw8cRVuEHIa4QoC2+LIZHWZaSJRmlUhnntuvZ+fADXDxyGFkO6PY6KFegBARhGZMZrF+CzVvYfMstNKfOguPyzL/8NaZ7Ed35Zbj2On7xn32Zc/v20lppUQ5LaGvZsGkzl5YWEOWAuNOiNDrCL/1vv898GnHx4iwkGnVsikt73iF5+xh4LsulnHa1xGd+8Rc4VLbYwOXcsQm60QrJFSOsqDbHX/ghiBJJ1CXRhm0ffwwzOsj8a69jcwFlhzRaRC0tIjNL1O5ydv8Btn/0Sfb9zu/CShPRi8jyjDQMqVTKDHgVOkGKlorYd0ijHktvH4XT57GO5I7Pf5pTvWVuvP0Wzr30Ck6lgl1eBis4tPdtzn7/BZygQeuGNZgto2y+/Rb8iVm6e4+CkOiBMpfyJo1d15NGKY1giHa0grxqG7bsc/8nPk7sQHNpHisFcRJBUMwiUm1JHBjcsY1mYNEnjqKWm6RpTgokacJgtcHIVVdAtcyhl3dDJsF1YM0Ih/fugcOThErgOQ6RgKzmkJsYXfdJlMEbHCGt1Xn8p57mwAsv4ftlhDF0ZUqa5fg4tLMcsQJDysNRHlk5ZNmDVt1h3e3XMThYI263ECstXOmSljySLIWrN9OeX8IJQ3KruFJUqYmAPBEEbg3PulT9KiLOKeeCspHUtUM1K9aBaO0wi81lkv2nEMJjlBor5eLJdd2ARqdHu6k4fXQSoghIsVWPG+66lampM2SVKu2SRMWa1vYhFs6dxL51nHU6xF/JaKQ+y61FPvZvv0J58zBzr71ahOtftl0uZT3SwMXqmE/9/M+w/3vfYeXIIei2ybOcr/7KlxFa4crLd2pske0GfSVSnz59+ryX9IdIffr06fNe86PQzx+FNgMrcQct4dzcRQ69/RZK2CI0SWvwQ2ycQKeHH4YII8BAW2XIVWPocg3KAY987hmGr7+Kt7/751w4cQLPQkUIcpMy2ouwxlL9zBPEFxZQc4p6eZDlo8cwWwe4/6kPIxnh0rlpzOUQ29SDez/1JLOdJjrXeCMj3PqJj3FMZnzw0x/nW3/yx3RnLiLTnAEBNo0QSYRSBuE4OK4kSSIOThwmCHwWTp2AagkwlEshAz2Fkbao8XaAwCdONdpaPKfE7LHTzE+dh1yh0hQTRfhSoFsrkGe4EmzcQ5Yd8jxhYN06ekkHr2vAcdHjZWZe3080s4jn+ajeEr6RZHmC3xhk9fuuZ+eHHsXfuJlzr71F6oWkcYx1JOXKAHmmqPohjlIIneIaw3C5zN2PPcYHHn2Ut77zXWqOQ5Z2kRKs1HjG4BmLry1SQ+JZ8uYC9BLKSnPpwjkunjmKzA0NY6h+/EM88tmn2fef/5oozaFRh4bHhkfu544HH+HU3+4m9D2UAxO+5YNf+CdsvGYnZ994E0FMZFOMMQybMmXt4QNJmhJIl0C4eMrgSIF2BSZPKeWWzGpSo0DHTJw8XKjB8gzaXeoGtEpplXx6DiSuIXOLMPEvfeU3ObewTOfwCdozl8jbK2hXQNnn4rFj7H7tDRbPXaDulwh9Hy0FdZtQ1+DmkCqFqfmgIggEvlZUcsXq2jCXjMI4LkqbYtOXazw3xBcSehGOVvjGwQiJdilUGB7c9ujDbNi4gTjPmTl7jvbbJ4iOXYBEIqYWGXMrxDMLlIMSic5QvsfYjm2k40NsvGkXW2+5idZyF7+rEL0U1elBxQVHIVODcVxwDHqkwc2PP8T0hbOQ54SlMk6S4mjwtEAYkNoSastAuU477dKzEKsUd7BB9XIuTdLtEbgeeZJitcFxXLwwJCiVcW7czlKnTXrqDHlrheHR1fTSCOM45FleKEG2b2f8rruoDtZZnDwFvsfxhXmWL8zA2Gqqw6O8+txzdCdPYZTB9zwcz2Pm0iWs56B1BsOD5BL2PPci8xPHCyWZA0PVARqtlBE3JEORBwoGAg7OT8Nr7xC/cQZ/pkXoN8iH69z9xMc4f/IkRDHkKZVyjdkzx+lGbbyt29i5fgtzk0fZ9tGHSY3BX+qRlqqweg1LCu59/HGu2bGD4y+9QGV4mJ61pJ0YFUeodcO4u65n18MPcsft7+f07n3obgJCceHQXlqu4Nx3v8v299/LwsGjNEZWoaMEmeas2bCJ1oXzXPGH/5zlsydo7nkL940ZvHKNOx59iHNTp6h86G7uuO5Gzux5i7idMPbAvTzx+Z/h4N5XkRvWk2PoHD9JpVQli3sIafEcB+EEJFoTq5S7Hn2I+VyhFpvIXOCUfLAGleQstRZY2D9RWI9FBWzK/T/7k8yen6F6ehqJILWaxNPg5Gz58MO87757OfvWPhKrwa9x4PvfA+GhcfBcl8zVReB9JsmHKox6dUQs6ClLV1hMyQUnYds9tzJ74iS9mTkG3QAtXVLPgcEG9/34J5k8fJw4zQgBP87JkxR5zdXMxTFdB9rSoishxncKq6rNsdIgpcAm0Jm5xJgukZmcpawD20agHsJ8wiosWjsE9WGSHZu48Zd+ltm9u/nYM0/z5t69sHE9a574MO39R7GnjsDJc2BDHGMxQtI1McoqZlpLnH35JWR7GV9TNDd6FhoBVudQrdBZXGR5eqoIQMfg54qv/ItfK5rpkJcHSE7fytanT58+fw/0h0h9+vTp8/eFeLeoDccLaKU99u7fx8T5c6hmk/+HvfcMkuw6zzSfc8616SrLdbVvoGHawTQAwgOEISwBUCREiYToZEiJoiSSo6E0K+5KoxmNpJFmRqtYze7ESBuzowmtVlpJNCAJeoCwDXQ30N676u7yNt3195yzP7JHq43YiI3YCGj+5FNxIzIqqjKjKm+em+fN73u+ZtAkTQtU4GNLzW1PPsZs1qOIVhm6+za6jotu59xw42523HU7B44cpNdapXfpImQFYTvGzwu0DxsKl8AdZeq2rfzS7/4Re/7jX7Om2qTRarFiZjl5aC+LzhpYWcKEHqrqY6MW77nvXlSumb8wRdlNOb5nL6Q5UzPTjPkB0dET1JRP3lnFGI3jCXy/gtEWjKE0mnhlidWpKUauu5Y777uH6cV54l6H4VIQe5A5kPuCwlOYapVCCEQvxc011dBH5wXCGEIl8azGpjHKaIYcBx11kSMVdBLz0U/9NNVd1zH75lG8SpXx557EpIJ8ZpEv/96/4OV9P8QfG6JbJCShgms2ctXtN3NiaZ6bnnqG6qb1XH/HbqaOHCXHYqWgkIJcZ7i+iwHaScKR40fZ97Wv4TkegYGR4WG6eUwpBY61fXGutbRtjm0GkHcYqjcwcURuDFTBppbQwvLCNMutFtHkxX6YU6aQxrSPHOP8qTOoLGekHtJrtdn508/x5re+y4W33sa9NE1Qt1hXYLTFJBlzRhOpEmesQZ7GWEcRWkGRJxRZjhCSbCikcFR/M2pcvFSgFzvQThjavIVOZxWawwS9fnWYwILoj1t/49QRumnEx//Vb9ITmujSZTQashjqDSg1TScg6/XI0xzHc/E6CfWygsKnrRyohax5/GGikSpx3GZVF0yXKaI5RBn6WEeB54GSmKLEiH4446HwUUijKCRYJcEKLp2/wMWTZ6EXEySaeLzK2I3X0Us6kGaQawLhoJKcYRlQ6ZVM7TlKfHGemaPHuXTsGKm0lPUKRWeVtTuv4dFPfICTb7+O8Ss8+5mfJdm6jpZImFmZ5pHPfRpVC5lbniPJU5qpoG4UQWlxjaVQhuUsphiu8L7PfZJg+ybmzx0nSDXSmr6MW3k4SlEaTZJlGN+nEJC7PuMEtA8cozk0QndpmVIYrAAcl4cfe4IbH7qf00cPMv36j/ry4u4KxcxlvHoFPTVFvrgIy0s0PJeRkVFWW6tUa3VyCbbIeOpnPsmPf/Lj9MqCxb2nsV4AFGz72AeZOneasASbZohSIxpVitUezlTEeM+hagy+E9AiYt1tN1O3DlPf2cdwYkg9iZtYilqV933yU2zfeDUnX3qdmx57gMsXz9E5M8mw9egJ/0obY87k0SOcefNNMAVpt02w6Wp233UP0+fPMbp5Czdcs42j7xzh0Hd/iF5ewXEdGkqRtruwuMSHvvhreJ2YC0dOkCc5phdjMERFxh3vf5Ajhw5yx6c/zfTsMsGxGe79qWdwRmqcfWs/hSw49+1X8LWD41doz1zi2MoiZmSUe2+/k8unzhKdnsSJUsbCKtITFFlJ1a9iBZRFSWu1Q2/fQXArTHg1unGbaiUEbSl8iStqPPrFz3Hb9TdybGmKC6+8SHlxlnqSkTqaRGiohwxtv57rt2zlR3/xN1A4kGhwA7h6I2RF34emDbs/8CTX77qJ8wdPYOshsS2JXcFdH/oAvTQhWVmCPGP24kXSxSVqjRppHJMLhVAuJs6YPTeDl2iKbkR1pMFMtoLYtYVn//B3ePvw22x++jHaC5d56Gc/xonzJ8iUJi1T4kAghWJL5LPolPSERssUgpAnfvtLNHbuYPJHe0hLgQRaWcqmX/oEp/73/wSVgL3f+DYkmg0PPsi2u+/hwje+DV0NuQNpzk0feZpz0TTleA3Xq+DsP8eEdujomJFEAIrchXD71YioxKx2SS7PUxmqE9gSJ8sZrdT51V/5Yr+0F/H3Mm0rBhHSgAEDBrzbDJxIAwYMGPDfgMxmVMMqL7zwQt+PVKlSdFN8FDpNQVhq401Grt8CQyGNW3fAxAgNv8bR/Ydwcs3y628y++rrkBSotGQkaNBQdRzfJ0L3N+dDQ7y8Zw9hpc7q6ipGa4hLUApvwzisGQE0WgnwA777tW8wdfocXlTgdzLo5jC9SL73IPN73gHHRycJoeviuy6FBGMMUvRdJMJowFKdWEMcdbn77jspog5eGJCq/uNY2X+X723ZhDvexMYdnNClXq1QZBmeowg9H9dxcISkUamydmyUwHdx6Y+cx3HYu3cv8/PzlJRIpZianuKxp56EwGd+fp5rrtlKb3YOggB6PVoHD/HaD16ie/QE+1/8AUE95P5HHwVPgNBASVEkmGpfopwoiwkEJDFYsFmOEbDUapNbEL5Pqg1CSGr1OsFwve9dkdCJI4zqq1EwFvx+eMhql4XXXwdPg69BaZQGTwvE7BzCpmitwXFYnJ2FSgVWV3FsSR5HFEV6JWQIWX/HjWy8ezdFbxlvwxpUvUKuS0LhUVc+oZWEO3bgbN8JODRq41Q6EMaKkcZa2jPzsHYNJotJRE4aOmTCUOgSr1aDbgy9mL/9sz/n/HdfJNcl6669hqvuugt6EYHnY4oST7pUgxCAGJ9VJ2ROSwhrsHYDK1bx3Bd/FSp18KvQaJIXMZ/8pV/gJ3/5s1DEoEvciVGcRr0f8iAoMShEf1R9fEWWmxucvMD2YlRekuoe7/+Zj/DTv/UlGPLo+ZZ2TbLqG5ZrDtFwhcgz5IGEwMLWCXZ95jm0iaHqM3fgBN/5nf+ZoOdBO2Xfm29x8cIFrrvlVnY+/gRSSuI4hiRBOIoY6GLIhUA7kkJYCCS7H7qfzddtpZenYC1aF2hdYMqCPEuw1iKFwqlU0UohPJ9ycoZL3/wB4801lMsdasqjElZQQQCOZN+hAzz/5/8b3RNHob0CaQTKIh2LXphB2RKV9FC2pCgKWq0WQRAQRRE6ScBxiKKIPXv2cPr0aSp+gHQUtz39FOvHJ6AX4boutUaDUljiPAVdoKwhFIIqHmGtCoHL7NGjvPmXf41yA0oEjuvSrNSg1eOHf/6XfPOP/wSZlez53vdZOXMWN4pZXV2CThvimHsefwLyHJaX+jKsSo1HH32cG2+5BY2md26aY9/6EfH+o9CLIFCURULZ6TBWBtDRnHr1Tc4eO4EKQmyeQeCzfutVfPrzn+XswhTvu+NhLry0Fw4dpVt3ODB1ju+8+H0qThXOTiNLSbUUqFwzet0Onn30/TA7zzd+7w9ZeHMvyvWpSReTppBqQi8gjmOG6g1Ictonz4LyUVFO0u72K8yyvO/1QmDjjKwT8fz3v8NV99zJ2qefglxTCo0Wpl9Nl2e0Dx7jlb/6KvQ0YeHglQraXZ780Af7k+hCH+V53HPfvSil+nYfK8A1cNN13PjQ/STdCFINiYW5VYaHx4nTjMQKSixlN0J4Ic5iF5UaKEqqIyNQNbTWBLx2cD/B7ptASbj6KowAfB+yrL/mlCVSSlKlcXZsAD+FpofXGGJ9OEw21wIkOqihvAo4hhvvuA22bCR8+EEq6zZAJ2b65AVe+vP/A6ohQ34NkWlwJTvuvBN6MSytUMwvEvguc0vzaGMwpmTTyFqIMu577wMoBBXhEJaWrBPRa7VxlMJqQ/+TmYH/aMCAAQP+sRHWWvv//WMDBgwYMOD/N/8v7Wz6yrfDkVpfJKwlw2VAKS2xZ9AKvOu2sP7u2+k6kuUjB1l398Nkf/YtVhbnUA0PnXVwahXKOMUrLE23higNCyMOjUVDVwnMj90KFxeonIvIuz1clZBOuNg8Zc2HPsF7Jtbzwu//azAapxZSpgmuFYzqAK8QpAhiFxKnLy11rSEsLIiSUkLsGirWRVkosRTCUkiLMRp8l9pwk14SQ69H1fTvTysXGiFsXMsTTzzFd//uq3hTyzQyS1FmGAFW9DcGBolyJb1eDyugWq1iXEWc9Te8SMkwI6wWBc2PPUbr1b1gHFhosVbH5MZihSQTkrgo8ZvDZJ0OBFVwwdu2hXzqAjc/+BCnjx4nuXwJur2+jDoMocygk6KkgycDssJgfKc/BWi4DourrGkOk622aDdDmtuuwoSKzo/ewTeQK7BVIINqChUDkYLY658SQQ4Tth+WtXROpy6pBMN0heTxL/8a3/7at+DEOSrtVVwitIRcOBSiwrqnH+C2O9/D9374XbKDx/GqTcTkPNW8/7/T0tC+eSePP/cJJt96h1N/+wLXO3UyW7KkU+RNW/nAr36WNw69TZZ0WDp7jvydg+B4sNhltDpKmRXkBRRSUro9GGnywY/+JC9+/QU6l6YYEiGuVHSymHBilHLX9UTHT/WFu36N9335n5HbkldfeAFe3YOvHUpToP0eznXbqDVHac0t8OjTH8QvCva+8ioLRw5DrhnyqyRpgl+pEGUx1lrqtQqOMUjb91rPyYKx0TXI0tBZbWGbNbL2KuseeS93PvAAr7zyCiuv7uO6FcuZKuBZJj7+LNqVXLV2Hfv/4v+E6SX8tMCNC7Tvk1ASXrsV0RwiPn0acoPKNUEcE9UUKNGvHClSMDn4EooCZACZIVA+suyhLCijwDq41RqL7VVks4lJo37wYFwatVHKpWmG3ZBu0SWruhSegwwrlKmhjkWYnDKLUPSF5EL3fT3yyrqikUSui7ASYcEKSVBvEBcZWZn35fCe35erFzmiXse2egwlIIuMMKgyU9Fw8xZuf9972fe1b7BxWbFwYZrcVbB5DNoduGort99/P/v2vgZ736ZSSIKhMVaybj+w7qRQA5ySsZ7FKpdlfJpbruGJj/wUf/XHvwce0F1mdNM1qHCMhelJoMfoqkEjSEeGSfMIfANSMtaO2ZQbOk6Tc2UEtUp/ol/RD5HwodKsEs9doJlvodV0wSYEN2xH+5Zi32FG5nJSty/yd63ADerMuJbGlvW0zpztJ72loZkUVExGKQy62SC1ELXbeJUaEoEo+hJ+afp5Tu6VaGlIpaAUgkriEK9rgit46Iuf49g7B1n42otUenP917vsu3oCUUFHCVVZITGaHIOVlie+9Fm+8+//FNetQl5SrKtCN2E0liwXHXb90W9w7MI5+MFenFOzVNISRY5s1FlO2jhj45QrKwSuj2cVPc9jIvNZsDljGyeYv3SGnf/8Zzk7e4n86/sgGMH1XMhzbtu2jZN79xF32gwHProXIT2fBddw2//6WxS9jBu27eQvH/gUjDShvUpFDhHH7f4iVg0Y/uRztFot1rkBM1/5OtVCEuUGdu+Gso04MYMT+hTbx/GdKsGBSRSWwi3p6gVu/ezP8s5/+C/cGo9yOZ2nu2aER3/tM3zjt/4dbqIZdmoshRqrc8bqdZS2zE7N9s8HuGLqH1QiDRgwYMA/BoN2tgEDBgx4t7lSZv8Pb0osEsG/+4M/xHN9QifAFP/1E1UL1lCsrtI6eYbRa7bjXLOT1uwS0f59iIqLTBN8a7BRgjICVa/TBqLQBxw2PvIQKybhlgfuoZV0MfMLFPEKa595iOTwDPSgd+wdpk6coiYEJs8o0gjpu2it0UIisEhyEDlGGhQGaQWOAVAYoSiEh7IGZQxCCBT9w5MOygqyOEHkmkqtRkmBUwoC6yC9Oj/5sU/w6quvEK+s4MYZdWOwtsRKi5USowS545AkKbYxBJ5PnpfQyQiFoBiq4eUOURRDJeBjn/ssBzqLcHGSigkIu21yXQAQSIegKKkXJaJIcbKMggI9PwWBx489/QyP3v8grzz/zf4n8ZUq73ngfUxct43l8xfxrcBaRRGE/Rpez+PHv/B5Tp0+TW9+CUf6FHlKako+8emf58ybh3HiAikEpQMYQbUUCCtAKJSVOFZipaQnoSUMDNXAKqJuD4vk4rFJzNwCRF2QKcOpoVpALhV56NI9e57TBw/yyFNPMTu7QHr2AsoqlO1PUModS1k6nHvtTZYvXsSnoJMtEtkebs2jO3eZI/v20T59gQ2Rw61rNnP24HFUqrESEmHIXEs5McSWO26iNTcPccTJw0fIooTh4VHidotKpYoKfTJPcsNzH2DtPXdx5zPP0Epzjvzd81x6cy8cPUFFBtTiFRxdkjWqmF5KOrsAJZx/Yy+nz5wlungJf2gIrTMyadG1kDxLcZVDxXHxEVhhMdKQORbTCCFOUFHOUCJwkpJKUGdlco6RtmZDJIkuzDJll1m/dh3aCFoXLxMLmLk8DWcnIRX4vZTRSp0yLVBOQLnaI5tZhlKg4gyZ59xx024+8G9+G3P9Vcy8fRCyEmk1Ns5wqxWqsWWMABF1yH3bF69f+VqJImRYwRjNvZ94jic+9QmOLswTpzEegk4eETZqFMpiLdhMIxONW1godH+9kAKkwGCxArToT9IzQlIo2X8kCwJBmRXYUqONgbAKKNBdMIZKnBF2c+phnQWp6YoC1o0wcsONiKRk5dW36CwuoW/ejPfk7fh37qLRWMs1azdy8J1D0F2kunk9NeuztLQK9QpkOY6rMJ6GKKdamr5nyXVIWqscfeVlZMPH9lYYGqmzOrOILRXVoSZpe5k1wTBxNSQu29RG15CvLIPNyYRmkw4xGhJHkauc0fvv5IYH7mPmzDlod9GdDmEYEqxm6DRHDNd55lc+wdEXX4KFFQIMTaNpOxmJKHCsJbcFeS/C5AVeXhKUBb7JyVVG14NeATc99RSz05fRgUeZxHjW4JoSQUEhS5QxaCyZKwgLhRSKopfC3btYTWNWXvg+9DJckVK4/ecOKxkWIUWRY/yQ1NfIXddQKzTH33gJJ6jQFAqbJRSqhF5MGBcE46Pcds9ddCen6b68l1BKHAGqUWPZ5Hz8V3+dx37sWV5/Yz9BL6ZIc4qGIq3Vueczz9G8dhOXj55i5+4bubznAGauzVBhiS9cYEQozh98h7AweLmmZl1UAaW1xGM+s5fPs3x6lkN/8zy1FUs+PsSW997D0ulJECWoHiqsEr9xGLnQo/P6m/jWkEQd6tt3cMPOm5lbG2LPL2LSjOt/6/Ms7D1CfnqemlthtbXE5l/8MBsevosLM/MkJ6YJqbIaOpze+yNQNbAuvTxj29Pvw+aWpfkF1kxs4Atf+GXQZT9AujItEEr6TXaDKGnAgAED3i0G7WwDBgwY8I+MADD2yvteg04yol6v3xom+PsqC4yCHKYOnkQsxzzzwCP4y3SbAAAgAElEQVQQOlhXUBYpoiwJZH8ZL1wPPBfWjsPwONfcdw8b7ryNuVNnuHrNCFnaBs+w5d5bCGzAaBGABjO3QL60iJtnuJ7EpDGYgjLwMPWAzCkpVP/Q0mCuVAhJK68cDsL0SyKE6QdjrhUobRGFpqI8TK8/wlzrAqe0uLnBjQte+fYPCKUHcYprLXGvDaYEbdDWUBoorO23XOQ5aAOOiy8dHA3EEaHuj4jHGt548WW27NoON+8kyVJK3yF2IfUEkSxIbEJSxviOoCRFKQMClOvyw298izdefLG/4RYutCJa7R7DI+NI4SBRlMYifR81vhYsqFqd63fdhGg2SfIcjITlNt/5+jeRhcEzCtcosArH9m8nrk+pfHzt42kfLX2ySkAxVKFnNGlc4jSaVBsNioVVWOmC71FK8Ey/I0tZ+lfvzEBmkHHOhtE1qJExoH8OFbI/Kjs0ApHlOHlGlrdIXUMqLZ24TRAomJ7DXpjm9J4DHHjxNarCRZYatEbUA/AkyIIHnn6Cq667DtEY6rcHKkXc7SEQ5HlOWuQkK8vs/ZM/4e1vvcCldw6wViiIU5idAymQJkGg8SQQJVAKkC60o/6ropeCVORZBq4PI1UwCfgK1/eJ0gRjDAUlqTBEqqSM2lgpUJ5CiP6mcbndRivBG3vfYt87b5NZjQ0h67ZxOjFOV8O5abg0zcRjj/HF3/xNrr5qG4tpj1ho/HoVqyThUAOKnMpoE7dRZ0WnlFGC6hWgFU3p4xsBjugHr1fa2FwU5orbyF55PvrnmQPCkmhNojUTu67l6U9/nKiMKBxL1+RkaYKUkrobMOxVsFahhYuWPrlwyJBkElIlyZRLJl1y6f4/1hdpoR5WCD0fYSAQql8ZZgzVUlMpNT4wnaxCw4UbtnLDM8+wcm6Ws3/1TYZSQa1SZe22a9m2exdxq0XrzCUuv3MCVrvc+qlPMXbNZhaSDk69AmkCY0P9llgM+P2CI9cDk0X90qnQ7/+c0bRXO3ieR7zSpnXxMpSGlk7pJqtw502sWz+BcgJQHloZeq6lTQs3cEDB7Y88wB0P3g8CQttvUWsWkpiUhutTLizy7W88DzOLSAOZYyitJpWa3Om3l0kFwhQIYa9MYiyxtiBT/fAVV7D7wQfBd8BT4Il+WxoFGk0hCzAWay2ofmWSlYIhJ+CqG3fgeR4Mj+K6PsoBqQQohStUPwxEEFMS3H4zt374KTQFVAIcq4k6q2ycWAtConwfD0nW7fDOV75L662jUPbdZaVjWU7ahFdt5NLqMm/sOwBF/9rhSh//zt3sePwBJu68gajuQjfijb/7FsXhS6gkRZcJwpXEeQRSkllNKaFnC1Jl+2tvIWH/acr9Z+DYJXzlM3rrDja/9zZYPwRDIdJAkGYQlXgzS5BqpNGgDFmRc+rUCbbctIu1m66C6gi1iQnC996NbTYItl0NQtK7uMAPv/5t1G03U+LRo+wvcr5PsGkTpszBFey890623bIbrCLOi/7F1HGuhEf9QzBobxswYMCAd5tBJdKAAQMGvNvYfom9pv82V9APj0Dyx7//BwgjkI5HKvrCXmX7YYxXqdAc2UB0cY7k0BmSNKd18ShYg2MEshbiTIwQS4PNJQwPMfrovey4634OnzjKtq2bOf6f/4Klwwf7j9yokq9fQ/HaaUaBrGzRBEYrFVwpiEyJ8V1Yv5bbHn2Yc6eOokWBViWlIzHCQUuJsAphHUBihcArNVpCoSSxLykdSVYUeMql1+lB4FMmKaQWr9QIXZKlOUmUsXLmFGiLbrXxMCRak+mSvCwpdQHGsO2RR9j26CNsvPtO3G3XsXD6NIz0N62Vdo71HJxawNzZc2y8ZQcP3/8AZ174EZ2ihx6pUnpQ2ISy7pPqAluRWGko8xJZ9TCLLbrTy5w7fByJi9WAF7JyfpILh06is4g88DFGYEcn2PXoI+z6yLN861/+Hkvnz0JZUPE9VK1CWa/ROX0OaXxEYdFSUkiBpw2+MbQrNQpcwkJhkSShILjvFu7/1HOMjG9k/uAlZMUjXV3mQ89+hIWoS7I4j5Kaem6QQOJAKl2aukqRWc5MXiYqcookRpcZYLE4WBQTsUEmbQLXktRsf7NVA7/pY5czrvFDlLb0qj4GS5z08MKQWq1OutKB0oA2HHz9NVqLy30ZuDHQizBaU3N9ClMSF/2WFjoJXJpjdu8BzInzDJfQzToQWEonJx316ZmU6tqt/LN//btUN6xntsx55id+khMvv4xTH8LNC7TOefJLn+eGRx/h5P6DFL0ezeFhukVE6mhKZbCOBauwnRSdZJSOYDm02KbD8GN38aHf+BWWx0LmTh+AuGSzDgmzlFoZsumhe7j1A09waP8bvPniD1jsdShrPo2r17P78YfYuHsnH/vcZzi/OMfi8gxFRbJgY/a/+BbLh84yUkiqpaFSCbCOJCty/CAkyzMqQYVIlFgh0EKROYLK2ChpZxV/40am3nqLw6+9Sie0nH7z5b5MWQiMH/LZz3+e8fFxThw4RMMYSuNgpYuRilRAKSSl61M6DqV0KaXCCAh02V9qhEVaibASpRSxtYzu3snG226id/QkgbF0ypzekISrmrjPPoYZquB1DJ1v78UzHk66yqhTYerMBRbePATnFqmdWqCZatq9ZWZVTPv0aTACk3W5++c+zrM//mFO732bNO8ifJ96KYiMIRhrYgx4eYmbZ+hSY33QuiRUNWrNISZu2Mb85RkYrXDfL3yCc6+9TTk9g4ek9EoSR6C0z5I0UHfojY/y0lf+FiZnWB9UyaM2NWtZ8hRp3EVKQT5zARZ7eGVJKgt0bih9QEHZLUBaiiiiURtCpxkISy4tqWPBcfCu2snl1TaRL/noL3+Woz/6HtoRZFfadbUQSGsppUUrQTNTZK5D1asw3VQ88ND7OHvwOOO1JqazgnY8rFJI6SKlQwaYZo3Nd++GoQrRwaNUpIOJEq7evJnTly4wtHYMLy1ZFzZYFQVibpnhqGDIDygqHtlQyKZH38vG227mra98g0tv7WcoqBPkCQkFE0/cxXLa4e2/+k/Mv/YaNWo4C6uMJSUdN+GJn/4pTh0+Ar5DGQjyQJA5ltiUJJ5LYQwTqUvdadBcXGHCGWepjNEfvIOpYYU7sZZycZXh5QWKXkaVAK1TKl5AlHdhuI5eXKKwBn3deqLvHUEvtZjNFtn0wce5+eF72XjfzUy9spfu/iMwv8j7fve/4+R/+FtC5ZHaLrt//ZfYMjTG5SPHYfNGNtyxm3P7DtOZmqPZHOZXfvEXUeq/Ou3slSsswGBC24ABAwa8mwxCpAEDBgx4tzH9D3QTIAcEBkcXgOSP/uDf0s1yEsfFW7OWsJWC49CuOORrQqKlFvRSKp7P4vIsSANxyYiqkdx4Ndd88lkWxqvU3pzEVS7tbU2aRYfpv/kq86/uYSRXeKVLWG8iSmi9vJ/QMXRFj7JpiG1JpgSlcrBOhaK04Ias2XoNc8ePIXVJwwlJSwW5AL+KGl1D1Fmh9B08m1MpXFaEpGyEXP2Z58iGGmSXZyhMwFU330Ir6YC1jBeWxFpKZTGhIM+6kBfIsj+NrZAuuZJ4zWFsEqMsGKtZnr2IunYTR4+8Q7cSYqslm3/z12hPrVDOzBFmHcaVor26THv/AU49/10aGpq2RhJlIH2sNRB44Du4mWU8UwRG01MlSioauUsFj1I46NCFpAe5ZqMI6EyM8sSXvsAF18eqEHHzNo4eO0yQGMruHLgFDVejq4JicRlcjw9//ou8ffI4heeALcC3pF6JySVUAzI/IdVdausD4otnmXxjD7P7jjM8spmouwxbN3Fy+RJ33n0bZZJQLndYkgVRzcFBM5FYkiwHWaOs1Xjsn36eVtUnnjuPjlMmxDhe6tIyi+ShoKczKBw23v5eOheX0DGoRoNukVLWQ4oiwQlDyqKk9FzSOO+nnkKhbtjK41/+AmePn++LkkMfoojRZpUi6WGxCOVgtWBtvUmv6IKEtSKkW/QIr91MErcI128l3zjOro89R2PLVr7y0nc4e/EkxfwlVm1B78IkJokIkBRpxtk33ubk/hMwv0KtGqKVJXMLrn/0IeTYOPHkHJQKKUC7kDhFv73GlCTTCxx75xirP9oDlTGGTMi0zliVhvZ6n4V0jrNzFyFKEfNtvPk2m+sTLPZ6zIiU85fPcujMSTrTs5RRAn7AHT/xIXbfeDNxnjEzf5ls7Sgr3Q55rhnzm4TdnJoW5HlGKgPc6hBZs8Zjn/4UU0VE3m2hCw3LCUMyRMydxS61aMoGeWSpNtdy6Nx5jp8/h4kWMSpjxHEJLPhhQOEF6FJAJey373TbQI4TF4wagxCajtSURjJcHSXKNPnoEPrDDzG/qYa+sEBaczF338CD//Z/YHLvG5iZCA6co3PoNOgcI0uMTpFG07QSJ07J0w75sKBNh4rQ1CcXyTMfqw03fvkXefvEUd76u+exF5cIN28mX2mRpAJVDeklMSZJWeP5DLt1HC8kEgZCn7HRNey4/y4ubBgnP3wZpyuZPHCUvD1LEDZwopwGIS2jiYQLYQW1cSNyZYVsapYAQauzTCKg5WtwNEoKyHO82OBWfMrAwZaaEhgWVbzI4GP7U9qESzdOKIWkEAJTG8aaCmQ+tcjSW1rm5ltuYe/evWQr87hPPkSlOkzR1chOSRZmiFDgdUpcJNoPWHU07vg6Tp2/BOPjRK5Deu4CH/rML9ApDatRTIrFlAUTXo38jePolw5ROGA6KVpI5k3GxkfvZmFyCq+bY6VgOSzJhg15tWQxilFjG7jhvocpmqMcf+MVuHSBjY2Asc4KrYYDVcXK0eNEB48SLMT4PY3ME1K3pB0YuH07RVuhjs/jp4pkxGf7z3yUbmlxV3J840Dg065AL2uhc0OAZTXUbLp3N4unzlKeXYRXjzMSKlYUZLvWsOOTP05n2EdnBrXYwzUFfh7TbA6zevwUOJo7nn2aC/v2c/b11zn/8huIE+fQdQeKHue/+k38VhffxiSeZnlxitkTZ9CrKwTXXsvU8jLLL73FiF/D1Rlf+rVfhTz7e98U1gPcK7LzAQMGDBjwbjEIkQYMGDDg3eYfjB12MfiY/sQp5fIv/8c/JnYkjDf4iT/5HfZ9/3ukpgebmuz8iae465GHOD15isLGUHNpJBLheRhrSFeWWLgwSWAl5twllLbknUWGnZCVmWm0K4grLiZwydIUAeiqT1ZV5L7EizVKuAhc8qKkKDSVeoO83WPuyHGQCuMqkrDCNXfcQXPb9bQunOeTv/5POXD8CFYY8qRDuW4NZQh4gtXpWfKTl6F0GQ3rvOeDj5Hdei3t2Umi1aRfRaHBGAGFxXEUSipKraldtYF7P/sznHljD3VVxSkNrlAUaFoXJmElwh48z/t/+8skrRUW3nobszBHMNRgvtsi2LiGTGt0GBKZgu71ozzyUx9lcXWFYimi1tX4PYvUgtiT9FyBtFApFMoqSimJA8X9n/oo0ViNZGmGTkXCaoepC5cw64ex0RyVoTXEF+ZY9/BuOidPokpFo1SsZjlIp99y5yl6nVV0mWOTFKPB8Src/9u/weTCAv65ObZXRnHnlvEzF01Aec0mkm3reN/P/zST5ycRF5aZ3Pc2nbxHUVX4uaCSCeJMszJkKShxmw7F4hJnX9tDdPAwXtTF8xSrrmX9PbeyuDhNmeVXJOGW6266mZvuuJOF5SWSVhvPCkxeoMMaP/fH/4IDJ45hZ1fYoAOKwKF0BXZukfn9p3n/Rz/KdTft5vRbe2lUQpJOF0Ff5GwFGKHoigSqVSg0q2iSmiTRER/7s/8FRwumn3+dxVMXWTp7Ag5fhHPLTHQd5o+dxm3UkUqhehGjXpOkXsdGGX5RUhUCpQ1Jr8dQc4TtG64mTgxRexVD//WlrMHRfZ+QjTReKjBWQTciu3oNt/yrf0Jy3w2U2zbiJeDMdWicXaKWa8bGRklWWgSeQy/u4mgol1bR8ys0wwrSGCbf2sPi+SmWzl/Ar1W4ZttW7nvyUZxmncnTx0g2jNFyDbHnYY1DkWuC8bXYoM4Nd93L9oce48zFKdY99ggPf+YzzGar9NodytIgpUXagnhxDnptHOXhZYIFL6dT1fSuWoNuzcN4jWc++2mao02mjx+FaoDJy/7kdAsVL6CiQtpRQlivk6yucsfuu9jR2MDMD/dQTq3AxSUm//r7NKc0zckW1U5JlKdc/fDd7HzkbiY7C8RpRpSVFAgqQQ0Za4YJCbsp9QzIDEIbpqfOwMlTgIevKkRV2PUzzzE8sobZs8cYkj51q4glzHkZUZEyqisMUWHOtrnkFoxefz1qNSLXBdbJ+Ph//+ssTV5iYXYON/TI3H41XF042IszlLOr6HaP0hbYmofTqCOjAltIZGZouBVc5dMrCiyWiZtvxGkO0VpdJXMg9STG85HKxUdRrdZI8wKrDFc9fDet1YtkD+zkyec+zMt/8h/JphchMvzcR57jzb/+a2yeM1YdgjRHZxod+ESexI4MYbIMiyD0Ax68914uXThNRcGN79nNO0cPUZicNVu3sHXXDs6fOIZXr9HTGVGRUFMeeA7jmzfw8I8/w/G3DyKTAiEl2fphdGHJV2LWDq8jn1+hfXmK6ZPHoNOlUR9GWociNbhIHCNQJZBqPC1Q9v8+HCMoVjqsHj3Per9ObHPSYYdrt2+jdf4S0dQUo7ds4+6feJJz0RKqm1BLMhLdpZAlywffhsOn4Pw861EsZy20IxndupVQBTSFx8Lxs4g0o7Q5hdF05+cQ77mBh579MV7/n/4LxcHjsBhhz8+j6xKKCH94De6liC14ZOTERYl0XIqlHk5zmAd+/mOcWrqMYxTR4hLDo0N88Qu/3B+CICx/bxz8Bw7CAQMGDBjw7jBwIg0YMGDAPxIOBgfTr7q3/eU3ErI/7ebqDUQeUPP7AlYhOH7gAEsry31P0KZ13PqRD1PFQzoKG3qQFDCzRHryPI6QUKYwNcvlg8dAazAFNAPyMgHAFiUUOYzVqW7djC0U1iisVKAcNBabl3jWokqLsgpvaLR/X/UaW3Zsh7UTVMeGGduyAVEPcMZGuPXxB/tS0zLl/sefgOUWVduXdU/OXEI0Q7hxBzSHAAnKBQ0CiTISU2qQEIw1ufrOW2FshCiJqYgAYQwEFUgygtIyFmum9+xj1+g4zMyAq2jHPWhWSFeWwO9XSPjXbgXbZeKm7dz50IPURMgat0Edj3p1iLgs0NUqyigcAxZBKSUoOHn5AkMb18D6ESh64EvS6cvo2Rm4diOLL30P5mfxJsagl6N7mlZaMrb5Osg1SIfDe/eQdVb7Y9mlAuUzvnYLieuw68H7yFzByW4LWR1FuyFpN4b5HhyZREUFO7fvohJUoVZDbdoMxlIZGydTDrkQYCzGgcx28UKXRjtiJC6oRYaR5hAMB6y5Yyc773hPf0N1pcvj2JHDnDpxjG67DUV/jLfrutiox2tv7mHDNVdB6NElRucFvuNDKYkuzjJ57ATpSguSjCLJyfN+c6a5EpKC5bp/8kmC23ZBo4ZTaUCpIBH86Hsvcra30t/wdWNo9VBrxghGmrTziA1hk5FUUEsMuXKZc0p0FoPob8hFaVClRQiH6VPn+OFXnmf+2GmcAoIS/BL8UuIaUNriSIFFE4QhNEeQo5uZfOkw7a+/hv7TFxg/NM/a8z2GcsGKTbksYlSgqAqJ7MWIbkS+uIxvLEW7g1dqvFqDorVCiKYmBcf2vMFXv/YVjr78IozW0XkPPAs2wxpLODxCOjXL6Tfe4sL5aU6dvwyLy8xKxb6lBXphre+XcgWOKzBJG0zan5QoXaSqQCXAv/VGPvSpj/XbBVvLfO+b32Tvy69BCbRSPAcyBdYF1wp0llMfHWJlZRGaw7zxZ3/B937/3yOWe4z5Q0x4TSqpploYAgQKw9CaMbbfdhPbb7kJhAKhMCgsCqE8Um1JDfh+E4HLkJC4aQaXpxHbd9G86mribptr3v8Ywcb1zBYF+BVwXCIJXWX7wvpaHbKcuNeDsVH8dRM0GjXacRfdWaG5cROjwyMsri5D4KGFxcVhWDs4adavJgwclOdBaqmaCjY1lFLSnFiPxaEsBFrb/t8hFfc9/BBuvQpD9f7557vk1pKaEmsteZL2QwhX8OAzj8N4hco9O9lz5jBIFy9J2Vod4Rt/+p+vVIFZ6s06Ve1QI0QrBU5JGbchT7EzC2SXpzn68iuUhw/RaNR4/vmvEbWWIY149sMf4vZ77wQXElkSyaLvfYO+S0kIjhw7St7rEGUpvTxl67br2PWee3BG1qJzg4wi6nmG3+vhaIO1gm6u6SBQV5x6nu67mv5hniItfZ9cJ2Pc9YnyHtIDkpQjr7xO++JlcCDyDf6GEWweo3u9K7/o4IcudDNUDvW4R1lEFAKQkuWzFzjx1W9yfO87mE6EoxTCUVdGCUp2PXg31c0T0ImRqsZQIajmGtYPg4BsfpkqkGLooMGVeInB7ea4rYzT+w8xcfUWdtxyAxQpIvRIi2wQGA0YMGDAfwMGlUgDBgwY8C5jhUGir0w3AwrRlzC7kt/+N38Id+zm1vc/wsu//we4SzkbnBq9+RXsxSmmXj8IsQHlc/d7bufcD16nk7cp1lSgHdN0KpSdHqbuIJQhdH3chR5lo4pxLE98/uc5e/gYYSunoiVZ6LLrJ5/kyQ/+GMd/uJ9EWHJHUgqBrIbkUYQ0liEhsVqQasPo7Xcxvf8AU1EPs7jA3rfeJJ6Zhl4PYzT3PfYoR996CypV7rrrXo7t2Y/JS+K4x8L8FK3Zy4xdt4Od9z7MzNQs9DJ8v4ZbaLAGhEULS1R3OVCk4NWQZ2YIsBQUFDL7v9h77yi5rvvO83PvyxW6qiOABkBkgiAIkhABBpEEcxSjqCxLVrAcJNk7six7rTPjtWfWu1rLZ52Ow9hrr72enZF37LUkS7IkKzGCIAgip+5GA43OqXK9eN+9+0dBXs85s/8td//pT5/6o09Vn+p63e/d937vG8ARqESxWcGl8xc4+Xd/D6mCYgCVEu/7xCdYTjXddgTNkJvvP4R49G5e/fLvc+ncOKqdkSQROD5LcZfS/r2ki3NYRuDmgsh2iG0BjiSsr3LHg4fYtH07V954HXQCWrOxNMShT32U8dnL0F9koDpEdnKWtNFG9Zf56U9/jqFN1zF25DUCX5K2W+gko1iqkimbQmmQy2nCwvdeYyT22Wr3EYer6KBMMtCHvPdWtn/qvRz9tS+zfOICv/rnf8iLb76OGb8KuFz/yCFueuIBJs6cBA1ORaO6BhkLZJb3srRswWLYgWqZ6akpSgPraMzNQ6bAEqhGncbSElIKAtsmjbtEaQLrRlg6fIzm9BT4gkMf/TCzpy4iwy6usUgdwcKFCSZPnKQyMIBJM/oqfcRJhhHimtpOszp2kvtue5SqCphbXYKKhJJP+4Zt3Lj/Npa+fpibyptYCle49T1PcP9H3s2ciJkfvwiFAu08Q5eAkTJUB2CljtEa37awXZt21CGPEwp+icDyKUWGYg5BLrF1jha9nBrlWeQmQQ0WefrLv8ZFsYoZWI/pGsypSZKs95pl06FYLROvrlCybJTK8AMPG01/oYAjDIWiT5okdFtNNg1UUWGLLE/IbIFpt6juuYH9jz7KzJmzlG47yAuf/CSX3zxKuDyPX6mQ51CbuEJ9folbP/RBurbF4vG3yBZWYbmObrXwjSIQKVga41hkCai+EUyWYiUZcycvEE8vgLLJ51dwlttsKg7gxBlF16cTSAqWj2mFWI5HcON27nnfc0ycPUUh8xhJLcI0okVKN4vIygFtO6dRkrQ9Q6I6TFw8xfFvfheWYlztU3QKaGETugK2jZLGLZqBoC5zZNTA81w23H8XTz/zLI2FJVbrHepJDbl1G7KV4Z0Yo6HbqBEf++Be9NmreO2MAbdKq89HNVfJp6dZvXihty/bNvH8Akdee5VsfhHH83GNwOkkrFOSmIx22ZCrEJPnDOUBSQKZ7bL/859GC0F9cppUSnJhI3wfkxtCo5k/dqJXZ5ekYHkQJxhjKPYP0A5bOP0VtDRcXpgj0THl+w8SHR/DOTXFzuIQy+15VlpN8DKoFmlOzVE2kBtBXHTY/4WfI7Ft4sVV/FoXL46ojV+Ask97fomkVsf2PHSaUWs0+eH3vg9hiAKCYgGJwNeCThLRzGJmJ85CqcJAUKRUKNK/bweLHYPlVanNzTDiSJLGMgOuJM01nUyTFfuobt8FtWWgF8KX5TmJLXqWZdlrCpRGUMlzXGkxr9uEbg5xRDazjJ8BpSJxa5nyvj10hkdJzs6ShjFRJSBL2hBBQWlcHOKyR3ItZBwlqFbWka628KWFZUm0B8Z1EF6RlaLFxMxVzOV5TCfG9R06WYeP/NavcOr7ryDDlNCCZpCRXzcMnoNZaLPdeJRTuHz2Ave+63HOnzpD3G7hlHw+99nPIjHX5khrSqQ11lhjjf+vWBsirbHGGmu8zQhyBKY3MDGmN0DCAlvwG7/zu1B2qRlDfuESxbkGW0WBOG7gCpeqcikpQRYrzrx5lKLnERYE9/3Cx5l66TBCOty271amli+RueDbBQa6hsQYMglioI/a+FVGY5uqcGnGIfPT47z1ne+QSh8cCUkXPJs7n3iM+eVFVNgmUjlOuURWrPLs08+z0u3Qmp+D5WVIEmi3IclwpMvc8YuEcYqwXS5cGsOkIWKgj3K5RLK4CotNwqsL5KMb2DK6keVak3y5hoNBoHtftoE0Yvujj1F/6zwDXY2V5b0QZT+HogSl8KvDyHoLS+X4XpEkCkFahGFCyTisjl0GabNw5gKdY6d78oxmGzNSJe0rEsUt8C3e9fGP08oUjUtTFAcHaScR+E6vSiuHhTMXWDx5jjxK0bJnlwi7ERe/9R1oLxM8cohDwXpOHD4KXu/nXj/8OmPHjoFnkXXaOCUfIwVponG8Mq16k3zvFp78qY9x4mtfY6U//XgAACAASURBVNmVOG6RplZkrRa63aXczEima6huxIuHfwDNBnhFaHWwto1CX5GFySvIdo4VpuTKRfetJ/VKsGkjrW4TNozyvn/7O2y862GO/ee/7SnbgqD3d1O6J9BQCvIUS0iwHXQnwrYLaJdeK9qOTexct4mllRpdHcLmAVjtgDFIYRFGIbmQJFqR5wrLtnuh3m6J5ZfPEM5Mc/8HP8CeT36QqSRjaOt1jH/7n+ifyTCdDk3RZWFqhlP/8E06jQXYMcxdv/oZ9j//OBd++Dq3H7iX937qpzh7dYpwbgZtC9pJiCh5GEuSJSnC9miphI4n6eQJos8nMRnCsckdu6dayVLGfvQSu1/4JJ3Ls+y8fhfLF4+Q37qB4hN38fwLz9L50Vts6ggaTk5a9THCYDsO9bBD4kpSV5J7Eq8YoE2KcARJmjA8OEQYZUTLdWZOngdlk04v9BQo6TISjRt3KUUp1/UPcvPmLbzxvR+QHD4C3YinXvgQSa1Fa3KSojG4nkXD5BhH8NCnfpaDjz/J2Pd/RLHWhdU2gZEEWlJxfRzXZbnTIESgPB+VJYgwoyICkoKH2jrCmdVZiNrY5T50ntEZCfhXf/p71EoWq2OnwdY8+/mfZ2jndUyfPQdxBm4AWlKoDtBJE3Kt+MyXf5N5mdFaXeDOz/w0banImzWU7zA/NcHJ4ydZvTAJjRAO3kx7donw+BU21yI2P3kPt3/kvczGbZILcwxQJDGGtuqw+YFD3Hb/g1w5NwHdGF8ZZLuL1U0ZHF1PnudkzZCi4zErIhKpWV+u0GmEICHsc1G+gBt3I0tDzLz+Ely/g6c//AEuHD6M8HxMEtNcWsE2Fv3KQqYp/XlAVyk27drJcz/9kxx7/WW0ZSBJEXN1SkGVZqtN9rXDbCgMsJC0CNf1oU1I9dkHedfPfJzzX/0Bm8wA4NDyc6x921lX6qM9u0x5tUUJgWVJYhVTTiFwXFylMVlOfWERESU4WNgGRKawLBsTJqRosjRiz3NPsHL6PEkrwjJwZWqcfU8+x6Zd13Pl/ClaS9Os276ZhcVlnEofztbtOJs24q0bojl1iVwILMumnsXkA0W0pckdQaYNShsKWtNwMlSfBMeAdijnDnnas+RqA3PzDRjZQbAYkygNecIDv/w5roxPk6WCyJKse+w+WuMXQRlKfpnWch1P2JT7K2zcuYVGq4bqdqGZ8uBDj7LnlptobR2kc26MlDas95icncWamKcsbZKhIsZLeOpLv876bdu4/KNjjIgKIYqWDROn3yK+coXbX3ieucuX+PlP/RSe5SB/3F6BwMi1GdIaa6yxxtvNmp1tjTXWWOPtxkiudbL9s40NeiVXCMPeBx/iox/6IDTr5BhSk2HjkMueugMM8pofKVQppAmjO7bCugFiR7Ju8ybk/lvAkjS7IQJBFnYhTBg/cgwabdI4oRt3sDMNxgYsDj54H/bIEFSq0NdHjuGhx5+AgUFkfx+xFNCNOPPGUdrzi1hxAoC0JML2cNwAO9NYUUIBGz8X5FHM6IFbufPh+2mtLgEWdgZupFl87TXOHXsLVlbAEhg05p+3ET11TTfl3gceYrVZo6NTkmsBqdc/9RSFd+xjNm3g+j59VkC304GgCJnh8tETzF68DGmOm2sKngfNFDLAcRm4bgN3Pv0I7NkOnsWZU6fYNLQOv1KhlSWI9SOgc3AdiFJYbsFyi6CTYLViUJpcZL3q+cwQfeO7nHz5MPgCTIbnFyGJwbbA88GxSeMMnQvcYomsWe9VnL9xnMWxS1AtYwoWcs9mhg7sYeTAzbCwTOfYGSylkIEHzd7QhjzpWXhyQxkbWepHa01RliFzIJdgWwzfuJeBu++BZpfZyVlUI4HVBvc/8ww/+bM/B3mOWyr2soO07sWIAJaBvuoQKgmhvwrSYfKr3+C1l39AJ6zRf8ctUFvBkhYAcZqA65FbEsvzAUGWxriWhHbMUFDBx+XyW2c48n/+I/GZcbYUq+x95BE6JUnTMnjSxe+qXhCuX4SVJS7OXOHr3/4WdFOOfeclfve/+3XCNEEOVLE8l8rQAHme9ewxxQJxHMJIEXZsgOuG6aRtZMHDCJC5hsRAoqENl/7g/2CXXWbvlm1w2z7wbGoLc7z20st0W12Ea5P4Fo1mg1qzZyNK0Xz2Vz7PrnfcTLfdotPpsLK8TCuKCfpKNFdq9Ls+vtJ4mcZJNU6isbMc8p5TrWBDQWiWLo8z+eZR9PQ0eD4iy3n929+BKGWobwDH8VhppgSDAzA4xKtvHeX7r72IoeckkmgQGiMUK90aLaHIiy5muEqcR3jCxRUOOYJYKRoXz0Mc8di/+iwD2zbR0BHF2/bwozPHmKvVwCmy86772DWwgSDKIYwg05ArnJt3cc/zT2KkprBpA1ESM3P+IrgB9+w/SPPSZdppRKtR69m7Wl2wHXA9Hrz7EH12QDFW1PM2J15/g9e++wNaZy+AiqiLDCXB7h9k/x0Hufm2/dBsQRxDklBEUkayNDNDlCUUyyXaaRf6SshKmWatjiWgUArAFbD/Zh75wPuYO3sOspDrD97K5ht2IoYH0Z0WGLCFwEQRJCEeBpRi5/brueHGmzg3MdazCTqi10TY7RKOz6CPnqVgl5np1OiQEty0Ha4pemZaNaxSgRZtYlKQAivN8C1J1GxQDALIFUXfo+S4uFr0bGVxhojSa9bLa3azvGc9y/McYwxBELDvzju5ee9NgMC3HGwNVKqEnRZXpq9AEsFwP4tZAiWfZrPDO995DwcOHmTx0hip1RNd5YJeAHu3idwyCusHIc+QrkNmQexce15ILA0aiVcqk2kDyoFLs+zbvgdjub1jWqHE1p17sPr6wXGhEDC0exdBfwUcB5n3DihGwI69N7B5xzaSMIQcNo1u5M1//B7f+OuvsGn/jTBYgHVVqPp03jiOrRSO1thhAsNDLM4vMHN5msF1G7hq2tQtASWn1y5ZKXLHHXeQZVlvPfrx+vHjdfW//HaNNdZYY423gTUl0hprrLHG201+bYAkRe+MVwBCIizBb3zpt1geu8jJi+cwK3NkmaGetmgVDGlREElQEhJbggNG52gJZ6YmIIogSolyD717O/qGGxgZ3kI+u4ht29hBQLK8SrnSj6UMiN7vYLQgN4JgdJjRkWGWTp+Fbszs2CRL7ZB0YQlz3SZM2EXaNotnz0DSRtUXcV2JarUoWi4uFnmsSJUit8DyHbL6MtVd29i9dw+XZ2dQS6ts9Ct0O3VyFCwu97KadIpBAxotDEYYMJLVY6e4euYcyIxM5hhy0HDbAw+x7rrrmLp4nk43JtMaMTLYy+twCgglGcJGJ10coTBxh3VaYPKcNI2wNgwwumcH77jrIBdeeoXa9CKzb51GRTH2YIUPf+6zWKMjzJ88hdQWXtjFzhJ8wDKC4Q1bGHnibmqHT0IngxBqE5d4+t/+Ejc/eC9n/uarSCfBxF0eeN/7WTA29z77PgrrNrJw6RK+LfCsnAcOPMQrf/EVQIFOiPZuYvSOG7jxngNcHrsI80t0dYhRMYUw544H7uOBD7+bk3MTtA6fYP7kRWQ7JA8cTDOhUFnHv/n3f84P3zpKc3Kc3fccZGHiMtNXl7h8eowDTz3Ka6+9QpYmWFLQnJnGF73BkcCgRS9sd9PwRj75B7/Jqy/+EK6uUBBlsrwLGwd4/FM/yfTlGZx2hFvwSLMU+sroNMWkCdJ38VwbE2XkjkMnTUgtWJifIboyTxDmXHnlCMtnz5CrNvlwlV0rMfWshVcq8dkvfhGrso7zf/IfMbNNyG1MEoHncM/DDzMgLK6Oj6FyhZYGUSpCu8uufbey+xc/yo7HD3HbYw9w/uWXUM0Q30j6I0ElNpRjKEcSs9Bg6vI45179PiwvwnIHzk2TnJ9CV30uuwlpxeXDP//zOFi0Wl2UkLzy+qssXL0CfsATz7ybA3feQZymrK7U8KWLk2lknBHkEKgcX+e4OsH1c8hAx6ZXBa8VQmsc20JHIabZIMwjmvUVHGmTmWv7uuuB66NWVggnJtBCk1iGxM5JHEVia3TRRrs57NvNgfc/z9aDB2gfPQMGQkuQiBxcD6ZnuTQ+QXviIt6eHdz+8Q9w5De/TDoxjVXTOGNzHP7mP3DlrZMEtodnDKkK0TuqPctkkpIpxfFv/iNEChohr/313+EmkBcku267nbsefYzxV9/sKf4yTats0XjtDeyZJpGj8ZG0JmZgqcbNn/4YK2SEs8uUghLzRTh85HX6ZpdJ0eg0oaRzbCPIRgdQJiVKYgbcCp00R+cp933s/Sw1FukuNxDSwxI+UzPz6KV5WF/B66vwg69+DaZmCAoBKs+QOsUnpyAFUli0vAJLtWUmL09y9cL5XuZbmOILl4qWOLZD1ElwYxvrHbu5/mMv0NzQR7qc8MxHP8z3XvoB+vw0IhEIVxJlIc3z55k7dhqUQagcIwSpykiTBM9xsIXoPQBHm571lN7DMoZIaypBkVhlDGxcz0vHjiBaCVVlYUUZHcugEcy9eRR2boZSgLNhI9o4GGUxNDzMzJXLNOeuQpZhG4GvJd0sYcsTD/Doe55jtlEjXqxTsn0SFaO83jqEknipTWQU6daNIAwbK5tor4bEUUxr7BwkLVAplyYuEY9Pgusg33ELxSBg9fibmEghjETZDnnBIdiyjhMXz2ClKVamaTRaDNtFWkvLVG67gZWXXuTBX/4c6boh2m+cx40TtFZUkpROoph74xT1E5eIOhHZjnXs/+izzOY1WF6FYpmLY5cIr0zxP37x13oKMnFtYZW9jLYfL7NrrLHGGmu8PQhjzNrAfo011ljj7SQFJCi7d5fUQmHlgLRx+qoUNo0ysmsrIRnq9XPUavOowQBEhgwlhUxi5Q4tT2KnMSXXp1612PruZ7jyrR/CTAqP3AWjI+wf2sLx3/p3eK5FEkYU+8p0u63eAMt2CLSFn2hEyafmR6A9ipmEVGM5BVqWAJXyS//hz/jtn/sZWK0TOILAd2i22hQKEp1L0kyiMoFlF1FV3QuQ1vRq4YuF3vuZHFGqYOYWkUER2WggbYfcaHKdg5S9eZq5Vq6DJDcChsqQNHpXArGgkvl0HQc1UGbkqQe5oVDipW9+k9KObbzjtjt46Y/+EqKMoSxH2zGJk5GSE3TBqfRRizrIgQp5s91TLkU5RIaNwyN02x0aOoTdm7jhgXu58I3vwmKTINcIFKGJsPqGyZsdHnr/C1w+cZb5M+NgFFE5wN88yo6duzj7yssMig6rYcrAwfvZftejvPnqawxvHGXl+Ku40xfodwTpB5/FKlTxLi0y8/pRiNPethM5vm+jmjF9/RWa9SYbBtcz01yCkSqVzZtonryI0Ba+tIlFTl/QRzNOEQOjGKMg60JjDnyPvQ89wZ5bDjJZX6a9ssj4a6/C3AzVgovudADIhUWOjZIS5TgwWIJEYzciBjILa6BMTUUkeRfStHd7X+XQP8i7PvAhRkdH+Q9/8edEVyaQUuCnORvsMpesLvjXPCWyCHGM1AWcKCUZrUAWQb2N3DCEbjR6r2nGjG7dQd+WDXR3rWPf/e/k8g/f5Pxf/x2BEHg6A2lo6hh8D0u6BMKneP8BFl57pXcxXG9SFhau1lgaMmmjJLRLDjx8Kw+890N05xd549f/Z6p2lULWU/h0AmiULIg7IANoZJRch9QWpEUJtoAwA2VRLTiEnQ5lxyNrtBipVFhdWgShyaX5cX45ZDZCSoTn0eq0oFIBlSHKZcxqvddgt86HmXlk/3XoSGP3VXni+WfoqxT53/+n/56i5xAmKQC2TnF0DoBVDGhfy7xh40a4Oks5NsTkZL6NEBLRjKkEJRIBYVlC0oZKmf3PfpjO5RnGv/FPOEWXTETIwEM3GgwrSdu36P/gEyy/cRZ19gquHWBLizAO8X0PGfcGhf5N29kxsJ4zF86Rrtaplqo0O23MtgASzfqGQygywk4XaWD3XQcZuesWvv/Sj2BqjsLmrYSrq9BoYC0vk1c8iBTDqUOMoV3NwYVt9z7E5a++DNqluG87G28cZezr38B1PfxGQuIOkZQL/PTX/4Y//eVfwOrG5FdmkN0ESytsXxKlMThAAjhw3Sc/ztW//yZ0U2gmDNk+sQrBs+nkXdzdO7nrPR/m8F9+i7TYhJs2UT5wO9U//SHTzSkopex+1/u5+Kd/BsbgWw5CWASVMrHKCTttyoUyaSek5Ae08i4AjmX3hhv/lbNuUwwQ7V6TWewKGC7h1mKGOoaRQh8XnZAYjfEcfua3v8Sffe1rbNuyk0v/8CJML1O1NdpkKM+gM01BCSqZZDppojYEjB66k4IfMPG/fR1fSSwHur7GUhI/k1ja4cZPf4jyXfv4p69+jedHDvD3f/hHIDrQb+H5RfK5FcpI6kJCqQjChjDBskNc4SGFS1fSk1bt3gxXrkAzppxJGOynvdTqfVjPhuEiBx55lKtHjtMeHyfSKZViwEgsGbcycMr0KZdWlHDdBx5i8007ePV/+XOC0CLqtsEIRrdcx+zps71jEqYXTi4liYCe1naNNdZYY423izUl0hprrLHG242iN0SS14rZAJUm2JbFH//u79BYXKYzv0Q222BA9axJO2+4gaWlFYqxRTG1KOUWtgJUzPqgwmq9y/5nnuXKiTOgPXY9eB9OpcjEH/8lVFzybpPy4BBhrcXGu/bTGg6g28C3iriRJkojMltS8oukzQhSc01ZYrALJd586y2U0eBo3DQhbYZU+mziNMcpBUSJorxtO+vvPEBjYZI7//Xn6dt7A3EnI726jOsWyF2bQ+97jik7xizMUo41WmuEMRgp+fH9YoHAyN6WWT84TEfH3PPBdzPTqmOWW1RykLmhElRZOn+aZsEnloL0whnkls00JiYhjrFUG2xDakNatkhzjWVLkjBjQDt4yqIPFxV2Ge6rslpfplguEBVdTH0Fe3iYvfv3M3vhAkpnZLaGko2RGVT6WHp9jNXVVQIkwnZIXYlbC5k7NwYViJpdyCFqdZkbn+S9v/rLnL90kfT0cfJ2GyvRNMavEo5f4aHHHmd6aYFscQ4qAV5fEaMybKnxtEsKNNwMgiKl3MHM1UmLDhRdlMoJpEOnSE9FYTlQa2AlMQEpgWsxc+E05157ifkTp6nNTkO9RqFYJuim5DontSSxbQMSZUmQGXQMhdiQxBGlYgGrvkwpSsgSg+rzIEvAcUDljL/1Jm+dPI5aXoTAx/c8kjihJhUf+qvfY+uTDzJ27BzedA0vE2xQFikZ1qMHuOMXP0F7+xDRseOgLFy3j7wQ0NbLrGzuIxsd4Pxf/SdWTo1BmFDxPJKogSctPGGhFag4RVgOjVOTDIsyTj2mPxfY2pBLQT2wiAqS1O+FpbPS4srXfsjsD49BLSKolkmkIZGasgLaMfuefBd3Pvw43TCmlWSkJoeCz6d/8fPsu/lmzh85SkUEBMaj22pTqVZYWJzD2ILENoQBpAGkgUNqhoGAMIdDn/4kWw/cxtTsLAz285O/9Ztc/9D9nHvxWxz66Ee4+8FHWQy7tGfmGDv8BqffeLPXRphlWLnEyS1KGZRTTUlBkICfCcKugqU2rnYpiJyODXgCMotq6uEpizCLKW/axK33Pwh9o1ScApeuTpGlNfSg5uP/6Y+RmweZf/0IVqywM8XqhSuI2RVG8KkgKdkOmUrJhUH3eaSuIVltMD81z/CW6+jU6sTtNqVqHx/7zX/Nse98h85yg0Rl7Hn8YZyBCuNHj3PlxHnohmz5iacZ2HEdq99+lYJVIE3bMBgAGhR0tYZNg+x+4Tn6Kv3Mz6/A1vVknZjayycY1S4mioilRWoZcB2O/dXfwOwsZmGR4eogqllDm55KkmJv4Na/bYBNh26n8OA9LH/7+1AoUWxFDGuBJCe0LVSgqTx0N1PdDkm7za6PvZfa/FXSc1PIY1PE5SLFu+9k28bNTJ86DEJRSA0eFmHJh4Ey9z79Li4efRO3r0LLpFjXbyYoF+l029eKBCRK9lyoiAyJIhfgZIY4S/CLAdnSCuu8Kr7jshJ3ekobo1C1BseOnaCybQcyhfbpMYrlAnp+jiHbhqiLEB6OlmhL0jIpqIR2s0ntyHEGC4MMywJRlqCRFDOBnwtSCZenTjIZrbDvscd58X/4fYJiiTyugWsQeZdSAkMYcjQ6S9CJYrtdJpQJMjfEcYbp86Hg8Qt/9Nsc+afvQidlU7HCYnMFXMmG6hDVtqKlUuZOnKd/sUldJzBSIFERNcuA7faGtkmCRU5taZbpw0fwGoYNjYRnPv2znFuZJ1pd5d984QuknTaW619T2vZmqz9eXdZYY4011nh7WBsirbHGGmu83VzL0f6xxN5GYFsOrUaDL33pSziWjY5T7MxiUcX07d3F9gO3MTk2SdpJcYplkjQHA31SsBpHFP11nF+ps+Hue+lEq9QaC9yyezPTJ4/3QrwLPulKjZGh9Wx/5iGmN/XB2CTlTkBQ6iO1bKR2OPTUuxi7eAY1VEEbGHI8slaNQpSBVqi4S2A8hlJBGqf0lStYhT663ZS0v8qWn30/i994lZ3ve46jl85z8Pa7aR2fIFxtQClgKeyw9/67WDz2FiLUuEGFSEElGCLQHnmekRswRTAlh07ShTzjc1/4ZTb0D3PilVeJjMHYNpEK0eTEjaRnrwlbNCYvEDgObtShkguUtMikJDcSN83xhUPFLZF0E6pBmSSKkY7FalTHHynTyNqYsAtegKk18JoxK7Pz2OUqOlW9rBdLgCXIAFtJyFKMH3DD+x5n9sJpsGyINFTBdl10swMFwYXlMZLuPCzO4eoKlSxAeX0oARdee5Es7EAa4ylJEBvCSKH6+tj7nmeYs8EsroIoknYVlnRRtgNpBjs2owKXPfc9wkqtAfU6A/tuJJaaNM9JujGWU8BziuTtFpZj9ZqouinFNKWtJXExAJnjBQOgJbpShmYTy3XxPI9up4ll22jLxriCRKVge/yzlEIAaa+OHiS5tDHCAb+fUt8Ifscw/vIbBHGOMJpcCLKhMlHcQOU2Q6qP8pMPU7rzdkS5SrSwAGUXVldQxy9iX25gK0PuaiKZ9NRAGHwl0EqghCSTGgoebm4gS/GxaaEw5TKJBXQz0A7gUjp0N0/+7E+Trh+iPjNFbCSe5+OpjI5qEZUc6gks6ZzuUB8HX3iaYNtGVsbPYUvD3JUJpi+exF7WOKlFsVqmGYdIo/Edn9DkmIoPWzbywh/8Ni18GldmEX0Ftjx7N1G7jWe7NM6NM/jA3VxuN1n+zo9YaIXMLs6wtDQDq4uQRpAm0FcmNZBhYVsunrTJVYoCIqHILYFruxQ8h2KmGCrYZL4kERpih1i6dKQm3zzCLY89zI7RbRw9/CbTk5fYeWA/jXUVdLVApX+AqbMXaZ8co8/rwxiIURiRk7sWRhi8RONgCByXplRQ9qCviHPrXq7bdwNLZ07B0AD7bthLVm9z6dxY70i3Zwt3vud9XL08Q75YQ6UJxG0qu7Yy+fffAGWTRR1kMcVkCoxASAl+AeMW2DpyHZfOXiIxgkd+5qeYPHqCjbmDjuoMWBVaOkaUiuio09tHjcICkrCLJQXCsnAcq/f/rTQ6ylleqBN7faRT87DcYCgo005bGFw6lo0pV4kuTKAuXOTBJx6jfvoc9bOTcG6COMsgC8liRTQ5R9idpuchNHRKHmrI4dAvfpqoEzJzYRxZ8snzDvd8/r9l7PDr0GrjptBX6qe52qTcV0bETdwkJ+wk9LsOxgKpczb7/YS1FfRAhUXZoqwCwkoRLS1KdpG733knyeWrLM9PkVldykJiawW2hZY+WdFmNVuB6zdAqwlhjJXaeN2ULI1JfJfMGGxHoG1BR7fBVtxw4ACLb5wkmltFdZowPIzbggxDHDi4iSCzLVLPwbgupTijYyssLfCES2oBQiOu38TMqePYkSFINW2VEvgOeRKRZCFaw/DAIAro2oDKwLHhppsoLiZkUQtRgIojCE0G5OSRoqQLHPqJp3n97DGSsMOvfP7zSNvGsu3/opxtzc62xhprrPH2sjZEWmONNdZ4mzH/onX4X57cNlstfu/3f7+Xi5HnuEIQWSld1aXRaVJ0PXQ3QqIJ84jcFySegyUcGraGdkJn/BLBfbdy34N389Ln/x1ohV3wee7jH2b7zfs4/sprdG2BEQY11aRay5gbtkiHfZRJ2XnoHi61arC6gBnwec+v/jx1mTE3PYkJE2ztMKoC0jyk2V+knrTp5oaSVUXVU7JGQrTU4Uq4ABtHmP6Lr5DMt9mwbStysEz34iUWX3sDhtahVE4iUyhK3vUbX+StF39Irm0G/SJu2EVEeU/9JAynT5/j+OtHSaMYgwEJljA4uUa1Eoa3bOeB9z/P+JkTqKVlCkbgqV6NdS56Fq2iJUBbJFmG75dphl0yaYh1gltyiFpdLDS+tPBjBfU2KzMz2K5HFrVgdITHP/5Rdt9xN+t37ubqG0cJlI2voSMM1Xtvprm+iq6t4nfAJBlBKqgoiLtNdNxBFAI23XKA+vmrdJTEclxEJeCRn3iBbp7RmZunL5MEGlRuyHyX0XsOEmwYQZb7CccuIQcHyNotNu2/maRcJF+c5lN/8odMJQm3PP4Qc1lMUPB58pmnMQJW5uYwZKgsZHTTKK0sBFsT5zFNIVFDPuuffpg73/dext48jc4UhL2WO6UzlCvJs5hIZ3R1hkBTlh5uBF4qcLMcW2dInZPbNtg2JClD+99B5fpdnP/mNxk/8gZEIYHrkWcJA9VBOhK23XaQqcOnWfmnk7jrhpg/N4bQDsO7tjJ872089ZmfYnZqinhsksAS5NJg7BRhNJYxlLBIc0NsNJR9vJEq3aUlXNcm1zmJJzGVEooMyn2QJJTsIp35eS5MTFBfWuTeD36AmzbvwlWGZHkZS2oSlRMvt4knVxjtSPLJBc68+AoUC8wcPUZjfIaDosK4zmhvH6Glm6SBoSgdZDehHBlUKlHLTFsSTwAAIABJREFUHc5fnUHs3ck7HriH6bkrTB1+kSRW6IUa/mSL8y+9wdKLr0KYkqcpjz3zJE889giHX3oROhF4Hk9/5CfZeNedXDl/BmUrSh96mNruQTq6SdzsQqLIbYeOC92hgLC2QieModwPG9bj7d3Nvqceo7p9Gye/9g+cPnOafGGOnYfeycC6Aa7OXoW3TjL1xknak3OU7T7ieoOqXyHLYrRjkRlF7ArSsk9uW8RoXCHJIsXOA3dw4MZ9HHn5ZUyjBe0OtYVlLp481bNV2hreeZCxr3yN7sXLjOqAqhZEUUjj4hR7q1ux5hfYIMo0nA6OsnA0SG1jYyNTmD51gWR6gXsfe4KpmSnqV8Zo54pyN0GanLqAvJBRvH0/B7bfxOLEBPJaE+a1oi7SNEMagTCCwAmQTkD/hs20T5+DTGGyDM92aecxJihg0phbf+JDdAcCLr74IvUj53BX2hQyh7Rgg60o3bKbd37wWca/9W0qbdgEiMQmtCWXJ2dZeuUUQ7UUWWvi79zFxXodLlyANMP3C9TrLezRDYStNiXfxZea64IKtSyh7QmU57CSJwzddwfr7rmV+fOTOA0NnocRLkmzxcT4SZZPn6VPuiijGI4UloamL5HYNHTChsfu5tb77+Hq+QloJQRKkOWKLhmJbSONgDjCqBS34JIJWLkwQTR+BYnEoGDPLqyZGo7norKcqqJX/mAJtCvxEhAoHC0wwiKxeivczJvHYLWNnWhslaMcUEajtELmUHF96s067SxGlgo4gwM88KGfQA9uYvmVoxRGiiQmpi/J6GRZL1Tblrh+he8c+QFqbgocly/+0q9gSxv540X1X6y1a6yxxhprvH2sDZHWWGONNd5m/msntLnOWa2t8sd/8ifkRmPZAkNI7mp01iVu1MhXVxBxhCAh93JSk5BVB0iu3wCLC4woRdhcJJu7SP3cZfzllNLgCJ24SV72sH2H2amrhBfG8WcalBdqlLDh+dvw7tmLs3ET5/7X/4ibSPJOBJ5B3biFtqPpnD9PMDpK4qTUuy2kF9B1BBSKFEQA9Ta2gi17r2fp/Bm4YQsvPPkuzn//TUqJpqbafOIL/w1vfvW7DGUB6WoD7SQMPX4/YdFl2RMU1o8QTlwmyhUVq0CmEzIA36O9sEyWKcg0QhscJDaiJ+oqV2nNTLH/zoOcff01yHMcLCwjyYUkl6KXPZXnREaT2DZdFJljoQouRud4QNV2cFNFoASeBt+ycFyHROTkUkG3RcOFk9/4HsVI0+pEeJ2EwAjaZKzWp9j4zoO0wi5qcoH1qYdQGmU7SM8jqycws8revQfI16+nk0fkYQOdh9x4816G+8pcOXuGIM0RJscIyIVg5uIFahOX2H3LLWy5+Sb27r+ZS+dPsfHWm7j9nXdycW6Wt/7266x89zCXj50lP3uOcPIK5156mZXZBbwkZ0h4DOATrTYohTnDpkQ7zjBlFyyHzlKbya98hw2xQ9X2aOUJ7/7oh5GDfSw1V6Hgge8iXRuZ5OgswcHpZY0YjWU00oDONK5TQKUalWgO3nwzk5cvQRyC56K6EYHt0UhTYmHY89ST7Lh1H1fOHqNbEOy96w62eWXO/eMPqL/0Eqe+/QOit86y1fIx2oDIwWhcrXF1Tp7l5LaFXS1z+/NPsWnDCNOXJ0EawjTCqhZIui027d/HobvvRouchfFLyHaCyTKo17h6fozV+WVmLk1ihQl+BsN2geFUkuqMOd1gceUqcvMofjenIjy0glkSxP372ff8o+y5/07QOcnULFaYUkpTypmDn2jMVI3OG2eZOfo6tJuwUCOavExnaZV1scJ2A3Z85Cluv+N2xl58ifMnjnH4Ry9Cu4vjFkFLLh49ypXJScg8ylaFQ9v2Mv/qceK5Bjh+74J8eAACDwKXLI8ZLg8TLjfou+MmzPoKM6+8zMrpMTA57k072HPbPi584+vMHHsTZma56+n38MkPfxI/dzj3xkmqxWFWuy1s30JoiSkVMLZBiQ7p7utIpWawmbMxyuleWWbqyHGihUVKvk9g2aSdJl7BQdmK0dtv4R2j+5g9M4WPw0prieZowL4XHmf+6mmWwhaDO/Yy264htMbWDpa2cXMLHwuSFJ3FDFYrnH/9CPULE2CHULXRq20sQG8YIrtlEwN334E5t0xz5mqvvetfIKXEtm201iilSFVOe2IMPBvPccjCFlme4QY+cRoyevAd7Nm+ldN/+w1YaYHrkouMNMi5/qPPUb7zFhJLcHliguzCGLYCH4uQa+o+x6ViOehmh0KxyGq7zZ2PPEZ9YYFseRlrZJAnP/MZ7n3ueY4de4uo0aRQHmRSdYiGi5imot8qkSA5+Mn3k4QZc8cnSHYMYseaYcul7Roe++JnmJlbpG+5TTmF/lhiBCwVJEkYg2ejdM4tO3Zz4chx0ALXLxBmEbrggcmxbJeKFvgmR6QZhVKFqNmBcpVCdZDHPvYRkgGfxomzlLIcP03oR5MaQ2JD7glQhoIyaCGJHAttLISSWPWUfuOj45g4VyQWaOGgRe9IHqcRZb+IIwRCKFQckq62uXpsHJyIzFfQiimn0AlsEArrvnfSPTPRK2awHEqWxxd+4XN4lv1/17GJ/+c1d4011lhjjf/3WBsirbHGGmv8/0CWK+q1Gn/yp/+eXGukJVH0bCrGsrAMWKnGRmAsSexK0BrWXcf1T98Pk7N4y8t4vkVYtulrGUxu9XI9PFidusz0wiK60QZtGPFKBGGKQrM4GpBkIdtGttGYWsFeaaO0AVeyvLpEZ24BVhtsv+02Bh66g9qpU/j9QyhHYhp1pFdAdxUxOe/8yAvMLq2QzkzSjBMqyyH15SWMlTKRtonHpuk3NoHr07EinvvEJ+hbv56LX/nPhLV2r1rcdemqLplFL5BbG5AWtmWh4wSJwJESiUAAxvZQacLEzBVyrSBKsKSNNGCEhRY99ZdRKbnrYiynF/Ydh5BlOL6HrXJkkuHaDlr1FFBa5xj+L/beM0iy6zzTfM65Nl35am/Q3WiPbnQDaBgBhCdBgAAJGpAERJEypESJI0NSNBpJI420I3F2Y3ZGM7vyZuSWEic0Q4oiJVqAIEwD3UAbtK3q6q4ub7Mq3bXH7I/bpKCdjdVGzJC/8qm4kZERmZFZee85957vvt/7WtpZBrUyoIjmp6Gl6TQj0voyveUeRKow1YC81+Wut7+N3nKNmZfPUFWSFGhIjXEdSA2hLDF+5iL9hw4gd2wmOX8GhGZk9CLjY6OIdkSoQViLkYJcgPE9aLaYazTYtXsXNx46zIvPPcfSxYuMzs5gFxZhpQWyTP+mjWSDPbhb1mJcC6vL6DynklpcpYgDl8A62FzRQWM3D0OrBY2EIDeU3RKLUR3twKY9u9i6fzf1NKZ9eRSSDJtlSCMIpEfsSrQEIwxWmGKhZkFaB6sEeTtmaXKKdLUO2uBYMErhuC66XEYP9DF55jjjp04UyqfQp1Tt4/qeYS489xx+b43QkfQ6DqrTAlnsS4TFsxppwfdCWlqTZgmTVy6zUF9GLS4VLS1SkhlFONBHfXSEkZMnqU/PMNA7gBMlZHkKaQbWEMcZwpEMlaq4WtGpr2LSFDNQJQpMkR64cQM/8oM/xKVLl6jXF9FDNczEFebHrzI+fpV15SrNsSvINEfmBis9rOciHZeK9IiiFr516BM+cW+IUw6p5h49m9dQ3r8Zu9Tg6unTOIP92DRBUhTsfM9H2SJpinpE1opIpxZYnZ7EZgpLDtvXsfG2W+jftpVbbr+D8dFRstWIUqnGA+9/L2e++EXodGCpzeEH7uXON91Hc26G2XPnwPfACtYMriVaaXLm9FmiNKcdRfgDfcSdOkYZhCOL1MRb9vOWd78TiWDxxBl20EdkMnzXx68EZElE4LiEnkuuM5ROadUXuXr8Cna1RZ50CDcPcc9PP8liFepZExD0rNtM/fJlpHSK8rCVOLbwi6uUS+gsQ+cZpTCgJ6gQ+Rl73/EocmyRqNOiFTrg5XQyzfIzJ3GE+u+KSEIIpJRorTGmUDniOGBBpzGuMWhr8csBqcpIfYdz334Bp5VSti65VeADh3czeHgvY88+S3ryLPlyB1qrGClASSLpoNf08ca3PUrS7jAzPo4IXJI8ox6nROdeA2FQPVVuefgtjC8tM/7ci1CpIq0lowX7dyMmmgw5FbTrcaGxyMyLx2GxgffgETZ6ZZavTLFl//XU9mzl0vETlBspICjlYISgXoZAOjh+QJIk7Nq6jYuvnkQKSaZyEKqIZrQWk6aUrCREYlB0jEU5DvT2kjebVLds4sL512BmiZqUWJ3hA5EUJK7FuAInFwQacimJvMLO2jfQrx0CpUmlIfNlUeOxAqRL4Pq4RlApl7AYcpOTxRnNhSVIHNi1lsrebeRTs/SnhiYGNg7z6I/9KCN/9zS4EscYAuHwLz/5KaR4nftRt4jUpUuXLt8XukWkLl26dPleY/knV7UaSLKUxZU6f/BHf0RqNCLwSRwHawE3xFoXtIuSHqnj4m3ZiFmzDi7P01nTw+GggrhyhU6eoyqWZG4V1dNPEggghY7CbeeYNIHBEqm0ZJ2EsOTTbDfgzGXEomb/hq205xbxU02v9hDzTbKJReip0al4qOEe4qVl0k6HD/27f4OzexsTx49ihgbB1Vyoj7O+3ENjdoHW+ct4s6t0yhIGHBKRwEpEnGd0dI7sq5FMLHBoaBOvPf0y/kqC1go2DbH7Z9+P3reZ5MoENBPQBpPmlIIQtMYREgeBtKCsRklLIAX5SoOwf4BMgZYO9ppRt2csaZ7h9/ejjOa6O27l3ne9g9lOm2hmBkdbfNdhOc/IA4kT+OC6WMBxBL4Q5O2MSqWHvJ2ghIW+Ep2VFXKbk2YpuJbRY8eZee0iwWqO6ukj3zCErglsltKXh1Q19FSHme4sEhzazb5DB5g7/jJYg406VISLMTlKCIzjoKzB0cXdelOvM37lMi9+9augFQgH245gqQHGBQxJT4kbHn4D5V3rWZkb562f/igXT52kJB36e/vIHrmZtu9QX1zEOoK7f/pHkWvXsDq7gHQD9v/gI9z/vic4e/QEo1evcPbot2kvzHH4vU+gHJfMCtRKC+NI8ppE+ZA5hkwajADP8VF5jkRQlRW8qEVoi3Qk15MYYUkBLS0P/+InWdi9HbNmGM5MUFMeC8fPMXt2BFeAMjFuyaWRrdBxDPpaYdAzthg+QhBJS+qKooUOi+oklHyfPE2RrkTnGaoTFWbjaQ6OS9ZqUUETX2uLdLdt5akf/yC7D+zh+LFjVISLtRrT7xHnMRCwbtsu7nrrw/z117/I9gfuYuvhQ0yfvAAtA62cYLFJZ3ScwUpIvblCWvFZ8hWtwBK5ebFAd1w2GRcdJbSTBra3RMNLWa4vsjByiakTZ3EDH9VYQYgi3U6mCmEgV5q73vsewsMHaPdXWL40QmVoEBX6GCdh07seo2E0i2fPkimX5onXsGGFrN3h4oULMLcEUUplaIiJV49z9sWjzJ49RdXz0HFC6PhMjl1mbHaWldlJ+n/gCL23HmA1XmL9G25lR99aVscmsLmgd9tmzkxeYumFF/FtiSyrI3v6yH2Yay8T9pbJVV6MxzRBeQLhe5Qbiv5SDx0VoTaWuNKZoj53had+4zd57ZljNF+9TFgbILM5SjgoKRBYwnKJTmcV4RiEC0Jr3EThb9vMwRsP8srXvla0TQUeN3/oQ7ztsfdw/LNfvmZSrf/J1JtlGUIUk6+UEkdKfM9Hx4Wfl/VcjOeQpjG4At1uU6nV8JsJYMikhaFefuI3fpmv/vEfwtV5kBXkdAvrgPV9YgPac+jbuI6+vl5OP/MN3KFB4jynFlaxzYQ8iyjXaqi+Cp3BIU6MjTFw6BbiS+NkjTbsGOSxx55k9eh5AjegUXFQSQZLbUqDw+x57D4ufOsb5GUPX1nOvPQ8NBMyKWnWLMIIjBDkjiBKIgQWGaVcOH4Cm+RY1wGVsem+e9Brh/C3rCevLyI1+J5HplLiMMAaBdJCrcrspRFYWoE8I9URKnRY9g1xIDFSInKHcl6YhLd8CSUXhMRowQZTQpAT9QSkZcHg9TcQRzmkilwbhBQIYUiypGg/tJahnn46ysH70QcpD/YRHz3DcC5Z8UMG9u5i5NJl5HwTP82RSUo1KPHJT3wC5LUi0uvOsd0iUpcuXbp8b+kWkbp06dLl+4X4x3Q26Xk88/yz/P3Xvkq1r5fDt99JVBsmWl5l4+1vYN9NtzM5OokRAVgXu3Y99z74COPfegV7ZZ7x2UsMlsqYJKWeaHRviLIOHNrFRz/zv3Dxb75JpWNJekJqD99OPlgmri+QW9iwnFHuCBbm60zXrxKHGWlvQL7cYLc/QJpHbLr7FhaujBB/+xz+dIT2yrwyc5Hp+gyPfPoTjH7lW1BvIKKU6PIEIk5xOxml3BCtKVF6420ceeIdTD13HLlnG7q1hGwmLM3Ncfrl43jGgMnRxoFMQU8Pe6/bya7qEBNnzn83BttodW3x5yCkxEpBqmOkNAhl8Ws17n7Tm7g0NYF2JCrLkAh8C07oE6cp5IpVC1euTtCpr0CricoV227Yx4JN0WjyWoXMkVgrCYQDUUJoBV6UkTgCQsG2N93N6vQkOsmpSo/MkxDnsBozKMusDpdY+8Ct7HrXm5idmsRdjnCUwtWSVtognZ/kTe97L6dOn4XlFXy/RNzskAqgp0KUxpigTC21lLOicGazHJTGJhlebvCSjIqWhJUa6ZZ1cHWC5tgMi1/4FnKywcJXXsRZbdOImiy1V+n0SbYduAVf+rQnF5m+Mkn99AVIDCaPmXQSWkaxeOoi6ByGByhv38Hc1DRb1qxHZxnR/BJ9tX6STorIQRgDwmAkZFKj1w6gHUMaaOzWTbSjZTJPk4cSkyoc18Nqj0unL5JOznHfLXdw5923c+roK+hmi9T3sa6lD5dobgFhDVRL2LBC0knIc0Wtp0buSNpZCpUKW26/gwefeIorL53Akw49vf3geWStmN5yL+W8SHEL/RKV/j7aWYR2XWRPL7q+xOlzpzn72gm0ycmzmOEgYNC6tJZXICjRaLe5dGUCO7PI/MVxpk+dhcU6mzZvwXZi8qVlqkaTq4RcWGLfFilwrgApUToh6w0wj9/KfZ/4INP/9TnWLyu8xBL5GlNfpSwDsAbXEXjWEhjwkVhtyXyPqbjFSk+Iu26A+z/wTs599e8wroB6hvfKOPaVy4jZFo0LE5T715KhoOJRW+rQmxo8Ay3TBiGotXO8OCLINSUhsUJe87Wx0FPCv/UAyxMX4I5DtH3D3PMnWJ+G+NqwurCEWVoAJLnV5MJjSTdplSQMlMiymNyxGKUJEXgIHFWk1e196q2UNw5SP30Ozs9QmVGc+53/QuVKm+E8RMUpwQ1b+fGP/CT9awa5cOIEmQTrWbQrUI5FSVBaUpMhrz73HJCB60Cq2Fhey9P/1+fJAJs1cOw/VSI5joMQ4rubtODkGTII6B0eImq3i6JJKSzeoDS5VWQyJXMlKAvtlLNffRY1uQSyDKsxIlNYJSCDYGAQ3WhR7mRMvHYB5UBfrR+12maj00uSRPg6RecxtY3rqWy/HoIS9akZOH+RoZ27uOMdj/P1f/lbSCRzIubBX/kIl55/CdIcZTXRy2ep3HuQWx95AH3uKssLy4SZIMtX2PjR99GYXiLEI1paIej1CYBSbhG5IXcFBD5s3cCdDz3I5NQUb3/q3Zw+9jJ5FJNqhfEDclLwPd7xmd9kXFs+9JGf5erffZMoaWICiXY0lKDv1ptJUliflMmSlKwnQJVcQHPjWx6l1tvH+PhlUiwdGcPaAX7khz/Eq8dexS2XMHmOzhNEJSROInLPwXqCODdUdu/F3reP9l98Duo5faZGXAtoz82jZusE7QxfK9CKUqnExz/x80URqVtA6tKlS5fvK90iUpcuXbp8v7h2dWso1Ej/6bf/DyZmp2nHMeMzs+zaf4TZqMPQjh3sufEQ5547CtIHLWC5weTlSartmJIQZOWARRHTdAXIEhsOHaK1YxhOvsLRp58jmYkoyxKdXh9z8w5qQZk4U6jlVfozD2OgtaYH/133Ye4+yMY7b2LYrzBy/gxeTw/ujVvZ+dC9xK9N0t+KCGKIIgVTy4wdO8N1bcgbK6AyPKVwpcSzIK0hLktUb5WFkxfRM3Xe/1u/Rqu3wsoLJ7Cexvoa7Ru0BayHk0s6Z6eYfPYkc5dGyPOEMAix1hKWy6R5Bo7EiMLU1QkkjmtRaYbjl7n5gfupbdnI5PgYJBlhtUqgDJHKccMy1itz8OBhrt+yjeZKkySJQGUM79vNB37uYxy/OolarGMBBSTKUK7WMDjkSqEqIUjB3gfuYuOmLUyPjSOSpPj+BgIFadxBlxz69u9kqbFMNDWBXWkjjSE3hqTiMnzwRl586UXoJLAao9OcsK8XZRK01dzy3vcyc/YcwgocqxDWIK3B05aq52OShFrgE6Ut1h05wLqfexJn+0YaTz/HgA0ZxsdROfWKwa6RsM7n5qc+xHq/j1NHj+EZF7VYR1QqoLNii3Pq5y9BqQTWQqNFUOnhx97zPr78N58nqq9AniO0YHNq6NGCQFuUtGhHQH+F3U8+ztt/8eNcXltj6Ob97Hj4PmZlRrhxHWpiGgeX69wa4XJENrvIpROvcfrCUXQOlMv4e7eTSzCzdQYJqGWWpORfa7EsEZR7aLRjUilh/RpIEhpzi7T9GtHsAomEjlUM7bqesFzD9QKydopxXGS1QtMx6NCCcbCdhG033sJ9j76FZprQai1TFRrT6dBstbGb1rJa0ph1NY68+50sRjF6ahKymD1PPMr1t+xHl1yWF2YpOWB0Sk6RnFhKLdUY+iJJjkEKh2hxinPHTpDORBjHY3VbH/gxIPGUBAxWaBxr8JUtihhGk5cCbGMZO30V1Wwz9qdf4EBpDeV6hKz51FWDvBRQ8gL83NLuqbLu0A0cvO1m2ucvUcpjhFW0PYtroJpbqq5PbhWp0nSEhZLLgYcf4sjDb2Tkyhh2aJBbb74Fx/VpPP0SnTgHDBVRJHkZI0AalC9h3Xpuf+fbuenhN3Lx289CtQo5+FbiIJE4BO+4B2+gzOixlygvRWzJJEESUS73sbClF/99D1K+bTdLZy5w4vjLjBw7Dk5R7LGiMMcu2iddqn1rqOc51qRFImAQ4gqfqVPnyOrLrLvlIO2pif+uiPT/NgUblUOlQruxQuXAQWrbtvHAY48zcvEibmqoGMAKyl6I4/tY3yEn4x3/4sOcP3ocJ4d+pbjjAx/gikg58uTjZFKzNHkVWytx5H1vZ/jALq7OTNFZbuFYQUhOxXdZWq2z/Oop4iTlHe97P+ePvcS2rRt46eQx3FZK1GlCyWViZJRwbhWswlSgP4OlxTGuLsyhTozT44X4ytBz322sbu4jGZmhNTHHdWvWkZk2rrY4mSbWGl0NwHfBl1w6P0p2ZpTTLzwHS8sEpQpGUBTMNqwFz2Um02xefx3PfvmrrJ4fgXV9CC0gUnDjHh582zuZujJLa6KB6eshy1tgJXL9Ro7c/gNcnZ+lMTtF3hsUnl1ZzivPvYhZXsJE7eK7OILrDh2gXl+GSpk1O3fSbrbYevMRslpAcnwM2XFY1TlqsAJZRs2r0mmsEgYexmjcSomf/WRRRPqO2Pc7Nx9ef77t0qVLly7/85H//Eu6dOnSpcv/TAzQ6DRYWF7i+l27iDpt1MICVy+eA2kQUrGwNAOkwLX2gixDLy2RqjYycNiweTscvAEOH4DEZcPABg69+W7wSjC8FsIySyqFgT5uuvEI9bNXYSEC12Pa1Sy6FqplDu6/ARfB7Ows1x3YW7SUVEImjx5j9OQZGKyRyjKSEOptUA5mdJLW8goOksxk5I5By2LLMJDnMHqF7NnjsNjhs5/9LFMLc4XHi3hdfE7gg7Voq3F7+wBDHCe4nocVoIymE3VAiiJtSRY+MdITWGHwPIc4jvnKM8+w0Gyw5sjNgKbTaZPmGZ7nIbXFdGKuvnaBaLGBihKIUnBgbHqKr/z913CVhFKNcP3mQhUlJS1H0HIh8iUkOSQ5L37lK8zMTgGavnKt2JM6xQYSIST4JSZfPsn2aj/MLZGrmETmxDIDR7Clv5973/o4zM5DWAE3JMkUlEtQKXPTffcSHDhA4mpiR5M6GmuLTZjisfiNCzWQMzLHYFNDCr3Sp4xDBZewnUHbQCPn1aefo+5Z2DpEvmeY8IGbsDsH4aatUDUgNaKvhy2HD0GSgBfQPneRb3z+72BxGRotqPWQSoui2DQWYew17yqPyXMjXD17kdUzI4yfv4znlujfsIU3P/QI97/73ag8J1cpmY0RaGpBCMspNC0sxWy5/nre/4s/TzpUZaXiMu1m9Bzex9t+6dNsu+dukjgF12d4x07IFWy+DtZvZvKZ50jaHYwsRpXqqfDo+57i4B13YEsldLnE9kM38i/+1S/jbtkMYYVSzwBOOyVdrJMur0CrhdQ5bm+JxvoelkwG1odGxst//Edc9+Y7OPSJH8d9wyEuPP8Czz7zDCMXz2B0jlIK3/ex1mKtxtG2WLxrjT/Qhys9mMzgcgJDVdQ9N3Dk134Kb98+nEzi6KKNR5hrj9ZgrcV13GLM99Tgntu468d+kPWbNpPUl2jZFvWgDW+4DnPvdpq7yjT7XXp37mDPoUMEns+qjukIReqYIvYdQ+wZ2jZHCYkJXGTog+eSNBrkS6ukx17FHD3FlW8eZeLrL4IQ6KFe4kpIKi2+sgSZxcktaAvWob3c4PlnXygqPe0UbSXKShQOCofGt15i5Iv/APNLlHuqLJIQS4/JfJXK7fupveEA06YJszPkUzOAwHM8HAOOkThGIo1EWJeV+gqPfvCHYccmkA40Y0QngVrA1tsPccMNe/hHd+V/bv6VZHkOwuWt734PfWs2IEplSBQlN8SNDZVEY1stkiRCmxR8xZab94PM0SYv0JsUAAAgAElEQVTBQXL94YPse9ODDOzfzsLEKMHaQbQ0NDzNi5fOQtYivdb26QqJyDUVK2B4Des3baExOwWLM1weOQuXRsjW16Dm43sOauQqFc+l2l8FMlJiaLRhdhlPa6SUKKWYO3uRDWEfvpa4XsBSs4mwFgeLgwBHAhqSNoff9BAoAU4JWin4FQLhFGM5SWBuAW/zVmSiOf9f/pbO7CKUJFiDbCtKtsSerXu5OnKVaHkVJQwbbj1UzJlxShApXn7uBWbOXYBAQK0E7Q60U0yrSKok8EApkHDHA/dDrQpKs+/2O3A3bSaLIvTYHE7s0Wt8bMVj9123s+7wIVrLy+AajCuxrsQ6Ai2Lwv8/aWL8/3cYdOnSpUuX/wG6SqQuXbp0+X7xOiWS9D3qjRVOnz3D9PQUuC5Op0PWWmD9vm1MT12mPXEFTykqOqdXaXwyVNlhfcehff9NRPcd4bo770cem2Fs/jJLnSW4PIs9eIhbDt3JSpKiViaZznPKz44h5+vosou5YRPX3XM7K8+fJvRCls+OYF88weVXT4GBPE7xVlOic5dJGg2iqs8jv/pRziXjcNv1rH3sQRaff4FyrYqKYoy0qNBBOQabGzQClltsTQL22H6uzp5DL8zitnXRtqOgmoCfWW595BEmWouYR25n7wceZ+nFF7BphrEGLwwpV6vkRiMDD+k4CEdi3Iw0M0V8vPToNFeoz01x7/ue5PLYODZJGQ7KdLKEklcmcHzyZsrVCxcJgoDMsRx+7I1MvfIqC1Or5PUU3IBDNx3hiQ//OC+dOo7NIqoH99C7cxvBlSWqWhKlHZpjVwi8MjZK2XJoH/XlWbTOUDmwmrI2qDJ98jT5/BxYhTYKWwux7SazV68yrjV4Fe697S4CN2R5cQZCB9YN8cqlUbQTwPI0WqrCh8laLIYsSzEeRCbDBlBvtREjdcaPnQKRslpTLG0MWaaJ0oreRFBrGfzRDlfOXYC0A1vWcPfjj8GWIfa+8W6yFMovXOQ6U2PPe97C9OIK+fQijl9icWyCSl8v1g8w5Ljrh1nRKa2SQxYIpCvwhUOQQHJxhrGvHMWfaKEvLzH1jRdJzlziwvNHufLqKwQD/VDzqYcWXTNc/66HGXjgfpYXVth3/73E29fx7Oc+C2Nz+DlUlaQeN7l49CirVybALVNZv4G9t9zE4K1H2HDTzbztqQ/wyvGz0FjmwFPv5P4f+yHG2nVe+OxfcXnsKlmcY1TGQrTKy1fOM7R1Czes3UY+32BxbIxzr7xK2mhQCSTRbINqFGFWUqqyl2i1AYmCzLL8winm/uFZzOkRnFZMvrAEKy16UqDdpBWl6NCiPUEqBAZBoAQrSUS+MWDvL/0M+XSb9Ooc+dQC8y+fQx07D5lCei5aWAQGYS2usZTCMlpAkqcw1Mv6G/dz4dUTtE6dolSrkFtFLBW3vOkB5qfmsBcvQX8fzpHDNBeWOfM3/w3d7xA5CYlj6E0syoGkDDYMSUVh3m49F3yP+qWrzF8cQ853WBs7eNMrNGfq7Hr0IQ4/+gATaZNkcR4vyQkyRZhpUALVMiy8NkJcX+G2tz6OCMo0J+cw2pJR+GBt1hVEvY3OFO2kiV3bTyvpUO4ZJDp9hdW/fR5evkilHEKmEHFKyQh8DZ4ROFYWpu3Wo9S/nuwH9rK8NEav00tlJaHHStrDDnLPZkZPnsQsr+DY/+8KQuGt5WIcF1wXsXUbF198kZGz52GlTQ0PTwCDFZQQ9DoeVeGRKMnJc2dRaQt2baLTHzI/02bs6ZcY/fpXIZVUpuYodTTTr52GKCeQNWrzCbEn8LMYmSbYXJF0Utpjl7gyPQkqQs3P0p9WSNZVwUvR7RVs6LLjxx4mXlOic+I8G+oZyriUOgoZd2j6LigDWnLzTbdw8XNfwnRyEt1BqhRShdXQdoCBMvRUuemBBxj9/FchMpDmeHGCjiKEsuhqmfWHD/PGB9/Mq195vijyZgruu4Hrb76Z0vGr9Juc0TNjLJwfgXZKcNut7HnnQyx9/VncRGBX2zTqzcLc/ND13PfE2xl/9hi9iURlHYxJix3gCm57+9t46fw54vl5dr71MfIgZO7iKPl8CyaW6J1cIFCW1rDHgafexkqjQckIOqEFYzBa41RCfvpjHwMkguKuuPzuCZauEqlLly5dvocIa/+ZM26XLl26dPkf43Xxw9c6oLDAmYvnuPMNd5HlOY68FkmfJtjcIj0XKQRYeS36XSIwBAqskKS+B64HUrLlvnuYHBvDjk/jlEvo9jK0JRgPHMu7f+VTfPG3/4R4dg5qHhxYz92PPsqzf/33EGmOPPkwx771NTgxVqiIZOF5U42hvaEP6ilbr9uDd+cBLp0+hhhag/3mKzhRTFgNqLUt82TQW8LmbUgyrsWoEcgKFVkhymMSL6bPQNXzaKiI9roe3vOvPs10Y5Vv/9b/SXjwVuT5cdKpSwQOGFXcCI9Tjzzoobx2kFZ9ktAt46aaVBhEOSBPUnzHKWLgtUJQtLQoKXG1RNhiedHIU4L+PlrJKgff/SjJ0iqzX3qezIG0WuwfUhhOXVp5h8q6tax9021c+NyX6dMuIMlyhQg9Wr7i4HvfytbrtvClz/1XzMVJwqRQTClpryWYXdv5yoKQhQrLhjA4zPDhfSzGDRi/CHuvp3fnHh698Vb+8hd+FZIWkAMKjMbXUPFLrMQRBD47nnqCsS9+ESIJKofQxdmwnvvvvY+k1eHbf/XXhH2DJCurhUrE92HjOnbefTPNkmW+MQ8nT8FswvblJiElJsrraVfbOLiIhUVC4TJQqqK1YXqoxF2/8XHC0Tq+EHz5P/3vuBUP1WoSInCMA1aC9elcN8h7PvYJSlbyn3/1M4XSQKewtp8P/+tf4Xd/9qOgcrbv2Mn0mQukzQ7kCXgu5UzjWgMYmlWf/vc+wYGdN/Dsv/0tqklEe2UZeuQ102wNkYOoBtjsWotTpQJlD+IIqiHcsJ+7Hn2MiZdOUv+LL6JMjrIG33eLVD8MViiUYzCey/Y3PMS+gzexPDnJmr4BvvBHvwdCg1X0lQLSZgtBCFbi2gyEInGBkkfmucXi3AnAOGAS2DqA/4ZDZE8fw5losjHsIWms0vQd0p4StA2BNnhGI1FIFEqCV61Sl/DkT/0Un3vpBfTIJVhJcCKDyRM8zyUjA8chdD1kT4Vo+yYYHQO/BEvzoA39/QOIpRYSQUvH2P5hsnYbBvt45y98hJdfe5XJv/wKa2LFVnoZD3MWkxZB6GMdF+WAMRbSBNwQkozhsIcojsh7NpDZFqW334OLoXXqDP7ZGYaVoiU0sQeu/o56DrQrEa6DlBJpizFpr4nhjQDfGBwDni7W//ra+Mkdg8El9Ks4129k/0N38cx//gtoxbgpqGt6+kBBLVe0fEPqUySqpRAmhkHjkYYOS74CbcCrQk/I9nc8zpqBtRz97T8sfHXqS4Q9DknSwimXcduaahYgcYikoKNj3v3pn2N0bIQTX/gCpbyE7/s0eoGOYl1T0DMwyEhV8Kn/7d/y9Of/nuN//jfgpZTzjACJcDzyWplG3AZXEmhB2XFYGRzmjk9+hOOvvEj+yiuAx4b+XlpLS3RGJwiNINcKVzoIGZCu6UdONzB+QJilVMMaK8kqLhllYVi2GrtmGGq9bNq1j6mLF2F2ChwFOsVPIBNeoVx1fIhiNno+K3mLqBJy12//O64uLjB54TxcuUzwwjjrYstUGKMdjWMK5Sm9sKbTx0KjzvqhNczW4MGfeD+vpCus/MmXYSGGvdfB+Cg0YvrXrWelDI9/5pf4/K/9rzA6Q79TYkW0oRwStASuMYR5cd6rD1Ugjdj+8FtYs3UHR//8T6C5Qskaenp6uHDhAtVyFQE4rz/XXjvfdunSpUuX7w1dJVKXLl26fD94XfTwd65tW60mv/t7v4cQAp3n2DSlL6xQ83xKwsPmCnutlcs6RW59SWmiAILcUo4NmVVUD23nyN4DXHn2ODbPYEM/LLdwrSEsV1lMI+rTE5DklIREkbPcaZEFZZia55bHHiAteaweew2pLdbR4BjC1JJmMeDjZ5ZSuUYzyTEnToOWBI5PHHXoKw0UxraOKDxLXFks1nwB5Rprwl46UQtTcZBxilY5yoW8LFgKBPOLi8RX51DLHfK5JYKyg5vnmAzKvsDpWUtkJFm7Tf9tNxOsJOjM0Lt/B82FKQa9KmGS46DQ0mCFRdpridKAYw0CS1Cp4LqSKGox32qy/No5KpnByozcM2A1Ti5Y51RI84RWnDIfrWCjGImknAuwGgXkgWQ5AE9bFqemcKIMmerXLVwEVmmk61Pr7SXPcxzHYbDcR9RpU9mzndseepDx0YvQ7pDGKeMXxshGx/7RfV1ouLbUdpCkSKhWufGRtzAe+LAwX5hh5wabGRavTqPaMasrq6g8JVi3Fm/3FtTSPDQbrCys0B67AqurRepSpgkTSxD2M5Mb2DuEXZzHpAq/FOCnhTFv0xomBn22ltdx+MYbGblyifb8LGBwMNf+ZYERoFQDZ916ZKa5dGYMEkV440HCHdtQacb0yBVKpQrLp06jmg2cLKNHSspZjhQKIwy5Y1CuQ7LUwCSS5ouvUE1y+ks+nTzGCgNKEwoP41hsmlDu6ydvtdhx15287SM/yVxvmfbyClK61M+O4oxPon2X3INcJUgpcIqwNnIpwXdZKdXIpMOZbzzNxVOnCT0PFbcReU4eZQSSovghKJRiTqHyUYmBUsijP/nTPPiDT+GuXU9YrVFvttGjI7C4RJgqTNxhMKiS10rEOkMoF99Q/IYWrNB0lCY2OeQZo9PT5FcuF+0/A2twooyyF363BdS3Ah/whUMSt8DzYHmJ3q3bSesNtHDpxCn9g0PkiUa6ZcqDg6TGcKW1RP3sa/i5wwa3Rj1dYMEqSsM9OGmHkjGECoSxKNeF0AetSVOFg0NSroJJUbs3kDXrcPY8fgw1q8iFIncMrrGFR821+cs6Ehxx7Zg2eFYjhEXLInWea2MVYQvjdmExsnjuWajPL9BpN+nMToMAYwWVDEoKXAuBMSSuRbsU8YAaQsfDzRTNPEWX3ML7K8256YM/zO6DB/j6l74MiysIbSnbHBMatG+xyuArSSB8hHTJXQ937RoOHjrA5KVxFhfrDOQZntB0PA1JThbnLHfa7HzDD3B6bIyzR1/GMwLfM9SCCo5w6eQpnTzFaoVfLpO3I0LhkQzUiNcM0Z6dxhleg9tJiUavYhabqCQl9yRrdmxhdWWFoX17YOMaknobY3J6ZZnFvIH2Yd26ddiogymVyQdq7H3wzbRnl+nMLUO7BSIFC54C+gcxQkJfL7RjenSKQ0ZUCdn9Q+9gJY0IOwrT10ty7DwVHDpO8ZpKrgh1TupparpKlCUElYBItXHW9DM9PgaTDdzd+7n1h59i6rXTyOUIT7qkvSWCPduYP/oqrMQM55amjJGuIEwtjrUop5gH8jSFah+EFZrCpTMxCRhM0sFzXD79yU8hBDhC/NOaUbeA1KVLly7fU7pKpC5dunT5XvMd18/XPTXAzPwsO3btxAt8onqDNW5IK43Ac7HWgnS/+x5J4RMChlYI5dTF04JmAHbYh9IAzDQJNwzx4X/9cX7r47+MXViFgSFY2w/zdWqJwGus0vQUSmhwXIiBdQE4Bm8xwzPXLt6lYW0sWSkHZD0hNGMI+6HVYe9bHuD8yaOwWOe6yhDj2TLkDnQy1lUqzKVLhLUe5EpKhGT4XQ+wuDgPL50gsA4lLchUQuQB1VJhaBFJHv/hD7LcF/Lt3/1t+uOIWhAykeWwdSs3ffinePVL/8BdB2/iyhf+lumZy2z/9Z/Ab0SM/uYfMxzUmBtUEBrIDcNLksT9zuK0UD7kcaFECctllIFytcRqawmBQhi3SKySEouAgf5iMdvpgInBGMq5g5NZcmFJegNI24UhhwE/NwhZJDzpa4bA1b5eWq1m4eWUZyAEYu167PIqbNiMPzjIe9//fv7sM78BnRbs2cG69cMsfvGblJUl8RRaKhwDvhXEqojxrhw8gD/Uz5379zPQ08uf/c7vQKuNF5ZRaYo1OUhLudbLHb/6M3zjL/8GLkwytKzwyFhFowOXrAqgYHCY9T/zYWZXJzgkqlz++2dpnr1IGAn6rI/CYamigKBQqtkUx7V41uKa7NpxWajmOj1lVDMF7eLJEnm5RP/O7azdvokLX/06rHTA5AS9HuE1PxaVxHhSoKXBCIOSlsQJ2HbjXbQvzTG4vIJMGqzQIHEETa/4rIFSDzueeISt27bzzS9/hcVXz4Lvs+b67SxMTsJSCyELDxZbUlD1iwS1Zge0xFcQKIOWkLgSI8uQK5zhAXScUE0yZNxCYpDCpW5TKJVBgKMVrs2LAq/nkiOgfwi5ZSNmcoEhFdBsNRAmxtMpTppRKZUo9w9waW6mUL54Ab42uLY4iIywJJjCIysIi4liqJed997LUMdy7L99GZHnCGELJZJWuAJc4ZKEFUhiHnriXbjVCl/60z+Fjev56K/8Ev/+Yx8rjImdIVqri4gt67HtBrRTSOOiAjPcD40ORBGB51IyLkZIUkD3VlCNJggHUlFIh9b2s/bmQxx+4E7+4d/8OgRlZL1DJVekniJzYCAqSuYZkAYS7RcJi66BQBfqISVhpWxwi7o1ninM+aH4GCOK8etbn8gaMg+E72PjlDCzeLoYa6kDgTYox3x3/AGITOMIgRsGJDYH6TFcGWKxuQh7dvLWJ57gb//j70KUMSQFq615RMnBGEPFKYHxUFYS+dcmEw+IUqSGHmHJsgRdCdG4qEQhw0phHu24MLwO5magLGG1jRAuYamEqYWk9UXE8DC23kQagSmVKN+4j7ASsnfnTp7/vT9AWp/QChwJkdBoGcP6ddzz1JN86+l/gAvTHP7Fn+fEf/h9OLiNPXcf4cKf/CXl8/PEYYAVkj2PvYuRbx3HLC5TTTs4RGRoAgSrboXbPvUxtu3dxV/9zE/TkylUu0UkXNi3G6Zn2fPGNzM6P4H74nmGtGTRi5E2p6QMnjEsVCWbGCBJYlYqFp10ICiD8GHrGsIbb2JbZS3nf+/3GbQg8VgZrqFMC4RPua2p6oyFcgfKZQaXBUYWx4+WkDgeOAHrDhxg7+E7ePoPfh9sh1037GZ2YorFmQXSPKHihV0lUpcuXbp8H+kqkbp06dLl+8H/44LWAqNjl/izP/9ztNGYXOMriVup0rJpYWIcOFiKAlJJga8tmXTJnWIB7GmBdkDfsB0mpqGdojoNzi9NkYxcwhkawpqM9/76L3Lm818ga0esp0Su25SdgLLnEGYJVhRtK6U4LzxFBEgr8LUkzhOe/NTP8dqxlxAixBEu+24+yMDtNzC7NEd+ZZYdP/UkYriXaPIqbmLp1ZJKIkhQ5CXY/uSjHLjjCPWRcTrz8zjSIbCWkhuQtjN85RFqj9VmTLx+mE6S4cwukeQ5ad8AHN7H6oYN7D58iFf+8C/odQS577B45hhLI1cZil383NKREmsF5IJaWsSDaylRQhatbUGAlA6+kog0RkUxUVCsOkrKwTFFm+CP/PvPcPLYUcgV93/k41w59RLYnFxryp7EdwRxq0OlXMJ0MspW4CPJpVMUFa5tadQBayDw2H3HEVpWo+vz/OAv/AKvvfQKeuwqJsq5+bbbGVtYhKUp3vwjT3L5S89Q1sXCWLkWIwW50vQEVcp+mebUPMnkDOPTE8yNTxAKSbS0RNV3KUtTtIdlhiyKuPy1byNXE0IkmcjplCWpp9EqxU8t/W1L1EhpB5Y9W3Zy6a+/RufkecBArUamFV6qyaWH8TzwHBACxxqM0riI4s8Wq/YQg0oyjEoxtRLkTRJXs3TxHMQJA45PbxCg8hyd5lhlCL0AjcW87rdTgcPqmjJr7r2FS6dfYrnsELsemQNCW2SucVLNpXMXOHv0BNHsMiSWih+wOj0DWYprNK6KMRhYW+Ken/0wB+69k5GRUWhGOAbKyhZGztZClqAHyth+F/p8snqdWthPqgVNNPT7RVuiElQU9ChJVTsMigpRrNBJil1YgoF+ok4L3elQUVD2fZo9Ho0K1NNV3vihDzKwdTMzo+dxSEEU6jkjLeZampXctInhGw5xwx03c/n0SS4/821MFGHTBByDlZqi+mpx/m/23j3azqq+9/7M+VzXfd9zvwMJkBCCXBJAQAQRULCICDRoRa3YWi21Xt7R2zkdfdtie2p72p631tajQLX1VFutCipIAiSEhGsSciG3nWQne2df1l7X5zqfOd8/ng2Wc+zb845x2j/q+oyxxthrjbnGWHs+99/8fr+/VOOEGkdIDuzZzaHdL4NnI9edxzMvv8DgO29kwwfez2gww1nvuobr7343ex/ZwpLQoZWG4AsYqLJsSrPArjBlKSS54koJUCrm+vf9LJV5Q5w5coT1V1/JTb/8YUSa8KPP/Vdq1UGSVgcjMhInIxO5lC4sWoRWbsycnwgWJZKhWGArqBegU4OomKvKBAaEeT3T6LX8/fzUKUljhRQWWaooKvCiDD/L1W+xDZkPqWMQmcHPoBLnBSiFou/C1QwumEfj5ASlxGA1m4RKw+wsB597Lg+PtyyyIKUsXGpuCZEpLNummaSkaKgVufyu93Dy1YN5wcktkzoaZRRD2iNKYsSKBbzv4x/FcnzGT01At8Xyd72N1Wet4NSBg2A0yrXIuk2WX7mJ92y+ixcefxyjMypIuseOER49ysnnnsMu1bBDhU4SoiRCW5JBb4BkbIaJfaOo01Ng93PWylWc+MFTjCxZQuPkGPFLe8k0GMfhvKveQsH2Of3iblAKx4Agw8IQCo+s4DNw3dX86InHYPoUcXOWopD0azD1GMfYjO/ei5maRscRmUlJHYHAwjIWtpEobNLMkClFJBLKTolaJ2OR9qmvGkJVfKaf2IVstHDJt0caKKxiDbsdUVECRUpUzrd0f1ei5dxChmXAszBCMFyusPvpbbmazRfcduftnBgb42P3/SLSkliIH3cKer1V27/JlbxHjx49epALfnv06NGjx78znW6Her2ObdvEYYDluGS2Q9dkuQKmWoYsJePHq/IA5p89XUkkwsCFa9fx0ov7wCtAX5Hm8y+BlmTdEFyL0fETsHwJ7DtOqCIMkCYRMlEA2MYCRa4EMZLXmmQnAvxyBQeJWLgE8+opMtfj2ReeY2jdMqxCgYSMzrExhpcvZmrBAI3DU6yhgADGAQqSvY/8kGOlKqYTICwbaVtolYDWeJaD7broVHLy6KvQGocsxSLPxnH7aiR+iQtWruK5R74PcYuxsToIBdQgbCOMgzSC+R2Iox83HZUm78SUSYmSgkhrbFuSJIqaUyXVMcKEP34QReSd2YIQzj4HujHz15wNpSoSMN1WbjETBtdA1g0AiF9vK+68YRvPX7GcMzPTGNfivff8LC++/DL/9OgjfO0rX2Ht2vMZPXqcsYlTVIf7GeyvMV0/yd//6Z9TNAZDrmjCnvt/tE0QJ5R8C1cIEgPJbJPTYxNgDBbgWRKS3PoD+W6SComIElI0WRRiIpCuwGhyuxEOfiaJdhziwBP7GApBJBahFChjUNLg+TY6TaBo5XlDmUKWiiRxROraWObHrbW7rQ6FkX4s1yOuVkD5lNaejQ5Cwqd30jQKK87oK9VQaYzWmlilCOvHBSSQeeXh5cOMvnAUaXz6seiGLYwtMMImswRdYbDLA+iOomzbBNkscbuLW/FIXI2KQxA+2Bb4Bc6Mnabre7miRufKl/yYyvf9YqGAPVzl1s9+jEa7xSO//UdMz7TA9aFvEMoKuiGkmk4iCeI8w6dScYlNB2ouDPbzjl/9KLue3smZ7c/RGh2n1Z0LGx7sZ937b+f8iy/jqe/+ENBI82MrF4Br2cSu5NJLNjKwfBVjR/eiGg1IYspSoi1BrNJcDYVAaoNlNK5t5SrGYhFKPkjQo8eh1aTylrfS7kRkhw6RFoqcnHmOUivDymS+y3qw7u1X037sRY4fO4GWEm3ysGJjYNPbrmPNeWtotZogNHtf3ceeB5voo6eoFmtEp8cZqfRxRqV5xdvkBe5UkGe6SWhJSYoEK1cIZoJcxYfGyXSeg2xyu6BlBPI1exu5atPxPBJtKNouTqopegVUGJG+dpzMpSqbRGJp8AxEGhCCDW++At0JGX3mJTJtKFEgLFgEOgFXQqVAcWCE4NgYBeEQBSmWlRdHsWVuE+yvsvaiC9n+8EN5p0wVE/spykBZOgS2obJyKbX5Axw7dBhabRZvupT+hSPsfeSHeSdDIfNXpUp/rY/61PRcwUNCu0nNsjBD/bTqdVSrhS08LNvBkhbas0jqdYZwmF+ex8ttGIgttn/1W7gxNHbsIQmaoMAtukRxxJnjx5lpHsjPWZ5FV2WgBZblkvkl6OsjNYbSvPl0uxEgcXS+LUzWxTYl+oolAk+QxCkRgsyS6Ayk1K8rEDtZhG3nfzta40iLKI25cuMVPH3qOAQNtJXRyMAWFkrkh5KdSUSW5bZnYUGaAXkhPi8oG7SKcR2bmdOnyCZncKsVEjSv7NtHJ+iiyLBzDVKPHj169Ph3pGdn69GjR49/a/4FO9v77/05ntz2NCePHqF/8RJmJ6ah6ELJ4bp77uK57c/Q2PUcuEX8UGGihKxQQ1UKiMlZVpSGON6dZv2HbqcYKXZ++wckjoBmg0FTAstiRqbw5nXcctOtvProk5x6YhvttENtsIpstWhrjXqtBuJbyEIR2wiSdif/rOQgMhdXe8Qk+e9LI6hUsdMMVa+D44MV53knicOSpECQRsyUJRBgyxJuBkmWYhmFMGChMJZNcXiE6YkJ3vnxj/NPf/FXkIAvMozpEmeGa+++kx89uQu6QV4Vak3i2xUcaaNthzSO8bopw14ZESd0UdjFIpNBk0rBJ7IMyrGIbcHKDRdy9OgRGJ/Enb+YZHYWqz5N5hgGLrqA+kwdgjkJkDAwWIVlQ/DULkScMdxXoRIJxtoAACAASURBVFWfwZt7ruxoiABcJ39ITOaWv7WhWCwShN055Y7GWbqQVGdwcgZShb10KWrqDJd/8OfY/pUHQetcfhEn+LFBoVGDFSjM7TDdBOLcvmNrjZKS1MqT2t3M4GqFQOE6NlGUYPuvKTFKpEpTq1Wo1yeplVziToJlSSynRKwERhkWl+cRtyfxKTBFl3a5gK4ayPLCibAKDKxeydveeh1KJfyPP/tzSsuW0R0fxyn5aJWRBR1KUtC1JPgOLFnA7Z/4BE9vfZol1UHiY8fZ/e1HkY5PQXtorZC2hePZRGmMMXkQs5T5BEdBCm4B3/fI0pS01QRL4FaKJFEEWQSlEZgNEEZS9VyacRNqPtgJqCi3hrUC8Aah4ufbtdGhFGs8LcjiiLbM8KtF7CCi5QvwFVgWRAICm6FzzmXTO97OES9l31e/AaOnKLhlCp2UvNql6R9cwJHZU3kB55wluYVpsgXHZ5DGoMsaagUI2pB6kNrQbjIyUMbEMe1Oile0aUYqt0KNLIDYgGlCFFBLBE6aoTB4lTJTYZdyoUjU7jJQKNNNYzIpiaVNZjtg29Dfxy//7u/z5a//Dxo7d4E1C7EDk13O9Qc5GE6i53nQV8bvrxGNnsj349hQ9ioEjRYak3cPJMkteEZClOafZQ4jkYtQHVI0caFIVyTIJMXVgmikCmEI5QpM1QEJvoesFNFhB/orDI8Mw/4jzDbygmx/X4W4GxOnCb7t49oeluOSpClBGlOuVenUZ5hfHqTZmcWUSjR0BH4Gro2VeAzjoWanEX0DTAV1WL0IZttYsylFLLIoIXDJC3t2xn9+8CscOniYr3/xQfR4k2HXQ9MlVBGtTOfh8ELBvBFotCHUzG8p6kWFFIZFLcm0rWj2GUhSSDxWLDuLRResYV80Sf2Hz2KnYOv8UI4dXu8eJlJwM1imUoaWLmL78WNQLkKY4fklHAFSGlphA29kMfF0HTyLn/3zz9N46Qjf/eF3qZ2o04xmwDJYQYhnW2QIYuHmzRcG+6Axw7t//f/iG3/yX/JjQCe8+7/9Ndt/9CzjT22HY6P0N87QLx1mdEpa7SfoBKDBqZZJk86cp9oG253bTxKEZWGsJA/vnw4Z9Dxik9JxLcrzF9GpT8DacyBO4Mgo7/ilX+I7X/oaI7FHd2KM4VI/qqQZa4/jWh7D3ght1cUUDO16HatkY2cWdibxlE0mJJ1inknm+UUmT57Gxea1GKyena1Hjx49/n3o2dl69OjR49+D/+mGtt3t8P0ffJ9zVq/m6IkTNKammH/LzVTOWk7n4H5OJYr5/QPMjp4EnaFUil0skSqTF3K6KcUs70N2/MQBTrzyKl6gSMnos1y8JMDKMrrChSzkzGyTqcPHIIlIZUhsG6LYoIsWyNyidMOH7+F0fZpoYgKvWCbzDBRc3JmISgrhvD5YOMg1d9zB6KNbcIMUJeI8RyYS2MpGY0gvXk3LEzDVZLFVg04HkyZ42srVThKU1KTG0DUKbFh5+80cPrQPe7KNn3ZJqqD9PILlyg1XcHjHCwwVfYRuk0YZulaheNOb6Jw+zojVT9QNOTnPp7O0SkvGZMbBtgXC90gzg3Zdzr5gHfNXLOeCW27k1R1bwbZw25rMtVl41Zt4+8++l30v7aNcD0mabRCKdR+5k8uXrOXMwePEWUKYhPi+RbVUphWnZI4DRR9GhqDZyS05jksaRljCwnYctFLodhvaHYpRQsUt0Q0aYBnmXXohfSuXMzU6ihVlDIaKAIVybNAx13/og1x/67t5/vEnIMu7vmkrIbMUlpbYxiBzDRVGSMI0we/rI7EsutqgjI9VKdJp1cETmDTDky4ms2grgfILZCWf2bKhlSrq83xiO8GQcdVdd3DHz3+I0fokenqG5uQYe/e/wpFjx8kMpELwsc9+lqn6DDNTk5T6q1SmQ5zUgJGo2Q77nthJ5+AYp7fsYvbISQYqNUp+kZbKKA32YRybVhSgJAgpQQpEqolNAsWUc37xTqYGfX7mFz/MtXe/h51bt5MlCozGH+jjngd+jVlPE9iKYGYSTAYq4eY77qC/f5jGmVnSVoqTOehmG8KEPr+EaIeQabQtiB1DmsQMuxXKkUSFEtXJIBLYVoHO5CyvPv0s0egUt31wMxtuuo7njx0mVBHX/9y9rLv2Wrbs3UUe7GM4Z+PFnH/tzaw5ex1ju/YwkkBJWcjZGDf1sdsaP85IXRfjF3ELJWzfo9HqgnRAusjBeRhhQX2GkjZ5XQuDi8tsmlDo7yfsJtT6Bmm0m2SuRM+lWAsNru2h2yF7tjxNe/9RpLFY+Jn3s3btOmYmphifOIVZPADtAG86YvBUmzBK0Va+PydRjG97YAyaLC8gZRkkGZZfxFgeRBmp4zEwOJ/pTkCsMopOGZ1ZIFyyFX184D/9OlEcM31glLLwSIMI4bmsfdcNXHjnO+mkEe2d+yhWSliuQytWJLZLbd4SIulivBLNTgBaIRyLUCsc12Om28RxfJpxAK7FTT9/L0sv2sCRbc/QiROyDJQl0QUfM1MHOZd5hiK1Nc6C+ehWEwYH2XfwFV54+UWS6UmMkagoQkuFFga/XCNOFP6ixay/bBPje16BTFDTklRkWEZiGUiEJhY6L7Jk0Jg4zYmDrxCeOIGV2JTSPAfKmSskvbaSUFD5KzERJ7stxJLFZFHE4EUXEyYpRgjCbhPbMaTnLOLm3/hVDomUPXuf5dCrB7jtM5/gyLM7SdrTuVIwTXGQSC1wM0iFhrQL69ZQXb2cynmr8VeuIFm7kj1f+3tk6hMfOIFTb1MgJDSawLeIMFBy2fDOmzn1yn5YsYAb7vsAMxOTRK0WpGHeOhOLqz9xHxuveyvjO3cTh126VgpDHtZkyLyV53DxR+5idMfTsGQ+wfw+WkePotoKNzWkvqStAwZcD5Ua6rHCnj+C47lEs7N4lpPPmzFII+ai1wxGGwq2w2fv/yS2kFivXWLFT77e9ujRo0eP/7P0lEg9evTo8W/Nv6BE+ru//zof+YWP0pmtw+AgrF/LpRsuZuc3vwXTdQgiEBn9tSpxHBJ0Oqz/mTtYtf58vvmbn2O5U6Met2n1aZxEUgw6tDBI32Y4drCMYQpBUrNB2NCJKSlFt5zlUpquDfPLMDGLWyyRzC/x9re9jUe/+GUqqaRd1qAM5Y7EwWPWl9BX5PIbb2D7w1+l4BcJ2y2oefiRQ8ErMJsGXPCxe3nzlVfyt/f/J5zR0zR0i0KpjA41oatIJUgUFadIo9PFX7mMSLVh0UJ47giOlKRWN5+pkcVccv2t7Pr6N6l6FpWZ08ROieksZMGnNmOd6TDxl99h8cBCRvszrvqdT/Pkt77D0lnDiV1PQ6CQhQpSQaFapT01gVi9ElP1uPmGm3juS19nauoMWoYwMgzj05RTC21BYEKoSWiXwS6A7IIIKRcKqPEGrl+kJQQsWsCHf/93+MEDn+P4/gNYSiCiGAeZ2xEdF1Ww0UnMcKHA9GwDY9u54iBNcxWStPCNgSBk4fIVHD1xEoYHIU7nVE7gZgmCjNSO0ZbBTXOr22uh4AaJcTxUnOTL8p4HLtz7Bw8wzyvw/3z04yxtJERERJRw33E9h88ehm4TvvMIuAWGf/FnsUolJv7wQWQ7QZsEKgJGz1AdKJNoiKIMUenDBFGuwuo2wXMp+Q6VeofIdWmSYfoHczWOgnmVQRphE9PnklkCYfngSDZt2sRll13CH/7GrwO52KygJX6m6JcO0yqlgWLw7HOZefUoLjaWyUhFhipp6BfQDHNBUOZScosESYyRJn+gTxXFQom1mzbR6rY4cHAfTDdwU43EgC2JB4oYR0BHUW0mDMkSkU7olDxadgq2i2+X6J9NGdctmDcAnSC3uYVhfjBnCY5v40tJu9WC2hAIgbRsClOzDBmLhJgQQwOZ26QqZZg3BGMnoeDn3bMKBYbOW8uNd9zJQ1/8Kxg7SjGN0Z2IvlI/sTHMmihXrVX6YbbByLz5NKZOzJ1d8hD5OI4pl8ukSYbruoCgbWLoH4SZBpQKkMXYGZQUaKFpFw1YcOenPsuz33qEY08/S7XWT6s1DZ6dZ2GFMVpLqhe+iZXrz6OweISXdz1P99WjOF1JOlXn/Cs20s0U0ycPE6URqjmbq/o8i+vuuIPhWj9f+79/P//9MzMUKkViJKvWnocplji8d2+uwqpUYaYFlk2/0URhi1CH4Dl504FU58eObeUqM6PA8Vh27nmcPHgYPTaJ6xbQqUKR5kqwBfMZuvhiNg0v4nsPfRU6dYxHXoCTFhXlI9MMp9+mPjVN0SoTJxkbrr6agydP0Dw5ihA2w9gYrXJ7oaVRSiHSDNd3aCZd8FyI4tw2KYuU/pkSKXDyQHEt8gKSp8D0+TRUkCv4qn2845OfgdNT6Ead7/3lnyGExgzNZ3jthaQln8bzT4Eu4mw4j/S7W5BFiRAZTpgQuRZeaiglFjEW3eEKyHyeLrz1PZw4eJj6sV30r72E299yO1/9q/9Od/9esAO8kkMcptA3zDlvexvNOOTM48/A8gGuvO5q9nzlGzSnJvJqWF8BMRlw4XvvYOr0BJMv7CZpNygNV+mGbSpuH+0gguXz4PQkrFjI1fdu5qVtz9H8x+3MGxjkTHsKioaFlst0N4Ur3sItV27i73/vd5k/b5jw9Om8Yx/kTQ+ExBFgMk2hVOT06dMI2379+vraA02vhtSjR48e/7bIf31Ijx49evT4P02mMwYGBvIubLYNQZfVb7qYLFLQjrGcEiXLp2JsZJCQRSG4DsZxqAz1UxwewhiDIgGlcTBzSgXIjCJ1IcVQsGxQBqIk76hDlj+AZhKMjb1iFRibLNQwNc2j3/0eCAtHacDCinQeV+EIiBKod9m19UmwIRQZLkCaIIbLDK89CxybIy+/wq7Hn2Sm26HlGDLHJjU6z555PfcGdDdCZoLoxGlYvgr8AswbzrNURBGsEs6SFZxz7bUwUKU1O8tQeZBqqQyZYfzRLYztOUDBKxOlKUzPYhpdLMth1Ya1LLx0A1iglaIkHZwgxbIKmNNTcGaG5UuWsumtb0FnBmLg5BSECUonGJFguQKUzjt6Fd08vMb36IRdPM+BVIC2YLbDtqd35B2hTB4yayFyRQBgZQYdxJAZptoNjEceuN0Kcj9crCHIVQeRgKOjx/KnoXYAmUAKDy/NXVZupvMQYgBea6GuMUgyIVBGwNAQctlZUCiD5fH9x7fw9M5n6QrDFBEpDiHg1fo5900bWXf51chaXrBqRAET46dgssECWcRuJ9BoUHYt7CimYgSusPEyAAvClHKtn8FiFStJSXyXho5x5g1yyz13w/x5yP5+YkuSljzW3/AW3vMLH0ZlCWryDMfGxzgxcTovDAiRd8YDCli4YUR/Sj7P7RDHK+EricgSpEqxLCefO9vHdnyKqSZuNjBRjFur5Q/kRZ8g6KCqPpe87RpWrDsXih4JeeHOchxMswntBjialitJpKBLQitqQ9UC0SHqTtFKmnjFCrS7kGQQRbBsKcwbhkqZNIgomDxryT97Ndfd+wFu/9iH6NqKpOyC4xNgYa1eCqsXwpIFbP7kp7AvuCBvPV+rgE6ZPrCPh77xd6AVRCFBpogQhJYgkAZKBc5++/Vc++5b8c5axWSzNZcn9Fo2lcb1LaRtUCYkIyIjhMyGIEAuX8j8C1aDsPBjjcwMsckg0xAl7N63n+MnxnCKFbI0BS1z61KaUnFdCkLiF0tYfVXGXY1/7kpIuqTNJkOLlnLrXXexdO35dE5NoSZn8/zvbjffFmnMnj17QMEwHq5dIux0ufzG63nzzTcyHnbBZJzz3nczcsVGLvqFn4eii+W5SNvKQ5IG+6Bg53+rNC/E1hsQplzzrlu56sbrEbW5LnomL9SQwZIN67nq1nfgzxth27M7yRpt+oRLOcubOopEoeMIqTOCMMT2XFxhIdKMo3v20zw1AbaLLS2U0dhzuVqxnZ9OiymIVpirtnQGtsRJ8sD4bO6l50692Zwz8LX3jSzN96Pzz4dLLuE7P3qcxJYcOn4cMDgWMN1iausOgrFJ8MrIxcvoK5QRno9OU7IowSm4YOdFKonGReeLEc0Auikvfe8J6jv3wJkW6akzbN/6I7rHDkPVg4JF1l/Ji9vtmFf3HuTMoQMQxnDiFDu3PUsy08rnUwjQKXYG+3c8z9gLe5BFDwSEzTZF49IOmqBTGK/jdQWVYj+yHdHcsw/LL6CEARWDZxHEEQkZqzdditvXD6lC4mDpvChqkHMK1nzO7dyJiNDk58recniPHj16/LvSs7P16NHjp5Zjx47xxS9+kW3btqGUYvny5f/quGPHjnHBBRf8/xv3z5dFTX7/nWYGLSV//Cd/nOdJSMHMTJ2KsWm/Ooo926Qv1fQ7BTzLItYJiZScOfAqL+/YQRqn6CDALRRJfIu01aFi+WS+S2pnhFFKV2qKZy8lajchyqgahxIpEkEUxeD4fOy3fo0XntgGUYp2DHRDrEzSpzRJklLBpVmwSHwLK4Gq5RF0mlC2IQ4Y0g7adwgrHhe+9SqKCxdz6snnOfXMC+BZpCbMuyuFcd4K3VUgMtwMskTj9Q2RWi5M19n0tpu58eP38cKzz0ErhTDDWbyMF48choULYLZD+8w0UTfElg5ekODPBqQptJWmb+lqDu56CbP/MONBk/5qkUa9kVufooys3WGeXyXsBmTtDru2PcWB3S9DqlhglfDihCIQliVJyWBMSlFJ7vqDP8KsOZuZwRI33nU7h/buJ55sYRnDr/3ef2Fw1Vk8+dCXaY2fAtvGShSesdAoHCyEsEgyxeJly3nbL21m367nEJGkbCxKcyHCRa9MNwroXzTCnR/+MGP1GcIwhXaMHSX0G4E7F8Qc2Rpj5aHHRgikEVhaIBE4fgHleXzst3+bRRdu4MC3HqM9NsGJF59HnzVEZ6RMQxkCr8TUiSmmd+9jcucezJ7DSFPkTZdfzvqVawj3niAZPUIlE2jXQsYxVelglMY2NiLNi0mO5RJ2umQqo1QoMaMDGCiQpV2mByqEnQ4miok6HYyXcbo7xckkIj55BixoTZ7hlWOvYg3UMEpDmiLiDGFJZu2EMyKCRQOEcRdd9YjTCDk8jFcpE03PMqRcBloZlTChqBW+5aGlJnIt6Ctz6c03ctmdt/GjI7vZ/e1v0JidzosaGSjfIfU0nLOSyz+wmQs++j4OtWZpnTpFLCy4ZC03/M6nOdI4A2dOkSaCTGoYGeITf/wHPHvoFa5//3u56No3s2/7E1Dw6CYBwnFIVcTR0YO8svc5MIquLelYgmxBjZv/4NcI1q+ktX0Huw8fYsWlF3HDnXfQtCStM6fw33QRN9/+Lg6OjYKJqa49H79viGa7QeY5EEUMnbuGF/btRo2fQAiJnUQI8i5zjjb4lkSlCcqTJD6kdgaRYujaS9hw8zXsG91PcTZifgc8lWHSkEFTRKeGUyePYdottMxI+0osWX0WrclpSDOq0ibMMpqtFsvecT172qcIJ8a46AMfIBqfpTF6iid/+D2O7395Th2kwfcRXgHqAade2s/kviP4pTKt9iyZAzg2J8bGePGZZ0gnpyhcehkLly5jenaG/pF+Jp7ZQdoMKdUqhLUC9/32b3EmCGidmsiLeWmG8FzQktETo+x+citmZhqSDN9IakYSk9K2ErQUnPzuY4THTlIsFlGNGSrCxTeCgmVjC0PmOnRcSSZsRAJ9lSo6TBA6wxIC37awpEUxjpEiY7aQK5mkEgQ6Y2T9uXQnz4C28JRA2zZGCJQlCBwL7cwp0UQ+PRJIlyzgw7/zAAzNJ7Qk0e4XOPL0DuqHDuMWXZIgyqtO8+Zz/jWbOHPsCObUKVZdfQXNvYdQrgaRoITAyDxL21cCgcTySmRukaWrzqM7OoXppshSmXh8iqmjY7kKTrfY9MG7ue6Wd/DiI49BcZgP3XcfB9KAlYvOYubIYbLZWaptRb8wCDIilVHDwYSaIpJuMIM3PAhBzM+/+x52Ht0HSCptxaBWTJ2aZvTlvRAkGCW55e73csY1jKxewczp0+hCAbVoCTsf+lukXaQ1Pk7qe1hGYOY6bGbS4Ou8MG+7Dvd/8pN50W4ujk6QCwNfa862detWvv71r7Nt2zYWLlxIf3//T7x2P/zwwzz66KP/6r3A/+64Hj169PiPTs/O1qNHj59KHn74Ye69917SNH39s40bN/LMM8+8YdymTZvYsWPHGz5zHIcvfelLbN68+f9zXLFY5Atf+AJ3bL4bicT+ZyumkTYEaAZXLcutIhMTWMJCdyNqto+OEzIUxUKFVhTg1cokSYIdpCS2RSJTZH9fbqEIFcYYIkeDBfMaGS3PISwKNv76J9ix/VnY8hxEikoU4hpN4EDowppzzmf88AmanTb0+dDXR8kr0zcd05icIOyvoWXEmzffyVNf+jI4BZxOSmEujTu1NDpVDIsikYFpz8DyYZhpYU0rzqLAcatLLDWWZVCFGDKohtASJa7+s88xUZ/m4B9+geHpLlOL3NwKcmwa39h4Vm6N2vje9+AP9rHlG//AwhDsuM24PYXjQGZGiP1hLvrUp3C8iM6RA5x8+EHcdkDbEyghkcYmmw3pq1Spt9s4q5YiXYv4wGGKtSJpo0sZSRHDqaJP5bY3s2r1Gl564C/BK8L6tTA7Qf/lG5nd+TzsG2XIL9GK2/iDFVpT45TCfNvm7e5tEgzlSo1mmpCpDIDSLZehTkwhnhuljEWDFNVfyitCyqa/E1N855UEJcnsY09RCBTVTJLFXbRTYDaNsVcuJT1zGkwKmcJF05cJHCOIM0271k88fwCqZbypSeLxOlQqjNx2C/PWb2DqW08S7dqPCOvMrivhrlvNuo038fxnPo/fDYhLNkYG1LoxRaWwjGK2kJFbpUQ+l9hkwiJSOrcBxnFe3HAkkYyIPUkatrASn1JHM2AgxqJR9TBCYJodxPAAadkl013W3HA900dOML3/ME4rpZAmCCdEdFPcQpXg3JWIVYvoXnIWOo657vxLeOmPHiR4+VWSdhNEhu8oTJahNXmGc2kIS7pMk7HmNz7KgR3b4cld2BNdiv19tLIO6//oN3j58W0wOgNLBqFe54bb7iKst3nyD/4EBoZg7Hg+1zYgC9irVzNUKzGxazvuUD8iU8RBB8IMpI1lW8iwTcFxKRsPHQnaWqIKLrENC3/mRlpa0dn5fZZfdhmjLx3ICwTHx/OQehWT90OPWPSr91PvpITb93HXJz/G9PQ0P7zv01giIXObkMLCGE7njjXm948gmzHzi4OMz0wR9lVo6CZ4gGPjTwaULBtddJnVXQqRzSLjI6XkVa8DccJZERyuAZevZ9XGjRzZsRu27UVKl0oQ0cwSqh/5EPNXLObVb30dd/lKlrgFRv/xh9TCmHrUylVCnscVH/w5zjr3bB75p28z+fzLiFhTSfJzR2jn3cAGkoxQQWokibBxKhXCpEOGwnMzquUa9fEAZVuw7pzcxjY+CbMhF645h6np00y3z2DiDEfmQfZJltDfXyWKAyyREbazvOmlA14i6AxWqKsUYkXFriCjhKJrMS27pMN9MLCcK659K9u/+U3MxDjzyiV0p4uZ2+8TaTOiW6gopNlXpOU40FfjZ371U5waPc3OP/0ClTVraR88xMJ2SLtSpO0KiLqw+iwuv/IKtj/0VZhpUPHLtM9eBPUCzE5AMeO2P/1NvvfRX4d6g6RcQCcx+BZ9N72F+ddcyoE/+Wu4cAPViQ7iiedIpCLSETUE2pbITKCw6NgSRga47j23c/pMnX3/9BgYmyv/6AGee/xJom9/N99WwSRLN57PTNCke2YamhH2ovlc8IkPsHvfcRY4NU4++DdYYZvBOMAFGsKhI8DW+TVUCRsGquBI3nL33Tzxpb+hTxVJO20caWhZBuH7ZI6LXLaEFavPJklDJk+NEh/cC7UqhIbKmYg2EuYVuebTv8SWB/6UaiIRrVmaXoYvBJaQDAwMcOLECYwxCPG/GthuuukmHnnkkdffCyF48MEH33Dd3rp1K7fddhv1ev0N3128eDFPPvkkK1aseP1+4SMf+QhBELxh3MaNG/nqV7/6+rgePXr0+GmhZ2fr0aPHTyUf+chHUEpx//33s2XLFhYvXsyOHTu45557Xh/zWmFo8eLFPPDAAxw9epTNmzejlOJ973sfW7du/YnjtmzZwubNmwnDkPe9732MHjv2v2Q02LbAFhLfL3DV298OfonB0MLLJIlt0XJFrl4ou8S2IDMCIyyiagFd9kBIdCvAU3PSfg1ODDKCqYpNVLAgUASPv8z8k12Ye3CLbEhkbnuRjs+h51+BUFEqliFMeMs73sH1t76TySQkxcExFmiby9dtyFtyBzHSzOU6idxe4FYqzFgwTQp9Vc656mqsVavIMHScDLfsYYzBzWxQYGVzthvLwmSKCy5YC1GHhC6MzyBOTtFvNH1osqwLVkxSyliybjnW+mVEQtEKAqTjkGiIgwgadTqNGfbvfpmgMUvQaQGCQiopphInA21JQhvkSB+pY7jlPbcxuHwJYZaRWhahZWMVByBOWVNdwHVrLqa8dEVuaduzDzSMDPTjLZgPtsV0fYYkCGidHgedz4WS+Yp5KiEBmnFIpuK5jQTdp3cQHzyM67rE6PzB2NFQskB3oVrj1FO7mP3RTpgNccIUk8TEKJKygykKVl99CYX151ENDAUlSYxh0tWcKmRMu4JYKzgxCYfHyKY7oDJIUyZf2cOeJ55g4sRxGu0ZWkkIR4+T7HqJ57/2NbATIhFhLAVoMgmJlWe4JFZeQMpNMrkl0QjAdbn0ssu4/o73wFA/zbBL2OmigggyC9/z8rbuSBIhQRuEMXh+gajdIGu3QGkO/GgL00ePQdDFtSUag3Q9XMeFICB6/iDtf3wa/fBj8M2neOmv/o7pA4fIVISxDJbrIIoVugZEtUyYQZjEdKIONDoc+NO/h2f2Q2CoVqr4FbnKYAAAIABJREFU7QS3lVH/829hP34A98Ux+OZ2ePIA+//i64x+7buQWnD6DBQ8KBVhuA/8ImrsDBM7nofEoE5OUWzGDHQlfYnLQGhRCQXYFqkxRMbQ1gkBCUpoFq1fx+UXXshZIyMw02X0u1sRJ1tUp1JoS2qBTZ+uwHREQZY59YW/JXzwH7CPn2HiR89y9DtP4PtlBp0iTiIoJnm9qV8W8IXLRH2S00TsMy3GRUIjDrGGFiKGlsJshCxUiLHpzIYU4gK1xCJLIjpRkId6l4p0bXKb5WRIc8cBeP4YQrnoRkDTMnDuMgbWr8C4BsabJD/cxZFvbSGbbVPPEpxFQzBUBQ2mHTIzOsbkq0dhLuzZnns5WiOMJlAJ2nWQlQKyVqIdd5ElHyMMmRFMdhooX7HkmstZUByEV09CK2HZ2vNZcdFaOo4htgSJL+h6hq4vSQf7mEwSIrtIqwO+7VBE4BX7mOkvU486UCuD55FJD8cuUsg8yoFFKXEZqvaxeHAYU6+DJVFKzZ3z9FyAuSZ2LCJPkilAO2CKTL9wgCM7nqd83hpufdfNYOXbv61iaDVgoMYVN93AuRetz+2KvkNHxSy98SY2XnwRJBGMDNOcmsL2C2TSQbtu3hHNcklPTDL62I784NuyjdaLe0k8D9eysRHEBRs1d9yqPPcab2iAmXaTfc9uB8dAFjHdmOCqay+HgQpEbeyiz4lX9tIdPQndCGKFGj+NddFyVCWjvGYZzOsjsyQuUAQqxlDSHm6pgl0o5bbsOAWleX7bNogiumEHg0JohacNjtZ5oH2jxdiBA0wdPkZ88AhYbp7V1ZylViwDGoolFg4NgW1jyDDGYP8LBaP/mYcffphHHnmExYsXs2XLFu6//34A7r333jeMu/7665mdnWXjxo1s2bKFhx56iI0bNzI2NsbFF18M5Arje++9lzAMufHGG98wbseOHVx11VX/W/ccPXr06PEfiZ4SqUePHj91bN26lWuuueYNyqNjx46xcuXKN3wmpaRQKNDtdt/w/Ycffph77rnn9bFSSvr7+5mZmXnDuM997nN85jOf4bKNl7HtmR1YP46yIcw0E/UZVp57Dvd86lc4uPN5Jn/wDKeDOqJWIU5CqBSg24aRkTzAVxpYuQDG65TOxLidCBuLxJFkGAqpxgVOlbNc2aIdKqFGYpFKQWprMhljG4VlBH5SwBc2oTQEEpJ5VYYuXsclGy/jkb/9BoxNw3Qbv+Iz76ylzE5N0ZqYpIhEGk0qIXY1KMHSt1/HvJXL2fXQ33D7L3yCmvT468/9PqQdakN9pM0ILygRuh2kSLEzwfJrb2B3WIc4gAOHmCds6qpDGhrKBqQUpJ5NWHBAa2y/iJcK/I6DEobmQApRgCuGSYzNB7/wX/nrX3g/OJLhLCPqJlRjiZvlqodk2TD18eNQduZCTPoY8AvUR49DpQhoCGIwPiLUVCoVzECF9pkpWDCfjbffzKsnD+PbFqe//Sg2DpZWxEGbyrxB2jOzuaIk33vyNvFZSumsFWx667U89cx24kNHINDYKSgMK2+8moGrNlAZHuKJv/gyHDhJWfkQtSlKm1C30YBfKzMjFVgCVi5nycKlTD/+LGEagmMoWBakBpEJVKHI6uuuZazdIHz0SSIXGKrg33IjNBTR9pehG0LawbITMs+HdeuBiDvv/QD1Vw7x+J/8Jb5KMVIReAqEoRq8VkSSpNImkwKVZHhnr6DY18eFl28iPXSAFx9/ApMqSm6RZhjmHfK0AQWeFiANVtXnA/f9PJPTU/zdV/47SAvH8RGZpqAl3SREmS5Uy6AdHFMgbXQoOB6JSshI8AbKxDNTWMVSrvQSHqVzz6N7cgzCbh60HHXoo0g1q3GCCEoZLK/lapZWTGUqQtse3SwGY4MBRyeUHYdO2iateLB0HqxaDueeDf/ta7nN0rWo2TZWEJGpDA8XGw+DJEQzVQxBa6Tr4PoFjGUTqzQ/jgseaI2nILNtlCsBzYWb78ZVhqMv7mZ6xwv0RSleoY+WSgjdOYOOBEwEQ/0wO4NjMpROMYEFNtz+W5/lxf37OPLtR6DWT7HYx30f/UUOHzvK41/4Gl0VQMXh+l+5j2Ov7OPwdx4FbRgsVDGzLaQUTOsWpQUL6U41wC5gBSkLBucz0ZhCDXmwfIgFF29gZt9Rkqd25/4hT9B38Xlc+/br+Obvfh4Ched4xCrOf7Nn4wubQgoFpTFCE9k679aoIbRtMq1Bw+D55xK323ROnqBcLhFI0H0lVqy5iOlt+wm7IcqzWPGWSzi2ZydMz1JIIFy1mA13382LX/tbGJ/k6nveT3emwXOP/ABaHYhSKLkwZMPwEDfd/l4e//YPiPeO4qaGaqywfcGMiUkrPqgEspSK75HMTlPyPDJhYQAlbWKZIqXETmyIIElSPLdAkIWsuPJN+P1l9j/+A2zloRxJ6fw13Hn/x/nrz/0e1GegNsiIkUy+ciDfnuMBkMG8CtCBrgWx5rpf/jiP/cM3KMSa8PRE3hThTWezYdU6Xv72D9DxLNVU4NiCmUqK6GpkJjAmVyXhAKvPZmDpcuqPPcXam2+huaSPkzt2wq7dkBmII7BUHhavoGhsgjSFkmT+De9k4ukdYAxyqIRuT+XKvLXnQTuC3UcgTvDdEnGaIBwb7QlIFSVjI+IUL40xlkMmLRLPJ8zU654zxyhck4FrE0rNQEswozVmpAoLB2D/UUgN8wpFQhGT5eshryuRfhKvLewcPXr0dZXQa8qkBx54gE9/+tP8yq/8Cp///Oe58cYb+d73vvcTv//QQw/x/e9/n4cffpjNmzfz0EMPvWHceeedx/79+9myZQtXX331v3zT0aNHjx7/wehlIvXo0eOnDmMMCxcu5Dd/8zdfz0jYvXs3X/7yl1m8eDEf+tCH2Lp1K1/+f9l783C76vLu+/Nb89rzGXNyMpAEyERIQmIIIcigIoOIimIpjghWqVqUWm2r9lX7tJdWa1utrU8LioKCooIDg4BAEBICSSDzPCdn3Ofsce01/37PHytgedXred6r1/tMnk+ude3k7JW9d3bW3mute93353vHHaxcuZKbbrrpFX9/6dKlfOlLX6LRaCCE4NFHH+Xiiy/mHe94xyvWW7t2LZ///OfpdDp88pOf/HU3ksiO23fu2c23776HbU+v5+SBvdQXziCdrFPCJRcI3I7CNy0G5szh7LdfxYm9z3PZ5z9Fb3cfw489RwFISGnkTCIHiMFSgm6nm4ZMOfP81XjTSjTHRnETjUKq0KWiYwsS3UBIm7qMCQyd1DKBBGfhfLa/sCWL8/Y7YBskfotG4hNWJ9BzOYw4RXBKGKsrUCaNOQMYMwdoDI+x64ePcWLbHjpxE0oaSdPDSBUdrYzUs5OHRNMwKr2ce+FrOPTUeoyCQ9SYIMqbULCJLJOQhKRUgiihy+qiJ9SYOenTSMCc1kenVWPGitXUj41AGPPCni1QH8HtqRCNVvFKDrlQ4CYCoTRGvDF6LlzNyre9iWMbX6RbOdTGxik4BSK/xbwrXsNFH3k/ex55ijPNXqJWm3rJplTsJhwaYfnyJezetYP6ps3oM6ZTcl3iTofpvQNUT46CbiCUIPulQZpgd3fjjw4zfdECuroqDG/ahZsKlGUgRUJNCwj7SiRKIYRBZ/dBIhWTGoK29EgcgbIFnh9hpZnjJT48RnP/MZKcBpUSeBFaK/NXFYRD3WsxffVSTluxiMmnXiDoLoCWMP+Kyxh+dhtvu/pqnIEKwyNH6G8m2I0Qf2gM3nAeO375IAd/8TjddYklFbEhM2+QEjhR5h6RQpzykwClHGmrSTB8giMvbuJ4s0Y0PIEdQyUxiR2Tjm2gchoKgZFkn4JOVOPY8AjVE0PUjo9Q1h2sIEFPJDJNsDQdV9oEFogr1nLprTcx4/wVHFi/kT7NJA072EWTOPSRlgaGTXnVhbz95lspzlvA0ec2gpmiuRq+mTD3Q38My0+nvWAagx9/B62yCSpG7juBm4ZE86az+qM3cdabX8u+TU8QJC2kkqCnLLnyjVxwxZvYfeAkZ505B8eGWnWETtjKiq+2QcM2aFjZbccy0AwTHBsVBiQVh1TF0K6DLjCCENoeCRIZR9DVD62Akee3c3LzdjrHToKmEZBihC1cy6TTp0McgKnhXLaKN73vnVR3HMoKl10unL+Kaa9ew6ZtO5jcfQSTIspXxGHEhvWPs3f4MMXVazj3M7dQXTiTPTu2MrntIEQx9BXxl5+OH3XoGDpGoBEqgejvZ86SJZy29Gz27dqOtE30fAF1fJT2lh3IgyeYVq7gxU0oWASE7H52EzRiSE1yqcSwTOIkhRQsx0WkWU0p0RMiQyK1zE+e6+oiNnS6Tp/DH938AfZs20Gr0US1QsxQkkx41I+PEtkashBDRVCfZmdF27pHTyPkdW+6jid//HM4PsbM89bi2C4v7tiBDNvQW2LxH76ZOWcvZujxZzhr/lnUjg0z8txmqJTpmjOIMaPCSFpDOhJdKQq6hiMknfoE3T1dRGmC0rLvPSkUsdIRpksqTdxcEWEYdDoe6Cn1yWGqe3ciii627pIkEbHr8MK6dRD4EIZcfOUb2fnEE1mXUb3ODNMBFREFbejphjCh99zVxNP6mXnhJZzhuozuO4BSgvd/6s9J6x32b9xI5VVL6HJsRifHUVqMnhpoEnQpSBEwrZcr3/IW9u7bQ+oHOMUix39yDzRrmZg87GC6Nk6hQOx1yPd002m36enro8stMrx9L+aCJay45BI67UmCiTGII1bd+jHa0wZZ2DuN0ckGoh1gh1nHURL6WI6B32kgjBQdUDqEaUAubxNFPhYSQ0aUdA0R+Jgo8jmbqBOQ6+kiCH2oV5lz3rnUWw30NEU/lXAnlcJ1XT784Q+j6/pv7OPPPPNMFi1axFVXXfXyz/75n/+ZEydO8J73vIelS5fy2c9+lhMnTvDII4/8hitpcnKSxx57jPPOO4/169dz4sQJtm7d+hvP43kejz32GIsWLWLt2rX/w8cgU0wxxRT/p2P8r34BU0wxxRT/s5k7dy6f+MQngKyr6Be/+AU//vGPAXjLW94CwMaNGwE444wzfutjOI7zij9ffPHFv3W9lw5OBZDEMYZpZkUkKTl25CjUm1AsggZrb72JZz7zJdp1gfR8BswSZhgwfmSEkQceg4HZ/OKjfwp6F4OlHrzmBFaxG3FGF2r4EJ00a6QxW21wFPurQ5x15cXs3LOdGLCljo/MIov6e/GHmlSWL6e+c2eWQDbnNGQqyPUP8vo3v4nNz22kxzV48XvfgbANcwZIj48QKw03lRgpJEhS3WLFomWce8klfOOOH1E28oiJFlbOJFIhRgDSgjRvgJknbdagq8yxffs5tv0ABBGpbNFf6WKi2qZQ7oXeHibaDRjo5sLr3sZTf/d31KQi6e9B+QkhMeSKvO19H+D2A/+F9sQYjJ0EofAPHeWK11/JQ7XDjD53mHyxC7/Zglyeie27eHr/XtxQYI1N4JCidzS0colDz23nUOLDzD7GjgWoYh5ERMsLIQx49J57iYIGVEqkY1XecvMHuesf/oXh4VEKukUUKzQ0EhVjGyZBKonG62DAM9+9B9DQlUKRZp05hoDRMQZjnQtmL+Rfv3InBVGgLRukrg6miZQRytAQSmHEoHdipmEgUoM4dDnv4ospnTWXu7/6j1QLLjQ9sPNs/fEDmLaNG0soFZl9yWp2PfkE7N3DD/fsycZaZIjeSchj4HQPMGve6Wx88glotinFJikpCZKOAVoKpBIlNFJdkqoEpWD16lex6qJX8+ymzWx64GeoVhOnUKSiu3QaNVJRgjDggptupJDqPPylb6A5JuRsRo4fw0yhbNnYQeZVeWmELufDLHSONXVGn1jPwy9sh4YPNZ8uq4Br5hjxOjh5jU6cgBKsuuACjo+M89T3vg+5PLTqyNQHU+PF275JXutGj3yGNu1h7c1/SP7yhazbfIyw00GOH+XZ734T+gYgTslZDnk/QPMUh771M3Z8+xFwKuxMR9H0BDoBxUqZVrtBIjQo5TOf0ZlncvP7P8ALt32X46NDnDywk0WrVnH6nJns2bqVA79aT14KdKkIHIdOweWyP/8ARzsNjvhNTp8+k0PPvYD//Z+C0sjHBjJIoNrGTixKJow/v5PH94/RfbCFETqIeSs46wPvZWJ0jNE9ByGSxJM1iBJmnb+KNe+5ho4t+Pkff5F1+3fD8nksu+F6tn75X2Bajq6VZ9Pr5Diw5Tiq2kbNmgVjw8xcvJjemQNsWvcE59xwLRect4YdGzbxxLfuwNICMDRq7QkKqYmYTCgmgqF2G4oazJ7BdD3Hvq1bwbVA1+moFGRMaGpopoYvfUigXOinOdnELRao7djNFz/xl+iJoGzmifEoYZHHYCiO8OUkCz/4PgrlEu3DQ+zZ+CDUAybReOTb38IVAj/0GX3ySU5oCpFzsu+7bpdDh3YSvLAFQ4vZ+fSTaLYNCm64+d1IEzZseoaRQ6Og6aSthFypCy8MsCyLdhTSSSIGp89kfHycYtEl37HotBN8S3HZxz7A/b98EF7cAqYFzTaGgvyERyMJMQcGiA8d56IPfoB13/omTOvnyW98M0tZ8AO6lcJTLbB0enIlJsYbYJpUtz5PeelStn7ve1DNfEkkCf/2hS/D+Bj0udxw3Tv40Q/uRB5PoZWSL9g4loXqhNTCDslQlQe/8jXQs1i4Y088RU8hz8TQJKVynqYEpQk6zSboGpe+/S3cf89dTBhtupYvYcXKV7Plnvt5ca8g2XGQigdS2uz78/9KafEito7thI5HGsVUhI5MUzTLwAs72I6JoWl4KibVJMIQ1KImmKAZJkJpRDLFdFwQktpYnXy5SDsJQUne/7n/wvYDezmyeycdx2KaNGn6LeI4pFgsYlkWURRhWVb2/ZFmY28XXXQRF110EYcPH+bee+/lvvvu49lnnyWXy73CifTS8cDv4r777vud900xxRRT/D4z5USaYoopfq+55ZZbuOuuu+h0OuRyOa699tpX3H/22Wf/p5/jpalhwzRJ0oTjJ4awLf3XY3JhBJXeLIGnv5fYFqTlIsMqJLFN0o4Ph07QP+8sWL4K2j4TzTqGXSB2dNZeeSl0FXHPX0lh2ULinhzkHYhjdt7/QCYvsgwmEh9joAvmnw61CTDhtW97E5Rc0CRvf+97qZ8YIu2E3P/du5k1bw6nLzsL+rtYftN7YWwEyiWEONVrI7JEME1oHNm2g6d+8hAgSJKEmCxymlZEKa8zMDgdThuAoJON5fltiEOWn7MapGCwMp3xegtbL6HpOSaOj0I7gd5BRFc3LDkbyl1MRBFe6DF/4Xzyy5fzX791J+3qRBZ7nwQgs0vV9UaLlZe/Hq1cZLTTQhla1v4VJ9CJsYMUC4lju9mEkBfD6AQMjbLqqitohA2aKmLNO6+nZ6APHA1DyizuOkig2eSee+4hardI04QoTXAsB8Mw0BHIJMZUp7wvCZlPKpVoSFL4dWJfCqO7DnJs0w4GugbosfLYUsPopOAnCDREmm0/qYBEB19oxAgCr8mBPfuphxHMmQVzZ+KevRgCnzw6arKJVSrC6AjHNm3hgzfdjFYsgUozH4uUpzKyJX51kmRkAvoHwXYQgIHAljrGKWm3EL9e0AQIwZFDB3jykUfZv31bNr6nQOla5spyigRJTG5wkMmJCXRdx+rpwskXQJ3adk4tQgiU9h+eQ1OEhBQcG6w8dBJoJxQMh0bUYTxuExoJfipBN8B2GDt+nImRk1DK885P/BlrLr+CfG9v5gMr5EhrVUpeCw7WGFu/g+d++igykfitNpg5GJ6AvQchVsRecOo9sDClwEgktFsUTJeysHCxkbU2hJBz8oDO3PPXcM6Kc9ixdRvNWo04jMB22L1lMw/85H4ObN4EAgwl0ATofgzjkzx+30/Z89MHCbZsZXzvQfyRMUCjaNqU+wZoCIXo7wcEDa8BI1XqR0dphnUUGuOHh9n46FPs27qDGz79Fyy/+gpe9ZaroKfE6PgoG3/5JA/f88PMdVNvw/5j7Hr4cTh0nL5psygGiv3fvgflRyA0Fl12EZTyHN++jU0/fwi8DoePHGTnvl20VQzlAoZUKCFJtGwbspRCNOqY0sBcvpS5V1xCYmtgCXDMLIasXOSM1asIkwCfFBwNchZWvoSKUqKOj+sWKQiTpOXRmJzEdAtgWURpQoSE009j3sA01PgEh57YANUmuC5xycGXHeK4Qc4Elxit46GqVWg0Ye9+gq3bIQhIbMAGGXfAMTh4dD/bt7/Ivu3bMHp6IUnpzuWIOj5SSjTTQpgOTq6EF4Sg6eiaiZ2CJaEwrQ9VyRHJDixbcCqD3sBMQUtAExpxx4dCkVVLlmXuKS8AJRBRiqMZgCJxbVppgud55JSAvE3lvFUsX7QAapPgN+H0WXD6TBgdBw3cVy1j/87dHNu3G0wNV+pEUUSz2UTFCRYgEpl53RIJaQJJQjA+SUVAq+7hFnIkfgCawZylSzl90YLsOzpo0dPTQ21iHPJFkloNggg7ibCkTzJaZXTXHhgfh04LQxcIAYoUYegkcUqapiRJQmoYSF0n1UAhUUhiUmJSEiUJhSQ+Ne6d2DrSNkDTWbfuKQ6MnIQwQBSLNDwPwzLp7+8nDEOUUiRJQrPZBEDXdQzj19fH7733Xj75yU++HHrxu5JVp5hiiimm+P/GlBNpiimm+L3n8OHDXH/99S9fqfQ872Wf0Uv+hP83PT09AHzyk5/8766nlHo5/UUBw2Pj9PX3cfnlV5EvlvnZj+/LYooLDgveejWrX3cRO/fuYfOvnoZteyFWEBvMPWMe089byPp7fohjFbGLeRojx+l5w8UkjsGqs5Zy1pwz8ObO5LYbboahMezYwvI7tIgyiWrO4E++8mXWP72BTT/4EYVlS5CGTmfHTl7/1nfw1KNPEsQxiBC0CGPhGSSjJ7nqrW/j55/5GzAL5Gs+ppSkAjxLYoYmoalnlyUMMxsxiSQmCZatiAOPOOdy6S1/xiO3/StCU6hOHUoz+OgffhzdD/n7r34eejWIFNf++V9x750/wD39TPzqKBe841qe/spXoOkxMwY/qdPMGZz/sY+z7l/uRIQpbtqhI8fQDQPhQXehn7G5Odh1FPyUwZ4+JsMmsZKkYUBXDKZhM5YzoB0x2DODeuDRySu6X3M+vh/iP7sZ54yFLJ7Ry54XNxOemMAMU+IkIc0ZYIrMsxKniERDZWdQuLqFTIOXW30lp9wvIju/TIVGYmin/DZa5ueRGiYGJoKSsIlVgCYEvuoQIVG2RmxoIDTQzczfEwKazF5HTw90dXP9ZW/gR3fcTujVcYo5gmI31BpZ0SiWoBkQ+qClaDKhEEs0qdFMNGROZB6hVGMaLm6S/R/7piTWJUJpqFMy9SirF5EkceYRMk20VBEmKZW+aWgKhNCZGBmGSiXrRklk9n45FqY3iX6qKU47dfsS6lSBrVAucLI5zpUf/RMObjvA3l8+jdlRxFoMZ/Yz+z2XMfTvPyY5WQfLhlhkt0nmV6HdyNwt/V0Ur7yUc4MyI5t2c3DvbgKRgmNA4NGlFIoQ6bg0oyDzTgkNuspgaiw4bzVxmnDoiccYKMyBmodLQuQ1kCQEpMRmDjmtl0DTkC0P6nUQElHMo7QUSDCFhhWnJK0Ai6wVvNvtxfcjEiQmDhEBEokkwkSQu/oKVrzhMvbv20UlSJk3YwZbt2/jxZ8+AomBmDYdZegwOgKuAXN7YfZ0DM1izeKzefHnj9Lasx8tX8CotjALNp4fYKPTk1qYps3sxfMZchQHvSrnXPk6Xug0uKx/Dk987TaisTHI6ZkN33WhqwLHhxn0fFo6tPJZEiEJlDsahu3SmF5Cm9ZN9MJmsCywLLpXrOI1F1/Kll9t4NATj2H1WkT1BpRzzF94IUe2bUd1fOwwJJERXdNnMlyvQaEA7Sa4DqJgoGojFLqn0T46ShmN1K3QVgEDN/4BuaEDHHp4HegCva3od3PEfkRCSnepn6HmBEHegEUFVlz4Rrb89MFs9C6KIO9ilorE+4+xoLeXWrtGahpElkMryLbxJavPY8e6Jyj09SPCgLwHpp3nOB702Jz2jrdy/prV3P2xT2CMNjHrbfqEybDrEMcJaBrmmfOJowhOHEfLF3H9DmYK0/Pd7E5HII5A6uQ7AV5ep2vVSrRIZ2LvYYyFs3jTO6/lvp8/iPzVbl734fczacZs+dLXoT8HExN0BRZ+V5FgfJIZuS5Cr0OHlPiUaNtKJYbU6BOKCRXRLuZQYQiGDVGCUSqR+BNQ0EHXcT0HP5GQr4DXxlYR3SpGCY1xzSa1dNCyjrJuZSM7IWEakNgGsUgpOTmEVDSiUx9yodB0idCy7xOUQCgDlIGuJI6pqEcBVPqh4XPD3/4t33rwHnoXLaT6nR8xr28OYbuKTEMMw2DHjh2USqWXLwIBr+hMeom77rqLW265hcnJyZcdSC95j37badBL+//zzjsP4L+73u/a/08xxRRT/N/K1DjbFFNM8XvP3Llz2bBhw8sHlbfeeisDAwMAjIyM/KcfXwjBLx56mHt++AM6nQ61RotZs+ewYcMG5s07g3Klm+6uXg6PVJnYdpDv7NwNumL+BWvQz1nJ5MkRRLXF4Wc3UR0+CV5KYAacc/kbmD59Oj/+4pehUOKxhzby/OAgDbcAHcBwed1br+bhH/4A2gFEKbQDvvrxz0N1gkIK7Sc38lLc2iP/+K+gBNbgdF7/oRv4+QM/Jtm8F+p1fv7831LpmoY3Nkkeg9SQJAZIR+LqBm4nxSgWqCYdzv/oH6H8iOduvxcR+ESFPKB45B+/htFpkxBTed151KsR//j3X0IUumDZWdDnw97dPLFvPVg+K88/m0L5oqzLxaujRz65MKEZeRR6ulj3T19hybtvYcc/fB2RB1OlkJqYukVSjdFbo9iFCkZBY2xykrJho6Quk461AAAgAElEQVQiSsHLCaIuk2s+9xc8+IMHGHpkMxXNJfVgzsw57DdDhGvBA9vYsvWZLBs86NCnlfFliNCL1Dt10DWM3m4SL8gKD0mMH0fojosMYwRZ9xFZ4w6m0tBE5iJWKisqaZpBJBNiMyW2NfxSAVVLQUpEqOGgY8Q6mtRIhCA1rKzQUdAhDGHmadiFMuHBI3zvH/8FIg/skCCSvObWT/L4v/8Adh7ATAVxUkM3BG4i0ZSk6aosOS61KbQFuUKZCS1k1IwpBBInBi0m655SCoQkzcKpUAIsBVYKWhhiAaVyD+PtNuSsrOOprxvXzGOEire+710MpT4bn3gc+eI4iZbVfZJTBSnt1PthpZBqCSfrbShbPPiv/wxGCWb0Ex8bgUIRxms0dgzRZfcyHtWxkGgmhOFkdjIpE6xSmSRJaQ23ad1xH7/sLWQFppwOpguOyZVf+FOe+eUjNJ54GrvVRgdSp4BYtpQzL7mYffd+l70bHgMZgkwY8Y5BVy8kGppm0ZVaFAyDiWYNvVanYFm0Q59iwUbXdTqtDoapkUQhQteIUbiVPGEQo6cxJ/0qspBD2haJiiEVCM3AjVOCTsjY1uc4Uq/C0WFIPX5VcChVpsNZ81nxvus4PDpC7d6HoVRicPkShtIWPP0syZwz2D48QevAPkgCpBdRshMKzQZ9QMu1GXI6aHqek7ueJ5EJzOvjhQ3rwFc8pe8halYpz+yhUT0Bpg7tECY8yk6Jph6TilMFUAMwoOHGEEeYxz3K403GY9C6csh2m9NPP5N9O/dy6PktiFyBpFkjX9QZXDSf2a9Zy74dL0DiUzQt8rrD8PgJcgvnc/Wf3cKPH/w5cyyXfff+iIFCD9rJSRwUoWHSthWFeQvokhZ7dxyGFHTTxrQUDV9iGC6Fnh4OVUc58/y12LMHGDqtmy0bd8HgUqYtm87oxChLLnk1O77+dV79/g/xq3+7jUrRQqqUlp8VWNZcdiU5t8CO/FYQNp1WE9O28GUbwzJIvJSjdz/E0dvuhXoDw3aJ0BhTKXHqw8AA+D5ub4ULVq7kiZ/9FHn8JHZvL5Mnhqj7gku/8Tc8eucdsGU3XTh4ZkJt+2aopUyr9DO6bQc/+Zc2cu8JcIs8fucPka3RLCptvAaGQ016zFy+khPPbaGuUgzHII5jpACQCEBHMqwkoWvDQB8LVq1i708fhUSgNyN0YRGGCUQBviV466c/xcYXtnLimafJSYGotlEplJyIprTRVIQeK5I4QHMsTD2HLySWVaBdbWMqRc4uQvJS8SgbXZUASpBioDBQSOp+G/pKzL7g1QzvPkIrVuTOeRXVuAPT+jk8XGXp6QNUh48zOjrK9ddfjxACx3Eol8vMmTOHG2+8kenTp79iH/zOd76Td77znViWxcMPP/yf3qdPMcUUU/y+MzXONsUUU/zesWbNGv7u7/7uN37+hS98AYANGzYwODj48u//R/hdxaZWqwXAZZdfzjdv/yb33H0P3/ve97jxxhu59aMfY2xklGatnnUqiWwcYWauB5oJ+x57Gq/eQncdFl12ITgC1Q7BzYOhEQrFrNmngbAw2hLhSUS1jbXpGJxsQAozX38eaZ8LtoUTKgpGESZa0Eko+AE9bikb94kk0wcGs5GvKGJicpxLr34jXXaJHqtM3i5TiAX9uRIFy8FxHEzXgbyD7hjYpFiJBMdknJBZK5fSNWM6Up0afdJ06ETMKJRxNcHc0+bwuuveDt1dKK+FmN7DOe+5HqbPoPr4Ojg5xIu/eIS9L27m4MYnQTVI3ZBhx0Pq0GnWwDK56OJLoKtC5AfIRBKHIUkMOhrFMEE2O/itNomUpFEMUQJKEekKrJgd9VHyZ84ETWBoBsVUsG/XblpDx1Ajw7itKEsImzcTNOitlLHQaDUms/GtfI6kPglpSt85Z2POmwMG6HmHROPlRWZNSggl0RXoSiJOndTl8nnQNazZ02B2HwveeDGsXABuJuCOhMCSGsVYUIk0Cr7A7mgw0YEQBpcs4i0f+yBX/c1fZpJlxwRfok/4PH77v0OrBbGkrBmYhXwWlnVqFAedLL2pp4RGRNBuZAN3hsTTJBESKSWJzG5lSnYrE0gTVJSgwhCVxJiJojkxwaJlS3n3hz7Iire9CRp1/JNDtIZHOXnoGM2gQzPoYMQJSiZIlS1KJKQkxCQkKsGMJHPcPG4jASOXyb7GxgGdillB77g073ma9qExdKWTRjFa2MEKUzSvBX6b+uQk7WabspEnLzVYdiZr/vrjnPfRP4JEZeJip0QBC0LFdM2gX3PAKqFGGkT1mNfe+CeYxWmYgc68FOa/73pW/vWfMnDN65B5mJAeY1pEaIKRs9AdM+s8i0NEmuDqOhXTptst0FuqUHBzKN1AGgZBl0Pggm7piDimoJsQRqgwoEOEn4NLPvu3XPi+W5h79oVgVKAlaT63G3Yf5oWtW6lNVCGIGDx3Ka+6aA0FdIgMeGEv9W37ssj1nA5GRLUQMi4UbRRBHEAaIIMG0hLZdvMHl3DV338WRj38g8eg5NBygHnTIGeCLsgnEqvdpt2l4bsapUCjtwWVFgjNhJyJKNqMezWEAukHUCgSeh3SMAKhY5wqFDpKozYxyWMP/iQ7Gu0u44UBCQnWQB/9c2dxwm8QaZJarQaYWF6IlJIWCn9aDixF+8Qxdt/9APJwFT01sX2Bg0MANJOEIVLIm/inD7JjssrkAxugY3LVJW8inx9g2RuvIT93PlxyEcVVK2DubEJTpxOFWeVXKuotnxd37IJY0Z6sMzAwSCAk7cQn6XgYiQ6HR2CsDamFiY7p5gltk5nnrgDbgDhgYPZMjo8OZ+mBOYfTFp4JOlilLnzHyUabRTb0ato26IJp+Tzx5BikiuTwEE4k0EwLeXIMit3QV8kqMm2fyrzZzF22BAoOyrWwSy5JpkIia/yRpEISCg1yNt2LF3Lm8uVg29hWDi1JKcRgeQmmYYBt0wl8TuzelUndyy5uxSDfrZHvzpPP23S5Lj3FIuVKkVypiFsuYhVymG4Oy7LpLnZTNvMUdAdH6gg/RXoRKoyRUZotoSSNVFbknTOHgVmzieOYH37p7+m0WoCg99LXs2LVKrZufoEgCJg2bRp/8Rd/wec+9zm+853vcNttt/HpT3+aO+64gzVr1nD48OHf2B+vXLnyt3YU/S5+lxNxiimmmOL3nalxtimmmOL3Dk3TmDFjBsePH3/Fz1+K/H0pylcIwaJFi9i1a9dvPMZL9z3wwAPMmzeP88477zcKTocPH37FfSlZIQGg3qxz6OB+XnfJa2g32+RyLqbtZFdicwVszaQcmoQKGjImf/Gr8A7vhBM1SCXFfBfh+DiaphG4RubKqFdBgNV20IM2KqcTmAFEWbEBL8E2ylTK0xidmABCLGHiSEVH+siciTQlWDqalMyoDNCeSMGwUTr4gceM6YP49TpR4BFFEbmcgxQdDJWNRUW6hmdqFMoVxo4PgaGBkeDMn09wfJL88SrTtAJHjAh50dn0v3oVs2bMZPOn/hpKPTAynkVrJxHk7CzyPRWoTohmWmiWTcerozsmkalhDU5Hi0OC4WFAA99GYGJTonvZfIb2bQERQ+pjhZKKoZEmEh/oWIBb4vKPfBi/5bHuR/chOgmq3QILiBLsOCE8vYe5l19MV6WHLV/+JrnIwlEa5Teez7w3v4Zf3vEt2HeMqz/wZyS1kAe/dgeDpw0yVD0AqoNhKIxGSh6LCS1C0xLKEizTZjQEChVYtJDz3vl2nr37NhYNziI6OczBHbvQkxT9VLOQdmrjkWjoShLLiKC7m/k3/zHN0RYjP/oJ6BLdn6Tbi+nHgQ9ew1lLlvL0Tx9m6ImnM7muriCV9FW6GB8dhlIO1q7m5j94F//6V5+B+kRWOButYrk58mFKGGXFO6nrRJYDmpW936mCJMFWCjMOCXu7iFt1KOSh4+EUugjqLexUZSezOqAkfX6KsAwSGRMkCRLoK5eQSUrT83AQaLrOZJpgoTHrrKXMv3gNx7SEPd99CCY7zLj2NVQWzGLzP/wbxIJZsUFbNUl1m6adaafMVMNJJH5BEiuJVu7BiUzSCMKWB2UbplWg2YTYwB5t0dszQNVrEZZ1GCzAyUPgRQxIh5GZRZjeA2M1ODJMQWk4SsNxbEa8FppjEEUJ00UOTdPQhUGapoCWpUoJUGjZaKMWkOoCaTgkicRMdQhiEpmQ5ARtMyI3bRkitfGOHKXYbeFFHooYlfqwZAGrLryQtNrmxe/fTzFQpJaircfgRZQGBjn/4zez01Ucf/pZOHaYnnyBiQ3rQTeyDqlGlLWZ5QyYPwc3l8PfvBPLE8y8/FLya8+hMVgi3LKL0Yceh2otK4AIAyeBnNRo6hqJLSAHl3zyz9j+6DNUn3kOKhVW3XADJ44fZfiJX8JkHWwbYomrayhSQpVilIq4J2t06w4y6tDKG9S0EPJ56ESQL0De5qwVryV4cisHJ45B2YTlp8GLLwAG+D5EUHRzJLEkMixSlcnrb/j3b3DP/T/FHx2DnXsox4KGljKrPIPjYY1r7vkG2557jsNfuweCgLTTxG6GhF02LO5l2uWXMvpPd1Os6rRyPszr58aPfIwfffDTlKXgKD4X/vtf8dT9P4V1WxGpg75oBmecvZg99/+ES9/7B6z/2aN4ozVcJ4efphB4vPnDN3PixAk2bdwIRxvQa9FlVnBGa7hJyKG+BIo5ODyJObeC8jWSsSaV8iB1z8NZMB81e4CrbvxDHv72nXi/eobV176Znfu20d69P3PKhUnWRSayz50ZgymBREPmc8xbvZyAmEMbnwXLxhIa8WSdoqHhI4nn9UGrTcHqRbY9kt4cke/R5eboDNUpLjwNLahR8MHqwLHUR5QKeBH0lvqoVkcoX/AqFngOe361nnzBYXj4MEKXKAWlriLNmgfop1ozE/rPWkSj0SYcq4LQ6F1+FlES09y5B5w8RC1u/Oxf8e1/+jrekZOYgHjZ76a49U8/zj/8w1f52Mc+xle+8pVX7JMXL17M7t27UUpx5ZVX8tBDD/3WUbR3vetd3HXXXXzxi1/kySef5KGHHuLOO+/8DSn3S4/x2+6bYooppvi/Gf2zn/3sZ/9Xv4gppphiiv+ZfP/73+fQoUMcPHiQa665BoB169Zx6623kiQJ999/P11dXdx+++0cOnSIXC73ivjexYsXU61Wede73sV1113H1772NQ4cOIDruq9Yb+3atVSrVT78kY+wdu3arBPl1KKSiHazxbdu/yZpEmHoGjKJcdApxBqGn1APQ3xXhzRg+VVXMDQ2yso3X83w2Dj66CSFJKEnl8fTFNPPWsyyt74Nc9583nfzu1l3390k0ofAR0PgFkrEaUJqCBa89Q0EeYvgxBAykfQWKkRpSlzQIa9T7J9GBZPm0TGMfAFPJixZtYLE0jh24ghtGZGrVHBLRVpND2GlKKFQQmGnEjdRRPU2wjKJEx+6K8xauIDFF13IoQ0v0JGAbjD//JUcPbqfNI7xhmtYkwFpK4A0wS7kSDttKpaJLSWtOCXSINIUynBA6pi+T2Gijqy10RMyz9DMPiprluLP6mLmwCCzly1keOgYCEk+SUkSiQEklk4sNYgEB3Zs5+ixA6eKbQF5P6UQJTgSYlfHThzGn9vJ8PZdIHTsYpmG16ZeHWfsxAh2qBMdGWfvzl3MXrKUEQQdUtJmFWSCCCOcSg8dO0caxxQdhyiM8ETKxTfdwOF2m4tu+ROe+dkDMDJBdfMmakeOIpKEvOuiaYJEpaSaItUUUpMgUgJdwvQKpauv4MSho7zqbW+hFU0QTBykUzIZ1xXj23ez84HHae07SrdTJIkS7HKZfE8PzShGBim6U0RN+Azv2IfRCsFXqGqDaW4FWj55y6ITBVimoBhp9IUmaaATAdd+4VNY86ZzsjqGHK9z+qtW8K5bPoxpuxzbfwjZ9tGQaCpFINFlAkLSdnW8NMAXktg2oLdEvd2gpcVE3Tk6miANYiJTEKPRmGywe/t2RvbvIXFMEpFSS3ykY+GdGAEpSMKIFIE0DGJdIFDop0bwjKKBJQVao4XyPEK/TXGwlzPWnsuF111De7CP+W+9krlvuIQdx/aQijZdr17BFde+iT2798GEhxuZhNUq2ugk1NpohkVqaGh5lyBJ0cIUMxWIRKL6KoS2QRtJR4fA0OmYgsAQBAaERqa2asmYtiYITYNQaYRJSqILVN4mMcF971XMeusl9JfznHxmI7kkJSYGQ8Gkz9CvNlHduoc0J9ESCYYi1mOMUBK1O2ilbhYtX0U0FtDtFhnasRuaHUAjH6cYocLQQCYSNTJJMjQKQtEdO4weOM7I+s00jo8Rrd8BJybIhwGRIzDSFENJhBJEuobSBORztDsJ1Sefh1BQfvs1DEU+ncDn9NPm4lUn0YKYQgpmLNATHTs1yCuNJG8j+ssMBS0KloPVSchFCkMHrVJkzppXM3Z8lKF2k/JrV/P6D9xAPtEY2bYfOj7MLTPztNnUTo4gEaRJCt0VMHVe3LOLpNXM3HKTDYTXIrHA7MT4wSS7jQ6Tm7eQ33IE4TdJlI9tF4j7iqy6+mrKrYihdc8T9eTA6qCdfRZb/u1OAl2nrUmMcoGwL0/rmeew0jxW02ftNW+g0Woyeegoh3a8QDzeQI9T8sIgVAmYGodGTnJ80xZodaDbgnPnE5wYwotjwiTryqPmc0ZaRPkpSRphOw6tVovFF1/MgmVnc/DJx9jbahBt3Qq2xckjx4iOHQcvxtVsEj8TgWcI7ERk26iuEccho0cOUTt2HBwXOh3STkBRt9ASiSZ1Ii/gz7/5bzz9yyfRcg7lC5ax8pKL2bt1N8vd6Rzbf5DeXAljPKSS2LTRsOwcRT2HORnQN28eZy5azIZfrSN2LVqtGhgCodKXC9BCyxLd3FIh8+wNj5C2WqdG7xTekWOEwyOZNzANmXnh+UzUGlRPDPOZWz6W+dTUqRlbAfMXnMFXv/p1tm7dygUXXMCcOXOArDD0+OOPs2jRIj70oQ8xc+ZM7rjjDtavX8/111//cpLqunXr+PSnP02SJDzyyCMvr/eLX/ziN9b73Oc+h67r3Hvvvf9/Ha5MMcUUU/xvyVQn0hRTTPF7x+HDh1myZMnLMk7HcajVaiilXnH1ct26dVx66aXEcfzyeq1WiziOX9GhdNddd/Hud78bpdRvXW/nf+hkeimUK4lijh8/zspzziEIApSuoXSNLk9HQ8M3DWolGLz+zQwdOcLiM5ew75nnWXbOfI6+uAt/zyGSep28UyBybdptD2vaLGSckpQDaE5AIilHOkmzjXBc2nEMPXlmveNaZhd72PGlb5Jz8gzXxsnNmMbKN1/G87u2ccHqNTz2rbvpMXM02zU0y2TeWQvx4phjhw8B8I5334BKJd+78y5KdLBT+bIoGaURKw1PA89UzFu2hDNWLOeRb98GZhGkDhNtSBLorqC5DnKiyp9+7q/ZveVFHvzRvZRMHa/dxDQg0AS4Bqdd9GqOvvA8TKbgS2zTQO+0KFsO7TjE684hlQ+nn8a5V7+Z5/72G1iD/UT1GkbLw41iNECzctT0FNHXjTHeIE4jEAnkc9AIcFMd23RIdUEr8SnJPKkMcXp6mbBj9LmDpCNDMOYxLS0Rdeo4OAw7nUwifc7ZvOGat/HAR27B0k2U5xH39YAQmHEOVRsi0UKwYPa7r6NW7qdVrVOa9Gk++BBF10CmMXGcuUOUUlki2n9AV5Ik7xBrKX3/z18x/sgzWYeIFTJnzUKObNoGuw5CR0InzsS5Yczgq1cz7IIKPK760If5+e23Q92D9TszF4/SEImkq7vMifGhLLo+9kATzGwpAiFo6Cax7YKmYbh5kslxQOL2duMH2ZgOjSakKvv3xxGakiiRjdMIpWElJoZroxkGXugThgG49qnRR4Gp69D0iHvzWepehywVr5CHgRy4DpxoQZhmLVpRBEiEaaMlCXaqkCKTmce6RIUhwhSYjk2cJOTLFdqTVSiXM3Fz93RoKsgVwa9BTxd0POiElPwYK1U4QlBRECQRVUtSz5kgTgmnpUGurWH4MTqCmjkJSkOUyqAUQmaHWkL92iOQb3nYxSKjLQ/NtLGlSUlpGCgiLaEpPMKeXDa+2tIoTHoEVoq4YAGrrr2S9X/5FajGnJHr54Bdw/QkmiEIRUK+meCIHBOmgrwNogitSZAhwtKxAh9DpVhCoAREuiDVTMKCycCnPszp28d45lvfRRgaSkbkpSKHRY2IpGJBGkAMhQB0DBI0Ytch8mN63QrKD5g4e5BlH/ojrGab5z//RdzUpKg0cgiCOCGxTLyig7F6Ke1NezBaPo6j0TJ8yANpSsVTuJ4k7OpisjoJJZfu696IYZl4W/bhPbERo+hw0zc+xw++/M9MbtuNaeWIo6yIlJ81yMrLXsdzz7/AG17zejY9vZ6j6x7NRj7rGiuuexPxitkcfeFFuOsx9KJOzVKIiZCF734zB5/bihiqUQlg1G2x9v3vwxhvse5nD8OCfnpnzab6s6fRXRc7SCl2YqRuMO5EkCR0uWWaSQ0n1dGFQFoWbVsDrwWGiTDzaKEkLdq85wuf4Wd33M3khk3Me9W51B3B5L5D6EcmSR0L0jqkCYVSD+0UcOzss6krXnvT++lUJ9lw74/Aj3A0g1wMsUwJTXEqFQ1yMdgSJrQO/Df23jNIkvM+8/y9b9py7bunp8f7GQwwcIR3A2AIEHQgCZAiKFAURWppBUlYUaJWtyvpzO5RJ3fcVVDSinKUSAmiKEhLEjQAYQjCY/xgTI/p7mk7bcpXutfshxxQYogX++EOX27rF1HRJjIqKjMqq/J98nmev+8QCA+rDSY1FJwQx/FIVR5flcUCvTfsYaG1ANPL+KUSwZu20Dx+AtlQbFs2hKPDTK/U6Emg7IWMewkDG9dw2Y5LOPKPT9A0Clb1IraPUQkDZl56Gap1glbESF8fy9UaKvRJlc5dalEHAN/30VqjlcojhfkHYS4k+RIQlPuHmTt+inK5lE//k7mIpLF86IMf5st//WUA+vv7ieP4h9/3R48eZdOmTcA/O46EED8Uh14fgvG6I/l/tN2Pczx16dKly//f6XYidenS5X86Nm3axNGjR7nnnnsIwxCA6667jqeeeupHLgZvu+02Tp48+SPbrVq1igcffPBHIm4PPvggZ86c+R9uJyC/krfgui6hF4KVWOFgrCBJDUYKEixNrcB3uGnfney59RZee+Ip1LlpDnz/B6zMzWGMIQVix9KxClyHdHEZvVyHmYV8ZHnmEKaCCj4iVjjCAyM4/9Qz/OA73yWOGqQqARc6vuDK22+ltHo1Q5u3subSK1hutbCORDqauZkpZmcmQWUQx0xMnSMzmp7B/h97jFutFpViCVZq9BRKbN24CXZdki+6sw54EuGEOMsdnKUWpIq//cajNE0M1pAlilD6efNypqBcZs2WTXD5bsSmjVAMSVRKx5WsBIKm1Bhr8qLfU+d46St/B0WPdH4OGg3Kfogk70ppphkIsI0qWdLBtxociZPlRdgWjfUcEgE4DrYUkADLy0sMXrqDa951NxseuPeiyyjBRaGIoa8MJuKSO27liWe+B+USVubPuOf2vfTfdhtZprAiQJaLIGHqmSdpHnoVnvgujbPjCAE6zVBKoZTCGPOvBCTIxYiKcUCBaERQ6YPXTsHR44QZXLb7csSa9dCs5zEPq0AliMDhxn134G7bwtcf+Qpjt93Mvo/8FKuu2olVbWTooBzNYqtGad1qbnvnPYy9+VboKVJ3BTUPsoB8Iec7iCQDJRAiQHXyPheq1TwuFYSUSyX+9auH1Cia7Ta1RpNUQWXVash03lmFIOt0yISBZjuf7CYNSOgRPrd84AHu/uTHGFu9Dtp5zw7lIs62DVgVoSV4+p8nvlkhKQ8MYK0k7cRYIWg1q1Ap55PrhETWWpScvC9sw5vv4kOf+QxX3X4HTpo7fJQ1LDkJF3RElQhtyJ0tBGD8vGwZaDgO/ro1FIfGICxR8AJEonFN/pp8nf8MFGjHoZrE4Hv4/b1kvqSlUzrWkAmLVy7CujG4dDfFngomjSlIh+2bN1EMQigVoKdMnCaQQSHLY49YUEAmLPSWYagPihI8B98PKOCA1fiOg3AclLEkmSHNNBiBXbOWGavBMViZ4UiNxaAdg3K9iwXrQD5cCweDjyFINQ6GVlQjJaX/lpsY6uvl7KmTYC0lx8XRCgdBKiw6dMlKIbfcdz82DMniBFMo5Z8xRoNKSY3GZimd+jJB4DO8eTOX7tjB0KoR2ufP5cX2YYFvPPKPrCzXQLhYZC5CphlpvcEzj32LzavHOD9+hrnz0+A63P7zD3H3u9/DsSNHOfL8izReO4mDQQgNcYuK67M4M0ParNPXUyRJWyBhz/BqaifPIVzBvp/6CTZdtgsQrBFFRKeDwKFmU0SpTHloFbLZITQCmylUmhGpFNIEsPSsX59PL0sUbi3m9FMvsTIxBUJw/VvuYqVWg3oDPdgH68cIhofyuLIU0GohlYIwhEqFq3duZ6hYAKUpOB6hlQhjcEV+mf96lNKIPL3ol3xQGpPFBEJQdkJc6WGQdAykgU9sMva85c0wPQ/Wp6x9mgdPQUfnTqViwLnGIqWxNURhyJIEb+MYA3t20iq7tF2LcgXS99j75jsZGB7MBdcopuB4eaoWS5plbLjmKm5761sY6OsHY1FphtAWYaHgBQSef3EnAL+Yd5rFMeHr/4e89OniN+2XvvSXPPnkk+zcuROAMAy55557aLfbPxSQAL70pS/x1FNP/XA7gF27dvGlL33phwLS69t97nOf+5Htrr/++n91zdClS5cu/7PQdSJ16dKlyxuMxSCQPxSQXs+1LV6osmX7DtoqzQUQR7Jmw0Zmm3Vs1ModBOvWs35sPVNPvkBJ+rQbM7hIrDHYUogxWV7a6vhQTQiDEiMCatU5eoIeOklCjJ4LaPAAACAASURBVMIv9lKP2ljXZWDTRlbOnKaoDZ1KAJvGcrFhoA+0yCdXNTIqo6M0Tx6mZDO8MKDRiRgeGaXebJJkGtuJICzQT4pnTD7WnbzzxQqPWhQhyiFxs57vcLnAZ//6z3juhRd45v/8PF5LUMTieCVWVvvQA8wtglOhUMtyx0LaIespkeoOrB6B2hL/4Y//mkce+SonXniaynWX09sTsnXNOp76rf/MkAlx4xiLYWW4RFZr0zs4SDS/TICLLwosC8W2972V8dMn8CdnYLFGKXRIEo3vS9qpQZcqGK1x1q7june9hUOvvkr7xUPc+Ru/wNKAx6FH/gpemqS35aOyjLYXw3APeEV23nMvJ/YfhCMHkeUyplrlkrvfxYbLruCxf/oGXJiG2kIeSSoUYGwdt7z/AywfO8Lk9x4nXq7iuj5BEKCUwlp7sVfnnylmULaSac+HN13JffveyWtPP8PMwedpUIOOJjQFHNtCWvAQEBRZCV3wBRgDPb3gFnE2rEaffB5EEWaroCUjQ6NcqC7irB5m841vYvzJb+dTuGIDkY9XqGADn/KWddSOHAMlKbYVcW8BE9XAQlAuY9pRXiD+L5xImSPBOtx0/314xSJP/d3fQuDy9l/+DG6xyIsH93PlZZcy4Do88mufI6UNNgOvhDPXQq/rh/4Qji2wKRjmXLIMm1bz8O//7/zd5/+Q88+9wlDLkklD7EESOGB7Ka4Z5vrbb8UWBE/+49fgwgVEsYJdWOGyy65m8zU3416xnb9/5A9zB9bELEw3KEiXxDUYtw2JhTjFDyqkjQ5e3zBeoUTHGuh0oL+Huz/8YSYf/W+cOHaM0PMIHInINI41SGsviluG+YLF37qWez/4IYqlMn/x2f8FhH9RQGlBf8DgB3+ClU4H+zePUa5pChYidO5mUUAq6A/LyFadHm1peQ6LRZ334YQFVr3zVt70wDs5+dx+Tv/en9HnhiiVYaWlHXXAdRCORHguBgNByBW/93nmvvkYC197JHfoqdzIplJwggo6y8CPwYCXga9AWElMPj0QR+Zi4oZhWL0aJqdhrsZwoUjWjpDlIitC5V1UlX5YdwmXX3MVfT1Fnv6jLzC4cT3Z/CyN2Rm8NEEKTWISSiuact8QCwWdn2vbtsMrp6GZQKMOIeD70O5QtALhCmSlQLO2AsJF9q/GVGtw/WVcffNNnPvK46zEdRAroGHrsuVcvIS/pkJ4QdHoL6FtDNIlbFuG3SK12iLFSj8LpgrX7obDJ1jtrSabn8MODLKc1GG4CJGBxRZ7Sqs425zCd0KsI6mHEiMU7oa1fPgDP8UXf/N3EFHKxp4RzkQ1CCwM9YNJKd96B61qDV49wkf+5I/54sc+BLUa/X4RHeddR420Db6kb3iU2twFBgtlOq0IV1kC4dARmo5n8wJ9gCwv1U9shyCAIJFYZclw0OUBMm1g93aGrtjF0vgJim++lYFI0fyDR7mib4xJs8xstES54NNq1bjloZ+hWXM5/NSzxEkEQQvGhundcQn1J/fjWENxzTBKZWQLF/BaMerMJEUsUno0hEEXJG/9jV9jXd8AX/65z9KJOkghMdYQ+AFJmgDgez4GSFUGVrBqYIi5qal8v4IgH+0oJIp8d3+ceN2lS5cuXf6/oduJ1KVLly5vMAKb3703r9vy85umQaXAH/zVV2hWlxADA6ANatsq3vrQh3HWrmLxlSOE56qo187hJRk6bdOrEnxrQDqkroRA8vCf/REzOqJ+8ijKh96mJtYpTUcgr95BK6sTh5ad772XUlhk/uBx+isVItvBBHD1+9/Ftfe/mzkh2XHzXhZ+8DzhrTezYctmPvmhD/L4P36dnkofJlbE9RahhqKVFF2fopQ4RuXdMxcxQqANeEFAs1YD189vf7cNzz7zFJOnz0C9SVGGeLh0XINaFXLNpz9MVAiJD51AZg5aaTxRoKMUFIqwWIOW5ulvfYels6chjhnbczlpkjEzOY0WktbCIiL0iZUiTTNk6BDX2/jlPtI0j2MZV+KMDXHrXXdS8kOmT43jZiZfZxmLLvkopejdtRvtl2gO+MieIvHUAueefYGFZ56D+SqyCWGm0K4m65H5IqaR0TyxiJ6chcBgbQS+ZHF8lrPPHoDdG/n4z3+c8aefRbQ6DLi9tJspU8+/QDsU+P0O6UoTaSDLMoQQGGN+zHsKImvJekJIIo5/50lsq024soinMiq6QL/1iL0M7VmslCgryARsuPpNBMOjtE9PcekV13Pdrt2cnDzNyPAadDPFU4J+G2KTFK+RUD0+hYosjK1l3933su+OO3n5macw0rB93y0sSAVpm767bqd97mweLbPgOS7S2DxqQq4wGmmxvD7xqoMvHaIgIK01OXV8nNPnZ7j8sit44u//nsP7nydYTskiw82/+LNsvvYqLhw+iV2oY9oxSEs9inFWDWCjFs9/41EacQrNDmEGVli0BOX4jF12K4MbNnJ+scprE1MQp2BcSC2klsTzOHTuCMsjIeHuLazatpXaiUmYXGaYIiXt0WpmjHY0FWWoS0n4thsY+/DbWdzUy9s+8VHOnZvDnDrPmadfYsltg2NQviBxBbGrSXsCWjrBln3c3hJpS5GtdDh+4jSHXziAXaizaWwDvdbF1pp4nYSeJ8fpee4sidVEhYyOr1DW0oOHFg62VCQSCbFMsFawYmPYsAqEB502bV/jlVziyWnqR0+gBWhf5u4lz4W+ChiNNVke51Qe83/zAu3TpxEmwUkVlX4XXfBwfJ+gnnCJN8xi3KSnp0InSck8SVr0MaEHo4Nsee/bGLvzRt7xwAc5++oRkjPnQEqs0FD0qOsmXLGVNXfdwoYbr2c5dZh74UXqSUocR+y67goKlQJaStrnZ3DbCb3Swcs0VQmmJGDrFvZsuZSF7x+AdgKugk3rwfMplnuIFucp+YK41UC7IncodRKQgkv23kx1uUrt8Dg66fD2/+PXML7Pyiuv4gWSlquIhWLYVmg3IhACJRRuPSZxHOqeBunC+RUc6+M0YzCGlR6L/44buPRn7mPh2VcgMbjtDsKVCCRWQOKIXPxXGfufex5sHim70GlA4ODcdg23feQnmZiZ5YG77qM2tUD97FkOHDoKSQsCj7jewMQxvhRYFBpQjSaeMZhYkUiBkZCQi6jDl25jz+03Mz1+HIIwnwRpEvwsdzQiHRIvQK8Zhb4CPffcQtVJYaSf7LmXuXnvHVRfOMLK/DxLfkLiKrI4Ye3ACPv3v8TM4TO4RqLilLf/8s9TWr+OPi8gOTvHhz/0IXpHhzn9zAv0tzMKnQzRbgBQtwbjSSg5jJ8/zas/eBa7UEdICULgSEmmMjzXQ0iHTCk8xyEUkoLr0lsp89BnfjmfkunkMVhNblbqikhdunTp8sbSFZG6dOnS5Q3HXrTcix+6kJYbCTJ0ef74cU6ePQ2NOtJzySoucrDC4vQcnROTDLYtRZPbl5RUhDZFINFCkroOOJJOfw+btmzizLPPQJpScALq1pA6GcNvvZXGtjVgMzqrhtmxfgPnDx/FYMnSNriSdk+J3t5+zp08w/b1m5g8eJAb330fjcYKTpxw7sw54ihBaksxLOKoXHB5/SFt+qN7KwTWCpCSKIqRjoNUlpLwSNs1qNVASrSyxFlCZlMoSyq7trK6t5/ZI+PYpsJFIoOAxGbgB0jhUMxSlOfjVCrYdkzt9BStqXniyVmMFKBapK4i8ywiAevmx165PlL6KG2gGNJZmmM+ajN57jxUmwz29BHFEX39vYj+HqI4IimWeMe738uBF58nfullqEaU/TLpcgOZSAYTjY8Ba4g9y5veeg8D/WPMHT1LMSiQiQikAjRO6lHKJIkTURjooX38JLbdQqUpSSahXCLzNO/76fdy4rlXcbVAa42UPz51bgRE0sD6VWz8ifuoHTxMpFO8tE3iWQweWIdqUZF5kLoidwD5kmvf8RZuuuM2Xjl0iIIf0DvSz1nVor1cRS1X0QP91BoNEmMx0qXU20PciXCX2hSVw+DaVRw+8BK4goVTp6BVh0u2E+67jvfvvYuZE+N0OhE2U0j7L+x3Ihd2XCsItEt7aZmV83PEy418Clejg5meJ0oNnfFxaNfIliNIMpYLlrMT58hmlyhFGQKBcmFw3QbaUROSTu5CWWmAEXgarLQYAcpx2XLZtVx97ZuIkpj548dy15Dn8bGHfoGo1WL69FnodLBpRkVJnIUatSPjyEQQ+iGtVJFZjbd5lEWVgAMqSmlPLGJOz1KbXqQ1ex42j3HHJz5EsG09S50mVAKwKfd+8me5/KZrmW+sUF+ao6MiTKUCJQ/Ghrj1/nez9/53MTl7nkhqVhoLpL5mJPKpYLFG4ylNJYZKJ8bTLo0NQ+x431sYe+BuFvbvJxYCeotcd/+9VM9Mk7UTUBlFR5KcmKS1sIj1JCLwMSqjtH07onzRWdTbkzug6hGOllDxsbaN9QWJ1Git0EaRJZJApQhf0E5iTDm8qERYEIKtb30Lqy7dybKK6YsFh77xLWhHeaTSERjPoX/3Dq7Yt5fXXnmZC4cOsXHvPmrfe474tVNwfpq5ouCGd+yjmURUD51mqJ3RayWpsLQGCnDZNvrWb2DmW89TmFvEsw5Zv2X3+97LYKmPvmKBpTNn8O3FGJ6wWOuAyc+lnrFRlqorREfPUNqynvXX72Hi5EmcY5OkUpF6Gm67nsuCVWRTC3jSJS66REmK6g2g6MNKTDGz+MoiHYnVlrhs2fLufajQZfm7L0KkCJVFuRZB3j2lHIGxKhdWhYBGB6UUPX1DBMUKI3t2cMWN13HoyWdoTi8z8fKL4GuG7ryFTm0JlpbxCyXcNMv7ghxAWBwrcK3EsYJYgnQcMqOhFHDPT9zHus0bOfDyK5AabKYIVIZjc9eoFg6p6+WDBbKEdNdWgm2b0M0Ijk3RaDeZO3oMii7t5AKXvSV3SPW3NMsrNYgtIyKgrCyVoT7mz01y5pUDMLmI1IKTZ88glmp5kbtSxO0mDoIkcBCDfVij4LJLICwjJ2b/efoEoK3B9wNSleG4LirL8ByBFFAslnjo4V/Mj6PMj+/rnzZdEalLly5d3li6cbYuXbp0eaMx5uLV7UVBQEJbwpKG+z75cU7XFqmfOQvHTuRRo0oJ4hg/slRSg2Mhk5C4Bt8kCOuiREDL87CeBB823HI9ammFmfFxnKUmuhyCJ2HVAJf+m48y2NvH4tkJXvviX8PcCngubhZjR/rR9Sq4LjhlMB7h8ABxb4GNN1/HxPhkHkdpNLlj7z6e+uY36BHga4W0BscqjNS5u4R/McLcSIR0qVareJ6PzTSekLRI8rKagk8wOMx9976Lb37n29QmTsPm9WzYuJHJ7x+k2JII4dAWGi7fAieOQqJZbYssJ1WM4xOEJdpRBo6LXDOKiVa47dM/zdOPfxPOniE43ybtK2CThJse+CBHXz5I/dRpRLmMVW0YG2Htdbcxfeg4HDzC6EAvC8uz2AIwMgJKUNmyh+ZrxyDw2XPpbg5/+3ECoJ/cBaCEBiypFFRuvJa9N+/jyW88y9zpEyDqQIJjLK4KkcYj6vFAWoLlKgFQ7B3Cv2QPU9UlmD8Loz1UajEy0rTbbRzH+X90I6UYKAeMfvhDLD71Mvq14xRNh05gwJYQmUclywi0+mHMsOmD7i2RaY2TGcqxpW4zVv3qJxjo6ydtNjjzxf8Kvf0M7bqUrNmi/vwLEPYQ6hLlJEM0l3BLvczFy3DZWq79lYcxOLz65EvYrz8O84vIIMTHoqMYz5VokcfZtDRoSV6GXSzm54UyrLnuRtxSmZv33s5f//lfwNw8tJqs23Ml0cIySxdmwaagFcU2FKSkXZbEwz38m3/378lWGvzZf/od3ExhsxSwF6eHgcUhsTLvQPJcqK3kv6d5/xZxhFcuY1SGzpLcOZcpWLcayiG3/uqvkFk4Nz2NOHaE5VPjpKcmoJURyhA3LNBKmozceT3969dw8sgBwm27iWt1PvWJj/MHn/0MTE5CpQLLy4iRIXzh0BeMsDAzBzqBwSFQhiBVuHGCqS/iB4JClvfUVAuGzFNgoM/4VJwSc1rjDvQTlwUsTcBKgr91KwPbtzL/j98nsBITWrKkxbABHfqspGm+wh5Yxfs/+Wm+/9wPyOKE++65hy/8/u/mheiOhg0jFNZsIhqfAKN453/6ZV45+Cqzf/o3lJc0PV6ZFdcSBwmMDbPt7nvYvXknj/7mf4TVw3nvz1wdtMEJfHRzmdLwIO04YnjjJpraEs/OwuoN0Eigv8LI1Zdz4dwpmFsAJ4DFJWh1KHsehWoVFUj8O65l0117OfzsS7iPHWJDx1J1DDP3bMaObkVOLWIW5uHIIUIDngepBCUk0oT5NDmtYNUglZohWj/Mvl//FPsffwr5F49T1TV677qWoffcyZnfeYSx8SotEhZXhRQv3cZgqYfzR47BUptSFGNQRAXJYCRYDjRUVO7uGq9TsT6JJ7CuoZhJpIVMSoqb13Jh8gzuts2Mja5h6uRZmKrnItfWIVg3DJNTFKt5jFJfu47ha66g/tokWwdG6at3OPHE9zCdFnHWwQiJsBLH5A9V9PCkQ6PRgJ4CDJTzIu92BFFumCw6+amXSRclJdr1qOzZzZv27uXJxx9j3TvuoVBrMfGFvyKVbUY378A6lq3vvxsRJRz/9vdZM9FiPq5RKZYYUD5JvcWFkSILqkP/wAh6vkbUVyT1DKV2TE+aEboOszPncX2Httb5VLieXn761/89z37nu5z5b1//kc+4IAiI222k52GtBaMouBJHSPqGhpg6P4O1FiMc/uVipisidenSpcsbS9eJ1KVLly5vNFZfHEF8seRUQktAR8ITx49w/PB+mJvBiTuMJQ49tTqlKEU7UC9q2gVDJg2u1XT83F3haQ9pPISSaCOon50iOTfNYCYpex5pJ8XNHHQNLnz9WaIj51l56TjZXI3esIiXKlytSVoNHLeA17EMtTLWmACn3iJxDHawl8quS7n5Aw9y5sWXuPqufWzbdQknjh7CQWGFQdsMR/zzreO89yZ3IkkkcRTjCgeDJQkdrO+xesc2imOraEyMMxV1UEmKbWTImRrVMxMQKYyCREoY7eGyTzwAW9bQbq7QurBMqDOEVUQFF9YOccPP/Sznz5yARofdY9vZ7g0z+/wxBCmZNeA5ZGOjbNm2nWoSk60sQasJKqPRiHjo//q/efHRf6JVb1IeKJP2l9hy662oSi/NQyfp7R0kmZ9DXLeDXXdcT0clXKgt0+5RRKElktCfCOYXqhzZf4CWyChesZPs/ASVVNObQsfXJAULmYNoNOgrSDLXsiIy1t59J7e/515OTU1jp2YRnQR1cTKblPLHCkihgmEVoEsDVPcfxk4tUkw1ZZPS8cg7svAQhh861zqeIC5YjGnASC/9OzdQm58Az2PtyBWceOkwwyOrWTYOzM8wdsUV3Ln3Ns5OzSCLJWIV0YkbdIyllcUUK2Wy2SpisoE9OsvSP30fWi0wCqsUKssYWzVKFHUQwmIkGGGR1hAqi2kn2HYKyqIbEWPlAU69fJD62fOgPEacXhYGPa697Ub8I9Nk9RpJMSDzLTLLsHGM6jFkY2PUzs/RfPkEPdIj1RmZDwaLr6GoNBEdQttCNuvILKVkOpR8iFttCMGEGhtqiDOKnYwCPoNbttF/8w0c/rt/YPpbT9N68hCto8fQSQZLDSQOY/39ZO0mw2OrmDtyiOX9B5BBhezEPJw8z6GnXkDPNXE6FrHcptd6lC60KNUilmPNVW9/O+/49KfQ5RLzrx1HRwkYhWMVjgPLBWgHECpDJTGEGkxvgUXTxhQ8VE8JzkwzXEvZbPtYWVikXm3TR4CrDR0iKEtMYtBKExQD0syAH3L0qR/QXFim3Wzzyte/iS9cHB90T8R7Hv4FjvzDszDZZIxV7D9yjMaBwxDHlCNFYiRtrWD7era//71MXrjAsa/8A73br+SjH3+Ypg1Z2n8AsgSbdqiMDhF3WvkArZUOlbombEiiuUVYO8jdd93NKjfg7ImTsHyBtTdew7odO2jO1xBxiuoPyTJFbWKe6WeeJ1uskXRiMtUkdS3x4ll23P8BlqZnYfwkhcCjz1WYzGBl7oATVhBo6DWCTtzBTVMGL9vJgdkztI8eQ81W6Sv0ceH8BIsvvMjA9TeyvLBC4jjogmTjbTciDk9TPTEN121HuYrMB0TCQNthKBUYp4jTNGyMfRyrqYYa4wmkEfn0SiNYXl6EngoPfPyjPPvEd6BRY+evfJKl1jLFe25g/c1vovrdZ1iz1GZjEjB/bpzOK4fQWlANQyaPHCeanUEbgxQGLQXSeIDEsQ5Ca2Sq8ZEoo7FpStjXj2om9NuAwCi0dEkcSeo4WOmAcLj+upvocwJOfutpGsfOsPz0c2hVQ4z0oMen6VNw5MUfMHXyNFG1QaY1Zv0AkV4hiZoEvssMbWxPkazokxQ8bvnYg0zES6wfGaY6N4tyLc12C+WQR5yVgERy6NvPsXL0BHgq/5rMB7ChVMbOPZfRjDuoLAVjEW4+4tAvFfn5X/y3qIs3Li6afH/k0aVLly5d3hi6IlKXLl26vMFoITFSIiQIaRBG4CUZPZ7Dz/zsz9K3cxt7Hrif6U6N8rY9zM7Ps+vBn2T+1VOMlAdp1loUVg9jVppkZZBYhnSIThwipbEjZegsIshwooSlUCM1YBSYiD5rWc4WEO0GmZuiozaOzjAmw3c9Sq5P0fPIjCEWGrfgY5OU5sI8rYmTnPna3xIoy+nvPc3kwYO4rqVlEvyeErVWA9lTIGlHuNYhSF36e4YQjsPKygqu0Oi0gy2CdhLIBK1Ice9nf4EjL75IMtWgcqFNsdMEqyh5HuUsRuCQeils6eWKa69h8i++RnL0LL2lAAefWFuM9EFIdl1+ObuvvJJT3/8e4xMnGR8/hkpahEAqJXgerdMTzLx2mmyphhslBAKs0bjG8vwX/5je0MOxBq0NqtZh14ad7Fy1nkwL9n3gJ9l09bW8+qd/yez8Sfw79xBPHcOtlyCqsOHG25lZMwhLKcXUx2so9t5+M0uNBnEnoz+VxEqTCYd+EeBkCbHS+KUKsdYsHj3Fa489STixwkjsExuXGIPZMIq60KYv7KVsHVTaJtOacHUZr95hMfDQSUKpIwiMQ+Z4NHqK+dj6tRvYef/9zMcrJHNLuK5HpCJkIaTk9uH5Zfa+930IU2bp9DTLJ1+B5jzN6jw37dpBORWcffQ7nPz64+jpOVaV+vjwr3yWck8PU8dPYFQLv+yTyQ6NCzNUJ87Rl2bEpXLugBuoADENz5DpFJmk9HoFdJwhlEQIgWcEHg5FHGQrojo5RTQ3h5PGeHGMaWckF6pMHNhPJ6pjHI2yEcQZSIPrCHpZzbknX2Tm8HESazGeR6wSht5zB51ohawSEFWbSN8SSkEpCPANBNJHJQoj8ul5+C6ELsJqipGlbA262WF2/DjETdiynlvfdhdptcPo0Agr8RKXfuwBrrrjJrxiwPizz7NpeBUqU6DaqPocQjWpxB3i5jL0lbEmZc3eW3jwlz5DuGEjZt9VNMl44k++xPz3X4CBHu786P1Utq3h/P4DrLUVlPDJYsFAVkApn9HdV/Lez/82E5vWccNb38f27Vdx+gdH6aQ1mn0BsacY23stlVUDzC/Nko9eVPnzFANS30Pu3sWv/s7nePHUa+i5SWjVcHRGIWohopTMWY0p97N8+DTCSJpqGVtbQiYKGh2SwRJxfDHC2oblo6fQjTbXfvojnD3+Mi9/5cssvfAiaMtbPvsQ13zkQc6vHaQ5PoGprMJdjhEyIxn16L16O6vffS8vHznI2cVpqC/D4AB79+6jMX2Bmef3M1TooxlrAhuQbB/l9s99hs5AmfaxceItm9jyiQ+z2LuGNNakp8ZBadTyMq0ow7giN7tJgXItVmj6tMb1HbRSrKzMQe0CzM/j9/WgqwuEboG1d76d4f5h0nNTiHqVSjNm5fBJLszNw6Z17Hv4Fzj7+BN4iaLSkoTKUJPASB+tTpWq46As+NolC2GoZShoSyMwqJ4iNDuMv3gClUpG33IPK+vKJMtLZI8+RfWJl2CpRQ3LvBPztk98gnOnFzBhiDlzlnd8+lOcOnIY02oipUDaPK6qHEHqgQklYRiQdNr0VkpEjQaFKKGSKdAxKYZ2oPLiau1hHQ9rNZMnz3B6/xFkkmDTKvQVICzy3p/7LOcn5oiVoFgos6pYQVQb7OwfwM4soJsR5dUjnKjP0XPdDXQWq5hzS1x94+2cXppjYPNmlg4eoqIsJtV0Gq28fP31LiMhCBSEAhwToQS5G9AJGL3qTdxwx50cfO55woHBXF9KHVzrUypUePjhh5F5WBCJxbn4U3QlpC5dunR5Q+mKSF26dOnyBmPgh4WfYJFWI5XFcRx+83O/RZx0WNEKtWYt6yurWBztYfP1V3H2mZfxhYMOPGKV0ptooqLByUB2FJIAx/NJHA1Ohqc0UkHmCxyTl6tq31DMFFFgKcYZpuAifQ/Hdaj0VGi0WmitidME67kYRyJ9D2EtriNIOg1Wb9xM7bVxBit9+K7L4Pq1LE6cIfI8XC/ExDHFSgXleLSSDAolppeXCEYGUDpjSLq0OwmmEiI7ApsqjnVqWKPh/Aqu0hSQNEOLG7o4cYYQPrGjQcbERmBeOYGXRmhPoFXuzrFuCFHM9Nw8544dQ9XrkCXQalIMfVSq0K6bR5icADoxjpT4mcaRljRT6Habwf4+qtUVPN8niiKwDufPz3D21CmqExOogUHSJKE6NUu4ZyN73nYbU7OzyOPLCOOz5opr2PrQhzj/9W+TNTv0+wUOvvYycdxEhyFh24LnE5MQZyleqYxxoBPFeNYSWhc31aTWYmWRcOMoHdWBtE0Y9BFLaHTqVISH40paokOvDGh6EmEsFSXQOESexL/mcq7+mZ9mZmISOzDI2/fdwdlDR9BaYR2BtOs0BgAAIABJREFUSTqkcUbWanFyYpqlYxMgHLyKxOgEvbLE5PhpmhMzhKliICyRqozFdoMDk+eYHj+D22qRZQmZSsDPS+NdbejThmYK5d07Wbd7B9VOHVaWQEjKfkAnirGujxOGGGGxNk+1ufb1RaABYbDCIBAIJL7WOFahnQQjDcViiHQkXhjgeAVsrUNYHMAfGCDNOqiCA6O9JGP9XHf77dSWGnhLLYRJQYHQgtArIHDzlKnj4XhFVBRDM6VkXPoJEAZWkhZKGIg7MD3L5NmzBG1NY7lKGte5IBWtRotTB47g1Do0Ww3aaYLSCRJLYA0l18UrhMRGgcmol0ukOIxPnuesaaCrDZypRUgNgyMD7LjpKiZnp6lOTlNpaTJAa01R+jSMIi4GLJZ9zh04yNmTU1w4eY7k9BSun5FKS+GSrdzxtruZm5mj1ukgjIQkBeGAF0BPL5VNW8is5uy3v3VxMe9RiFP6kAReD1fe+16Gt13sWLMZFFxotSkBrjakOoHQxy+W0a0YRkYpjK7iqpuu4cST34PFGiJOQHqUL93OkYXzRL1FLr9+LwtnpnEWqkjP0JRtOo6l0ztCeWwUZ6Aff8N6hlePcf7wa0y8dpxex6NWb6DCAE96+HvWk46Umfn+s3Buib2f/hSrrruKUz94FRt4iMDHTk2C50Ong5QOjiEvdRcChEVrS6I0BoOWF5vdjCXTCUGmkBbmFlaoX6jSmZvCph1KDiAMsbAgJUlYpnn8KDLJqLQ1EstKIIhJYOMYVGsUBoaRrZjEs/THFgm0fLClAlYZRObQf+llrN6zmzVXbqFx6hzpK6cYjBQuljSwVK66lHsfeJCn/+k7YFJYs4rtl1/K6QMHse0mjs2fV0uZn0xSYrKEOE7RRuNYCKXEE4IoyxC+ILWgvbyureKXiaKYwpW7UdLBLldxJZgeCa6AtVvZtnUnr718ACkh9FxQikqxgIkihgpFms02bWnp9JS45MbbmJuZB6dMo16j2qrRSWK8pSXCRCG0odVq5QLSyBDFVSO5sC8ctO7gCoOSIo9XC5e0VKDVbFGdnERpBanGsRIHSVgq8fDDv/B6HVc+BRJ78Zu260Xq0qVLlzeSbidSly5durzRmDzCll78I8CgOgo3DCmv20i7WYNShdAbYHRwgIkxBwKN1zZkL7wKnsOqjdspn13gjFrCkwEDxkdGGmMVsVVokeG4ltD3kc2UzHOolgS6YikuaFxlWWsEkx60SwAC2g4UQ3zPJ2018aSLJwTFsIDQhqzoU+8p8W9/6TP82X/+Au1WRNyo8cF/90ucnBhHtWP2f/1bbOx4TDht2LqWq++9l1f/y5+z9qYbqQ35tL76KDtbPaTJEk3fwaYpQWGImR7Nvb/+WV740ldZePlAXjDcDzTbBC2XHlOgLaFTltCMqKTgOIJa0MFJBAUraRtBWBkgimIcx0UkHSpYKo5HR7doSEhLBcDyzo98jH/6wp8AUHE9Wu0aa7dvYjlK6SxewB0YRC0v54tPZaBQzlcmaQrWgVSDNGz76Hvw1g/z2qOPwfMTgAuBhHddC/29ML0MP3gJLtvMnjtv4/A3Hocjk6ASvEs2cvn99/DK578AsoSXKJxGTOx7eRfWnm2wbT27117C1dt38c2vPMLSU8/ivvUGdl27hyO/+vv0OwFVtwOZAc/HV5Iwc4hcl8yTsG6QweuuYfnQ8bxkerEKRQ2hC60UCvCO3/3fUCttHvv1P4RIQ5LgmwhTKWGKLgCeMWRJjInb+f71VYAQogxqTQZCn07cJg4MWAdPS3oSiSoNUI8bbNizi0v27OCxL38ZGQaYTsKO22+lXSkx/fzz+K0Ym2QIbZDG4kn3YmcSqIvVYa4xOFZfXBiCFgKCIolfRhsLQRnpSGh1MFmK3L2Oe3/jIU5NnuPY7/0hzLQRkaKMQ9NJcbwALwxASuIopVgsk0QpOopZXe6l3GzSoUEdlxgLxQCpLQXjUvIC4k6bKnm3kxzsxWQJxAkYTVjpJY7a+JUyKkvoU9lFN6AgNqBLBZQryZTJ30uOm8dc/Qp+O0GnCeFoP23bzsUCA14KJROTJDG2HBBnaa5GOwGEvRBr0JaScBnupLj9FU7X52BkENotUBk4sPm+d3LVTddz7tAFXv3yIxB6vP2hT/L1P/ovcGEJjEXi4kcxsQS2r4XZJdY+8A723nojr/zHP2bh2BFSNJkrGPVKTJFAwePyn3qQyYlZaj94EVZSXGOxnkbrJHd3ORY86LtrH+3pJbKZBeTsIn1Fl6ZqkAVFSluvpHd0kNnzEwxu2cilu3fw9Fe/BvOLoCw7brqB/it28cpj30M15qBRBbfEaL3AvOnA5Vt58D/8JscnTnP64Kt05ha4ec1anvyvX6QgXQKtwEqUlEQu6GKGn4SEmUBkFq9Ypho3EWWPUiipX6gz3LuGVtRChSnWVag0AwVBTy9JPcWxZXQYAYpiW+LhUO8LYMMIu9/2ZtxmxvriIN/5wp/jRCsUM4PEkDhQ1xeLzJFc86mPU7eWU489AlOLlBZTeqRL6sPyYDEvLS/3w5lluGobV915K/u/9lWYmAKlKEoHYSWZdNESDA5uBs5Ahbi2xKriAPXaIoX+Xqq2Dq4HrQS/UMCrRkinTBPNB/7wt3n00UfpjE/A9DR7f+2TDA2O8NVf+32oNlm/dj0Ly0t4Iz20XANJh0JvP+nCAqPaYAsBw5fuoTC2lhce+y4Il/d97GM88pd/ClJQyFr0aYnQhoWFBbQr+Ozv/janz57lq5//I2Tm4pLhyZTYBe34IB0IinlEVgpQCmkMvltASsng4CBT0+fyriRhEbwe+329WvvHDyXo0qVLly7/7+k6kbp06dLljSbL74kqCfm8IIsUEikkv/W/fo4kE0gjEbUqerlKPD8L88uY8Sno70esW8tPPPRxnvjmd2HL5RghaGdVWk6HtojxspSevn6WigHt0UH8doabGVIr0L6LawJi38VXPsuuyp0FxQpojzs++CFOv/QSDA1h0vyFBq6LNBpHOrSjjBeefQm0IYqbUPQ4fPwgM9MzVAaHGFu9gZVTM3RuuITKrVejyz00Tl5gdGAUs+W/s/eeQXad95nn731PvKn7dkKjASIxASBBEgSYCeZMJYtKJEXlZNlaS7I8luWZcRp7XbbXM7Oump0ph/GOk7xTtmVblmSRoiiSYgIJgkQOjW6gc7z5nviG/XAhrz/sx+V+ur+qrq7qOtVdfe577rnvc/7P80zQ3TzG2usn8CnQkBlS+MSOJUtjTk9Ns2tsgqW5eVwEJo5AWrQbkEUZWhvIHQLr41rT24T7vTOYeRaKDsqxDE1sJKrVcAIPlCa1MS4u7YuTLQjL9ffex/zSMsnaOoHvk2Yx191+C+996hO8Pn0BvbIC1UEK42MolfXaviQUfRcZddF5AqGkdmaK1cUGrGUQKzARiATaa4zuv44DN95Ey0J09gxjE1sIrUvzwgLScfGEQ3ligtW1OizVMVHK8MAgXZUCmvIdNzFxx82c/dNv8faLB4lOnYLcYhZmWWm28ZcifOmR5IoBpwQm6cV7O5Y8ADzDz/zGv2d9do7VH78CQYm9776HpdUFaDTxvCKmG3PmrSNMvvAyZBkjt97Ao5/8GGutiNbaEu/+6c/x4LvexcvP/gjbSXCCEGsUg9u2MzSyCRsrnHqTUm5xjCFzJNaXGF8SFx20tlTLRVprq5x8/SCD5QFUlGECn/WCR3bVZQRbN5OdOtubJsOCkBhH/IuApBwwrkF5hswB14CvBa4RRJlF257Q5121h1t/9TNcOHcGGk3scoNTR46y+qNXYb7NmFNAS4iGXQgd7PZx1JYN7Pz0E+SXb6U9GBDuvoKv/OZv8crJEzRCl1oek41VMIEkcItsjCSOsCzoDvaunTz8777IxG3Xcf6VVwkSgaMl5UqVbidh3BtmNA/ZkASkEqQTkiEwopeH4ylL0RiKUlDAUmlLyrkkKIUI30UKgVAW1YpgoIIhw3UyrO3ZTCn0Jmk2aY/BRhs/z3CkpkNCQylqaQfCgIpXIKt1IAcM1JfnOHF2kqw6yi2feIrz64ucaa/DxmHu/OSTHHjqwxw5fRwVNWGwCiu9RrzWygJHXn6NtakpEt8hD0BvCLnuEx9meWQAlSfo0iC1Fw5CK8dTLo7NsUiCgSrWNdg0xRE+8VunCDKFqq0TDISYKKKSaIaMR7JUQ62sYhstuovznH/hR5B2oeBDweOSPZdzaGkKc36KL339Gxx89mVYblHMu3gjG7BFj8M/fJrF736b9ORpKhMTnPr7f2RkYBiVJLgGhHUBF4FECbc3jeS47HrvI1z+yL1MNlYwnRivljJeqLKY1lAjRUy9RcUYRhSIFMquJMliTNkHV/Wa0QAd+KhSyCU37Ofc88/jX76b1//uH9D1LqFRNIoQe1BQFs8JMK6DCRQLwrL+2htQ7+A2I4a1RZuY1IMsMGAVpArijLsevYvuyhwrRw7jSgepNYEBeTFESACOcclyQ7BrBwN7d7N25CzDosR60oW797LvgXvprnVJZ1cYp0juSpLQ5eipg+SjVcpDQ2TG0CkHvPH09xlerOOkEQEOfuDTLQV8/rd+jck4otNuY6XEUwkqUaTLbSZPTzGwaRP5plE2bJ1g+tBbDOQSX+e41mKVptPtgOswvbbCay+9BMLFJjmB5yJsjhFg0L2BojimWC6j0oyCEFitwPUxjqBYLPYmkejp/RcrUC9mI10MVerTp0+fPu8IfRGpT58+fd5pFCB6LUH6YgmxY8ERkt/5D7+LynvWMVTG4GCF2HEwaYpTHcZqA/UGWbnE6nqLS+99ELaNk+TrEK+Da8kjiygG5Du2MrLvWmozM/ixQhmLciS+U0DvGKedRliR9T5lJxo2b2ffgTuYWV8nn5kF10Fi8F0XxxikIymXh4hbLWSWoERv04ROwFrWj54g9EIazRpqUwl/4witC4uEp1dx2jGL63PgCZicohs4aBmTDZbIrIJyARZXaS/VEO2IYmZIcw2BA7nB80pUKoNE3QjpOiitSHUOHoDp7Q9KPhQC7nr0EWYb6+TNdXLfJTM5lAK0UVgpwBEcm5klaXUhzzFKYcjJrEAWKlyYX8DU6xAWuOvuu5g+fbrXjudK0labipC4vsvGA7fRXF4DbwDm18GRVEdLCNeidE50fJpzx84SnT4PzTYrJydpzS0j610qTohOUhbfOgZRDnGGsFAKQ6I8h6DIyOAoy6enMedrMDBEsHcX+tQFcItwdp4gE6SADhzKsUHLDAHkDljPggPu8CBrsws0p2Yp+iEP/OIXaK7UqS/VqKQG24mQdYWJUthQJi4E+OOjbNqzk5kzx2mEAa7rEc2vkKysUlQCk2dcd+NNXPPk+2jplNXTp5FApVyCOMMYB6scrHYxJiPutsnzhMHBClGjjYuDQkDcRS3Oky8vY+vtXmsholeRLnrNfvonobqOA74HwkObXn6SRFAoVNDlEjr02XnzPt5841k4chyUYMgpkcwuUAkGsPU2qcpITQYVn5t/7stsvvUmFrCs2RwxUCFvN1ErNTZdtou3nn8BVV/vCQMbqmANqpFRyDpI69CWOWrbAPs/8Cj1ZoPZt05SaimEEbSjLtUd21lfWiHPcoRWmFKBDOiYnPJghSyOkUbjWQsmR1hDkAtio0gKDqkwvUr2JKNUrPDge9/DmahJ1lgBYTEGfCEJlKVCgMo0mdsT77JS0KvcCl0olchWa4zIAM/mDDhFIpVDN8HVHqe//wNYWGD/DTey+NwL7Ni8FafZ5tQLL0EnhijHSXPsgA/1FjQiqIZA3stY2zTGrZ99kqMzs9ijx4hOzkErB20v2sMEN913N+MbJ1hdW0C1OniZoipD0jRCeg7GsbhaUdYCoQyu75NFHXwJSX2dwU0TZMaCVhDHLE+ehk6L4sRm3G7KhSMnkUoxUR5nob6MbtQgi0H6UKqgujF2dQ2d5UjbkxRy6ZJJl9wRWFeCH8DwEDsO3MLp9UW6i/OQpDhdjactHd9jx9W7adRXsIGPVw7pxBnScclSQ8krktkMrMZVAo3EuC6ts2fh0h2Mbruc+rFTgIPVMaZgsY4lzCyOonfNX7+zJ+afmoY4I2h3CK1BY3AGisQFB+II3ACM5MLcJCvH3oI8x9GWgushVO//s0JelFAcNu3cybXvf4hlExMdnsRBkQK7n3gEGSsWDh7H6XYp4pA5DolUYCMOPPEkO4bHmfrhi0STZ6DewI9TPCvRVuBXisixEYpbLiEFGo6PbTQZkhpHCwrGw3geYXWQdn2JnTftZ/K5lxgwEs+1CGMxWhNFXXAd2ivLECe9MV3Vu+SF7RUKCEBYg9UWqxRW5bhCom1vAtNIQbnQE5HETxK1/1U/W19E6tOnT593lr6I1KdPnz7vNAqQkMteYxRYQukiDPzn3/3PSNfHSXIGdM6Kk2I2V9m4fw8PfPoJTn7/e4jqGKvP9Owilxy4g0wYbvqpB5k+dQRqDTZWR1hfa2ELIc72Hdx8/dWcOXyMHAFjY0zsvor9n/kw7SwnHikxNlAlWm/wwW/8On/7V39B3mqxcdduOuenkZ5H6HmYPCEQEqKEEasYEZqCjfDzCFyFzHMCBHalgQgt6doi2dIy+u1jqE5Eur5M0I1wuw1U3gLTBs/Fv+JS9OoCwgspWo+k2cCgKXslysZj0CvRjiJG9uzmsc9/mkOz02jXotOIwtAQTqOD1paLnfUQK8rDG9i0+RIWlhcgi8Az5L5LwfN6G/MNYz3bTpKD72G6ETiWTrvNudMXMMtrPXtRrmm3WpRdj+7aOiLN2FQawPEktajLZTffxJab7mDL9itZq3dRy/MkaRPiDmNZjl+DcKWJG6UEKdgoIcgN1veIspiwUESXBrCtDp7vU/BDdLdLqKCUQjQ5hzy3Qj46gH/ztVx9x342z3fQ0wuMWkOGZmjHdu75la/x1tM/oiQNxpU9Uc414EnmTk/RPD3Vq/zOM15/7tvUT81T7ChKUU4FzbD16GrLZR//ENt2XsVb//NvWCp5PPjJp3j7n77D1I9eoLO0jm96QbUCyfkzU5x48Q1aZ2Yoa3DznCRLMWFI7OTYosO2zz5Oc/JUz5pY9kkbLVwDBTykG5IPjbLnI4+z0klgehqUxvE8tDZopbB+L2i3vHGMrJvATffw+V/9HeZnlumutZCuQxq3EYFBeIrl80fYIcZorHTACkSeE1hBt9VChwYtDJ502GTKnDx6jvkjp+DoaaRX5tFb7oa2Zu2ZVznxrWcZTAsUainlzdvZfM8Bar4HnS6DLcEILiXjUV+tcewfn2b2u8+zoekg4w47b7mVuz77JKX7b+D826+QjZVphz6JUsShy3u+8DG2X7uT40eO4giDpxXaMShpsH6BulTkowVM1sYEHroZMTQ8SmV0mAvHj4AwmKCMs5axMS1RFoPMaUV8+Sa+/Nu/RTg6xtnDR3ns93+T+558grfePgr1DpUso4zEMQqTKXSa4dRq5CuL0O2wePA1QpNz7qUXOfvjF/E7bUKlkNZwzxc+we1ffJy3X38DshziLmSKwfII+UKDo88/jT03C1fs5kMfeJITL76MO1TFmIgtj97Nltuu543588SnjlPQhgoOvo0p+AGJyrBlH20sPgFO6BMR40iLMJrAc6ETUUQQGjBxhqslgzqgdWaGpekZjLVYq6jZDpR9SBOQEjoGvxHj1JoEgBSWoQ3jrEVtck+iR6rYAZ/NTzxE+9QZEJK545N0z0wzsusq4vlZ1MQQlb1Xcf1Hn2Sy1iKfmscbnqA138Rah6HNO2hLl1RnOCanpAy+EYBDbiW4AcVNW1l55kUYHufSG25gfeowGx97kE5jlbLyMN0urhPw4FMfYfXsHMmFNcY0jIQFoqyL5/usRnFPGFSKL/7Kr5EoWJk6DkpBCpVSEYlEKUNPXrU41qKkoF72mM7XiM8ehRYM5hYlHJbOHmH50HGK6xlOUMBqyIzGqRRRNqbdyTj+7WcZlRWiRIGxpCYlxlAaHGSpXiPudDg3O0+j0cHUI+jE2M46rgLdybHFIisrC7BtjIX5ebzldQYThREarQ2dRhPXcVBWg+f07o8GpBtgjSLTOdb0fuY5vanYsZEx2p0Ow2MTRNogSwVwJA6Cr//C1/iXm4GwP/l1F89JX0Tq06dPn3eKvojUp0+fPu80BpAXpyywuFg8JGjLb//+f6KhMlKT0il72FARDI/gZZpytcyFt09TSSwjUYZr4cIrr9N58zDTL76EW09wIoHbyKkEQ3TXI7LlJrOvvoZTLmA2DPCBP/pPvPpf/5jpw0eITi2ASfnEv/0Km67bw7ljZ1menoJui3vvu5uV2hrR0iKJyhkol3sTQBg8DEHUpqgSSlgkGmkgwEXisCFKGSwUSLpt5O7tOFuHyeI6QatLMLtMHieEfoBSJX7+F34e6YXMHnwLmabkAx522waiaki3G+FGbfyBKrXGEoeW5yht3sylN1/P+toSql5n3JZwtaZECSdxKJgyc6fOsXDiHKKbEDoeNjME2iCFIDeGkUsv5V1PPsWJl16BNEdYqJQLZN0YL3fwhA+Og41jom6Hbq1GuVBBGtkLPZcCBsosnjzH/NwijtVctn0z8yePEGQZRSnRuaGEIBXQDS4mvRYCkoKDmSgBEZkreeKPf59TWZN8tYa2hkqsKXAxdBdDWvLgM4+gd02w9M2/pn58mqaMSKsFZC5YS7ucHraQN1FLTXToYwo9AYxCBZoRQvfWm1IpRD5kitwoSlZAocD8xgqqWmb9h2+weHwKVpvooyeZfOkVqDV6mVBZhvI9MmFQ2zeAiEEbbCDIyEhURgoIBXhlbAp+dQMTu66gPn8BXAfiGEf6OEbgKkPSiti8YRObCyWas+cxxuIKCdogPQ+jVS+0d2KcAx98koY7zI//8Rk6UxdQWUwqLU7JI41b2FAAGeL0ChKHUrGIn+VUs4wQQTc0MFToBam3msSpwdbWcavD7N+5m2e/+X+x9uZboCxYSZbGZNZQvnSCfffdwa7dV3Hq2R8RFipkONSlJXMECJ9KoUq90SB2CszbiKMnDnP+4I/hisu46oM/xZ3338/iybPEWYfTp97g1IkjWCuQWEJjUa4g8wVtlXD5/Xdw8913oIsFGmcnwXXpYLiwuABhhSvvuoscH3eui2cd2soSD4aYsuSNlXVOvvAKW8Yv47X/+XccfOYF9NJ6T9TIc/KLa6pbUtiCIc8vChNo8A1KpyANVhqMtBhpyT3NuQvTvP29Z6FT6x3b1bga4jjm8gdvpza1wPbdN7P3+n2shxmi6tM4fRRXOzQmJzlXsTg3Xc6GRNKdmSdHowEZBrSSCON4mCynO1SlFTWwBQEShITACEpOQNKKKQYFtLF4qcBvRQxWR2nV29ggBFdQeOg2br7xBqLldUy9zlAqKGqNrxXSKjIpaKUJ1hHc+3NfYnpthc2334p2ci658mpi4ZLHKR/95X/D7MoS7UBy1513cuyZ7zHTXOKKjz7F6tEZ1Pk647bImDvEbBax8aa9XPLRd7P68isMZLoXAW9BWInqJuRLqwxuvoT777mHg//8D2x4+E42bN7IyvHTiFRR1A5plnL85VdJZleQSuK6gmbSwXoOKRorwThuL/erOMDh19+ANIZUURyq0ml0STKDcQOsAEEvE0g7Fr1lA9e992H0hg1EPz5M0fTsYZk0EBtGtKDmC6zt5eJHcQdCn2R6AaeZMEqRZhz3RJlSDoPDhMUBglKFREh818eLM8ZFSDQzR8HReF7AUr3G+J7d7L79JubOnyNfWGTE9SkKQWZyKqUy0kI76mCkAAeKl1/O+x77EMdfPQiOizUKKSWFwEUrg+v5rDVb4Lp0jcUaA8MDhIWA0PX4N1/5MipNkb0xpl4TH+D0RaQ+ffr0eUfpp8716dOnzzvNTyw69J6ZXtSSwBEoT+KNVSlcvpXiVZdTuu0m0tNTJJPznHv+dYgTdLsFWJJQMSgUAwLESpNiLBCxxQkH0K4HxrKxUKaiJHkcQ5bx5tQZuPoaaGV4ThHmV/nOP3+P115/jSPPfL8XUhtFtNfXGB8ZhsDDcRwQgkYS05SSrudiXB/P8fGlS8ENMbh0MkXmeQwQYuIcIV3C8VFuf/QB2DyBDXywllCDG2noZnz/O99nYX6eAEvZ9XsqxHCZAx/7CFhNyavSjpNekOr5C3QPvs7g4BDv+tIXYNelpJ4kd8usa4Nyi6RKIHApEVLARSQpgdYEmSaNU0CwfmGGgh9AUIAgwBpD1OniuR6B1XhG4xjDT+wQ/nCVTtwl0jkGv2erMgaED4tLXHjjVQ6++gPIMwZcj8ALSCRkGBLPYLzepEmWJeBJrnz0frhkHHTKX/3X/0IwMgRFH91tE5NhEGgEudPb1W25eidjWyagGxOUPBhwSbJ1lKPZetl2rrj1ZrAZYWmArZddyaXX7gMje2Jlbil4fi9ryIFyfnF37ggSNOs6wegWxE2k8C+GMwtCpWFlvScgacPAUBV0DqHLPU89Dvuv761cpSHwoOiBC9ZxKBRK4BdZPXGac995muvufZgPfOZzUCgyMDyEdB08IXHQHP7+0xz6/jPE3QidZRil8RwXoxResQi+z/rkJM/8yR9T+/a32XbNHoavu6aXDeM7mFIRJNhOBN2c1PV6leVJlyRpARk+gNbQbZNnCXgheD3xRC3PcvA7f48IBHvuvI1P/vz/Qri5SnX3FkzVsGw7dJOYxvIadBNW6zXmbUrbVeAbiBPazSYMlLCBhrxzUXhzYG6Vk0+/wA+++TfUFhcAA8PVXjC5oGfbuWizsQgYGWTypRf53n//H0w//xJUBqHoQ9qBep1bb7yJh+9/lB07rqBjDfhFKFd6trWxUZILM9BssTq3CG4ZckGhMkQaJ+RAiiV1TU84cgxI8GRvmXsCPHtxgE33vjsXI8RYryNX2iBckIK32rGSAAAgAElEQVQAcIXL8I4tPPCxD0GhwPkXXuVHf/5XNNIWy+01kDmlXONbh+v2XscVu66gvlYnR5Lh0BECHfpUqlWKxTLbDtzB9nvugC0TGAH2X+33G60GxYEyidIYz6OpEkbGJliorTG6YRO+9cC6jG7eTLPRpr1exwUEqnfOMWjRuyR0ljJ+7TXsuXYvNLvMHz/F0itvkqzViFstGCrxyom3WViZ48677iLMNWiX0fsf5fTbx2B5CTaOIEZGCbaNc93tN3HjjftZv3ABaXvvGFpYrOiFwHtWQ5Iioy7f+eafgbC4vs/Rb30HltZxXJ9a0sENParVUapjo/ilgK4DeTHAlgpkQmCtIBA+5HDwW/9wcdrKA+kS1TtUNm+jcskWtOOghcSKn7x4ig0bNzLqeKz9+FWQAkMvtwlt8YwFNBQCMgyBlPjY3nVtwcHQirq9UPThKkiPmx94mFQb0ovH5J0O8fIStlVjc6UMaU6mctzxYW55+G7e9cH3IwsFhHBwpUBJgxf4NJtNWq1W7z5YKMDgIPv27SMoFgBwvABw0MYSZznScXs2WHnxPUw6sHUL7//wR6iOjZBkKQCu5/9rJ1ufPn369Pn/gX47W58+ffq801hQ4icDSQbXGtAu3U6H8rYt3PLxJ7nuwC389TP/xKVXXMrZ//XPGGjFrDoxfujga4PwBDU/YrAFIoeiN8CKcVClMrgZn/nN3+BPfvnfQifGVTHu0CiJzbjm17/BsW//GDszA+eWYFiCm0DUBUKCMCRdrwEQDA6SNpq91i/fJyuEFG7YR3z8DN7KGmN5htE5q0LB1q3cfO+DLEU5/O0PmCo2ce+5ARVIONeC1TY0apDHDA8PU5tbYuT6vax35mFlGb+RUwLqo0Ug55pPfY7Jv3+O7Ox59KAHEyOwXMMrTpAnNbj5cqjX4eg0Gx/7MIWJTUwfOsKlo5uon56kfuwomJQNoYOKO2A0HSCvVrA6770AClCGkVKZTreG4zgUrUdX58SBBxLcTWME5UG6Z6dxN4yjWhH7fvHnePMHz8EP3sAXEVkhgarLeMtHdCK6QLvkU0kU7SIQSJy2xGZgCpLx99+PZx3mXngD2gls2QJri1CvgcpxfQ9HemSAdVzYOMHQ7iuonzxCMDNPGmgYLeEt5mi/iLn9BlhowKlTVC7ZzO0P3cOP/umfSRaX2eCU6GYx3YLpLZRur40MaQmlICkJqBYpbb+Mbc4wJ374Muiccdkicx2sG2IMRFGKcgsgDOFt1+Nq2PjqOVZURGtYQh71hBrtILZfxtW330b1hr38+Df/AM8RbL9iGxdmz5Cdn2GsOkJ3dRXPLaPDkExnFD1BGsdgLK7rkltDgsYpBGiXXr5NR7N5/40kOqbRaTKxZQu1KOHKa/ayZ+9+/uKP/hTOvA5aUPCKuPUOsU5QGGTJBwxW6V57U8HrNakFIU6xhI7j3rRUloAjueMXvswVd93Gf/+lfwcn53prZWSCj331y/zDqy/QMTkPffgDfO/LvwJr62z72PuwG8oEqeLOK6/l//zGb+KstaiEIa2kg6iGZBWPW7/4UU4fP07tey8TxjCYGiIPuh4Y3yKsz3jmoZRizTFw1VZuec+7KOSS537n/4DBoJdFlCY9IWpshA/87Oc4d/I0b/3l3+KFJULt0TYKxkbAptBuQ7uLZzSeUcSewTrgaYHIeh/5JBDi/Mu0hriocmsMMQoJJIUQBBQjS4SGoRL4MSSWcT1Gu+oSJTPg9MYst9QlXZ1TK/tQkrDu4pUL5CTgpmAcaGXgFtn/mY9zKFplbGKMxh/8NzwNjhW42kU7Di0swVCVn/73v8j//h9/D5bX2fK+R3lk017++nf/AFss0h5KIIrx6x2qYwN0uwnSghEGIyBzXMY2bWZpuQ4Do5BaaNYYrkhqrRZIhy0P3YMcH+bCm29ArQ3nFhgvjrCc5HDFdh764ic5MTvJ5ft28dz/9nswNQeppWw9QKEcixa9MxgoSZ6kuHhQLpEIw63ve4TXzk6jT5yjLBxa0TqgcbwAEWuU68BAEayicuWVtKenIc0pK4e420WEZdTIIFc//hjH/+zPod1hePfV3Hn3/Zw4cYozr7wEOiXQXVyjAehelNRwPcpa4CiFFaYnKGJxjaDrSUg8xnSO43gseSlYh8HCAM1Ucc9v/zIbL9/B3OtHcVdbvPm9Z3CMphO1yJI2ruehajWKQBgWaLgSU4by7bcRtzrot0/jZxqbddHSEhiJTMBzXDp5jHIlVEsX144DHXUxFE0jQx8TtXsPIKoDvfbKTpebPvNZykOD2OY6z33rbxjzSqxMTvaEb0Fvqk5AhsXH+Zc13adPnz59/r+nb2fr06dPn3eY7KKA5AMOFoxAxTGxyvn9P/0TZs6c5NArr5K+/CZLZ6fJkgTKAXHBkKdtEqsIlUaUPNS4S8fRxF4JVR1m1/seofqBB3n2W39HoVRAJTXMcBnV6EJ5kJWnX0IUBnnga19gYvt2Zl96mUojYditYIZKJMvLhIGPSjO0ynBLIUJKVNRh5NIr+OSv/gavnTqFWVik7QV0cHErw6hGwmyji3vFLubfeAMGNWb/1Xz657/O4f/2d3i1FFPwwFV89ld+jR037GOqpBi69VragUSfX2LAFuimCgoVVg4eg0aKRkFg+eQv/TK79uzjyD/9EDLDFQ/eyWOf/TRvvvg8lfc/yOzCWTbdcTMzJw5z2wffxwwJdn2JbtYldhR+IBmsDtGuN8EvwOgIB977HjIhWZ25gFcISUOHrlEoY3pPurXGuA6f/tpXOPTcs5ioC9Jl4837KVWH6B45S2a7MOCCl1Fp5/i6iKkOE1eCXhhw4AIOpa6kZDUjXpXFYydoHZ2i1NRcl1Zor6yQpXHP8iYFxnfA9xlVkoGOYvN6TvlCg7VkDfIMJ4ZSYki0wBoLKymbpxq0ZULWrDM5OY3MLSIDT0tU0efhn/sMQzdei3PLtYQ2BAVx1OkJSjYgX11ly/seZPHkJGRd8lFNN9d4Q8PI8gBxO8e3AYFbIG62yWp14tzQ9QxUfR7+6c/y/k99imPHJ0nPL7AyeZ6Zl19jMBaoVovG+hp51oU0IraKouPTySLcgk+aJ2hlyXONtRCGRTLdmx6xxoA1XHvXbciSx8LZY8QzF7COpdVYo3rXbUw9+wpHXjvCgSc/y66rLuXcoTdQ7SZDd17PQ7/1VeyVG1k/PsloPWazLeKonErmECiBTDPC2OAlGjfO8YRHHifMHT7Bm9/8R5irQ6ahUoGowZHlGdKpWeyRM0z+xXcZaWQ4SrN65hTN6dMEfsjk62/SOnGWkuvSydoMVavoNCcXGXNuSsG6xCcuIHODNhZtwM0kKnAoJoZCnOBrQeQ7mKGAxW6dqeefhziHPAPf49r3P8AjX/40TZHx8h/+CUsHjzBhHLyoRXGwgnffTTz4kfeyHLVIFuchU3haULKWsoaisrQLAeaGvdz4U+9mGU2nXiPxXRLPIfYFcShIC5KJ++8gvPEq2senEAkgXUpWMJBY/K4kEZo4TcmiDjgeRDkFI8hThUagc4mNINSCzJdgUq799Ee59vY7mTp2EhSE+6+hMXWc6MUfU1jRRI5DJiSZhYITkqQp2oXXnnsaSg7su4JWd41Df/0dNukyPoKW6jBYHiDsZL3QZU+Sh2A9cFyBK1yS3KC6KZ/62teZmZohbtaITZOSU2LYKdE5M8/KyUlYXIOoA9bQzVMIfFhbQY6XGbtklJf+/I+gs8b43XdSdnzymQWywCFzBFoKrLC4xhK6DlrlWKlAWqbPnsGkgvJag2Jq0K6DrFbQymByjdy5jWufeC/LxrB3/w3MHzoMro8Y3cDGDZtptTvYMCAcGaA1OYnct59ovU5WHmSp1SBbX71YdmBxrcXXAu0VcF0fJ0rYMDjKuklI3N6kmZaWNAB2XMY9d97H2ePHyWyvFZHAwy8UybKY9Q0DHPqn7zDzt//M+aOnSdsxcbPBx/7Nl3nrpWcxoQtxyqAAg8AMBOixAbbfcgvriyuw3MTW2hiRY41FWXD9ErmxWCO452NPMb2+BlHWE4B0DuUie269g+VzZ/EDHyEgi2P86hDX338fMYLXvvmXnD99HFRKtTrMV77wM0jZay3sZSLJi3lIsm9m69OnT593kL6I1KdPnz7vMIqegCQUvaetUtB1DcvNdf7wd3+PgXqMbNbJRcxoS5NoRWpyKrqAkB74AbmwjNYFdVtm0y98kVI4Svvt06zV10hqdfa8MEdzbop0dAiiFmwaZte7H2Db/htYePU5pkXG7OIFODuHF5QItm9j389+junnXqGsfYpIhGdJbYLVGa61sNJi5uDbtGwKfptrP/Mky1ETs1CHGJAuE9fspP7mK5ArOH6aE6eOop0OpjUPWY4bSU4+/SJvv3KQ7tmTtLspe285QBKGrM8t42UWGeUYITADHkQJuCFvvf4mJ4+f7FnicGifnWfpyBQbdl7NzJ/8KcH8Co2/+xYszFGqVvnE53+alw6fgLWeJcukmqaK2eJWkJEmGSpSffB2gksvYfX4CdRQhSf/wy9TuH43828cYcCUGSQk6aa8/uNnwWbghhTrLRafe5bWySOMHLieez7/ec7Mr8L5GtZY1nyIPcu2Jz+Gc999yMuv4t3v/iBHXjuIyCw6yyhogSskRsImGzM1BlyzDdKM8e4g5A5C9bKn6oWYFRWx5meMPnqAbppi2gkqcbETY1AKQfpsKQ5gkzU8HAp+ge56i6ENG6i1G+QlwTk65CWP+bUGw/tvQQ8PM7JjJ+08YuenHmfH3Qc49D++xYbFmDSNyMcLUBdkpgpbr+SOL/wM0902mWOgscR9n/ood33qCzSLZepnzzF5YY6XXztEujBHZbBCURu8lRWKOsK6CcYmaKnA93CsQCqDEKBMjvZctt15F+95/Am6CObPz6DDsLcJdB2olln2YOeHPsDi4jKsXmyv238dVz56K7OHD8PsHDPPf5fZg4fRSQdCQXd9nhPPH2TthbcYbIM1ULM5FAYI3RGWbU5eCEkHQzJXkAsHL8koWMNGWSRvtcilgG1jjNy2j+sfew+zz78ISyt4JsdN1omdDjKMKecxzloHZ26B1tQU2rGkKgcENtE41Qmyay+D3VuJn34Nsd6ltGkD7/kvv8ZgZYTSbIduvYY7WmaNjJZMcQd89MoK9vwMTrOFr2O08CCF9ekFTvzwJdYOn4LMUjIWXyl8BDrqsrY4w9kfPU989Cyhkqg0x4Q+USiJto7TLTogPAZ272F9vUHnzWOgIQhdtm27hJvvvJHJUyeg7LL9oceZfPMk2ACGN2CaKZ4TgufTpgtAVQmkASVdyC0qFzgyRAoP4ciLX1mvjU0IliPLnHG490s/S2P7JpbqNfALSDOInknZ+0tf4prPfJhzbxzCW62zqTiCVobMd7nlI48jt47TfP5lRJySmwamlBGHutfY6PqMtD18JdAiRdqMUqrxc5+2cbHX7GRt6yDLLzwLKoLRcTzr06g1YWyA9/3Klxm7cz8XXn8VYhdXSYxrGdMhe27Yx8riEmtHTsIDd+NfdQ1rz5+kbMZIVYKw4BuJm2uM0hgLxhVoHIyxWCug28ApFImzlLK2uFGGZxwyXzN4/ZXk5LSfe435Q0fgwB1MPPQQlVtuYnZ5GdtpI2urxG8d5tb/+NsM33EbbN6IP1QhCx32PXwfsy+/gvXK5AkkxsE5sAd59aVkXUNnuYMeHYE8B1GgIlySSsjW227j7fPT6E4bVSqBdQkyEN2corK4h08RziwQ2C6B65AWPTbcfYCzVZ9uYwmiNijJmOtT0ylaKmxqaMUuup5AW2GNxZM9YS0fqHL9xz+C2DhBfTlhx6OPMP3sq2CLQAShy8OffIrjU8dIVxcxWUSgNAUMot2mMXWe2cNv9qy2+6/jzoffxanDb/L1r36VhBQlBOaieOTkAiHol7P16dOnzztIX0Tq06dPn3cYDThcjKyAXlMbhvmFBf70D/8YoQzK9HJ03MEqeaSolKu04y6aXr1xxQ8RytBVluG9O6kUSqwdOQ5APj2PN1JhNa/3/ojjwnIHT3s4Y8OsrS7AuTlAQGeNPFFoT5KNV2lMzSDabSqlYs8K5PQOkxq0kdSthYoPoeGm972HwaEqC4feprT3ana9+17stZeSvHIIr9lBa4Fab8HsGmQORRtSCAo0u22MyXu7+vV1EtelLFxa5+cxymA8j9G9u4kW5iCxDLgBaauF7bZ58CMf4tzhNzAyp5W0qIkIlpfRcQZpDlqjqyPUOhEtBPnMBUQQMB4I2llOUbnguEQYli/M9PJjFpah06G8YZTxzROcfv4VCrmD70paKoGNQ5CloMBmFu1owsES9YUa99x8J9nqOisXzoI0GMe5GFzt0VqcJ78wxdjGYWZmTpPnDRJfkTgaLS1aWnwZUC8mXPulz7Fp924mf/gqVT/ERUCeUPI8KpUqnW6Xa+6+nd2X7SKvdemsNbBlH+I2IFldWaHiSZppxMDoGJ1ugk4VnnAoFAokCwt0Zhfh0DStQ0dJps5x83sfYOud13Po4Essnz6NPXOe0W6GtTm7P/QQrVaGWY8pxTmdPKG9pcjY/p10Z2ZhvsO6Mpw9ewaztADFAqytguuRraySpjkVL8AxBiUFWgiUFL1QbS3w896aQkiU46K3TbDzuj1EVjE/NQkFl+pN15OMDHDZQ/dgCgWmv/s8TC0wUB0hXV4lnltEdnOaR89AowOdnG2mQHVkFFksE2cKmhGkFqE0nlvECYo04i5CGcRQhW3X7uHRD32AxZlZhDZ4RpKrXvtUFLXRjoPNUuJuxOzZczC/jLSCgrWILCWreigMiYaBoUHWVIoqehBezDoSgrJXoNmNYH0ZFtcoT60xVh2hWXZ4O2hx/q2jLJ+bpYwh73SQWY6rgG5C0UhCZSnnUMoFnYEShA6m2+7ZNLUGR5K7ho5nafmCxBUMJJKScfFwUFi84QrKsVB0cLaOYz0JSZt0ZpZkagZaCYQ+1/3Uo+y46zYutLusnjwH7gDLZ87A+iLuw3dRuGwzueqiQ0kicmzcwZcOvnYxroMpehAGWClxtb1oJ+NizlGODAN0FEOjifZ81pZXyRsd7r/hRlZOTZIcP4N1CozevIssjVFL63RmlkirPp2kBYGLqad0jkySzKxTTQVYRVAsEKOxrkS5knogSVxLN8hJXYuSkDghemSIA9/4Csee+S4kCUh4+COPU8alXqux9aor2bJ/D4dPHKOtDbRSPOmhhzyiNKFWazB78gzkQBYjRkZRJ86SFQrouI5jNVIIsBaMQQgHK3rrwALWEeBYtu3cRa4UNlVoC7lVKFeSNBq0F5ZgqQu+w42ffoqdu3Zz7NvPoeaWoOhibcpWXFqZQ7TWZHl+jmIhYOPwMOnCEitHj0KegKd57Nd/kQtJhysv2c7yoTPYOOOOx95NN8/Rs3PIwCENc5oXVmF+DdKcgpC4eYogwzia3FXEviJzDNKVdBIFfkjseDz64cdoug6txWVod5GduBfjpXuxcWatAVKw8Yor6Mycx3gG6wlMJ+aqzz9BuxJQe+kNVhod8rlFSDPcG67GnJgjv7DC8vIcaAtZjpSCwHFJjUZpi7YWikVuuPduCtJl9tgJfumrX8ViQPw/80fyYpFFX0Tq06dPn3eOvojUp0+fPu8w/28ikpUOb588xl/9xV/iG0GpVCLYOMFDn/44x354kIookF29lUc/9TE6UUz7/CItL8fRlvqxU6wdeRv2XgkLC1w+tIXzzXOMfv0JokMnYCViqzdC68Iy8501HvvGL3Ly8HF27dvLNR96hPM/eg6FpnHqOEgX1W7hBw55noIAgcAxEqEFHiFqaRU06OUm5154DdVKyDEM776M0+eOMLjSwqyvULIubpKywZQYtgFdFdH2LWwIgJxSJyFXkEyfpzU7B64HQxUwKbsefz977rmL+NQU7doqeqQINiK47BKKl19Cc/48+HDjx59k4ewFaHUIXYkT+LRnFtDlAW67/Q7OvnYQRxsKUUIJl662pEYTEJAv16Dd7Vkn3JDVI6c48dz3QUq8JCfOu4higU9942tkI2OsrK5jMgM2xkpLsWk58vQPWTs7CaFAORloi0yhONem1O4Sz8zxf7P3XsFyXfeZ72/t3PkknAPgACACCRIgGMCcMylmUgyWLIoKVqIsy5Y1tsoaR83YnprrUC57rjy277hG45qxx9Y4jSVKpCWSYgKRczgATsTJqdPOK9yHBuWpW/dxOE/9q9rVXf3Wu9fe3evr7/99k6MnuOHe65kZO9kJdBYaoRWukSxqCev7mZ+ZYLXgo2ZXESsNpNFEVZu42aYnyhnUFcZOjjB1aAS1HGL39lC+93ou+8hTDD16B6rmszp5AX/DOlbjJng2226/lajeIFqYp2Y8nHZKJdf0VYqYLOTM228w/rffpXj8PKVzk/T2FLgglkhqUOzfSEFp9PgEtSRibnUClc7i7djMtvXbWN53lrHTx9BxxB1PP8Xk4YPQU+UnX3yRarXCytICSkpsw49zYpTVefueAl8aLGN4X2iJ6w2O/vPrTO870mlIC1PuuvNuhvv7mTwzwloT0LsqWZmcI62KTt/3akz19AJN34LhNZSWQnodj0UTEQnJA5/7BLs+9BBn9u1BruknrnokZQc86HU86q0lVmemOLb3PaKVFnkrgmInu6bhCUQUURYWythYYYKeb0CqCLRBpAmeMeSJILBrSMsizlKo9kCYQUvSKz08lZNqza3f+AqXffwJxvbvoTaXUEqaqNU2yewiLNVBW8RKIh0HUyqQO6BMTubbHRHOgtwW5FHeyeCxA3p0QDmzKGQgjCC3Ow1X2rdJLEVkSdQl68ijJjIJIc342pe/hhmdZ+HACMPNCCdM8JyU1FXgecwuxpx9+yiLcw24/0Eq111HdvwQXDLE9puvxSo43HT37YydOg1LcwA4loUVBMS2QeURphBAlmFpgXNRRDKAcA1ZGEHgIcpVGJ8mnZ4nP3KKsz/aQ3rqfGeMtM9h3S27OX/kGKtvvIv2NPmGCtU7dpM2Q8TxSfoXIzyZo4oBiQ/KGMqZIMhtLGWRuzbKMuBKsA1KGBQ+oq+Piakxtj72KKuvvw2OR4ri1I/eRGY5y0vzHD95mNCFz37+8xz8239EpQmULTY+cBerh8/Sq12iLOXhT3+a03v2wuIM1iUbMbNznbw60Wk6U0aA5dAZqTLYpjM+dsMLz9M3OMDI6eMkWuEUA+I0ZbDaR7TUIIg0Q+USrShhfuwCp7/zClsu38n6teshU4Rnx0jSlLyesvDeQXS8Qv8Vmzn97h6Wf7Qfe6WJHqzAUJlT4QzWTMb0P+2BNKb2m5+hXbUJFxYZHJukkGmaVk5vM6EnjOkxhiCNETJBWAqEInU12jFo25AbgVOsoVMwuWZhZpa5778Cy6uQKypS46uAttTovn7sG3bz+Kc+wcF/+FsGr76CMFxBxyFs2kij6DH9xtuwsEru5DgbN/C5Fz7Jxv4Bpt47TEFZNKI2nu1gWxptDLFWWJbTafezXUyumTp1inMnzlDD4utf/XksrRFWx3r0flNeV0Tq0qVLlw+WrojUpUuXLh8wGnDefwJgQcuk/P0//gNvvP46toEsV4QGhjZvYeLkOGEUoXWE2TTMxk2XMHluFFPxsE1KXz2hKApc+6WfZO0dN3Lub/8Z6Ttc+eH7EEtt+mZiJuMWWcGCRpvFeotoZpSlQwcJpxaJ6nMEuy7joc98gbOvfI+gXAKt0HmGyQ1GGYTj4gclLG2hc4Vuhjjj8/S1NbrdIM0US8dOQBYSTY6RuRZx2SUrBDR1Sp2c3BNsff5Rhp95kIWowZrRORwBxUKBRAN5zjM//UV2PfgAP/iPf8zoscO0VYrq8bny8btYLdnM73+XxrEzoH1IwJ5aob9Qob6ySklrZBSjEIT1BoX+QQLLRrbaqNUVtLJpFl2kY1GLBdWgxKWXb4ftG2ifn2C99pEVm7wZUcAQ+D6tNOHge++yoCQ964dJZuZwyzayHiOUQWDjej6xbHY+1MzgYVHWASZq4MqMHmUzfeo0eSIhAy+DYtYJ3nVqA2QX2my46lrW9Q6wuH8/ZRHQcjV69zA9O7aRLSfEWtGSiqF1GxB+gZWlZbLeClHYZvLIAa647hpmFufIogZ3/PrXmIyWaQz18Nwnf5Ij+/eihSKOI66sDrC4MEUexxjbgGdRKRbIZE67EeFagkKhxvz4Mo3R8/g1Q7MYk4UhzDZJ3jnC4ulR4v4ijgQdhVTLRVKjSOfnOX74AFNHj5FnKbbvkAtD7ApyR4Ddqd0SWiBUx8yRuhZCCEQjoiIt1gQVvFRRtX1O7d/H2KGjpDML1KdmyKKU1E5Z86nHufLhe1l36RbmTo3Rc+MubvvJD1Nev44TI0dITIJCMi5TprOESx58gOWCx+5Pf5L+O25n8dRJ9OICuUenaS+RHeHKdlFKwuZhCFfBhSCTeJnCSlOElNi2TWZypA3aNtilIZJKDW69nGt/8+exhgcprVtH+8w4lANC30YWHSZffY+xV1+FLMTEhqJWaASXPvUkV33hU+hLN1KfHoc04rEvfobbHv8QhyfOQh5jHIF0OiJSv1OjrGx0mtKJUzNI0amTd7SFJwVGOmivzK7b7ubFT7/IOwf3QxxCb4W3X3uD2blFbNulahS50RjhkBgoXX8DH/3XX2fasYkvzHLHEx9FjU2RHngTObfA0g/30vrRQWa++zbe7BJWmuP4PqlOMZ6PdAU3PPwADz7yMH5QYHZ0Akd3BCQjwHHAtgWONsh6g55aL3ae4ds2edhkqKcXVQ4YevFZzh47QHboUCePyrF54Kde4Ord13DiO69ghxKPArFj03AV0oNM684op7TxpU0hs6mmBmFyvBxqiaGSFGjP1rnzhU9x5H++yq0DW7lw8BjN+jykOZ7ro+IQjMSMjpiLnwIAACAASURBVHLw5Vc6AeHrNvLoRz7GWGORxuERojiGTRXOtVbY0jPIrqceZ6Ce0jh9GscojLCQwkZioayOldM2+sc6xoUTx5k8cQKkxF47SCYlZClSahylKGqHpbzBluoAZq6JQDAvm1i1MvMnz1CyAmKVkloR7N4Gw1VUlpHtO4C/sMrlokzYXCKvt7jqI0+Q7LyMeM9p1poqy7PnaE2Ok4+Ok2pB24ohNCQ1l5alUJUioWU6bZhGYBkLRwtcJTrNaP29aG2Dcdmwdpi546c6QnyusC2Nazs0JWReEYbXcPUjDzAyNUZ7cYEnH3uU0WNHyeshtDTxofMwucLHP/8lojt3svTPL3Pg4BFOnTxC5mQ0sjZ+1vkewjZoC4ww2L6P0oaC7ZPnBjwPW8KlawZ56ad+CstxMJbpNB4iOk103XG2Ll26dPlA6YpIXbp06fIB874T6ccikg3NNOafXn6ZQ/sPYElNnGV4lSpn392P19uHch0o2iSlIjt2Xs7ZE8cxWYxOQ/xMY8kM95rtnXGsv/8hNafAeLKCv9RGTi6htqxj8JodtC7MEi0sgGfALxKfmwCREwyv44knn+GtV15BhiE2YEmJ0p1pAjwPggIPPv0kp04cwQ08ighayQoBBUKVQaXAthc/yuq+/Z0Kdpl2GneqJUhjKAWs5gk7b7uZkhFEh46RSEmSpRSrNTLHozo4yI5du3jvvb2dViltIGpwyzOPU+2pMP3eAYL+IeRsHTcT5KshC0uLEMcM9lTJ45DMciDNma+3aczNky3M0Vsq08iyTri35+EmMTpXXH7VTtZev4Pz7+4jyDLqcYzvgcoM8qLTwfguZBmX7LoKU6oRnj+NUOBWasRKk3oCZILrdYqzDILM8vHcColSJFnMULUP1YrwJdjaQQkPJVzCTLPWrhH0lHngwQcZ2LqFxWMjRJbEXL2Z3Tdcz8jRI8RCYXpqNOfnaScJ9PZhxidIz41CnFIplrGNRVjwKW3exFJ9FT16ntGVFbITJxCFAlplNBqrVPwegnKJRhJj9dUIZUYWBFT8IsXURoWKVBkGq2VWwmZnDEpCfw59Vokrnn6SDY/cx9LbB5AqZ3lpgXh6GlEtQxphBwFYNoKOwKHciwveuti8bUBoQy4MmSNQlk0lKKKUIkpipJHkSlLr7wNLYCxBriVp2IahKpGTMTM3w+z8PGv7h7hw4hht32UsaqDGx4CO9cVkmtqadcxNz+J4JS7sP8biqRF233EPjcMHyIXGDQqoJKNU6QPbYuDSbfzMb/4ap5fmCM+dw1GGilvAx8P1C7RkBp7A+C4KjYwE22+8icufeoCDU6NYcca6cg8L7x5CatW5DjQEiUZqoFLA1EM8ApZRyO0b6Nm2ldOnzqAOHoNKhZH9Bzn8wx9Csw3C6SgwCtCGJEzJtSEveoSeJvY1qS9IbbB+vOm3yHNDvd1mfHKc5thIJ+A9iiAooJMUqRWp59KWOcrxUcYir1U4euoE8YnjsHYD9ZPnkRMT6JkxSkGASXKKRtCPTz8FAsuhLtsYz+64buKIvq2XEEUhe179Z2xJR0Tq6BG4niAKMzzHpuQXSOKILI6xXRspDImtydpNirt2Ec5MwLp1ML+ClytmV+Y5dugoemoeXwa0SHHcgEwmF0fEBKlrk1sWWtg4yqIgNUYobDSBBFf59K7fxNE972H19lOaXqK1uoBdLUCcUysWieMQyiWIYihV8TJD1mxzaN8B2pNn6elZR6YVZk3A05/+FGff2c+Z86dpnBjFabcBjbIdciE6i96yMZiLy78z3ie1QfT1QZZhWi0oBJ2MIs8jsFyCIMDvDVheWsIgiJKUB198gfnlRcKxUXJBx4m3oZd1d93I9bfczOSBo8jRSarSRZkmQwNDJDKlb+smxo+cgPFltIJcNOCSS6DRRjZWULah10BULYPnostVcm3ItEFjo4WLETYGB2k59O+4DCFc8vlFms0WRAme72EJ0DIlyxW45U7QtklZd8tNnDt6GMKU9vwCi8dPgOdSTgOyi8ri1q1beefQG538OuF0Fs3QAEgoR50RukSlvF8ebRAgFWChNeD7mCilv1DgS1/8Arg2xjLoi04ku2N47IpIXbp06fIB0hWRunTp0uUDRkHnh625+IIFv/vH/4Hp+VmmpqeJW228SplUKkqRRewb6C9CMyafn2XkwjhGRQT1BNsztB1Dvyxy7uBJzh85DUrjtjLS6TlYaNOUirzHo7ZjG2l/L2ryAmQGqx7Tn0ukpYgXlnjrn1+HRh08C9cSBEbg2S6ZkqhyGdVfxL1+G8Udm1g5f4IwaaMCj9QFZWmoBKzfuRN/foXm/FxnhGCgyku//Q2C4fVMHjgKc03Gv/8Oi+8dJCwZ3MDvBIs3Q8qVGhNjE4yfHmHnpVcyPbEA7RSnWOT0228xffgYILCaGTozGONAsYxybAg83KgNaU6C6dge4gTiGBAkFkjfh/4y2AI3lGQm4dz0JGdXZmCljis74U9CX/x8rE49NMZAnLG8sMC6y7YRnhqhYAsiR8Gd10FfCRbmqNkuidSUtm1h47OPcmG4iqwWkKtNslRQpkgqBQOX7mApapP7HtaVVxBfWCAPY956/TXOHdpPutykp1gmHh9lrh6hRQv6Czz0M1+mVS4TBj7EKYQKEeZsocDigRM0L9TR7Zyl19/m2kef5KGnnuf8eweJZ5fQjQZbtmxl40ef5MzsHK1EUrN7iKXuOKhsQTawCbUQddrbAotMRUgrA7szhtbnF4mlZi5OiMIYNTZG1lrFcyyUVrgChNIIpbAuLm7pWATDQ1x9x23UNg6zdOo0OpdI3+s071U8KPukMiRzNbkvyH1B5kPbJGR2jnIUOCB6qjzwqZ/E8YosHzwEK4skl29DnlkgPHIeHYQwt4LdzilIB6+lqB8fRc82kEfOwVxIf9Ni7s39+L5EWoIsSztB9WmK5Ti00pSR6SmWRk6ADDEaRCqQxlC3LEwtAFuCUBAUQNksT15g8cQY+XffJrkwz8Jb78L6tRQysFsxl4geZODhey5umGGEobnGx75pJ3e+8Bw//Pd/gto3Do2IilsgWw079ViZoWA8StKhRzu4cUzSW0YVNfZd13D1z73A3OYa1332JzD9PTSOnCG3ffygQrZ1I+VNwywszkBztdP8l+tOqr9ywA2QbhWzcSu1G24gNpJ7nn6K8Tdeh9k5GB/DuzCOnhnFRtOSEqoVtOvTyGIycjJLIXxBrhUYG1ybhQsTTI2cBQ2usfCFTa4kRkC5p5ckbmNbNkmU4Hs2qczp2zpMO1zBvfYydtx3F37qoob7uHzXFcz/6F0GVlPyuSVEM+y0txcCUkugc8166eK6LnEWUbxnN7e++BxnLkzgKhudJMSOJLU0WkBqecw1GtBXxawu0VhuUhY2ThZSwkKkOa6wsLIc11h4UUaQKTCCrBjA5mFq2qO9WodqgfP7j9I+cgLqS+RGU7qYh5Q7HjIIOk11UkK5hGqHFAIflcSUlI9JcpQ04Dr0btrAXY89zLmzp8mEInQFSdhGVnxyq9NOOHf8HPXRU3DtNj7z73+N828eYPMT9zC9vMjoN7+FnFilqF0UOW1XsJqHaGNYPXwWeyLB0YKhn3mK5Mk7uLK4hvnX3gbLpVQMCCJFiE3fdbdyw+13MzG3BE6ATiVq4yY23X47S0vLsGEDzzz9LKdGziJXVkHmOMbCyxJsqTCWRnoC7QiKV2/n49/4Zb73l/8NJi7Acov66TGEV4HU4EpDXgV6PE7v38eDjzzG6JGTEIfc9Y1fZOJvXoXVGG0bUplh2QbXdVFSg9J4pRLKgLEd7CDA1YI+3+dL/+rnIUswnt0Vkbp06dLl/yBdEalLly5dPmDej2h4X0QyFlx38238zh/9Pkop6rNzaNvCpBn9doF2zWf4+mu48+57OLc0DxPnwbUZXJV4jiCsCRLj09dyoJGx6cG7uf7RBzh74DBlUSLuC2C1TnNmhsp9N/Pw88/S+s5eCllE5CvKWiISRW55HceCypBZjp3kGC3oGRyibRsIGyycPEH96CkcZeFHEjeXVC2fNNPoRsLinqPYMzO4Egp+hbTZZv//fIXJIyOIlZSe3KWXAtqyyZ2Q3Nj4wqHkBCR5imw1ac/N0RidotRO6FMFZBRSxKMgXJJ6RKlaxd+6hTs//TFGyhbCCFhcwiRtLGMo9JRJspztjz6GLlVIZme4//lnmCsXyEdGIc7RRhP0lEjJoV4Hp4DMFZZQQGcPrwWdYOBMQakEqyuszlxAtSOCah/phiGca3bxoeeeo726ytLIOAwMkBUK9N56IytrA3Y8fB8JhvDCFIkQpDrj+o98mM3PPsq4rTFrfF76lV/hrb/+G8hiKNjoVGKHKVVdJQ9TdOrAZJMLb51i0/Yrqe24nBU746Of+wxbd27nvX2vIQerlJdyRFsijcfciXMc+Yu/JZtcYkja1JRGNENGL+mDQhGzsEoQWXz8pZ/mkEyh1eKWF17k0kuvZHx2CrJlYl/iWQE9qUfglJgtGOKiRR4paqemiUyLYsHH1gojM8q+B3mObcyPD+375PPzJLbN8Lr1TE9Og1+AdsgtH36COz/yDMVymdWDJ3ClxpXm4uPFI1e4ucaWBlVvM3bkFK33TqGaEoyNPD9KMfJZ7/VwxdNPseGay5g6eYLcEUipsKsldNzsuBuyhDhsYmcxlZ4K5XVrueNDD3HNLTdx8tBhtABaLaLlpU7bFAohBZ70UMIhKXr4d9zEE7/4FQrbLmPr5ssRt22nUTHIY2dZZ5Vp6wgGS+z82RdxqyVWVuqw0qKtYqIsJrMSVE8AfoBebHDub74PqQelGgOXb6K+MAlr+6FWBBd+8be+gfQdzk1NECYpGIETlKhWyoyPjsOeQ8x+9zXa52YhFFT9Cq1WTOm5hxnecTkqapNMTUKY4wqBJ3xkrjtKtlfgzq9+BXqqNBzNBr/A1Gtv4ccRvUpidIZEExSrtD2FvuYSLvv0c9QHC8QXxkkCQd5OWFsuk6cGxcUb20WB3M4NLoLcaDTQTiP6L7sUyw/I2i2E0VT7aiwuL/D4v/o56q5g9J9eZunoWZLzJ5nftw87MvSnCuUJpNDkWqNsCzaWufajz3Jm7348x8aplnH7a5z+ziswvUI1LxB70A4ypC9JSi5JXx/bnnyE1VuvRVxzBY/fcxdXX30l4++9A8JghMEYhas1nla4RgOatm9h1vbzU1/+Mm/95bchlxRXE2rNBNtzyQIfVAthCcJWhKiWUXEM69dz38deYGJqEtNYwfFdipaFLS201lga7GKB226/nZGzZ2nMTHUEXZ1x9ceeZX7/CUq5h5ASVSuge10QgkOvv0V67jzLx8+iT5xn86VXU5+YwXM9Qk+hCgblgXQhtwRSxpihCg/cfS9H/80fMP/mIbbsvA7pu4Qr84QuQIVSajF9+jzp/DJozZo7b+Pen3iOve+9zY7Pf4KnP/4C3/rabyA9B8I6lAvoLMHXChuFtAzaAWzIozaH97wHZyfADhheu41WqnEG1zJ49dWs5g2e+8PfYjZuk1yY58o7rmPkzT1YbcP4D9+i0LceGYXosgDHQsgckyl801m6KpcYYXj+pS9w/c03c/C9fVRch5/76s+C56AvjrN1RaQuXbp0+T+DMO/7Rbt06dKlyweCBBxD59cwHWPATY/ex9Ydl/PtP/0z0BalYpm82cL2i8RxCoMDYCue+MwnOb53H41jpwinZnGrBdq+pjeqokURd9swS+kSA7ffRv+aPpb2n2L5zTfZcudtPPbJj/Ef/s0vQbmX3pPziDQi8TMST6NzsLMA5WsgR1gWxVBhsElsh+ItV/P4xz7KX//272BNz1EBeiwfZUFdpuT4OLYPyqLiQF02UYAUDgXHJ7B9VpMYPVDjxmcfZf/RQ+gzR6GhcJWgYvusqAQ8B4zCzw0OLqFTg5IP4QJOMUBELXJlcdnjjzBw1TW8e/wgVw9fzuKBAywdeIc+Iak7Fnm1D/+yK7j9tjt597UfICxD39XXMP03L+MnMZKYjBhhu/iRxMIn8W3cPEcLjbQ7s4aeAlTHyZALoGCB40Om+dIf/Sl/8Z3v0RwfgZlzPP3Fz/H3v/d/g1uF3jWwer6zoU5zRBBg2hGiWMIkCfQPQrHIbf/2X/POn/457DlJpbeXVmMKNg3BTES1rmmuLUIjojd3ENpnZfswbOln7fOPwjuHmHvjTQhXIFxmYNvtXHbVVcyETa7ZuQuimH/8w29SVZJMrWKAcu8gq1GIziVUC7BhEDatB2W496a7ee0//Veor7DGilgkh6GNoDyYWu64gXwHL27TY0HLylFZju/7OJYLSqP+RSLFCJDKRvkeEo3KEizbwxc2mcxRHtBbgKVlBmLN/xdh/uVRWoK2ZeEYl6Lj0wJSAQ9+/jOs27qNPa+/zdTbRyjv6mdx355OireyoOKzdtfl3PfsY7z87X9k9dQIXmbjpTbtQINvgZDQbIIEx/IQSiJ8m0wnlFMHX/lkuLR6fAY/9Tz1uIlZaZO/fgCfGB218MOcMi4hEuEERAUfqTtZNyiLPp0gsEl8CJUEKcCywQ8offonMJsGib71XxncfgWOYzPz1lswvJ5qoUhzcgKWVsFx8JKOuyfOEhw8FJDbDhQCgnWDJFkCYQrF3s4IaX0JO60T2JrcgsyD4v33su3aq5lrhSx+93VoJViNhP7eKotL41AqQrPNgB1gjCCpDPDgT3+S+QDe3bsHzo3C6BR4AcWwRcEItCyQ2hD5dDbrBoq5wOQ5lufhlYusf/pDDA8P8+73X6F17ARBmoPW5AWf9ddfy9S5s4Dgsk+8yMSxo2Rv76PUjBFI2r1254apPII8oO/JB8BxmXn5NXq0RRqF2KWAtrEQjoPRDuU0o+21wU47zkSvj4c++wVeefN16KvCyAycOUPNisltgRQGIxW+gouXP6kDiWODV4HlBDb2QRxSTWzydgtpS8q5IKrYCJ2jtSazfViznp/+7X/Hyy+/zON338UfffklkDmBLci0j9EaSxlc3yNJYih4HXdbb4Xdd9/JwE3X8+rXf4/NUUeRGw8y8FJQUCz1EYcRptTHc5/7PPvOHWd+ZYGeYpG519/BTiUChbI0xtXg+xQako2pwwg2a//dF7j14fv5uy/+MhwcxakEyNVFiuUyWZojpcKt1ejbsIFEaxoTo9BTgXoIsYA1BdjQy9DQEPM/fIsgkdhGkzoa6YBt+2hhYRKJW6iStxNe+urX+Y//+c+5+ze+TlYp8O4f/DYMroFjp3FmlpHrfFhN6Ndllh3FtZ/9JKfOjtBXdpj97qsQSXwDPmC5BSILMsfw/Fd/gf3v7mXs3f1sW7OGcyMnQGgyR6CxsLDwNF0RqUuXLl0+YLpOpC5dunT5gHm/cfh/dSK9+vYbrLaaLNQb5Ct1XMvC1brzL3EGJDl4kpGDe6mPnGfAeERkxALIDOuTIgu9RUrXX07oGqLxGXZ/5GlM4LP4+l7EpiEGd2zj5OgonBkjwSC0oSBzohLgQlWXUYGNlilIQ8ny8LyASOZkAzV6N61nfbHM9JmzlEoFGmQsypy0YiMtRWYpMgQtHSNdGzwXR9idYFQlSDxgqMCa5x+guHGQ1dPjOKHCkYqi5ZJ7FrrkYwUuRWMjHJ9s2yZY3wt5iNtbw45TLGOzmkjqSU4qbOaPnqA9M41pr1J1IcIgbYEsVKi32rSaTbLJCRpJRmGugUja4BqkK/AsQSlTFOwiiW/TCa7p6A/CCBwtcEznNWOgNryGpB2C5eAWh2gvNWlfmIG8zo5H7+f0wZPQzGAhpi/LqRmXohCoVgjKUBSaUqFCsrAKK02mwjYPPfMTnP/ODxBpjrJTNj3/MJ7jszp6Ae65BvrLJJYmNgL31muxrttJc8+btE9NISYWWL/cxtSq1PuKFHfvxBrqY251EeNZTI+co9pbJlEJGTlFbUiTCL9UJOitoeMcffI8XJjlno89x+HmNFgpQ602dduBbVsoXnEZMrXpXWgymILjCFZ7DFYmsS2BLTrhtVpKbNFpohIXd2wyySnYBTzbxXUDyk5A1Gzi2z65yjth2+UCqQyJXEP8vxypY0jef3QEuaPJM0WkJKJcxPIDlOeTXbmB061FkjdPEM1PQ64pZBY1ZVBSoqTksiu2c+CNN2B5hapdxMEn1glkCZS8jtMMC90KKRpByXWRUuErGw8XiUMauOx89kkWV1bJjo9AQ1JanKOU5zTKNu1Sp+rel5L+zKFhA66CbT3EPsRZRC2z6NE2vX2D5EBuW+SNFvncEoQZ4cGjtOotyE1HOIpy7EThSQsrkohqkcQVmFRRcwKMzrGMg7dhkLs//3GK11zKQm/A4D33E9oKpsbpLRaw4xjHQKqhuGYtnu1zYd9emBgD18K0m0T1JkLbeDgorYl6y8S2IG+ktJQhXmjSGJmEM9MEuaCcGzwrRypwjIsWkL2fHn2xGE0Y06m3twTTBZfzk2NkF6ahHdPrBVSDImEY0mpnGBywLO79yktM7D2EXGkx0EqoIzFXrYOCDcsh/bHD6oUV6sdGIMkoY2GSlCSJ0BgYHuCqzzzPyluHKMgcYcBRBpW51JsRcbVGsH4j3ugMRW3IVJ3M6bQIaqOxTMeVpK3O2jPCxott1jk1mhUDlwyRpim4AoNiTWYoZtDMc4JqkaxYBg2NQpHzBw5QqpQZf+9dEKCFRjud92l05x7sez6FoEAWx9Q2bcASFidPnUVOzuNIQVF4FKSmXXLBhTxs0RdbXHLL7RQ3D3PgR99l44cfprZ+kMW3D7Am1NSkwM9BoSlqg+/Y2KJAw8kRmzegJ5ZI/m4vqc7R9+2EcJlcxriOhcpiPK0JZ+apKEMW5lixhNzCaAtKDrd/5CmG1g4xvncfQnbOmbIMWkA5BxVnCA2+dlFKsdwIWc1TVrYOMxo14PBZGDkFtkO5nRO4LpX+fpoqR28scfXzzzBydoR2VIcLs5BpPKAAaMtB2RZSSE6OjVGfmwNpqBZ8vvLzP0cmM4xzMdD8/Xa2rojUpUuXLh8oXSdSly5dunzAKGSnqUc7nRcEzIYZP9jzDi9+5tMQRyA8NiyErNQsTCuibATNdVXSzb30b7+c5VcOUZppYgZtaOWIWh9hugDbt/LI7ut5+a/+CoYvgekWhXpMvCaAms2HfulLfP+rv4bXNNSwaQiB9cgNJEeP4DRtrGZIPtyPySNoZBD4oGRns5+7nUDuOGWobwPt2RVychyvQKRCyhuHaZPx4HOf49X//mcw3AfHT7NRuDTikNxAXCpife0F7nn8cc5+6wfce+N1/Jff+324MIkdpRSzHEsrtIKW6+Bu3s7Xfv1X+a2v/Dw0VhGZpAcLZUHkgiyJzuxZlLNG2ggTkVSrNPM2T/7bX+Yff/P/AmwwPuvuuJFdu3bxw9dfQ50+DZHEwWbIODSJaemcsnYwQOJqtNCdDYi2UY4Hgct9L32GLbVe/tNv/BbkDgO9AyytLHSsC47C7ulDrayyYee1XJifgdUWhTTGkBN44OVQNTaxKNHyHZqlGtc+/hCnTh8mPX0U+ovc+vgjbO4d5Nvf/M+YdX08svtuRk+McOLcCKypseWqHYTLSyztO4ITpwz0lljKIzJcyCVeuUoltag6PvFqA1Hwmc1XoadEb+ZjN0N63BJRvkJglWm5Nm2piF0XKhWoL+P1ujz5i1/h22/8oJPtkgisI+dxmg2KJkMGinaSUAqKZO2IshcQhS1qfhnHsjHGoPKc1UKJ3LYQSByT4mmJSjIC2yfNBcp2MEqzbs0Ak/MTuIHAwpBlIHpctG2BC/QNQkNCpEAmUHAhzSFPoVKEXFFeyhBWxwEFnXHE3ILcBoTGMhJbg8CQBTZgQCl23fsAJTvg1NETNMdnCbwiUiikFYPS9OoAC0FsCyKrYx+0JPSmYMjIyKl4ZdqZomWJjquk5MHm9bB+Lfc98ziH/u4vWP3RAey6wS6X8K7bwe6H7mVJQ1m65PWIw3/2x4BhQ+gjjGQqsLn9T3+Nat8aXv7lP4DRGSgmoBTFeidPSCEoFotEngZfQi6hth6eepChUpX5770M58fw6o3OJtwrsJplSASeVSHTOaDwawFpexUMWC6d8y4vVqvZDhgLW4FlLAJz0SUmNNICJcBVHREpdUwnH43OJWGZf+lWz2udwHOUoRhK7FziFwLqWYxUGiwH2xNoS1HMbBzlIC2buz79MfpvvoL//j++TX7oGDSTTnNYtQ+9sMo1G7YyNzVBj1Nl3tMMXrMDtWOY5K9ewZMpqzLEGaixtNoEYeGUqwBUhUPabFK2LebzBDyfUqFKGsc4nkdCimsZrNUWGwg4j+Sq3/0Fot4y5//+Vez5BHXgBOtcj0y1WL5xN9c+9jiHv/9qx621uAC2i6clcLGhTkOAzWqvDW4J5lIQgoFaD9byBLVSkbN5myCz6PN6aGYxlUqV2dYy9HhYBRfdblNJDLYoU89T2NIHvX0dBW9sGhxN/403sdavcOI734OenE1NC19pztYE+GVYbrN1+ApGqXPv7/w6b/zRH6APnKYvNni4rAJs20g6N8vzL32Zv/n9P8GzPURQI9UxT3zuBfYc3Mvi1BjMzwMOfQnYRrJIQgWXli2htwSNNpXcp9UbwNoiCBsmJVy1hm1PPcT53/1zttcNTs1jYnmatTu3cX7pPGgLwh78SzeRri7C4hJCCwpSAh3nk7ItcGxIDb09A8zPzSKs979pJXan5oCOh8n53/5d3qVLly5dOnSdSF26dOnyAdPpjbF+7NYAcH2buaUW//TWW9z8zIeZziN6H76RRTdGRm0szyVuhhSuuZzbPvQQE1OL+C1Je3meTb0bmRdAzYMLk5w7fhTsjFt/6Wus3X0Dk2/sARc233YzB/78/wGnQK8qICWEjsXG++/m3s/+FCeP7cVaSXC1RcGtUA1toiSD/hqf/5M/5MDf/QMExqy0zwAAIABJREFUAZQrhHnIrb/0ZdKtw6xMjUDVJ8sTSDM2b7mS6Y1rqOy8jHueepSDB/aTZilWBio1mEaTsT2HaJ4aYy6LiFGYc2cRxqKQGWxjkdgWynbR7ZQ3f/BPQGezNShdbJ2zUszRbo6d5Zhy4f2ZJ2qlfhbiJvgOK/1lrP5+ssUlytUeVs6cZGWxgRvmpJHkV/7sm6zZuZ09e18jM5I+bIxWaEujLYPFxUwkY2NsFxyHselpDr21H1oRuIbISjqjHu2EPr9KtNoA3yUbqvDEr/4ShZ5epk6cRFy5hSiLCG0blEsUCFqOBNsjyjKqa6u0dQZzC1zYe4zjr79Lj1dCNFLOHjhOfWGRYrmIqzOWzpwjm5rGVzmeZ5FZEKsc1zhgW8goxBvoQRU8FlRCe1MvV//MJ1jc2Es8fQ7r1uuZixZpeRartInWVlh3/83sfuRBJg4chMEeVHOK8eVlgkSRHTsLJ0fx2nU8IVFFRaxigtTFFjZplqMtCyUcgmoNJwjIjaCZRDhOEdtoHK1wkAg0fiEgkhlaWEgjQNsUTJm2lWAqBTyZMpTBhtjFicBctpOHvvgl1l+ynYk9+7Cv3ME9Tz/BA88+zbnxMdKJaXypKWiJEqYzyXbRSaKFwDIax2hs02nH8jQUY01gHApWgclTZ5k+e5601YRyAalSbnz+CW5+9mEmVxZoLi8S24ZcphcT1zVGXMzL0TnasWihSCsu6z75FA/86pcZXd/Dmk3baM8sMvatvyc5OUJRetS0h8414fQMkyfOsvTGu8zsPc7C/uP0RTmJjMkB7XkkRY+p2QuMHjyBOXKGHY8/wtYP3890HpFPTrPV6sFRivUvPsTVLz3P2NGz0Mi5cv0WFhvLyPkFbtu+g8l9+ykWimQqpyVzRKXUaZdLDX6hgDZg0hhPKNCdqSpXgSUdKpUaqYywtcG5+DlaQmCsznmWFhhhddxGgs651uBojfhxc4BACzB0RC4vU3jKoBxB7rmkMsUplnGkolT0SERGbkPqWOSOy7mz5zn66o/QZychNZQLpU4rm84hcFlcWGbtwFqyKCGXGfOLCyydP0ciJFktICq7tFt1Cv29WNIwYBxUvYlxILBssjgiHa7C+gHUfIKd5KR5zq7PPsPcoQOsyRzqZDhDVaaPnmb1wGnuvvtRxvYcxo1jsDRJGtG7bRdRPaX9zh5EklDKUkpK4mrVyVsCtCWI0djX7OL2T7xAunEdSZgQLi7hOx7TWROq4NlFIqnJfJdmFlLo60GlEtNK8JSFpQwtR8FAL/5Ug+psCKsJt3/9i0zYDR77zGcJ2y1mTp6CQFIMQRtJs2SgGVKp9jG/vMCd3/gab3zrv2BOnsZ3C8hYkiFIHAdlSdg0zO2PP8bBt99EDZTxtw+R12cYOfQOUW/Ax7/+sxw9sQ+SFWLbYCtBYBzaCIp2gVI7Zp1dJdcxtSTGWVolWaxDptn57GNEYZPmgaMUY8FK3CSzYGl5+WLwERRqG3npZ77IwTOnUPUGiPfFyYuXIhoXMFJRLJT5hV/8BSzx4zLIi2tQ0RGQfqwudenSpUuX/81077BdunTp8oHz/3+r/dM/+WOG163l5uuvZ/vOHRQuXc/m22+CJCKMUxzHIT56nO999zvkFRezZRACh9GwzuClW+jfvRuERanWC8Ji7SWXcOXu3dBbprBlM7fcdGvHmhGm5J5DAwX9fYwdPsbf/be/hjRBYrj62mu5//77QUks2wXX58KFC7BmDWQKDNz8+U8wISKyTX2wazOQQeBAkvLDv/wW2TtvUT94kOmo3nGLWBZOUMEGGLkA7xyC2TnmDxygAnAxI8QIC4lAWVYnM0YA/RUQKfgWRkads+dr8A2+0pCm4DlErmA2akHgQbXC4r59WJ4P/QO05zuugPrxszTPjFMq1dh79DBrrtgKVR+nUMBIhRYXR9noHK6GUqEIwur8218oQL0BxSLYNvQPsOvmmwg2rGNFZeAHYCCZmmXi9HFaK4tQLPGhF1+EwSHo6aFpgbIF+GCVPJqnjjC3fx/MzIFToGQHVN0ScTMmTRTCc7ALPs16nTTOKLgeeZJj2y6W5aBziStc8oKPLhdhoJfG6hKLYb2zmyqWuPLKXdxy/S3QV+FDn3yOa154GspOJ8DZJDR1xlU33wAbhzqhuQWP6OQJWvsPYdWbrFWCtZZDrwVGJ2g0dsHHCjx0ycMM9SIdyaKOmW4sshi3CDZsxNLgS42vwNLWxZwkjXIccgsKAz0MXb6NWRF3xqq0JMo6E5zQGSULj47wnd/9Jm/8j38Abbh1927SepN333iTdr0BWqO1xgjQwkKJf3Ej2Rc3m8KAMFbn2jM2AgedGSxlUytW8YPSRQuOASP5f9l70yg7yvvc9/fWXHvu3aOGFpqFBEJCIAaDmfEEtgFjcLCx8RQ7dpzZTnIyOMl1EnKTc3MzOI7t3MSJY4NtDLZsAzYYJGaEJCQ0zy2p52nPNdf7ng/VkJzzneTD3b+1evXaq9fqXbt2Ve16n/08z//ln/yYh//u7+gcPQq2heHY2Wmr88Z6NNSz51BSgmlCziK1BDO1OaIDhyg0AqptYKqD5YH0IrwkREsUrnIwZtrQiHBaIbkgQk9jyk4R34GaEYDXhJcOI596BT1f4PCLz7Dzmw/C3oPQ10MUeRjA2bFRkrYPJ8YRtSb16RkYnSQ8dpLdTzyBpmm0O21ipdDKDqmIQPpgSUIZIiwN13EQ6cKgPqBSHiARNo1GG9CQgjd+1H/6/Tqvi2q6IiumTrM+MWOhnBokpAl6kiJkitQEianh+S0ol0j8ACFMPD/ONkD/T0pAuw0dHzNfRPgxWqTALbDu6qvAEOilPHORh68SbNcl77jg5FADFVqdOZI0hEoJ3wsQhkm8MN1L2DbKskjQyF+2mf7LNqEsnWKuzOJ1a9h03VXg2hQrFUIL/E4bZjswMsPe7/wEpubQNQBJTsDMi7uZ3PEStEPcVCEWXnm6YMBCZAXjUiresuVylqxYwZSI2HDxxWA7tAwBRR1MAy8OCfI2iVBohRJ+rYUeSRwt65cLZQpbzqfn2q3oaDikLF+8lIu2boY45fCO5zj64iugJCQpoQDNckGmkCsQpQnldasxcw6kKQgdzTIJ9BTP1aDiQhJBFPLIo9vA1RHLBlh3wYpMYdRT+go5Dr/8ArRqQAKORif1EaKQiZS2iYVOK26RagYOghICC7BzNoe2/YTRbz0EUUqHhBYJSU8BlTOyHSYtZBTy7I7tRKdP80YQ/PXzGAOFlp3bgFg4/vQ38hT/xwnbpUuXLl3eNLpxti5dunR5k0mR2bekauHGVsFMO+KBRx7i/n/4MhOtBoydA0eAW8AYnSefQmBohP06bFlP+YZr0JWGriQz3/gBV3z8M8yOn+XE00/D7te4+b5f4IlTY3BqFnoMiAKGli0nOnWO+dOnMIcGiEkhCGHlCoRtofbsxNFymBtXcO2t72L2xUO89NMnsuiQqSPmQ3QSEh02f+KD7B05CobG+muuYTAV+GcnePmB79HrOLSilMg14ZI1gAs7XoVmgnAU1Sgi1TTq/UXIW9x11/sZPXCIXY89hZHqSF0ncIxMpGm1ueQPPkkr7HDs+4+y6tgcHVImF6cgYGBcMr1+FebSJdyy8XJ+8PV/yfZbbxHq06y89Tau2nQJz/zzd5jcs5tSuY9OqvASD4oaFFyYn4UIhkybWb9NomfrJFOCnYKHQTi0mMVXX8Hid97Aru//AA4fZ/mmixk5eQK3VOCSqy/nua/9IygH0YkpAQ1XoYUgpQU3vZXe9atpnxsjfPTn5Lw6kRmTWC7YZra4C0KKsYabGAjNIuntYQ4JzVmwLCqlIokXoMkUXQiUlCRJBElMWnDx0wBWnscdn/w4277zMEmtg5hoomaaFIplpCbwtFnEeYsZsHNM7XkNzbKQlgmpAmmRL/QTtGqYzBIJ6Cv3kjQ65L0YS6bEJDQtSCsmEQVCJWHJAB/53d9k34lj7H3kB1x6173kDZcdf/aX5DydQhSRaopYl0S6JFJp1gvjx5RXrKR3y0ZGLlmP/OpXsuhUrQ6phEYAmolVrBL5abaNSQwlh8rSIeqnT0Ia4rh5tDAiafuktoMSINT/uaCEVGQL0FQIUsPGNHSSKIYwxNTB0g2UjAjjkPJQH3NhB8fJwVwbohgr59IkztajEqwEisIkDSM002Y+CcHUoNoDtTZaaOKiWJkbYtz2kY5JbX4CFJRiMFWMi05Lg44W05MYRJpBY2MfufUrucDuZfZff4gJHEeiCoJFfo4o9ZnLQWXNKvxGm6jlUeqkuEGM5bicDRu4totjGKRBCyVjpCUIdY2EFOvSzWy5/HKS2YBdD2+DtoeWSHJAPl8l1XVmO14WbdQBbwok6FKiSQ1zQTxSIhNIUi1zZhkSrETDTt+oRSLSIdKzYnpHSUS0YDJxDYJSjpvvuB230sO2/+cr9Di9tBs1ZC4iFQZZk7ueTfNLkkyMTmMGV6/ihlvexcEzJ3ntp4+CU6RYrhKencaKFYZl0lYxSb/GpvvuwTJ0Dux4Ef/gCEVpkc63IG/jiQiQVHorrPuFd3Pq3CgzDz8FMQxevoWp6RMwOgltCWVwlE1Pw8BAxxA5prUAbIVIfHJRhEsF1ypTi+o06WCVXbygA0Khydd3moHtVml6HqwcgJvfAg9uh5qP1Z8jao1BkMLSIRhazFs3XMyz235Cr9KJG02ErtFOIxavXsHqr/8Buw8eovmrf8+QyDEpWzDoQLMDXnaM9m5eQ2W4l9YLB+k06nRKEloJmpFDnDdMunEVay/YyLH7/ycYGvQW2fCWK+gtVHn2+z/JxNHYg0sv5LzNGxn97g9Q0w2cMCFnOzSiDrHK1EcRgGY73Ponf8rJmVEOfONfQHchjqDdxI4TlAGRA/g6ujQolkvUWw3yhTKdTgvWLoLGBIxCCYOmCLIkWi4HSQqhwgmzUzAVkOgpph6TxinVniqTk3P/oRe9LnjyuiupS5cuXbq8WXTjbF26dOnyJvN6zOONOJsA29E5cOAQ3//+Q6ShD52QRR2TfDuhYDo4hSINJVGJhJk669ZcwMhjP8Pb8xpEDgPL13PwWw/CfIvFus2Y3+TqD97DXJRiXXkBYbNJ++VXMecDisUy7bTFunfdxPobb2K4bwl3vu2dHNqzi06tTqQ8jj3/LKMHT6HbeZRhgEzIW3mSyAOlmDxwAsbqcG6e2d0HGXnqWfrzZSZPnyD26/S1Q5KWR3H9Rt576wcohnlGjx2DxQ5+exalYogkqtPiyN49nD14GEsKpKaT6AbKdsDSIfGY2LeHuVcPQkfi+D6hJggWCsd7fMHSy69kanKaxQOLOT1yFoKAjdffyMqtV7L/wYd5bfsLNM9NsUKZTJZ1ChevIVq9GDUyAc0E0xPkNJ35qIO0svfj9biEpUCiE1sOLQHjY2fhxf2gDOpjJ7jt7+7nrFfn+LceZMmqC2mdPovpukgVU/XalFKFXV2JtWkztY5POjEHJ0YpqwgrTfDjGFvXKGoarhKoIEQ3c6TFPHN6ypJ77uDSK7cQ+h1mT5/FiBUqjomVxJMJaDqO6RJ5MambywrYB/vRi0XaB/ZD24NyDwkaURxhK4PyZB397CxVmVKIBToaMlHopgtBihYmFFODsJCjpUJ8LaXpmCTFPKntkoYpbmTiNGNysYEfxuw9eITJk2eh3mF831FmpupIvYiqTyM1SayTlWNrOk6+TNIKyPX0ETc86s2Aje+8Be+8JVx4661I06Rz7BxlT2AlEj/wETkbvADHcUiiiGBmCsN1kWFE4gfEUYxtmkSGhtJAoTBUgoZEl5AKnUgzsw4m3QbLQXoBSAmaRqpLImJiW6KXHdr1Bq7hwmyTciooYKLFEiGz0iUjFTiJwC9YdERKkqTkpWJAFtHbPr3FKs2wTWxpTOs+vooJyhY3/sXvUT1/OSM7X8G0bLykQ8tJkCWFVyoRtgN6tl7EwKplHPjBj1jacrB0l0mjjZ5zM2XGtmBRlev+7FcI1w1Re/kA1Js0BvI0rACShJxQyNhDqATbEcRSkaBQCtLpWUb3vMb4kaPg+2AaOEpHFybzKLw05rLf+By977iRqWOHoNEEIVBKRwmBJnSUkP/hStKyCKgSaqEDSUNlnsMsxqWlIBS5JHOEKSCwDVTB4dTBAxzd+QqU+khqHn1Wgd4gRYt1BIL49WySjMDRuP43Ps2B00c48PhTTE1Nw4qlfOQ3foWTZ89AGGIlKWkYktMNfD2lZ3g5UyfOouY6hMfH0GPIFwo00gDzwlWsfevljJ46xthzB/BOnIOCydW/+RluevvN7Pzad+ktVPFtSUlYiFjhGRq+azAbdbAtHYIAUxO4BQcZhtimzlTSQFbzeFEL6ehITQOZlfTnY52iytGMEwgiOHaKj/7uH3HeqtUc2vE8fT1DqHYm1N/y2c/x9HcfQbU75MMYP/YIlSKtlmj6dUYOjRHueBX6+2jPjSNch2VanqTWIrZTKGtc//u/xpFHn6U2Mka+VCRII3RPocUpqWnwuT/9E87u3k/y2lFSFaGWVFm0bCmv/OwpmGmDH/PhP/5DThgJ6y/eyMi2HyOKVfQAUDpYNomSmQOzkEdfsZyxksO5723j0s99mvmyQXLiGPnAILQgyUlIVCZwpQot6ECxjOd1uOG+D/P23/olJtauINpxnEIsifIKyYJFzjAgkugyk4Sk0EkXzEapTHGdPJ//rS+8MbBi4aMVKboiUpcuXbq82XRFpC5dunR508nGoIvX72oFhEFEPp/na//4ZVKvg2WZWJbBnJHQWb+E93/pt9l9+FXwIWf34O85in9yAuYUBT/PmRf3ga7h2CbKqzNvdTjZmSBYtoRw/DRrlqwk9kPU+DQxMTEBcyeOcfbcOOd+/jwvPv8coWr8R6RHOAy1oE8vUG83ecf9v8tofZpwdg5DCKRIs9LU0GPr7bcQJwmndr4MUYxEkpdQJs/U0XOMv3KUqT2vEhGx7kNvJ+w38SfGKPgaSiSoJMIUkMYJsRQY+Twy7/LxP/59Fq1ezvFnXqLU1nG8iNRyaZqgYg3DV1hS4+zMPKrjcXrfAeh4kEqm9x9k/MQIKkzRlIaIQ1JX4kUdfKFYf8FGZkanIUoxUijoJknkI/Use6IATQNDCmyngBcEEEVc9cmPEK5ZTqfkcs2td/DiQz+iOTIG9Wm23n078xMTpI0m1SglNcFLU+TgEPplF+CfOACrl0Hg4c1P4pdNSpqBiyANIpIgAk1HlopE1RKVd16Lc/mF7H3ycdpnTqNFUMFCQ0MVXMIkJE1S7HKVuNFikDwyUYxPj1FYuwz7gnW84/O/TH24TKucsOqzd1OIImrnziFcA1/GzDgpQZ+F2LSaeN0Sqm+5iC3vfSeHDp5AWiYf/MMvsunaG3lt+/NEocQ3LOTSYVqtBqJQxM+ZJEELFvezbNMGBi/exNzpk8R5iyUrllE/spc4J4htjeryFTiVKi0/wHJKBPNt7EQRzs0zNTVP/tnD1B96Gm3XcQwh6JiKWCp6U8nywEKqhETFaCoTfogjdKGjaRqGboCAtFCAKCuLdkyDKEgo9RRphnEWjyyWufHzv8LpIbjhdz7Hkqu3cvbA3sy9EUv6Up1iO0Ck0JEJST6H6WZTynzbwDNSUi0hdQxCUyO1TLB1ZBoRVfM0c4pAC2ktLvPRv/4iq269msP1Md7/i7/KpJZyaOcLTBw4DHNNCCMKloGnFqw751UBi+DYaWq7XoMkZbboMOmEYEsGckMkQqDZLtHoDIcfe4HaEzuhFaJVqyg/wQ0NemOTea1DpClkzqLTSd+YBimkhlJmVma0UJytJxIhJZ6ueMsH7uCT9/8J//7A/0fhbW9l6WWXMP3YU5mdQxhZ7FQTCytyBSITj1SsUDrkegdodgJUpYxa6GHShcRCkStWCKXAl5JUysyBFwWY69cjJ2YwU40kSWgqSf/mC3jbvXeTGywzdvI0hDFGoci52WnkyBlIBPT1klu8iF0//CH+xARRJ8SMs4mBqATDLjC+7xidU+dQs00qhoOrmUQypbRuOZvfdi2OazH36mH69QLvf//d9FyymR3f/Dd2PvozenCxw5io1WI1JWZlSnDFajZ+5L1MHNhJ5MWIVCI0g3bOpBZ4hHnwrBR341o+83//OccaNfyRMVQESSIY7FvM2dY8F33qTmSliNfySdYOMiY6XHbFFex/+lmS5YPc/Euf5fEHH0KdG4d2m6JSYOiEBigLNv/iR1BrV1O8cgtqeZX4+Al6E4Pq3DxmsUy7v8LKi7aw89+3EZ6bQUhBapogNEphTK/VQ1P67Nz2I2aOnqU4XwNiQq/N1NHj0EowwhRNKpRucO61vZzZ8RyViy7DPz1F0koplQdoNHyuufseiouXc8HWt3LqmRcJDxyFSLFqzTpO/fhnWWQzTinjIpWOGevoroOMIiyjkMWqhY7v2Gzf9TKtVp109wi2btPROqBJll5+Ge++833s37kbXWYXaKELEmRWAq/ALffwhd/89f9QixYyyV0RqUuXLl3efLqh4S5dunR50/lPl9qFO1tNB0sT6GmKoRR6mmYlxKUCaWOKHWPH4LILoDeHPlhhrjnL8PWXg0YWJ3BtKOUIpqZQUZQtimstBpTOZVdfz/FndtAaOY0wBUpXYBtZ78j0dPbkcQp1H9u0WH7V5fRvXE+IRrrwtW6r2WT58DKU7xMbgtxlGxFXXgAVyUQRLn3XdWhLB9BE9vIizSHRdBwSvMkRHBIgJolC1l2yCYZ6s5evMtdPtley8fBKpVCf5+DhQzjlIiQCW2oIJPUoIF1wZCSJIMZCttrQaIOfTa5CKnTLQU7PoUcJRcNEypC6lf2NkQkO/exZiGOoFoj0hEbQIY+NFmuQgEoglqBMHd3UsrhZHFFB0D50CrOdMNmu0/TnoTUH7ZhDD2wjnpgmSUMmcjGztqSlQ9Pw8Z0IDB+Gimy99QbozcHwIppBRLvjo5kGoQIzn0daOiorW6FUKEKjDoGHTCJUKpGJot1swdAg9FZo1ObIuSUcBDkEnBlncs8BmkdPc/ip5whOjMLew5x85mVi38MPPNq+h7INEAnIiCQJuOUX7kDvKZD05hm67e0QB0yemSCdbSMSG2Idq1TlrR94HyxbittKKbYVlsyhnZpm/PEXGPnBz7POq5deY/Tx7ZlQkCYgEwaXD3P3Rz7MivUbiGrzYNtZrE0K1M49zI+dZj5tMm3EhGGI4yUMFXtoImkOuPhG1q2TdZ9INCRCpag0RUqJZpgo34NCHiRIpbCdbIpZZn3oAQE//9aDsOcIB596geOv7AUvgmIBqiXqBZOJvE6wtAoFoL9APW3TdiBd1EPlys18/B/+J5/627+Aso012yQ/08HMlbn6ztv45F/8EUM3Xw1Toxzf9xqNM6NcvGETyVydZGwO9hyFo+ew/BRbKsxIYgOlUpkbPvNprrvrDi7csAXb7QO3hCSE/hJcuBGJSbPTpObPES0rQ38FdA1WDXDtL91LZcUy/KLNVC6FUhlMm1hK3IqbLaTVQkwzBjMCI84eG0qCkKBJxmcm2PbYj6BcQkY++x9/DMoVUGAVCxR6+3i9Mvv1TiShFMIRkECzNg/lEqFt0em0iZIEJUEXOmP1FqFpY+TL4BZAQnHDhbz9phtBpdi2jidiwkoBtXoJzd4cY34LTYAZSNLxOeIDJ0HPw6JhGJ+imC9AsQSVajYxDgBJqklML8LuhFhRQk7TiOKAJIlotuvMzU7z7M9+ygv/9m2SqTqTrRrP7tnJgZd2ZTFKL6IuQ/w0popNI6jhRzFb3n4Da66+HGwNBvsx3QI4LkGaQEEndDUgpW/ZMCcnJjGKPaCbGMPngWlz1m8ydPUmhi5Zj6i4MDfJgROvYa/sZ0J44EDf1guRAKfOkHMsDAGIBKGlmJYGxTyNRgP/xDnyo3U6T7yEmGxj12YAnTNGk+t+51Osv/sW8Hyw8jhOiVjX0HWTHr1CO2rgrlwBaYpbKKMW3kdiIAIjhbydB+DQnn0wNQ9Lhll6+/Xg+IjrN9F/53VwxWrct11GsHUN/bddl/WskeJctRktZ4Ifg+XSrlbwLBM/lPi6IvR9knyBoORAGmHmCky+sht276Xcuwh0kOV89lFpW1xy5ZXkKtnxLjQNTYMkidBcB0oV0C0S3SAVEEXxf5TadenSpUuX/xK6nUhdunTp8l/Af77QZve6kvGxMdavXYeUEkNK3AgoVJioCErvuZnS8FJG//Kr3HDfxzg8M0J7ZS9LnMUc+dY2NtxyK1sv3cD47l0c+Ou/J7IFc36KLctoqwbwW/OgUpidAUMsiEg2tGOIDGwk/RjMWIpb/uGLTHltnv/S1zHqIYmjk+UXTHK2iVefxbzyEt796Y+x/YXnmP/eIyANqHdYUuxjLEyysutEMmg4+GEdD4nsKSDjAKpFiCX2bEisJ0iRiQIEkhQNt7eKH/rZ6OZUgmZDI6Bk5WjKCHIp2lu2UEgNmk/somQoUi0l0iERCjOFOAwpuXmCJCZMYvSeHGnUokQROzGYDWLUcD83f+gutLzFT7/+DTg7jYGOmbfxVQBpgJaobJz7wGJm6nNQ7UFcsZU1GzZy7Ctfz+JjtoOupaTNOWzHQMUxmmMRmAKkCUFA/gPvYnjLRRz5t2+DKsLEBJs/dBdLztZ5/Pvfw3BNwnYLQzNJYpXFQ3p7YbDKnZ+5l8mjRzj47cdQYzWEbtFeUiEeKHHTe95Nc2SSnd/4DhVdEQrQe0qEfkTcbJNHJ4eNbts0Qh9Z0jHigLymo4U+gaFolV3SNIW+ARibgzVrWHLbLYy9sgueexldd8jNtRG2SVOkrPrALZw8cxJrtoOtGbQmJ0HGIBN03UA3sghKEnrQCrHKBSKhQ6RgcAnUmtnxMTwMI6e4/AN3Yg8WeOafH4TZBuRzXPbBd3N0ZpTGq/tgpoXkAcJQAAAgAElEQVQRCnQl3xAKXl8fJqkiTVM0TcNx81x2+22sXL6UV196kd1PPoVlgrAtwkSBW4aly7jti7/PC3t2MP2t72b9M4mAehM0QblSod1pkB9exM2f+CCNVocn//5r4IeQd6G8UDgcRBAmXFjLU1CK12jgFYxMfUwlebdM4ockKiFVCpaugnqbnB8j/CZFwyaWCZ7soFAM9fQRvOsyvPE6fQdmmZsZp1kuoVbmYPUKNpx3EYf+9t9Ai6FkccNvfpbp7Xs48MxLmMsHWTq4iNHdBzCrJby4Rs+K89l68WZGDr3GsR3b0XUNQ2aikVBZ0bB4XTwCEj0h0DWkJqCnnAlrl27l+muuxZpp8dOHH4GpSVAKzTTQWRDmFgq1hWWgnBwrr7uBtW+9jqeeeZbOk0+BTHFaLcwkprX0PJirLfRsS7T+Ej1DvdRaDeTZs9iaRWy4yP5Blt55E9ONaaIf/hBaBpUOaOg0iw5J3mR4wybO7d0Ng73QbEEck2+HWDK7ngSmpJw6KNMkQtKRMbZuEHV8KsUSM34TMVChYFgUplq0TRNPF6RxCDIBIUAzyUcxqhPjVHqZjxpw/iKYGufm3/gCcy8fZM8Pf4KxdAnmcD/+zucz0aNShU7I3ff/Fb2Di3jgge9Qe+lFKJW4/JqrGDl7iKlzZ+D0GHrfEtLmFFx4Phw6zsr33MGGSy/hx//jSxCmmLaG6XuYngcCOgoSx4LeAbb88i+y7/Bh0kd/yhKjiDd5Dl2YzA6VsC+5lPDAMW6+7V6e+Ma/QOBBnwtzcwwFFqGmuP6vfoeHH34YXjmB0DpYMsZOBEJpxJqBLOYJEgVCkC/3sOmaK3m5dpr04EmuevuteIHPqzt3ZseBYUDvIIyMwUCelTdewalX9sL+k+CHvOOPf4/H//yvKaw/n6Grt9B58kUmju2FUg5SFzHaROngbFjDe++7h+/80Z/irF7D4OJ+zry0I+trskyY70CQkrcsgiAgLZUyq1FPP0JL8U4fy5JvKlm4SGikaF0nUpcuXbq8yXRFpC5dunT5L+B/F5GyhVx9doaVS5chFAQqJsm55Ds6NdsGTUIk2KD1k/pNjhotGEqgPACiwFWf/SWe//L90GkhxhtoOqTCIefbVKplxuvj2f/ozzE0NMDk/lMQQ06Z5Iwctm1T99qkjkHQI6Dcg314BgNBxzYx77iKzeefzysPPgD1AKOtsCMdFUZUCiU0PUEzNMbnxkgWb2Tte2/g3IlDhM8+i2OEGKsHaB6bYjhwaQsb8i6NsI3UU9Ayp0peCrwgRTkmFFzya9fSOTsN5y2CTgwnR9FaCXLrCtb94ScJJ2uc+cLXKNXGSUSIZy4M7kmhWirRnm+i5yx8lZDLuVTmQqZVQqpZKMuFWKEN9CKrNtf92kepT07z2l8+QFUzmVV10AX9vXmCqXmMVCNMJbm+fmYXDbD+umuJzoxzbscLpLU6lSRFaCH1JCZZ6OnQlUs+iSmiGNNTsABNp59eZjoJFCycSp5g+iwYCiwTzUsoRDo6ghALlSviD0UgQxgL6I8dAhStnMR51zWYbo5iqDH+5LPkvDqaY9Fut9B1h558kWi+DZqO55okIgV8CGNIJOWFqUYNMldJoTKIiDRafgf7qk3cdsc72fPcdo7//EloSQbLZcIooY7IFnSXbOK6K64gPjvB8//+bUzLRI88rLyBMAWhlrBY5pmtdwh0kyhfxNp0EVuvvZbDY2d531238/Wv/B2cPgnTozAbQgpWuUIkAzbd/m7mxicZ3b4TKwzRcuYbjprXS+mVlKA0lNBACMJKCTqNzNmiS8J2AhoMXfMWJrEghas//FGeu/9+8pbD+hWr0PyQnc89B3GQuXs682AaWQM0LtXUIPFDIpViVku0anOgoKdQoebXMkFWi8GyYb6NLaGITqfs4GthVvReGoSZDn2+hfI7zGkB2AL6yjDfxIwUsaWBBqWWThGNKUx6f/s+epcuofPCUc48t5NLvvLrtBrznPyjf4HjE6Sk0JeD4SJv+/yv04fNtz/+BQrnX0DBsZk8vh8a02Blo9ENmdUMC6VhJxoameiS6GnmLNJ0lNTRsYgjQagUrD0Pzo3hDPQTNJtokY+hXheRkoXrmUEMMDzM4F13snT1SuRckyMPPQyv7KMQhcyUclz2kY9RRueZ7z5CWJ/BKNgkwTyFniLhbA2l5djw9nuYKHjM7HsRChacmCQXaHhxhHnxOm79xMfY9ZMdnNu9l6WrVzD6zPOUenowaw2UlhDp0LZTjFCSoNB6izj9PXhHTpPv6cNoBpQsl6bfoZmEGK7L8rbLTOJTv2kjV937Pib3HGLkb76FICZZ2QsrVrNm+XqOP/wYwjBRYQxxh55rruSam27imV07EU9vJ5ieQeUK+IYL1cHMiVewYeUwGy/byv6f/gheeI61sgcpYNyfp08rkeo6Yy5gCWgl3PJ7v81Pvv8ATI3BXI2Syna1q4Ph9DDdCYiKpaxofNkwUxMnQE/ASzECk2T1ei68490cEB34l+9jLlvC2z96Bz/+879EH52nd8lipsUMt/z137D7Hx9icv+TEMT0tXQ0BW3TwjMT3As34E/U0CZaqMSjp9cibnqEcYrhuHhKQj4HYYob66RRQGSlWe+Ra0CpiFbu54Lqeezft4v+29/BwMAQB//2n1j/f32SwY1r2f7Lf8yKmsvZxjS5/h5atVns67dw4eVb2f29H8F5i9EtRbr/INWBRczv2bdQgp8Q50vc/Gu/TyuMePVnP2F69wsYKHIk2fEJKHQEr09069KlS5cubwbGf/cGdOnSpcv/X9E0A6kEugYBOrLsEjXalPMlGu0GpVIftdoEDoLFhRLjWsTgje9k64Vb+PE/fxXm62Ca6CboJZu0o4hEwvTsDOgC0VNFxW1ueOe7+PaRf8A0DAp6jnqriRAhoZWQz7vQ8qE9R0VzmJIhDJSJd+/mpns/xmDL58d/+xV0clSVi63bWH7MZDpLqVjO1t3zs6xfvgzbb7I/DtAsneapqWyCj0wQSLxmiMw52aeOEKA04ijGwCCRBtrSJdz4vtvY9sX7ueqeO9HilGdHv0vFKVEr2tTHRpk6dhpUSIJCanomIBkKXRPU5pqUTIOGF4EOgxetYSw4RtLJYjvYJk5qoDdiOvU5Du16hc7MPMo2CGMyZ5WjYw4sYmZ2nly5gjdbx2yF4I1weHYOzc1TNE0aUYCpm1hCp0mMYWXmFifVKZkWYdyg6pgESEQiCMMapt1DHEUEUw0o5CANAQ0pUyLXxdZdok6MTGXmCtFSsGyElcOQKeQ0gp17iFYsRxcOdJp4eghxRK6QI2n6NOcDLEwCmZAESTY57IK1MHIWmh4y1WnLAOVoUCjQbjQpW72UnCL+yDQv7drNmbGRTFApaTT9CBGnuIlClG28vfvYvvcAOaeMhclgvkwz8NBlgu9DkIAXtZGAbpmgFNHEFKkXsbzazyPf/CacOg5z01AL6RscQiQwMzUNRYd93/8RpBJLCHpKZRqJRya/ChLNIBVa1mGlAUqhRyHUZsG2wbIIGw3cngJ+qpgcneCe3/0DZqKQJ/71G4jJeTp+h13HT+IOD4OtYS0e5oO/+BFePXmIvY/9BHwB8y10pwAqIafpeLNzlHQHwzQImx702GBJ8GIQLrbh0qPZhEEbv90BR7L24x9m+cqNnHj8OWa2PY1GjD1UJUw64DUhioilALMClkbqpZjCQVcRU9u3MxWkDKy4CMo56sojEQHpuVEWFSu0RUpLKJib4WcPfBOSbNJee98B2loKBT1zUMU+UkhSoaEwkBqgBBoaUpCJuUgcwyYJExzNQKmQXLGX2uw8AO9973uxdcE3v/7VN9wdoCEAV7eJUwlOnk0r1+KnklRphE2fnG5SLufpvel6rr30CqZHzhHOz2L29RA3axjSoT1WAxewTV57bjvIGqwZ5kMfuocH/uyv8ObmQQNDSJ756aPM7dgFQmN0z24ol7KJf7oOAuIFETdxHRjsZdm6NSwa7OXFI6fptJoUNJdznRZmpUyufxmdc2fxcw52ZCF0i0mvzUwaYZkFbJFQ9zqsuvpKii2g3UEJHd0ySFHUjh7nh+PT4NWh2aJs2ahI4PsJVDRod7jq0/fx/Ff/kf2HDoEfUHFKaPWYSMb0WwV6hMtYOAe5AhgWWAYriiU4fQq7v0hYy6K1vfrCEMdOjapVZTLxoa+Pizas54mT+8HW0UyTgnSonxvhwCPfg5WDgGTTxgvot3MwXydFZi7PwWFqp89CFIGwwIC6nTnWAgPo7+P6t17DTx9+lFy+iBHZuIGHoznYRoKbK+JYMD8zS6mnStCpUzEKJIZJEDWpLF7O+NgIMhEcO3IGcg4z259kximCSEgtnTMz02y97152/dE/ooROq9EETSM8dpzdu3dBYvOOX/4Ej+94HHrLlBctZp5DpImG0ADNpN1pMjExRThfQweM/81zpC086gpIXbp06fJm0nUidenSpct/A1EUYVkW5XKZOI7xq0WWfvZjjP79t+ibbiOSiEZBEVUNMC0Yb4BThcsu47wrLuLMvhfhsRcYdsu0O3VqZQWhRs7TWLR6PSfHT2cxNkuy8orLGdt3gHBsEiPvkCQeOAY4wHREX2RgozPZkyctpbjveBvpsWlye0awTWgkLQKvCXkXLUlYVe5javQcCRAaoOcL6MqEJEaGAWXXJYqiLOIkMndApJkU123mvZ+4lx899iiNp1+kT+sh9gMahHDZMugxsaRLtPcYZdumMTZObngAb3oMc6CXeL6OE0kC38IslYjjOpgCR5po7QgLCKwSgaOz6LabmekrkPzT99CLedIgItew0dFpWT5mJWVR08e+/HKaymTq2EnwPNxLL6R/4zrO/uhRqC5mFUVGD+1GI8KQCkOChkRD0QqbSAXKEKRKkXNsQiWJ0xjDcKAV4Gg6gUxJXCsTdYjAk5SMHLHS8Isub/nUffi6zqtf/VcuesedDPfnefqpn+EdO5YtMpWCdoe87aIJgUgTUlPSMT1IoBiAi4vSDTpSoBsOUcfDAlpb1vPx3/ldzu3Zx8+++S1oTcCiIufd/h5WV5ey/Wvfw/YSvE6I+5G34Q+UYKLGkumYsW3bcMpFeoOAuDlFe+HYrdiLiWKPan+B6cYooZH1NsfCxWn4RMUy0jJhoA+aMeTK2IGHZXu05s9mPSyyB3wPxEK3kYyw9IWomswGQWmWhYgT8k6OeqEXWe5hy/vuor+aZ+LAHo79+Dv4swF528HQLSIcfFQmghUtqM9m48bDFDfV8Bf1QLXENR/7BHue2EH7ld1YPT1ErWn0vgpyuoXy2uhpjCUVTqSwEdSwCDUDli4CUYdGHbeucCr91MKAnFtEn58nRBIZCVy3GXqGEcfHKew9gpaTNIzmwqx70JROvlzhPZ/5PHONOR7/93/OXFFhiOYWkbbLWz72KebKZY5+/UvgtWAupBJamLqDqFaY1hI+++W/Zv+pEzzzN19m8aRHPekQFXUSFeFIHVJQ0iS18iSagE6HYl+FIPaI/Vrmggmz0uJK/wq8ZkLkd8CI0AYGWDE8zNz0FPWZ6Ww/RhGYJkXDxvESPAUdy4J8EUwdGjX0YhG9WceSKW3dycSK0Kf/xsuIciaN7c+Tr0WkCIJVJRiooI3OIGfnAYGoDqJaLfA6ILKuOFcTuPkqM6GfCXilIqUly1jaM8ihvfshields5prvvB5HvnOt6mUCrT27CY9eBSCEKM6wOr338biW27mqW2PcPMt7+KFf3qQztOvYCwaYMOv3kX/YB8/v/fzVMkxvzSXFblPz1JcOczgQC8nntsOoUbR7aXl+YhrLuWWd93Aj7/ydXLjIbnEYbbXhKUV7CsvYNmUz/j2lzm/JTmj1ag5GpqCiq8hcw5z7TnYeB6MTEFksVQq6nZKu6Bn0c8Zj16ZOQdL5V7Otufh/dex7MILOfXVh+ib8FBJhKdL/LyAMEaLFaZuERby6PkK6eg4Vcemo0LCJMTo6cEQDmEnQOkpl3/yPl7++WNw7hy4BYacHnSlMzYyCv19kEj0VCeNvKw0yW9B3oTIx7BNkk6AlpoI+khVAItzUB8HFINSo+0lBKUsoYywYKgHzl/L1ptu55X/8f9mkxKtmPW338jhBx9Ej3WEypNsWgbtSdhyMUw0GEryTB44DEpw60c/RNtM2f6jbfQGEbMjpyGNs2swGgINPaXbrN2lS5cubzLd6WxdunTp8t+AlBJd17n//vtJ05TUMukbXkpt32GKiUTpipYes+otV3D73fdw6vgocTNCpSFLzlvKlZsu4vSO5wmbNSxd4JsKEomdKKY6df5k23cxlgxy6vAhaq8dJp1pkpcGeQmRH5FLdaxaQsEoUd16Ed7SftpzM6D3UPEUF9/1To7WjtCZmCGJAzivjys+9H7WXX0Fu37+NHapD8cpIjyJb5skpo50LGw3hx+ESE1/o5BXLoxnjtAZbc7Rv3SIzddczcGXXibXWyEI22z+hdvY8rYbOfKth6Dhk5caBTtPY2IGhE0hMZGNiJ7EpuM62IN9fOoPfodXXttD4vnEcYShOXgGkIa0J2dRx2roSNKgw6WfvpczVZPNv3IfY40p5MQ4QhOMnxvhgne/nbGjB8Brk0416bx4ENkOwNa54hfv5MjzzyCRqIUhVUoohIA4CTOfjBCYCeTDFCOSlPQcuufTg0lJGeTQSRMJUiBJKFgFHM8nnwpaXsiMDLBMQe3kGeZ3HaIzM0d7vkaad/n1L/0hA6uXcfT4IeIoJAqyyUfVWKcUCdxQ0DF0mgXw8inxzZcQtUbp/cD7UGuGCQ6P8+r3H+Tk/hep3HEtd3/wHo5te4bakzs5+ezLOFet58qP3kaz16T5/DMwMACWjnPeIN65EZLGPC0dOhbE1RyyUqUZJISWwWxtFtuQC907GkI6BJbJ+be/g7fcdw/eBasoXHoxrU6dNO7wno9+gENjp0AGbLr7TlZfsYWJqEVamwPTxUoNcjjoiaRil4mUQtMg8HxipYFlM3HiFCeeeoqpV/eQNDzotaCToPsJuQg812bpjVdw869/nMO79kIAPV5Mx3RQlg21FmcOniI6MYVopJhzNXKBhtOO6I0citgQSFSqkChq6KQFC3os3vrlPyfQPYJOm+KER0sTyM3LiKMW+YZiCJ1EplQvWo9RiwjGR4jiJpZukNdtgiSBnIFSEHUi9s+f40R9Do6M4EYSI0qJHQu8gHMv7Wf+uWOUp2epNEP6EgsLAyUVU14LY+UwL7/0LGcmR7nhvg/x2sE9xLKNzBkQp2idlHwqKIscQRiRRilFZdEb2pQig7y0if0AhYHQHfxOm61vu4EPf+5TpD0lzr6yk1p9jiCJodXM3IMoXDdHEgaEcUisg3QtyGcC6W/d/yVk7DN+9hSuaxPEEowQ1g6y/LYbGP3u9yBWxMJEX7mYrb96Hzfc8k72/tt3MzdZqQidDqQx7tLF6JaNiELKToFOs4lu6SS6YPmFF7B5wwbOHjxMa24ehMBvzHHk0acgUgRnR1HHTzGYL5F0PCzTZWKuxumRM6zduJHDP91G5+dPY/dWiMdOM3XwNU5/9yHQFY5IYapGJbSJ1i3jHR+7m9GxcyRHJogTSXTlOoZvuwE9hn3f+SYkAXEaU73+SprTIzA8wMD5azizdzexV2eq1cDVBYEhEICTCPw0IbdkiM/9xZ/wwpPbIZDk2hbzDqz96D30rlxHfc8p8tVBZooOtVyMFA7nr9vI6VcPIE+N4Fk6fhqTKokpNESqEPJ/sfdmUZJd9Znvb+8zxhw5Z2XNVSpVSarSVJrRgAYkEEgIIUAWk8GAMcO1LdrtxjPd7sZu38YTfTHXdl+DjQfmUSAQsqSS0KxSlWqes7Kyco45zrz3vg+n5LtY/Qy+D/FbK1aulQ8RceKcszP3F//v+wypLdj65rsATdRqIkRKYimsoo2yJVm3BRisC7ewYfUUpx/9CaXUptxo4rQSjM7o1W02v+tNvOm3/g9e7q7ARZvZcP11tE6fZHjbdtKVENmHVaaCygRxPYUL1vArf/zbvPDEoxBGaCUpWQ7SLiG8AqOhJGpG6DMrnH3iJ2z/hbezqPpMXH0JU+tGmdnzLKZWZb0YJZ2epazLRHuPYG+ZYttbXstsNAeLpzlycD+nXnwGjKTuF/jERz6Sh80Lg0EgEHlxwyBoe8CAAQN+pgwmkQYMGDDg3wGlFJZlUavViKIIUSoSWxKWO1SlJNQp6eQQVAqct/0yGvtnCObaROly3hRUdim1+gw5Hv2gQ8sziAyKKfRWT+DsvJSrL9vJk3/yZ9DNmDQ2hhSBoGslJMqiWF5Fe9Tn5k9+iMLkCA/90n9kalnhYDO9pcI9X/4z2l/6Ef/6N18AT+Jtv4h1q9cwe3yaYN8BkHDDJ36NXZ/7HEiP0fXrWd69B8srYOIUSykMGmMMGIHyi1ASkMWcd+edtA+dYunAUUhCqLt4l1+M2+7R3f0K4EKWsuqaq+hXPTqnjmFv2Ez24st5OLhXwFo1hOp3YPYsvl8m6oZQKILO+NCf/Rn/9+f/mi13Xs/1l1zCF7/wz6hNa2HfQabW76D1D1/GIcDbsJ7F9iLi0gt4w223MdbRfO8zf430HBazPgxLUAYyQOUh3rbWuNoQBR2MASkFRhssbZOgyfL9NjXLIVMJKYak7GPXSohGTBrG4DtgFC42TqwwZBjpYKoFlFsC1yHtNRm6eBuZTukeO5Y3HylBsZ+AyQgsAUpQrlTp2QAZr/nER3nqsUdwtm7jgvO2svfv/gmmZ3NXWNCjNDFMv7GYb7C0DZkNloGKy7olj9NkcMUW5F1XIxe6ZNNnueXdb+fRh/4RHnkRIg3eCLS6UHQo91s4WqFxCKwS9XqdJRVSv3QHrU6D697/fkrG4vmvfp3Wricp+zYRKdl4ndFVU7SbHdJGJw/LbbSR4+PoXghRBFmfmm9jooTy+i3UN2zm/Ntezzc/++ewssBkSdKKQixtIzLoJRmUbPAlDNVhKWDYKVHsJJwZdrnoDTeTlnyM53N01wtwcoap4jDp2QXQmqzo0wxXwDP5ZA0aEqBczRsNx+owfwyCECv1UeNjXPmB+1mcW2T6b79BKQXf92l7igpF2rZCWprq4jI+Pqpe4pIPvp0Tzx9g5bmD9Col0vYS1BxotynbLnYIwvJpKp03MKo2jk4QloM2FgqwbJcsSCiNT2KkIFiYA0shXBtBhuiHDLlF4kzRtQSjN1/Php2X0TjV5MQ3vwfG8OZfeDsv7XqcmRNHwaTgunnAdLmch6ZLkZ8Dy+E9H/oQR/buY9/Lu4l6fRwBqAwjLSJLQpada9Xy8gZEpSBOqCqPcHKCnXfdRqPf48g/P4QvPQojdbplC7tUIDpyhI21Mid7HfB98F2uuPtudmzYwhM/eJjju57CyxJKWASWIira+etlUCzUSFNFahTe2DAXX3UrG9Zv4onHfkznzEnSxXnWjk7RUbAyWofNGyhUHMLHv0993QYKlTJ3Xn8jX//M54iSkHBVCRa67IhL9IETNQHjEqwitUMNomqVi/7nJ+hJOPJ7f4UVadTyIjsfeAdLRrP1gu2ct3Y9n/vEfwCjIY1wfJ9as/NTk0iq4NF2DaomQJaQC30q7SLtazYwfudrWPzBo5RfOEsvbsMVm7n2/ffy9IP/DcJzo0kbx2BlLp9QTC1KocpFbtdBrxpm5PIrmXvpJVhpI8Iu53LVQYNbLCBSQ6wtUIaqkKiox1ixQhdNz4JYpHDhVpAW47ffjdCGhYOHuPnm2whOz/LsX3wOLAeCkNFKhU7QQTqS87efx95nn2OkUiHpdvHtKktZRmVinG7zFL5bIgpivEu242w/n96TP4Ewg/kVikWLIMvAKrN2yzZmXnkFUfIwVQeIoNOGFKxaneqFF3LHa2/nR//r71g8egTpWBihB5NIAwYMGPBzZDCJNGDAgAH/Tggh+PSnP41SCtuycRwX0Q+xLUiFzr/l7wc0FpuEXYWVKExJYhwBWUbW7hFFEbZtoYRBaoNtIPF97vuVDxO2upzaux87yKgagYMgRhO4htSxiEs12DqFvX0zJ+fO0H/hKJMdzaQ9xEzaIl4zTNbpsjg9A80QNdel8cox0k4Ca8ZgyKX80bez9MTT4Ba5/rZbyZA0p09jLPtcmnhul5GADuLcRqc1jbOzBEEE7V4e/OF5qDNnSU6fAcunXKqSJAnFjWu5+r67OKZC1l61k7aOYW4FHA8zv5BbohKN4zioVJ17TUFaq7AwUacxc5CgG9LaN40+dAR6Ed2lPtbcElbZorXcxFSr0FlhRSgmVk2we9cTuLaNFIbUyd/vv21IDAgMNuTNTufOYyYgcd28prrogMmIfZfUtlCehPEKk5dsJbN90kaTslsmDSNsKQlNDAUHz7cQnR5RlqCTEHyPaHmFZGERMo20HEymSFWGv3qcpG6BNIjUZjjxcCLJ3OFTJLPz6NkFMuFw/u03sPD4U9BL2aBcmp0mugJU8/MzHnq4aQKRpmokHor0bINsYQW9aggmqpw8dAjm29SHx/HXbSIqDUGaQaeNFPm8WSJtEscn6LXBl0QTw7BtMzPHDnEm7KHjgCyMUP0eKkkp4NA5NYteauSb4SiE7Rdijw/D6klMpwm2g4xCRJrSCCIa3R4Hj5+E+flc8Ij6DCuPvsoILA2T1dxylimYa2Nph6DdoVOyoa5YWl5i5fQMOpNEM/Ow3KDba+NetoW3PfgxTKXMzMICFCpIr4xZCQAbsX0bq2+9jon776Dx2DP4SpKqFJKIs0dP0T4zD2WXNO4TCo0OYyICjArQUYCwijTqHnrLFBfddyeHDx6mMT1LpaOJ0xhUkjcpWjYkGlFwiUcqMGJD1EdrjXIE2pXgSDQib1zrhUTtNiW/TJqEWELgGI3MFNJIUjRZ0UNs30xl8zoOuwpEgnvrddz4+lt59ItfyDlNE10AACAASURBVF9XQGV8lAQg6ue2y6Fh6PWgXObqq66msbjE3OwZsigEpbGURkob6booKXPRKY6xSiVqhSKWFIxZNVY6Dc4cOcLK4WlWWxXiuE/XNeiwR7bQZ8wpoaIOvSTKn0PC2TTl5aeepnnwMEiXEa9IkgZ5gVrJwykUsG0XK9UYrdFotG2R9FMOHzxI49hhHN/FUppGp83I1GpWb7+IpZUFsoP7IexQXb+RDZduJw4TZp58CaEhERGMlJloS2wKLE0U4LVXgVtEHJ0ndh3mZJeVRhNOLGGdmsNWMLZ+PYf37eO6S65k5cBxjj+9h6FCiThOQacUMvVTk0jCcwlQMFRk6wUX0z49j+vViKyYftyHmTmKfUOkQs6/8UpmlmYJD55iwhTJVIIqe2BC2LgelpoUs3ziUwlIfEnvyHGIElzLpmIJLAtsT5IlGt9x8aSDK32KjodjQxBHREVJVLLxh6rErR4s96Gv6e8/Sv+VQ2AEFb/IK3tfRi+eYeyaywlWZgmSPuNekTQMWFqeRwmFXSnSTRKComTojhsYu/ZyGgcOMNpNcY2mF6Uki8ewr7iMyeFxerNzpCIBz4Kptdxy390ceuHpXERdbDCBQ0FLLGmIsoit17wGMsPKyVP82oc/jGVbg0mkAQMGDPg5MxCRBgwYMODfgVdryv/oj/4IrTWubRO1+ozWqqSWoVCvEiYJYEGUYdll0nYHVwSYXp+xYoVYZfi1MnGW4mTgWRYKTTo8wfFDx0mX27QPHMHONB4ChaDtGZKSyVuElIArt9Jod+g/8QIcX0IJmxVHEUlN64ndtJ49jApjrJuv4Obf+Sgn5w6BjLnvk7/Fph07eepX/yCvp28sc7zdZuvmzcweP5V/E28MwuQikqOhojVJnGKkDUkK/QDLgCMEdpQhUoNJNeN2Cdo9anaRxWPTTJ88zYbJDWTzHYLlkGuvvZHFpQaq3YV+zER9mF67Rb1SIYpTLNthfvcBOD4Hs/OsPLMPZ7aH2rKBsbvvZmrdOhb3PEc85edTUnEGlkt49DSHdz8HZYvIxNhKMdlKWX/F5dxy75tpNlt0llYouC4ohUr+PxEpFQIch/LW8/nNP/ljnnjiUej1wbXyEG1Xo8aHqK3fTC/K+C+f/jS1kRFe2bcHZIJ2JMoyZFnG6vveQMe3oNOHpYBiaBhLbFwjkJZFUnO45w8+wfhb7mDd5Zdx4uFdjMoyJSVJW10yLHSzSzg9C7agf/QouDZp0qPkOYRKQ3xuyiZVdFzI6hlxoFglK1hC0I1CaPep2UOsdcZYJaqIdodabZwtl15BZCCIQjw0vX4XMz5K8fIdpCsNEDZg2HTpxTQP7GN4ahXtJ3bBzDw1HErKJokiHL9ApmH7DTfyul98L5U1U2zccSFzUZ+sUICzi7hphg9klkWWqVxwkgLiCKMyKomhp0F5Ev+y87nn7rvoLKyg53tkQYhBsu7i7Vxyw+1MHz8OC/NkF27g9b/ybvrrRuiuzBOdmObFJ55j5vAp6IeInRdw+b1vZHlVjbs/+sscevxxugeP0jw+x/grpxlNJE2R5cHIoYLJSS799feSrB2BUgF9dhnjCsYinwsTi1RJunWXrL3MwR/uIt0/z2gIDZni+j41Y1MQLqbiM3rrTtbcdhUX3HkjPdtFvXCEkdSmb+XTh2MXX4hdLRMvzaNW1UGFpCMe2AlmyEfFfSy/BGHMaGWYfqSJT55m8eBxLvzgO1kSKZM7LmT/vn30z85DoczabdsoSEF79gy4Ntfcdy/vf+/7ePzJXdBq8eLzL3D6xAmyNEYKg2MkVgoWFmnQx7dt0l6fWrUOYXTO2iiYd/t50DcGPzDEKiUY8ij9+lvZcf+bWXj4BbxehF136aUp2DZb3vQmrrn+Ro4+sQsMuJZD0u0AGr/g0ItibGmR9AIKWBQKBRSQmQQTKvrtFbAUmYnJynlO2C333M10t0l7dibPdcJh+333MXHVZTz0v/4OK3DoJ5rq3bcxdsnFzLxwgEbR5qYPvRN8n9aRY2RRnOckBQaOn4Xps6xTBXw0RxbnIOiy97mXOfX8XlbHEitL6fY7VCbrWL3wp0SkbhyhCw5X3ncXJ/YdJl3uEMZLvOnXPsz8gYNYmaI7fYJatcDZ3btJT5+h3IuopZKqLNGMm7zm4x/klttfx55HHqOQgHUudD4zCrQFmaEQJrhJSqlYotUKKVbKSFzqlRFaOqMf9ChUivSygNS3ULYm7nQpU6TWSzgvLaCWZ3A6EarbZf65Z9GzJ3nzb3yc177uNTz98i7or1Cza1jCYGtDmCQktsynASdGeP1v/gYd32PxJ4/h9GLq+LSigCse/DDLjWVaJ2ZgdoX16zfRXm5x891vY/eLz9OfnQNlGHI9dBIjbEErSaAICydOc3qpieh0+eSDv44Y2NkGDBgw4OfOwM42YMCAAf8OZFmGbdvUarU8ZNsr0AkSyuUCURbg+z69XgDSBuliF6p88AMf4K8+87sUlY1OQU2NkPRaYHnUujGZisgKFnHmQ7WWB7SmCUXHwwpCtIC+n0ExA+VC0+G23/ooc9MzHH7sGbK5Re7/y08xH3Z47DP/F5gC133yI/zkxH44eITxdVsYNg6HvvAVxsfWUCh4TE+fYPjWK7njjXfy5X/4B9TBI2D7kGTYmUJqDdpgG01VWaQWJNqQSTBSYGmwTJ6r0/EkF77rjew7cBB98AyEKUW7TBBFuYUFyTA+m9/yBqY2beBbn/884xi6vUV8v0gz6SOxMRqGrTKOkjTtGMsYAs/j9X/1p/irp/jmp/8MHnuSLbdcxtGkwxtuu4sn/svnGBUOrWiF3rCPcjJQmqHI0HQ8tl21E0/D3meex5fyf7OzJUi0KeffnvsS4gS7F+CYDMey6LsapVKwyzBcg2u2w8oyHJqh0s2QcUavInjtx97JwW6PSy+6lF1/9SW8vaeZkB5Z1KKJQtfKLNOEqo+zYRsj5Rrze17JG9+KRdZdvoPTP34MujHIfJKNkSp0WtiVApxdYfjcZFgPSa9ggwPWVRdy5/sf4LE/+Vvi3Uex8InuvQln8xqSF47CEwdB9KBUhrXr4MzpvMFMKIJ+C3yP8QfeQWH/WaaffI7RiUmWV5agVuKOu97I9P4DdF45TCXq0iKjecUWkqXlfBLNL4Pt5WKebUM3gCQDz6GchPg6pG87hI6He9HF3PsLD6BbK3z3c39JMNekXKmQGkUcdcECalVohaBs8h57GxyNbRyKSFwbopLD2m3nsfqyi3nkG9+ifsWlvOu3P8FnP/dZePHlvLGwOsVad4iZZ18AMpyCx1AcUbAs+gqCeoWgarPzw7/IGTti4a//Fmqj/O7v/AF//82vsvy9p6kvdDjjCbjrMja97hY6u16i+4PnqdoOS1MlXnfPm/nR//xr6HbBNoh1q5mYGGf+0HFYblO3S4RxTOxl7PzQu7Ftm2e/+GUkLtq3KE6Oce/73sND//BlGnt3g1JIr8S4XabdaBKKc/Y+34VIgeVCfRiCEMI+d7zjrbhS8J0vfwlHKNI0gXIVz/eJl5bzKTwpEUYjjUagsbSNjC2KBZ8kDfE8i14YkGrN0Og4QZiQKkNaSyDVWKFkKpQsORbRZIGRT/4iK1/4KmJPn0m/xFx0BnfLFpJOJ58ic21YWs4tU/0uw34BFUd0swxdkAhpU3QKFLRNJ4pIUFirx/C7Mf0wAB2z5rYbcV2fEz98FIYmc3vd1Vdx9XWvoduLeObbX4YNU7DYgN0nQWsu/8i7eOnhh+D0AlQkW6+6llaSsqQibnv/A/zwD/8Sf/9pSlh0RnzSxjLFWpWAkKt+9eM895XvwGIHJ9Q88OF3E3mGf/ns/2A0K/2UnS12LDpWBqMuojiCt9AnWuVx6YUXceyRp4lbXYwxZCalWq6QBRFFv4ATWLSzgKDi4GxehdGK7MQZCrHGVqBk3rKmdb4+1TKDhaGBwh8eou/6qFYEmYHbLmBtrc7MV77PRLlG2GnSsUAUCzjaZUgXyMI2FStkWUHgFrBLRRIMxYKDLVI6c3mDHo4DKdSFi0wzHN9nIU1B2Nhja9Aa9FgDFpcgtUG7IBOYWgcLberLGQUSOnaR/gYJswF2mLcHZl52bmrSUGgnOMqms2oEjGCyUGLuyOFcQBrY2QYMGDDg58qgA3PAgAED/n+AEhKqFfrSYHs+cZziaoFMFb4lkMJQHCoxMjGOZVkoBLJcJreLGYRwEEaSacPIpk3UJicZ2nIe/rrViLJPYuWbDAA0eZW6Ttn73R/QOnCUbLkBUhFYhguu2Qm+g7t5LQtFSemCzax/3etY/MZDHPr7r1COLeIzp+ifOI1tQePFF1Bhn22bNuUiQBIjTG5zEmgEGUZoEqkwRiF0hpVlOFoj0efekCazNCu25tq3vwl0AC4EaR9hQ9FzqQiBQ8zzjzzMt771NaTrEcYxluXQivp49TLGEZhzz6dIcUyKshJwMx7+7nfyFrZUMzm+isVXjoLK2HzJDhzPoxd1We2NUonJ68aQRLYArTm0ew+vvLgbV9rYRvzUH0/96mbF9rEsD1o96MZUjEUBgaMSRoRHxfU574YbcgvRocNw7DgAiXSRxTKqH9HKNO35FX789e/QXVwhVRmtqIMjCnnLXZLkwmImSPceY/6J56DTZeiS87nsvttZdfUFXPiee8ETELRh7WpotUEpsqUmjiVeLQnDIMFIyCRqrs3s6Rm6QYtEQkTKmvWr2HHFxdReezWsGwWVQbnAre+6H+fSHeA5qDDEt/IGubDb4abX3QwSol6XIoJCkvDwV77MoX0v0YlagIVrlRjdvI73f/I3uOl978nzhzpdCCKsRpdSBmXbx1IgjDw3WaBBGJJOi6XGEnONBkG7Db5FlKWIVFGWLkP1ERwtwBFQKyGHhymMjUKhQClVVJKYUtBHLq1w9KlneeTvvgjNDoVEcWzfPlheYsv7fpG3/vlf4A2PM/PibjzbYbhUwSEjdAVNnZLokLDRhSxj956XOW/9JqiPwfwSP3nmORZnF+g1mlhT67nh478MU6sZqQxRyARx3KMRNGH6JD/6/GfBzWD9GBR8zNHTzD/+PPVYULAcWnEIk8OwdpwXH/o2z37tq9DpYzX6bB1ZzQXja3j629+nufcEiDJkgre85a1Mrl+LrJURY3XYuoXaLTdCX1HtKOSps9Ds4tSHefhf/oXv/Ms/Q5pQ8H0saUGrSzw7B5ZEOs6/CUgIDeS6XIhgJQwxrktkDLHWSMch1oYgikl1HvRvhZpapPHO3ZMXX3Mt14xvgo6hNlSnKw21K69gy6WXQ2JAONBLwHbOtRkqMp2SSYmWIL0iRti5XdZ2EI5DYWiEa2+8iTDoAYri2rW8/YH7yaSE0VForPCWX/kIOy/YTndxiecefwKqVS69/kYolWByBIYqiOV2njs2VgXf4vDTz9OfWUD3E14+cQyaTcZFGY8sF4RHqwQuMFpn2wVbYWUJCjbl9RPU109x5PRJqNf/t7V+aGgIggB30yaMUqRpCp0OLz/0fVQvpGi7ZGkKQtIJAwI0LduiX3QIAJQhPXSC7OQZMPlS9era7miNMBrL5GurAgojo3SURnX67HjzPWy7+x7ueN97mTpvM2gLHaS4WKBBOi6JBFUp0iJjWYEu2IiCSxKE0I+IVrpEi20mZB4fRtHGu/h8dLWEXSoSJGl+jAayuQWcXsK2a2/IRW0hcbAglrDcBM+hVXIpDq1n89VXUn7HPeA6lEWBolvOr4FKAaTASl2GtQcrHW655x4cx8lFzgEDBgwY8HNnYGcbMGDAgH8HtNb/ZmdTSpF5Hte/691Mv/AcmZSYOGPc8RBhiCcselGHp/e/QNBcplyo0g9TLrr7jVx8zz2c2HcQr6WQQhBKCMOQsUsuYrGxwIP/7fd57GtfRgHSgKM0MtXYmcbOEoL5eeKgByUHLVIOP/ksL3zxq6AsvIlVWJZP4+EnuHjrxZzeexCUoZLElIVB6T5CxKiJYfb962OUCgXCTofRcoms18PRGdJkCDSZ1PTtjFQpHEviCoESmtjWJLYhtQzKge7xw8zsPwJOETKN0ApjZ6SqRyIjIplSv/1mKudvpr/nFZQliGUKtQIq6QEaqiXCuE9QNpSSBC00qQuyY5h56FFKEyM0Zw4x6hXoKoFVGSZVhrlGE2MMfqbxFNgaQifPHS5Il7pfJGy2sY3BEfLf2tmMJVDCYmjrRZTGRggaS1AuoaMAicHHppuGxEmG2rKR17/3/Rx6/gAsdCHUKK1I1k5y63vfw1P//DXSw/OImRV0LyQ2KYEjWMh6WKUiwrJIuyFuT+FHKX4qSKQkOnWM+UOHmN23h6UfPw6dEEe67HzXfdx5/zuRxqG1/ySWVnQci74rSS0bL7FwUhuWOqQvHqffD0DGMF6js2sPc48+T3ndFJvuvZmlF16EeomTJw+jXRuikKGlBnUliJOUYHqG42UFBYsw61PxXbqdxTxMvWaRuIamzmi7mu6JU+x+5Ammd++BVo+C7VFF4amUitC4AhItcbTCJiWxBJktQGlGLr+Ezedv5uiJw2SNPiBBgs5SdLdLTdlYOMRxgnEssloBmSVYaYQ2CX0Z068ZVFEgbJtSS2GOTrP88IvU3Tqdfp+Xvv1tpq7dSX3jahonDhKmfbQKECMV+jbESDAOeGXMwaOMv/YqKqtWs7Lc5dSXfkD9bEo6VKdRyTgd9mH/Wc5+83HU7kO4JsYSGWmxgrVhIx/6wz9AVGucfeo5isZnzC6RtduEJkbXyrjrp3jzxz7EwWNHYbGJ15WsyQyduSWWTp9h7vgpJgOJFwtCnSIrBY7NzhA0G1CrcOnr78CpVUl/8iQF08eQkZY9alvWsWr7+bTaLSwgXVjC1xJbODjSQSQpIk1xAMGrm3VDalmUtm7nzre/jaHVExydOQW+g7YkeniY29/zbpJqjf6RY0xFigKajhB0ipKFg0c4+f1n0bNdxAXrCao25rwNzE/PsuGKq3j97Xey7+kXoNuGKKToGxKdkSAwfgGTJlAsk6aGNDVQKjOxeSMNNNbsHJatCZYXefqF52kfOAL9CDmxjvkjpzj46OOcOXIMc3YGf7iMPLtA++lnoAA0V9AvHsKOEmKaEGest4dprbTRjRXCbetZs2Yjnd17EBiioQKmuwJJDE6BPd/4PngViBOiqMezzz3NwswMohtRzPgpO9vZlSXciVFuuf8tNM4uEkzP4SUCVfBBeghjYxKJffUVbHj/L9C8cCMMreXKG6/iTGsB0w4YlUXsTBCj0LZBG7ANFDJDaKdIDCAJXIe+ymDVJKvf9jaWikPMvnKA4wuzzH7jIYbtMjpKySpF1PlrmLxsO+su2kFrsU3Y6ZD4KWmliokMxW07cIcnySKNEA4qCgh9l+FfeQ+XXXsNRx97kr40JCYiWj/OA7//G7yy9yWGt29hs3Y59cIBhnSRQj/ENxXC7Zu56sEPsXDRGq64+00c7jeIew2yY2eJgoBYau75r7/HoeYKzK/gWMMQQ7xhFdffdAMHnn6G//jgr9PvtHF8d2BnGzBgwICfIwM724ABAwb8jMnO/bQhD3425MHEts1YbYgoyVClIv7O7TR37wZtkFHESCYRKqNnMtKhCmncRY7WoZXgBBbm4vNZt2Mb8cwSK48+ibAhsg3q/E15gPXcDNgyn1zoQzHT+JnGnBNvup6iiEfguqy6+lLmzpyBV5ZY49boJG06YyO5LUiANVZDNRfwhmvEzUVsK/+mO0GBglJ9kv78IvVajbDfw0WSCUUqNMUkt68FRcBI7PowtrKJmh2scyKTERphQIWGzdVVBJ1FShTAs5iOm6RlGySYKIOhEda9436sdpuT3/4+hF1wJb/8mT/k83/yp3BmAVEewmRdJlcSwNCzHKr+JB2dkb5mC5fedx3P/vHnoOXn0zgygpIPSlJtB5RThZKawMk3TFprgiBgYmICncSoKCIMAjIMwpJEjs3InW/k5ptuYHr/QZ7/+y/hFovoKCbrd/KTL4G0BFPj3PCB+9mwei0PffZv6ew7gRIwecUlnO0uUp1pYXW6xAWboGDlwcu2zK1fGUwKB8tA0wEXG18JtJRkwpD5Fp1uizG3QEFLThcM2C4Ygd+PqZZ8FsNOXostHTAWKPAjhe8KWroDno3bz9hiT5BowdGSA8NAb5Hhu97IRTuvYdff/CM0mkw0Gjj9Pn00zXINyBjesAkTRnSOn2RdfZgw6tOPA/BstBRoJRGiRKYSkjTC9m3wwBiFbUmIU7Sy0FaRglJ4OqTrChLXxr/iSm659638+PvfI358FxNJjYW0A3YCnqbetylkKbasM1MScMlFXP72O3npH/8G9h7HcX2IItJSfj2hALsGgebC22/lwKGDuYCRJGD50OhgpzFFaRAmoZ1BYe0Udzz4EZqvnOLAP/2Itk5JJjX4AuZ7TLUFfcq0h0H8pwdYZwpM//ZfUtIWkj7dSgiugZaNlxWwy2X6KgJX5NegZWBxngnj0YgFqlRC2wlYNjKGLXaF+fY8bU+CpWB0GM50wRZQP3dQiaYwMkE4vYQsDqF7AUI3MEXA90BYTL31Xs4ePgqnZmB2kTW2SxSnLHt+PnWUGsqWjcxSIkeTWtm5D8zCyDJiZAQTdiHqQqkAccLqG27CtSucPHgY+/hhCiohtCVZ1YWiBcpjdW0TgSNp7hjH2rKRicpqzn727yAVMD8HaUzRA7KQ1Ci0CzoQOCMjJCWPd//iLyGU5ot/8fm8Qa7sQ8VlbSeh2e/Sk4rSlZfw1nvv57Hv/YjTT++BIKA8OUqv06G+aoLWwjT2yBhrxkc49crL1GojTM4vEWAzs7pIpaModjNWfJ+sILBfeyXZE89RawuMTugMpYjYUEwhixXV0gi9TBMbhZGK8UqZfmOZqu/TsRSJtLE1FBOLoOQSBG1e8x8+zFNf+iZML4Lrc9lb3sDub38XwoyKN8TWj91PY8sES1Wf7t98F5I2HD1GJbIQjRV86bPopeBrSMFJoZxomq5GIhA4KM+F4Tpv/M3f5Gi7x/r1F3Di2EmO/5+fxgpiKpYkFppwqsi7//j3mF1a4uyzhzn0pR/g2RbFCYdmq8GNH/51No2v59v/8nUaB16Cegl6LYhTmJyE5TYTFOh15nG9Er1hlzTqglfO19d2C0aHYHGF4czH0xb9HRvoDPsQtOBEEzKLjUow12sQjdWgXqZywXl0n38GPIfbP/Upfvif/zifPup0GS3WWTp5HNBg5XY2kFivikgDBgwYMOBnxkBEGjBgwICfMV3y/WoREFpDpvO8FqXZMLGOxaCPRGOKvdxihAAjsSyHJErz6RjHJVIpqauhUqDcdUixiYM+JctnzHE4lS1TSg39ySmue9c7OHzwFVZeeg6aXYpRSk36aGHTEZooSygUfQI0WCXc8zdz06c+xo8e/EMmWhm1xRWOFJpI26OU5pkbmZVbJ0InPy6poZhCzzFs0HVGpM+psMmKiXGVJil64MNIS2DpgDYQrx2G9VO89iO/ymO/+xk4PsuI76OSZag7tKIYEigYC8uyCDBozwZtEJmiEisCr0wmFGPvvosL1mziiT/8PGioXHcx3aWzsNQC5cGUy+SFl1JIFCd//AQiCHBtQbnso2xFoBWJtHAySTnO9+5KaiIbQlJsIXGNoZQqAHouJHkhGuXUhm6CQmKw6bpAIQWlqZbH6M8vIq3cUKKkxnVdUBkjcZU5LwYnQtg29WYCXi4IoWAiLhDXLHo6ZbgywuKZJSQWNjbS0iiVoWWCX/QwnkecGZSw85BsdS502nO59pabmFo9yY+++RCdMzNgCSQpWp4LRKpWuO6X3s9PDh2Bl3fD8llIoBrnepdB0nfLJFKA57Dq3jdR27GBQ889DY/uYSSwKQxXOWM3oBMzlFq0uy3WbbmSUyJg9Y076YiY7jd+TL0RsTWTdF04UOnmtpmkhE4DUCmi5mFEBuQXWDlycBT0vRgjNLayiS2JtiT4FpteexNxmDD7412M9iXLRZVbwrRmuAeBNkRbV3P9bzzI2vH1fPd3/wS5/yksAwaLjmujbAW2zdYH7ufiiy7lK//9z2HjZjZt3MqJhx6CVptCsYDpNUDEIDRaghsWCA2UL9tKe3EGGhEiNKx3qoR1n7ju01o6A3E1P6E6RViCYtBhyPPoxz1aDlhVKPd8xuIyR4eA7eex8/V3cOSzX6bbXIaaYGhhkeZwHdZNsv2aazj53V3Ys02GvRInTQMmhxgeW0VlvsPC3AyRNDBR4Zp772T9po3seeElDn3te4hQsqo6TLc3j/AcjO3T1Q72+Vt42y+9k6P79vLC//M3jCOZ2LiZVwoV3vqp/8Sh7/wrB7/2MOuVxUm5kqsUnS6TUS4laWBFAPUCrBpnx5vehJ8Ynv/cFyCBmkmQdoHQEkQY8DzE9u3s2HkZex/6HsQRtRuupT08xLpmxmiS8tKPvwu9ZQrpuTVzapSl5WWGEjBOidZoAYbrML8IiU3BGGzHomdCRlsJUWmIrkhh2yboxLDUZV2oiVWPViUldotc/9FPsX/pGEpmdP71Mdg7Q8UIqrLMrIjY/NqrWfnxIyhiunUbLAG9hKnMI1IxgZREow5eK8ZONNr2cYaH6DTa4PuILKMiDL4taCU9krEyhQbURZmulvQmymAr1t9wHdNf/T7DfpVtf/o7NJ/ZS/Or30THXRbNUv4hx1D1SnT0udEarXEUCAOZNGgRUdy2mZpfYu7QIegmWMrLLdG2DaNV2LoxFwWPHYduBL2QatLH8S1iaRGmGRQrKA0UShAn3PzOB2gvLPPSt77BxH//CPHJefxnT9D6ycuIG3aw9dbrOPL8ywSP7WbnH3yc6Zf3sfzdx/MsMSEATbnokXSb2ECMQ2Vikn4Wk/Z6kCjKlo+Ukk4aQMWBJGbIKhL0+8SrSnDeBji2BGEMWzbibd9I/NDjWFdcznqvTPj8Xs4eHrpZugAAIABJREFU2J8vWLYBm7xUAHluem7AgAEDBvysGGQiDRgwYMDPGOfcQ7wq2ctzvyhIGp5BDVdJhotokS/JwuSChisthCURtkVPK1IJ1KuQGHqOIU4DGKrRdw1nRQJaENsS5luceeRp7KU2ZCFULAIP5kREYAkKbokhv4LOFJwTN5KZWX705a/B0jwLy3PIgg9+CVuD1BLLSGyVP5wsf7hKYus8kKPX7zMXtFlxUpyxOrbtUkwBLGKhiTn3T30zhJMLnHn5MKNXXQljFVYKhpaAVidGOi5ocKSFLSSWEOemt/S5z09SjUPKkcXSM7uZO3oc4dpYrk33yEFoL8FoEeiDU+Ty7Rdzxc6d2JUyRkIqDJlWmExBpnFT8LJcGIJcPLEsKz/uTOMLN/+9OBcqfC4E3Drn7lEYMqnzNroY8Eo4m1ehipDaBiXA0xZpFJMoxRxRHhycaFwlKAJWCr6RYEO77NCKQrIgZnF5CWyJLnokliEpeoihCqbgE2tDKgSqWoRVFS7/+PsYu/u2fBpFZYQjBcqXnE9p9Xj+Zk2G41iQ6nz33+4jV7pcvWErlIYgze17WuSTcz2h0XUfqi7US8zt38uZPfvz8JVuQLvX4szp6Ty4u9vDhAklu8CpszMwd5bZ7z9M94c/higitiSLxKyoBIQLlovrupS9Eo50kUGCSAWkuTAp8kI/5LlrzlXgKbCUBqU5sWsXs7ueBKXyzK1X7yudn8daqQQry6TLDXSrgQoDUisvI4T8OCnXQVvYjYBJ40EngpdfYXKkzgcffJBtr7mOsNk498S5qIuBeLSEGvJozxyDMKJerlNEEaRtRs9bw+ve/Vaqb3sDtbtu5I7/+kle/6nfwLgZ/YLLsiNo2WC8XIxtmYRluvnG/vA0L37mrwjn5iAKQcY0ax6Ui0ytXcem8zbST/u0TcjpaBn/4i289/d/k7s/8ADTK3NUtKQuXOhnzJ1Y4MBLh5k5fAZEAQ9D2Fnm1Vgjfa7lbmRoiHajyZ7dL0OlTC/WHD10FJY6dM7Msn/mGDppczJaztcRDBb5NZsBIVCr1/NpE3w2TK7l0J5XoFylNlSnVqwTZ3mLXnFigpve+nY2VGrs/dp3YbEDjYD2I8/AiSWuedMtOBetgbSPncLqQhUfwVKnBSWX1C/QtTUEPTgzB6U6tnAo4FCQLiZJEaUqab2QCxJxF5by1rQYiDKFUgYch7Wrx2k+t4vOoT2suf4q8DKCms8sXda/9Xbi1VVaRUHskAsiyoDSBCqDc1Y/ehmW5SA8m8SCTr8L5SL1iTGMTjG+Qyw0xndAZRSH6siiR0IGK/Pgu0zvehRsQ6wi9n/vhxz87g9QrTAPv+4AloNtSaJuiJsI0Pl5k8ZgGZNP3JSq3P3GN9NstiFKsIplbFtijAKjufamm5mqDsFKMw8tD3qgM0ym0Fj0RIYqSFTQg26IFSpIFcNbNjIbtKitX8/VF19K67nnmd+3DwcbSwpUHBPMnKZUqzGBjdsO8ptW5/dosV6lF3XJyiUCKSkJl367Q9ppY5+3BlbX6ZUkoSuwDBR7AlcX6FQ9Ylew+sbrOe+Ci6DRhsjA4TPE33sKrzLOm2+6lZFy9dw9n+ULhsw1t/wvzkBAGjBgwICfNYNJpAEDBgz4WfNqdjTkuzhL00UQAhOTYzA0DItnEVmGo8DLJJaWhGmCVauRWJDZhuvfchdPfu8hWO7z5v/xn/nWP34d9h1kx1vewsmZ46in9pJUHEYCm27QJzQhcriI1ikoGJ1azY4bb+RfH3kYllvUtUtryIZGBDi85mPvQ8URz3z9W9RbMaml0HGEq/LN/avv/9UgaWFy60AvCxmujrJCwrr3vJ5j//RV6LusyTzOOBFSC+qOC70usVWiLyRcdAG3fuwDTLfnuWLHRfzzBz8EjXNV3tKlnAr6YQ+3UKRHhsJgK0MxEaxCI3A5VFYwMQTTbap+nY6twe4z9Mbbue7Ka/neZ/6WrRdto9tqcvall0AqQOBYAl8ZZKZxjQvIfwunjS1QRmOSDN92KAsHpdu5BdACyIWzcioJo4ieECRunkBixTZqvMq9f/pbfP3rX4EfPg9BxpiyWRJxvrkdGYJGADH8v+y9abBdV2Hn+1trz2e8o64max5ty5YtW5YHAR6xjW0wxMw0gdghhFAk6RDoTtKPJO9l6qqXhNdJJ53uSkh3kko6DA0GDBg8gmXJ1jzrar7zdMa9z57WWu/DFs379L752/lVqUqqunVLd5999j37v/+Dk+XU0ORKoSyLbt0vFK1WCkEVd3iI+598L6+8/jpaCqKFBUhjmJjAx6XU7bEkLdhQZ+UHPkxJ24x/+b9TG1lOuztZuHNsB2YXwbawsgxfSIyWOG6JTqbRSMhz6iZGocktCsGlElDeuplb37YXa9lK8lRx7BvfpbUwDZeX2LBsFdtvvwWxcw3P/tl/ZnnuEkYRnZXLGd11K/NXLkIYwuQ0eD4l36eXRxhbg2XDfAhJzEBQxs5jMIZcSJSUKBy0AC0VntIEeXHyZVITeYI0y5C5pmZsPO2y4ENu59hKM9TT9FD0Vg2TpwlkQCIQMqSSgq0FGpuWNmA7WJ6P3TNk2qBXDUDYKZbLFNTLFbKoixZF3FJJTR6bwplywxoe+6WfZ/zAEU5/9VmINNTLxRtFp7D+RkbWrmXhxRdA2XjtlEBpfAxdkZFIQ+YakAF4RY8X9SE4Pk0gBT3dYVhBiCF2bFhWgqU2lihT9nzaugEVFxwXpkJW2g4NZZAbNrPmnns49b++CYMDcPkyVtxl3cAAUdqiGWVI6RBKH2o+lF3IYmg38VLFyqERmvi4e29mNgrh3BWuu+Emhq4b5cirLxNMLqHnF0k2j2C5VfSJGVbJIbQRRFWHpmnCumVFnPbYMbyhEZJej42770JYPuMnz8LMPFVtU0ozOqREA6MwIkFoxFyb4QwWZMjY7ltozC5gnZ+jBCzKHJYPctcH3s/mNRv52p/+Z+TlWSrSIu+1aC+v0hv2WXb7rcxduojjjrDBH+T8cy9TKXk0reI8I7VgeUB91w6Eymi+fhQW22x77F101o0x150n3/8m4tJVdDtGCoFlOeSqEOBtDSZM6dDFqjooJRnavIkv/s6X+Nd/+Rf2f//7RXl+EmJVyjz49L8hHZ/jtedfpWc03vY17H3kQZ7/yt/gZoJ0ch4cH3/5dcSXZ6nXBmi124XaWXZA54hOhOMWK2R+LosRBSnJh6roWoW82QGloR3ioJB24TgrLRujlfQwUac4L4WGJMazSmjbJpMa/AAMeMtXkXS6lDesJ7x0HnoZAxk0S0tseffPIY9e4eqP9hMOCShbECX4aUDig2l0qSobZRRutUYrENQ2rGLvve/g2W98C2d8hkwqqpvW8pHf+lX+6otfhGYKPcWIKOOkGR0U3TUjrL/nNjauWsPz//DP0E0Y6mgcozBkqPoI0dggvYkJVo6MMnnpNIic9NqcgsTCNdeej/eVpD59+vR5y+gXa/fp06fPW81Psx8AGJCGRtLDsn3+43/5Cz7whc+z6fbbOf3KK0gtCoePkXh+mVYSoqWGZXV2PPAOwukGnclZLnkwsGoVPduiV3IZGhmidXwchSaMmuBJMIpymuFFCb5yaSw0aC0bZOdnn2H9nXcw+YOfkJUM/nXryBtdru4/wsT5k5BGxELg55JMaxJbktjFTYsWhcAFxd9jW2I8j3YUokyKvH0rG++5m3B2ifb8ErriI8IUkeYMDgyw1Iuw/DLadbk4cYmlbofj+w4weuc93P3Io8zMLtK7OoOHRCpNyXVJdYYxRWGqpS1AkwY+nSAGJ0WU6siFJmsSh1aU0Ru/xLlTp7GuLjJ/7iyd2RkIBJRscIrNOF9DSUu8XJJLQduHngvKFazevpXly1bQ7HSIlQKRo2WOERZSW9jKwlWSVGVEtsa4GiyD5w6RO5JT33sWLk1CbOFmmiouHUdTXbuKR/7w96gNrGRq3xG069BzcxLPI8fGOC47nvkod2y/lawZsjgxgbVxPdXVK5lpLHLzXXey9977yDPN7Jlz9GwbNqzirt/9AicXp1iSmj1PPcnQtvWsuO9OppuzcPYiQoMvJTrRBJaNynKyLEFqjdSaAdfHUQqNKTq1LEDnZI0lrpw4xaXDx7ny3Isk8+3CyeC5hGnK6clLnL10EomHlRpiS/KxP/sDluaXuGXLDtxOzsLiHAyWya4bhiTihptu55673kZl9Qrm5ufQwiCimJK2ENfOqa5vk3sWShSajK1BXvMZKJPhGE0ZqClNIiSZBcIYXG2wtaFardBaaEKSItKUEorMEni5hWUEtraoDw1jjCYJI0q2i9SKXEeFoJIW0ThPSIwy1yKmFlrYDOY5roYkidA3rGHD3l2YVaM0LlwoVsVaPTbfdBt3fuIDdFVC48RhWLECZSDOc8KBOunoEDrwCBoWZDlv+9TTrLt3L5deeI4nfv1X2PPI27k0fZWw3WKrrjKsJIs6AcvGDzMGjUU7SSDKoNFjc3WIy2aJfLhGfc8eFgdH2fy+p6hcv40de29nsTXBXLKE6GXIHDyvjLZdlC249wPv4+4HH+DYsSOIJMatlenWbXbtvJmLr7wBUw3WrlzH+YuXyC5NkLsCVR+AhQjTiJErrqMVR3TKFnFgeNtHP8RDt91B+9wVluii4iUYrsCmNUzt/wnYCnfVGL35SXoqphQEuLZD0u7CfBMnM3RFzC2/8SlGb9zK5e++zFBeZkF3wZXQ00ycvcrh518lnW8ibIvMlYUzM22y9t69bNy0kalmm3fecQ8XTpykMz1HjIaSS31olOr0JKO1AeJLV2gdPA7NHoFXZuboaQaHRmicOAbREqbZYbAnqWqL3LLJLEU2OgKuh25HVGqlwmmlQbsezz33PSYvXiyEKq1wHJu8E3J+YoqLR06QJzlercwNt9yIladcPngAO+xQ0VAdqdBWbXZ+5ml2v/e9nByforzndgYfuJt00zArRgZpTV7CNgZPaRxtEEaQ2hZ5nEIO3vAYf/QHf8Sx/S/Ti3skSYpvJPH8Ek5uEFpjdAyeQO3cgr4yz/KwhOxEpANDPPrn/4HJlWXCKILXx7ETC7cX4u/ZSaAFFw8coawlPZHibliPKFUQC21k1GTAcbGyDNdxafU6aJWyde/dnB6/RHR1Ai0MOIJ0aZE3XvgxtHNkbLCMpKsTuqMBwerVJBcXaYZNLvzgJ9DNgZSezvCExBeSWbtLnhmqQ8sQOuNXfv0ztFWPXNqFkI/EVoKfpsL79OnTp89bQ19E6tOnT5+3mv9v0acwIAxC2khh8Ue//dvc/chj1D2fN37wHEKDqwSYoiw5Jod6BaRiPs9IL8yQGIO6eIFepw3dDumpU7TOX8IWNipJ8DwXpTNszybJU8aGlyFcnzCOiZcaDN50I8u8ChMv7yNZXmPP7juh0aW70MSYHqwYRVarOJ2UxCi0La4tkIliZtsItBBkliRxBcoBKS2M5xJNX6Dl++zafD2XTpwEMoJE4gOW79LKU3S9At02VOuMbNrC2o1bmV9Y4L5776M7O8/c8ZOULBfbCLTOyIXCCMAIpC6eMnfsnHxFja0feC8LL+7DMx6B7hHIgDBLQGfIbg9/aIA8TwvHUp4Vr4M2BBp8JRBaENuC0KeIGNqCtVuvZ/u262l1uyw2m0iZIjAoYSGwEMbGMRaZyuhZuujksCDPZVGC7fgQaurax1UKBfREjvY9Ti3OMyYrzJw8ww337qW3eSXpYgPLK6MbLcTyIdb7dc4fO0UoJYtXL7N49SrkKbPHT3Py5EkWT5ymWhkg7YUQhfRqNaKXX4Wz4yzbs4c3f/g8u2/fzWInIjp9nlKcIBEoVaw4IW28oEKcFQ6vVBUT3xmG1NbFMbr2dfQy8OsQplRKJdKyA2mGtmyI2mBlmEYX6fjESYdxSzN19AQXXv4JC2cvwnAd6iXe+fRHqI2Ncfzl1zh14gQNlZKGLZQEkWS4RqCkRWYJUt8GF0CjNVhaYIRBS0M3z3FccC2ByijcGFIir8V8wBDGMZWSR+C5WLlCaY2ybFwFli4qhxd6XVIMlDyUAb/kISyBNhmB45GnCb7torUpzj0h0UJQVw5lr0xLRyx1G4wsX8nEmfPER88ghIstLDq9kEVfMjE+DoN13vfJp5lfahF12lTWr2HXow8ykYTkM4voSpVLRw9w6dBBkDA6torRcpnD+14j7nawsx4aRcMFLIlve9i9jExrarUB/MxAL6JjK0hjosUOmbYwy5aztLjA5lVjnPzqP2CiGLTAMS5CWoRxDJWAJz/0FMYoDv7geXQvpRuF5BWLi6/ug6h4zy02uiRXJ4roay0AoSmt2sS7Pvhh7FqdubjLPZ/4GMG2dRx87tsce/Mwrel5tIggcFn39rezbcdNXDp3ljueej/DtQozU1OYqEuSJRDH2EJSqdeIkhBqATOHDzHxyj6oDBE2lmC0XMSxMgdnKaWcQMUt0cm7pCJFDxeurNbcAlfePIgev8C5QycJZ+dBWuDa2KuXc+PWzahT52iFHdqtJiPDy3CUxFGCOMtpTUxCcwnSECLNsHZwsGkLg665rNmzm7Fly2lemCZLOzi2RHgl0lYbMgWOi0BAq4Xn2EgpUa0Og0OjOJZHtLTI9MwUly+MQxozYjuoriIXOcmqYa5//Ak6meLyN59n86PvZNve23AGPIbynMkjR7B1Uf9TXIMhlhJjW1Cp8fi7n+Q7X/8G85fPkmuDtizyRDHkl5FZjmsLEpWAZ7P1qSdYPH6B5aGDg2bdHbs5Voppe3Dr9puZ/ubLuLGi7EkWFyZYOnMG3QyJ4wR/1XIeeuRhRKaI5xZI4i5CKbRWlIISYRZjhurMjo8TTUwXBfW9Hqi8cCGmBqIMTwtc3yMVKWxZzYZt2+leaZCbCDIoWT6ZLxCBh4Wmm3bJKzbUR0mvTrNs1Rif+eVP09MxQjpYgI3E1n0RqU+fPn3eavoiUp8+ffq8xShZ9B0XGNAGN9F4ts3v/8H/zRs//DFvPP8jbBtUlCAtByMk2nNJPRtUxl0f/xjxYoPW6ydQtgETgO8h163hzrc9wOTBk+QmpRYXnRQpKari8uTnf4l9r/yI0PVASDAec9/bx7lXDpDoBLodRpYvpyodli5eIPNtkIqP/7svsv8HL2OSHrc++Tj3ffgpjr3yEmZokKzZwR9bRo8cVtS59eNPMfXyfohzKFdRjs3o2AoaFYd8YZZlpkbNeMwHhsxPWfnBJwhu2EZ49DzR/rMs/OQw2ZWLvLHvJeaOnoJE4bkuLhJUQiY1CQZlAOmQCo0beKRRwt5772cpTmlemaCiy+jApysyEBmVVJMLjUp7WIM1fvXff4HRlatYvDpJVbhkvYQojckGS6Q1m/XvuAtraJhL+w8x2e4yG4dQdsk7LbIkwxkcJlSS2Ai0cAmqFcIsLF7WdWOwbi3MLTKcVBiIYspK4MuAJZmjAhedZHBxiplzV0DnzKsI7x23ki7Oo2dmIYZwaoYzr78JmSKzbUgSxOo1/OKvfI7jR4+jzhQxkzISK9NUEgvn0BWiDhAqvLERdJxy9E//Dv3GOKtyjdA5qVIkSCqrVtKNQxKjMcM1GCxj0h65HYBvk+cZ5OA7HjJS+NpjMLEoaZumnbD53rv4wC89zdGjR1All72/+EmuvHaALMmQe3aQLM7B2YtgLAbsgNwxPPbhp/jhG68y8epPMJ2MseUraEYNiFvgO+S2RKc50vcR9SpJWfJbX/0HbN/n4qGDpGlGLDWJycCBzBR9PNK10BUf4hyZaYTr0BGGTGiyRFG1HQYGBpgPI1AaS1k4wgLXJRIp+BIGS5gAkixCZT08pRBK4UqJNgYjCsHUiEIJjmxFR6RoacF8h+kXDpCduIytJGiNkgaVZYQnL8HlKWi0OPXiK0Tzi5CkDG/bTBhYjG3dhLptOzt/8SnkwACt8Qsw1aF9+BTnf/gaXqtH5Evc+ihTSQ/5wC6W3XYTS9NTWDiEaYI7WEc4HmGvi1MKyHoAPsy12LnzNszcAm/+j7+HOAEBKlUIY5FmCilEEV19Yx8HX9sH7RAhrCISpXM8p1IULTsSk8esu3sv19+6C7tcpjk1SVaqsNhpc/H4SfAsrrQWWXzpeQhs9PwcOo2xlI3pKtRixNlX90MrYvLKFDOv7YMoxCsFDJXKDPQMWggGNlzHnl9/mqRWpf3aeQJVJjc5j/zhb7Bu1w4unLuMP9NjraizqjZMx+SETgg7N/POL/0aNDQjTp2lmRb0cmSqEZlC+i61tSvZcfdu5hdnuXrhLP7KQSIyoixn9Zq1dHpdnNwgk7QQaOKMil3CTsG2PBoq5fr3PsrQujXMLs3TXFikkqZ4mULngOUiLQ/SHDfTDLgeTq6QUVEuLjSoXOPUa7iBT9aJcNOcMcfFRCmZ1oiNGzj3ne9wudGmMnodk6dOMf61rzJ/aZyp7/2oiPu5EkdY2FjkRhBnGQzUoRtx+tBBGosLuHGPWBcl+8HQEFZPF5HVoExoK9Zfv5WJPCc/dRmdSSyvxPjkBeITb0C5wv0793D0m8/jCTBpROxS/ALTBiybsWWjxO0OJ19+lTiL0Z4mtcBBkigNjoVSunDgpgI7zBnVDsQaCwslBaiU3LPJKh4Q8/hvfJZulhFnivq9t9E9c44sifjMH/8u+7/9bVIhEEKgXQWdhLEbd7A0O81v/savoaTCwrpWNSix+iJSnz59+rzl9DuR+vTp0+ctJqX4TGv/tHhUaxA2CKgOryB3fCSKPFpC2hbGsjEIUnOtTEkCA3UkgsqFq7R9ixFZY8ERRadJqhhoxzT9hIGOprNjPaoxB0nElj33kJ+fZPHUZdCQVatEgcsN99zNiddeg8UWEIPRrHYGmTAxjFQg6YI3WvwA4SKjD72d+UNHYWoeaVXRWcyqt+1m+/vfSavXpfWvL3Hl0AnW33YTpw7+GKQLJsbeczvm+0eoaIvWIDDkQJ6y8sFHucOM8Z2//gpeUKU9KLnlmY+RhxnH/umriLlZ3CyiJDJiy9CzLbBciDWe4xIIi1JPM0VS9MWkKVglGKizde9uzpw8grf/BLJcIrVAZb3iRsgYMBZVO8A3kjzNyJbV6SYNartuZUVtGWeefQFGxyDusuGXPsL1c20OPf8Ck60W1IcYWbeRzsQsydlTQARCU964gnd88jOYuRY/+et/xO2G9MjQWEQ+GJ0WjgjbY9PNN7Pmrtv50asvwtIUj37uV6n3FM/+yZ9hzzfJaj7dLAXfL5aJXJdg7Tp6UzOQpdQMtKMG1C1kYjHcsei4PnHZhi2jVHZup/vVH1AlIF+YJXUEyghwHDY//DCpI7Adh6tXLpKeOQ3CgjCDtAfa4FsSkWSU/QpZqlDaIrUkaUVBzYLqAFxcgEqZ0TtuoXNllvjqNPUPPYiamKX72lGIMqwwZmDlChYXJ8EX4JegoxCVCg99+hd45dg+onOnYWIa25RxEkEPzY0//xTHTx/G1ZL06Blsx2PNurXcfPsuvv71fy6Kp7O8cDioED8yBNKjoTSUZXHzmDrIOEE74G4YI51qUFaFG6mbRGRlF3TC1sce4h0P3M9f//rnQdsE+c86vzCycCFRdF4BBLnG0kUxdmJDagNCYF1bKnQUuEbSBjIkmSuLInVF0U+VRDBSLRbGLrRh/TJoLUCzBVkCJYHIoB5DswaUB6BagvtvAgQ3jm3k+H/6x8LxJhJYNgLzIatmMxQC43qEStFVKaCxpcR1JFrnxK7CEzaB5ZCFPTJXkno/PV6KkpJYWiGTkByfcOMYbFrF9offyeilNse+/yLJxavEecqQH9BQOcqH4GNPMnbjZmaiFutTh/zFI1x69QBBewFPVmjpCGd4lNDk2LaNzHrIdpuqNLSyGJaN4s/FhGjUWBk8wd3veBd6oclr3/9u0RllXIYqIyy1mrB8hPKNW7jryUf4wZd+pzi2uYVctxl9cQJ6PSwDXhYTBD6LSQi+VXRZ2Qb8vOjK8kt84te/yLe+9k0WLl2EqTk82yMJI6jWIE6wgjIqDKHkgIkL16GwwHapNiIcrUmFQ+I4GMcjCALidpsBWxKHbZYPDnNlaYHy2AqWlhoMbN1M88IFcDw8NG7co+y5CKfGdKfB9iffxZo1a3j+H7+BmpqnEvhEURvbgnRUQrd7rU9NYEkHahXiPGH73r20Gk2mDhyiqhKswWGaaRcGRxCLCXVhk0dNuqJYgyQYYHDDRt7x0AM8++y3yBYbRau+0mDJwilqO5TCmMjJGN11E5WgxMVX9xcN9WmGEwRkqgeloo3fS4uePCMgsSQCqKTFe2LU5KSU6Lg2C3aXx3/r3/Lma68ztW8/4ECeg8q48dc+xfHDB+DKLBiHLWOrOf+Tg6heUpSclyUDd+7h5x57N9/4i79k4uRR8jzCsosBBBurGHu4NmbXp0+fPn3eGvpOpD59+vR5i1EUOlARxDLX5tckqVJ8+e//jvbcLJnQlHIFlk1sNApTxK9ctxBIUo0JI9wsJsXgS5temkGSQJrg2xap6mGynC0ffh/zSQQLiyzNtdDnpxkyNjbQcg1yy3Xc9tDbaIQ9zLlJck+AZbBjTZzFICWsWgbNTrGOMzBA1FiAhQZUBzGLHdbtvJmxDWsZz1qcPXSYxR8fIu9EPP6Jj3Gp3UHFGt0JufldD2NlhrmpCdbcs5uWZcHsLHZ5kNVumfPHT+L4Dkm4xOa797Bx240cf/0AotPBNopq4BDmGcoVIB3ARlmaOI1ZYdWLzqYVgzA6yOC27cRnz7Hxzj3suG0X06/tJ86Soo/jmhiA41EJKtimeLIeuB4tHaOzlGR+kcXpBiLSCMuDpEcjEAwmBhOlLCzMs+6dD1NfsZr16zcwcfQo0paYNCVrdenEkvmpaeauXCR0BHJwgF4a4pdLRW9JlkGW468e5Za334OWFnP7jxaDaWHE+UMHqaQZTRVC1eXB97x8uXE3AAAgAElEQVSbC9MzkCTkSQbNBiQxGIXv2WR5Sj0XlHNTzH7nkC4ukE7NwHwTN8qIZIoJXKj4IGHtvfdy3ZatuKUSd+zezYljx6HRAtsFNLYQxf/TgF+tEAtD6ApUyS1uoEtWcRwjoBMRtdvkV+dAQZK3SC9dgWaHShBg54o8T/FrVVJtoJeCMggpGT9xkrW7bmLNLTuZGT+LXujgCIc8SVm162ZGt2winpolnl1ENzus2riRm2+/jZU7dnD66hTYPiQaXE1JSaQuZuSd23aiox7kFm6pjMoTlIogzclF4VawhVVE2WyLxcU5Du4/AJlBJBqhwSCu/SlW+QxF5xIoykrgAbmBnk0Ru3MlRgiCTBBogY2ktWwQsWyAn//tf4uzfIjJE0eKgidXFv1cnQYEIzz4u19ADZdoXblYxCl1gpUa1qUG2ROEXgnareJOPNPMHTkDlxdA5+z6/GfZ+cSjjL9+AL3QASBTIa7JccjwpMD2HRIEqbTAFaheSG4MpDnCAqVUcQOvDSZOi2WtoESaZ9z1/p9jx4P3curKJc5863nic5cYdgKML2iqDk7ZR4U98uNnae47RB5rkk6IkNBqLlIP6gjPR5TLdHo9SGK0EKhuB6UyRio1Qp2Tyh6OP8DG1RuYjxKue/A+dt5zO+enL7M4MQFRRiBsOu0uDARUH7qb6o2bODJ9Ho6fhOow7pUl8s2b2PGuR5ibuIJptfEllEs+WR6jnUKYt+tVtErBHwCvhOfVOHfkCIRdUDnSKGwhUbbHwI4b2fPIA1zqNCDqgLGKviwhQKfYSmOMIRWSzJZoyyKNQrQAxxIonROUfMIkpYMC3+Oe976bC5cKQV9pcIISYZoRBxVUqczCxXOcP3oQ05zDyxKqWUpAhjKSrOoU64vSwSQKgyRDsXzbZh557BFmZiZZuHCJUVmjYxS5I7j7Yx9l9sJVAqd4rWTZJ3dtMBbrt2zBHakzfvwwAotKIyaIFUmrAUM1CNuFY802PP7RD1IfGeTc668TeCVMluPaFpnRRexVg6cE11LHKEuB0DhaY5EzYMok0iHxLXoe7H38Ufa/8Ar59DxoC6IUMTzEXHMKejnMFte9xeMXsXHQeYa9chStNWv23kWmMubPjfOrn/wEJdf9WVocifzpv/oiUp8+ffq8ZfRFpD59+vR5i5H8bEIeaVDSEApJaEnOZW2OzV4BlVJaiomNQusEhGHt2+5mz733cf7sOCQGIQXS6jGsLBZkTjkzlDKFNIYuIXUFec2inTjc/9ATXGmHqKmrqLJPZlK6OkF6LlmeECtF5HrUT10lNinaN2RxjwouSa55/x//LieOnsSOJXqpxSd+57c5fOgYLLSpuTVmL10mKXkky+sk33sB4dXBtTl86iD12jDtw+eoyArRUMDoLduYszJazRaf+/AvcPnMVRZeO8jZC6dRhCS6C2jWbdlO5AVceu77oDN0npInPTIBJrAL/W1wmDW/8kFaAx7hmRlcPGITgqV4+OO/wOyZaSYPnOL0d36AUzYkaYptSWxhQ6aw8mtCgREIo5FxTpJnKN+HHJzFjOWZTxinlDdtZPczH+O1L/8XFmYXYfkKtjz2KE0Dxw8cgtk5SHOG/DKDyqJ1YY7FuTm2/YdnWCh1yYerlFauoHfmKhUvIChXkHWfxuJljrz4EnPHzuIu5cQXprlw4ii4GVXHIlxdgwBErcr266/n6sQkLCxhlQNK1TK5SInTCLssEYFDJ1cYYeF4NuWgRLQwD3aOv3kFv/jlP2T/oX2gEm7+/G/SEJKD33ueq6/t58RLr0Ci2PnAgyxmMXqpiS3AsS1sz6YhU7JAUt27k7TXKJQTWxRusIWUTWNryFNDnhiM47HlFz/Mjkqdy0eOkoZdbEdQsWx6SwuUYkPguMQqL9xVPcVSex5vbBivXmfzyErmxi9Trwxy8fAh5o4cJr40Ad2UWnmQq+OX2P/Sq5w+fAyWLWf7bXdSHl5Bq3GRcmoYKFWobd7C/Z95Bn/LVqYPnkS7Zapb1vP4l36TWAq6C0t4touT5GRJjEkVMkyop4a82UVio4VECYr+L2EwKMS1eUVhDN0SdD2D0oaBzBAkhlJWuC96LoQedFwLyyuR5RmHXn6BydPnGAlq+KmhFGW4YYqTQaokF2bO0zp8HBa7+PMNhDZUE0OA4ErZotK0cWOfhz7xNOFcROe1M1Q7OWlmM92YYfzyJTY/8igzF6eIdUxi9bCChMzJibyUxPTQ163E23kj121YS/PCBTRQdl0sS5CqQjiqlKp4mQVlj2bNRnQVS9OLnD51hvDVfVjTIUO4tJMWvVpO3YJksUFFSazMI2+nMDPHwJp1dPIeWS/kqd/7d/z45Bsk4SLcso3bnvk4Qzu3M7hxLQsXx2lFbZTRVLddz7t+59dI1o0x8eoB2m+e4eiLP2Tx3CnIQxgJyEfhPf/pTzj96huMiirDsWRI23zyN75AmuZcPXaUyqc+ysTkBYJt28iPHUNK6HQWIcvw0hQZJYhGB9owlFfIJttcPXERWh3INOSKWpxiK0gsG+dtdzAVGNJL56AZ4nUSNmqPAQNKKGKjSCXktgRHgm0xvGkDazasY3ZuGitwaHXbKMdGOxrWrMDfsJ75w0cZvetOtu64mStHj8Ha63jP//l7nDx8kOGb17PuzhtYuHwEFWuqKqeCYK7kwmiV0pbNiFwgejle4CM8i5icfS+/yML4KUbHVqGabWLHQ92yndrG9UyfHCeKYkrGBtdCWRYm69HuRYz/8EVIUpwkoywlUucMugF+2GOoUiMJLDLX5urSHMePHoYgwCx0WFYdIOy0cYIyVgJ+buHnEiicfLmjwMqLzTRhmHQkLZHQMykIm0Nf+x5DLUXVeKgkI3ct6LSptlLk2QnyXMGq1bAQofMctm/k7i88Q7sUIMYGOXH0CEE75LMf+gietJBCYslCRBJC9AWkPn369HmL6cfZ+vTp0+ctJqH4TOsagByMIg4j/GoVUa0iSxV0lIAu4lrS8tBoWD7A3qfew/zsDKe/9k2IM6omxA1KLIpeUeDc7TEsPHKjaZkMfEBYiGoVE/eg7ENuY8cSJ9V4pYBmax6CADvV1/okUoJc42SKTskl0ynDN+1EXFjAVjkzzQWoOJCmlG0fL+yhhKEjDDoAsLFkCa01Rmd4fgXCBOM4pDqGWgm6EVK66KjoEJJBgE4T7GurdbkF2A5b7n2AiYtXicbPQpZhCY0QCm0JEAJtCe745WcIo4SLX38eMzVHZGWFw0PY1IRPHIYM1QaY6c5SrQRkSY5veeRJWkSVhIWWFkII3EzSsjNKe24girpw7hIeFWQnRXgOUdmCSIIdFLGkdUNs/dB7OfP897lp2y0c/ad/hpIL3SY0FcgUccNKxIaVmIFR7tx9JzNvHOPCV/4ODAzGgzR2XMf9v/nLjKaSb//KlzCk9GSKStpgAcuGWfPJT1DRhpN/+VfFk/52RElWcFKwlUZKj/lBWLPjBj749M/zJ7//e3B1Cikd3DRDqQzLs9iycQNHpy4WDqaxOrRScAcgThh84hE2P/UI+5//IbdnPge+9lVYmkMKiYk1VslCeC57Hn6MngVvHDrA5l23cNPWG/nqn/41IhPUch96OZbj0qo4qGiRknEZcj0aqkm43ILmEkHoMtoTZMIjLHm0XRcai8W7o2rAd7DaEpUaGB6Cmzchtm/mkQ+8h+986ov4J2eo4zJbUsXXD9YRsaHUWMDOc7AdItcis4oltSC3SLWCskd1xQqaF5rIe7Zz/4eepHPhMvv/jz9jeaoYoseMSFkoCyxdR9kW1CTceTtPf/TjfPWP/ozGawepOA5kMd0HbuemRx9hlRZ89w/+BC8xeMZg20XJd6LyohdGugzaAb3mAvnyKjkpjpKMzieMMkDmSGZ2bubRT3+CZ//739M8fgopJLrbKrrLlALPxrJ9VDeGLAXXKdxKvoK7b4PpFkw3WVse43JrBhpFxLAora9CkkKpDCvXUBoZwT1zmubEJEFQptcJGRsaoddqAzmJk5G4unCgpQ5BJgsxQBaiWpBrLANKaHJLU9aKzIKO45ALF7DQUQYDA4UlrlKCJYuh3Tdz3V07OXL8ZajWqMWC5OWDiJlJbAyOWyJSFolrFXHHPAdXsPuPf5+uydBC0js/zsz+l3E7IZ0TV1h2+z3ccccdfOtbX8PqtVGdJkHcJrv9Nnbv2cP0uQtc/N4L2GEPz7KRRqOERAlJYjs8/Mu/xjLb5cXvfJer50+BUHieQ7y4yHLLxyjDHHDH53+BfZNH4fRpSmt2IJ/dTyXv0ANayxyG5hLK2FytlOCRh0BYPHHH3Rz8b19hbvwcucnR9TKkncI51wmxBoZYuXk99dFhjp8+Cd2ouAAaG64b5u2PPsLEm29y/gfPY5dL+Nql28mpfPLnuHnVCL2ZWQ6++iqcnkKmFr7tEw3YkGbgBAyGgnLaZdHV9Mox3LcXK9aoq7PI6Q56roXrOKQ0qQxXccIIqRVaanJL4vgeuqfwEomyJG3HImukrHnXO1n29ts58KPvMOAOoa9MEZ46hXIyqA9Do8eYCWj1WmjXI3V74FqQ2dRxobNEq2yBpSExDIsKSZbSdSUYGI4lFpI5J4bA4qH/67dpLDQ48OdfgdAUUcQ1I4WIPTcNyjBUrrJ4dQKT5QhL/sxt+lP6QlKfPn36vGX0RaQ+ffr0eYuJKT7a/m8RSSlUFKIsi6HVqwm1wcLBocKHv/A5/vbr/4o5M87KrTcxdegICKjsuZEnnnqCf/zcFwEQroPBFBanLANjqA3WkMJGt1sYYdHJUqjV2fzw/WzfdQs//O5zhAdPUO5mlKVDrFLaQY6tMqopuMYwX7LQUkAmoFfsqw+NLSOcmqfsB3TiiMym6BiRNmQpQoFve0W0I05AWEjHJReA5xarPFkKucbNDcaSZB5goNIrEkGhhKQsIRVwTVjCCKTKiyfMUhUxEmlIsYsb7ThnwLbJREqYK6gH1yInqugcsTRp2MOkGXW/jEozALQl0FIghIXq5ejhQYbv2M5D736Mr33lHwgPnGTALaGBkJzbnv4k19+6i7/9vT+BtIt/1y62bN3KlR/tZ2hslAuT5/n0l/+If/7wp1kaP89yFDmSBSpQqYCroTdD2dYMJtcxsdLCffRtpIeOw8Gz4EmIeohcYeoC8gGQJQgs/HpAmkTouSnwqlQGhulOzhZnVMWGWoWRTWtZOHcWGm1IoSQlCkUiNPVUYSxDbkEU5wy5Dq7yyW2HhXoZtlwHSw04PwkqpezbmKSHIw3C82mGEfhBcXMfBD8TOISEWoVN73yItTtu5I1Dh2ldvszNDz1A64ev0zh+mnK3y1Q4B5ah4lVAuHRNVrzwts9wM8KQEFdsojyBzAUluP+ZTzGzqs6Jb38bZ+Uarr91B0e++zwcPQvaZv3772PHfXcTvXGW/f/0z+SWImouQa2GI2zczOAaQZSn5BJ0EGC8AeS778Zeu4z09Fn4Xy9DVzEShyxUUwiAhsO7Pv1ZmquHePP0ceKz5+HUZZx2j7JtE/caxOtXw/ZtBLmit+8ARAlly8IVFrExaCERjoefSXQcE/iSrpMRDvrQWCqEErsKYQqOBb4LllWsVrVavO8jH6bsufz9X/wF2BKMBulQafeoIACPyu4bWH7nTl79n9/CwsPvJISqAa6PcD0eec97GF21mh+/vo/xV16BgSGIehC3sao+SpmiX6ybUI5zbJOjrYTEKepuUM7/7/VMS42wFKVMUsokPcsicmwGdu+gvno1F77+XLHod8dNbLrpJkZqNfb93VcY2LgeFUV0Dr5RXBP8ErRCBoI6TdOGLRt4/6c/w7986T+y9Za7Wep2mY9a0JyCuZli/cwuUdt5O8uWLWf8lZcgakK3zZALS2jwyhD3sJ0SXlrE9ECSSQohyfbAq4JtFx1pS9MgcxgZAMuBmQYEVSq1Kt3uFO77H+GJJ9/DG3/7r8z+0/cZwxChmBMpOweHuLy0RGPdeqrP/AKd85fh2e9Cp4vwLEwvgoEA0g6PP/Ux2tPzvPTd7wOqEEUsCbnBdn02/JuPcJ1b5Yd/8+cgNZ4QVNspHSQD736U0U3bOf5XfwkmLVxPictgbGG5Ho2Nw3zud3+HN1/6MS/9xd8xFEhCqUlGKux97BH2v/Bjkvml4nqeaXBdbrlnF4defhE77OE7QGAR2gYsj8HaEN3pNp7nkNsJVuSQr1lHvnqMnU88xNyP32D28HHM6VNQd7nts09TCxXP/el/pV6p0RE55Vs388Gf/xh/87l/D52UusnIhSYyEIzWidptcDxIUsrlQVSrENNiCWxazZ5PvJ99B17jnnc+zLHnf4Ja6PLA+pv4xn/7r1i+xpKKoaEhpq5OoLTCFtbPTtCfrqH2RaQ+ffr0ecvox9n69OnT5y1GUXyeLT7mFvZ+pQ1L3TZ//OX/B5OkGGmRRxlmtIYoO3QXFth92x0IY2i0lkg9w0Mfeh9vvPAKOoopWT55mhQRI0fgj40SzjaoCQ+VazzLxzE2iTKky+qM3XYDPRdaR48zEAvyLCSxHUBjYYpuXQzakrheQJ4LnFoV7Ut0biCKsaVHMDhAz5PUt23BqlTIFsOiSwSBMQaBwBio1GokUcjW22/DHx2hMzNdrAUpiW3bpK4AYXDS4rhkgqL3yPaKfh5NcaNprvX0/DSiICTKcsBxqFo2Ms/o5HnR1yM1rL0OVFZ8DwM6SbFcj6TXw7Ksa3Ptplg6QpLnCrdWpzlzlaPXunHoplQ8Hy0htQVzy+psvmMX54+cJF9qkk9OMnvsFPGFGRrnzoLOeGPxKuLUZfJuhzEcAjxyApA2KkshDSnZkjx3iW9Yz73veoirU5PoVgfiEBwPX9isf/w+KvXVhN0c3Vhgy66buGX3LibiLsPb17Ptzl1Myxxji8JdlKVEi7PF8co0MgdLSmKdg2NRGqgTJymWETi5YtgKsHKD0IJON4SZJWh0cUo1RKZwVBH5SzOFVw4Qtl0UfPslykoSGJu0lxVOF0uwVLW4qDokgcXqe/bg+xZr6zWi5hLRxasMWx55lqJ8n0gnEFhQ8iDqUc0EEmgJCoGqV9zwT87PMPPG69DooC9Oc8s99zC2fSP5imG6YRu9fJhqfZCzPzlEZ36eWORYQ0PY5RJZN8RC4Jufthopcq3AdZBjdQZrNaL5JRi/DFpjtCZ3cpBgWVUGly+nkYTMHD1SrMyFCY4UWChSlaKVhulZ8ulZyBUlLGxtcF0f4QcoyybODa7n0xYZYVYsw5XrdVIU/u6b0X6AiZJCiGt1CheJKvrNTp04zpEjR6EXF31o0oZM4+SGIcrw/7L3nmGWXfWZ72+tnfdJdSp3TupWzrFbOQckgUAJBEImGmxjgzy2uXgGfGfs4Xpsz/UYe8YeY4x9L2AzBAEiSKCAEii0Oqlz7q7qyqdO3HGtNR92CXPv/XA/3Ee+X87veeqpp7qqz3Nqn73XqfXu//u+CE5OnOLo/iPQ7mK0IOt2QKpi8sgYBoZHWGg02L3zDQbWruOB9z9CYtvMHXgD49kQdSFPoVRGxikSja0VkmL/nVkWRlJ8iCLvyQiBkQaz5M01lkAa8HJJZlmkluBtH3k/JxbnaaeGu+98B9OryqzbtI4Rz2ff954k3n+ItNcF04PT1xfPQUpklpB5CfXNF7Fy9XL2ffP76JPzdI8cI5+bhLRV5MIthV0nix0WGgtFVpRRoHICaaBeJxcS0hQLSRLF2LZd2BKFQFnmFy1jI+edxeqNq5k7dQR53iauedfdHJs+AaODoFPSuTkYGUI1mxw6eIj5H/4EOxV4S8qEwtCNekRAXh9AnXYa11x+Bce2bi2uZzJYPgppF4aqPPjQw8TdHm+88ipWtYIxBjcsI+KcEjbrLrqYrd9bEpg8G7o9KjkIHObyiJkT09DpYtkuxvPxYoOtUmzp4G9ajjtYYttrr0KjhUYRpTF0e0ydmIKZNiUchDLkRrH+wvPYcPqZ7N+1G5kZEJJIaaxyhaA2QGuhg8bHciRpukiuBFkvRjc72F7A8dd3oU6eJEgVtUqZ6z/0PlpTsxz42etIKcmSHhfedgOZ0Rx8bTue45OrDE8LKq5Hs9uBNcsIB4fI5tsEVkBXpeSOANeDZpuTR4/C8Qk23nAte576MedcfDFBI2Jm9wGMzFEoSqUSj37yUxhjkOKXJpCgLyL16dOnz1tMfxKpT58+fd5icpZEpDcnkYQhR7Dn+BFuffe7aSrF6eeey+s/fAJmO4AFFpRWjzN29ukcPrQfZuaLaYUoLkabOpp6pYqshoi1g8zt3I6X2lQTmCVlfHgZjdlZrKCKufJ0omEDW1+GzKN+ZJHx6gh7dEKtl2FkTtfVEDh4bYVOFbFlFRXorkelWufOO+/mq3/7d4WYU6szdvllXHDZJUy3O2z76y9gtTuFPcx1yRGkUYIYqFBZPs4d99zD61tfZd+Pn8bHRSlFJvJis5SyZJMBHFE0H0U5aIUUkpJTZDhpWWwAtRRFlXqaUV06rnHFI1YJAzdezeiZ53DxZZv56mf/PbQTmJrGrtTIFxbwHJBGI6RGCDDCRoqAbm4wnk1QKhEttgiFTS+OiidWcmHLORBFlO0R3n7NTXzn+9+nffA41a4hGypx/jtvJllXZ9sffAGTdCGPkONj3PiBX2W+E7H1Rz9CHj5ILeoS+WXiuse5b7uNqYlJrIEyy8fGOfijF+juPoq66Vwuv/Q6Thw4yuRTTxSByhvX4w7WSF9+CdathcEx+PkrRSAtAqII1ynjaIGTwqLOiyklV8BIFaab0OwwiovJIhJbkBlJ6JTwYoNCMoMi8GwcnaNVitIZXq1CiqabpSBthpSDk2ikzumUq7QCcO6+irPfdhOzJ6aY2roP9dQPQefQS1hm1TFzM4SlIQ47ETf8u99h39bdTDz1FMzOMJS5CFzmxoYgTaDRo+aHtPImZrwGpzrglfCCMolZhBVV+PC74LVJ+PleaPZAd7FWDXPVNVfR67R57Qc/xO7GVOMM33VAQqQzROaQ+i6ZvRRIH6dIrfFVhqtTtDAIP6CZxkVzWppDopHGws5itEnRnsEOh8myHNPpUZUSkyvKlRqnWm2s0VFkWCbrtuCs5VAPeei+B/jZ5/+ak3sOMrhxNfUbL2f3Pz0OCxn2YIVb7rodk2fs27ubw/v3QRyDtLAkqG6EZSwGKoPMdztgCcTICCYzsNjCWj7OprNP5+H3PsgXPvdZJg4dojQ6Rnduvlh4hKS8Zg2W69CcmQEiqLiMbtrEfe97iC/+2V8Q7z2Gn2nKWQpCkUlJ1/Z+sXZJ8y+bcy2KEUFbgydyEgtiTxbrErKYrqrVYN2qwvq5cAJOLUAuoJ0TVOpEJmPtFRdy8TVb+MZ/+k+gwY0S0ppVTLiZ4mmGSXFtdyVQoWhTG1sG8y2wS1Ct8cB7HuDrf/PfoNMiVCmdHNzQQQiLPM9xHIcsz//l+UuNkTZi05m87R138fqubUw880O8228myRIYGWHlVVdT7mlWH5zhiT/5y0JzylOcsk8WdSDLEa5PyVjYVkTXFmTSo/7wB2j80zdBZ9BtcMvHPoA7Osz3nv0JTE8X1+DsItgBwhhMFOF6IVY3wgN6eKiyh9tp4ZARWpIZNJaQiNzCHltBPreA0IrEhWomqGlJh4TGgAJfg3BheqkYQQjKtSFoRgwYD601XUciNywnXDFKZ7ZLc9c+SpaFI6CluuhqAJbk/KuuhwS2P/0EtaBFS3qYroWfeyhtkdkJ+A7lXk4pU0yfNQALHdwupK0O4fgwve4cjI3A5DyeX0ELgzvfZNAqc0J1+e1vf4kv/9XfMvvTV3G1S1p3YdMqLr79Vqa+8zytV/cQ5RG5q2FVvWg1jDU0Otihh4pjVq5cybHDR9BGY/2yja0/idSnT58+bzl9EalPnz593mLebGcTBhAahaaH5Kc7X+PtH/wAKss586oryRotDj72JG6ng0AjaxWirFvUePcyWLGCi97zEKYT8/o/f7OwL2nFuz78Pr7xhb8sbDGZgrEq9z/yEV780TOc3PoGDJS4/aMPsvfAHo58+1tU3ZBWswOVAQYXM5TMaYYaTEYp8SDLOO2KKzlupSS7DtOLWqy5706O7T0AJ2a58db7+Mmzz4HqMfZbH6T9pS/C0ROkaYplWWQGtCyEsOJve7M0jmVRP3M9UbNNfrCYTMqrSz+TQKkDPXIM4EkLS0gsBJlW5LbBSIGyLKSJ0LFmSFqFIOXZpJWA0UsuQVcGOXXoKMQ5j/7mb/Cnf/A5mF8EleJYGoHCFmZJRII8t0E71MIKlmWxuLhIbDTv/8SvI0KPv//Cnxe2I2lBarPs3LM41VuEiUnczCPttIqsobVDsG0PaIU9UCYPSzC+inDNBnrbd8GJ4wygWew0cUYHyRrtQpAbL4EXUMorcOgU3Y11OH0dTEzB/Bwrr7yGxqkpuq/uQipBkEM50whgKmiDgVJQwSxGlJyANM0ZPutMNj9yP4eb82QblhOcWmDH40+id+6nFS/AkFNYabqasbxElGlavgW5KiY7pI0tl2q8pUBog7IEicoppxZrZJWJvEPkuCRlYHgUcpvKkSYDQcQJr1tYbloJ68IxFk1Ow+nAyBDMGGg1wGlTTRxauc0ZD9zPaZdcyutf+ToTO3dSLis6WROETzkq0wkFvOc6LrjjFg798Oe0//EHWJtO5+Z3v5Oje3YQpx2Obt8K5HByklJQwZtrENoSLOjlMYHlITsazw5JAp8Tea84P42iGuWEOmcOTVgP6TRjXNcnjzNcxyYjRVsGZWsqykXmgFYkSiEcF+U4DJ9xJje992EW05Tv/P0XCe66ChlnLJvtcPCfHseSErtWIglcEA4kBlun5M1FcGzIU4aGhoijLjrLSbMY3/Xwuik5ktaKQTb/b59B1Cu8+LVv8eDN9/CNL/wN2dw8zJ5CGoPAQkU9sG1s3/CqjX8AACAASURBVCePY7At0IX4U7UcWllUHKeKB7mGTOLm4GiNERqMxFb/Yg0SvyQimSURyTJgSUNsQ8enOJeMgE4CpRDqZZCG6tEGvoTINrQdAXEOqaZm+XRUiikFaKOxkwxHKQSGxNKosimUKltAq1g7bnn4QZZtOJ0v//UXoR1TX7eeDePjvPqD72E5EhHnDIU2i70cLMiDAGUt2QGNBpNjGYWXSwaSMovEhfjluyjLJUkSkC6sW83qa68i2nuA2aefZwSNICMdrrKo57n+dz/JquFl/MNvfbaYMtJw5t33cOlNd/EPv/t7kPWwShKW1Tn3umvwVizn53/6BSy7hEwVeS/GWKZYq5UiNA4yVQS4NImxsx42hT7ccQHfwW8YbLtETyu0LcADP9EMpJCTMjdI0eSZwDJt0/ZCIpWhhMGr1UmmFvDLZaTr0TMZ+B4sthmpDOO0WwgMytFMRU2oVrj+rnfw06efR/Ra+J0ZekNl7BlFKQGLgLkhoOLCQou6LNNwE1jsUvOqpN2IDE3uCrAEvhMQCpuFRoOSH9KLe5hKCXxRTM7lAsIK9spxrrnjNp56+ik4sUA428bVmtSkqKpNahlM3i3KFbAwnZg1a9Zw5OAhDAZpfkkx6otIffr06fOW07ez9enTp89bjPjlz8KgMUxHLfYePsI3v/oVGFvB3NYd6MWEeO4USmiUUawrD+FkNmmzx6prttAMXOzqIPuOHeHqe+/i+J5d0G2zZ8cb0IuLjWG9DN15rLPPYmjFOIvNDumpOQ4+9wrxyRnypIcYqbD8vDNpnpqBOENYgtQTUPIpGweRC7zxEa7/yEPEdZ/Z7bvJtp8km+2A7XLZpz7AG/EsZDHdx18gm5vCyrPCUiDAWBLb89Aqg3qtmDIpVZA53PGr7+eaG25g2/eeZNiv0hkvQdmFWFGOUgQWWPIXjVhoSMnxymX8cpmk08FIhQxtVKwYCnzacYrtOCwcn6BzYhbm2zDXxB8dZP3aNcwuNEjjHpbJERjkkjuOwtmCIxxEqtBxghGCVApG1q1l3Zmn03JsZo9MwWLKYFBh9tTRojGq7KK6cWFJ8myYnyysMrZLNVKETc2ywXXM7zuJmZwCF+JuC9cR6CQj0LLY9FtFplU21aKkJNk5G9nw9uu4+IG3c/i1F1lxzZXccPttzLXbtA4ewjgOMksIPJueTBBCFnXbxkYogysd2ionr4f0TM62l37G3OEJohNTyIUmmZ0V4VxFlz0qzoklmFDAynEuvO5axtet4dTEFDqKcKSNpySOaxO7Emk7kCqM4yMqAcnwYDEdEmmGYoGVN8l9gRKCkuVjdRSNXpfTH3wH3bBEvuMgA9UyMW0c6ZHmMOdKSqtXsv/x7+OUQ+L2DCvffg1XfPIjjOqA2R37yFpNpg4dIZ2aglYPg8FN4Pixg4ytHKc2PsbCyeOQ5pRcH9HrYbTC8RxM6NLyDcJ2ySxBy7NJ6UHJBkeTOBZJnGIFgMqwM4GlCjtcrjWZUBhR3G+zc4NUhZgiLEhsQY6hF4Y0pGDn4cPknovVS4he3Ye7bxLynMQkUAmpr1nDhz/3GWrnn86Bnz6PJySOkNiWRZalpFGEXhJUtMoY0WViUhJPcjJucmJmGhSsGlnJvu8+Do0GqLywxGIQngdZUgTISwFLVlUBeL2IkvQRlkMmDaQaS9hgDEmWk9kWhAEKgXIsYqOJVY52bLRjY5UDWlEXf6hOO4txsAh7GktJbCcgHwgh7TK84XSyTspgJyXPEtI8R9kWQtqYTFGrVukmMdJxMEqjnYBKeYAoyVCGIkdNmsKiaQAhaeU507PzNA4cAqWJT00xefwYwpLYxuBYmizWDAyUiLOczHWLiTitizwvWxY5X7lBKwWWRW4UUkqs2KAzhdEOZ99yOwd/+Di92QlwHUTUw7cD5qIFWDfK8rPO4Oi+Q8y8uofQFmS5Zm6xw8TRCXpTU8WdgqSN1hlTE6eYmJyGiQVMo4NIi6koE/oQd1lx3jksnJpEhgEtHVFKDX7o0cgz0rpXZLuhyQdryFaXzHYgkDA+yMqhEQJsWr0GiStBagJhMRhDM03JcgUlh7FLziUJXBKVkltWYZ3McpCCUGhUa5Esa1OrlIgsBZbh8PZt+OUS6fQUZd+hZwwkElvl5Lik4wGkLVbfeQfTO94o8raUoeb4qCSi5Pi8eX/aTopz08ehaxuMbxc3DTIBA/Vicmt8BM9YHHjyOWgk0FogGy4RE0O1hK0UebtLuVIlbTVBQzksIYTg0Uc/hUD8P/WivojUp0+fPm8pfRGpT58+ff4VKASkYvOpEQgn5Ls/+THPvbG3+O7ULHFmIEuRlsWQH5I3GmQ5KMdhXinOvulmDv70RZiaILziAi6+egtrzjiDIz98trh7HWhWXXUxZz3wTl770t9xcuIkW26+lVOv7GF17qGac1RHx2n2ZjnzjtsYHl/L9KFjRElUbLiQJMogg4Cp6Ul2bN9O89Bx1GKLrB6CSgDF9NFJ3NQwsmolZ912Aydfeh57aWNtJCgpqA8Ps/GSi5g+sLfYFMYRxkj2TBxhZr5BcKJNN0kYf/BWbv+tj7Prpy+zalHS0TFKKoQwRXaUBLsUEkVdkjiBoQHII4xRBNUyvVaPelii1+kiLA/dzYsAWWU4enAHR3bvJl1YQAK2UVgGhDBLrwdYtoOtDE4OQkoy3yar+Bw+sI+XnnqG2aMnWdnIGTM5VpzSdHPYtIoHPvdpythMbNsF0nDDR3+FTuDQW1wgbXXIhcucsDGtRRgepLppDXKgjDs1izQGPwdXQSTlUq6LwM0FiQ0Lz73C9FMvk83GzP3weXb86AV6x6YIM0lFG2oGkrxNJi0kAi3k0p14g9GwGLWYOrKP2Z3b4OA82bFZ/MWIUSxslZEog8kEYikYObEsLv/0r9GxBF0DqzZuZHJyGrXYxGgoa4HMc3omJ5fQsTKqm8/n1g89xKROGDj7dDqeoNOdp2m6ZCrHySVDHZsB7VL3q+w9fpjLr7yMEzu2Emdd0ApHhmjPxpQdmlbO8tER8jgiVQmt4wc59PKrHDu+mywowcQCotHjgbvvpTaf0d1zhOPTe8miDjO7d6OBy6/YzLG9+/CROBqk75IIQYsc4wUI4aA8nzQMGLv0Yq67910saE3vwEGCcomMFNWDsrSwsekZTR66xVSVlJBrHFNYCHPLkFmC3C7Csa+8+27OvfJKDhw7hqhWSSYnYf9JRuZ7tEyPvGRhbEmpp3n6a1/j0MvPgxL4uUJikBgso9F5hsAgRCGiap3i2h693MDBWSpUefQ9H+NLj/5eYX3TOagEb3gU23XI222CgQFUmiIA22hsivN+nDJx3kHlGaETkMcRoRMgLZsMA8NVdL2MGvBRgcQMliCQXPdrH+RA4xSlszcQtWaJdYZj+zieTzeKkbaHVy4Ro/j4Z36fHS/9nO7hY7QvWoZ/xkZas4tsoEqr20OM1emM2Jxx7+3M7thRTPiVB7j6dz7OJY/cx64TR+FUh5GWZCCycVObVNp0pmdpTM9AlGDZPkYpLKOwTSG0GCFwc0OSKZTroYxEbjiNez/6cbyhIaZ27qIShHTijGTtKKnVQa0ZJEtbZEMDmDTmV/7jH3LYydC3bKZ899WUN61icfcOOnm3yFsTmhNPvsDMy/tYK0fJowauBWlH0TsxTckWBDrFzTPSOIN2BFNNqpkkVBJbG4xlIeolbn7gPgZXjnNk2+vkrgODAUmu0NImFwZUzvLNl3HODddxcts2Ah2QVlxWXXEB9/zKe3n2n7/OYruLQRQ56G5AqGxGUhspPaxSQFyxOfPumzm+d1fx3tPs4A+O4LoBxs7JoxZDnkPN91hsLRKZnCzJcEdqJK0WWBaJXcIbHCVbaCPCKrWz17P2rhu46N33UR6sceynL1I2NiXPp9tepGL7kOV4yuArgzTFR6Ch44uiRcFApQdpuw3DVd7+qx9k1w+eQS528aIe+WgVVg5w67vvo334BO58B99IFrtNbn7/ezhr4ybe2LaD0dFRPvEbv9EXkfr06dPn/wf6drY+ffr0eYt5c7r+zdoxheTf/NEf8uruPRzrRZyx+UqeeOybcOHZ3D+yju989nPUhcecjMlCAdUqDI5z+nW3sW/vG7BzO6vuuZv2/gMs7t6L3YlxrZyeboOtkSvWo2MNUQrzXaiNwPxCYWNIOzA2CPOzUK4UIbvG4GmQ2hAJVWyahQQ3RLS7CGnQroBUFw1GrQi3FJJmPdiwEo5P4hfFZ2gJmZQYbfjVz/4v/O0/f436snG2XHM1j/3xn4EIsWNN3u1BCai7MDICszH2yRmw86XjVNholJAYBNboMEopNl5yIVdcdyXPPf0UR59+gSDJcSxBO82xqxWyFAInQGWaVDfBsnCkRd7tEthu8SSlwbyZsaQVTg5WbqEsi05oQ70K7S5IH09UKM3N4ZMR2AGHnC54OQzW4FiTihOS+Tb5+hGGqgNMHz0IzTlYvY6zP/RrvPHqVi669ibKx4/hNBps/Yv/TiPMsZQkzIrf76pP/gpSWDz7xa+TWqBbHWwjMKUS3sgwvTTDzEwUhyRPwLewlcHrSXKpSezi17IVlI3Atm3m8h7YBs8aASRap2TdRYaCABnFCCPJhU1iWXRdYNAvjnkvLZRA2wfLIhQCNT3FWFCineQseuBuOZvEAvbsA+MjTj8bk/S49pMfY+eXvsTi068R5halzGUm72FYevzuAlTsYoSnkTKoPYQrmQ8zCGzIQ1joYI2N8s7f/wSpD4995j/AQoyIMkqOhy0Ei14KAyVW9hw6vYQktEklKF1MWTjCJkDgVEs00y7GEtQSh64xaMcht1zM/HxxYUpDyXPIkjZpnuHbYKcWqTb4K1fR9gVmZgaSjAErII9ztAAjc3KpySyJLJXQQQjVoULYERrsGDoZ7kJMToJ2JBgDrYzBkRXEAnSnif2LP8EKO1mSRMWXS4KzY0MWQUUGOP4Ii0qTypzxay9h6rWXodHAs2wSAVSqvOMdb+dH3/suUbOFQGOZHMtohJEkxqE8OIBB05meYtXQGO1WREdr8pLD2b/6AVasX83T3/0uV155JQcOHKCxsIAxho0bNyKtImto1xe/DLEDZGz52COQ57z+3EtYEw06iw0IBYwPsf7TH+Xwt56BV/ZQm2zTDARUDKs+8QC9E6eY/+oTgAulEu71FzC0fhVzbxwk+8ErrI81LpoWMOtCthSgLYGS45AlEY5jkUnQApSEMSfkVLONCUtQHYD1pxUtbFMTMDOJ3W4RegEtEXLzh+/nyhuu4XMPvR86gqGBMeabHYI7ryeqAtWA8y44jx1//gU4fhLXc0gXEspugGd88kSjaaIAJQNyy0eKCHSM74Bl+ygcMu2Rxx1cJChN5IC7Yhjpu0SnJhHSx9WCpKS59bd/k4mvP8uRl7eTl1zu+NPfYWpikpf+w3+lPjBII22BULByBA5PgXKQloMuKajXoZWwfC5jUTXQvk/saBgoF42VccKydZt42z33sHXHDrb+4NvIwSGcqTkCDbYjsJcNEQloLjSL/1Mb5KFPfZqnv/YNJnftBJ1w9nvu4o0nn4CgBMdOgFbFmgGUKxWSVoeKFyLTHA0kdpF352hNzwFlAUZSSiUm8IkcibElzLWoDNZptxfBgouuvJoVgyP89HtP0uq0ikKElXXe+4mPse37T7Lr2RdYu349B/fvRwqJ+OWdTN/O1qdPnz5vOf1JpD59+vT5V0BAsYkEhBBEmWH33gPERvLSMy+AMWy44xaef/yb5HGbjuphLKfYHa1ex4P/+Y959tUXKHsl0kzQ+u5PyQ4fZ8yv0EobZGmbkrSopJKRjsGbbGK3ujjeAMGWc7Duuoos1GzacjXzz2wjzH0y3eX8976LpN0mPjmDl2ekvgUDIRc8+ABTL70GjsHWOWEvJ8gVbpJgewYjEkLfhdlZPAVmSfQxApQQuJUKP//xE+jWImJ8DHukxmy9zMArhxjKclojVZZ/+J105yLMG8coyYDEz9Amw6AQgBYCIwWEAbUV48RJzMLkBJHlcvLoBGpmHtf1ixylQKBdA2UXZ2yApDWPLcFWChtDxQkwefG4RtgYaYOQGK0oOR6OH5C5gtQxbP7wI9RP28TM1DzhQkqzmtEOoRdF2JaNdnyYaXGaqJGkbbpxgs67dI9OInsZwx3QUz1ObT0Bu44zO9/myNZXOPLyz/C6GUnVwtiQIghTmK5AO4S5ieOYmXmCSgkR2KSdNs7ICNfdejPh+DJmGrPgONBqYWUKR/vk0kLZEiyNlpAnCa7KcI0hFIKOSln1rhu56eMP0VpVYmrPDlA2Ukti26ZXsotMm/kEcofr3nE/my65nEN790OzQZZn4ApCIxnNXBZFTrZxnIuuvpra2GoWfnaIwVMRyXyXoz97kej4JPZsF087zA+HBA/fzNBdm+m+sZOgHWN1UnxlcBihphKsvEc7zSBN8aKcshUStXJ27z/Oif/xJFlzAaRmhV/CxC26vkYNWpD0GGnHhKnGs23yqEva6zG2bBlZkqGFJHYkWaeN8VzOvu1Wxm7cwtxIleWbL2LzbbcR+y6tY0fI3AwVGsKRGtF8hO36JMKCsSEuvPVGJienoBMTRhJhBFBMfgkMUsOAX6bXWApObnUJywPoiQVMEqN8KKc5fiUgSdqEb9/CaVddSjfukU7PYxldWOUEGGHIVQ5CLwlVSzqXA4VkkaFKGvGb92JfvJb4uWchVwzHGd1SmfHT1tOLupzau6eokBcaaYpJJwtDtqxMWnVwNq4iDH1mj54ApZCuz8UP3s9iJeS1519E/3wfR3/4LO1Dk2S7j0Ar49RTL0Erw23EzM0vwMoqrFnJiW07ObF9O/nsDKmV4py7CW00zMzR+M5rMJPDQpdkpAYbl/Pgpz/Fa4//mPa3nmFNZOMnPbpZh+piB737EJ1du8HKaDiKOVfTtor8r7Ib4hmJnxssleBRNPvppTimTAqidkxt2UpiLCiVWbHlSkr1QTpzDehGeFGCm0v8zOfA0SM89d3HoRcRGI+018MZHiJSS41vrxwj2XaYeN9BSHO8WOECXZUTuRZJvUymulgGtG1D6JFbMSakaINLckyco1JBVjJktsStltF2cU7mBog1XquHl6Qkwz6NyHDsmVfx/DLKdXnj2Rc4efg49DqYZo5IImwvQPV6kCosN0RWK9z0md+mWavQO3yMdi/FKtnkRqN7GcsoU2tqnHaOyhUv7NvOqeMHCa67gXPOv4zJY1NEWqCcgKaGZK7JOx/9PfacmIHqADtPzdB+cRfLrriMjXffzI4nvgNtTTAbM5hYpAhWnbWOoTXLmZ48gayV6aUxQoCShq5ryF1D6ioqsaGaGDxlaPnFO4a12GQlIU1LkWY9vChh2A85uH8f+4/uJ6kZuPgM6DahYdj/g2eZOnaCgeE6AL/9qUcLG+f/XTHqi0h9+vTp85Yi/99/pE+fPn36/H/hzWgPljKDAG6/4Vpuve4adv34STiwFxbmyQ4eg+PHi5XZlpgoAW3DoaPsePFn0Fmk87OX4OQkjuMQ2A7TcxNgNGWvRNbN6SY5M80WAgeJxM4NzaMnOGvlShgd5eYbbsD3vMIupgxl3+OSLVcwtGY5rh1AkkOzy4UbT4eBCmhFhsRIh0w4tJEwNkSiDJkEOwGQaFls6DQSy0Da7IAbgLDo7t3D6z/+CWrffoa9oeIAqBzVi7j7mhuwvTLL166lSN+2MdgoKYs6cS3xKmUe+vhHeduHPwBxjwNPP0t67CTC91Fvti8pA0FI9cxNrN98KauuvwpCG5XmyDjD1wIlIZOQWkV0iaMkDi7KL9Gr+kRlDyzJz594mvnjU6w/40zCczZAGgMa1w+w4hy3nbF8cIxG3kYIh1q9BnEEnofJi0r5ugyR84sI2yXfuhUmJqDTQQtTBP1KwIbcgvnnfs7Rr30Leh1wIIk7xPNzUArpHZvgua8/RnJytmjoixOwHBy/QiaXetiVKM4TIWG4Tjv06RpBNzEwOMTRV7bx8k+eZ+H4FAQlek4hIOW/dD662hSTa62YK866kHXnXwiVMrgS7bksdJtk5ASeh9m+na1f+Cv2fu3rbFq+mk5zns3nX8CN734f9NqUSj5uyQEds27NKi694CIuv/MudJYzJCVWkhOonBxIcfBKHiJ0EMLQS7tQCeD4MUSSIWo10DkqT8kxZKFTXExuwJwlsEohWZJS9gJGl40zNzuLZzvceeedfPQjH+OiG2+BTLH31AkmWvPER/YzOT1BWAkRFiA0Wz74CFd/8EMsW7MRNNhSFi1YM9O88pWvwOwsKEXJtygmhopjZmlwNCSdNpaBsFbHqVT5yEPv5763vYPlq9ZBlJCFAa00gnqZ2+65m4WFeeYP7keLYmovsSSxDZFdTGooKX/x+EJDllDkFdXLUA8wjqBeKkGpCnGOiwGtmdrzBrtfehHbDX7xutpaEmYCSwMm5ZHPfpqPfeLjNBuzDA4NUQtrhNJh17MvcOTJp+HlbVi9qBiBSmMQgnx+DsohUwf2svfln0Ovy9se/QQ33XFnUT1pWVB1OePXH+H+X/sQpcFBSDUrzr+YS7ZsgaE6dJowPcHX/ux/J9m2C6klghSJAeHQnpije3IG0U1A6SL03AIsiREQdVqotEuPHBuHqlVGGovEssBYuEoyMDhE49Q0tLqcf921XHP9lWiT8MAD91JzPHIMtusiTEzWWIR2G0bqDF5yNle9+x6izjyf+KP/CHhwcpr44FGwbMqVWhFPNFSBegl57mkMXnUFRppCNM9j8riFMAZXFWtLoC1KwsXxPbACcD26AwF56EBuCHINvR7Dg0Okvst1/+73WDh8jOH6IJ3uIngCOl04dgwcG9sYavUx0m7Cez71KM76taikRz7fYG77XuaeeQ6SHnf87q8TS0OexAwFAUmrgclTPMciznKYmoNyhY3nnMfYqlX41TJO4JPmObbjMH7BhSwbXwnSZcttd8DccRgf5IKzz+DSC8+DNGFQOnjtDhUclOWw/pJLOPOSywFJxS5hkqJKIrOWbKCyGBeztcAyomjitEFZgkpQwSQJ9GJC22W4UqHR7eKHtaKRb8N6yus3gBFYqViy7xZTmpkoTvIsSf+vb7iSvoDUp0+fPm8xfTtbnz59+rzFKIp9r176WlLcXf/Ot7/BIw+9D0tK2p0I4/koKZFiya6US7S0SIRg7XWXcnD/bjb9ysc4/syLxC88A6M2LC7idGAVDodxYcM4m26+nv3/8D8ggeVOlVbcQAzXaZsEdAxhCK0OdePQyNowWIIoZsXACtKjx1gzuJrd0Rw9O4LBUYZXn8bc6zthdITND9zLazteI33uWXBcSvNNYttF+W4xaSUE5cxgkhRJRmY7xIFALl/G4MWbiR97FrodOlYEVY+V/gjNZpfBG7ZwLJpn84qz+NmrL2JOHgLbZqAjWMx7BFddhFOp0HphJzLq4miFZTSW0aRSkigNocdpjzzMwcOHWXnu6Zz8py9Tmugxjk83azMtwJTsovFoMaWSOwws28gBelz78fuwbclz//BPBIebNI0E11D71CM0v/MDmJ5HnOpwdm2cJIk4HE+jRkrQaWF7IabbQ5UdwMKq1RlftY6JN94oBKM8x85TbA06yShVyjRkVogC8y0qbZvAsZlRbdwQ0h5IT6K1ZpAadpLSQdKrWODb3P35z/OTL3+V7hvbGNAOTiNhTuSYkkNw+2Yuu/panv2Tv4VGDFGLsdEVbFi5kkOHDjKrI3TUBMcFZBE6nKcQejgdietU8IeGyNcMMbhhOUcP7MW8voNQCXxb03MEsW+DsUELSiqkGyWIleOMX30Rp372A5icgxyqbp1cumDb9BYWQGmqKCrCxQoEE3aAst0iH0n3sPOYWGjM6HI23/8AO19/kc4r26m1i9a4zJX0fMmKW2/l/AsuZd9re5h48gcEqvBSKlHYA3NlyAV4pTJZliFqFVZfexmbL7mYfa9v5dXvPQmNHqVKjXa3BWvHiwtzJoaFeWpEaAORa5FXqsXF22tTjXMyxyUXNo7OcZVGoCmVq8x0uqSOX9in/GCprj7HOnMt93/ovXz1v34BGi1CO4BT8+heQhKWsQcHuf7Omzjj3LP5L3/y+cJ2qjR0M/w3tUbHpSUMjA7B+AgbLruc1r5DzD7zPI7SjGIzR0biguMEjCuXE3YMFtTaUNfQkNCug3Zl0eTVTXHdGm5X4UibRhKBZ0HgwWIDamXYuJ7zr9pCWK/y0t/8tyK8v5dSHh2is/F0mI+h2WHwlotZfel5zLcWmHr8BbIXX0eMjLD8Yw+TTi1wVlBl23//R7oLE+hAoj0DyiLsufRsC87cwDWXXM7CoSPsevopLHKUVYTn+CvXEk9MMmQBScx8xWEgLrGmPs7hxjTtIUmlleH1erQGS7gLERY57WqAXleGPGOZGqDWiNnbOAHS47S4xOywT3sgQFywngtvvJrXX34N9d2nGBleT3fvfsaBk0SkNbfwy8Uaqi7BI/eyfHAZh/+PH2GObityfzLoVaHULCJ/Ys9nPLHokTI9OASxz9nveRtr7tnC9z/5b6gfb6PiDlalRCPqwPkrWX7X3Uz+8ZcY7Gl8y2ayFBWh4L3i9UulR3dsFEo+5957Jzv/7ktg+5yZeEzPT7JQL8O56zn/gTvZ/tt/CEIwIMAPLHpIWp2IscuvYeX1t3JgboHW9tdYNljl1KsvQXORqueSaolyA7KgTuWM83BLivkXv4GctnFro8SuAiJGp1u4QIMK3Q3LGThjPYs7d0KqGWhpSkbQybs0S6Y4n9KcaiPHMobUorDP2hqEha011VxC1MVgaAAMhFTt5TjCx7tzM5PbtsPkLOuocqR1hMHrN7Nw+BAyioiPHMeBJeFRYoQkAYqVuE+fPn36vFX0RaQ+ffr0eYt5U0R6kzfzkV579RVuvvEmVJ6TRjGuFOSuMixPUgAAIABJREFUR5Ir0ALP8rEqVXqtRc57/4McSNtkThVvtsnpZZutj38NqiHMdhiOXRZGhtCBYfXD9zN4ssW2b/2IUrONHB7E2rKRK++4mce//H/i7TtFstiCcnmpqccqNogGRgaHmV2Yg1pYVGy3Iy58333M1n2SOGP2wFHWLGoar+8AnRDLmCCo0Ox0wbXBlqANrhAEwqbZbiE8B2MU2CGlnsYmpekY3OEqlUVN4AWc7LZgzMPaspk1m8/j8N9/GSZm8OcM45SYJ0cAm6ixVzbpeApXaTylsbTEK5WZyTXGsopNfBqBai4pdwLPSOxMI6UES5JZoEplMrcKSQSOgLhb1H4vtvErQ/hewGIr4qY/+QT11eN8/Q/+M2w/CI7LOx68n29/95s4WpLNL+IJQVCzEbZPo93hvR/9Nb7yla9AnmE6HfwswUUiUaysLGdn2IZrL+bOD36A73/ss+jZBviK+myHhu9TqDAVznn7HWw65xy++Vd/B4dmisr2S06DlRV47BlIBSPuALNphDVeR3kKkgQaCsupoHQMQxncdi1r167m6Bcfg1MNMCmMVrnh/gc595yz+PN//zlYiKGpiommsSFqq5cRNRbIDx1nMFXYtiSxoO1JhJG4ucSLwQlLtKWip7qQd6g7PkJIeqkkdpfERV9CtwOuC0kbyhKGToNWhn+qyRiLhNi00ZwMXUbuup1VYzW2fuMxBmZ62FlKikbXh+g6HuVSHdVRONEMUmRFl99SHlfc7iBqNdwgJMnSQsgrO9DuYWnJ6tTG7aT0TMYJNFs+8wkOORnTz78I+w5hTy9QThXD7iDztk8vlGgTky3OYdk+0khsk2PrIvw6VRp/aJhmJypyxzLDOD4N35AMCEbOPYuFF3cgG13q0qNZkiRSgeUvXX8UWTcArSYYTVitopKUsghYbHdQngujgwxdeC5bbrmBxx//FvrllwqhQQm8lkBbNpWhOt2oRyLyYqHRSwuQBK+TMDa+nJ7KmOssFBNE/lJweMVi0wffwxUbzuS5R/+EI5MT/zJF4jjF+ZgmlIWho3O45zYuOf9yVtoh3/78H8LAIEy2GI4lneUlYjsCYbHp7nvJ5xY4/J3v4WYpmAyExmCjkSjPovzOW9hiD3H4uZc5vm8vaWgglEXuTkuz4qwLmZ0+TnrqJJgQVo+z/PyzCLspEz/+KZmlUTrGWIaB1CbAohs6tGpArvBTn3h+EYZ9MIIgDYmzGNt3yTrtYtxLCnAdSGOcsEzebOP7PlHcAyR3P/wwcejyxD/8I+QCP/GwzCIIRRrYZKEN3aw41kFQrPK2gPFhVl51B6UsZd9TT0Ic4y408IRApQrf9kmEpotkKBzCX5wGUnoo8kqI7XosLjRxhUvyts2MXXYR03/3PYaPTKFIaY2GKNEBYUOkIPOg7IOKIGuzMqizOD3P8GkbWPHgPeyfaaMWYxae+gnkCcJWSJ2h4i4YjVi3nod//3N8+Y8+D3EbtzHBYHeAeWGRiQTsLpVcUnFDJuO0eA9pZHDmMLf85R/wxP/6F/DKDqhUYFmZSzdfy85v/5i4UWSQ2QpKKbgaYhJSdJGvVnKRSjLWczhVlZAL2LCWW//Lv+VHv/9vcUZXk337WW5+7wOsvvwCHnvsMaIjR2juP4RIE6RlgeyLSH369Onzr0U/E6lPnz593mJ+OedT/NK/9aKYv/nbL5LkOVrlBAi0BbnWIG1szyMWAioh07OTrLv2KprNHvGOnbzzgXt59ehemJqClP/J3nv+2VUe9r7fZ/W121SNRh0JgUAIEAgjOpjejAFDwBic4ooLTmzHjh3H+cRJTnJ8bm5ucuIbnyTOyUkhTmznJnbibsB0EAIJtVEZlemjKbuv+pT7YsnxPX8A99X+vtMLzZbWnll7nt/6lcJ9MTwAK/tpPvciS5lCz82S91XJojqJUFRrfRCnNKanIHRh02ghoNgOKAmuIPIlDJZg9RDUlwnXbSANLBZkzOjQCqKFZZZeP0A5k2iZoyxwhUMmFY7vo2UGGFSeoT0PneUEto/CAjegXwkcI+iSoNIYz3IxuSI2QC4xpxYYKQ+QxZJsvslAUszFL1dcUkvQloKOp8DWWMbgaIOrBeQa1/FIlMEpVdHa4JscdebQqlyHMg6eFpBLVOCSrx1h4KZriJNOkR2KWwxf9zbM+iGSxTkSR0CjQ7ymhlULmB47BrMLMNDHfY8+woHJCbq5xB8cJG22kFGE73okccqbe/fhOi6W0og0wzcKp2hkYimTZCULygHdSpnWq29AnBSH5naC6h8s4nmOQ+2aSxm5dBudTpfWG8fpC6ukvuaBP/wCcy/vJe5EhJZHnCQYG1i3isEtW4jrEVXhkEaLxeF55iSNksNDjz7G+IuvIxsdcBzM2StZdf7ZTM5NEy81IM0BDVlEOjuDWl6i5oWINMK2vSJKIsBVAl8ZHKko+x4ITWQb+qQiEDbGWCSWhQr8wvlS9sABPAuExNlyNh//+GcYXbWWAy++yjCGEgLLdlnUiqhVZ3b8CJxexE4NZWxCx8cYi2qpj7xZFFe7dnZGlDiT6hOC2ooVCN8liSMQ4IZlSlGO0IbAc0lVQiY00hJESjK5ezex67PljtsZXLuahTf2YiuIZE4zF6g0QSuFRYqNw8/UGcsUC4K25xFhMFpDrQq5Juy2yIVBOhlRo4U726WmYNCuctpRIHLoxoS1PmSc4mgIHZc8zwFDrjUqS+lz+3AzG8v2yZtd4sUmO885n6nX9hDPzBdxMiNQTohl23S7bZSQZ4qUBAhRCCRaYKSgITOibge0IRA+lRicZoZqJAx2Ffn4DHtf2Y3rBThBGSEcdDcmdHxELgktQWI0iJCZ1/czduokdOpQqSDqKetFibn2AogMrIClfQeoHx6DoX5UfRlP2IQ5gCBzin9fdnyeU7v20pifpd8tkaU5WpehnfPuj3+aN48dJZ46AdUydKHvxsu59N7bOTF2hOzAUTJbgQvCtwnSwvmXZhm5lmBsZDvFqdbQlQDSBOkXsd1+L8TpJvha4SsQxqBEhlYJuBaW8NCZBCM455KLGTt8iMbxOQbdCuVcETg2xnHo6gxyfUaMq2D1D2Jku3Ba3n0XU8fGaS4soufq1AxEcRvX8yHLcY1Dv7Jol2tESZe2ykkxBKUKDSslUREENqp/gGt/7cNs2bqVsb94khFpAZr2cAjrh2BkNcJ4UM9gzQj0DUAmEY6DXSsxNzPD9GKdSm2AxUMHcSpV9PIyoWvjYMhlAqWAVVvPZ1bl1I+MwXlb8A8fQ8cG5YcouxCDhVN0rWmriM/SjUB2WbIskpfHCtdWGYYfu5t1ucPS919Bnok7C1NEQG0DXljGC0tERoIwGOFQzgTdaglWDrH6iks5YndwNqxl26aNzP74OWorh5mpL3Pi4EEcKfn8J37152KRKL6ffjbL0Ovr6NGjR4+3jp6I1KNHjx5vMQL9nzPEP6tryKWmXOnj//iTPyHJMowxDGlNLiBzbPxqmW2XX8HsieMQuLBxDcuTE6wYWk1kJK9+51/xXRfVifHtAM8NkNWQi665kgvPupBjzzwNQxXu+MInODZzEo6eYnbXXjoLy5AncO4GLvvip5jZu48nPv+7rD7rHMbGx6h+9BEy0+HKTz5B/4o1zDz3NN3Ty+ij0yy//Dpyagr6PGIrJ7WhnFs4phDFXNclkyn927dyyS1v59T4eHGYjVIcZdBZQmpSElujay7WikGSZpsoS/AtG2wXkxqW5mfIJicgySgri0hospINgUumbLCK+JJtNI42CAy5kcQyQwkX3e1Q6u/DZBHKEkV0S2q0Bm1ZaMsitQXacTh32yV4tREef/xjqL4BjjzzNLfe/06OvvAyLNQ5WzlMHD3G1HMvwekmeCWII57/wfdJZILYuZ3rf+ndDG4+Cw4fodFsI/wAOyyTZynKKBzAEQYLQddYbP70L3G63oX9Ezxy57vJLtnCsrDR+yaQl22Go3X68woQcHrfQcb+5T9o7RlnW15hIM1xU4uX//5vibMYooxYKuzQK9xeScSdt97F/KGjNOdO4wqDXmxDPYbFFge+/e/I+S4rjGBQhUxMjrHn+WdZv2YteTsljRKCcohstXH8EBtRFHy7IYlroyz7zEFQY2HwbejGbXKZ4lqKsnBp55rEscmq5cJpE/ps2nEJ73zPw+x5+oegQXcFR04vs+fUCZARdSStrEvX5GgCdKZBCGzLpmJspIwLh5tfZn65Qa7BeD62lWJRFFFLm0IYimPsapn7H30P19x6M6repu/gLNq3qOdtkpGQyFNEeQeES8mpkR2eZPH5XSyNn4Ruizx0yUZX8MiXfps0KFFfatDfSchF0a0lhEZgUJYhxaAtwdUPPsjDH3w/AyMrmHxtNyJ0SKMuJIKVokTFKTOTdsjXDDO0cwe33HQLB154ASfOqVgOdjcjzxKMFhB6VDat564/+E1qN13O2MxxcG3oNJk4cZL6kWN4ShMocCohMtDoTLL2uiu46QOPcexHL1NNBUILbCVYnQiag1VYWWPwqst576c/wSvPPYPJNZ5rU/V9pqdOcfLwYXADjBE4UUpJQb/tFkKoZZOajLxS4dpHHuPjv/JhTvz0VZbHp/BFiRHtMh/V2fCheznrk48hJ1pEp6YgsEEn9K9Yia7H9GmB1oIkADAMKEPkp+g+j4gUnTs4IqA2uo79eZvITrjife/nkrvv4cizr5JuGKW0ZpQgV+jxaXTJQXZagMRC4VgWJSfEdcu4+Gi/hMxSdn70g9z1kY8wvThPZ2KKVCrCPGMYF5ccqTMIQVV88ENUPWcFZYRtc+DIGzSiLis7GjvrYrkOTZnS0TZUXAZXn80NH/sQ67ZfzIlnXmbn5z/B9R95Pwdf2YtyHd5xy41UT7c5MbYPqgF5LgnxaPgWgfToAKXbruDqR+6lbhuWx48XdpprdnDb5z/F+LMvMfHvTzP23adAZbQHXNp5h3Cgxqc+/mu88NdPQr3FlQ/cz/kP/wKmm9PYc4B0pI8kbkOljLMQ0zp8GDaMcv32i5k+fBTTjSDPKfkhplSheeQobc9nx4O/wNLJE5jxk6R2mTxXYGmwJQqJFoZ7P/0ZglVrmdu9nzU734Y83ca8cZK+VFFpOSwePsrJp58jlxmD0sbRAgR0Q4gqgq4jibIELA/P+IgM2toi3HgWcmGWdqdOnjRYPzLCwZ8+D8sN5g6NMX/0GHQjKrUan/n4E2AU4mdiKYWI9DOpt0ePHj16vDX04mw9evTo8RZjzrQhCfPzZ6NKwMFjp7ho5+UQtRkcHcU5eYpFofFXDSMRXLRjJwPrNvLC3jeobjuHG++8k69/8DNF8Ua7AY4Hy8tUsVG2IAqcIkIRK6j1QaPJ+ssvwRoocXLXi0W0JTIMdjUtz0ZuWQ/LXZiKqWHT9h22/dYvI0b6ePNvv4kYm8cky/iZpJxB5ELiARuHeOjxD/GNv3kSfWwGtxUhlMTyXBLfxj17HduvvRol4PW//EdELCjh0BUdxKpBjNAQtTn/1lvp1ptMvPIqvlMmbXSgFvKev/5T/uHzn4X5Rfy2i8pz5EAVvAB7PsJ3NMpS2EhsrVGWJtUKFYRFJ83QEF/43d/j9574KKv9ftKlJngO9ZJARy0IAuzY4LYVyqqQV0MIJcgY+stQX6IvqEAnQjXb9NVWUG+12XzxNt48egzyHIb6QeW4b7+KjVu3MLHvAPo/vkemwB4YQLW6Z04xGnwfz0gcBHkmyN+2jnPWXMTCq0dodVIu/aMnmN9/lMn//nXOe+Ih5sYnOGv1Wjplm/Mv3sa+117n5H98l7Nvv4XpUydJnnulKJ1FsmbLVu646nr+6qt/fsbqVih6tixqR0azmBxBB0NQrpF0O7iDQwycu5FjUyeK2MjyMiiF57i4GLRUWMoQ1iq04wjpuwR9VbpJChpEkjFQKpHLFMuzyYzC8zyUkXSW2lgjI2gtufNjj1OfXeLVp55FnZoqInR+4QSzdAntCPrvupNtOy/m+T/+L7CwXHSodAErAKkJVY6ji+4rLcAfHmFByiJyN9CH36xTkjle4DO/dJqHfvlXyA38y3f+DVEuY2QO3YQh4xK7GhxBtDQPGeC4RTF5pQS5AKcflk9jVy1U1oHBKtV33Ef72ARMz8HR8TPRpzPXOZeE1YBUabRtw9AKSJJC7KnPgoQBU8Xk0FASe2QAlXZgw3pG1qwnPXkMtdTEakeIXOEJl0RL2iqFsgOhAxefDZ0OVz72K7z099+Ag0cgkbhGYEmJ67p0VAJBAF3D2ksuoNnnInaNY3dj8kpIJ2qzQtss9JdhMCjiTu0mJBl0csgltgBFXrh9tA2Jgk5CgCDEQjugHEHHPhP9svtZuXI988ePsPXXf5ELb7yaf/qvfwBHFmBmCUIPryNYu+MCNl1+IV1f8NL/fBLqCauxiTA0+qziZ07qM69rQZwxuvNK5o6NQ38fj/zG53jyT/8MpuaL/q4LNnPBhZdy4PkXYH4Gshakiv52RMOWxb0xhX4rhNxCWS5tS7P10Qc4OD0B7Sa2tFFzZ+J6p0+DzLFCF92NcV3IHQGlGs6CZJ1TZVa2SFb7oDPsrg2ZRNkJ0Fd0X120Cd48DhuGIc4JTyfE5w4XSsb4LH1bt9I8sR9SG/I2CLj4yuvZ+9NXYX0/LHXBHYY+AY6EqTlGYh88C7NhhKgUkLw5gSt8EtXlxs+8j6ee/PPiujUMI13oOg5dT0DFBxnA5g3sfPs17Ogb4i+//F9RFmif4hqf2SKwtaYkFY6m+BkLyhB4zLU62GtWoxqLkC6DDnjoc19k7ysvM/b0dylsein+uk2kcy0uv+YKNoysYe+uvRwZO4IblqlEMSuwmbYadGuCNYlHK4nIPZfEzXnXl36LN/cf5Oh3fwCiDHNNvNUrOf+x+1h4/VDRgyRTyOPiOmZpEbvOBdaqVejTC1gln+7sDIFjF5FVUfiPJEWUrSci9ejRo8dbR8+J1KNHjx5vOebML7TiP8uRkhxOTM/w/Reep7JpIwtjR7AQpK6F1Apt28xOzXD81VeQnRZdmVCyXU7P1/HWrqSyaQPJvqP0WyVKSpNZxaR3kBv8sELWaGLXqjROHqcxNV0cmjMoZ5pAaQQWVzzyKOWLtrDw+h6MBFTG3JE3mY8jaCZUjkyzMjN4StH2JIlXdMBwul4sIylDMlRG1xdRmcS3XZTSqCxhZv+btIcHOev8i1k6eBJpW+BklC7dxj0f+gD96zbxxg+eYdutN9Itl+kcOYqPj+oqZo9P4pWrJIsNVDfF3bSK8u1XMHjVxWy79UaOv/QaJWnOTHxLpG3wByrkaRc8G6Imz77+CtTrqMWYAelg2w5NEeFeupXRi86ndWSC0dwrZrsdCaIL61fy6Bc/T4bF9NGDpIEgCzLaSpLrnI1X7uCedz9ApDMWDhwjkA7Z/iMsv34IeeAQypagNMa2EKtW8atf+m0qq0c5vmc3ykhyo3FSBUspi4cOk+gIs6bKTKvBwMhKmidPsvjDl0kOHWJu7BDLhw9y6pld6F1jJAtNRi46h43nns3Urv2MdDy6KqJ9ep6gr592vU7SaOAIB9tohFAIAW2ZIW0HbJdumuCvXceyWmb5rBWsvf8uWrv3goTB3AOtsYUhQFC1PbIsp1St0fEtWD2C7jQh6uJXanTznNz3SPpCZKdBumqUX/n4E8SZ4vTSPANXvY0VF2zhuT/5CkYa7OWYmhKgcpTSmJEB1t9+D0oLjr28Gz1/GpKI1Redz91f+iz7ZyZhepmK1OSOIbcN0gIV+IgNq7nkXfcgrriQ1oGDyGYL23NJZE692cRzPXKlaM8tIGyHanWAdqbYdPEFXPn2G/AHBpibnC5EJGGx+q67uPvxD9FcWKB14jgDWZdAGXJKlIZGiBfnYXEGagb8sOic0pKwUkJlGTKT2OVK4SDyfVAZrCiDcQkbEcNBP8nZK7jsvttZd9v1TH7/KbpHT+HamrjTIgg83NCnncaktsB4xftFpQrHlmCmy9R3nqZ8uokVSSqeXxTuOw6ZUWA81qchq/GYn5ulMz1PmuckZZ+sDKzpJxqsQD3itjvu5ZILtnPk1Ax6donR2gjrBlbRXqjjeyW0cDC+y5pt56OThDhq4QUOmVBkArTnwlAF1pfoRi0QLgtLMxzY8wb098GhSYa7grPsfnyhOTk5zvE39zG1bx/kBoRNR2kyFMYoQjdkODE4tk/STth0waXs3LqDIwfG0Usd9n37O9BYhmYXyn3c/18+w8Fvfo/o1YOFmBfmEElW5pomuhCR1oyStGNsZWG5XhHHzSMYG4PUYCZmufXx93Pzww+y++WnYO0KTC2AqIPtlnClg0pyAiVIdYQUNpc8cDfVi7eycGgPZvMG+q+5lPO37eCG++/jwOwU1BvQaIBfoVKPkXGK1UnxY01nZhpMCp7N+qsv4+O/+QVOTEwxc+IYjJTggXu48rKdTL36LAzXGDrvXJaOHCXMDe3FJYgzXAWxSrjqgXeQqYSp13eD5eIkCkcblCUwovC8smo1F126ndd/8gP2vfgKdp5jWaCEwVGGkjJo22BZ4BmDa8DXNmknIut0GaoOktdbBL5HFloM3nE7r+3dR1Rvkk9N4zggXAe1kGBywXT9GOOvHyaaa5Jdshq91iG5eTtLBw4xoCFJEtq+IfNcROihU836gVFe/cEzkCqQOe/6g9/hxg89yk8O72b52z/Cb8eUopSzMw+ZxCjjoB0BTgnTbPHQhx/Hkhkf+MX3IozBsn4eGP9ZnK0nIvXo0aPHW0dPROrRo0ePt5wzIpL5+a+1UQqHj4/z6v597Lz+eo5Nz5DXm8XKmXum5UELyPKir2jhNNMnT6AXGmy+9kp2Xn81h/7jJ6AkJSwS2yAE+ErgKZvqutWcvX0rc9PjDJ+1ETFXp5oaPK1JHE3k2iwiqOw4h6WxQ6hOwvDIKiLZYODaK7jusp3M//hVSkhycpqeAkuBAZEq5qfmSGbnWHXzDSTtJnqxgZaSslsiEwb6agRnbeDirRdzbO8hiCLwIc+6HFpewo0sGuMTTB49TNxchjhDdyUODrlj0T1+FKSkFlRxRvq57IG7yVyLkcERxn/wU3ylz/RoKLQFGJBaFaW2SkNcFPvaKQS2y2LWwmxcTTjUz3see5S9P3qWSmboqi7ac9EqhzhBe2WOvLkfHXUKMUBJCKtgWUzNTnNqYZ76wgI0uqwULlaeUlYGJQxYCuN4hTiRZNx09900mw3GxsYoLDwWRClrdUCz5MGqAfrvvomklTA0NEz/8AoaL++nbFlFR0meoWfqhJ0uw16N4wf3MXXwMMw3EGlG1lcGx2Jy/DhJuwOWhS8EtjEY22AsQS4kmeNj2Q6pY7P+lmtY6i7B7Dyt0VW88xOfYM3WbRz90bPYZQ+3FJDlOZY02J6Ptm0i3+Vjv/MFDhw8SNZoYWlBWK4yvGYtV997N8cOjwEWZ120nWy5w9SRQyTLi1z57oc5uVAnOzaJE+eEgBQSKQzu9ou458H3sHrVWg58/yfQbEIe024sM21pksVlmGsSKE1mG4wwaAtqfYO0Z6aZOT1P24VSvUW6sFQsM2lDtxtx6tg4SmlklGBbDsn8MpaxCYf68PqrLMYdPvH532TnLbfw5tQsS2/uY/9PnqbVqEOrwTAWDppuJunOzINvwaoRzr7jem6/6gYGB4c5deokDpDGGbValTXrN/DOh96N5Xh4a1Zz1b13MhL0M7/vMAKb5c4ik9MnmJyehEaMY2ySxgJGK5I8J9eKLM/w+2qs33w2DzzyCPPz8+iZOoN4oGI828a2LZp5hHQM1CqweiV0YlZJF4kixyLvq6AHK6ASGCzz4T/+MuHoCqaf28vEvoMcOnAAWV8E26GTpywuLyIdTd4XYtKIdVdfw2033MDY3j3keYZjGZQ2aKGxXQ9dDTn/S7/B4Mp1LO3eD0kbhgcLt9ZyRl9i0LlEOpLMsRC+j/5Z4XSe079uPXFrmdDzcTOJo3KWtITQoV4qM3N0gnRmEd+2kYMeWBkja9ajowT3rBVM7tqPiXNMFkHNxVcWfpKS1iqsvuEqrrjpRqam56kZj0a3g/F1UbSvLeim0D/A5ksuZnzqFDNxmwc+9hH8gWHmdu9BZ6BSCUbjYWEw2KHP2q3ncuDUOCrqMnrlTjadu4X549OMHRwjnpuCZh2GR2Chjs5ThFLYSmNZGqUVxndBKyqDgxwaO8KBF1+ECy4oosVr1rJwahIVt7nmF+7lrPVrOPbCC2QqQ2PIspRcSLytm1m5cT2v/NM/Ffc24WJnWSEenfloUVgQdZg/cRxmT2NCnyxP0FriZxJb5YWgLSRCaSypMVojlMEgcIOQRtJFuA6laoXIUlz1C7/A5Mkp0olp/CQmz7vgOjipIHRCctEBaSP9EPPQTdBvs/HuO2j8yw+pCkGkJbparDTajoNup5w4egpjOeAH4Ag233EzT+16icbCPOb1w1QQWFpTIkXh0dI5rF+Nqx10WOK8zZsZ27+XTz3xcSxL/OdDmv/P45qeiNSjR48ebyG9OFuPHj16vMUYJAILlPWfTqTchm//+EUeuPcdcP45RTnpyUmwJf2XXsRAucyJp56hv28IrXKkL4i6XdiwGevic/BKHvl3dxHMNChpyUJJ4qDoywyWCGmMVtl+2/VMtBeY/9efsC61KQEtNLP9FGs+/hDcewF9F10CLx6h+c8/hlUh6Bjnwsuwf7QHO4/J7ZzclQhT9E+72kZ5ZTIs3HM2sW3H2bzx9f8HEUtWeYPM2AacnKGH7mNpch72HAepwMvZ9uj9tFsRp/7mP7DCAVZevZXL334lP/mnf8Y+NkMzTxm8djvLY/ug2cJZTpECOP+sInaVhthRFxuJQOGYDAtFlkHgO8TaIJXBL9eIoxjh+gghzkybR0VsplrDaiX4mcRDEjRTBkyVxEiWEKh1A0Rxg1AIhuKMulLkvksKHXJZAAAgAElEQVTmKggEZJrBrsHtdH5WsUwTzVB/H+00p600eEERx+BM/EcVUbBq6DLYypjBJQ8dNn3wvbQmFlg8NQ4z04RzNv19KYtRAzfw0EogcoOVa4b7RqnHMWrjSq66+zZe/tZ3aJ+eB1Msqolc0i8sjCWJXMhswHVgaBTXC8hnJ2DbFjZtv5qJ1w8hG224cD1IyZrFhOnXXyiEByegL9KkcYK2Q7KKA+dvpry0SHdqjiB1yF0X+qvUrrgIb90qWktN4sMnGVxssbw4BaENoQDtQTsn7Cg8kdNyE4znsOLWu/CH1zA7v4R69jlIu4RJk1wp5EANEoWfg4Ui9jSW1jgaAlGiZdtYG9ax7dH7mPjGN2kcPgKWhYVACBvVTfFKZaTUOI5Dnmh8r0YiIigJsDWVc8+jVq4x88YBqNRgeRFkQtXk+J2IHMj7ytzx8U8xnUQc2LObeGocWe9Auw0yp1SqQJoSxzmOF5A7QdG/lWUwUIE4h3qH2kAf3UChjIIowk8NpRzyEEQ1pN1qFjG+OAHsImInLcAlEIo0i3H7ArIsguEqD//qE+ydnObQiVm2XX4VC2PHmf+Hb0LZxluzhmxqBmoWl/zyY/Qbl6f/9kkou9ROdfA9h4alyYfL3P6+X2TvkTFmf/o0Q/ffQ7h+FVNPPQ9P74eSB4tzYDRh4CKywt9hWyF5WCKplGG+DoHPdU+8l3O2b+Nrn/4ctZagVV+EVYPQXCTIwXECujhYG1Zx6Q1Xs3LtKP/+u3/IKqdC3FnGX7GK+bP7GLnzRjZvvoAXP/xbuKlNTs59f/AEE8kSu7/0Z1h2CW0MbFhHaXSEmhsw9/IukIpaqmiFPuf+0v24A1UO/MM34FQTu1Rm4JoLuf2h+/n7z/8hl1xwMeffciNP/v7vgQDv0u1k7Ta02vSvXc95mzaz60c/xJqZQlkS4biYTBcdXVWP6/7gC6xevZqvf/J3oL4M1Ro4Fr/2lS/zZx/5NHackyRthvBQKBqqCZbPaOaxlHYIHI92LWDldVdwwQP3suc7L3HtLbfy+lPfY3L3K2w4dwOnDuwBk+C0DbUUmsZQu/1KLrjyGibHxjn19X/FaXcpY2McQ+IINA7Wmbh05ijK0qJkuSyYblH4LTUDcdG51z2T4hTawlFW4eg8I96jckZ3XIgueZx+ZTciGGbwrptoLXTIn3+ZII1I7Fah0JgSQ4lHVNXEqeLcRx/Eum0nY9/+N0hc+NaPGe3zmYsbxfplVnz4eUOjZMIplibDMsRdznvoQZYW51h47nnWHF+m5aW085Q1TplZz0KvWcEn/uSP+JN3fQjCEEtmOKRE9SW0ynDtIspmztRp9wSkHj169Hhr6YlIPXr06PGWIwvxSDvFHwVMNbt88ctfZtepk+zf/TJouPbe+3jur/4C1oywY+cOSlHK81//FiurAyxGDWSpBEOrGXrXTUhX0Pyzf6KiXawoolXWOEZRloam50D/mZn7REJbUbVdlKXJLEBowtzBUiFbv/JrvH7oAOn3X+KDt72H//Xc90gnxsEPsToa7UaQ5pRiSeboIpZWLRVxG68Pe6KF8lrgOVSFj2pHxEEV44PYeTH33HUP//b7f1wULMcdNt99O7WhFbz+7Z9CowuBAjLcgRr6dB3VV+H8u9/OsB/w3Ne/xWgjpxT4TImcTEucdo4KbIytwRhsIxFoLMvClYKK8PGwiJOIJprcBQKPL/7FV/nSxz4JnQivUgOhyey8iMN0JWvjQrjolHw2Pno7Y4uniF/eRf+iohJBJjTpaD/NzmLxBgqHIE1IcgUOeDWX0pKgYyTBwAo6rVZxjZQGlWDbCmGDVXERyxlVQoznsSQlDFVY+7YdbNxyDs999Wu4TkRo6eKS2YDnMmoN4pxeomYPctBvEj5wM/0vHGF2bo5KuUReb1JxfWyZIS1N24fcNqwQg5z14F2ULtjIeLfD2obFy1/7JmQ513/0Q/z0zTfg+FE2ve0irn3HjfzjX/8PskNHcKY6DBDSyFPy8zYycMn51H/8DGQGuxnj4JKioWpRefu1bL/4UvY+v5vo6WcJRocYvOBszr3tOn7y378KnZxqpMllRBLmYPtFudaaFQSX7+CKbdt45stfJshShkpVWsstQlGlY0VEni6USw2utAhzG1GuFNGlwIJOG8uzMJbAxClurVa4uNIccosV/cO8/7O/zvMzMzz3tb8B28VebjLsVMi0oW5lXPfbv86zL/wYnn2JShYR+ALpWjSUhFIfhAOw1GGo3WbJVlByiyWoJKVartLpRBhjEfYPEkdxEWlLVdHT4lmgElzXwYpzKtKQSUmEolRziYXmkrffwHmXbOd0s8UP/u4foRuDHUK7S8l1QGikq8mQxeu6PiQ2uP3FKlh/DfeKtWy9/Xoa80uc+vO/hXWrCNeuR756mGCmgR4uEXWXMb4N5QCSCDIBmYedKYYq/XTTDGULkryDV3bJOnVQmpIt8IyNjY3UDqmGFMEoFZokRINVrMCH2SVEaPPOv/wt5odcXnjic7AgAR/aEmoheALyDjg+4fwyLpCXqsSOgDNCAJ0UJwiQ3SaEAq/iky22wbcYEX2cPncl51x3BUd/+CzeoUn8wX66URPtV2D7Zih53HrLbTz71X8gmZqBqlWIdKcaxdffNArtuIjXRcWaJI6Nf/Ym0jSGmSnspIPyFGgDxqKaebT7y3D+uuLvHD2zQBd6UCpBVcPJ06A0Nz7xQZ766yeh3ebO//Y5vvtXf8PKPQvEpAzgccqm6E9avQL2LBWvEUVUian19TPdmgdf02+VGJYOHSGYK3VhxWqot3A3byHfc5Ch6iDt5hJaGGx95hmF0IyiWc5Twv4BosU6Lj65o0l8iSMN5RxSS6CEdWYvEqRlYYTBWzvKNffcyVNP/QhOTFG1h2hrA4mm3D9Md+Eka+/YwdTCHByYptKx6I7amOUumBr2ps28/a47+fHX/gdlz0MuTGADMQ7bb7ie5bTLqaU5cDT3ffbzvPnqG4x//xmYbYBRrK74iIXTLK3pJyGGVgr9g4WLrbEIeQlhu4g0oVryOD0zifufTqRCQPrZGmqPHj169Hjr6MXZevTo0eP/FwQIVczNW3Cytcjo5g0cby9xZOoUBHDNB9/Lvh/+CBqnmZ0+xsTSDCx2CS2fWIGxPBxrmG5rGe1aOMdm0e06hhyhNRXHJUZj4aPPGsXZejZ6bpZQBVRyi1gpcktTwycUHk7gMXtqku7kAsQZpXVrWX3JViZmJ2HdKO7aEdTpOXynRpLleG/bjuzUwRJseuwR6ouncRZzylmKyjXGdkmwiwJcz4ep48zNz5BOTjDkCVYEHif3jzF7cgJCzYb3vovmkTEwBlOvoy0FWcZSnJOcmCWeWaaaGzzLIko7yDSBksBYsihaLVcwCKyt53HezTcydfwoXdumpSUyzwj7BWmaQxAwPLKGRpLTabXw/YBalGHqdUKnSlop08ratKyip6W6fpjL3nkDaegx/9qbBKGLCh3qSQRDI1Dpg/4VyFaHoK+MjBMCbZOKEF0ukSYxhGXCFEKl6XM8OlaK9gWkBheb3IIUjfIF5F1SFNdeewULaZt8Zh5PQaIMxrGKiN9yEw+buukgyyWyAwcQrTa+lrjtmD5jkWddlJKUaoM08hRcn/5Ec3JmjuMnJnEGVrBidITJQ3shapKvWc36q66mbQT5q6+hHcnkwb3QaOG2chwlydGo0Ro3/+oHOdFK0DNz4IVYcZeK65DrnHTiBBMvv0w2PcmgZdPqNmg3l5k8cRQ9NwdpRslxEMJghMDJDGUEqdVGOop1MSzvP07kWLQdQSZcUpOTljSYGMIKGAc7LJNYkJEhkAiZ0h/lpE6A8X3INN6mVWx97B52PnIfh7/3FLkl8Dau4sDiPN1DhyFTDNklnDxHGIlyHcZ3vQizUyAkWODnNo50ifExjg/dDJIMoSxqI/3kQmPZDjqVZEG1EIwqJXTJx1iSnQ8/wMr3/zID525hYWwMZBdtKTzXQXUzuqUSulYm6zQxwkIEZTZs2Mj+saMsn5wElRclzjrHr9XoGoPKE4TnYCOw2hmOlOg8LQStuIFud2ktN1k8fpxrP/FxKpVBlo5Pkh85SWAkeRrTp3JC28IzmjTqUimX8ZoR/UJQtQUq75ImTTzPwqgM27HwbYeSErjaxghIXYjLBnewyko7YC6NKb39bZx1xWV0ZhbJ0y7NpEl7/xFaA1VW3/cO2ieOgnCxLQfT6kKusZIYbIN0BDgalcSQZfgIbKURKsWyLLQwqDwvSqQxYNvkyy2WX98P3YzAgJQpnmUKwTjuMLR+A5tWruLAM88UcdRcgbQYcEs4nkWWtKDVgTzF9W20lYMliyLpRgM3V7gYpBBFQ7NlUEJjkqS4tyUpmAx3dAh9epabf+lhTjoS02mCMFz3i7/M3oNjbLjpZtZsOZfDr79Gt9lGeAEmy3GMJmhr0oUmFddG6oxQGtxSmXSgQppEsHIlSZyzrDT26AjpYD8sdmHbJbzjox/l8PN7iesx93zxixx8+RV8q4RneyQiQyQpDg5OYuEan9x2iJXEr4bIOMMyEDsO2rIRRiKMwTEaYTR5u8WJN/ZBMwIhyNIGXlcxKiq0Wwuoreu4+VMf5NDRI3DqNLVME8luIYSVAy5+z/2ogQrTh48RLncpm0LsTTafw00f/RgnOh1ah4/BOedhkpyJscOok5MgFcJo2u1l+taexXLcgM2bQFuIhYhyJ8PyPBQxrtK4ShE6Np/+1Cexrf+9RrsnIPXo0aPHW0/PidSjR48ebzEKsNBnKj+LW26Cy7d+8H2e/P4P+e7/+jsIQugbgKOnsHSMtiSgGaWEUTk5IcuBgFUj0G1hlQbQC9NQslj/wE3ke08w+9ohGAjo1yENN+Gs+25lOKxy4i/+Db+VkJVclkRGNZK4tk3LMuTCLp7SA2gJw8PQaYNMeO9vfJ7J48d5+i//ETYM8a7f/yzj4yfY87VvcMvjH2D91nP52rsfJ0BRbicYFMsIaldt5+FH3s23/s+v4DSazFttiLvgu9TSKmFlgHnX4q6PPM7ub/4b8+NHMabJ2puvZOroHJxcoFSukTdaWEmLmuvRzJtFV1TZRTQSynZAogRRWILBGuddezVrV43y4z/9Kra2qBpJx4+w8ZFSF10hjgt91SI2FBeRox2/dD/2SB+v/revQCuhlljkvk28IgAhCBc7VEs+9W6b/nO3srDcBsfl4U9+ivHXXmPXP/4drmNjxwlYNRJbwzlroFaDg+PQTfFUjuspUqFwtQNYKFEs9CmbIo6GhsADrShlNraUdHyB8SyQhsA4OKnB9306MiUVmoot8ByPrN0l8EIENq0kgb4Kqc7AsalmHSwd0kw04DG0cS0qatBebmDnAUpV0EiE00E7MQQGhMtgXhTtJghU1WHlIw8yv2svLNRhsUWf1EVJtsjJ7GJ50DIOlsyJ0WjPLkrO4xTfDbBTCb5L4oArDauEz0k/KswD2gG3DCVg69nc+OjDvPTkv6B37yPt1GFFH1QGYaZOf9MQSEXiahrVrFiXW7sC6i3stoNrOyTDPlQCwsOnydMM2efid2083yGXEm1yKCqIsY0+s/AHkVL4CtZRQiNxK0McCzWXvutOhleP8txPnyN6fQ+h0eROQKY0a7ZdyLsfeZQ33tjNT/7ufxZumsFhGFxfzOM1F3Fm5xkUkDoW937uU/xwzz5a7Ygt7Q4HX9tF7geodlR8z6RJ4bBLIypC0fRqnL1jB7mJmdj1EihwMqgFIQ2t0VrhrV1D1igm7lk/UkQpUwdmFwiTHDvrkumcqu/QMBnKETDYV0Ro6zFgEwQBicwoV/twml1iB6QNjoJSDr4qKt06LkSBBhe8usWGCy+jffkW5qamYNdBqqWQ9vw4hBZr73uQqeMToDSPveNevvl/f5V4/jSuzHHOOAiVgNTShJaLrYFE4QgLaVkoCzILlKUhk1iehc4Ntl/F933SKMIxEksYQktQDoZYrLeQRmH5HlIU91qT5oxU+zFpjlPymO7OUXFCHGWQUhI7hYvHMj//v+bCInc00pIgDJYG4QQkUnHO9dex4647+Ppv/EaxBik1BGXsDFSUFqtvZ62htH6ULZdu441//ga0YnwFTjcjsF1yrVBlj27WKVQPt1rcf0ML59zNyPGT0EqorFrD+3/lffxfX/lTsG1q6zcyHPZzfPcu7K3nc915F/D0v34D8gaonJJwkJ5PyQnoLkc4YYlYxUWfnY4BTSggVgEAjs5wjMY2xfurgdRyMJZbLBDKBKFsyn0jdLptVtx2LQuzE1Cvw/wSxDkumkA4tC0XrrsCSiHsPUL/dAOllpD9Pn1rL2DOBWZPcOWXPstLX3sSf98EQZTihj7NigCpGM49Zq0ut33hc5y76iz+7Nd/iyBL8T0LFTchTRGuh9JQKpWYmZnBcZy3/kO8R48ePXr8b/ScSD169OjxFpMAGoPzs0IkBY62eeG7P2ZpYp5mW9I8Pkt1sUVgBFXbYdD41IzNsk5ILRvlOVCtcv8f/TabL72EsX/+TrFE5Cmam1dy3ugmFqaWGNxxMfncAlka0ZibZubgYbK5JXxh08ojtCtwhUWqJJlrQGgsIxFpRp9fQp5epqRs+t0+Xvz29zj5xptYloXpcziedamfmCJ/+QiTx0/x2u5XKe3YSvzGfmJLEpddqFZIJ5fZ/YOniX3omi4DIkTkBqdcIlmOaMcp/sXncej5p8mjHKvTRXe7nLdlC+979H2MHT9JY+okmhxlGZRvU6qUMEajk5Sq8PCFQ6pzwsoAaavJ4sQkx199Fa9SIzQWlraJ7CJ2FzguHoZcxrihj+6rcvXjH2by8GFmj40z1LLoHphl2B+gnsVQq+AGIVIapKVI8gwtNQMjozz4gQ9QGhrhe3/xV8xMTEDUxhHgy6J0PMdwwf13sP3e25jJusiSh2q0KCU5oTIYYaGEKIxpojinGaXBdnG8AK2gbJfJtIX03eJg6TrIUoXN513A7MIiRgks2yUVhlhKsjAgMpKIHPX/svdeQZJd95nn75xr01aW7WqDRjeABtAAG94THkSDAAgCIAgSoAVFSlpKFKkgJVFamZmVZo1iZ2c4o4mRQrOjmdHuiJIoT1H0JECi0QC6G+29qaoub7PSXXvMPtwGJcU+bMRGUHrJX0S9ZFVFmnvuzTjf/X/fN9JA65zdL3yI3e99mj1vfQtlMgY9n3FRpb10EeMlaJEitWbclNk40GDNial4IYERuLmloxJstUppsEHWzfGWuzz21OOM1QeYPnKIsi8wbiGMWSEQ1sHXAi8IkaUAEJhUUXfLlHFRSpE4AuODrZcwnYRG2KAS1ullOXRi3KbGnp2nfeQCVcdlU2OQ5ZUlbn3iKR55YDfCKzE9NYWWFiUFWhhueOkFdj3zBJHn09l/kpp2cP2AbGmdca+GyRRSw448xmZdXJUiKg6xiFFSIYymhMF3HSLho61L03FoOoJVL8USM3f+PJMHDmOOnseJY3SmsF6AHBsm9iU//ObfMXHoEE6lgjBgez3G3nUfuz/6HNZTrOx9i0qqiJKMAyfP0l1o468b2lPn6LbXsDiF7TEICb2Q0PFw0pyaF3LzM8+TDwxy7sQxSGJwXGq1BnmSkwsBpZAPfuIl/OEh5ldX2P3Rj3P+a9+G5S4kirIUxCoGz6EcQ+gEJHHGyPAGorUeo4PjoCRxlOMOj5GuNSkhiH0wXiFyagqBBcCxRcuXMSkaWGv16GrN5uuu456nn2Dylb34FvIAzOEFvOl1NuAzdfECqxdOgS8wwuJpQzW3lHRhQ9XSJXElaWBISh6ZKCKSGylUlCWshmRGE9QaGARpmoEjkMYiEbjCEnW6lPwKpTAkcwW5B9Yk2OEqXSejdutOtt+2i0AZWgvLlKWHUIWQdclIh6/BtRItJNJCoC2+AV8LSl6JRMPq5AzH3nwLupaaN4DnVchbPcadKlLF1KxD1mqTrqyysG8/9dWYCoXYlHuCrmfIGiWyvMPN738vlW2bac5M8NjnP8P59jLbd13HTXfcyeTx08jcsP/lH6JaLUh7qPlZgolZuqHCrs6xsv8AoemS1TVYhR8rEglJlmHKIYoMccM1jN2wk97cbFFAEBsc4SItSGsRGOyl4tDiMLtYKwkUlLQmG6+TuQm88w7u33Ez5772GjQTxu67k3zzIJubhqqo0DMO2nNgagqaa5SNQXspUaDQ613UzAyUS2wwlvn9BwmiHp7N8aRBmJwgVwSUaQ8FnJ+c4s2/+hpjNqDVWiJxLSaJGcjBOg4a8DyPL3zhC0gp/0m/z/v06dOnT19E6tOnT58fO5qiN+ZHIhLQbrYY2bCRz33xl1mZm6M0MkIv6RG881qaK9O0hSZ1HeRNV5IkK+Q+BB1N+4dHOHnhFGneobaeUO5BcvQCc8enMK2EyEheev/THHj1B5ApWG8ztmEz7SRClsvkAhpDIwxvHKed9fCxlAWEVmPjmOFyFZSi1W1Rqw+QqB6u62HiLtoP2VEbRZ2dp9ddg2Sdhz75MdozU0TrneKOfK7ABaplSDJkuYIIPbxqhd70KgPVEUyjxrs+90nOZm30/kPoKOJKv8rM2fPs+f6rNFeWwZds2HkVL332p3nj0D7i1noxKWAcmoGh62jyUkiwYztPf/FzHG/Ow+ZhdNYlMwnZyCi1W+8hWZwjzyIagSDUOWQpuVdm+M53stDtweQUSzNN8D023PkOHvvff4mD+/bgTnUYa1mGYofMZJTqNZbnFzn42l6mT52itGEDam0ZaUBqDVrjyZBUGJZXlrlw5Cjq6DFYWYNE4xlNgCSXDvrSnkdQbFwrpTIeEh0llIWL1gFxqtly750EN15PpDNYXuOpj7zEbbfdzrEDR0i7EUI6IBwQmrE7bmPXu97FzMVpwOP8kRMcPnCMWkmgWzl5KkAGqJJLN8gxwyV2fuAp1q4aZ7ozi5XgNnvUlcVzPXoDkuC6K+hFLcKeYGAt4eiRvSydOUUVQzdJibVG+xaQOFZS0pJEWiKrMNbiIpGZwtOFiJpWfK54+B7ufPpxyrdew5mzZ+nplBufe5KVqEtlaY0NSOK1JivNZZZbSxCUmN93giOv7WNxdg7rQ+5alIBqZsmOXOT4V79H5+g5vMCnFyiysgQP2kpD4OOHAW1XIMMSjh9iOzGhFngaEgtRWRCNhFz7mZ/g5hffx/mDh4qRjHaCm2iG8QjiFJUnhHhoaymPjXHLww8ycf4cdFuQJNhWF08ZZJzgLLWY+fNvkLz6FpnN6bgCVa0AHoQueUiR+aIV5DlIy9ad13LvvfcRRTFL8wso1+XCxDTLrRa3PfNe5rttSDPS1SLbRxsF2nD08EHmJy9AEHD+m9+F3CHUkoqQSJ2jHYnxJHHJp+tq7GiD53/588RDDaYnzpJfsZXn/8UvMzcYEOcJ4VKL2BdFfpEjMEIgjEAgcE3RBHbz+5/kmZ/9NFqGzO87QKe5yvk3fkA+vcKwgm7JEqYOg36JuNdlYfJCYQ1DFJNWxiBNkcuzjkNlbASnVCbvRkXov5a4FlxdmJO6WYJxHbK4sLHWh0fIsgxhDMJYpFaIxhBNmxGJHFWSUHa4/r2P8+5PfoQjJw5itm/EqZU498O9aA2O45LmObnnoKTAyKLdK5OSyHNQ0sE1IC+1arbzGBmWqA8NkbR7iNzFGh935zZ+4vd/m5f3/BXpaJlIdTF5QkkIBgyUNGTWojxJGlCMd6mY0dtu4eodO5g6P0FvYYWN27dz8eXv05ydZ/KVPZBZVKtDyfdxyyUcIE9jso017GobGUWkMiNVmnrHUM8gGfS44dkPcfPDj3B23z5uf+mjjF+znVvvuI3jL/8AoYoMLM/KH/m+zKV2NyOcwl5pHSTgGajIEs7dN5JuGqZx5Q5mXzuGmV1jy+atvOsnX+CtyZOsn5mjmWRUNm0kHavz4s99hpW5eZibIxM5uQsqygicgFKiWT5yBtfxMCN14nqZnhCIDFLhsl4tQSuBNMXZPMYdu+9n5sRp6lriOw7tUF56jbYvIvXp06fPPyP9K2+fPn36/JiRXNo//YMHnErI9uuvIo5asG0TcWeF2tVb2Pbg7VB1YahG48qt3LL7ARipw0iDipAwv0r75GnwJRLNEC7DtkJVBCA9WF7h93/n3+PXqhClOJU6i81VdClAuw4kOZddczV3PfQAwliyNMVkGRgDQrPUWUG5xUZq3ebgU9gFjITDJzjxze/heG7xhsoB3/rS77C8MAdW4zoeIIrq8bQHpSqmmzB+9VU88Nwz4Muicnp1lb/74z8t7BBhmU1DY3TTHkYKuu11yuUQJGirCGtlhsfHQGuk6+AgcOuVIqTX5LTnLlIZG+LeZ58i3H4Z7/z4h6jcdD2DV21j9wc/CKPD4IB2BUZZ/NyAgtX5ZYKrr4axYSj5ZHGL0wvTHG4twM4dyNxSx2GMgHpYJcsyyo16YVdSmnj6InS7WJ1TLVdQQI+sCFNebcFCkyJdPKQ8PEyGpIv+kYD0NsJCHid4QuJZgaMMubUgJZdfs5N7HnyQ2rXXwWCDP/jd3+WP//QrRJ02mzZuwrcST7qQGbZs2cqtN9/Crfc9AK0OUgT4uSWdXCMUFYJSnbbjERkBkYKFNl6lyub774C7bwCTooQl8HwMFrKYz/z6F/nAFz5LWK1gTErW7ZJ0Izwp8NxikgrJj+rFBRLrXNqcOhI3DIrQXgx+UII44sLhQ+w9sI9jZ0/Dygq0W+jA5aOf+Wms8Emx4PhQ8wsRtNmBclh8UMIWT2aK51NCQqfNZuWxySmTxwnu5g089omPUb1pF9iM1CjaUULLUSyqhPkswYY1NCHa+sVrdzyQAYvT8wyEFWi3IEvwqhVcx6Wb9oh0jg0cnCCkURtifWmVV7/2NVheLnJyhobBGmqlEAdLa2ke2e7QQOAGAQxUi9cfa9iwhcbud/HExz5SWOxygWUAACAASURBVP5GB8GVXJya4K//+I84f+IoDA6QhSEMDRNceSW33nE7dmEROj0IQqTrQFBCDAyCkIUY1e2CFtRLFZwsRypVTLu5xdVHxTHUatBs8t+//Cec+fo3IEpheobYWNbOn4elRezb/ehvj+e8bb289AOg0oxOr8vE1GRhxY1jHviNX2VgdAxHWzCWNj2WVYeOSfDKJUgV5OAog6Vw3HV8CWWfcHiExsAIKBcvEwS6sEhGHnR8yIBKuQZItl6+nRtuvgkhi0VosBgD7V6vWJSuW4zU5Ib585Ps+cZ3YHqB6Nhpzv7ZXwKa2ugQohwQv31OXrpIZw6krgBfYlxJ5hTWOiUlNgjJTc768iIozfDQBjKtkWODvDZzBq7cwJU/+SG4fAzqJYTQkKZoJKkwRVuiCzTq4Loszy/w9f/4n1h84y0cr8Srf/qXMDQOS+vgl3GNoFqqkOc5UadNogyMjvGOJ3bj1usYXHDBrQUMCofQQtLJeeD+hxioDkCtTr1U4cCevZw9eQoShW9dXN6eQgJ7qdFMSRct/r7d7O3Js9yT3HPnXTA4wvq+gzQXFsisYmppnj/8P/8zHD7KyG03summG2ivLLHt6qsY2TDC8tICWqWUfFl8thZK5SoxFjHUIDaatNVDxznGC4jrVbJGBVtxIc2RYUh9tEHXN+S9Lq12iyRX5PL/fQ3t06dPnz7/9PQnkfr06dPnx4xji/JhsCBAAbEX8o3Db/KVfa/CcA3aK2TVgPG7b2RZSuzZCXpRyuZrrmQ5TtGTc5Q6ilajSu7nUCrhtHoMD2/gYrJG7nrFxmLjKGQtdC9jtDGKTg0f/YXPcmD/m2jpgLZUrr0GwhDWO6SdLuQZQckjRpHWQpJGGUTOo7/y81zx8F3MvPwG9chghIeOMyKTcfvPfIwt99zO7HffRGqFNYprbr0F0Rgiml0E1+eLX/o37Dl6iMx3CLeMw607WTl4EjINS6twcZ6hGJwoIS5L2rUie9wVFqVTos4a+48eprO6VmSiKPANRDovGqwqDYhyDr22l4uHj6LOnGG5G5Gst4lWm5xYmAfThrJD3GtSTy11J8TEluXVJjqOuW73A1zWGGL+/HlufvRBrrrrRk7+7d9BJyNwA5ayDnEAVlqU1mAlQhaTZUIIHJ2TpxnWEagyIAWlHpQ6CmKDTCW4gsyk5KUAcymL5+3wVwfAWIw2eNIBY7GDYyg/oFf2qI2PMTI8wsyevZAo0k4HR0qSqEtJgyskaZ4xPzvP8X0HuXjoOKSWhvBxI8Vmp8ZsokkHB9ElHxtZrsirjGZVju8/zlLg4m7dyg037mT20HHqrkuEJnUiXjv0JsfffJ1kvknZrZKUwQpLnOQEJUm5HhLnCoSD0ALfSDo6K3agvgeVMmmakxiNVy6RVUsQdUimZslPLlJTJYT2mD95lEMHDmKbHQyWqBFgRUY1csk8l9EnH+Da3Q9jSyWS0wu4nR7klnxTndhkBLnGKo0OPbIkZm1umcs3bmXp7Fkwho3XvIP7fvnznGt3oLlGXA5JazVyAxgPx28Q9FzMvgnOvvwGenSQax64hwc+8gxHJk+jhMaUfVSek2YGv1xDV8too/nYL/8K77jrbo6++io1KRFZglGavGyJhCLFkEqJjXKEE+JRwqx2SM5McvbQ61Ar8dizTzN0+WXMXTgP1RI77r2XJ158gZPLK+iL0+ilBQ7s+QEv/A8/yf27d9NeWGR9rYmWsrC4jY8W4kmuIcoJk4ySK0EalGPRsrB8DWoHL1VkOZjpBfzaGDqTEAxw9tQF5OAwpcFR/JU1Yp2CK4smuNyiewk5AlkpEQnN/MULHH71dZK5NRgdga2bmTp9gvTgaTZVa6ym63B5nW2P3Uckc5L5RYZyh6qyeNqSuYI0sNjQpfrow9x6863kiWL53EWq2iXwfITvEvkWbVIQkiAoURkb5+EnnqQdx0xOTGJVhi9dAivIkdhc4UkP200JMkE0MY+dWcVJHfLZdWRQw9aLvK80SYtmNZ3CyCDvfPJxZlaWQGdw7ZU88IHnmbswRaVRY727jnV10cY2OAidmPLmy3nsoy9y+JW/Y/HNPWx892O0pmZJj57G1RZXghGWlhTkjsaWPB594Xms69KKU5hZwlcevpKUejHl3IFegs4sZSupGInE0k0jaIT4D9zPZe9+lKbr0Dp4uBDL6nVMBtKUUE6Z2Lq8/vIPOHbgEKQZE/v3weIC8wePgLIEkaGMS0aKkRJlNTYogeeB4yH9EGkNjjXkUpOPVbCpYnXvYZhvQpqCY6hffxXp0gJUKjz2C5/BqZaYOXSAdRvz5re/jl1tUosVqbRkoSTsBXRzjd3Q4L2/9T+S+lV8VaHR2EKnUuPKn/8Uow/cw+rUFPXRYbZs3YQi58zBfRB1oV7GGR1GZwrXCKQx/UmkPn369PlnpC8i9enTp88/BfbSJMUlEWk2Xuf3/st/ZTaKePeHXiTcuInFl19n4egZ7FIHYgUZzOw9iJ5YYDBKyMOAgd/8aTqeC/vPUd88zq4PP0n4zN0svroHqjW23Hk9YzuvYu3QWXzj0o1STugELYqadIY3stbrMbW0xPrJs3hBgINGOoLcFajQh14X7r2XC5OTXHj9h5iZJmUryHyJ8D2MUqy7Fs9x8KaapEtzmBB6gcfDjz7OqZMTID32vPJNGC6Tz8wzd/Y8nTTnC7/wK4Qbhpk8sx9GqhCnlKXEzRS5Vgil8H330nCFxkRJEc6Miy8dJJJaDjUbIHsxddkg6mWQGGhHqMU1uLgIuYCsy+6f/STlreMsnTyDjgw6Vwz7FTpZj403XMno9nH2/+mXqQQDLB89xZEvfxVW2xgnp12xxGGOFuCaokbaNQbXgKcNrjIIrRGAkRbjW0QOg9qlhEeGQ4risjtvZPDa7axnCbYT4Vj7jxqEDIAUCFnYSiLHhTwiDj2iXpczr78Jyy3IFK7WIBVWaBytMVZR8gJEkqOaLQa9kKrjkbQ6WJOzMlTiis9+mPpT93PVz73E3JuvE8/OIW1MubaBXrVCuVrl4pH9sNgkWV/DGIsarsPqahFGnip6tRpGGKy2iDBAJTm9Xo4b+lgERlsGBho8+4lPsOmmd3Bu6gImdCFwQWWkvs/Pfe7nYaDB7GobckU+UEE5QGZwV3uMWEsNh1KiSHsx1UqdKM+Izk4yf+Is3cVlLr/5Jh5/+im2XbuDMwePYEdzetKSCINrBdVYUplvMXHiLHakAUbTbaWcOzUBtRKXP76b6z/2Pm5872MMvONqlibnqMx08NIUccUoXbeH7a6zcvoEU4fO4k6u4EUGkxqsJ7EDDeI8gzDESo/DL7/K2aPHUYsLqCRC5ZqttQpD3RwXh8T3qCWCsl8hSlPEw7v4uX/3P+NWQ6bfepPS8CC+MsxNTtGbmYYkZ23qIkdm5tBrLUStDCqD9irHvvtt9n3nW3RbHYyyGMdjdNcunvjYR2hGCd2Ls8gko+5KckeReorUtbhG4hlJ7Of0iGGoAo0K7/nwi3RdQefCOco3v4Pgii30ZqfRi0vowOPzv/YbXL1jJ4df20e13iDTilxHl6YAwUkdbGxgoAQjQ7DehdllekkLtxxwx6c/xOzSPK0jhyExlDKNCz+aQjKuAOOQnW9z4eB+lpMO3HUN6ZBDYlKyNGGgo9ikygS+z1qvS9ztcfTgQaZOngDXRWiDYyyBlfQaHj/1m7/GbQ/ey75jh9BYSo06UZZwz4P3s9haI/cEn/0//lfe+Pp3iiTpKAUpGN66lUjntM6eA8dj4N0Pc3piAnX8DNF6G2ohDFd49mc+zdDQMNOHT7Pr3Y+wnPdYvDAJKzHpnpO4ByaotzJ0HBMlGVkgCYaHUHEEjkMUxbTnlkhX15GZpaQFwhgaXoVM52RWE/o+Ok5QOkUi0BWfXQ/cQ+nuu2nlsPwX3wTTgztv5anb7ufMmwdJyoLYvTRKNRBCFEOS4/SiIldNazAgjcBi8DwH7chiOtVYGBoEY7Bxgs4zrFEoodEmYnViBq9bnPsMVXnxVz7HFVdfzokf/hCSjFN7Xmbm2AlIc3Y9cj+pyknPTlElYM0HSj5KyuJKlyQo63D+/ARPfPxjHF2Z5/KH7uP817/J6uIadSl54P1P8vpf/gW9kxPF8bnlah74+AcYH97A9CsHKHse1vZFpD59+vT556QvIvXp06fPjxkrQIi/n0QCWF5fZ/PGy3jzwCEmLlxk9fwU7uQs2fKl+mltoFKGbsJwUKakFVGjwq2/+LOUwjLL332VTEDig9lQZe3oOWyqaLdXCMbHyGfWcDNwy2WSrM2L//7fsOv+Rzn2Z3/N2JNPsOOmm1h47XX8cpm810FoA1KSB1VQlqseeJhdt97G1FuHqDR7ZEAscgy6mAJZWWZtbh6z1iN1YqRxyOeaLC43SUjY9tjDrB85WQRCXbWpqCJvp2zdegW9PGMyW4HWImo9QWSaurX4QYiS5pJtyeAJQclxEbnFExJrLEobAiHw7KW76NojBoY2bUINVDErK+D7hWUm6nD+1BEYqHH/Q48w+dZRnEzgGEsrbcHmGqO3Xktl5w4Wvv99ZLlEZbWDk+RYAb4VlBKLSyHuCHupzctSCEHGYE0xWWSFxWDwjYOvHVJcOq6GALa/616eePJJ0jRh/sRpXPMPSlEvBdriCOwlEUmXw6Ilb26GaL1ZbAg7EaHSuNZgpCqmS4RAGYUnHULHxUeQxwlJliJcB+k5RFWDvO4Kttywk32//x+hUsbOLlF1AxY6q1z+zjt5z3sep7k0T+vAUTY3RnGtQDsCtXEjl123i/bURW5/7jniDaMknQ52rUXJL1Hyg0ttZwaEg+8F7Lrjdk7MTbO0OM/nv/SvOT0zQ7y0BG7I7bfdwfkz51g6dwqu3sTuX/o0AzfuYP6NvUWjWG6JrUWhikgiYcBxQAQQhOCFeFtGGds8TrvVYu7gUXTdQGwIcoFAIpCgU/zaMMn4APTa1Ac2kM4vIso+26/YRiftcvbYUVamp0kvzBCsr1PHY3l9EYhguARjDfLleVQKDRMy5FQoa4+utFxxy42877nnmTh9gbQXoZaWCUsB0mZobbGuoYtkrSRRvkAqB0c4aM/FbdQ48/oBzr+yFxNFqNUVFqdn6S2tIstVqDcAl/Ebbubu9z3P2tFDJBcnkRUfm8SgLUO1AbJMYwcGKA8Ps9jpMLt/H3R6BFbgCUPqF/YpJSW+kfhaMOb7xFFExXFJm12cnmLi4Alcr0p65gLZ/CIkOa7K0WnCW4eOcHT/QfRaB20F1nWov+Nqwi1jpGcmcSLNwOZtJPEaYNi68wbU7CImT1Eq4eLMBaLjp4t2QScgjWOQDloUzW8GCdqFnot7005ueu49OLu2MXbHO1ibmYP1Do3IUMOSS0nkgA1LUKtCuVpMxSiDY8DHEo8PkPkuR04co33qFAwOkK8u8+THP8LIFZdx8MQR/A3DeJ7P1Gv78YMqOsoAQdzt0Z68WExeuS7p3EXCK67iuo3bWFpcwQkctt9+C9fu3MnMmQssHD/P7LkzLKoY5mZ56PGnaJ2aYFD6eFpjpItTCshciVpvQ6kMBrpLK1ht0Vle2MkuWQTdasBq2kGXXLRbBF472oIE5VjaWUR1yw7Gq0PMnzwH9TI333EzQ72cU4cOg2fBFJOSiGKKzFOaKhqpizZCIy1aSJQUWJ2TWVNMsDmCu59+mnauSDstEIJQOghfYNBUXB83A6xGpzH1zWOcOnaE1tQ0UltskoP2oB2xND9Lev48ZDAQ1OjouHhtKi5sl2mOXu8RVEqs+7A0O8Ha979b2KUHhkgPHmSp1yE5cQpf+GAtAzu2MDY+ztShU+jJVaT7thDWF5H69OnT558LYa21/99/1qdPnz59/v+SAmAIMIAFA1mieOW1N9n91LNQqkGaMKgSgkywUA6gLLj82d1MfeVr0ItxbIwuu3DzQ1z22D1M/+AH8N39uHlCZbxBa2EZkFD1YOc2ODiPUBK/Pkj6yK4id+XYBZ586Wd45fwJAmtof/1b5DPT+J0mVVeispy244L0wa9wxaOPEixOcWHPK6Q1t7DddVI2rAoyz6fpmiLjRXQLX1alDqmBy69k5623MHrDdRycOk1twyBzhw6wZfdjzPyr3wEp+dhv/ALf/5u/IfrBIWoamr0WrUEXz1pkqnBNYQMUWuB4LgpBlmuUsFgHtFZUyoP0uinhzh0k01M8+69+jT3f/hZLb+yDtS41pelUPLhqK1tuuZ2ZL/8NUniMS0u3FNEWGa4cRMUR1a1bSeaW2dDMSAc8Vko5ZJrtTUs79Ig8iWMNrlE4lsKCpjSZ/vtMIEmOYyXaLdOr+TgP3oE3XCf5/neha8A4yFYX1xRtSMWqKEKncSTCkVhrseObufmpp9g8Nsrf/offhV5MrZMQaoUVhnaoyQJTHG8tcCNNzUg86eF5AXno0xOaXpqxs1JlJs3pYNn+6CNMvPIdgqhFkFnq9QbLWWGHY6xOkBj85SUCJIFfYlYn3PTYw4htmzj4ve8y8MzzVGNFtGcfzf0HcNAEZR9Z8YmSFJPkgAejDUg7cMXGQhBtdkAHCFnUqsvckHZ6VB6+kRxN9spBhrRDKzBotzhHxjMXgcdaJcB9xxX4w6M0z54v8pxmZovzaLiKE62xs1Msv9Nll6Ti4cgyOnT5ya/8Ad2VFl9+5iep+wEdFWMllwTN1qW8H4mfW6rSQ2cRWanENU89zJarruJbf/m3qJl1bKSxjoXx4aImPctAlGAtglxRL1eIoxWcQOMGgm6mcYWHm1ocHNKhGsoUOVe0ujBYgwBYS6gIB5lnoBWZsehKlYFNW9jx4CMcnV6g9/U/YcyHtdygRPG2R+s12gmkiMKGNFiHtVXINX6aUw4trVJxnoBDvecXVik6RI5GeQLjl7CZR9rTxToaGuDdn/85tl22iT/57f+N5oULOKUautWlEVRYz2PkUI3bP/YMJy+eQX7vAFvaAcfSCHbfTHj1DnasaI5+5SuUhkrUMARJRoalk8ZEVuOPDpJ1OqAlnpIEGrp+wOO/9x+YPHmak3/3t2AMIyOjrLx1APIYSmHxvjKNMkWzW+mqqwmqZbqrq6iFZSqOi2y36WKQjk/o+WwcGWNiZpJNm7YwPT8DAxXIokIJRlIOBxlyQppL8xjhEdscPAnaULthJ7UnH6QuQ079/pdheQVkAhWKidLUoZGWWPcNjNS498XnOH7yBM3TF2CtRSkxpHGMF3qkaUKtUkVog1EapRR4DsJ1imkso8AR4ChqN1zH+OgYZ199Ddf4uM2ouNYEHj0faJcIhsZIu4sQtWhUynT9FJUmYH1wXK576jHE+AjHv/cqHD7NKAoNZAK6IeD6gIPIFNIP0F7IwI4refDJ9/LX//3/hsVFyFOIejge6ADcGDwNwvEpNYZYbS6BK8BoXCspOzXcNKJCwAwJVkLolVBpxoZ334+5djOtP/y/EG2NqELX86CdgymB63Pdhz/IyN03cvDwITpf/S7l1YTNvsu67rISKGySFeO7Pcvg6Ch53MEaRblcZm5ursjs69OnT58+/6T0RaQ+ffr0+bGjALC4GCCnCIr98E/9LM1EseerfwNpAvE6A+EArTSBUplnf+pT5Jnmb//qL6HX4uaPfIiDf/QncN0OgpJDeuwopBF3v/A8e//ozyAcglbMJ/7rl/gvv/RL0Bjl0Uce5duvfJexy7aQdiOsNmzZcQXzZ87T3XMAzwuJhARHMHj7LTQnz0IUc9PHP8mh3/tdMClelpJfutnra/AzhV+qErsQx10ILikiVhTNSq4LQnH9Sy9w5uJFtm3YRDfKmD98CuqD3HzDLg7+4X/D86sMdTKqgc9ie5k8cJCug+96ZFnxmZXLZbIsQ1tDrjXCkeSjVezKGmFpmGS1zX2f+ig7H76X3/+j/8w9zz5HvVzhG5/7RcZ9n4XmKmzaVNyhH98Ci0swPUOj6hEtreM6PgOlYeJOj1q5wYzuYbeEQArNdXa0YFGDM9AgTWM8z0MIgdYaZYpNob2UPuxYjxQNm4e46ePPcejcCbbddCPL56bo/XAfRBmsrEImGcQnyYssKNz0UohxmeGuZdUXxSYtzcF1cS34WYrnSMJywGJ7HTFSxXZzMC6Uqww+dA+3P3gvr/zpn5PvPcoG36WrYiqpxgjomZw0dHCqHipL0Zml5FewlElMDjYG4eMhMVjueuxh9ux/vcgj8UuwvI5wA6yXQsnHX/YJVAajozz1e7+OdBz+/LP/E5X37GbHXbex90v/Fozlg7vfzcn9Bzny2usQBEXOTm4otSN0OSTLc5w8oyx9Utf8KLg50OAjC0vj5RupPHIn3kiD2T//OqyB65ZQaRc31ZTTFIUmKuUQmH8QCi2LMa8sAGcAoh74Ln7Sw8NghSF2DdYt/s7PJALIpCyWsgVXOORZAhKuf+B+er0eK0vLdCenCSt1sm4bz5VYocgdgxUWMATKQViJIkAFPte88y7GxsaQWcQr3/pqkcOzDg2vhNY5xhgcTxJbBY5LLgQYS5nCjsWujYXIMb+OmF+n3Bigp7owUOO9H3qRo8cOM3H4GKy1ENLBdd8OSJa4WhaCrEgAi0WghE/kO8U56zjgVyDJi//xJWalzaDjEwYBS50lyhuG6aQ9ROhgWz3QJRgY4FO/+at8++CbTH3nZViMaSQ5yjEYYXBNhsnVpQNaCCFWZ+C5kAucKGNgcIi1vAMUeUCDXojKUrxSQIqhpyOQgsANSOMMAo87HnyIzZu38J2vf5u82cGzAhFlZA2fRMfFuRMG0I1AeAh96fIkgeEKd3z6E0x+73WWDhwlbGWUrEVKyapqE24c4f7HH+X0mQmmDh8DlRH4krQbI6ouNjXITDDs1mlbSapS2DIG7UWe+PznuO2Gm/jSr/5LovPTECcM4OGhUUEZ7fqsG4vVRV9nrRQiuz08ASuVlIc++gKH977G2sUpyBJkpYrvBCTzTepOlbari3VtcgaTHNdAVvFoqZzqnXfx0Puf5asvfw+OHoWlZRzrIts9/Eth2Uryo/BsYzL8S+dIJgQ28Iv1tWULl931ANN/8TWwCtYWYbBUhMeHJW754Au89Qf/DZRmxAnRcUqz5OMoSy0ziEvTVXmpTM9x2f1bv86aNJz5t/+a7sw0RlKInkiIFeKqawkaw/iDA4xv3MiZ7/0QZ2GNatzCr/i0SMkSA2ENuhLcEDlUxreKqs5Ynj6DUoXrFmtAy+ILNqBfHdSnT58+P0b6drY+ffr0+XFjL9VJCYmhmEzKgH/3n/6AbTuv5eTkFGQpJF2EL1HKIIRgZnKGubUm8doaVGo88sEXODk3gzk3iT5/vggwDj1uec+7Ob3ehFYPHJclR9PROXQ77Ni1i8ljJ+ieOkM6NUE6e5HlxQWSU6eoZhrPCUhwQAhueuE55LXX0soTnn7hBQ7s3QuddYTRhBpKCjxjMFisC9baQlwSFk8Xd6tdY9GyGCNaPnwIM7vA2uIa3Tf3g1NlZMs4D95/H6cuTOJ2Y+J2C1d61IcbKMBoi+t6KKMx1hQWLyA3GqU1Gls0UQ0Noxab+NJjdmUFI2Du7EmWk5yVqVmiYyfp5j3K11xLddt2kjjlg7/4i4Sjo8wfOkjeiRgqlUh9H1+EVGyJXpIQN8rgpJDGyKBMo53gDwyipCSKYqTjIqWDppAGtbWF4IDAGhfjuDBUpXHVdkojQ8xNTJB+5/tUtl7JHXffh6lX6cwu4CQZDoKsHLLpXfdQu2YHneNn8BKDt20zWTmAdhvh+ghjKLsOeRyj8wxpLDrVMDAM5TokMclABWfDBjaMbGD17HnS1SWMUgjhYH2JH/oEFZcojXGDEOu45KlF5aaoXB+oMlCpEa03sRg23bCTx973NJnjsnzoGBtqI5Q6LaKBEHROKRhi09A486tLzI2VWe+1Wd53kl6jytjOa0kcj+TsBMe/9k1ELyFutbBSFu12vouXptTCgMCVaK3QDiD+vhDMCBCBg5cpuu2IbrRCZ3aG7bsfY/3YBKbZgYFBTJJS3rqZDjluxcdEHZAgtcXLDV5uUNKBxlgRipwlhJ4HKkNgiywrKYpz00qkFbiGv5+Ec2Txe6VYXlgg7UZEzSZkGaHnoVWClKJIhBdQrASBawRGCHLHBenghCWM1nTjNqszE6A0ZRniWIu2RVuZlaCsRmKoVQJC3yGhTOOaa7jv0y+xFHXJ5lYLm1DWAZlCFnH6yHHWZ2ag0wXHRVhJgItjJY4RaFnsrREKaQWOkRgpyR2Xxg3X896feIkrdt3ImT37IMuwocNgtUHS7hKnEeVGjXZrpZhQiRM8GWKcEvjQrQdMnz6FmbxImENZqcI2JQ1KgrACKSSOcIrmPWuKH9eHVBUBznHEcOgRmuL64klBN4vRKgcJnh9ishwvCNF5ysLKCtNTk3TW1oowem2RRpB4Flv1uP7B+7hs13XMHz9WFBBoSyBdgmoZb7jBzt0Pcvhb34HlZVzHx0lzXEdgXUvS6zA5N4Vd7ZCsNnGdIiBb5QahDK62VPyQbhxRrg2SxAmUA7AaU6vQXFvhzN7XIdd4RlB1PZzQZzHpkWgNgw2oVKFeJVtdY6gxiO+4tHXK/OQ0ycJSYSdNMmyeoZIIURvCJhrtKZA5rlIE2iCxRKlGlSuIyy9jcNt2FJb81Cl0kmCtwKQ5jnAQiOLYW3CtRXrgYfGMRVqLEpbG/e/kmU99itcOH4PYMHzLragzxzBBCK6Df+ft7LzpRi68VYR2+5nGs4LId7AIpLX4xmCFwFbLZKWA85MTzOUKPTGB7kXF92BYBuEwet+93PPgQ5x54000Hpdv3EKmoXf2JE7JRZmcRCnIDXJsHLuecOfT72dmcQ6lc0qOwy/+/M/gyH9gGTeisFA79EWkPn369Pkx0heR+vTp0+fHjaXInhDiHz382p430GnOqe+/DOUSoYpRucUvlVHGkKmUeGUZ9fhqbAAAIABJREFUrAZX0HYk9XZK6+IcG1WA1+nidHKOvfIqt3/wfcypNtd88sNMfucVOHkBjOT8936AXWvhCAeJi8DF9nqEYQmbpFjpklnA95k5d4bWehPaXQ788Vdw8aHZoqxEcfdayGJDLlyUsphM4yhDYB2qmaSsJVXtEGQOJjEMVcZx1g3jLRi0FULfZ+nIUQ6+vpey69KdnaexeQtpIFk0CWnZI08znEuTAUIIcnVpistYjLU4QmLrjSJDYz2h4VTwU835Nw5CJ0XtO0m07yQNAlKZML51O/e8836a0uOt199k5tRpiFOGrKXZazF0720sTk/SqlSISw6IjPf/9r9gLU7oHD/LoCzRFNDMEyoDdWKVkakc4ThYazGmEAilFfiXmtt0ErMyM0P7jQOY42ehVCc/eY7pk6cYHRukeWGShhPgeB5RFjF2y/Vcs+sGJuYWoZOTXjbCO597iituvInJffuwboDq9GgQ4BnB1nAIm+SMXnMdj33iRa58/F2c/rNvsPrym6TNLrHtoLWihoM70KCtFApIejGh9LFWIISHdkPe9fwHeM/z72cgN1w4coLBWgOlDBdPn+bg3tdZPnaSxuAG1hYXST2LaWcgy2QVl9VAgY6JD5xk9ZV9iHqJZz/+Kd746rdoHzwKM/OMDg7SWWtS80uI3JJHKWXpoxyDDH28MMAKUEb/o7BxJSEVOaH1GCSkk2nopNQyh/HyMKvNNa56/2NsfegeJqfP8ehHP4ArYWXyIp51KSmBr1w845C4Hnd+8bM0xgdZbq+RN1fxVSFg+BpcLfCUwNcC723xiEs157qYrvBdH184xN1ukRkThJg4xdWaAIlnDK4txCfPgESAddCiEGh7K6usLsyxurBQ2OEkkBuyPEP6PjLwyIQshFLrIMoDdJXFiJyYmIX2Kt03D0MrhlqZZ/7FFzh59gR0EsqJVwg4IkBEGYECXxY17lpemkBxQGB+FBBvhCRzBYlRTMzOMHX2AtnyGmwa47Ff+mnmm2u052dQAzXSXhtnwwjVwRGytS4V7VDVOTpJWDp5CLO+AtISZhFWZqR+QuoplBUEXoDwHDKjUY4tQp5DH5B4ViKkg9+o0Wp3SKQgDj26KkW5Lm6pjCM80igubGRSYlyJ9DysFOhuD6UUohSipaDsuoyOj1MJQg7tfR1SjS88vE6Kk2mSXkQWJZz79vdgpU1pcIxsdR0PW4T6G0tQLiFzQXc9phxU8DTIJCfQ4GgIyjXavZgrdt3EF/+X3yLcMMyp1/dA4NM8dYqpY6eg3SPwAqyx6NBhxYvg6st558c/wM3PP0X8/7R3p0GWnfdh3p+z36232TGYwU4SAAkuoAhuoLiIEimKEiWGEEVGm2VRlGwrjqKqOE6kWEosVWzHTimpUjmppCJHi8u2ZCUpJ5ZEiqZIECIBYiH2ATEABsDsPdPddz97PpwGaFVSdb8E357fF2BQjZ47955ze85z3/d/jq6xx4L3/dQ97MQlZ6cX4cqCA2VKf1qSLivSrM/wxpO8/5Of5Pibbue5Jx6FJiAruqAftS0tIW0YUcYp1Yvneemr32D67eepd7ahKEmihKBqCPd/7jSvHAshlHFE3bQEFbSEVHHEcjnn8cef4s233cGHP/ZDXH7ySeannqLKK1jbYo2EJ//8K7C9C0mPrGmJ65aojOiXLVHbkscty7gLehxY45qPfz/T+YTmoW/Ry0uyMCMLUoqy5Xve+37isuWZRx6huXyRc+M93nH3u3j5/IsUu9uUVPzs3/1lXqgL5s8+wxvv+TEmQcXkQMov/eovc/qxR/n8X/spwgAqmu5DiDAgijEgSdJrzO1skvRae2UlEiHsf1A6njf8r//sd/hXf/jHfP0vvgptRRaVEEbkQJj2aCJgYw3qmu/+6z/NV/7g92E6gXDA5tkxxwjpZT1eCnOuDANYi+HYYd588jYe/d//7+4260UJRUE/y0jCiCgKaJuGJIuZzSa0VUwR9egdOMDf+a1/wj/47d9i9thjMFqHsxcZtREBDfOkm4FL2EBeQBPRJ2EtSNiOlt0n3A0kdUAZhlQhlHXFaLBBPZ1xpLfGYnmJ4MAB6l7M9mSP9YOHGV/cBmqOfOhuLj34AEEdkczmRFFEtB9qqqoiCAKapiFLEt79n/5HHLzxBv753/sN2FnAdAr9PsxnDLM+adOymO6yjBs4cBDCgPjEDVTLvBvGu73N2nJJOUg4+amPceL1t/Pv/vFvQ3/E3T/5Ge69/6vw0EMw2CQ7s00+iCAOCKKYA+sbTMcTmqKEsqbd367TBYeKMAwJk5iGluVySdbrkS+XrG1tAjCZXyXIYZ2EJTX55hpEFYQBbB6Gc9PuMQYhxN1FNkCUxlRBDU0Dy0l3a/Jl1R1bvR7kIb20x3KyAwdSyJJuO09eQtpjfTCkurLNRjZgXtfQ67NXFrC+Dr2M4PRzpEBMTDLskxzZ5PLF8wSDAe32mAObG1zNr3BtPWS3yEk/8/286WMf5Ikv3Ev9u19i2MK5bArBOvRGMNu/o9Vkh61DhxifP89aNCBpAsoYdtfaLgxUdXfTwqobWM7+IVZG0PRDejsV68AuEUUUdst1mgh6CVzb72bd3H4Hm1HC8NwlZo89TbE7JqugpVuFMxmk8PH38q7bb6e4cIWH/uffIavbbstcDbQxTRDS0l1gt+wvaNj/9yiKCIKAIs8ps6h7rYqSuIL1JKYtK6K2enU2VhtAFXTfswpCijCijSIImm6LEA1RFBAsF/TSPvOi7mbj0A0XTnt9iu1dkmuP8/pDm5x65kmqfApVRlpWNHFGNWroveXNrC0CZvc/QrA/eW0jXaMuK5o4pA4h379hVxNC3BRkdbdNrw5CpmlCeM0RkmGf/MnTxOuHGZw4wokf+z6e/NOvwIsXoG248eZb+OiHP8xDX/86D3/xKxysIJnukEewXE+Y1zl1WTHYf96Wcff7UaZk0RD2ZwGFWyPe8s7vor+1wVf/j/+LYFp0sXhjRDXZgdEI8jl3fuITnH7kCfbOnYcrE9azPotiCmlMHXerOaHlgx//QU7ecANfu/cvOf3IYzBbkA375Pmc+JrDVBev0I97JPOCYX/Ibj6niUPSzU0mV7dJsx7FfEaaxPuhMCRoYbwsumO4hV6ek9GyEWdcqaYssh5NlnWrj6IW5vvn2HCNuCihqLrVZftbFIN+Sl0tCG68nnA0pB4MYbIHbUty/DjlNx+CsuDmT/8Yp//kyyRXpmRlTbUYc+z6GxkdOsSTp1+gqWBtMSZui/2VZftbP5Mey6IhytZomoC2qYiiOWFLN4dpWRBFEQ1dQOrmZAFRD/KCsKqJQ2h6EVVbde+jTQJBDyYTBtWSpD9gb7Hshuf3h9RNTtPUtE3FZpoxmrc0tEzChkmfbstqWMNdd/ET//Ev8ZWv3ceZf/Q/sF4ExGFIGiTUQcR2U9MGDdxyPbQlHDvK3e96J/f+j/8UBj36awNue/d38dCffbEbvD8DNrfgmiH0epxoepz+whdpipw4TShgf2sx9OgWI0mSXhuuRJKk19wrrb67ygyBfhyw3hvx6//Fr3DN0SNMx7vQlGT9PkWRE40G/MBnPsMzzzwF413e8qEPsHXbzby8/TxcvcCyrUmPH+XbVy+wqHJuufF1VJen9C/NOPPEUxAGbB0+RFEs6ff7pHEItNRVQRxFXB3v0qYBa/0Ry8WSMi95+OEHGfVSJufPE+YFI0KCuiWPAqosgF4AacjhO9/GfG9ClRckYcKi39KkUCUBeRJSDUMG73wLxewid/3Sz/PcYo+9yWU2q4pyELK9fZl0a535zpjBxhblbMGJ227j/R//QXZefJFiMe8G0AbQ1DVJklCXJXVRki9zTt/3MI//u6/DrIKdKVthSjbPOUBIvJgSF3M20yFTKtoWmMyJo4z63HnIS3pBQFyWNGHExWee5YW/fHC/7O0xjgPe8d538+J4CmfOwNFrCHsRbVsDLb/6a7/G295+J/d+9V5o2u6udkAbNJRxSdVWRFVNUpYcG65TL6ZAS2+QUZZLohCiuqGXZtRBQBnHvPcnf4L5xgaLU6f54M9+nnw6Z3r1KgwGrF9zhHwxpymnXPfd7+ZHfvanyQ9vsf3tpyEMCIuAE1XGrCko6wUEDf1pQxW13PrxD3Hr+9/Hi488Rj6b0QtS+k1I04RMlgXNsN/Np1kuyIKAftIjTGLytma8d4X46CGaxZwgiKiLnDqEXg4LWsLbrufgtddw5dnnKZ84xRoRk7YgDfvUsymwvycs625z39bd3ZSaoui2Ox0c8gu/+De59fbb+dY3v0kbBF1MooscIVDXDaM2JQpSxv0G0ha2RrAsYL3P9/7i53huMoOv38/yqW8zuXCF6uqkm6UUREzShDyNIYsgn3HppXO8/MRjsJgT1BVt0FKFAXkUUkQBVdTFq2UMRQxVDHUvpixyyiqniUMYpd3VaRLSpimL+QSSmDZsaMIunjQBNEG8f8YHhLRQlcQBJEFEXRSEhNR1SZgmlEUBScZNb7mTn/r83+B1t7+JRx55gvd+5Af45vkHadpdqGMOzgp6tEyHDXzuY6QnrmXv8VMc2G7YSReUAUzqgqDfre7qtll2gbMLdC0BbXc3QbrY+9mf+nHe/c538cC99xHmJYu9MZe/+QCcvQzTJSxLds+f55tf/hJnn3+BOs4oW5imIbM4YpEXEGWkWZ+y7i7iwyYkqrvXoA677YotLetHDrFx5BDbuzvsPHuaQW9IXTXUUcTht72ZN77vvZybj3nT+97Lk1+9D8YztjaPsJzs0u8PmC8XtHXVzVyLI1546QzfeuB+ds6+DIMeo2zAYjqBNKIpljAccv111zGfTCnamqaX0Ov1GBEymU2717MXUw961FlCUeTkywL6Q+hnEISEWY8oTlnmc+ivkadRd3BuDGC6C2tD3v3Rj1Jc3Ka9MqbfhiRtC0lAlCXUec417ZD20pj46pRwe0KvjilfOEtzZQZ7C66/9S1c9+H3cebhh2iu7FJUFWv9da7Op1yaTLvB+01L2BZEbc0ygWUaUSUhVVXCYECYlwzDmHC+IAxqIgKCqu7eZ5puLloT8eo2r/jYSdogIS4qwhZCGuq2JsxS2smCUZCQxjFlAsvFgrVsQAy0ZUE4yGjSiLYHy3xBUscsQpj0AuiH3Uyq49fylje/jT/7jX/I3n3fhKBbAde2LWHdkgYJ03oJWQxBzi0f/x62ttb51v/yOwy2DlBe3aUtcs5dughxzI/8wt/g6fOXgIbv/cXP89yff4Eb1g/wtz7zE8RVQxhBEHRbSVvAxUiS9NoyIknSa667I9C//8vJ7pRjR4/yX/3Xv04aRizzGVmckJc1bS9l48AWb3/Pu3j4sUdgPufUM6e47pabueGON/Li82cgjJlcucw1d93JlIqr5y8wyBv6y5qil1AHNcuy5FOfvodv3f8NqiigbhsIWqqmIkrj7lPpAtIwJYxiJrtXmWxf7GbkVBVp3VK0NQUVpLA/BYhP/NzPsn1pm+n5C6T9AXlbdn+oV7btJQHvvudHuHhwnWbU5/VvfhNnH/g65WRGs5ZSBBVNkkDZUs0LiFOuXLrM0088zvTKNk2ZMxgMyIuCpqqJw26FQBSEhEFI3YQwGMLumCBLCdqGKICiysnWRlRxyOXlDAJI+wPqsqJe5qTDEfXeLtQNlCUQUNUhkECYQJqxvHSRozfdwNFrjnFhb0q7XNJeutDN8gkjer0+L7/0Ms8/e5q2qgnqZn/1UUSdNRCHxGFASneBF4YhQRKyqAuqoKGYdxdtTdPQRiFVFHLX93wPr3vDG3j86W8TDEa84V13sNzMmFw8wyf/5ue580Pv41uPPMreiy8zX1b0i4ALT50CKqK8JStLyrCljiAOQ9bilGU/hc0RH/rwRzj97HMsdvcYBjFJvX+bbwI2X3czn/j5z3P9bbfy3CMPEgQBbRTSpBFVFtFMx1CXpIM1ismUQZqQxinjpqbaHDHZ2aW6vMfi+bPU5Kz1eqyvbTCvK8JhRhPU3QDpfga0FOMpLRVxP2PZFjzwjW/w6MOPAF1siQgIg4Bw/5/D0TrlbEaTpuS9Ao6udXfYWj9IFic889WvQFEDMQQJLAvWo4T5YkKdJNRRC00BRw7CuYvUeUmwLGC8R5ZlLBcFdRZTZgl1EDBYX2M+mxBtrtFWZbfaZD6F0bC7S1hTw+YIZpNuBdfemGjQo2lb6raiaBvypiVvWuIgJa9K0iSmaWvapqUqc6IwIIrT7iaNdUnUS6mLCtqWZRuyyAsef/wJxuMpLz72BPHFK2TTgqhuGVQJQxKmRUPz0kXK+x+HJVTzCfWw6lZlVSVVkrCczRmMRkynY4ZpH5qWqi0J25CAgKZtKak59cLzPPzwQ9SLgrioScKwm5NVdmOeaFpII1hf687tZUUdhNTlgrZtYOMQbVETxBll1ZCGGe2yJW4iyjjshna3sLGxyd6Fc1x4+UV2dndhvqQsarI04/Z3vZN7fuKzXLp6hTMPPsBzDz7YrbJrIKxD2mIJYUCURARx3M3WCoC6hjiCMIKypFgWbB4/xrIp2bj5Rn70nnu4cPEiZ184QzocUIQt83xJ3DQE/YQqposqowGMd2F/ftXoyFGO3/k2Dt94A5effpqiyDl48DBXywUEFRzY4Lof+hh758/x7u//KB94x7t5/ltPwGxJtchp2oY6aKmoiMKIXl4SEhC1LUHbspjNCcKYtqohSpmPZzz32KMwyYmDlAODEVf3rhIc3aSe7cFbXg9vuIH6/DmafEGZJd18rySFuiTaOkA9mxM2ENU1QdwFmwBo6oasl1HWFfGoT50vIWj5z37zH3Lfl79CWtfEAVRlDmlIU1VERCR5Q1PXLMOaIIyBhjCARVVSN0vaJmfzjttZ5jnL2Yw8biEL4fqTfPQ//CxBkvH8t56gOnu5e5LbCoKIMIrppRlREhGNBiyrJQff9kY++qOfJJ9NefHRp0gXOYMw7GbG0fLm97yHm667nkf+zZ/w0U9/hrWD6zz1F/dy3XCTz33iRyBNAQij7j3klXFIf3XzuCTp/09GJEl6rbX/77/ONmVOEAT85m/+fZIkJEtTiqIiyhKaMGCxmPHok4/xXe94B7t5TnnhAuee+jb1A09SXtijqmq4/hpe/4H3MnzTjVytFywvnOeG19/I+Z3t7sI9DDhxw0ni9QGXty91n0SHLUHY0kTQht0cn6SNCAMoaWnbApqKsFjQNAXZwS3KUY93/sBHePn5Z6EteeHqVXpRyGQ2ow6gPy9ZXwaMioC0ClgScPbMCxw+cpiXvvDnnH3kMVgsCDf6LJZTetce557/4B6e/9aTjKqArG6hyGnyBe10wmhrk8mVbZKsx9bmJsv5grZqoGloq5r1N9zM8vI5PvK3P8f173gjz5w5Rd7m5P2A6QjmGxFN2hCXEUkYEhNSLZZEZcmg163KWhRL1npD1uuUdLoknE0J8yUtDWeffooLTz8NFy7yzs9+lhPHjjHbG5Mvcp596hQvPvc8vTghars7aLVtF+aIupDWNNDQLW4qQygDKMLuv0X7Q5RLoGyBquGpJ5/h9BOnqK5eYffUKZ67/14mz5+GKufxU0/zrUcegiLntrvv5tDhgzzwhS8wOniMdjynSgOWQcl6UbJeVQzTPtHrTzDZ22V+5iIPfOPrLC5fJogjRklIsVyStxVFXTGdL3juhZd44dunKKa7+7Nyum0vd374A3zks59m8+QJTj/xFKMoIclLpnFIHbe0566wfOYlihdepN3sEa/16M/m1EFLnrSsH9riF37l7/LUlW2WRQF1AXlOTUMVNLRNA1UNZQVFSRqnxEFAsB+RoiCgWhQcHGxyOR8TfuQu3njPx+nfdB179z5IvbNH2Otzz6d/kltveB275y7S7OzSFktqWspeAsMUrruWH/+ZnyW8sMuFJ55iUNe0ZUGRV8TrKXVZwPoI6pI8gHQ4pJrsAjUf/vHPcOJNt3Pm6adhOmV49Cjv+ciHWb/xeq49fi0XTp+mpWGwtkYbQ7m/Wo0A+qMD9AcDJtM9jhw6wHS6B7SEUTdPLOsNIGko5wtIMtLhgHw85vzp04wvXepCZ1PRDGuqLKAOQkZlSNCG7KYlx37uk7zvs5/i0rlzlC9d5M6//ZP88M/8JE88/zzFufMQhiyLEpqGLE4oi5I2C19d5dXv9cjWBswmO9RFSZAXrLUB60FEOitYL2p6VU3UtLzt7vfwuV/6RWZVzbnHHoXhkFs+8ylu+K67OP/1h+ltHKVYlhy59jrmsyWHehsE85ZF0kCREyYJw16fxWw/yM3nkPTYDDPapuHlF57la9/4S8489ng3HLxuOfGGNxJHEePzFwhoidOIIOyOizDo5qXFoxF1FPH2734/P/wzf43nH32CnQtnoanoHT/K/X/6p8ybhnI8ZnToIEUW0YQNSQDJqM8dd76VH/7Mp3ngL77cBSkCaOCWu76LQzfeyLe++AVYG7Jx+CCTcka9mMEg4+Tdd9Pf2ODKV+/l5efP8LUvfIl+1TK9epV+v0ecRpCFhHEAScyshDxqWQYVy7bg6HXHmZZzko113nr3e4jXhrzz058k21rn4oMPUiQhTTmniRrCG07wiU9/mqe/ci+Mx0BD0+ve2xmN+OXf/AdcuXSR7bNn6fVioCKIQsLglZAUdDcoCKAOoI1CTt56K2Ub8Ozjj3VbgcuCrBftH78QNSFJHXbvBb2ENgoIwoA2gqAXEWys8b2f+iSHr7+OFx58gP6xQzTrA9r5jNHJk1w8d5GXv3Qv9ZUp6XzGgSpknkCTxLRRQBiG1HHAjII6aFlQ8u1nnubZr3+D9b0Zg6qhV7fETctsOmVne4dHvvZ12lnOmUef4PG/vA8ubfO+193Op77vo+S7O8TrI6DblhjW++MHrUiS9JpxJpIkvdb2ry1f/Xg4gPl8wnyx4L/8tb/H9vY28+mMiy9vs7eYkYcts3xJE7XsXN5mOByy0e8TLStOpn1mi5JpEHA6n8L6kP4bTrB4+AEOXncTzWRMvVuyNtpgvlwQ9ROIoM6XhEBSN8RNS7M/L2VYRCRVSkvAMoEFBU1bkS4XBHXF4Rtv5upsQdU2bO/ucPPNN3P27Fn6acbaaMR8MmUwXTAs9rfMtCHjLKTqpcz7MWGUwDynlyWUccPl5R5t0/CmW29n9sJ5estudsikypm0JcONTaIoYrK7x+FDh7hy4RJh1ZBFMXEYkUYxu1d3OHD0MNtNwdFrj3Pm0VMcXz/AkJjTe5do13qEWyOORSmXz55nfTAkriFJEsq6oAgC5k1JL07oLyGNI8q4oqhLZsWcMOuzcd1NjKuKnSjmOkLKvT2W8wVJkkDdUBRFd6G2P7Q2bCEMaiDsLtZevYBpXr1wD9qQuoGKboVX23YLG3ppt4ojPLhG0Y9JT73AVhRTpDHLfkKVJozDhjrrcfz6k1QNXHz8KU5WEeO0ZtnOObpTklWwGGScP7RGv7/FKI+5unuWQa+ba9UPGg6ubbC3NyYIU6qoz2RZ0R8NaBZ7ZPt3Yy8imGcBvc01ZpMp0e6c69e2WIzH7MQtbb/PoWVMXDWUScXFZEZRLjiS1wy3DlPGGbOy5OLujN7mAZZ7e1xz/BjnX3iWg2tDqqKkXJakaUoUhN1Ks/3tbK9oAwgHI7g8ZuPYYZ6KxlAvIe1z8zQhKRr24pqqTWmLil4W0ZRzqqpg6+AhtqdT8rhH0bRsDEesj6fQFExnuxAFHLzmMOcuXSba2GTRBhxc36K4uEOZL1k/eYyChvPjq6RpyqCNCFuI8xpGfXamY45tbLHYGVPOxmysrdNSUjcNNS0VAUWVsTYccP7F57jl+uPsXd2hDQPidMR4WTEYrRGGBfP5lDiO6acZw/6IS5cuERERRTFRFLE1a6lDOLvekjSwsYTNbMDOwYQdCqbbO2w1MVfWEygqWBbcdM1JnnvsSY4cOUocx+yM98j6PXqDjHCZE9QtvTihHWZsFxOCICBb1mwUAREtRAFR3Q3fXoYBO1nAmJZ+v08yKVlWNctrN6EIODprODxcI69ynr1ylgMHNjka9ggWBRfaBW3bEtQtUQvp5hqTfAFJRL095mjYpzfoc6mZ0TQNURyTZRn9Xo+Dm1tcubzNSy+cYTTsEyVdQOuOkbDbrpdl5FHQzcLJUnoXd8iGfeZBzV4xA0J6bcjBbEjTtrSDlK2tDS6fO0M/G5CmPRaLnDTrszeesDebM9jc5Nrrb+Dbz5+h2dvh2MnjzKZjhlnC9s4uR6+7nrINubS7x4ksYy1NmO6Neem501xzzVFoWqIkJE4jojikiVMuz3OCpui2UDbl/ryzhGzjEHU6pGhaZpvAYg4vX4Kq5uj6JovFgvHOmNtOvJ5k0jCLpsxZsmhCplXN+oHDHDx4kO0LZ2Exph/H9OKIWV51j6PuVj41QN02pKMB86qgbGrmYch6GHM0TKiWc4q2ZBEF1EFA1KRkVQRtSBFHEFS0FBBUzIucIyeuI4gSnjvzMmGa0otKlkXJaOMQvcE688mc6eXL3Hz0CP0yZ5jEnNmb0ITdbLEwDAnDkDamO2dCKKuKJIakyhkUIXHThdN2Y8S0rRn1B2zFQwZpxvD4YTbSjO9+yx38wn/yS7TlopsRR9IdHzndyln3s0nSa8aIJEmvtf+PiETQrUgpmoooDAkIidru4qjY//Lus/GWmIDJlSscWF/jmVNPkk9zqjLkpau7XJxPKTcz/tZf/3H+p3/628R1zW3XvI6tzYOQRIS9mKyfcuTAQSKabl5HA4SwCKBfR92tm4B5XTJt5pRlTjPZo10uefTbz7E7XfCv/+W/IktS7r77PRw/fpzrb7yBOO0xWl/jumuOEJd037fpBkJXMczDblBzO17Q7/eYJi11GJLTUNZzdp89Q7osKMuC7cWEK8Wcr3z1PsbjKYc2trjl5ptZS/vc+ea3sNYfMEgyRoOzJqO4AAAPI0lEQVQhSZZC0LAbVOwtFqwtA84/8RyDOuTUpZc5P5vwR1/9UwYR/NxP/DS33nQTJw4e4cEHH+Sxp59kZznj+Otv4Zqjx3jTyZvopSGLNme+nDG9epUH7n+Yh049z5fuv5/jb30rP3r3+zgyWmd9fZ1bbrmFOI4ZjUZEUUS8P701bPa3/wRABFW3qAG6XxI13Ys6y0tmdc18ueiGDS9Kts9dYDKf8ff/+3/MHe9/Jz//rg8wagLaYZ/48Bb0UtaPHuNKsSBKMwJCNoBwMmdGwXQ5Jh7PCOqGFy9f5Y/u+xpf+vL9fOid7+MD730rx44dIMsSorCmn2Uc2jpMHGeE4YAihyiFQdx9gg/d7OpJCNO2JGzhUJh0r28My6A7NvvF/gFKw7zfUFERFxOmkwXnL+8QJD1OnX6Zp595jvvuu4+jhw8SNAt+6Ac+ShS03HLyFkajEWmakmUZGxsbf+WUKcKQBbDVABXspt15kQEbswrmS6YbMWnaYzkrWBumNG1FuP+8705mrK1tUAN1Cb2yYDkb01IzW0558eWX2N7dY0nE7/2LP+RNt97Ou95wB0cOHqTZHNDEIb2DGxw5coSsgqQNWItiyggWZc0wiajmJTsXznXRc7rD2YsXGM+m7Mxm/Nu/+CZNVfKet9/BD370e7jx+uvZ2xtz/zcf5Y//7Re5cnWXkycPc+sbbubG665n0OuztbbOtUePdVEnSUl6fdjrztWdze7pPlhDcHYXjq5xKewG0F9+4WV2i5qQgLPPn+HRhx/hnXfdxa233cbZ7Yv8/h/+S85fuMD3ffADHO4NWB+MuPHkdYyOHSJa7xGGIettTFqH+7VzCfOKWV6woOHJC+fYPHaMl8+8THNxjwcefJgnm13e9YY7+NyHf5B/8bu/x1Onv83pxTb/+a//CgfbmO0XXua3fvefUSxLPva9H+GTP/QJ/s6v/SpX5hPecdddvPHEjbxu8yjDUZ/wyJBBkhEFMaNenzCKII7I8zlBHBHFCbQNQRt2A+zbrg6UUbfKbwmc3xvzhnTEi2dfYtqUnJ/tcunlc1TTBf/db/w3fOqee3j7d7+H8XSPa45u8b677iYi5LGHHmU2W7I3mXBxb5dHnjnFn//FV3jrW9/Gxtoaly+8yIc+9EE+8MG7ee65F/jffvcPoI359Gd+nHfcfCNJEPDEqaf5b//JP+JnPvczHD5ykF4vZWOtO7bjXo9k/RDVYkpbFJTLCbu7Y67u7vHlbzxMb+sob3nbnRy48/X80T//XR77wp9TTWfc9eY38aEPfZiEmBODIxxuBoxu3qJMIekPGS9busV8NWujmCyAkApoKYgJgbBuCJuWII6hbcnbGqKYVzpLD8jKZTecP4nIg4CGgICErNv5/J0fYWFFTc2lnW1aIibjBWE04MKFczzw4Je5eOEK33jwW5y49iZuueUW7rjtVm669hiDpGGtn3HyxOtpXtmGGHaRuCi7O+IFTbdlOcpCcgqy5pXbCXZ3jVvQkhDQe+WHYky3zbLIIQsompIqyohISIEgBxKMSJL0GjIiSdJrbX+Fx6sBKWyoaBlPdhmtbdDQEhKQNnF3S26g3h/GnRFQFwVpGJO3S55Pag7QZ31S04uy78zsDluopt18iCDrtgllMcTdypeIloAG6v39VhEsQ+g1yau3oSqDmjxpCagZUu1/72R/b1YIedXdOazX66pJmkAMl2i6QAX0CWkIWNIQk9FvISz3H2MEswgmRcEwTSGfMYi6bR8LWpbULMuGQdKnR0JLQ0rY3WWnpXscVc04WdCGCWNCShoOk5EuKjK6P2+dwC4wBKrpmLBqGAyHAPzZv/k/GR49xNvf836W1CTUdCPHSyJqMhqYt5BtsKxaFlnEOt+JQK+8hu2/F4kAgrwlLIPuwiXpHkO1/+Vpu38MdKNmWGavPh0MXtnbRjdvZDEI2aLpXitgWVQkUUpEAov9b7j/9bNNGFZAWzJJKhZAQsJWGbOXQzWCEZBQUlC8epx1G/xCqCJiQpbTkt4o2Y9CQAhV0kWbpmnpLxuiJGIZVWRhTFB95zEQQZ3mVDQUlPQJiUio6pY46vHH//rP+P3f+wP+8I9+h/liSW+QUpVLsnDw6jnRVCVhkvyV7SdzYAfYWJaMqqS7KHzlGNhdQC8kP5BQNi29MAIaGmryesEg6hOWLUGddo8zhTqDtu5m1vSGvf3zsoU2hjimnlVEUbz/gnV3sZo1LUkYEBbdqo4w3I8sr5xz5f55RwBhtX/V3dJEAZMoIaSLXkG9JIki6qaBMOu2Mna/DW1TQVUThxFxGEJddXtx2v3tfs0AYji7f8wcArJFS95vGVMTAAdpCeZp99wkcO8XvsSMind/6P0ss5AgSqiBPrDOqw+TOmz27+nWMADIu4NxN8vpExES0RBREDPJFxzI1ujtjz9bphW9poVx1R3IWcgsrVnQ0qOmR0DFGkVR0U+6Y6bZPydaYNBA8Eot71VQ1t17UxB388p6CdDQJiHTOmcQdY/o1WMg6HaglQksaqgiOJzzasSdB92InqgFxmV3t8Ks29JVU5KWdTdpukm671m1EAdUg+40SJvupYhSmOYLsiyjLJYMk/0vKIFFAb0UMvjg936YP/nSF2n3z92Q7k6KbdmQBEOCoIW27uZqtXSrkejePwl49WdEu7NLsDmgTVsWYcjV2Zgjw4PE44ZwEO7PFoq/cwy+8jgHXcVuacjJCHklXrdURUGcdcPWu5evZUbBOhFxvf+EBhWLMKHu/i+yFpJ6/3FFdEPyg4aWtps61Ibf+XAkrqAJWS4bev2YWb5/WiWwqHfJooxB0X/1fCfeH/r+ys/Fouq+XzVjthHSIySiG1i1JKQE6rZgk7T72jju7hDaC1mGZfdSEJOQ0Ad6BU7WlqTXWGBDkiRJkiRJ0ip2ekmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSkYkSZIkSZIkrWREkiRJkiRJ0kpGJEmSJEmSJK1kRJIkSZIkSdJKRiRJkiRJkiStZESSJEmSJEnSSv8PnmH/gZOmVoAAAAAASUVORK5CYII=", "text/plain": [ "" ] @@ -428,30 +431,31 @@ } ], "source": [ - "def pdf2png(pdf_file, png_file):\n", - " page = 1\n", - " resolution = 100\n", - " subprocess.run(\n", - " (\"gs\",\n", - " \"-q\",\n", - " \"-dNOPAUSE\",\n", - " \"-dBATCH\",\n", - " \"-sDEVICE=pngalpha\",\n", - " \"-r\" + str(resolution),\n", - " \"-dPDFFitPage\",\n", - " \"-sOutputFile=\" + png_file,\n", - " \"-dFirstPage=\" + str(page),\n", - " \"-dLastPage=\" + str(page),\n", - " pdf_file\n", - " ),\n", - " stdout=open(os.devnull, 'w'),\n", - " stderr=subprocess.STDOUT,\n", - " check=True\n", - " )\n", - "\n", - "pdf2png(selected_frame, selected_frame + '.png')\n", - "\n", - "display(Image(selected_frame + \".png\"))" + "if not ('CI' in os.environ and platform.system() == 'Windows'):\n", + " def pdf2png(pdf_file, png_file):\n", + " page = 1\n", + " resolution = 100\n", + " subprocess.run(\n", + " (\"gs\",\n", + " \"-q\",\n", + " \"-dNOPAUSE\",\n", + " \"-dBATCH\",\n", + " \"-sDEVICE=pngalpha\",\n", + " \"-r\" + str(resolution),\n", + " \"-dPDFFitPage\",\n", + " \"-sOutputFile=\" + png_file,\n", + " \"-dFirstPage=\" + str(page),\n", + " \"-dLastPage=\" + str(page),\n", + " pdf_file\n", + " ),\n", + " stdout=open(os.devnull, 'w'),\n", + " stderr=subprocess.STDOUT,\n", + " check=True\n", + " )\n", + " \n", + " pdf2png(selected_frame, selected_frame + '.png')\n", + " \n", + " display(Image(selected_frame + \".png\"))" ] }, { From 8b8ee8bd9352080cc885804117fd058b77d05c1c Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Fri, 6 Sep 2024 17:48:15 +0200 Subject: [PATCH 19/41] pylint hints --- .../paraview_hello_world.ipynb | 35 ++++++++++--------- 1 file changed, 18 insertions(+), 17 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb index 0b6dccda5..4c3847b32 100644 --- a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb @@ -435,23 +435,24 @@ " def pdf2png(pdf_file, png_file):\n", " page = 1\n", " resolution = 100\n", - " subprocess.run(\n", - " (\"gs\",\n", - " \"-q\",\n", - " \"-dNOPAUSE\",\n", - " \"-dBATCH\",\n", - " \"-sDEVICE=pngalpha\",\n", - " \"-r\" + str(resolution),\n", - " \"-dPDFFitPage\",\n", - " \"-sOutputFile=\" + png_file,\n", - " \"-dFirstPage=\" + str(page),\n", - " \"-dLastPage=\" + str(page),\n", - " pdf_file\n", - " ),\n", - " stdout=open(os.devnull, 'w'),\n", - " stderr=subprocess.STDOUT,\n", - " check=True\n", - " )\n", + " with open(os.devnull, 'w', encoding='utf-8') as devnull:\n", + " subprocess.run(\n", + " (\"gs\",\n", + " \"-q\",\n", + " \"-dNOPAUSE\",\n", + " \"-dBATCH\",\n", + " \"-sDEVICE=pngalpha\",\n", + " \"-r\" + str(resolution),\n", + " \"-dPDFFitPage\",\n", + " \"-sOutputFile=\" + png_file,\n", + " \"-dFirstPage=\" + str(page),\n", + " \"-dLastPage=\" + str(page),\n", + " pdf_file\n", + " ),\n", + " stdout=devnull,\n", + " stderr=subprocess.STDOUT,\n", + " check=True\n", + " )\n", " \n", " pdf2png(selected_frame, selected_frame + '.png')\n", " \n", From c0c714648f88b0d419f64c3958f6c609a59f2281 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Wed, 11 Sep 2024 14:24:15 +0200 Subject: [PATCH 20/41] updated animation notebook --- .../Arabas_et_al_2023/fig_11.ipynb | 4865 ------------ .../figs_10_and_11_and_animations.ipynb | 6696 +++++++++++++++++ examples/README.md | 7 +- tests/devops_tests | 2 +- 4 files changed, 6701 insertions(+), 4869 deletions(-) delete mode 100644 examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb create mode 100644 examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb diff --git a/examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb deleted file mode 100644 index a8b2d58be..000000000 --- a/examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb +++ /dev/null @@ -1,4865 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "source": [ - "[![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb)" - ], - "metadata": { - "collapsed": false - }, - "id": "e75404edab7940f9" - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "52cd6f49", - "metadata": {}, - "outputs": [], - "source": [ - "# TODO #599: sedimentation?\n", - "# TODO #599: reintroduce products used in animations (?)\n", - "# TODO #599: table with execution times\n", - "# TODO #599: multiple realisations?\n", - "# TODO #599: move EulerianAdvection and AmbientThermodynamics next to each other so that async call is not affecting timing" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "6d39ff74", - "metadata": {}, - "outputs": [], - "source": [ - "import sys\n", - "if 'google.colab' in sys.modules:\n", - " !pip --quiet install open-atmos-jupyter-utils\n", - " from open_atmos_jupyter_utils import pip_install_on_colab\n", - " pip_install_on_colab('PySDM-examples')" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "b19713b4", - "metadata": {}, - "outputs": [], - "source": [ - "import string\n", - "import os\n", - "\n", - "import numpy as np\n", - "from scipy.io import netcdf_file\n", - "from scipy.ndimage import uniform_filter1d\n", - "from matplotlib import pyplot\n", - "\n", - "from PySDM.exporters import NetCDFExporter, VTKExporter\n", - "from PySDM_examples.utils import ProgBarController\n", - "from open_atmos_jupyter_utils import show_plot\n", - "import PySDM.products as PySDM_products\n", - "from PySDM.physics import si\n", - "from PySDM import Formulae\n", - "from PySDM.initialisation import spectra\n", - "\n", - "from PySDM_examples.Arabas_et_al_2015 import Settings, SpinUp\n", - "from PySDM_examples.Szumowski_et_al_1998 import Simulation, Storage\n", - "from PySDM_examples.Arabas_et_al_2023.commons import FREEZING_CONSTANTS, LOGNORMAL_MODE_SURF_A, LOGNORMAL_SGM_G" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "b3ac5007", - "metadata": {}, - "outputs": [], - "source": [ - "formulae = Formulae(\n", - " particle_shape_and_density=\"MixedPhaseSpheres\",\n", - " freezing_temperature_spectrum='Niemand_et_al_2012',\n", - " heterogeneous_ice_nucleation_rate='ABIFM',\n", - " constants=FREEZING_CONSTANTS[\"dust\"]\n", - ")\n", - "\n", - "lognormal_mode_A = LOGNORMAL_MODE_SURF_A\n", - "lognormal_sgm_g = LOGNORMAL_SGM_G\n", - "inp_frac = 1 / (270 + 45 + 1)\n", - "\n", - "conc_cld_unit = '1/cc'\n", - "conc_ice_unit = '1/l'\n", - "cool_rate_unit = 'K/min'\n", - "wall_time_unit = 'ms'" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "8ac0108f", - "metadata": {}, - "outputs": [], - "source": [ - "runs = (\n", - " {'settings': {'rhod_w_max': 2.0 * si.m/si.s*si.kg/si.m**3, 'freezing_singular': False}},\n", - " {'settings': {'rhod_w_max': 2.0 * si.m/si.s*si.kg/si.m**3, 'freezing_singular': True}},\n", - " {'settings': {'rhod_w_max': 1.0 * si.m/si.s*si.kg/si.m**3, 'freezing_singular': False}},\n", - " {'settings': {'rhod_w_max': 1.0 * si.m/si.s*si.kg/si.m**3, 'freezing_singular': True}},\n", - " {'settings': {'rhod_w_max': 0.5 * si.m/si.s*si.kg/si.m**3, 'freezing_singular': False}},\n", - " {'settings': {'rhod_w_max': 0.5 * si.m/si.s*si.kg/si.m**3, 'freezing_singular': True}},\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "6a3c69a9", - "metadata": {}, - "outputs": [], - "source": [ - "products = (\n", - " PySDM_products.DynamicWallTime(\n", - " 'Condensation', name='Condensation_wall_time', unit=wall_time_unit\n", - " ),\n", - " PySDM_products.DynamicWallTime(\n", - " 'Displacement', name='Displacement_wall_time', unit=wall_time_unit\n", - " ),\n", - " PySDM_products.DynamicWallTime(\n", - " 'Freezing', name='Freezing_wall_time', unit=wall_time_unit\n", - " ),\n", - " PySDM_products.DynamicWallTime(\n", - " 'EulerianAdvection', name='EulerianAdvection_wall_time', unit=wall_time_unit\n", - " ),\n", - " PySDM_products.ParticleConcentration(\n", - " radius_range=(-np.inf, 0*si.um), name='n_i', unit=conc_ice_unit, stp=True\n", - " ),\n", - " PySDM_products.ParticleConcentration(\n", - " radius_range=(1*si.um, np.inf), name='n_c', unit=conc_cld_unit, stp=True\n", - " ),\n", - " PySDM_products.CoolingRate(\n", - " unit=cool_rate_unit\n", - " ),\n", - " PySDM_products.IceNucleiConcentration(\n", - " name='n_inp', unit=conc_ice_unit, stp=True\n", - " ),\n", - " PySDM_products.FrozenParticleConcentration(\n", - " name='n_frozen_aerosols',\n", - " unit=conc_ice_unit,\n", - " count_activated=False,\n", - " count_unactivated=True,\n", - " stp=True\n", - " ),\n", - " PySDM_products.FrozenParticleConcentration(\n", - " name='n_frozen_droplets',\n", - " unit=conc_ice_unit,\n", - " count_activated=True,\n", - " count_unactivated=False,\n", - " stp=True\n", - " )\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "944f6247", - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "03d2b82277b94051a89a087e077dfc81", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 1/6', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "81378a9b5f9d4eb79447de05ed4020bd", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0a9046c87ac04ce3894304ae4b638b10", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 2/6', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c2705882b5b048bb862f78391bf015e8", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "35f46e5b21ac4d49967890bb5a6d5d1b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 3/6', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "98c4e7a411e947849c78395a9be94114", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "3bfce900a2c1453d9ecd499de9cfc70b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 4/6', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "00f9f888b6e9449e8e7dc0144811aeb3", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4e48d9010cc940b99e75a24e018f8ab3", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 5/6', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "547b2a610f184b9cb435ba27f04778cb", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "20a5a5e7eea148b3911908f544ad7f43", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 6/6', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "211e7978b2924f89a93db0e2e28efb70", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for i, run in enumerate(runs):\n", - " folder = f\"output/rhod_w_max={run['settings']['rhod_w_max']}_singular={run['settings']['freezing_singular']}\"\n", - " os.makedirs(folder, exist_ok=True)\n", - " \n", - " run['ncfile'] = f'{folder}/out.nc'\n", - " \n", - " settings = Settings(formulae)\n", - " settings.dt = 2.5 * si.s\n", - " settings.output_interval = settings.dt * 12\n", - " settings.simulation_time = 6000 * si.second if 'CI' not in os.environ else 2 * settings.output_interval\n", - " settings.spin_up_time = 600 * si.second\n", - " settings.size = (1500, 500)\n", - " settings.n_sd_per_gridbox = 64\n", - " settings.grid = (60, 20)\n", - " settings.th_std0 -= 33.3 * si.kelvins\n", - " settings.initial_water_vapour_mixing_ratio -= 6.66 * si.grams / si.kilogram\n", - " \n", - " settings.processes['coalescence'] = False\n", - " settings.processes['freezing'] = True\n", - " settings.freezing_inp_spec = spectra.Lognormal(\n", - " norm_factor=1,\n", - " m_mode=lognormal_mode_A,\n", - " s_geom=lognormal_sgm_g\n", - " )\n", - " settings.freezing_inp_frac = inp_frac\n", - " settings.freezing_thaw = True\n", - "\n", - " settings.kappa = 0.61\n", - " settings.mode_1 = spectra.Lognormal(\n", - " norm_factor=(270 + 270/315) / si.centimetre**3 / formulae.constants.rho_STP,\n", - " m_mode=0.03 * si.micrometre,\n", - " s_geom=1.28,\n", - " )\n", - " settings.mode_2 = spectra.Lognormal(\n", - " norm_factor=(45 + 45/315) / si.centimetre**3 / formulae.constants.rho_STP,\n", - " m_mode=0.14 * si.micrometre,\n", - " s_geom=1.75,\n", - " )\n", - " settings.spectrum_per_mass_of_dry_air = spectra.Sum((settings.mode_1, settings.mode_2))\n", - " \n", - " for key, value in run['settings'].items(): \n", - " assert hasattr(settings, key)\n", - " setattr(settings, key, value)\n", - "\n", - " storage = Storage()\n", - " simulation = Simulation(settings, storage, SpinUp=SpinUp)\n", - " simulation.reinit(products)\n", - "\n", - " vtk_exporter = VTKExporter(path=folder) \n", - " simulation.run(ProgBarController(f\"run {i+1}/{len(runs)}\"), vtk_exporter=vtk_exporter)\n", - " vtk_exporter.write_pvd()\n", - "\n", - " ncdf_exporter = NetCDFExporter(storage, settings, simulation, run['ncfile'])\n", - " ncdf_exporter.run(ProgBarController('netCDF'))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "241f48c4", - "metadata": {}, - "outputs": [], - "source": [ - "def label(settings_arg):\n", - " tmp = str({k.replace('condensation_', ''):\n", - " f\"{v:.1e}\" if isinstance(v, float) else\n", - " str(v).zfill(2) if isinstance(v, int) else\n", - " v for k, v in settings_arg.items()})\n", - " return tmp\\\n", - " .replace('{', '')\\\n", - " .replace('}', '')\\\n", - " .replace(\"'\", '')\\\n", - " .replace('rhod_w_max:', '$w_{max}\\\\approx$')\\\n", - " .replace('e+00', r' m/s')\\\n", - " .replace('5.0e-01', '0.5 m/s')\\\n", - " .replace('freezing_singular: True', r'singular$\\,\\,\\,$')\\\n", - " .replace('freezing_singular: False', 'time-dep')" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "bba6ffb0", - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "$w_{max}\\approx$ 0.5 m/s, singular$\\,\\,\\,$: time=0.26ms\n", - "$w_{max}\\approx$ 0.5 m/s, time-dep: time=2.79ms\n", - "$w_{max}\\approx$ 1.0 m/s, singular$\\,\\,\\,$: time=0.20ms\n", - "$w_{max}\\approx$ 1.0 m/s, time-dep: time=2.75ms\n", - "$w_{max}\\approx$ 2.0 m/s, singular$\\,\\,\\,$: time=0.62ms\n", - "$w_{max}\\approx$ 2.0 m/s, time-dep: time=3.31ms\n", - "$w_{max}\\approx$ 0.5 m/s, singular$\\,\\,\\,$: time=0.26ms\n", - "$w_{max}\\approx$ 0.5 m/s, time-dep: time=2.79ms\n", - "$w_{max}\\approx$ 1.0 m/s, singular$\\,\\,\\,$: time=0.20ms\n", - "$w_{max}\\approx$ 1.0 m/s, time-dep: time=2.75ms\n", - "$w_{max}\\approx$ 2.0 m/s, singular$\\,\\,\\,$: time=0.62ms\n", - "$w_{max}\\approx$ 2.0 m/s, time-dep: time=3.31ms\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " 2023-08-06T12:45:20.785839\n", - " image/svg+xml\n", - " \n", - " \n", - " Matplotlib v3.7.0, https://matplotlib.org/\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n" - ], - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ed2248b6c06d4c91b7924858d55875fd", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HTML(value=\"./figures.pdf
\")" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "colors = (\n", - " '#5940ff', '#5980ff', '#59c0ff', '#59e0ff', \n", - " '#dd0000', '#dd6666', '#dd9999', '#ddcccc', \n", - " '#777777', '#aaaaaa'\n", - ")\n", - "n_last_output_steps = 80 if 'CI' not in os.environ else 2\n", - "bins = {\n", - " 'n_i': 20,\n", - " 'cooling rate': 20,\n", - " 'n_c': 20,\n", - " 'n_inp': 20,\n", - " #'n_frozen_aerosols': 12,\n", - " #'n_frozen_droplets': 12\n", - "}\n", - "bin_range = {\n", - " 'n_i': None,\n", - " 'cooling rate': (0, .025),\n", - " 'n_c': (80, 480),\n", - " #'n_inp': (400, 1600),\n", - " #'n_frozen_aerosols': (5, 245),\n", - " #'n_frozen_droplets': (5, 245)\n", - "}\n", - "window = 3\n", - "\n", - "rows = 3\n", - "columns = 1\n", - "\n", - "fig, axs = pyplot.subplots(rows, columns, sharey=False, tight_layout=True, figsize=(4.5, 12))\n", - "for plot_i, var in enumerate(bin_range.keys()):\n", - " if len(axs.shape) == 2:\n", - " ax = axs[plot_i//columns][plot_i%columns]\n", - " else:\n", - " ax = axs[plot_i]\n", - " for i, run in enumerate(reversed(runs)):\n", - " nc = netcdf_file(run['ncfile'], mode='r', mmap=False)\n", - " n_spinup = nc.n_spin_up // nc.steps_per_output_interval\n", - " data = nc.variables[var]\n", - " timesteps = slice(-(n_last_output_steps+1), None)\n", - " assert data.shape[0] >= n_last_output_steps\n", - " \n", - " style = {\n", - " 'color': colors[i], \n", - " 'lw': 4 if run['settings']['freezing_singular'] else 2,\n", - " 'ls': '--' if not run['settings']['freezing_singular'] else '-'\n", - " }\n", - " \n", - " if var != 'n_i':\n", - " wall_time = np.nanmean(nc.variables['Freezing_wall_time'][timesteps] / nc.steps_per_output_interval)\n", - " wall_time = np.nan if not np.isfinite(wall_time) else int(100 * wall_time) / 100\n", - " lbl = label(run['settings'])\n", - " print(f\"{lbl}: time={wall_time:.2f}{wall_time_unit}\") \n", - "\n", - " y, x, _ = ax.hist(\n", - " data[timesteps, :, :].flatten(), \n", - " bins=bins[var],\n", - " range=bin_range[var],\n", - " histtype='step', \n", - " color=colors[i],\n", - " lw=0\n", - " )\n", - " y /= n_last_output_steps\n", - " filt_x = x[:-1] if window % 2 == 0 else (x[1:] + x[:-1])/2\n", - " ax.plot(\n", - " filt_x,\n", - " uniform_filter1d(y, size=window),\n", - " **style,\n", - " label=f\"{lbl}\"\n", - " )\n", - " if i == 0:\n", - " ax.set_yscale('log')\n", - " ax.set_ylabel('occurrence count per step ' + f'({window}-bin moving average)')\n", - " binwidth = (bin_range[var][1]-bin_range[var][0])/bins[var]\n", - " ax.set_xlim(bin_range[var])\n", - " ax.set_ylim(5, 200)\n", - " if var == 'n_inp':\n", - " ax.set_xlabel(f'inclusion-rich (frozen or unfrozen) particle conc. [{conc_ice_unit} STP] ({binwidth} binning)')\n", - " elif var == 'n_frozen_aerosols':\n", - " ax.set_ylim(.01, 100)\n", - " ax.set_xlabel(f'frozen aerosol concentration [{conc_ice_unit} STP] ({binwidth} binning)')\n", - " elif var == 'n_frozen_droplets':\n", - " ax.set_ylim(.01, 100)\n", - " ax.set_xlabel(f'frozen droplet concentration [{conc_ice_unit} STP] ({binwidth} binning)')\n", - " elif var == 'n_c':\n", - " ax.set_xlabel(f'cloud droplet concentration [{conc_cld_unit} STP] ({binwidth} binning)')\n", - " elif var == 'cooling rate':\n", - " ax.set_xlabel(f'cooling rate [{cool_rate_unit}] ({binwidth} binning)')\n", - " else:\n", - " assert False\n", - " else:\n", - " ax.plot(\n", - " nc.variables['T'][:] / si.min,\n", - " np.mean(np.mean(data[:,:,:], axis=1), axis=1) ,\n", - " **style\n", - " )\n", - " if i == 0:\n", - " ax.set_yscale('log')\n", - " ax.set_ylim(.05, 50)\n", - " ax.set_ylabel(f'domain-mean time-accumulated ice conc. [{conc_ice_unit} STP]')\n", - " ax.set_xlabel('time [min]')\n", - " for note, times in {\n", - " \"spinup\": [0, min(n_spinup, len(nc.variables['T'][:])-1)],\n", - " \"occurence counting\": [timesteps.start, -1]\n", - " }.items():\n", - " x = nc.variables['T'][times] / si.min\n", - " y = 20\n", - " ax.plot(\n", - " x,\n", - " [y] * 2,\n", - " color='gray'\n", - " )\n", - " ax.text(x[0], 1.1 * y, note, color='gray', size=8)\n", - " \n", - " ax.grid(which='minor')\n", - " ax.grid(which='major')\n", - " if var == 'cooling rate':\n", - " ax.legend(loc='upper right')\n", - " ax.text(\n", - " 0, 1.03,\n", - " '('+string.ascii_lowercase[plot_i]+')',\n", - " transform=ax.transAxes,\n", - " size=15,\n", - " weight='bold'\n", - " )\n", - "show_plot(\"figures.pdf\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb new file mode 100644 index 000000000..df4720cc3 --- /dev/null +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb @@ -0,0 +1,6696 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "e75404edab7940f9", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "source": [ + "[![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb)\n", + "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb)\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "6d39ff74", + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "if 'google.colab' in sys.modules:\n", + " !pip --quiet install open-atmos-jupyter-utils\n", + " from open_atmos_jupyter_utils import pip_install_on_colab\n", + " pip_install_on_colab('PySDM-examples')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "b19713b4", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import string\n", + "import subprocess\n", + "\n", + "import numpy as np\n", + "\n", + "from scipy.io import netcdf_file\n", + "from scipy.ndimage import uniform_filter1d\n", + "from matplotlib import pyplot\n", + "\n", + "from PySDM.exporters import NetCDFExporter, VTKExporter\n", + "from PySDM_examples.utils import ProgBarController\n", + "from open_atmos_jupyter_utils import show_plot\n", + "import PySDM.products as PySDM_products\n", + "from PySDM.physics import si\n", + "from PySDM import Formulae\n", + "from PySDM.initialisation import spectra\n", + "from PySDM.dynamics import Freezing\n", + "\n", + "from PySDM_examples.Arabas_et_al_2015 import Settings\n", + "from PySDM_examples.Szumowski_et_al_1998 import Simulation, Storage\n", + "from PySDM_examples.Arabas_et_al_2023.commons import FREEZING_CONSTANTS, LOGNORMAL_MODE_SURF_A, LOGNORMAL_SGM_G" + ] + }, + { + "cell_type": "markdown", + "id": "083e1887-fd91-4655-912e-43c8cf9f13d8", + "metadata": {}, + "source": [ + "## Simulations" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "b3ac5007", + "metadata": {}, + "outputs": [], + "source": [ + "lognormal_mode_A = LOGNORMAL_MODE_SURF_A\n", + "lognormal_sgm_g = LOGNORMAL_SGM_G\n", + "inp_frac = 1 / (270 + 45 + 1)\n", + "\n", + "conc_cld_unit = '1/cc'\n", + "conc_ice_unit = '1/l'\n", + "cool_rate_unit = 'K/min'\n", + "wall_time_unit = 'ms'\n", + "\n", + "N_REALISATIONS = 2" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "8ac0108f", + "metadata": {}, + "outputs": [], + "source": [ + "runs = (\n", + " {'settings': {'rhod_w_max': 2.0 * si.m/si.s*si.kg/si.m**3, 'freezing_singular': False}},\n", + " {'settings': {'rhod_w_max': 2.0 * si.m/si.s*si.kg/si.m**3, 'freezing_singular': True}},\n", + " {'settings': {'rhod_w_max': 1.0 * si.m/si.s*si.kg/si.m**3, 'freezing_singular': False}},\n", + " {'settings': {'rhod_w_max': 1.0 * si.m/si.s*si.kg/si.m**3, 'freezing_singular': True}},\n", + " {'settings': {'rhod_w_max': 0.5 * si.m/si.s*si.kg/si.m**3, 'freezing_singular': False}},\n", + " {'settings': {'rhod_w_max': 0.5 * si.m/si.s*si.kg/si.m**3, 'freezing_singular': True}},\n", + ")\n", + "runs = tuple({'settings': {**run['settings'], 'seed': seed}} for run in runs for seed in range(N_REALISATIONS))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6a3c69a9", + "metadata": {}, + "outputs": [], + "source": [ + "products = (\n", + " PySDM_products.DynamicWallTime(\n", + " 'Condensation', name='Condensation_wall_time', unit=wall_time_unit\n", + " ),\n", + " PySDM_products.DynamicWallTime(\n", + " 'Displacement', name='Displacement_wall_time', unit=wall_time_unit\n", + " ),\n", + " PySDM_products.DynamicWallTime(\n", + " 'Freezing', name='Freezing_wall_time', unit=wall_time_unit\n", + " ),\n", + " PySDM_products.DynamicWallTime(\n", + " 'EulerianAdvection', name='EulerianAdvection_wall_time', unit=wall_time_unit\n", + " ),\n", + " PySDM_products.ParticleConcentration(\n", + " radius_range=(-np.inf, 0*si.um), name='n_i', unit=conc_ice_unit, stp=True\n", + " ),\n", + " PySDM_products.ParticleConcentration(\n", + " radius_range=(1*si.um, np.inf), name='n_c', unit=conc_cld_unit, stp=True\n", + " ),\n", + " PySDM_products.CoolingRate(\n", + " unit=cool_rate_unit\n", + " ),\n", + " PySDM_products.IceNucleiConcentration(\n", + " name='n_inp', unit=conc_ice_unit, stp=True\n", + " ),\n", + " PySDM_products.FrozenParticleConcentration(\n", + " name='n_frozen_aerosols',\n", + " unit=conc_ice_unit,\n", + " count_activated=False,\n", + " count_unactivated=True,\n", + " stp=True\n", + " ),\n", + " PySDM_products.FrozenParticleConcentration(\n", + " name='n_frozen_droplets',\n", + " unit=conc_ice_unit,\n", + " count_activated=True,\n", + " count_unactivated=False,\n", + " stp=True\n", + " )\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "0b25f1e7-4887-4012-bf3b-13f6dc6d672f", + "metadata": {}, + "outputs": [], + "source": [ + "class SpinUp:\n", + " def __init__(self, particulator, spin_up_steps):\n", + " self.spin_up_steps = spin_up_steps\n", + " particulator.observers.append(self)\n", + " self.particulator = particulator\n", + " self.set(Freezing, \"enable\", False)\n", + "\n", + " def notify(self):\n", + " if self.particulator.n_steps == self.spin_up_steps:\n", + " self.set(Freezing, \"enable\", True)\n", + "\n", + " def set(self, dynamic, attr, value):\n", + " key = dynamic.__name__\n", + " if key in self.particulator.dynamics:\n", + " setattr(self.particulator.dynamics[key], attr, value)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "944f6247", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a5581709e2ec4f349fb77b62b1a0e00c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='run 1/12', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8c3ea170045448f093453676a689ac3a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ee7e63ac335749c8aae0e9ec9042fac2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='run 2/12', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8d154e21912c443a8cc7c3d9a699d10f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f86d0df3171a4840ac323eb5c08eabec", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='run 3/12', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "afa3c16accbe43f9ae5ff221811ec645", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "75d59db4a6dc467f98cf94e1c5ddf2bc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='run 4/12', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f1df7e15cdca490b838ab7a7b6f05914", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c396d4bf730e4c7487c9edc629203e41", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='run 5/12', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c2a8a1c5b660453fb06d34dc8d04e577", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "496f53fd53e04a1fbc27c6366f2f33ac", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='run 6/12', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2781f9ff287249deb3dbab2f08d34414", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d3790e0b384c41f9a5ab43c3145259ab", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='run 7/12', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6c8ba6f90ba24b668bde76ef254df237", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3fb4263166ee402c8d90da51da1e6c1c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='run 8/12', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4a72e7397b8a47e89fda306d09e67d16", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4b3e075a9ef843b69a643d31b3d25fee", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='run 9/12', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f3259aa5c490439cb2eb5a35fe249412", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cdefc2e27f2c482183aa36e2d063827b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='run 10/12', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0be706e0fa7f437ba32eab0ba49a6e8d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ab36a6f4f37e4c57a814e8f26d8b8e81", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='run 11/12', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7cba812c76b94c4999ec8d5ad50bce8a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0e42c84d9d6641a383b918b371ea9149", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='run 12/12', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0f53ed88a1ed46188b9b4c6910fee7c6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for i, run in enumerate(runs):\n", + " folder = f\"output/rhod_w_max={run['settings']['rhod_w_max']}_singular={run['settings']['freezing_singular']}_seed={run['settings']['seed']}\"\n", + " os.makedirs(folder, exist_ok=True)\n", + " \n", + " run['ncfile'] = f'{folder}/out.nc'\n", + "\n", + " formulae = Formulae(\n", + " particle_shape_and_density=\"MixedPhaseSpheres\",\n", + " freezing_temperature_spectrum='Niemand_et_al_2012',\n", + " heterogeneous_ice_nucleation_rate='ABIFM',\n", + " constants=FREEZING_CONSTANTS[\"dust\"],\n", + " seed=run['settings']['seed'],\n", + " )\n", + " settings = Settings(formulae)\n", + " settings.dt = 2.5 * si.s\n", + " settings.output_interval = settings.dt * 12\n", + " settings.simulation_time = 6000 * si.second if 'CI' not in os.environ else 2 * settings.output_interval\n", + " settings.spin_up_time = 600 * si.second\n", + " settings.size = (1500, 500)\n", + " settings.n_sd_per_gridbox = 32\n", + " settings.grid = (60, 20)\n", + " settings.th_std0 -= 33.3 * si.kelvins\n", + " settings.initial_water_vapour_mixing_ratio -= 6.66 * si.grams / si.kilogram\n", + " \n", + " settings.processes['coalescence'] = False\n", + " settings.processes['sedimentation'] = False\n", + " settings.processes['freezing'] = True\n", + " settings.freezing_inp_spec = spectra.Lognormal(\n", + " norm_factor=1,\n", + " m_mode=lognormal_mode_A,\n", + " s_geom=lognormal_sgm_g\n", + " )\n", + " settings.freezing_inp_frac = inp_frac\n", + " settings.freezing_thaw = True\n", + "\n", + " settings.kappa = 0.61\n", + " settings.mode_1 = spectra.Lognormal(\n", + " norm_factor=(270 + 270/315) / si.centimetre**3 / formulae.constants.rho_STP,\n", + " m_mode=0.03 * si.micrometre,\n", + " s_geom=1.28,\n", + " )\n", + " settings.mode_2 = spectra.Lognormal(\n", + " norm_factor=(45 + 45/315) / si.centimetre**3 / formulae.constants.rho_STP,\n", + " m_mode=0.14 * si.micrometre,\n", + " s_geom=1.75,\n", + " )\n", + " settings.spectrum_per_mass_of_dry_air = spectra.Sum((settings.mode_1, settings.mode_2))\n", + " \n", + " for key, value in run['settings'].items(): \n", + " if key != 'seed':\n", + " assert hasattr(settings, key)\n", + " setattr(settings, key, value)\n", + "\n", + " storage = Storage()\n", + " simulation = Simulation(settings, storage, SpinUp=SpinUp)\n", + " simulation.reinit(products)\n", + "\n", + " vtk_exporter = VTKExporter(path=folder) \n", + " simulation.run(ProgBarController(f\"run {i+1}/{len(runs)}\"), vtk_exporter=vtk_exporter)\n", + " vtk_exporter.write_pvd()\n", + "\n", + " ncdf_exporter = NetCDFExporter(storage, settings, simulation, run['ncfile'])\n", + " ncdf_exporter.run(ProgBarController('netCDF'))" + ] + }, + { + "cell_type": "markdown", + "id": "27d1536b-6c7d-4e68-91e9-6a1fe2742026", + "metadata": {}, + "source": [ + "## Fig 11" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "241f48c4", + "metadata": {}, + "outputs": [], + "source": [ + "def label(settings_arg):\n", + " tmp = str({k.replace('condensation_', ''):\n", + " f\"{v:.1e}\" if isinstance(v, float) else\n", + " str(v).zfill(2) if isinstance(v, int) else\n", + " v for k, v in settings_arg.items()})\n", + " return tmp\\\n", + " .replace('{', '')\\\n", + " .replace('}', '')\\\n", + " .replace(\"'\", '')\\\n", + " .replace('rhod_w_max:', '$w_{max}\\\\approx$')\\\n", + " .replace('e+00', r' m/s')\\\n", + " .replace('5.0e-01', '0.5 m/s')\\\n", + " .replace('freezing_singular: True', r'singular$\\,\\,\\,$')\\\n", + " .replace('freezing_singular: False', 'time-dep')\\\n", + " .replace(', seed: 00', '')" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "bba6ffb0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "$w_{max}\\approx$ 0.5 m/s, singular$\\,\\,\\,$, seed: 01: time=23.31ms\n", + "$w_{max}\\approx$ 0.5 m/s, singular$\\,\\,\\,$: time=21.79ms\n", + "$w_{max}\\approx$ 0.5 m/s, time-dep, seed: 01: time=21.29ms\n", + "$w_{max}\\approx$ 0.5 m/s, time-dep: time=21.37ms\n", + "$w_{max}\\approx$ 1.0 m/s, singular$\\,\\,\\,$, seed: 01: time=21.21ms\n", + "$w_{max}\\approx$ 1.0 m/s, singular$\\,\\,\\,$: time=21.65ms\n", + "$w_{max}\\approx$ 1.0 m/s, time-dep, seed: 01: time=22.05ms\n", + "$w_{max}\\approx$ 1.0 m/s, time-dep: time=37.78ms\n", + "$w_{max}\\approx$ 2.0 m/s, singular$\\,\\,\\,$, seed: 01: time=31.61ms\n", + "$w_{max}\\approx$ 2.0 m/s, singular$\\,\\,\\,$: time=28.18ms\n", + "$w_{max}\\approx$ 2.0 m/s, time-dep, seed: 01: time=26.91ms\n", + "$w_{max}\\approx$ 2.0 m/s, time-dep: time=22.88ms\n", + "$w_{max}\\approx$ 0.5 m/s, singular$\\,\\,\\,$, seed: 01: time=23.31ms\n", + "$w_{max}\\approx$ 0.5 m/s, singular$\\,\\,\\,$: time=21.79ms\n", + "$w_{max}\\approx$ 0.5 m/s, time-dep, seed: 01: time=21.29ms\n", + "$w_{max}\\approx$ 0.5 m/s, time-dep: time=21.37ms\n", + "$w_{max}\\approx$ 1.0 m/s, singular$\\,\\,\\,$, seed: 01: time=21.21ms\n", + "$w_{max}\\approx$ 1.0 m/s, singular$\\,\\,\\,$: time=21.65ms\n", + "$w_{max}\\approx$ 1.0 m/s, time-dep, seed: 01: time=22.05ms\n", + "$w_{max}\\approx$ 1.0 m/s, time-dep: time=37.78ms\n", + "$w_{max}\\approx$ 2.0 m/s, singular$\\,\\,\\,$, seed: 01: time=31.61ms\n", + "$w_{max}\\approx$ 2.0 m/s, singular$\\,\\,\\,$: time=28.18ms\n", + "$w_{max}\\approx$ 2.0 m/s, time-dep, seed: 01: time=26.91ms\n", + "$w_{max}\\approx$ 2.0 m/s, time-dep: time=22.88ms\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-08-08T13:45:33.052684\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0f92a984de7e48c598427ae4e55d39f5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./figures.pdf
\")" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "colors = (\n", + " '#5940ff', '#5980ff', '#59c0ff', '#59e0ff', \n", + " '#dd0000', '#dd6666', '#dd9999', '#ddcccc', \n", + " '#777777', '#aaaaaa'\n", + ")\n", + "n_last_output_steps = 80 if 'CI' not in os.environ else 2\n", + "bins = {\n", + " 'n_i': 20,\n", + " 'cooling rate': 20,\n", + " 'n_c': 20,\n", + " 'n_inp': 20,\n", + " #'n_frozen_aerosols': 12,\n", + " #'n_frozen_droplets': 12\n", + "}\n", + "bin_range = {\n", + " 'n_i': None,\n", + " 'cooling rate': (0, .025),\n", + " 'n_c': (80, 480),\n", + " #'n_inp': (400, 1600),\n", + " #'n_frozen_aerosols': (5, 245),\n", + " #'n_frozen_droplets': (5, 245)\n", + "}\n", + "window = 3\n", + "\n", + "rows = 3\n", + "columns = 1\n", + "\n", + "fig, axs = pyplot.subplots(rows, columns, sharey=False, tight_layout=True, figsize=(4.5, 12))\n", + "for plot_i, var in enumerate(bin_range.keys()):\n", + " if len(axs.shape) == 2:\n", + " ax = axs[plot_i//columns][plot_i%columns]\n", + " else:\n", + " ax = axs[plot_i]\n", + " for i, run in enumerate(reversed(runs)):\n", + " nc = netcdf_file(run['ncfile'], mode='r', mmap=False)\n", + " n_spinup = nc.n_spin_up // nc.steps_per_output_interval\n", + " data = nc.variables[var]\n", + " timesteps = slice(-(n_last_output_steps+1), None)\n", + " assert data.shape[0] >= n_last_output_steps\n", + "\n", + " style = {\n", + " 'color': colors[i % len(runs) // N_REALISATIONS], \n", + " 'lw': 3 if run['settings']['freezing_singular'] else 2,\n", + " 'ls': '--' if not run['settings']['freezing_singular'] else '-'\n", + " }\n", + " \n", + " if var != 'n_i':\n", + " wall_time = np.nanmean(nc.variables['Freezing_wall_time'][timesteps] / nc.steps_per_output_interval)\n", + " wall_time = np.nan if not np.isfinite(wall_time) else int(100 * wall_time) / 100\n", + " lbl = label(run['settings'])\n", + " print(f\"{lbl}: time={wall_time:.2f}{wall_time_unit}\") \n", + "\n", + " y, x, _ = ax.hist(\n", + " data[timesteps, :, :].flatten(), \n", + " bins=bins[var],\n", + " range=bin_range[var],\n", + " histtype='step', \n", + " color=style['color'],\n", + " lw=0\n", + " )\n", + " y /= n_last_output_steps\n", + " filt_x = x[:-1] if window % 2 == 0 else (x[1:] + x[:-1])/2\n", + " ax.plot(\n", + " filt_x,\n", + " uniform_filter1d(y, size=window),\n", + " **style,\n", + " label=f\"{lbl}\" if run['settings']['seed'] == 0 else \"\"\n", + " )\n", + " if i == 0:\n", + " ax.set_yscale('log')\n", + " ax.set_ylabel('occurrence count per step ' + f'({window}-bin moving average)')\n", + " binwidth = (bin_range[var][1]-bin_range[var][0])/bins[var]\n", + " ax.set_xlim(bin_range[var])\n", + " ax.set_ylim(5, 200)\n", + " if var == 'n_inp':\n", + " ax.set_xlabel(f'inclusion-rich (frozen or unfrozen) particle conc. [{conc_ice_unit} STP] ({binwidth} binning)')\n", + " elif var == 'n_frozen_aerosols':\n", + " ax.set_ylim(.01, 100)\n", + " ax.set_xlabel(f'frozen aerosol concentration [{conc_ice_unit} STP] ({binwidth} binning)')\n", + " elif var == 'n_frozen_droplets':\n", + " ax.set_ylim(.01, 100)\n", + " ax.set_xlabel(f'frozen droplet concentration [{conc_ice_unit} STP] ({binwidth} binning)')\n", + " elif var == 'n_c':\n", + " ax.set_xlabel(f'cloud droplet concentration [{conc_cld_unit} STP] ({binwidth} binning)')\n", + " elif var == 'cooling rate':\n", + " ax.set_xlabel(f'cooling rate [{cool_rate_unit}] ({binwidth} binning)')\n", + " else:\n", + " assert False\n", + " else:\n", + " ax.plot(\n", + " nc.variables['T'][:] / si.min,\n", + " np.mean(np.mean(data[:,:,:], axis=1), axis=1) ,\n", + " **style\n", + " )\n", + " if i == 0:\n", + " ax.set_yscale('log')\n", + " ax.set_ylim(.05, 50)\n", + " ax.set_ylabel(f'domain-mean time-accumulated ice conc. [{conc_ice_unit} STP]')\n", + " ax.set_xlabel('time [min]')\n", + " for note, times in {\n", + " \"spinup\": [0, min(n_spinup, len(nc.variables['T'][:])-1)],\n", + " \"occurence counting\": [timesteps.start, -1]\n", + " }.items():\n", + " x = nc.variables['T'][times] / si.min\n", + " y = 20\n", + " ax.plot(\n", + " x,\n", + " [y] * 2,\n", + " color='gray'\n", + " )\n", + " ax.text(x[0], 1.1 * y, note, color='gray', size=8)\n", + " \n", + " ax.grid(which='minor')\n", + " ax.grid(which='major')\n", + " if var == 'cooling rate':\n", + " ax.legend(loc='upper right')\n", + " ax.text(\n", + " 0, 1.03,\n", + " '('+string.ascii_lowercase[plot_i]+')',\n", + " transform=ax.transAxes,\n", + " size=15,\n", + " weight='bold'\n", + " )\n", + "show_plot(\"figures.pdf\")" + ] + }, + { + "cell_type": "markdown", + "id": "f497f98e-dea9-4284-9d57-926f41e135ae", + "metadata": {}, + "source": [ + "## Fig 10 & animations" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "id": "de395e91-cbbc-4763-9872-51d8f90f588a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Overwriting pvscript.py\n" + ] + } + ], + "source": [ + "%%writefile pvscript.py\n", + "\n", + "import argparse\n", + "import json\n", + "from pathlib import Path\n", + "from paraview import simple as pvs\n", + "\n", + "arg_parser = argparse.ArgumentParser()\n", + "arg_parser.add_argument('path')\n", + "arg_parser.add_argument('--particles_var')\n", + "\n", + "arg_parser.add_argument('--particles_color_range')\n", + "arg_parser.add_argument('--particles_var_multiplier', default=1)\n", + "arg_parser.add_argument('--particles_logscale', default=False)\n", + "arg_parser.add_argument('--surface_var')\n", + "arg_parser.add_argument('--surface_color_range')\n", + "arg_parser.add_argument('--save_frame_pdfs')\n", + "arg_parser.add_argument('--anim_path_suffix', default='')\n", + "\n", + "args = arg_parser.parse_args()\n", + "\n", + "# load data\n", + "reader_prod = pvs.OpenDataFile(f\"{args.path}/output/sd_products.pvd\")\n", + "reader_attr = pvs.OpenDataFile(f\"{args.path}/output/sd_attributes.pvd\")\n", + "\n", + "# prepare view settings\n", + "view = pvs.GetRenderView()\n", + "view.ViewSize = [2000, 800]\n", + "view.Background = [1, 1, 1]\n", + "view.CenterAxesVisibility = False\n", + "view.OrientationAxesVisibility = False\n", + "axesGrid = view.AxesGrid\n", + "axesGrid.Visibility = True\n", + "axesGrid.XTitle = 'Z [$m$]'\n", + "axesGrid.YTitle = 'X [$m$]'\n", + "\n", + "axesGrid.XAxisUseCustomLabels = True\n", + "axesGrid.XAxisLabels = [0, 125, 375, 500]\n", + "axesGrid.YAxisUseCustomLabels = True\n", + "axesGrid.YAxisLabels = [300, 600, 900, 1200]\n", + "\n", + "axesGrid.XTitleFontSize = 30\n", + "axesGrid.XLabelFontSize = 30\n", + "axesGrid.YTitleFontSize = 30\n", + "axesGrid.YLabelFontSize = 30\n", + "\n", + "axesGrid.XTitleColor = [0, 0, 0]\n", + "axesGrid.XLabelColor = [0, 0, 0]\n", + "axesGrid.YTitleColor = [0, 0, 0]\n", + "axesGrid.YLabelColor = [0, 0, 0]\n", + "axesGrid.GridColor = [0.1, 0.1, 0.1]\n", + "\n", + "# render particles\n", + "if args.particles_var is not None:\n", + " palette = 'Cold and Hot'\n", + " palette_invert = True\n", + " title = args.particles_var + r' [$\\mu m$]'\n", + " \n", + " calculator = pvs.Calculator(reader_attr)\n", + " calculator.Function = f'{args.particles_var}*{args.particles_var_multiplier}'\n", + " display_attr = pvs.Show(calculator, view)\n", + " \n", + " display_attr.SetRepresentationType('Point Gaussian')\n", + " display_attr.ShaderPreset = 'Sphere'\n", + " display_attr.GaussianRadius = 5\n", + " display_attr.MapScalars = 1\n", + " \n", + " display_attr.Ambient = .25\n", + " pvs.ColorBy(display_attr, ('POINTS', 'Result'))\n", + " color_scale_attr = pvs.GetColorTransferFunction('Result')\n", + " color_scale_attr.ApplyPreset(palette, True)\n", + " if palette_invert:\n", + " color_scale_attr.InvertTransferFunction()\n", + " if args.particles_color_range is None:\n", + " display_attr.RescaleTransferFunctionToDataRange(True)\n", + " else:\n", + " color_scale_attr.RescaleTransferFunction(json.loads(args.particles_color_range))\n", + " if args.particles_logscale:\n", + " color_scale_attr.MapControlPointsToLogSpace()\n", + " color_scale_attr.UseLogScale = 1\n", + " colorbar_attr = pvs.GetScalarBar(color_scale_attr, view)\n", + " colorbar_attr.TitleColor = [0, 0, 0]\n", + " colorbar_attr.LabelColor = [0, 0, 0]\n", + " colorbar_attr.Title = title\n", + " colorbar_attr.ComponentTitle = ''\n", + " colorbar_attr.TitleFontSize = 30\n", + " colorbar_attr.LabelFontSize = 30\n", + " colorbar_attr.Visibility = True\n", + " colorbar_attr.WindowLocation = 'AnyLocation'\n", + " colorbar_attr.Position = [.025, .333]\n", + " colorbar_attr.RangeLabelFormat = '%g'\n", + " \n", + "# render product\n", + "if args.surface_var is not None:\n", + " palette = 'X Ray'\n", + " palette_invert = True\n", + " color_range = [0, 300]\n", + " logscale = False\n", + " title = '$' + args.surface_var + '$' + ' [$1/cc$ STP]'\n", + " \n", + " display_prod = pvs.Show(reader_prod)\n", + " display_prod.SetRepresentationType('Surface')\n", + " display_prod.Ambient = .25\n", + " pvs.ColorBy(display_prod, ('CELLS', args.surface_var))\n", + " color_scale_prod = pvs.GetColorTransferFunction(args.surface_var)\n", + " if args.surface_color_range is None:\n", + " display_prod.RescaleTransferFunctionToDataRange(True)\n", + " else:\n", + " color_scale_prod.RescaleTransferFunction(json.loads(args.surface_color_range))\n", + " color_scale_prod.ApplyPreset(palette, True)\n", + " if palette_invert:\n", + " color_scale_prod.InvertTransferFunction()\n", + " colorbar_prod = pvs.GetScalarBar(color_scale_prod, view)\n", + " colorbar_prod.TitleColor = [0, 0, 0]\n", + " colorbar_prod.LabelColor = [0, 0, 0]\n", + " colorbar_prod.Title = title\n", + " colorbar_prod.ComponentTitle = ''\n", + " colorbar_prod.TitleFontSize = 30\n", + " colorbar_prod.LabelFontSize = 30\n", + " colorbar_prod.Visibility = True\n", + " colorbar_prod.Position = [.925, .333]\n", + " colorbar_prod.WindowLocation = 'AnyLocation'\n", + " colorbar_prod.RangeLabelFormat = '%g'\n", + "\n", + "# time annotation\n", + "time = pvs.AnnotateTimeFilter(guiName = \"AnnotateTimeFilter1\", Format = 'Time: %gs')\n", + "repr = pvs.Show(time, view)\n", + "repr.Color = [0.0, 0.0, 0.0]\n", + "repr.FontSize = 20\n", + "view.Update()\n", + "\n", + "# compose the scene\n", + "scene = pvs.GetAnimationScene()\n", + "scene.UpdateAnimationUsingDataTimeSteps()\n", + "pvs.Render(view)\n", + "cam = pvs.GetActiveCamera()\n", + "cam.SetViewUp(1, 0, 0)\n", + "pos = list(cam.GetPosition())\n", + "pos[-1] = -pos[-1]\n", + "cam.SetPosition(pos)\n", + "cam.Dolly(1.85)\n", + "\n", + "# save animation to an Ogg Vorbis file\n", + "anim_file = f'{args.path}/anim{args.anim_path_suffix}.ogv'\n", + "print(anim_file)\n", + "pvs.SaveAnimation(anim_file, view, FrameRate=5, ImageQuality=0)\n", + "\n", + "# save animation frame as pdfs\n", + "if args.save_frame_pdfs is not None:\n", + " exporters = pvs.servermanager.createModule('exporters')\n", + " exporter = exporters.GL2PSRenderViewExporterPDF()\n", + " exporter.Rasterize3Dgeometry = False\n", + " exporter.GL2PSdepthsortmethod = 'BSP sorting (slow, best)'\n", + " for t in reader_prod.TimestepValues:\n", + " view.ViewTime = t\n", + " exporter.FileName = f'{args.path}/anim_frame_{t}{args.anim_path_suffix}.pdf'\n", + " print(exporter.FileName)\n", + " for reader in (reader_prod, reader_attr):\n", + " reader.UpdatePipeline(t)\n", + " exporter.SetView(view)\n", + " exporter.Write()" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "id": "4df59c0e-5203-4572-9cdf-9c5773f3a4ca", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "output/rhod_w_max=0.5_singular=True_seed=1/anim_cld.ogv\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_cld.ogv\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_cld.ogv\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_cld.ogv\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_cld.ogv\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_cld.ogv\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_cld.ogv\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_cld.ogv\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_cld.ogv\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_cld.ogv\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_cld.ogv\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_cld.ogv\n" + ] + } + ], + "source": [ + "from pathlib import Path\n", + "\n", + "if not ('CI' in os.environ and platform.system() == 'Windows'):\n", + " for path in Path('output').glob(\"*\"):\n", + " for args in (\n", + " [path, '--anim_path_suffix=_cld', '--surface_var=n_c', '--surface_color_range=[0, 300]', '--particles_var=radius', \n", + " '--particles_var_multiplier=1e6', '--particles_color_range=[0.5,10]', '--particles_logscale=True', \n", + " ],\n", + " # [path, '--anim_path_suffix=_ice', '--surface_var=n_i', '--particles_var=freezing temperature',\n", + " # '--particles_color_range=[230,260]',\n", + " # '--surface_color_range=[0, 1]'],\n", + " ):\n", + " subprocess.run(\n", + " ['pvpython', '--force-offscreen-rendering', 'pvscript.py'] + args,\n", + " check=True,\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e114c258-89d1-4f25-8140-7c41f491fde1", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "adef4842-0234-4952-8955-ad558b4143dc", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/examples/README.md b/examples/README.md index ae7d2548b..07631dde6 100644 --- a/examples/README.md +++ b/examples/README.md @@ -264,6 +264,7 @@ - [Arabas et al. 2023](https://doi.org/10.48550/arXiv.2308.05015) (singular vs. time-dependent immersion freezing) - Fig. 11: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb) + [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb) + [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb) + [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb) + diff --git a/tests/devops_tests b/tests/devops_tests index 231c989f1..f11902076 160000 --- a/tests/devops_tests +++ b/tests/devops_tests @@ -1 +1 @@ -Subproject commit 231c989f109a1da47ad77f240db7a6b693983377 +Subproject commit f119020765edeb217225da2609876f25d5f77286 From f5d7fe49df3d71998f3eda7a3aa80c068b7eca33 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Wed, 11 Sep 2024 14:34:08 +0200 Subject: [PATCH 21/41] addressing pylint hints --- .../figs_10_and_11_and_animations.ipynb | 15 ++++++++------- 1 file changed, 8 insertions(+), 7 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb index df4720cc3..1555e93a6 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb @@ -39,6 +39,8 @@ "import os\n", "import string\n", "import subprocess\n", + "import platform\n", + "import pathlib\n", "\n", "import numpy as np\n", "\n", @@ -162,6 +164,7 @@ "outputs": [], "source": [ "class SpinUp:\n", + " \"\"\" enables freezing dynamic after a given number of steps \"\"\"\n", " def __init__(self, particulator, spin_up_steps):\n", " self.spin_up_steps = spin_up_steps\n", " particulator.observers.append(self)\n", @@ -172,10 +175,10 @@ " if self.particulator.n_steps == self.spin_up_steps:\n", " self.set(Freezing, \"enable\", True)\n", "\n", - " def set(self, dynamic, attr, value):\n", - " key = dynamic.__name__\n", - " if key in self.particulator.dynamics:\n", - " setattr(self.particulator.dynamics[key], attr, value)" + " def set(self, dynamic, attr, val):\n", + " name = dynamic.__name__\n", + " if name in self.particulator.dynamics:\n", + " setattr(self.particulator.dynamics[name], attr, val)" ] }, { @@ -6637,10 +6640,8 @@ } ], "source": [ - "from pathlib import Path\n", - "\n", "if not ('CI' in os.environ and platform.system() == 'Windows'):\n", - " for path in Path('output').glob(\"*\"):\n", + " for path in pathlib.Path('output').glob(\"*\"):\n", " for args in (\n", " [path, '--anim_path_suffix=_cld', '--surface_var=n_c', '--surface_color_range=[0, 300]', '--particles_var=radius', \n", " '--particles_var_multiplier=1e6', '--particles_color_range=[0.5,10]', '--particles_logscale=True', \n", From 6012e87ff71fa04a5c556c6c247b3a7aac48539f Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Wed, 11 Sep 2024 19:24:49 +0200 Subject: [PATCH 22/41] check pvpython import in separate workflow step --- .github/workflows/tests+artifacts+pypi.yml | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/.github/workflows/tests+artifacts+pypi.yml b/.github/workflows/tests+artifacts+pypi.yml index 39bf50a3d..abea80bd7 100644 --- a/.github/workflows/tests+artifacts+pypi.yml +++ b/.github/workflows/tests+artifacts+pypi.yml @@ -253,7 +253,9 @@ jobs: brew install --cask paraview echo `dirname /Applications/ParaView-*.app/Contents/bin/pvpython | head -1` >> $GITHUB_PATH - if: matrix.platform != 'windows-latest' - run: pvpython --version + run: | + pvpython --version + pvpython -c "from paraview import simple" - env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} From 1be9aa2fe4ac06033d9a9c09ec2a5a11939b2876 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Thu, 12 Sep 2024 12:28:09 +0200 Subject: [PATCH 23/41] bump ubuntu version --- .github/workflows/tests+artifacts+pypi.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/tests+artifacts+pypi.yml b/.github/workflows/tests+artifacts+pypi.yml index abea80bd7..90dd6a06f 100644 --- a/.github/workflows/tests+artifacts+pypi.yml +++ b/.github/workflows/tests+artifacts+pypi.yml @@ -177,7 +177,7 @@ jobs: needs: [nojit_and_codecov] strategy: matrix: - platform: [ubuntu-22.04, macos-12, windows-latest] + platform: [ubuntu-24.04, macos-12, windows-latest] python-version: ["3.8", "3.11"] runs-on: ${{ matrix.platform }} steps: @@ -213,7 +213,7 @@ jobs: needs: [examples-setup] strategy: matrix: - platform: [ubuntu-22.04, macos-12, windows-latest] + platform: [ubuntu-24.04, macos-12, windows-latest] python-version: ["3.8", "3.11"] test-suite: [ "chemistry_freezing_isotopes", "condensation_a", "condensation_b", "coagulation", "breakup", "multi-process_a", "multi-process_b"] fail-fast: false From 388fe178b866cb2ecf98d1b0abb5fda91a93479a Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Thu, 12 Sep 2024 12:40:49 +0200 Subject: [PATCH 24/41] bump Python version --- .github/workflows/tests+artifacts+pypi.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/tests+artifacts+pypi.yml b/.github/workflows/tests+artifacts+pypi.yml index 90dd6a06f..9ee62d1b1 100644 --- a/.github/workflows/tests+artifacts+pypi.yml +++ b/.github/workflows/tests+artifacts+pypi.yml @@ -178,7 +178,7 @@ jobs: strategy: matrix: platform: [ubuntu-24.04, macos-12, windows-latest] - python-version: ["3.8", "3.11"] + python-version: ["3.9", "3.12"] runs-on: ${{ matrix.platform }} steps: - uses: actions/checkout@v4.1.6 @@ -214,7 +214,7 @@ jobs: strategy: matrix: platform: [ubuntu-24.04, macos-12, windows-latest] - python-version: ["3.8", "3.11"] + python-version: ["3.9", "3.12"] test-suite: [ "chemistry_freezing_isotopes", "condensation_a", "condensation_b", "coagulation", "breakup", "multi-process_a", "multi-process_b"] fail-fast: false runs-on: ${{ matrix.platform }} From 5f02ed5bb4c2fc6a9cc9866bf4e67f2675ab1b74 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Thu, 12 Sep 2024 12:55:37 +0200 Subject: [PATCH 25/41] unbump upper Python version --- .github/workflows/tests+artifacts+pypi.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/tests+artifacts+pypi.yml b/.github/workflows/tests+artifacts+pypi.yml index 9ee62d1b1..df5ed01eb 100644 --- a/.github/workflows/tests+artifacts+pypi.yml +++ b/.github/workflows/tests+artifacts+pypi.yml @@ -178,7 +178,7 @@ jobs: strategy: matrix: platform: [ubuntu-24.04, macos-12, windows-latest] - python-version: ["3.9", "3.12"] + python-version: ["3.9", "3.11"] runs-on: ${{ matrix.platform }} steps: - uses: actions/checkout@v4.1.6 @@ -214,7 +214,7 @@ jobs: strategy: matrix: platform: [ubuntu-24.04, macos-12, windows-latest] - python-version: ["3.9", "3.12"] + python-version: ["3.9", "3.11"] test-suite: [ "chemistry_freezing_isotopes", "condensation_a", "condensation_b", "coagulation", "breakup", "multi-process_a", "multi-process_b"] fail-fast: false runs-on: ${{ matrix.platform }} From 2e58d02689b65452528c40cda41d04e64a87592b Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Thu, 12 Sep 2024 20:26:45 +0200 Subject: [PATCH 26/41] address paraview deprecation notice --- .../paraview_hello_world.ipynb | 4 +- .../figs_10_and_11_and_animations.ipynb | 6367 ++++++++--------- 2 files changed, 3017 insertions(+), 3354 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb index 4c3847b32..7682f6dfb 100644 --- a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb @@ -171,7 +171,7 @@ "colorbar_attr.TitleFontSize = 30\n", "colorbar_attr.LabelFontSize = 30\n", "colorbar_attr.Visibility = True\n", - "colorbar_attr.WindowLocation = 'AnyLocation'\n", + "colorbar_attr.WindowLocation = 'Any Location'\n", "colorbar_attr.Position = [.1, .333]\n", "colorbar_attr.RangeLabelFormat = '%g'\n", "\n", @@ -204,7 +204,7 @@ "colorbar_prod.LabelFontSize = 30\n", "colorbar_prod.Visibility = True\n", "colorbar_prod.Position = [.92, .333]\n", - "colorbar_prod.WindowLocation = 'AnyLocation'\n", + "colorbar_prod.WindowLocation = 'Any Location'\n", "colorbar_prod.RangeLabelFormat = '%g'\n", "\n", "# compose the scene\n", diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb index 1555e93a6..755bb67b6 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb @@ -17,7 +17,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "id": "6d39ff74", "metadata": {}, "outputs": [], @@ -31,7 +31,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "id": "b19713b4", "metadata": {}, "outputs": [], @@ -72,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "id": "b3ac5007", "metadata": {}, "outputs": [], @@ -91,7 +91,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "id": "8ac0108f", "metadata": {}, "outputs": [], @@ -109,7 +109,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "6a3c69a9", "metadata": {}, "outputs": [], @@ -158,7 +158,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "id": "0b25f1e7-4887-4012-bf3b-13f6dc6d672f", "metadata": {}, "outputs": [], @@ -183,347 +183,10 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 7, "id": "944f6247", "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a5581709e2ec4f349fb77b62b1a0e00c", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 1/12', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "8c3ea170045448f093453676a689ac3a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ee7e63ac335749c8aae0e9ec9042fac2", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 2/12', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "8d154e21912c443a8cc7c3d9a699d10f", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f86d0df3171a4840ac323eb5c08eabec", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 3/12', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "afa3c16accbe43f9ae5ff221811ec645", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "75d59db4a6dc467f98cf94e1c5ddf2bc", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 4/12', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f1df7e15cdca490b838ab7a7b6f05914", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c396d4bf730e4c7487c9edc629203e41", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 5/12', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c2a8a1c5b660453fb06d34dc8d04e577", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "496f53fd53e04a1fbc27c6366f2f33ac", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 6/12', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "2781f9ff287249deb3dbab2f08d34414", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d3790e0b384c41f9a5ab43c3145259ab", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 7/12', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6c8ba6f90ba24b668bde76ef254df237", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "3fb4263166ee402c8d90da51da1e6c1c", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 8/12', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4a72e7397b8a47e89fda306d09e67d16", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4b3e075a9ef843b69a643d31b3d25fee", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 9/12', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f3259aa5c490439cb2eb5a35fe249412", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "cdefc2e27f2c482183aa36e2d063827b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 10/12', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0be706e0fa7f437ba32eab0ba49a6e8d", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ab36a6f4f37e4c57a814e8f26d8b8e81", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 11/12', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7cba812c76b94c4999ec8d5ad50bce8a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0e42c84d9d6641a383b918b371ea9149", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='run 12/12', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0f53ed88a1ed46188b9b4c6910fee7c6", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='netCDF', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "for i, run in enumerate(runs):\n", " folder = f\"output/rhod_w_max={run['settings']['rhod_w_max']}_singular={run['settings']['freezing_singular']}_seed={run['settings']['seed']}\"\n", @@ -600,7 +263,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 8, "id": "241f48c4", "metadata": {}, "outputs": [], @@ -624,7 +287,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 9, "id": "bba6ffb0", "metadata": {}, "outputs": [ @@ -664,12 +327,12 @@ "\n", "\n", - "\n", + "\n", " \n", " \n", " \n", " \n", - " 2024-08-08T13:45:33.052684\n", + " 2024-09-11T14:39:04.503477\n", " image/svg+xml\n", " \n", " \n", @@ -684,8 +347,8 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1186,18 +849,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1206,312 +869,312 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3115,18 +2778,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3186,18 +2849,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3208,18 +2871,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3230,18 +2893,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3252,7 +2915,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3385,18 +3048,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3405,175 +3068,175 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", @@ -4543,27 +4206,27 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4780,14 +4443,14 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4814,14 +4477,14 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4848,14 +4511,14 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4882,14 +4545,14 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4919,28 +4582,28 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4949,18 +4612,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4969,18 +4632,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4989,18 +4652,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5009,18 +4672,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5029,18 +4692,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5049,18 +4712,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5069,18 +4732,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5089,7 +4752,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5149,18 +4812,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5169,18 +4832,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5189,175 +4852,175 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5410,827 +5073,827 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", @@ -6267,14 +5930,14 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "\n" @@ -6289,12 +5952,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0f92a984de7e48c598427ae4e55d39f5", + "model_id": "da37020e1efe4bc8bfbc313f4b9701f5", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HTML(value=\"./figures.pdf
\")" + "HBox(children=(HTML(value=\"./figures.pdf
\"), HTML(value=\" Date: Sat, 14 Sep 2024 20:53:23 +0200 Subject: [PATCH 27/41] pin paraview to <=5.9.1 (last version to support paraview.servermanager.createModule) --- .github/workflows/tests+artifacts+pypi.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/tests+artifacts+pypi.yml b/.github/workflows/tests+artifacts+pypi.yml index df5ed01eb..6afd9ed67 100644 --- a/.github/workflows/tests+artifacts+pypi.yml +++ b/.github/workflows/tests+artifacts+pypi.yml @@ -247,10 +247,10 @@ jobs: - if: startsWith(matrix.platform, 'ubuntu-') run: | sudo apt-get update - sudo apt-get install python3-paraview + sudo apt-get install python3-paraview=5.9.0-2 - if: startsWith(matrix.platform, 'macos-') run: | - brew install --cask paraview + brew install --cask paraview@5.9.1 echo `dirname /Applications/ParaView-*.app/Contents/bin/pvpython | head -1` >> $GITHUB_PATH - if: matrix.platform != 'windows-latest' run: | From dfc20cc964ee84f37fc4b755eefef0beca67a156 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Sun, 15 Sep 2024 11:52:03 +0200 Subject: [PATCH 28/41] pin newer paraview versions --- .github/workflows/tests+artifacts+pypi.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/tests+artifacts+pypi.yml b/.github/workflows/tests+artifacts+pypi.yml index 6afd9ed67..9cbd610cf 100644 --- a/.github/workflows/tests+artifacts+pypi.yml +++ b/.github/workflows/tests+artifacts+pypi.yml @@ -247,10 +247,10 @@ jobs: - if: startsWith(matrix.platform, 'ubuntu-') run: | sudo apt-get update - sudo apt-get install python3-paraview=5.9.0-2 + sudo apt-get install python3-paraview=5.11.2 - if: startsWith(matrix.platform, 'macos-') run: | - brew install --cask paraview@5.9.1 + brew install --cask paraview@5.13.0 echo `dirname /Applications/ParaView-*.app/Contents/bin/pvpython | head -1` >> $GITHUB_PATH - if: matrix.platform != 'windows-latest' run: | From 7f6d1174c2d9b8f2e96edceecd89e934a18dc2a7 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Sun, 15 Sep 2024 18:05:04 +0200 Subject: [PATCH 29/41] fix version strings --- .github/workflows/tests+artifacts+pypi.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/tests+artifacts+pypi.yml b/.github/workflows/tests+artifacts+pypi.yml index 9cbd610cf..bdb84995b 100644 --- a/.github/workflows/tests+artifacts+pypi.yml +++ b/.github/workflows/tests+artifacts+pypi.yml @@ -247,10 +247,10 @@ jobs: - if: startsWith(matrix.platform, 'ubuntu-') run: | sudo apt-get update - sudo apt-get install python3-paraview=5.11.2 + sudo apt-get install python3-paraview=5.11.2+dfsg-6build5 - if: startsWith(matrix.platform, 'macos-') run: | - brew install --cask paraview@5.13.0 + brew install --cask paraview@5.13.0,MPI-OSX11.0-Python3.10 echo `dirname /Applications/ParaView-*.app/Contents/bin/pvpython | head -1` >> $GITHUB_PATH - if: matrix.platform != 'windows-latest' run: | From c26005b4dfd33121f43565373e59f222b5f8227a Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Sun, 15 Sep 2024 20:45:15 +0200 Subject: [PATCH 30/41] skip paraview version pin for homebrew - cannot get it to work... --- .github/workflows/tests+artifacts+pypi.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/tests+artifacts+pypi.yml b/.github/workflows/tests+artifacts+pypi.yml index bdb84995b..62484c12b 100644 --- a/.github/workflows/tests+artifacts+pypi.yml +++ b/.github/workflows/tests+artifacts+pypi.yml @@ -250,7 +250,7 @@ jobs: sudo apt-get install python3-paraview=5.11.2+dfsg-6build5 - if: startsWith(matrix.platform, 'macos-') run: | - brew install --cask paraview@5.13.0,MPI-OSX11.0-Python3.10 + brew install --cask paraview echo `dirname /Applications/ParaView-*.app/Contents/bin/pvpython | head -1` >> $GITHUB_PATH - if: matrix.platform != 'windows-latest' run: | From 0cfcdf4f535c9d2c139717532df9775d8d8266b3 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Mon, 16 Sep 2024 00:35:11 +0200 Subject: [PATCH 31/41] list versions with apt-cache policy --- .github/workflows/tests+artifacts+pypi.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/tests+artifacts+pypi.yml b/.github/workflows/tests+artifacts+pypi.yml index 62484c12b..32625883b 100644 --- a/.github/workflows/tests+artifacts+pypi.yml +++ b/.github/workflows/tests+artifacts+pypi.yml @@ -247,6 +247,7 @@ jobs: - if: startsWith(matrix.platform, 'ubuntu-') run: | sudo apt-get update + apt-cache policy python3-paraview sudo apt-get install python3-paraview=5.11.2+dfsg-6build5 - if: startsWith(matrix.platform, 'macos-') run: | From e49ba61bf631110b6aa0e37f22bac0336489ae67 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Tue, 8 Oct 2024 18:34:42 +0200 Subject: [PATCH 32/41] further updates (incl cooling rate and animation fixes) --- .../figs_10_and_11_and_animations.ipynb | 10303 ++++++++++++---- .../figs_3_and_7_and_8.ipynb | 9948 ++++++++------- .../PySDM_examples/Arabas_et_al_2023/plots.py | 2 +- .../Szumowski_et_al_1998/simulation.py | 11 +- 4 files changed, 12503 insertions(+), 7761 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb index 755bb67b6..b340a7587 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb @@ -295,30 +295,30 @@ "name": "stdout", "output_type": "stream", "text": [ - "$w_{max}\\approx$ 0.5 m/s, singular$\\,\\,\\,$, seed: 01: time=23.31ms\n", - "$w_{max}\\approx$ 0.5 m/s, singular$\\,\\,\\,$: time=21.79ms\n", - "$w_{max}\\approx$ 0.5 m/s, time-dep, seed: 01: time=21.29ms\n", - "$w_{max}\\approx$ 0.5 m/s, time-dep: time=21.37ms\n", - "$w_{max}\\approx$ 1.0 m/s, singular$\\,\\,\\,$, seed: 01: time=21.21ms\n", - "$w_{max}\\approx$ 1.0 m/s, singular$\\,\\,\\,$: time=21.65ms\n", - "$w_{max}\\approx$ 1.0 m/s, time-dep, seed: 01: time=22.05ms\n", - "$w_{max}\\approx$ 1.0 m/s, time-dep: time=37.78ms\n", - "$w_{max}\\approx$ 2.0 m/s, singular$\\,\\,\\,$, seed: 01: time=31.61ms\n", - "$w_{max}\\approx$ 2.0 m/s, singular$\\,\\,\\,$: time=28.18ms\n", - "$w_{max}\\approx$ 2.0 m/s, time-dep, seed: 01: time=26.91ms\n", - "$w_{max}\\approx$ 2.0 m/s, time-dep: time=22.88ms\n", - "$w_{max}\\approx$ 0.5 m/s, singular$\\,\\,\\,$, seed: 01: time=23.31ms\n", - "$w_{max}\\approx$ 0.5 m/s, singular$\\,\\,\\,$: time=21.79ms\n", - "$w_{max}\\approx$ 0.5 m/s, time-dep, seed: 01: time=21.29ms\n", - "$w_{max}\\approx$ 0.5 m/s, time-dep: time=21.37ms\n", - "$w_{max}\\approx$ 1.0 m/s, singular$\\,\\,\\,$, seed: 01: time=21.21ms\n", - "$w_{max}\\approx$ 1.0 m/s, singular$\\,\\,\\,$: time=21.65ms\n", - "$w_{max}\\approx$ 1.0 m/s, time-dep, seed: 01: time=22.05ms\n", - "$w_{max}\\approx$ 1.0 m/s, time-dep: time=37.78ms\n", - "$w_{max}\\approx$ 2.0 m/s, singular$\\,\\,\\,$, seed: 01: time=31.61ms\n", - "$w_{max}\\approx$ 2.0 m/s, singular$\\,\\,\\,$: time=28.18ms\n", - "$w_{max}\\approx$ 2.0 m/s, time-dep, seed: 01: time=26.91ms\n", - "$w_{max}\\approx$ 2.0 m/s, time-dep: time=22.88ms\n" + "$w_{max}\\approx$ 0.5 m/s, singular$\\,\\,\\,$, seed: 01: time=16.32ms\n", + "$w_{max}\\approx$ 0.5 m/s, singular$\\,\\,\\,$: time=16.44ms\n", + "$w_{max}\\approx$ 0.5 m/s, time-dep, seed: 01: time=16.73ms\n", + "$w_{max}\\approx$ 0.5 m/s, time-dep: time=16.81ms\n", + "$w_{max}\\approx$ 1.0 m/s, singular$\\,\\,\\,$, seed: 01: time=18.51ms\n", + "$w_{max}\\approx$ 1.0 m/s, singular$\\,\\,\\,$: time=18.69ms\n", + "$w_{max}\\approx$ 1.0 m/s, time-dep, seed: 01: time=19.21ms\n", + "$w_{max}\\approx$ 1.0 m/s, time-dep: time=19.20ms\n", + "$w_{max}\\approx$ 2.0 m/s, singular$\\,\\,\\,$, seed: 01: time=19.62ms\n", + "$w_{max}\\approx$ 2.0 m/s, singular$\\,\\,\\,$: time=19.45ms\n", + "$w_{max}\\approx$ 2.0 m/s, time-dep, seed: 01: time=19.52ms\n", + "$w_{max}\\approx$ 2.0 m/s, time-dep: time=27.82ms\n", + "$w_{max}\\approx$ 0.5 m/s, singular$\\,\\,\\,$, seed: 01: time=16.32ms\n", + "$w_{max}\\approx$ 0.5 m/s, singular$\\,\\,\\,$: time=16.44ms\n", + "$w_{max}\\approx$ 0.5 m/s, time-dep, seed: 01: time=16.73ms\n", + "$w_{max}\\approx$ 0.5 m/s, time-dep: time=16.81ms\n", + "$w_{max}\\approx$ 1.0 m/s, singular$\\,\\,\\,$, seed: 01: time=18.51ms\n", + "$w_{max}\\approx$ 1.0 m/s, singular$\\,\\,\\,$: time=18.69ms\n", + "$w_{max}\\approx$ 1.0 m/s, time-dep, seed: 01: time=19.21ms\n", + "$w_{max}\\approx$ 1.0 m/s, time-dep: time=19.20ms\n", + "$w_{max}\\approx$ 2.0 m/s, singular$\\,\\,\\,$, seed: 01: time=19.62ms\n", + "$w_{max}\\approx$ 2.0 m/s, singular$\\,\\,\\,$: time=19.45ms\n", + "$w_{max}\\approx$ 2.0 m/s, time-dep, seed: 01: time=19.52ms\n", + "$w_{max}\\approx$ 2.0 m/s, time-dep: time=27.82ms\n" ] }, { @@ -332,7 +332,7 @@ " \n", " \n", " \n", - " 2024-09-11T14:39:04.503477\n", + " 2024-10-08T14:01:58.867991\n", " image/svg+xml\n", " \n", " \n", @@ -368,16 +368,16 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -414,11 +414,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -459,11 +459,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -499,11 +499,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -550,11 +550,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -610,11 +610,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -796,16 +796,16 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -831,11 +831,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -851,11 +851,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -871,16 +871,16 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -888,11 +888,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -900,11 +900,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -912,11 +912,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -924,11 +924,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -936,11 +936,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -948,11 +948,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -960,11 +960,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -972,11 +972,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -984,11 +984,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -996,11 +996,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1008,11 +1008,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1020,11 +1020,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1032,11 +1032,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1044,11 +1044,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1056,11 +1056,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1068,11 +1068,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1080,11 +1080,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1092,11 +1092,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1104,11 +1104,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1116,11 +1116,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1128,11 +1128,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1140,11 +1140,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1152,11 +1152,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1164,11 +1164,11 @@ " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1443,1070 +1443,1084 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #808080; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p821c960b5e)\" style=\"fill: none; stroke: #808080; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2780,11 +2794,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2829,11 +2843,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2851,11 +2865,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2873,11 +2887,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2895,11 +2909,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3030,11 +3044,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3050,11 +3064,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3070,11 +3084,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3082,11 +3096,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3094,11 +3108,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3106,11 +3120,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3118,11 +3132,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3130,11 +3144,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3142,11 +3156,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3154,11 +3168,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3166,11 +3180,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3178,11 +3192,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3190,11 +3204,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3202,11 +3216,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3214,11 +3228,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3226,11 +3240,11 @@ " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3334,819 +3348,819 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p1ba79af677)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4614,11 +4628,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4634,11 +4648,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4654,11 +4668,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4674,11 +4688,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4694,11 +4708,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4714,11 +4728,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4734,11 +4748,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4814,11 +4828,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4834,11 +4848,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4854,11 +4868,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4866,11 +4880,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4878,11 +4892,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4890,11 +4904,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4902,11 +4916,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4914,11 +4928,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4926,11 +4940,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4938,11 +4952,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4950,11 +4964,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4962,11 +4976,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4974,11 +4988,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4986,11 +5000,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4998,11 +5012,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5010,11 +5024,11 @@ " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5074,807 +5088,808 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + "L 94.061992 767.4555 \n", + "L 106.257383 751.553085 \n", + "L 118.452773 735.477342 \n", + "L 130.648164 721.165273 \n", + "L 142.843555 707.942101 \n", + "L 155.038945 699.833097 \n", + "L 167.234336 694.262004 \n", + "L 179.429727 693.409013 \n", + "L 191.625117 693.856812 \n", + "L 203.820508 698.434036 \n", + "L 216.015898 705.544794 \n", + "L 228.211289 717.257898 \n", + "L 240.40668 731.524261 \n", + "L 252.60207 749.557431 \n", + "L 264.797461 769.603233 \n", + "L 276.992852 793.486017 \n", + "L 289.188242 813.363507 \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none; stroke: #59c0ff; stroke-width: 3; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p2700f6bd8c)\" style=\"fill: none\"/>\n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5952,7 +5967,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "da37020e1efe4bc8bfbc313f4b9701f5", + "model_id": "ba5eccf2f58d4a48b08601921291098b", "version_major": 2, "version_minor": 0 }, @@ -6101,7 +6116,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 19, "id": "de395e91-cbbc-4763-9872-51d8f90f588a", "metadata": {}, "outputs": [ @@ -6123,14 +6138,18 @@ "\n", "arg_parser = argparse.ArgumentParser()\n", "arg_parser.add_argument('path')\n", - "arg_parser.add_argument('--particles_var')\n", "\n", + "arg_parser.add_argument('--particles_var')\n", + "arg_parser.add_argument('--particles_unit')\n", "arg_parser.add_argument('--particles_color_range')\n", "arg_parser.add_argument('--particles_var_multiplier', default=1)\n", "arg_parser.add_argument('--particles_logscale', default=False)\n", + "\n", "arg_parser.add_argument('--surface_var')\n", "arg_parser.add_argument('--surface_color_range')\n", - "arg_parser.add_argument('--save_frame_pdfs')\n", + "arg_parser.add_argument('--surface_unit')\n", + "\n", + "arg_parser.add_argument('--save_frame_pdfs', action=argparse.BooleanOptionalAction)\n", "arg_parser.add_argument('--anim_path_suffix', default='')\n", "\n", "args = arg_parser.parse_args()\n", @@ -6170,7 +6189,7 @@ "if args.particles_var is not None:\n", " palette = 'Cold and Hot'\n", " palette_invert = True\n", - " title = args.particles_var + r' [$\\mu m$]'\n", + " title = args.particles_var + r' [$' + args.particles_unit + '$]'\n", " \n", " calculator = pvs.Calculator(reader_attr)\n", " calculator.Function = f'{args.particles_var}*{args.particles_var_multiplier}'\n", @@ -6178,7 +6197,7 @@ " \n", " display_attr.SetRepresentationType('Point Gaussian')\n", " display_attr.ShaderPreset = 'Sphere'\n", - " display_attr.GaussianRadius = 5\n", + " display_attr.GaussianRadius = 3\n", " display_attr.MapScalars = 1\n", " \n", " display_attr.Ambient = .25\n", @@ -6202,7 +6221,7 @@ " colorbar_attr.TitleFontSize = 30\n", " colorbar_attr.LabelFontSize = 30\n", " colorbar_attr.Visibility = True\n", - " colorbar_attr.WindowLocation = 'Any Location'\n", + " colorbar_attr.WindowLocation = 'AnyLocation'\n", " colorbar_attr.Position = [.025, .333]\n", " colorbar_attr.RangeLabelFormat = '%g'\n", " \n", @@ -6212,7 +6231,7 @@ " palette_invert = True\n", " color_range = [0, 300]\n", " logscale = False\n", - " title = '$' + args.surface_var + '$' + ' [$1/cc$ STP]'\n", + " title = '$' + args.surface_var + '$' + ' [$' + args.surface_unit + '$ STP]'\n", " \n", " display_prod = pvs.Show(reader_prod)\n", " display_prod.SetRepresentationType('Surface')\n", @@ -6235,7 +6254,7 @@ " colorbar_prod.LabelFontSize = 30\n", " colorbar_prod.Visibility = True\n", " colorbar_prod.Position = [.925, .333]\n", - " colorbar_prod.WindowLocation = 'Any Location'\n", + " colorbar_prod.WindowLocation = 'AnyLocation'\n", " colorbar_prod.RangeLabelFormat = '%g'\n", "\n", "# time annotation\n", @@ -6279,7 +6298,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 30, "id": "4df59c0e-5203-4572-9cdf-9c5773f3a4ca", "metadata": {}, "outputs": [ @@ -6287,31 +6306,4899 @@ "name": "stdout", "output_type": "stream", "text": [ + "output/rhod_w_max=0.5_singular=True_seed=1\n", "output/rhod_w_max=0.5_singular=True_seed=1/anim_cld.ogv\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_0.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_30.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_60.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_90.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_120.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_150.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_180.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_210.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_240.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_270.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_300.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_330.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_360.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_390.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_420.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_450.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_480.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_510.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_540.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_570.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_600.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_630.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_660.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_690.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_720.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_750.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_780.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_810.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_840.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_870.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_900.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_930.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_960.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_990.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1020.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1050.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1080.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1110.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1140.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1170.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1200.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1230.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1260.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1290.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1320.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1350.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1380.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1410.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1440.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1470.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1500.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1530.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1560.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1590.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1620.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1650.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1680.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1710.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1740.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1770.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1800.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1830.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1860.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1890.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1920.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1950.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1980.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2010.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2040.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2070.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2100.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2130.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2160.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2190.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2220.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2250.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2280.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2310.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2340.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2370.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2400.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2430.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2460.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2490.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2520.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2550.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2580.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2610.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2640.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2670.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2700.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2730.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2760.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2790.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2820.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2850.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2880.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2910.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2940.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2970.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3000.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3030.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3060.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3090.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3120.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3150.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3180.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3210.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3240.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3270.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3300.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3330.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3360.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3390.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3420.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3450.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3480.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3510.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3540.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3570.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3600.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3630.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3660.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3690.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3720.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3750.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3780.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3810.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3840.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3870.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3900.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3930.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3960.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3990.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4020.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4050.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4080.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4110.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4140.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4170.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4200.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4230.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4260.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4290.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4320.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4350.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4380.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4410.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4440.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4470.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4500.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4530.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4560.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4590.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4620.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4650.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4680.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4710.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4740.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4770.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4800.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4830.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4860.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4890.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4920.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4950.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4980.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5010.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5040.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5070.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5100.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5130.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5160.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5190.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5220.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5250.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5280.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5310.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5340.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5370.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5400.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5430.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5460.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5490.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5520.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5550.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5580.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5610.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5640.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5670.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5700.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5730.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5760.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5790.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5820.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5850.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5880.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5910.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5940.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5970.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_6000.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_ice.ogv\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_0.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_30.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_60.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_90.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_120.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_150.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_180.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_210.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_240.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_270.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_300.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_330.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_360.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_390.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_420.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_450.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_480.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_510.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_540.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_570.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_600.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_630.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_660.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_690.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_720.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_750.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_780.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_810.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_840.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_870.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_900.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_930.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_960.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_990.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1020.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1050.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1080.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1110.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1140.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1170.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1200.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1230.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1260.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1290.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1320.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1350.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1380.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1410.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1440.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1470.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1500.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1530.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1560.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1590.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1620.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1650.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1680.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1710.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1740.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1770.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1800.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1830.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1860.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1890.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1920.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1950.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_1980.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2010.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2040.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2070.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2100.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2130.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2160.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2190.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2220.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2250.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2280.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2310.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2340.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2370.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2400.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2430.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2460.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2490.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2520.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2550.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2580.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2610.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2640.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2670.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2700.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2730.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2760.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2790.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2820.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2850.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2880.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2910.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2940.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_2970.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3000.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3030.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3060.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3090.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3120.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3150.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3180.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3210.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3240.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3270.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3300.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3330.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3360.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3390.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3420.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3450.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3480.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3510.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3540.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3570.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3600.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3630.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3660.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3690.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3720.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3750.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3780.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3810.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3840.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3870.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3900.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3930.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3960.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_3990.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4020.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4050.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4080.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4110.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4140.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4170.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4200.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4230.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4260.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4290.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4320.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4350.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4380.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4410.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4440.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4470.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4500.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4530.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4560.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4590.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4620.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4650.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4680.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4710.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4740.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4770.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4800.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4830.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4860.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4890.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4920.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4950.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_4980.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5010.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5040.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5070.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5100.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5130.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5160.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5190.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5220.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5250.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5280.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5310.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5340.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5370.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5400.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5430.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5460.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5490.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5520.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5550.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5580.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5610.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5640.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5670.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5700.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5730.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5760.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5790.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5820.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5850.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5880.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5910.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5940.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_5970.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=1/anim_frame_6000.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1\n", "output/rhod_w_max=1.0_singular=False_seed=1/anim_cld.ogv\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_0.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_30.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_60.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_90.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_120.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_150.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_180.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_210.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_240.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_270.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_300.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_330.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_360.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_390.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_420.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_450.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_480.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_510.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_540.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_570.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_600.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_630.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_660.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_690.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_720.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_750.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_780.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_810.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_840.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_870.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_900.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_930.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_960.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_990.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1020.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1050.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1080.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1110.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1140.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1170.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1200.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1230.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1260.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1290.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1320.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1350.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1380.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1410.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1440.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1470.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1500.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1530.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1560.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1590.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1620.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1650.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1680.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1710.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1740.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1770.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1800.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1830.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1860.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1890.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1920.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1950.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1980.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2010.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2040.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2070.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2100.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2130.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2160.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2190.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2220.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2250.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2280.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2310.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2340.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2370.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2400.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2430.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2460.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2490.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2520.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2550.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2580.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2610.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2640.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2670.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2700.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2730.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2760.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2790.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2820.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2850.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2880.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2910.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2940.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2970.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3000.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3030.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3060.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3090.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3120.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3150.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3180.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3210.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3240.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3270.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3300.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3330.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3360.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3390.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3420.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3450.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3480.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3510.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3540.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3570.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3600.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3630.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3660.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3690.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3720.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3750.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3780.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3810.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3840.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3870.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3900.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3930.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3960.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3990.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4020.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4050.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4080.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4110.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4140.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4170.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4200.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4230.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4260.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4290.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4320.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4350.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4380.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4410.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4440.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4470.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4500.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4530.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4560.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4590.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4620.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4650.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4680.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4710.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4740.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4770.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4800.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4830.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4860.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4890.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4920.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4950.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4980.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5010.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5040.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5070.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5100.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5130.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5160.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5190.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5220.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5250.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5280.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5310.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5340.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5370.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5400.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5430.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5460.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5490.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5520.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5550.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5580.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5610.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5640.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5670.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5700.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5730.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5760.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5790.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5820.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5850.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5880.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5910.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5940.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5970.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_6000.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_ice.ogv\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_0.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_30.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_60.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_90.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_120.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_150.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_180.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_210.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_240.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_270.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_300.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_330.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_360.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_390.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_420.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_450.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_480.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_510.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_540.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_570.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_600.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_630.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_660.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_690.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_720.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_750.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_780.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_810.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_840.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_870.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_900.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_930.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_960.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_990.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1020.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1050.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1080.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1110.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1140.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1170.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1200.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1230.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1260.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1290.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1320.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1350.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1380.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1410.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1440.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1470.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1500.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1530.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1560.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1590.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1620.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1650.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1680.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1710.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1740.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1770.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1800.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1830.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1860.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1890.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1920.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1950.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_1980.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2010.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2040.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2070.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2100.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2130.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2160.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2190.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2220.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2250.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2280.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2310.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2340.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2370.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2400.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2430.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2460.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2490.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2520.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2550.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2580.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2610.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2640.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2670.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2700.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2730.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2760.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2790.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2820.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2850.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2880.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2910.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2940.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_2970.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3000.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3030.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3060.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3090.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3120.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3150.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3180.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3210.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3240.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3270.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3300.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3330.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3360.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3390.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3420.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3450.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3480.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3510.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3540.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3570.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3600.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3630.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3660.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3690.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3720.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3750.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3780.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3810.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3840.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3870.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3900.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3930.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3960.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_3990.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4020.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4050.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4080.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4110.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4140.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4170.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4200.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4230.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4260.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4290.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4320.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4350.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4380.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4410.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4440.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4470.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4500.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4530.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4560.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4590.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4620.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4650.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4680.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4710.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4740.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4770.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4800.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4830.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4860.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4890.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4920.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4950.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_4980.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5010.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5040.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5070.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5100.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5130.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5160.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5190.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5220.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5250.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5280.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5310.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5340.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5370.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5400.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5430.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5460.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5490.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5520.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5550.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5580.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5610.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5640.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5670.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5700.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5730.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5760.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5790.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5820.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5850.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5880.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5910.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5940.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_5970.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=1/anim_frame_6000.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1\n", "output/rhod_w_max=2.0_singular=False_seed=1/anim_cld.ogv\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_0.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_30.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_60.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_90.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_120.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_150.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_180.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_210.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_240.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_270.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_300.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_330.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_360.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_390.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_420.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_450.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_480.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_510.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_540.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_570.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_600.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_630.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_660.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_690.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_720.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_750.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_780.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_810.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_840.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_870.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_900.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_930.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_960.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_990.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1020.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1050.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1080.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1110.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1140.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1170.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1200.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1230.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1260.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1290.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1320.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1350.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1380.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1410.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1440.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1470.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1500.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1530.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1560.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1590.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1620.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1650.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1680.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1710.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1740.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1770.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1800.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1830.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1860.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1890.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1920.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1950.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1980.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2010.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2040.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2070.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2100.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2130.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2160.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2190.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2220.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2250.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2280.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2310.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2340.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2370.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2400.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2430.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2460.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2490.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2520.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2550.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2580.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2610.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2640.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2670.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2700.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2730.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2760.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2790.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2820.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2850.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2880.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2910.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2940.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2970.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3000.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3030.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3060.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3090.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3120.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3150.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3180.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3210.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3240.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3270.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3300.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3330.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3360.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3390.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3420.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3450.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3480.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3510.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3540.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3570.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3600.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3630.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3660.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3690.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3720.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3750.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3780.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3810.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3840.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3870.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3900.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3930.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3960.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3990.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4020.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4050.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4080.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4110.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4140.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4170.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4200.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4230.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4260.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4290.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4320.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4350.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4380.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4410.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4440.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4470.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4500.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4530.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4560.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4590.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4620.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4650.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4680.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4710.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4740.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4770.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4800.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4830.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4860.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4890.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4920.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4950.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4980.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5010.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5040.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5070.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5100.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5130.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5160.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5190.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5220.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5250.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5280.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5310.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5340.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5370.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5400.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5430.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5460.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5490.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5520.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5550.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5580.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5610.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5640.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5670.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5700.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5730.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5760.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5790.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5820.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5850.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5880.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5910.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5940.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5970.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_6000.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_ice.ogv\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_0.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_30.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_60.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_90.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_120.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_150.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_180.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_210.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_240.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_270.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_300.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_330.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_360.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_390.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_420.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_450.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_480.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_510.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_540.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_570.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_600.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_630.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_660.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_690.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_720.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_750.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_780.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_810.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_840.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_870.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_900.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_930.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_960.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_990.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1020.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1050.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1080.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1110.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1140.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1170.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1200.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1230.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1260.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1290.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1320.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1350.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1380.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1410.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1440.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1470.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1500.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1530.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1560.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1590.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1620.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1650.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1680.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1710.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1740.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1770.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1800.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1830.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1860.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1890.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1920.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1950.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_1980.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2010.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2040.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2070.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2100.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2130.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2160.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2190.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2220.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2250.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2280.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2310.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2340.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2370.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2400.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2430.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2460.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2490.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2520.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2550.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2580.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2610.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2640.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2670.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2700.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2730.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2760.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2790.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2820.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2850.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2880.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2910.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2940.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_2970.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3000.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3030.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3060.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3090.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3120.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3150.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3180.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3210.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3240.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3270.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3300.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3330.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3360.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3390.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3420.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3450.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3480.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3510.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3540.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3570.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3600.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3630.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3660.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3690.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3720.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3750.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3780.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3810.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3840.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3870.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3900.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3930.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3960.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_3990.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4020.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4050.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4080.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4110.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4140.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4170.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4200.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4230.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4260.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4290.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4320.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4350.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4380.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4410.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4440.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4470.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4500.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4530.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4560.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4590.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4620.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4650.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4680.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4710.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4740.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4770.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4800.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4830.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4860.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4890.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4920.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4950.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_4980.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5010.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5040.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5070.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5100.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5130.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5160.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5190.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5220.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5250.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5280.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5310.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5340.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5370.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5400.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5430.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5460.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5490.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5520.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5550.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5580.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5610.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5640.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5670.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5700.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5730.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5760.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5790.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5820.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5850.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5880.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5910.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5940.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_5970.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=1/anim_frame_6000.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1\n", "output/rhod_w_max=0.5_singular=False_seed=1/anim_cld.ogv\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_0.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_30.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_60.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_90.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_120.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_150.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_180.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_210.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_240.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_270.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_300.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_330.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_360.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_390.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_420.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_450.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_480.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_510.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_540.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_570.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_600.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_630.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_660.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_690.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_720.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_750.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_780.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_810.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_840.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_870.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_900.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_930.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_960.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_990.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1020.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1050.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1080.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1110.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1140.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1170.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1200.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1230.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1260.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1290.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1320.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1350.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1380.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1410.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1440.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1470.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1500.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1530.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1560.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1590.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1620.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1650.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1680.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1710.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1740.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1770.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1800.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1830.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1860.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1890.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1920.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1950.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1980.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2010.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2040.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2070.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2100.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2130.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2160.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2190.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2220.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2250.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2280.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2310.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2340.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2370.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2400.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2430.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2460.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2490.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2520.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2550.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2580.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2610.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2640.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2670.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2700.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2730.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2760.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2790.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2820.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2850.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2880.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2910.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2940.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2970.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3000.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3030.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3060.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3090.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3120.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3150.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3180.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3210.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3240.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3270.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3300.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3330.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3360.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3390.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3420.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3450.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3480.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3510.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3540.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3570.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3600.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3630.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3660.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3690.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3720.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3750.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3780.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3810.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3840.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3870.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3900.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3930.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3960.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3990.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4020.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4050.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4080.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4110.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4140.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4170.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4200.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4230.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4260.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4290.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4320.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4350.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4380.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4410.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4440.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4470.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4500.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4530.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4560.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4590.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4620.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4650.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4680.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4710.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4740.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4770.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4800.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4830.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4860.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4890.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4920.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4950.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4980.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5010.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5040.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5070.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5100.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5130.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5160.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5190.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5220.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5250.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5280.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5310.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5340.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5370.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5400.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5430.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5460.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5490.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5520.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5550.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5580.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5610.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5640.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5670.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5700.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5730.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5760.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5790.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5820.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5850.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5880.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5910.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5940.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5970.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_6000.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_ice.ogv\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_0.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_30.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_60.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_90.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_120.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_150.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_180.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_210.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_240.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_270.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_300.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_330.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_360.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_390.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_420.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_450.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_480.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_510.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_540.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_570.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_600.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_630.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_660.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_690.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_720.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_750.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_780.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_810.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_840.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_870.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_900.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_930.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_960.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_990.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1020.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1050.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1080.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1110.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1140.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1170.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1200.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1230.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1260.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1290.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1320.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1350.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1380.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1410.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1440.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1470.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1500.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1530.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1560.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1590.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1620.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1650.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1680.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1710.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1740.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1770.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1800.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1830.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1860.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1890.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1920.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1950.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_1980.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2010.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2040.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2070.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2100.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2130.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2160.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2190.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2220.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2250.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2280.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2310.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2340.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2370.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2400.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2430.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2460.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2490.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2520.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2550.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2580.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2610.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2640.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2670.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2700.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2730.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2760.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2790.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2820.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2850.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2880.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2910.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2940.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_2970.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3000.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3030.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3060.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3090.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3120.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3150.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3180.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3210.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3240.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3270.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3300.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3330.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3360.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3390.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3420.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3450.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3480.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3510.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3540.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3570.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3600.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3630.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3660.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3690.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3720.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3750.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3780.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3810.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3840.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3870.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3900.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3930.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3960.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_3990.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4020.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4050.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4080.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4110.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4140.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4170.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4200.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4230.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4260.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4290.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4320.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4350.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4380.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4410.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4440.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4470.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4500.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4530.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4560.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4590.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4620.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4650.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4680.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4710.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4740.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4770.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4800.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4830.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4860.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4890.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4920.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4950.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_4980.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5010.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5040.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5070.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5100.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5130.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5160.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5190.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5220.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5250.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5280.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5310.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5340.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5370.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5400.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5430.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5460.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5490.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5520.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5550.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5580.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5610.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5640.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5670.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5700.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5730.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5760.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5790.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5820.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5850.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5880.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5910.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5940.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_5970.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=1/anim_frame_6000.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0\n", "output/rhod_w_max=1.0_singular=False_seed=0/anim_cld.ogv\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_0.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_30.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_60.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_90.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_120.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_150.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_180.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_210.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_240.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_270.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_300.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_330.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_360.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_390.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_420.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_450.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_480.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_510.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_540.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_570.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_600.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_630.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_660.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_690.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_720.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_750.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_780.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_810.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_840.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_870.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_900.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_930.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_960.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_990.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1020.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1050.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1080.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1110.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1140.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1170.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1200.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1230.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1260.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1290.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1320.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1350.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1380.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1410.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1440.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1470.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1500.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1530.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1560.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1590.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1620.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1650.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1680.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1710.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1740.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1770.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1800.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1830.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1860.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1890.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1920.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1950.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1980.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2010.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2040.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2070.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2100.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2130.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2160.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2190.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2220.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2250.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2280.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2310.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2340.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2370.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2400.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2430.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2460.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2490.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2520.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2550.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2580.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2610.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2640.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2670.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2700.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2730.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2760.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2790.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2820.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2850.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2880.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2910.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2940.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2970.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3000.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3030.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3060.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3090.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3120.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3150.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3180.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3210.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3240.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3270.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3300.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3330.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3360.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3390.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3420.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3450.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3480.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3510.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3540.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3570.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3600.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3630.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3660.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3690.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3720.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3750.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3780.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3810.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3840.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3870.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3900.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3930.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3960.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3990.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4020.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4050.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4080.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4110.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4140.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4170.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4200.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4230.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4260.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4290.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4320.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4350.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4380.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4410.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4440.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4470.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4500.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4530.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4560.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4590.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4620.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4650.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4680.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4710.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4740.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4770.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4800.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4830.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4860.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4890.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4920.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4950.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4980.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5010.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5040.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5070.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5100.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5130.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5160.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5190.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5220.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5250.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5280.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5310.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5340.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5370.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5400.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5430.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5460.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5490.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5520.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5550.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5580.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5610.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5640.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5670.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5700.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5730.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5760.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5790.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5820.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5850.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5880.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5910.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5940.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5970.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_6000.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_ice.ogv\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_0.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_30.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_60.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_90.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_120.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_150.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_180.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_210.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_240.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_270.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_300.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_330.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_360.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_390.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_420.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_450.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_480.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_510.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_540.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_570.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_600.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_630.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_660.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_690.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_720.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_750.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_780.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_810.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_840.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_870.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_900.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_930.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_960.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_990.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1020.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1050.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1080.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1110.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1140.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1170.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1200.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1230.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1260.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1290.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1320.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1350.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1380.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1410.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1440.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1470.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1500.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1530.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1560.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1590.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1620.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1650.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1680.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1710.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1740.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1770.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1800.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1830.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1860.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1890.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1920.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1950.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_1980.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2010.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2040.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2070.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2100.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2130.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2160.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2190.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2220.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2250.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2280.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2310.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2340.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2370.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2400.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2430.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2460.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2490.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2520.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2550.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2580.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2610.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2640.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2670.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2700.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2730.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2760.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2790.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2820.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2850.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2880.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2910.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2940.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_2970.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3000.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3030.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3060.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3090.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3120.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3150.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3180.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3210.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3240.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3270.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3300.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3330.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3360.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3390.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3420.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3450.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3480.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3510.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3540.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3570.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3600.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3630.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3660.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3690.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3720.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3750.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3780.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3810.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3840.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3870.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3900.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3930.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3960.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_3990.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4020.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4050.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4080.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4110.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4140.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4170.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4200.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4230.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4260.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4290.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4320.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4350.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4380.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4410.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4440.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4470.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4500.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4530.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4560.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4590.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4620.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4650.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4680.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4710.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4740.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4770.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4800.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4830.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4860.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4890.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4920.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4950.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_4980.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5010.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5040.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5070.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5100.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5130.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5160.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5190.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5220.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5250.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5280.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5310.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5340.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5370.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5400.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5430.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5460.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5490.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5520.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5550.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5580.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5610.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5640.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5670.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5700.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5730.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5760.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5790.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5820.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5850.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5880.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5910.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5940.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_5970.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=False_seed=0/anim_frame_6000.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0\n", "output/rhod_w_max=0.5_singular=True_seed=0/anim_cld.ogv\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_0.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_30.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_60.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_90.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_120.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_150.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_180.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_210.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_240.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_270.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_300.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_330.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_360.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_390.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_420.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_450.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_480.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_510.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_540.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_570.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_600.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_630.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_660.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_690.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_720.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_750.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_780.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_810.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_840.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_870.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_900.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_930.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_960.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_990.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1020.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1050.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1080.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1110.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1140.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1170.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1200.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1230.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1260.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1290.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1320.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1350.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1380.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1410.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1440.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1470.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1500.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1530.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1560.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1590.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1620.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1650.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1680.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1710.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1740.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1770.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1800.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1830.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1860.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1890.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1920.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1950.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1980.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2010.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2040.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2070.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2100.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2130.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2160.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2190.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2220.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2250.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2280.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2310.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2340.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2370.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2400.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2430.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2460.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2490.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2520.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2550.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2580.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2610.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2640.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2670.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2700.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2730.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2760.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2790.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2820.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2850.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2880.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2910.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2940.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2970.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3000.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3030.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3060.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3090.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3120.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3150.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3180.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3210.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3240.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3270.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3300.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3330.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3360.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3390.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3420.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3450.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3480.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3510.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3540.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3570.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3600.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3630.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3660.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3690.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3720.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3750.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3780.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3810.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3840.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3870.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3900.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3930.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3960.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3990.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4020.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4050.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4080.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4110.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4140.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4170.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4200.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4230.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4260.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4290.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4320.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4350.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4380.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4410.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4440.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4470.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4500.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4530.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4560.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4590.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4620.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4650.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4680.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4710.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4740.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4770.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4800.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4830.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4860.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4890.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4920.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4950.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4980.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5010.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5040.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5070.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5100.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5130.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5160.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5190.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5220.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5250.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5280.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5310.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5340.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5370.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5400.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5430.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5460.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5490.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5520.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5550.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5580.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5610.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5640.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5670.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5700.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5730.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5760.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5790.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5820.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5850.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5880.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5910.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5940.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5970.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_6000.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_ice.ogv\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_0.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_30.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_60.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_90.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_120.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_150.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_180.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_210.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_240.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_270.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_300.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_330.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_360.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_390.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_420.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_450.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_480.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_510.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_540.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_570.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_600.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_630.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_660.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_690.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_720.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_750.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_780.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_810.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_840.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_870.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_900.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_930.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_960.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_990.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1020.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1050.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1080.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1110.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1140.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1170.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1200.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1230.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1260.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1290.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1320.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1350.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1380.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1410.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1440.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1470.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1500.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1530.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1560.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1590.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1620.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1650.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1680.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1710.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1740.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1770.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1800.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1830.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1860.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1890.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1920.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1950.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_1980.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2010.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2040.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2070.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2100.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2130.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2160.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2190.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2220.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2250.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2280.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2310.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2340.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2370.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2400.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2430.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2460.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2490.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2520.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2550.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2580.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2610.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2640.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2670.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2700.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2730.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2760.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2790.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2820.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2850.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2880.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2910.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2940.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_2970.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3000.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3030.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3060.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3090.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3120.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3150.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3180.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3210.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3240.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3270.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3300.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3330.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3360.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3390.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3420.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3450.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3480.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3510.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3540.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3570.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3600.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3630.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3660.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3690.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3720.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3750.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3780.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3810.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3840.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3870.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3900.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3930.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3960.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_3990.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4020.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4050.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4080.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4110.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4140.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4170.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4200.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4230.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4260.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4290.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4320.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4350.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4380.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4410.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4440.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4470.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4500.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4530.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4560.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4590.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4620.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4650.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4680.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4710.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4740.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4770.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4800.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4830.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4860.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4890.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4920.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4950.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_4980.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5010.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5040.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5070.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5100.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5130.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5160.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5190.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5220.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5250.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5280.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5310.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5340.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5370.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5400.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5430.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5460.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5490.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5520.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5550.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5580.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5610.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5640.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5670.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5700.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5730.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5760.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5790.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5820.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5850.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5880.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5910.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5940.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_5970.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=True_seed=0/anim_frame_6000.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1\n", "output/rhod_w_max=2.0_singular=True_seed=1/anim_cld.ogv\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_0.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_30.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_60.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_90.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_120.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_150.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_180.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_210.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_240.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_270.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_300.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_330.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_360.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_390.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_420.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_450.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_480.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_510.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_540.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_570.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_600.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_630.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_660.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_690.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_720.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_750.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_780.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_810.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_840.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_870.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_900.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_930.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_960.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_990.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1020.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1050.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1080.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1110.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1140.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1170.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1200.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1230.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1260.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1290.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1320.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1350.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1380.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1410.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1440.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1470.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1500.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1530.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1560.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1590.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1620.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1650.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1680.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1710.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1740.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1770.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1800.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1830.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1860.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1890.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1920.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1950.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1980.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2010.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2040.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2070.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2100.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2130.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2160.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2190.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2220.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2250.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2280.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2310.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2340.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2370.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2400.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2430.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2460.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2490.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2520.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2550.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2580.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2610.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2640.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2670.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2700.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2730.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2760.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2790.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2820.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2850.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2880.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2910.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2940.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2970.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3000.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3030.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3060.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3090.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3120.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3150.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3180.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3210.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3240.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3270.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3300.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3330.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3360.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3390.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3420.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3450.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3480.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3510.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3540.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3570.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3600.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3630.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3660.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3690.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3720.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3750.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3780.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3810.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3840.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3870.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3900.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3930.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3960.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3990.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4020.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4050.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4080.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4110.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4140.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4170.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4200.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4230.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4260.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4290.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4320.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4350.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4380.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4410.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4440.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4470.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4500.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4530.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4560.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4590.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4620.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4650.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4680.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4710.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4740.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4770.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4800.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4830.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4860.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4890.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4920.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4950.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4980.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5010.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5040.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5070.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5100.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5130.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5160.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5190.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5220.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5250.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5280.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5310.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5340.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5370.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5400.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5430.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5460.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5490.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5520.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5550.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5580.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5610.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5640.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5670.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5700.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5730.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5760.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5790.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5820.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5850.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5880.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5910.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5940.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5970.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_6000.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_ice.ogv\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_0.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_30.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_60.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_90.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_120.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_150.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_180.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_210.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_240.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_270.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_300.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_330.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_360.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_390.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_420.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_450.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_480.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_510.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_540.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_570.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_600.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_630.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_660.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_690.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_720.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_750.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_780.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_810.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_840.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_870.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_900.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_930.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_960.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_990.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1020.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1050.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1080.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1110.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1140.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1170.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1200.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1230.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1260.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1290.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1320.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1350.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1380.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1410.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1440.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1470.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1500.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1530.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1560.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1590.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1620.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1650.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1680.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1710.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1740.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1770.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1800.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1830.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1860.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1890.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1920.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1950.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_1980.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2010.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2040.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2070.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2100.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2130.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2160.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2190.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2220.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2250.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2280.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2310.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2340.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2370.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2400.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2430.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2460.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2490.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2520.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2550.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2580.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2610.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2640.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2670.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2700.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2730.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2760.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2790.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2820.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2850.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2880.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2910.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2940.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_2970.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3000.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3030.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3060.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3090.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3120.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3150.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3180.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3210.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3240.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3270.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3300.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3330.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3360.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3390.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3420.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3450.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3480.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3510.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3540.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3570.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3600.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3630.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3660.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3690.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3720.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3750.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3780.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3810.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3840.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3870.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3900.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3930.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3960.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_3990.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4020.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4050.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4080.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4110.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4140.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4170.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4200.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4230.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4260.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4290.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4320.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4350.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4380.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4410.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4440.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4470.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4500.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4530.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4560.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4590.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4620.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4650.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4680.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4710.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4740.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4770.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4800.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4830.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4860.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4890.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4920.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4950.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_4980.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5010.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5040.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5070.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5100.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5130.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5160.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5190.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5220.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5250.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5280.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5310.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5340.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5370.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5400.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5430.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5460.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5490.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5520.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5550.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5580.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5610.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5640.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5670.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5700.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5730.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5760.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5790.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5820.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5850.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5880.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5910.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5940.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_5970.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=1/anim_frame_6000.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0\n", "output/rhod_w_max=2.0_singular=False_seed=0/anim_cld.ogv\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_0.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_30.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_60.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_90.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_120.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_150.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_180.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_210.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_240.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_270.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_300.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_330.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_360.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_390.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_420.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_450.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_480.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_510.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_540.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_570.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_600.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_630.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_660.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_690.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_720.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_750.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_780.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_810.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_840.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_870.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_900.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_930.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_960.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_990.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1020.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1050.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1080.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1110.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1140.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1170.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1200.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1230.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1260.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1290.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1320.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1350.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1380.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1410.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1440.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1470.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1500.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1530.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1560.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1590.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1620.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1650.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1680.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1710.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1740.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1770.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1800.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1830.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1860.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1890.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1920.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1950.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1980.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2010.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2040.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2070.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2100.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2130.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2160.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2190.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2220.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2250.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2280.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2310.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2340.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2370.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2400.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2430.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2460.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2490.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2520.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2550.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2580.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2610.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2640.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2670.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2700.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2730.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2760.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2790.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2820.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2850.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2880.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2910.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2940.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2970.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3000.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3030.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3060.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3090.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3120.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3150.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3180.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3210.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3240.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3270.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3300.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3330.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3360.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3390.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3420.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3450.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3480.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3510.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3540.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3570.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3600.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3630.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3660.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3690.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3720.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3750.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3780.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3810.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3840.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3870.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3900.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3930.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3960.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3990.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4020.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4050.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4080.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4110.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4140.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4170.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4200.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4230.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4260.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4290.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4320.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4350.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4380.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4410.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4440.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4470.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4500.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4530.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4560.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4590.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4620.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4650.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4680.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4710.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4740.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4770.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4800.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4830.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4860.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4890.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4920.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4950.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4980.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5010.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5040.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5070.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5100.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5130.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5160.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5190.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5220.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5250.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5280.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5310.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5340.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5370.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5400.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5430.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5460.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5490.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5520.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5550.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5580.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5610.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5640.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5670.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5700.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5730.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5760.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5790.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5820.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5850.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5880.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5910.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5940.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5970.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_6000.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_ice.ogv\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_0.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_30.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_60.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_90.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_120.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_150.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_180.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_210.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_240.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_270.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_300.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_330.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_360.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_390.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_420.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_450.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_480.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_510.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_540.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_570.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_600.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_630.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_660.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_690.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_720.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_750.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_780.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_810.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_840.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_870.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_900.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_930.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_960.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_990.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1020.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1050.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1080.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1110.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1140.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1170.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1200.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1230.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1260.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1290.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1320.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1350.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1380.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1410.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1440.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1470.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1500.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1530.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1560.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1590.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1620.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1650.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1680.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1710.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1740.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1770.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1800.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1830.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1860.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1890.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1920.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1950.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_1980.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2010.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2040.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2070.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2100.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2130.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2160.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2190.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2220.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2250.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2280.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2310.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2340.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2370.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2400.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2430.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2460.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2490.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2520.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2550.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2580.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2610.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2640.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2670.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2700.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2730.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2760.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2790.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2820.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2850.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2880.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2910.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2940.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_2970.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3000.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3030.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3060.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3090.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3120.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3150.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3180.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3210.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3240.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3270.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3300.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3330.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3360.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3390.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3420.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3450.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3480.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3510.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3540.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3570.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3600.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3630.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3660.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3690.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3720.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3750.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3780.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3810.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3840.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3870.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3900.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3930.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3960.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_3990.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4020.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4050.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4080.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4110.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4140.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4170.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4200.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4230.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4260.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4290.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4320.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4350.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4380.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4410.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4440.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4470.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4500.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4530.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4560.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4590.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4620.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4650.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4680.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4710.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4740.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4770.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4800.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4830.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4860.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4890.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4920.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4950.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_4980.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5010.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5040.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5070.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5100.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5130.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5160.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5190.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5220.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5250.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5280.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5310.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5340.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5370.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5400.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5430.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5460.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5490.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5520.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5550.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5580.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5610.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5640.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5670.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5700.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5730.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5760.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5790.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5820.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5850.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5880.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5910.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5940.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_5970.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=False_seed=0/anim_frame_6000.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0\n", "output/rhod_w_max=2.0_singular=True_seed=0/anim_cld.ogv\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_0.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_30.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_60.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_90.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_120.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_150.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_180.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_210.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_240.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_270.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_300.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_330.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_360.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_390.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_420.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_450.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_480.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_510.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_540.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_570.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_600.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_630.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_660.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_690.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_720.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_750.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_780.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_810.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_840.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_870.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_900.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_930.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_960.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_990.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1020.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1050.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1080.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1110.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1140.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1170.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1200.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1230.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1260.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1290.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1320.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1350.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1380.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1410.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1440.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1470.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1500.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1530.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1560.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1590.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1620.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1650.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1680.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1710.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1740.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1770.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1800.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1830.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1860.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1890.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1920.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1950.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1980.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2010.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2040.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2070.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2100.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2130.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2160.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2190.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2220.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2250.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2280.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2310.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2340.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2370.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2400.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2430.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2460.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2490.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2520.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2550.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2580.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2610.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2640.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2670.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2700.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2730.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2760.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2790.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2820.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2850.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2880.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2910.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2940.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2970.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3000.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3030.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3060.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3090.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3120.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3150.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3180.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3210.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3240.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3270.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3300.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3330.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3360.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3390.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3420.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3450.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3480.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3510.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3540.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3570.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3600.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3630.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3660.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3690.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3720.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3750.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3780.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3810.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3840.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3870.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3900.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3930.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3960.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3990.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4020.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4050.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4080.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4110.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4140.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4170.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4200.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4230.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4260.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4290.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4320.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4350.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4380.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4410.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4440.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4470.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4500.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4530.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4560.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4590.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4620.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4650.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4680.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4710.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4740.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4770.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4800.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4830.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4860.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4890.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4920.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4950.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4980.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5010.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5040.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5070.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5100.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5130.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5160.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5190.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5220.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5250.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5280.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5310.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5340.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5370.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5400.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5430.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5460.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5490.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5520.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5550.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5580.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5610.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5640.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5670.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5700.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5730.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5760.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5790.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5820.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5850.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5880.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5910.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5940.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5970.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_6000.0_cld.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_ice.ogv\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_0.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_30.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_60.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_90.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_120.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_150.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_180.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_210.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_240.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_270.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_300.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_330.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_360.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_390.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_420.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_450.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_480.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_510.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_540.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_570.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_600.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_630.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_660.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_690.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_720.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_750.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_780.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_810.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_840.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_870.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_900.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_930.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_960.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_990.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1020.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1050.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1080.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1110.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1140.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1170.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1200.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1230.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1260.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1290.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1320.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1350.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1380.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1410.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1440.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1470.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1500.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1530.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1560.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1590.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1620.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1650.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1680.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1710.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1740.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1770.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1800.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1830.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1860.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1890.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1920.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1950.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_1980.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2010.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2040.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2070.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2100.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2130.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2160.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2190.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2220.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2250.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2280.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2310.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2340.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2370.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2400.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2430.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2460.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2490.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2520.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2550.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2580.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2610.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2640.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2670.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2700.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2730.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2760.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2790.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2820.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2850.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2880.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2910.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2940.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_2970.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3000.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3030.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3060.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3090.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3120.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3150.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3180.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3210.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3240.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3270.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3300.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3330.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3360.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3390.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3420.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3450.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3480.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3510.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3540.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3570.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3600.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3630.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3660.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3690.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3720.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3750.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3780.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3810.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3840.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3870.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3900.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3930.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3960.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_3990.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4020.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4050.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4080.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4110.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4140.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4170.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4200.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4230.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4260.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4290.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4320.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4350.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4380.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4410.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4440.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4470.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4500.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4530.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4560.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4590.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4620.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4650.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4680.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4710.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4740.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4770.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4800.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4830.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4860.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4890.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4920.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4950.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_4980.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5010.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5040.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5070.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5100.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5130.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5160.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5190.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5220.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5250.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5280.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5310.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5340.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5370.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5400.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5430.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5460.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5490.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5520.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5550.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5580.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5610.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5640.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5670.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5700.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5730.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5760.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5790.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5820.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5850.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5880.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5910.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5940.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_5970.0_ice.pdf\n", + "output/rhod_w_max=2.0_singular=True_seed=0/anim_frame_6000.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0\n", "output/rhod_w_max=0.5_singular=False_seed=0/anim_cld.ogv\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_0.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_30.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_60.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_90.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_120.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_150.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_180.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_210.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_240.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_270.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_300.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_330.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_360.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_390.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_420.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_450.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_480.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_510.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_540.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_570.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_600.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_630.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_660.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_690.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_720.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_750.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_780.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_810.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_840.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_870.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_900.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_930.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_960.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_990.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1020.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1050.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1080.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1110.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1140.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1170.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1200.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1230.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1260.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1290.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1320.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1350.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1380.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1410.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1440.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1470.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1500.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1530.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1560.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1590.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1620.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1650.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1680.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1710.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1740.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1770.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1800.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1830.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1860.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1890.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1920.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1950.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1980.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2010.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2040.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2070.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2100.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2130.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2160.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2190.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2220.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2250.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2280.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2310.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2340.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2370.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2400.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2430.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2460.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2490.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2520.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2550.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2580.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2610.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2640.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2670.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2700.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2730.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2760.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2790.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2820.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2850.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2880.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2910.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2940.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2970.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3000.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3030.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3060.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3090.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3120.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3150.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3180.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3210.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3240.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3270.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3300.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3330.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3360.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3390.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3420.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3450.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3480.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3510.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3540.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3570.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3600.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3630.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3660.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3690.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3720.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3750.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3780.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3810.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3840.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3870.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3900.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3930.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3960.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3990.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4020.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4050.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4080.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4110.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4140.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4170.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4200.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4230.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4260.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4290.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4320.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4350.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4380.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4410.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4440.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4470.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4500.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4530.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4560.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4590.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4620.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4650.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4680.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4710.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4740.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4770.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4800.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4830.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4860.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4890.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4920.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4950.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4980.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5010.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5040.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5070.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5100.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5130.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5160.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5190.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5220.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5250.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5280.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5310.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5340.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5370.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5400.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5430.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5460.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5490.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5520.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5550.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5580.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5610.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5640.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5670.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5700.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5730.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5760.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5790.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5820.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5850.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5880.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5910.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5940.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5970.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_6000.0_cld.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_ice.ogv\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_0.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_30.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_60.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_90.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_120.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_150.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_180.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_210.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_240.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_270.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_300.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_330.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_360.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_390.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_420.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_450.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_480.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_510.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_540.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_570.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_600.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_630.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_660.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_690.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_720.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_750.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_780.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_810.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_840.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_870.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_900.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_930.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_960.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_990.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1020.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1050.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1080.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1110.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1140.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1170.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1200.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1230.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1260.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1290.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1320.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1350.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1380.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1410.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1440.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1470.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1500.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1530.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1560.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1590.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1620.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1650.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1680.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1710.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1740.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1770.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1800.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1830.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1860.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1890.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1920.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1950.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_1980.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2010.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2040.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2070.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2100.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2130.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2160.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2190.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2220.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2250.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2280.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2310.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2340.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2370.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2400.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2430.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2460.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2490.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2520.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2550.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2580.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2610.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2640.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2670.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2700.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2730.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2760.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2790.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2820.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2850.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2880.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2910.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2940.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_2970.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3000.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3030.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3060.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3090.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3120.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3150.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3180.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3210.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3240.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3270.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3300.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3330.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3360.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3390.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3420.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3450.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3480.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3510.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3540.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3570.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3600.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3630.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3660.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3690.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3720.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3750.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3780.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3810.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3840.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3870.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3900.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3930.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3960.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_3990.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4020.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4050.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4080.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4110.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4140.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4170.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4200.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4230.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4260.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4290.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4320.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4350.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4380.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4410.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4440.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4470.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4500.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4530.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4560.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4590.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4620.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4650.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4680.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4710.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4740.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4770.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4800.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4830.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4860.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4890.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4920.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4950.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_4980.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5010.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5040.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5070.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5100.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5130.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5160.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5190.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5220.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5250.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5280.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5310.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5340.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5370.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5400.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5430.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5460.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5490.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5520.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5550.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5580.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5610.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5640.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5670.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5700.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5730.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5760.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5790.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5820.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5850.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5880.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5910.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5940.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_5970.0_ice.pdf\n", + "output/rhod_w_max=0.5_singular=False_seed=0/anim_frame_6000.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1\n", "output/rhod_w_max=1.0_singular=True_seed=1/anim_cld.ogv\n", - "output/rhod_w_max=1.0_singular=True_seed=0/anim_cld.ogv\n" + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_0.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_30.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_60.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_90.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_120.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_150.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_180.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_210.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_240.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_270.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_300.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_330.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_360.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_390.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_420.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_450.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_480.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_510.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_540.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_570.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_600.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_630.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_660.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_690.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_720.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_750.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_780.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_810.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_840.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_870.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_900.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_930.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_960.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_990.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1020.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1050.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1080.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1110.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1140.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1170.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1200.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1230.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1260.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1290.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1320.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1350.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1380.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1410.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1440.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1470.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1500.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1530.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1560.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1590.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1620.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1650.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1680.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1710.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1740.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1770.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1800.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1830.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1860.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1890.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1920.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1950.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1980.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2010.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2040.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2070.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2100.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2130.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2160.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2190.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2220.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2250.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2280.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2310.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2340.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2370.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2400.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2430.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2460.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2490.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2520.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2550.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2580.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2610.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2640.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2670.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2700.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2730.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2760.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2790.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2820.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2850.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2880.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2910.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2940.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2970.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3000.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3030.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3060.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3090.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3120.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3150.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3180.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3210.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3240.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3270.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3300.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3330.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3360.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3390.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3420.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3450.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3480.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3510.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3540.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3570.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3600.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3630.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3660.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3690.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3720.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3750.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3780.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3810.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3840.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3870.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3900.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3930.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3960.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3990.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4020.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4050.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4080.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4110.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4140.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4170.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4200.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4230.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4260.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4290.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4320.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4350.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4380.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4410.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4440.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4470.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4500.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4530.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4560.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4590.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4620.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4650.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4680.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4710.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4740.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4770.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4800.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4830.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4860.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4890.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4920.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4950.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4980.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5010.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5040.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5070.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5100.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5130.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5160.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5190.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5220.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5250.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5280.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5310.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5340.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5370.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5400.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5430.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5460.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5490.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5520.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5550.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5580.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5610.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5640.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5670.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5700.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5730.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5760.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5790.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5820.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5850.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5880.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5910.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5940.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5970.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_6000.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_ice.ogv\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_0.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_30.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_60.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_90.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_120.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_150.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_180.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_210.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_240.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_270.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_300.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_330.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_360.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_390.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_420.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_450.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_480.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_510.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_540.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_570.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_600.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_630.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_660.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_690.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_720.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_750.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_780.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_810.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_840.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_870.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_900.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_930.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_960.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_990.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1020.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1050.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1080.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1110.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1140.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1170.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1200.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1230.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1260.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1290.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1320.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1350.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1380.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1410.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1440.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1470.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1500.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1530.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1560.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1590.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1620.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1650.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1680.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1710.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1740.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1770.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1800.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1830.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1860.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1890.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1920.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1950.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_1980.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2010.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2040.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2070.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2100.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2130.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2160.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2190.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2220.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2250.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2280.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2310.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2340.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2370.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2400.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2430.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2460.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2490.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2520.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2550.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2580.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2610.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2640.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2670.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2700.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2730.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2760.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2790.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2820.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2850.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2880.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2910.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2940.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_2970.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3000.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3030.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3060.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3090.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3120.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3150.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3180.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3210.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3240.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3270.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3300.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3330.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3360.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3390.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3420.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3450.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3480.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3510.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3540.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3570.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3600.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3630.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3660.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3690.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3720.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3750.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3780.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3810.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3840.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3870.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3900.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3930.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3960.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_3990.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4020.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4050.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4080.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4110.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4140.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4170.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4200.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4230.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4260.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4290.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4320.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4350.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4380.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4410.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4440.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4470.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4500.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4530.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4560.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4590.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4620.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4650.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4680.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4710.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4740.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4770.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4800.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4830.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4860.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4890.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4920.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4950.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_4980.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5010.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5040.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5070.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5100.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5130.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5160.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5190.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5220.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5250.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5280.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5310.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5340.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5370.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5400.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5430.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5460.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5490.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5520.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5550.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5580.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5610.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5640.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5670.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5700.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5730.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5760.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5790.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5820.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5850.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5880.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5910.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5940.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_5970.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=1/anim_frame_6000.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_cld.ogv\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_0.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_30.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_60.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_90.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_120.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_150.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_180.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_210.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_240.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_270.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_300.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_330.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_360.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_390.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_420.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_450.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_480.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_510.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_540.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_570.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_600.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_630.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_660.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_690.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_720.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_750.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_780.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_810.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_840.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_870.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_900.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_930.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_960.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_990.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1020.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1050.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1080.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1110.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1140.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1170.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1200.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1230.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1260.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1290.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1320.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1350.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1380.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1410.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1440.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1470.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1500.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1530.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1560.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1590.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1620.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1650.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1680.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1710.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1740.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1770.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1800.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1830.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1860.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1890.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1920.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1950.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1980.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2010.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2040.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2070.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2100.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2130.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2160.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2190.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2220.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2250.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2280.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2310.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2340.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2370.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2400.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2430.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2460.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2490.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2520.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2550.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2580.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2610.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2640.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2670.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2700.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2730.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2760.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2790.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2820.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2850.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2880.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2910.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2940.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2970.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3000.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3030.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3060.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3090.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3120.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3150.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3180.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3210.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3240.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3270.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3300.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3330.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3360.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3390.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3420.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3450.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3480.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3510.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3540.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3570.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3600.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3630.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3660.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3690.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3720.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3750.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3780.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3810.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3840.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3870.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3900.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3930.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3960.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3990.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4020.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4050.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4080.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4110.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4140.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4170.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4200.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4230.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4260.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4290.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4320.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4350.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4380.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4410.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4440.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4470.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4500.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4530.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4560.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4590.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4620.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4650.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4680.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4710.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4740.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4770.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4800.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4830.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4860.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4890.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4920.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4950.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4980.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5010.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5040.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5070.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5100.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5130.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5160.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5190.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5220.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5250.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5280.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5310.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5340.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5370.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5400.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5430.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5460.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5490.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5520.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5550.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5580.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5610.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5640.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5670.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5700.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5730.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5760.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5790.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5820.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5850.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5880.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5910.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5940.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5970.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_6000.0_cld.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_ice.ogv\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_0.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_30.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_60.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_90.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_120.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_150.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_180.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_210.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_240.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_270.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_300.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_330.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_360.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_390.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_420.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_450.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_480.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_510.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_540.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_570.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_600.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_630.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_660.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_690.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_720.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_750.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_780.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_810.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_840.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_870.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_900.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_930.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_960.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_990.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1020.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1050.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1080.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1110.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1140.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1170.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1200.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1230.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1260.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1290.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1320.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1350.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1380.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1410.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1440.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1470.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1500.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1530.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1560.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1590.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1620.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1650.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1680.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1710.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1740.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1770.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1800.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1830.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1860.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1890.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1920.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1950.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_1980.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2010.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2040.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2070.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2100.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2130.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2160.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2190.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2220.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2250.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2280.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2310.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2340.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2370.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2400.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2430.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2460.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2490.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2520.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2550.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2580.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2610.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2640.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2670.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2700.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2730.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2760.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2790.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2820.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2850.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2880.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2910.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2940.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_2970.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3000.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3030.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3060.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3090.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3120.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3150.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3180.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3210.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3240.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3270.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3300.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3330.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3360.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3390.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3420.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3450.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3480.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3510.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3540.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3570.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3600.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3630.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3660.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3690.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3720.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3750.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3780.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3810.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3840.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3870.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3900.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3930.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3960.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_3990.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4020.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4050.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4080.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4110.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4140.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4170.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4200.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4230.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4260.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4290.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4320.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4350.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4380.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4410.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4440.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4470.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4500.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4530.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4560.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4590.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4620.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4650.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4680.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4710.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4740.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4770.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4800.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4830.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4860.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4890.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4920.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4950.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_4980.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5010.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5040.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5070.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5100.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5130.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5160.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5190.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5220.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5250.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5280.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5310.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5340.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5370.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5400.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5430.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5460.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5490.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5520.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5550.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5580.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5610.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5640.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5670.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5700.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5730.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5760.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5790.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5820.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5850.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5880.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5910.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5940.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_5970.0_ice.pdf\n", + "output/rhod_w_max=1.0_singular=True_seed=0/anim_frame_6000.0_ice.pdf\n" ] } ], "source": [ "if not ('CI' in os.environ and platform.system() == 'Windows'):\n", " for path in pathlib.Path('output').glob(\"*\"):\n", + " print(path)\n", " for args in (\n", " [path, '--anim_path_suffix=_cld', '--surface_var=n_c', '--surface_color_range=[0, 300]', '--particles_var=radius', \n", - " '--particles_var_multiplier=1e6', '--particles_color_range=[0.5,10]', '--particles_logscale=True', \n", + " '--particles_var_multiplier=1e6', '--particles_color_range=[0.5,10]', '--particles_logscale=True', \n", + " '--particles_unit=\\mu m', f'--surface_unit={conc_cld_unit}',\n", + " '--save_frame_pdfs',\n", " ],\n", - " # [path, '--anim_path_suffix=_ice', '--surface_var=n_i', '--particles_var=freezing temperature',\n", - " # '--particles_color_range=[230,260]',\n", - " # '--surface_color_range=[0, 1]'],\n", + " [path, \n", + " '--anim_path_suffix=_ice',\n", + " '--surface_var=n_i',\n", + " '--surface_color_range=[0, 100]',\n", + " f'--surface_unit={conc_ice_unit}',\n", + " '--save_frame_pdfs',\n", + " ] + (\n", + " [\n", + " '--particles_var=freezing temperature',\n", + " '--particles_color_range=[225, 250]',\n", + " '--particles_unit=K',\n", + " ] \n", + " if 'singular=True' in str(path) else \n", + " [\n", + " '--particles_var=immersed surface area',\n", + " '--particles_color_range=[0, 1]',\n", + " '--particles_unit=\\mu m^2', \n", + " '--particles_var_multiplier=1e12'\n", + " ]\n", + " ),\n", " ):\n", " subprocess.run(\n", " ['pvpython', '--force-offscreen-rendering', 'pvscript.py'] + args,\n", diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb index 4b08c93fc..4a61a9825 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb @@ -97,7 +97,7 @@ " \n", " \n", " \n", - " 2024-08-02T22:04:00.427842\n", + " 2024-10-08T13:33:27.691777\n", " image/svg+xml\n", " \n", " \n", @@ -1074,7 +1074,7 @@ "L 125.875001 93.087529 \n", "L 125.956658 92.1744 \n", "z\n", - "\" clip-path=\"url(#p4199bedc4b)\" style=\"fill: #e7f0fa\"/>\n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: #8dc1dd\"/>\n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: #4f9bcb\"/>\n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: #2070b4\"/>\n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: #08468b\"/>\n", " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4047,11 +4047,11 @@ " \n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4081,11 +4081,11 @@ " \n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4125,11 +4125,11 @@ " \n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4177,11 +4177,11 @@ " \n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4216,11 +4216,11 @@ " \n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4630,16 +4630,16 @@ " \n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4655,11 +4655,11 @@ " \n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4675,11 +4675,11 @@ " \n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4695,11 +4695,11 @@ " \n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4715,11 +4715,11 @@ " \n", " \n", + "\" clip-path=\"url(#p5f4f4efcbb)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5086,7 +5086,7 @@ "L 166.115037 77.886 \n", "L 298.065625 77.886 \n", "L 298.065625 77.886 \n", - "\" clip-path=\"url(#pf4f0fd45a2)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pbd36b1d7ef)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p49a1a7c30a)\" style=\"fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pcb49d4660d)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#pcb49d4660d)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#pcb49d4660d)\" style=\"fill: #8dc1dd\"/>\n", " \n", + "\" clip-path=\"url(#pcb49d4660d)\" style=\"fill: #4f9bcb\"/>\n", " \n", + "\" clip-path=\"url(#pcb49d4660d)\" style=\"fill: #2070b4\"/>\n", " \n", + "\" clip-path=\"url(#pcb49d4660d)\" style=\"fill: #08468b\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5285,7 +5285,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5301,7 +5301,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5317,7 +5317,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5393,16 +5393,16 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5418,12 +5418,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "30070f74f972425da277abf20126506d", + "model_id": "9b3d6170a8c2475d9b10369838ee9fc2", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HTML(value=\"./fig_0d_pdf_0.05.pdf
\")" + "HBox(children=(HTML(value=\"./fig_0d_pdf_0.05.pdf
\"), HT…" ] }, "metadata": {}, @@ -5440,7 +5440,7 @@ " \n", " \n", " \n", - " 2024-08-02T22:04:01.197386\n", + " 2024-10-08T13:33:28.904002\n", " image/svg+xml\n", " \n", " \n", @@ -6802,7 +6802,7 @@ "L 132.635037 118.554258 \n", "L 131.650331 118.613138 \n", "z\n", - "\" clip-path=\"url(#pa5b3d73e61)\" style=\"fill: #e7f0fa\"/>\n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: #8dc1dd\"/>\n", " \n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: #4f9bcb\"/>\n", " \n", - " \n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: #2070b4\"/>\n", + " \n", " \n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9621,11 +9621,11 @@ " \n", " \n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9655,11 +9655,11 @@ " \n", " \n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9699,11 +9699,11 @@ " \n", " \n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9751,11 +9751,11 @@ " \n", " \n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9790,11 +9790,11 @@ " \n", " \n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10204,16 +10204,16 @@ " \n", " \n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10229,11 +10229,11 @@ " \n", " \n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10249,11 +10249,11 @@ " \n", " \n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10269,11 +10269,11 @@ " \n", " \n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10289,11 +10289,11 @@ " \n", " \n", + "\" clip-path=\"url(#p699f10a282)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10684,7 +10684,7 @@ "L 259.662096 77.854561 \n", "L 298.065625 77.884049 \n", "L 298.065625 77.884049 \n", - "\" clip-path=\"url(#p9decbb99b5)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pcc62537362)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p80f9b31271)\" style=\"fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p2e471ed946)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#p2e471ed946)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#p2e471ed946)\" style=\"fill: #8dc1dd\"/>\n", " \n", + "\" clip-path=\"url(#p2e471ed946)\" style=\"fill: #4f9bcb\"/>\n", " \n", + "\" clip-path=\"url(#p2e471ed946)\" style=\"fill: #2070b4\"/>\n", " \n", + "\" clip-path=\"url(#p2e471ed946)\" style=\"fill: #08468b\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10884,7 +10884,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10900,7 +10900,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10916,7 +10916,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -10992,16 +10992,16 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -11017,12 +11017,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "969f197282ac460f8d79ca62e6f30644", + "model_id": "0e536b93dfd941f5880b3e80c73bdf40", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HTML(value=\"./fig_0d_pdf_0.25.pdf
\")" + "HBox(children=(HTML(value=\"./fig_0d_pdf_0.25.pdf
\"), HT…" ] }, "metadata": {}, @@ -11039,7 +11039,7 @@ " \n", " \n", " \n", - " 2024-08-02T22:04:01.947404\n", + " 2024-10-08T13:33:31.068157\n", " image/svg+xml\n", " \n", " \n", @@ -12693,7 +12693,7 @@ "L 293.142096 233.857709 \n", "L 294.047028 233.709459 \n", "z\n", - "\" clip-path=\"url(#p44aef39485)\" style=\"fill: #e7f0fa\"/>\n", + "\" clip-path=\"url(#p22a1926ece)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#p22a1926ece)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#p22a1926ece)\" style=\"fill: #8dc1dd\"/>\n", " \n", - " \n", - " \n", + "\" clip-path=\"url(#p22a1926ece)\" style=\"fill: #4f9bcb\"/>\n", + " \n", + " \n", "
\n", " \n", " \n", " \n", " \n", + "\" clip-path=\"url(#p22a1926ece)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -15968,11 +15968,11 @@ " \n", " \n", + "\" clip-path=\"url(#p22a1926ece)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16002,11 +16002,11 @@ " \n", " \n", + "\" clip-path=\"url(#p22a1926ece)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16046,11 +16046,11 @@ " \n", " \n", + "\" clip-path=\"url(#p22a1926ece)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16098,11 +16098,11 @@ " \n", " \n", + "\" clip-path=\"url(#p22a1926ece)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16137,11 +16137,11 @@ " \n", " \n", + "\" clip-path=\"url(#p22a1926ece)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16551,16 +16551,16 @@ " \n", " \n", + "\" clip-path=\"url(#p22a1926ece)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16576,11 +16576,11 @@ " \n", " \n", + "\" clip-path=\"url(#p22a1926ece)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16596,11 +16596,11 @@ " \n", " \n", + "\" clip-path=\"url(#p22a1926ece)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16616,11 +16616,11 @@ " \n", " \n", + "\" clip-path=\"url(#p22a1926ece)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -16636,11 +16636,11 @@ " \n", " \n", + "\" clip-path=\"url(#p22a1926ece)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17020,7 +17020,7 @@ "L 297.080919 72.087006 \n", "L 298.065625 72.125328 \n", "L 298.065625 72.125328 \n", - "\" clip-path=\"url(#p88743d9467)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pd86110d4d7)\" style=\"fill: none; stroke: #008080; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#paa6928864d)\" style=\"fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pf3ef725db8)\" style=\"fill: #e7f0fa\"/>\n", " \n", + "\" clip-path=\"url(#pf3ef725db8)\" style=\"fill: #c6dbef\"/>\n", " \n", + "\" clip-path=\"url(#pf3ef725db8)\" style=\"fill: #8dc1dd\"/>\n", " \n", + "\" clip-path=\"url(#pf3ef725db8)\" style=\"fill: #4f9bcb\"/>\n", " \n", + "\" clip-path=\"url(#pf3ef725db8)\" style=\"fill: #2070b4\"/>\n", " \n", + "\" clip-path=\"url(#pf3ef725db8)\" style=\"fill: #08468b\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17220,7 +17220,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17236,7 +17236,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17252,7 +17252,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17328,16 +17328,16 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17353,12 +17353,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "153446be7b544152819fd00b36d4b923", + "model_id": "5eb2c4157a9a4f2685e4a05fa4f5ba8c", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HTML(value=\"./fig_0d_pdf_1.25.pdf
\")" + "HBox(children=(HTML(value=\"./fig_0d_pdf_1.25.pdf
\"), HT…" ] }, "metadata": {}, @@ -17466,7 +17466,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6f3749d371ba4179bfd6a83443c5e9ca", + "model_id": "c8441a6fce1549ad9d8e3bec6f0a4859", "version_major": 2, "version_minor": 0 }, @@ -17488,7 +17488,7 @@ " \n", " \n", " \n", - " 2024-08-02T22:04:29.624768\n", + " 2024-10-08T13:34:08.024476\n", " image/svg+xml\n", " \n", " \n", @@ -17533,12 +17533,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17583,7 +17583,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17624,7 +17624,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17660,7 +17660,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17707,7 +17707,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -17763,7 +17763,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18030,16 +18030,16 @@ " \n", " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18091,11 +18091,11 @@ " \n", " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18140,11 +18140,11 @@ " \n", " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18162,11 +18162,11 @@ " \n", " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18196,11 +18196,11 @@ " \n", " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18218,11 +18218,11 @@ " \n", " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18240,11 +18240,11 @@ " \n", " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18262,11 +18262,11 @@ " \n", " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18284,11 +18284,11 @@ " \n", " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -18502,9 +18502,9 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -18642,69 +18642,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -18769,69 +18769,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -18896,69 +18896,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19023,69 +19023,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19150,9 +19150,9 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19290,69 +19290,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19417,69 +19417,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19544,69 +19544,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19671,69 +19671,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -19787,7 +19787,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#p2d4e930c2f)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p69f618b5d5)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20162,7 +20096,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20170,7 +20104,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20178,7 +20112,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20186,7 +20120,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20194,7 +20128,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20202,7 +20136,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20210,7 +20144,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20218,7 +20152,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20226,7 +20160,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20234,7 +20168,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20242,7 +20176,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20250,7 +20184,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20258,7 +20192,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20266,7 +20200,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20274,7 +20208,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20282,7 +20216,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20290,7 +20224,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20298,7 +20232,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20306,7 +20240,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20314,7 +20248,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20322,7 +20256,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20330,7 +20264,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20338,7 +20272,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20346,7 +20280,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20354,7 +20288,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20362,7 +20296,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20370,7 +20304,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20378,7 +20312,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20386,7 +20320,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20422,7 +20356,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20430,7 +20364,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20438,7 +20372,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20446,7 +20380,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20454,7 +20388,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20495,7 +20429,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20503,7 +20437,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20511,7 +20445,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20519,7 +20453,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20527,7 +20461,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20535,7 +20469,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20543,7 +20477,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20551,7 +20485,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20559,7 +20493,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20567,7 +20501,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20575,7 +20509,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20583,7 +20517,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20591,7 +20525,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20599,7 +20533,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20607,7 +20541,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20615,7 +20549,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20623,7 +20557,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20631,7 +20565,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20639,7 +20573,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20647,7 +20581,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20655,7 +20589,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20663,7 +20597,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20671,7 +20605,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20679,7 +20613,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20687,7 +20621,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20695,7 +20629,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20703,7 +20637,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20711,7 +20645,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20719,7 +20653,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20727,7 +20661,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20735,7 +20669,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20743,7 +20677,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20751,7 +20685,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20759,7 +20693,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20786,7 +20720,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -20824,6 +20758,47 @@ "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21062,7 +21037,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21078,12 +21053,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "667f91f32b364a9d8c95efe5c067f821", + "model_id": "b98986bd193544bb86bc72e1ca5f66e2", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HTML(value=\"./fig2-c=-0.75_K_per_min-ln_…" + "HBox(children=(HTML(value=\"./fig2-c=-0.7…" ] }, "metadata": {}, @@ -21092,7 +21067,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ae661c453e004b04b795a5d81ad78a36", + "model_id": "01eb7a8535794d81b8ff8a5c9ff23087", "version_major": 2, "version_minor": 0 }, @@ -21114,7 +21089,7 @@ " \n", " \n", " \n", - " 2024-08-02T22:04:50.006970\n", + " 2024-10-08T13:34:29.836871\n", " image/svg+xml\n", " \n", " \n", @@ -21159,12 +21134,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21209,7 +21184,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21250,7 +21225,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21286,7 +21261,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21333,7 +21308,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21389,7 +21364,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21656,16 +21631,16 @@ " \n", " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21717,11 +21692,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21766,11 +21741,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21788,11 +21763,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21822,11 +21797,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21844,11 +21819,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21866,11 +21841,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21888,11 +21863,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -21910,11 +21885,11 @@ " \n", " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -22128,9 +22103,9 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22268,69 +22243,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22395,69 +22370,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22522,69 +22497,69 @@ "L 366.730062 38.196 \n", "L 372.682062 38.196 \n", "L 378.634062 38.196 \n", - "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22649,69 +22624,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22776,9 +22751,9 @@ "L 366.730062 41.976 \n", "L 372.682062 41.976 \n", "L 378.634062 41.976 \n", - "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -22916,69 +22891,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -23043,69 +23018,69 @@ "L 366.730062 45.756 \n", "L 372.682062 41.976 \n", "L 378.634062 38.196 \n", - "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -23170,69 +23145,69 @@ "L 366.730062 41.976 \n", "L 372.682062 41.976 \n", "L 378.634062 41.976 \n", - "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -23297,69 +23272,69 @@ "L 366.730062 41.976 \n", "L 372.682062 41.976 \n", "L 378.634062 38.196 \n", - "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -23413,7 +23388,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#pcee6e62f85)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p6465cc97ea)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23788,7 +23697,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23796,7 +23705,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23804,7 +23713,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23812,7 +23721,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23820,7 +23729,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23828,7 +23737,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23836,7 +23745,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23844,7 +23753,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23852,7 +23761,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23860,7 +23769,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23868,7 +23777,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23876,7 +23785,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23884,7 +23793,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23892,7 +23801,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23900,7 +23809,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23908,7 +23817,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23916,7 +23825,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23924,7 +23833,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23932,7 +23841,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23940,7 +23849,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23948,7 +23857,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23956,7 +23865,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23964,7 +23873,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23972,7 +23881,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23980,7 +23889,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23988,7 +23897,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -23996,7 +23905,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24004,7 +23913,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24012,7 +23921,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24048,7 +23957,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24056,7 +23965,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24064,7 +23973,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24072,7 +23981,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24080,7 +23989,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24121,7 +24030,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24129,7 +24038,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24137,7 +24046,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24145,7 +24054,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24153,7 +24062,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24161,7 +24070,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24169,7 +24078,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24177,7 +24086,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24185,7 +24094,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24193,7 +24102,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24201,7 +24110,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24209,7 +24118,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24217,7 +24126,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24225,7 +24134,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24233,7 +24142,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24241,7 +24150,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24249,7 +24158,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24257,7 +24166,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24265,7 +24174,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24273,7 +24182,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24281,7 +24190,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24289,7 +24198,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24297,7 +24206,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24305,7 +24214,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24313,7 +24222,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24321,7 +24230,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24329,7 +24238,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24337,7 +24246,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24345,7 +24254,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24353,7 +24262,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24361,7 +24270,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24369,7 +24278,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24377,7 +24286,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24385,7 +24294,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24412,7 +24321,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24450,6 +24359,47 @@ "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24688,7 +24638,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24704,12 +24654,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "236e8f1817a0441d9a2c8848ff20f2cc", + "model_id": "8ac1ae938934439c87ab4199902af978", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HTML(value=\"./fig2-c=-0.75_K_per_min-ln_…" + "HBox(children=(HTML(value=\"./fig2-c=-0.7…" ] }, "metadata": {}, @@ -24718,7 +24668,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d244c7e85cd54e39a6b0369b8e838ef7", + "model_id": "027b23d3f815497fb43e935a4b93cddc", "version_major": 2, "version_minor": 0 }, @@ -24740,7 +24690,7 @@ " \n", " \n", " \n", - " 2024-08-02T22:05:14.957944\n", + " 2024-10-08T13:34:50.846487\n", " image/svg+xml\n", " \n", " \n", @@ -24785,12 +24735,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24835,7 +24785,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24876,7 +24826,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24912,7 +24862,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -24959,7 +24909,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25015,7 +24965,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25282,16 +25232,16 @@ " \n", " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25343,11 +25293,11 @@ " \n", " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25392,11 +25342,11 @@ " \n", " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25414,11 +25364,11 @@ " \n", " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25448,11 +25398,11 @@ " \n", " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25470,11 +25420,11 @@ " \n", " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25492,11 +25442,11 @@ " \n", " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25514,11 +25464,11 @@ " \n", " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25536,11 +25486,11 @@ " \n", " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -25754,9 +25704,9 @@ "L 366.730062 49.536 \n", "L 372.682062 45.756 \n", "L 378.634062 41.976 \n", - "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -25894,69 +25844,69 @@ "L 366.730062 45.756 \n", "L 372.682062 38.196 \n", "L 378.634062 38.196 \n", - "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26021,69 +25971,69 @@ "L 366.730062 45.756 \n", "L 372.682062 45.756 \n", "L 378.634062 45.756 \n", - "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26148,69 +26098,69 @@ "L 366.730062 45.756 \n", "L 372.682062 45.756 \n", "L 378.634062 45.756 \n", - "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26275,69 +26225,69 @@ "L 366.730062 41.976 \n", "L 372.682062 38.196 \n", "L 378.634062 38.196 \n", - "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26402,9 +26352,9 @@ "L 366.730062 68.436 \n", "L 372.682062 68.436 \n", "L 378.634062 60.876 \n", - "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26542,69 +26492,69 @@ "L 366.730062 68.436 \n", "L 372.682062 68.436 \n", "L 378.634062 68.436 \n", - "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26669,69 +26619,69 @@ "L 366.730062 79.776 \n", "L 372.682062 75.996 \n", "L 378.634062 72.216 \n", - "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26796,69 +26746,69 @@ "L 366.730062 60.876 \n", "L 372.682062 60.876 \n", "L 378.634062 60.876 \n", - "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -26923,69 +26873,69 @@ "L 366.730062 68.436 \n", "L 372.682062 57.096 \n", "L 378.634062 57.096 \n", - "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -27039,7 +26989,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#p6a00134ede)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p90c67cb89c)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27413,7 +27297,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27421,7 +27305,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27429,7 +27313,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27437,7 +27321,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27445,7 +27329,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27453,7 +27337,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27461,7 +27345,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27469,7 +27353,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27477,7 +27361,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27485,7 +27369,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27493,7 +27377,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27501,7 +27385,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27509,7 +27393,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27517,7 +27401,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27525,7 +27409,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27533,7 +27417,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27541,7 +27425,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27549,7 +27433,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27557,7 +27441,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27565,7 +27449,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27573,7 +27457,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27581,7 +27465,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27589,7 +27473,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27597,7 +27481,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27605,7 +27489,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27613,7 +27497,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27621,7 +27505,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27629,7 +27513,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27637,7 +27521,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27673,7 +27557,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27681,7 +27565,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27689,7 +27573,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27697,7 +27581,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27705,7 +27589,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27746,7 +27630,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27754,7 +27638,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27762,7 +27646,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27770,7 +27654,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27778,7 +27662,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27786,7 +27670,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27794,7 +27678,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27802,7 +27686,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27810,7 +27694,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27818,7 +27702,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27826,7 +27710,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27834,7 +27718,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27842,7 +27726,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27850,7 +27734,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27858,7 +27742,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27866,7 +27750,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27874,7 +27758,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27882,7 +27766,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27890,7 +27774,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27898,7 +27782,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27906,7 +27790,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27914,7 +27798,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27922,7 +27806,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27930,7 +27814,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27938,7 +27822,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27946,7 +27830,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27954,7 +27838,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27962,7 +27846,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27970,7 +27854,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27978,7 +27862,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27986,7 +27870,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -27994,7 +27878,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28002,7 +27886,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28010,7 +27894,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28037,7 +27921,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28075,6 +27959,47 @@ "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28313,7 +28238,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28329,12 +28254,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f7a88b73e8144f34b9f2ac919eec17d6", + "model_id": "f3e6a8835e8d47e29f2b279257790251", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HTML(value=\"./fig2-c=-0.75_K_per_min-ln_s…" + "HBox(children=(HTML(value=\"./fig2-c=-0.75…" ] }, "metadata": {}, @@ -28369,7 +28294,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dc669745cf024868a52e8c484de0f3ae", + "model_id": "ec0dbc89036c4e96929652fc399a2c75", "version_major": 2, "version_minor": 0 }, @@ -28391,7 +28316,7 @@ " \n", " \n", " \n", - " 2024-08-02T22:05:32.439672\n", + " 2024-10-08T13:35:10.870154\n", " image/svg+xml\n", " \n", " \n", @@ -28436,12 +28361,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28486,7 +28411,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28527,7 +28452,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28563,7 +28488,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28610,7 +28535,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28666,7 +28591,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28933,16 +28858,16 @@ " \n", " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -28994,11 +28919,11 @@ " \n", " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29043,11 +28968,11 @@ " \n", " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29065,11 +28990,11 @@ " \n", " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29099,11 +29024,11 @@ " \n", " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29121,11 +29046,11 @@ " \n", " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29143,11 +29068,11 @@ " \n", " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29165,11 +29090,11 @@ " \n", " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29187,11 +29112,11 @@ " \n", " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -29405,9 +29330,9 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -29545,69 +29470,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -29672,69 +29597,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -29799,69 +29724,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -29926,69 +29851,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30053,9 +29978,9 @@ "L 366.730062 57.096 \n", "L 372.682062 57.096 \n", "L 378.634062 49.536 \n", - "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30193,69 +30118,69 @@ "L 366.730062 72.216 \n", "L 372.682062 64.656 \n", "L 378.634062 57.096 \n", - "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30320,69 +30245,69 @@ "L 366.730062 64.656 \n", "L 372.682062 57.096 \n", "L 378.634062 49.536 \n", - "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30447,69 +30372,69 @@ "L 366.730062 60.876 \n", "L 372.682062 53.316 \n", "L 378.634062 49.536 \n", - "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30574,69 +30499,69 @@ "L 366.730062 60.876 \n", "L 372.682062 53.316 \n", "L 378.634062 45.756 \n", - "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -30690,7 +30615,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#paa0ca85104)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pede9b725e2)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31065,7 +30924,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31073,7 +30932,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31081,7 +30940,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31089,7 +30948,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31097,7 +30956,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31105,7 +30964,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31113,7 +30972,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31121,7 +30980,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31129,7 +30988,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31137,7 +30996,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31145,7 +31004,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31153,7 +31012,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31161,7 +31020,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31169,7 +31028,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31177,7 +31036,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31185,7 +31044,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31193,7 +31052,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31201,7 +31060,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31209,7 +31068,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31217,7 +31076,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31225,7 +31084,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31233,7 +31092,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31241,7 +31100,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31249,7 +31108,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31257,7 +31116,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31265,7 +31124,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31273,7 +31132,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31281,7 +31140,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31289,7 +31148,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31325,7 +31184,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31333,7 +31192,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31341,7 +31200,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31349,7 +31208,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31357,7 +31216,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31398,7 +31257,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31406,7 +31265,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31414,7 +31273,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31422,7 +31281,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31430,7 +31289,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31438,7 +31297,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31446,7 +31305,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31454,7 +31313,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31462,7 +31321,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31470,7 +31329,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31478,7 +31337,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31486,7 +31345,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31494,7 +31353,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31502,7 +31361,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31510,7 +31369,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31518,7 +31377,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31526,7 +31385,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31534,7 +31393,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31542,7 +31401,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31550,7 +31409,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31558,7 +31417,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31566,7 +31425,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31574,7 +31433,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31582,7 +31441,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31590,7 +31449,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31598,7 +31457,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31606,7 +31465,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31614,7 +31473,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31622,7 +31481,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31630,7 +31489,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31638,7 +31497,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31646,7 +31505,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31654,7 +31513,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31662,7 +31521,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31689,7 +31548,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31727,6 +31586,47 @@ "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31965,7 +31865,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -31981,12 +31881,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "32a355dcde484cc9b236c321372fd6e9", + "model_id": "cb76808e1f904ce38e01279aa8a0d53a", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HTML(value=\"./fig2-c=-3.75_K_per_min-ln_…" + "HBox(children=(HTML(value=\"./fig2-c=-3.7…" ] }, "metadata": {}, @@ -31995,7 +31895,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3d1b5a6a3e894684b71ed1b5319d3ce9", + "model_id": "95ccfa6ce4d24cbc81e0a940642007d8", "version_major": 2, "version_minor": 0 }, @@ -32017,7 +31917,7 @@ " \n", " \n", " \n", - " 2024-08-02T22:05:49.540638\n", + " 2024-10-08T13:35:31.233636\n", " image/svg+xml\n", " \n", " \n", @@ -32062,12 +31962,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32112,7 +32012,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32153,7 +32053,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32189,7 +32089,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32236,7 +32136,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32292,7 +32192,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32559,16 +32459,16 @@ " \n", " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32620,11 +32520,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32669,11 +32569,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32691,11 +32591,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32725,11 +32625,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32747,11 +32647,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32769,11 +32669,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32791,11 +32691,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -32813,11 +32713,11 @@ " \n", " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -33031,9 +32931,9 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -33171,69 +33071,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -33298,69 +33198,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -33425,69 +33325,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -33552,69 +33452,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -33679,9 +33579,9 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -33819,69 +33719,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -33946,69 +33846,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -34073,69 +33973,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -34200,69 +34100,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -34316,7 +34216,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#pfd41414dd2)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pa4e030fa46)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34691,7 +34525,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34699,7 +34533,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34707,7 +34541,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34715,7 +34549,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34723,7 +34557,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34731,7 +34565,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34739,7 +34573,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34747,7 +34581,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34755,7 +34589,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34763,7 +34597,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34771,7 +34605,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34779,7 +34613,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34787,7 +34621,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34795,7 +34629,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34803,7 +34637,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34811,7 +34645,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34819,7 +34653,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34827,7 +34661,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34835,7 +34669,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34843,7 +34677,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34851,7 +34685,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34859,7 +34693,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34867,7 +34701,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34875,7 +34709,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34883,7 +34717,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34891,7 +34725,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34899,7 +34733,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34907,7 +34741,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34915,7 +34749,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34951,7 +34785,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34959,7 +34793,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34967,7 +34801,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34975,7 +34809,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -34983,7 +34817,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35024,7 +34858,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35032,7 +34866,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35040,7 +34874,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35048,7 +34882,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35056,7 +34890,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35064,7 +34898,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35072,7 +34906,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35080,7 +34914,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35088,7 +34922,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35096,7 +34930,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35104,7 +34938,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35112,7 +34946,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35120,7 +34954,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35128,7 +34962,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35136,7 +34970,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35144,7 +34978,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35152,7 +34986,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35160,7 +34994,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35168,7 +35002,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35176,7 +35010,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35184,7 +35018,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35192,7 +35026,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35200,7 +35034,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35208,7 +35042,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35216,7 +35050,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35224,7 +35058,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35232,7 +35066,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35240,7 +35074,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35248,7 +35082,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35256,7 +35090,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35264,7 +35098,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35272,7 +35106,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35280,7 +35114,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35288,7 +35122,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35315,7 +35149,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35353,6 +35187,47 @@ "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35591,7 +35466,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35607,12 +35482,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "46289243883948978320f0a983f2cb36", + "model_id": "4e1564825f36455d9a340e509e5d8290", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HTML(value=\"./fig2-c=-0.75_K_per_min-ln_…" + "HBox(children=(HTML(value=\"./fig2-c=-0.7…" ] }, "metadata": {}, @@ -35621,7 +35496,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "18c01b31099541a4b9f48c657d915fed", + "model_id": "d56680774efd40e2ad923a04aa02ca8b", "version_major": 2, "version_minor": 0 }, @@ -35643,7 +35518,7 @@ " \n", " \n", " \n", - " 2024-08-02T22:06:06.136391\n", + " 2024-10-08T13:35:50.563053\n", " image/svg+xml\n", " \n", " \n", @@ -35688,12 +35563,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35738,7 +35613,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35779,7 +35654,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35815,7 +35690,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35862,7 +35737,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -35918,7 +35793,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36185,16 +36060,16 @@ " \n", " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36246,11 +36121,11 @@ " \n", " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36295,11 +36170,11 @@ " \n", " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36317,11 +36192,11 @@ " \n", " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36351,11 +36226,11 @@ " \n", " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36373,11 +36248,11 @@ " \n", " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36395,11 +36270,11 @@ " \n", " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36417,11 +36292,11 @@ " \n", " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36439,11 +36314,11 @@ " \n", " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #b0b0b0; stroke-width: 0.8; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -36657,9 +36532,9 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -36797,69 +36672,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -36924,69 +36799,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -37051,69 +36926,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -37178,69 +37053,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -37305,9 +37180,9 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -37445,69 +37320,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -37572,69 +37447,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -37699,69 +37574,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -37826,69 +37701,69 @@ "L 366.730062 34.416 \n", "L 372.682062 34.416 \n", "L 378.634062 34.416 \n", - "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke: #008080; stroke-width: 0.333; stroke-linecap: square\"/>\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -37942,7 +37817,7 @@ "L 364.057736 38.130781 \n", "L 371.345899 35.808573 \n", "L 378.634062 34.830564 \n", - "\" clip-path=\"url(#pdafa55997e)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffff00; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #a52a2a; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pe992170e00)\" style=\"fill: none; stroke-dasharray: 9.25,4; stroke-dashoffset: 0; stroke: #ffa500; stroke-width: 2.5\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38317,7 +38126,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38325,7 +38134,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38333,7 +38142,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38341,7 +38150,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38349,7 +38158,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38357,7 +38166,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38365,7 +38174,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38373,7 +38182,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38381,7 +38190,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38389,7 +38198,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38397,7 +38206,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38405,7 +38214,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38413,7 +38222,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38421,7 +38230,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38429,7 +38238,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38437,7 +38246,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38445,7 +38254,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38453,7 +38262,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38461,7 +38270,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38469,7 +38278,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38477,7 +38286,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38485,7 +38294,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38493,7 +38302,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38501,7 +38310,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38509,7 +38318,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38517,7 +38326,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38525,7 +38334,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38533,7 +38342,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38541,7 +38350,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38577,7 +38386,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38585,7 +38394,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38593,7 +38402,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38601,7 +38410,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38609,7 +38418,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38650,7 +38459,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38658,7 +38467,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38666,7 +38475,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38674,7 +38483,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38682,7 +38491,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38690,7 +38499,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38698,7 +38507,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38706,7 +38515,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38714,7 +38523,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38722,7 +38531,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38730,7 +38539,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38738,7 +38547,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38746,7 +38555,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38754,7 +38563,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38762,7 +38571,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38770,7 +38579,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38778,7 +38587,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38786,7 +38595,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38794,7 +38603,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38802,7 +38611,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38810,7 +38619,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38818,7 +38627,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38826,7 +38635,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38834,7 +38643,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38842,7 +38651,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38850,7 +38659,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38858,7 +38667,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38866,7 +38675,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38874,7 +38683,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38882,7 +38691,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38890,7 +38699,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38898,7 +38707,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38906,7 +38715,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38914,7 +38723,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38941,7 +38750,7 @@ "L 202.198337 354.752837 \n", "\" style=\"fill: none; stroke: #000000; stroke-width: 0.333; stroke-linecap: square\"/>\n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -38979,6 +38788,47 @@ "Q 2597 3491 2834 3397 \n", "z\n", "\" transform=\"scale(0.015625)\"/>\n", + " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -39217,7 +39067,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -39233,12 +39083,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c9e593c0ccb84c9dae9ccc8692999356", + "model_id": "825b720360404b2284bc7eab34ef3cb8", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HTML(value=\"./fig2-c=-0.15_K_per_min-ln_…" + "HBox(children=(HTML(value=\"./fig2-c=-0.1…" ] }, "metadata": {}, diff --git a/examples/PySDM_examples/Arabas_et_al_2023/plots.py b/examples/PySDM_examples/Arabas_et_al_2023/plots.py index 12975175c..0e76fc100 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/plots.py +++ b/examples/PySDM_examples/Arabas_et_al_2023/plots.py @@ -110,7 +110,7 @@ def make_freezing_spec_plot( ) title = f"$σ_g$=exp({np.log(surf_spec.s_geom):.3g})" if cooling_rate_K_min is not None: - title += f", cooling rate: {cooling_rate_K_min} K/min" + title += f", c={cooling_rate_K_min} K/min" prim.set_title(title) # prim.set_ylabel('ice water content [$g/m^3$]') prim.set_yticks([]) diff --git a/examples/PySDM_examples/Szumowski_et_al_1998/simulation.py b/examples/PySDM_examples/Szumowski_et_al_1998/simulation.py index a72b62799..1e6a2aaaf 100644 --- a/examples/PySDM_examples/Szumowski_et_al_1998/simulation.py +++ b/examples/PySDM_examples/Szumowski_et_al_1998/simulation.py @@ -193,9 +193,14 @@ def reinit(self, products=None): attributes[name][copy] = array * ( 1 - self.settings.freezing_inp_frac ) - elif len(array.shape) > 1: - attributes[name][:, orig] = array - attributes[name][:, copy] = array + elif len(array.shape) > 1: # particle positions + # TODO: #599: seed + for dim, _ in enumerate(array.shape): + # only to make particles not shadow each other in visualisations + attributes[name][dim, orig] = array[dim, :] + attributes[name][dim, copy] = np.random.permutation( + array[dim, :] + ) else: attributes[name][orig] = array attributes[name][copy] = array From 47c738fdc268ce2620b9cd2e69c6ab1fa6b27898 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Wed, 23 Oct 2024 10:42:22 +0200 Subject: [PATCH 33/41] address pylint and devops tests hints --- .../Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb | 4 ++-- examples/PySDM_examples/Szumowski_et_al_1998/simulation.py | 2 +- tests/devops_tests | 2 +- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb index b340a7587..811b16b2a 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb @@ -11176,7 +11176,7 @@ " for args in (\n", " [path, '--anim_path_suffix=_cld', '--surface_var=n_c', '--surface_color_range=[0, 300]', '--particles_var=radius', \n", " '--particles_var_multiplier=1e6', '--particles_color_range=[0.5,10]', '--particles_logscale=True', \n", - " '--particles_unit=\\mu m', f'--surface_unit={conc_cld_unit}',\n", + " r'--particles_unit=\\mu m', f'--surface_unit={conc_cld_unit}',\n", " '--save_frame_pdfs',\n", " ],\n", " [path, \n", @@ -11195,7 +11195,7 @@ " [\n", " '--particles_var=immersed surface area',\n", " '--particles_color_range=[0, 1]',\n", - " '--particles_unit=\\mu m^2', \n", + " r'--particles_unit=\\mu m^2', \n", " '--particles_var_multiplier=1e12'\n", " ]\n", " ),\n", diff --git a/examples/PySDM_examples/Szumowski_et_al_1998/simulation.py b/examples/PySDM_examples/Szumowski_et_al_1998/simulation.py index 3607d5290..55570d76e 100644 --- a/examples/PySDM_examples/Szumowski_et_al_1998/simulation.py +++ b/examples/PySDM_examples/Szumowski_et_al_1998/simulation.py @@ -198,7 +198,7 @@ def reinit(self, products=None): 1 - self.settings.freezing_inp_frac ) elif len(array.shape) > 1: # particle positions - # TODO: #599: seed + # TODO #599: seed for dim, _ in enumerate(array.shape): # only to make particles not shadow each other in visualisations attributes[name][dim, orig] = array[dim, :] diff --git a/tests/devops_tests b/tests/devops_tests index f11902076..488d11109 160000 --- a/tests/devops_tests +++ b/tests/devops_tests @@ -1 +1 @@ -Subproject commit f119020765edeb217225da2609876f25d5f77286 +Subproject commit 488d111097fff3775768de6507ab1a7575a7cb30 From c073ee70f8f4013b0e33982d403805254ea74033 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Sat, 9 Nov 2024 12:28:46 +0100 Subject: [PATCH 34/41] fix physics::pvs and Paraview API compatibility --- examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb | 2 +- .../Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb index 8412d4526..49ffe5e4a 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb @@ -83,7 +83,7 @@ "def _T(TK):\n", " return (TK/si.K).to_base_units().magnitude\n", "\n", - "a_w_ice = svp.ice_Celsius(_T(T) - const.T0) / svp.pvs_Celsius(_T(T) - const.T0)" + "a_w_ice = svp.pvs_ice(_T(T)) / svp.pvs_water(_T(T))" ] }, { diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb index 811b16b2a..f72215851 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb @@ -6221,7 +6221,7 @@ " colorbar_attr.TitleFontSize = 30\n", " colorbar_attr.LabelFontSize = 30\n", " colorbar_attr.Visibility = True\n", - " colorbar_attr.WindowLocation = 'AnyLocation'\n", + " colorbar_attr.WindowLocation = 'Any Location'\n", " colorbar_attr.Position = [.025, .333]\n", " colorbar_attr.RangeLabelFormat = '%g'\n", " \n", @@ -6254,7 +6254,7 @@ " colorbar_prod.LabelFontSize = 30\n", " colorbar_prod.Visibility = True\n", " colorbar_prod.Position = [.925, .333]\n", - " colorbar_prod.WindowLocation = 'AnyLocation'\n", + " colorbar_prod.WindowLocation = 'Any Location'\n", " colorbar_prod.RangeLabelFormat = '%g'\n", "\n", "# time annotation\n", From 1c7bc4e1f74f642da09e5fa1c9f0f5408fd1b3ee Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Sat, 9 Nov 2024 12:45:17 +0100 Subject: [PATCH 35/41] remove unused import --- examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb | 1 - 1 file changed, 1 deletion(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb index 49ffe5e4a..46bcb3ed0 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb @@ -29,7 +29,6 @@ "source": [ "from matplotlib import pyplot\n", "from open_atmos_jupyter_utils import show_plot\n", - "from PySDM.physics import constants as const\n", "from PySDM import Formulae\n", "from PySDM_examples.Arabas_et_al_2023.curved_text import CurvedText\n", "from PySDM_examples.Arabas_et_al_2023.commons import FREEZING_CONSTANTS, COOLING_RATES, TEMP_RANGE\n", From 622577625583597b777f4197a533ace5ae925929 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Sat, 9 Nov 2024 19:28:13 +0100 Subject: [PATCH 36/41] adapt new ParaView API for export to pdf (kudos @olastrz for finding it!) --- .../figs_10_and_11_and_animations.ipynb | 16 +++++++--------- 1 file changed, 7 insertions(+), 9 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb index f72215851..aa31bb9c8 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb @@ -6282,18 +6282,16 @@ "\n", "# save animation frame as pdfs\n", "if args.save_frame_pdfs is not None:\n", - " exporters = pvs.servermanager.createModule('exporters')\n", - " exporter = exporters.GL2PSRenderViewExporterPDF()\n", - " exporter.Rasterize3Dgeometry = False\n", - " exporter.GL2PSdepthsortmethod = 'BSP sorting (slow, best)'\n", " for t in reader_prod.TimestepValues:\n", " view.ViewTime = t\n", - " exporter.FileName = f'{args.path}/anim_frame_{t}{args.anim_path_suffix}.pdf'\n", - " print(exporter.FileName)\n", " for reader in (reader_prod, reader_attr):\n", - " reader.UpdatePipeline(t)\n", - " exporter.SetView(view)\n", - " exporter.Write()" + " reader.UpdatePipeline(t) \n", + " pvs.ExportView(\n", + " filename=f'{args.path}/anim_frame_{t}{args.anim_path_suffix}.pdf,'\n", + " view=view,\n", + " Rasterize3Dgeometry= False,\n", + " GL2PSdepthsortmethod= 'BSP sorting (slow, best)',\n", + " )" ] }, { From 7b7101bcf9819f4cdfb713c7c2e854493d214a8b Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Sat, 9 Nov 2024 21:35:45 +0100 Subject: [PATCH 37/41] fix syntax --- .../Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb index aa31bb9c8..33cda12ed 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb @@ -6285,9 +6285,9 @@ " for t in reader_prod.TimestepValues:\n", " view.ViewTime = t\n", " for reader in (reader_prod, reader_attr):\n", - " reader.UpdatePipeline(t) \n", + " reader.UpdatePipeline(t)\n", " pvs.ExportView(\n", - " filename=f'{args.path}/anim_frame_{t}{args.anim_path_suffix}.pdf,'\n", + " filename=f'{args.path}/anim_frame_{t}{args.anim_path_suffix}.pdf',\n", " view=view,\n", " Rasterize3Dgeometry= False,\n", " GL2PSdepthsortmethod= 'BSP sorting (slow, best)',\n", From 3e8d5dc2059a48f181ff92b02857a1a05a3ac3a8 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Sat, 9 Nov 2024 22:59:53 +0100 Subject: [PATCH 38/41] one more ParaView API change... --- .../Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb index 33cda12ed..45e52f7ac 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb @@ -6278,7 +6278,7 @@ "# save animation to an Ogg Vorbis file\n", "anim_file = f'{args.path}/anim{args.anim_path_suffix}.ogv'\n", "print(anim_file)\n", - "pvs.SaveAnimation(anim_file, view, FrameRate=5, ImageQuality=0)\n", + "pvs.SaveAnimation(anim_file, view, FrameRate=5, Quality=0)\n", "\n", "# save animation frame as pdfs\n", "if args.save_frame_pdfs is not None:\n", From c3554ea78d00c0e6234169cb3fb3621265bef7e4 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Sun, 10 Nov 2024 02:10:44 +0100 Subject: [PATCH 39/41] increase timeout limit for macOS --- .github/workflows/tests+artifacts+pypi.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/tests+artifacts+pypi.yml b/.github/workflows/tests+artifacts+pypi.yml index ddde482b8..93fbdf6c3 100644 --- a/.github/workflows/tests+artifacts+pypi.yml +++ b/.github/workflows/tests+artifacts+pypi.yml @@ -229,7 +229,7 @@ jobs: test-suite: [ "chemistry_freezing_isotopes", "condensation_a", "condensation_b", "coagulation", "breakup", "multi-process_a", "multi-process_b"] fail-fast: false runs-on: ${{ matrix.platform }} - timeout-minutes: ${{ startsWith(matrix.platform, 'windows-') && 65 || 50 }} + timeout-minutes: ${{ !startsWith(matrix.platform, 'ubuntu-') && 65 || 50 }} steps: - uses: actions/checkout@v4.1.6 with: From 5a542ca640b590656dfc23cc8e85e7ff6f882672 Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Sun, 10 Nov 2024 02:37:40 +0100 Subject: [PATCH 40/41] fix merge conflict --- .github/workflows/readme_snippets.yml | 6 +- .github/workflows/tests+artifacts+pypi.yml | 12 +- .zenodo.json | 5 + PySDM/__init__.py | 21 +- README.md | 694 +---------------- docs/markdown/pysdm_landing.md | 700 ++++++++++++++++++ docs/templates/index.html.jinja2 | 164 ++++ examples/MANIFEST.in | 1 + .../Abade_and_Albuquerque_2024/__init__.py | 3 + .../Abdul_Razzak_Ghan_2000/__init__.py | 6 + .../Alpert_and_Knopf_2016/__init__.py | 15 + .../Arabas_and_Shima_2017/__init__.py | 3 + .../Arabas_et_al_2015/__init__.py | 6 + .../Arabas_et_al_2023/__init__.py | 21 + .../Bartman_et_al_2021/__init__.py | 9 + .../PySDM_examples/Berry_1967/__init__.py | 3 + .../Bieli_et_al_2022/__init__.py | 3 + .../Bolot_et_al_2013/__init__.py | 3 + .../Bulenok_2023_MasterThesis/__init__.py | 3 + .../Gedzelman_and_Arnold_1994/__init__.py | 3 + .../Grabowski_and_Pawlowska_2023/__init__.py | 15 + .../Graf_et_al_2019/__init__.py | 6 + .../Jaruga_and_Pawlowska_2018/__init__.py | 6 + .../Jensen_and_Nugent_2017/__init__.py | 20 + .../Kreidenweis_et_al_2003/__init__.py | 3 + .../Lamb_et_al_2017/__init__.py | 3 + .../Lowe_et_al_2019/__init__.py | 12 + .../Merlivat_and_Nief_1967/__init__.py | 3 + .../Miyake_et_al_1968/__init__.py | 3 + .../Morrison_and_Grabowski_2007/__init__.py | 6 + .../Niedermeier_et_al_2014/__init__.py | 7 +- .../Pierchala_et_al_2022/__init__.py | 6 + examples/PySDM_examples/Pyrcel/__init__.py | 3 + .../Rozanski_and_Sonntag_1982/__init__.py | 3 + .../Shima_et_al_2009/__init__.py | 3 + .../Shipway_and_Hill_2012/__init__.py | 3 + .../PySDM_examples/Singer_Ward/__init__.py | 8 + .../Srivastava_1982/__init__.py | 3 + .../PySDM_examples/Van_Hook_1968/__init__.py | 3 + .../Yang_et_al_2018/__init__.py | 3 + examples/PySDM_examples/__init__.py | 3 +- .../PySDM_examples/deJong_Azimi/__init__.py | 6 + .../deJong_Mackay_et_al_2023/__init__.py | 12 + examples/PySDM_examples/seeding/__init__.py | 8 + examples/README.md | 272 +------ examples/docs/pysdm_examples_landing.md | 125 ++++ examples/setup.py | 13 +- pdoc_templates/index.html.jinja2 | 26 - 48 files changed, 1249 insertions(+), 1016 deletions(-) create mode 100644 docs/markdown/pysdm_landing.md create mode 100644 docs/templates/index.html.jinja2 create mode 100644 examples/docs/pysdm_examples_landing.md delete mode 100644 pdoc_templates/index.html.jinja2 diff --git a/.github/workflows/readme_snippets.yml b/.github/workflows/readme_snippets.yml index f50ea7712..7ca6b8472 100644 --- a/.github/workflows/readme_snippets.yml +++ b/.github/workflows/readme_snippets.yml @@ -27,7 +27,7 @@ jobs: - run: python -m pip install $PIP_INSTALL_ARGS pytest-codeblocks pytest - run: python -m pip install $PIP_INSTALL_ARGS "pyparsing<3.0.0" # https://github.com/matplotlib/matplotlib/issues/25204 - run: | - python -c "import os,pytest_codeblocks; code=pytest_codeblocks.extract_from_file('README.md'); f=open('readme.py', 'w', encoding='utf-8'); f.write('# coding: utf-8'+os.linesep); f.writelines(block.code for block in code if block.syntax=='Python'); f.close()" + python -c "import os,pytest_codeblocks; code=pytest_codeblocks.extract_from_file('docs/markdown/pysdm_landing.md'); f=open('readme.py', 'w', encoding='utf-8'); f.write('# coding: utf-8'+os.linesep); f.writelines(block.code for block in code if block.syntax=='Python'); f.close()" - run: cat -n readme.py - run: | python -We readme.py @@ -51,7 +51,7 @@ jobs: python-version: "3.10" - run: pip install -e . - run: pip install pytest-codeblocks pytest - - run: python -c "import pytest_codeblocks; code=pytest_codeblocks.extract_from_file('README.md'); f=open('readme.jl', 'w'); f.writelines(block.code for block in code if block.syntax=='Julia'); f.close()" + - run: python -c "import pytest_codeblocks; code=pytest_codeblocks.extract_from_file('docs/markdown/pysdm_landing.md'); f=open('readme.jl', 'w'); f.writelines(block.code for block in code if block.syntax=='Julia'); f.close()" - uses: julia-actions/setup-julia@v1.9.6 - run: cat -n readme.jl - run: julia readme.jl @@ -67,7 +67,7 @@ jobs: python-version: 3.8 - run: pip install -e . - run: pip install pytest-codeblocks pytest - - run: python -c "import pytest_codeblocks; code=pytest_codeblocks.extract_from_file('README.md'); f=open('readme.m', 'w'); f.writelines(block.code for block in code if block.syntax=='Matlab'); f.close()" + - run: python -c "import pytest_codeblocks; code=pytest_codeblocks.extract_from_file('docs/markdown/pysdm_landing.md'); f=open('readme.m', 'w'); f.writelines(block.code for block in code if block.syntax=='Matlab'); f.close()" - run: cat -n readme.m - uses: matlab-actions/setup-matlab@v2.1.0 with: diff --git a/.github/workflows/tests+artifacts+pypi.yml b/.github/workflows/tests+artifacts+pypi.yml index 93fbdf6c3..2bdc5719e 100644 --- a/.github/workflows/tests+artifacts+pypi.yml +++ b/.github/workflows/tests+artifacts+pypi.yml @@ -69,10 +69,18 @@ jobs: with: python-version: 3.9 - run: | - pip install pdoc + pip install pdoc nbformat pip install -e . pip install -e examples - PDOC_ALLOW_EXEC=1 python -We -m pdoc -o html PySDM examples/PySDM_examples -t pdoc_templates + + python - < -# PySDM - [![Python 3](https://img.shields.io/static/v1?label=Python&logo=Python&color=3776AB&message=3)](https://www.python.org/) [![LLVM](https://img.shields.io/static/v1?label=LLVM&logo=LLVM&color=gold&message=Numba)](https://numba.pydata.org) [![CUDA](https://img.shields.io/static/v1?label=CUDA&logo=nVidia&color=87ce3e&message=ThrustRTC)](https://pypi.org/project/ThrustRTC/) @@ -110,630 +108,6 @@ Alternatively, one can also install the examples package from pypi.org by using ``pip install PySDM-examples`` (note that this does not apply to notebooks itself, only the supporting .py files). -## Submodule organization -```mermaid -mindmap - root((PySDM)) - Builder - Formulae - Particulator - ((attributes)) - (physics) - DryVolume: ExtensiveAttribute - Kappa: DerivedAttribute - ... - (chemistry) - Acidity - ... - (...) - ((backends)) - CPU - GPU - ((dynamics)) - AqueousChemistry - Collision - Condensation - ... - ((environments)) - Box - Parcel - Kinematic2D - ... - ((initialisation)) - (spectra) - Lognormal - Exponential - ... - (sampling) - (spectral_sampling) - ConstantMultiplicity - UniformRandom - Logarithmic - ... - (...) - (...) - ((physics)) - (hygroscopicity) - KappaKoehler - ... - (condensation_coordinate) - Volume - VolumeLogarithm - (...) - ((products)) - (size_spectral) - EffectiveRadius - WaterMixingRatio - ... - (ambient_thermodynamics) - AmbientRelativeHumidity - ... - (...) -``` - -## Hello-world coalescence example in Python, Julia and Matlab - -In order to depict the PySDM API with a practical example, the following - listings provide sample code roughly reproducing the - Figure 2 from [Shima et al. 2009 paper](http://doi.org/10.1002/qj.441) - using PySDM from Python, Julia and Matlab. -It is a [`Coalescence`](https://open-atmos.github.io/PySDM/PySDM/dynamics/collisions/sollision.html#Coalescence)-only set-up in which the initial particle size - spectrum is [`Exponential`](https://open-atmos.github.io/PySDM/PySDM/initialisation/spectra/exponential.html#Exponential) and is deterministically sampled to match - the condition of each super-droplet having equal initial multiplicity: -
-Julia (click to expand) - -```Julia -using Pkg -Pkg.add("PyCall") -Pkg.add("Plots") -Pkg.add("PlotlyJS") - -using PyCall -si = pyimport("PySDM.physics").si -ConstantMultiplicity = pyimport("PySDM.initialisation.sampling.spectral_sampling").ConstantMultiplicity -Exponential = pyimport("PySDM.initialisation.spectra").Exponential - -n_sd = 2^15 -initial_spectrum = Exponential(norm_factor=8.39e12, scale=1.19e5 * si.um^3) -attributes = Dict() -attributes["volume"], attributes["multiplicity"] = ConstantMultiplicity(spectrum=initial_spectrum).sample(n_sd) -``` -
-
-Matlab (click to expand) - -```Matlab -si = py.importlib.import_module('PySDM.physics').si; -ConstantMultiplicity = py.importlib.import_module('PySDM.initialisation.sampling.spectral_sampling').ConstantMultiplicity; -Exponential = py.importlib.import_module('PySDM.initialisation.spectra').Exponential; - -n_sd = 2^15; -initial_spectrum = Exponential(pyargs(... - 'norm_factor', 8.39e12, ... - 'scale', 1.19e5 * si.um ^ 3 ... -)); -tmp = ConstantMultiplicity(initial_spectrum).sample(int32(n_sd)); -attributes = py.dict(pyargs('volume', tmp{1}, 'multiplicity', tmp{2})); -``` -
-
-Python (click to expand) - -```Python -from PySDM.physics import si -from PySDM.initialisation.sampling.spectral_sampling import ConstantMultiplicity -from PySDM.initialisation.spectra.exponential import Exponential - -n_sd = 2 ** 15 -initial_spectrum = Exponential(norm_factor=8.39e12, scale=1.19e5 * si.um ** 3) -attributes = {} -attributes['volume'], attributes['multiplicity'] = ConstantMultiplicity(initial_spectrum).sample(n_sd) -``` -
- -The key element of the PySDM interface is the [``Particulator``](https://open-atmos.github.io/PySDM/PySDM/particulator.html#Particulator) - class instances of which are used to manage the system state and control the simulation. -Instantiation of the [``Particulator``](https://open-atmos.github.io/PySDM/PySDM/particulator.html#Particulator) class is handled by the [``Builder``](https://open-atmos.github.io/PySDM/PySDM/builder.html#Builder) - as exemplified below: -
-Julia (click to expand) - -```Julia -Builder = pyimport("PySDM").Builder -Box = pyimport("PySDM.environments").Box -Coalescence = pyimport("PySDM.dynamics").Coalescence -Golovin = pyimport("PySDM.dynamics.collisions.collision_kernels").Golovin -CPU = pyimport("PySDM.backends").CPU -ParticleVolumeVersusRadiusLogarithmSpectrum = pyimport("PySDM.products").ParticleVolumeVersusRadiusLogarithmSpectrum - -radius_bins_edges = 10 .^ range(log10(10*si.um), log10(5e3*si.um), length=32) - -env = Box(dt=1 * si.s, dv=1e6 * si.m^3) -builder = Builder(n_sd=n_sd, backend=CPU(), environment=env) -builder.add_dynamic(Coalescence(collision_kernel=Golovin(b=1.5e3 / si.s))) -products = [ParticleVolumeVersusRadiusLogarithmSpectrum(radius_bins_edges=radius_bins_edges, name="dv/dlnr")] -particulator = builder.build(attributes, products) -``` -
-
-Matlab (click to expand) - -```Matlab -Builder = py.importlib.import_module('PySDM').Builder; -Box = py.importlib.import_module('PySDM.environments').Box; -Coalescence = py.importlib.import_module('PySDM.dynamics').Coalescence; -Golovin = py.importlib.import_module('PySDM.dynamics.collisions.collision_kernels').Golovin; -CPU = py.importlib.import_module('PySDM.backends').CPU; -ParticleVolumeVersusRadiusLogarithmSpectrum = py.importlib.import_module('PySDM.products').ParticleVolumeVersusRadiusLogarithmSpectrum; - -radius_bins_edges = logspace(log10(10 * si.um), log10(5e3 * si.um), 32); - -env = Box(pyargs('dt', 1 * si.s, 'dv', 1e6 * si.m ^ 3)); -builder = Builder(pyargs('n_sd', int32(n_sd), 'backend', CPU(), 'environment', env)); -builder.add_dynamic(Coalescence(pyargs('collision_kernel', Golovin(1.5e3 / si.s)))); -products = py.list({ ParticleVolumeVersusRadiusLogarithmSpectrum(pyargs( ... - 'radius_bins_edges', py.numpy.array(radius_bins_edges), ... - 'name', 'dv/dlnr' ... -)) }); -particulator = builder.build(attributes, products); -``` -
-
-Python (click to expand) - -```Python -import numpy as np -from PySDM import Builder -from PySDM.environments import Box -from PySDM.dynamics import Coalescence -from PySDM.dynamics.collisions.collision_kernels import Golovin -from PySDM.backends import CPU -from PySDM.products import ParticleVolumeVersusRadiusLogarithmSpectrum - -radius_bins_edges = np.logspace(np.log10(10 * si.um), np.log10(5e3 * si.um), num=32) - -env = Box(dt=1 * si.s, dv=1e6 * si.m ** 3) -builder = Builder(n_sd=n_sd, backend=CPU(), environment=env) -builder.add_dynamic(Coalescence(collision_kernel=Golovin(b=1.5e3 / si.s))) -products = [ParticleVolumeVersusRadiusLogarithmSpectrum(radius_bins_edges=radius_bins_edges, name='dv/dlnr')] -particulator = builder.build(attributes, products) -``` -
- -The ``backend`` argument may be set to ``CPU`` or ``GPU`` - what translates to choosing the multi-threaded backend or the - GPU-resident computation mode, respectively. -The employed [`Box`](https://open-atmos.github.io/PySDM/PySDM/environments/box.html#Box) environment corresponds to a zero-dimensional framework - (particle positions are not considered). -The vectors of particle multiplicities ``n`` and particle volumes ``v`` are - used to initialise super-droplet attributes. -The [`Coalescence`](https://open-atmos.github.io/PySDM/PySDM/dynamics/collisions/collision.html#Coalescence) - Monte-Carlo algorithm (Super Droplet Method) is registered as the only - dynamic in the system. -Finally, the [`build()`](https://open-atmos.github.io/PySDM/PySDM/builder.html#Builder.build) method is used to obtain an instance - of [`Particulator`](https://open-atmos.github.io/PySDM/PySDM/particulator.html#Particulator) which can then be used to control time-stepping and - access simulation state. - -The [`run(nt)`](https://open-atmos.github.io/PySDM/PySDM/particulator.html#Particulator.run) method advances the simulation by ``nt`` timesteps. -In the listing below, its usage is interleaved with plotting logic - which displays a histogram of particle mass distribution - at selected timesteps: -
-Julia (click to expand) - -```Julia -using Plots; plotlyjs() - -for step = 0:1200:3600 - particulator.run(step - particulator.n_steps) - plot!( - radius_bins_edges[1:end-1] / si.um, - particulator.formulae.particle_shape_and_density.volume_to_mass( - particulator.products["dv/dlnr"].get()[:] - )/ si.g, - linetype=:steppost, - xaxis=:log, - xlabel="particle radius [µm]", - ylabel="dm/dlnr [g/m^3/(unit dr/r)]", - label="t = $step s" - ) -end -savefig("plot.svg") -``` -
-
-Matlab (click to expand) - -```Matlab -for step = 0:1200:3600 - particulator.run(int32(step - particulator.n_steps)); - x = radius_bins_edges / si.um; - y = particulator.formulae.particle_shape_and_density.volume_to_mass( ... - particulator.products{"dv/dlnr"}.get() ... - ) / si.g; - stairs(... - x(1:end-1), ... - double(py.array.array('d',py.numpy.nditer(y))), ... - 'DisplayName', sprintf("t = %d s", step) ... - ); - hold on -end -hold off -set(gca,'XScale','log'); -xlabel('particle radius [µm]') -ylabel("dm/dlnr [g/m^3/(unit dr/r)]") -legend() -``` -
-
-Python (click to expand) - -```Python -from matplotlib import pyplot - -for step in [0, 1200, 2400, 3600]: - particulator.run(step - particulator.n_steps) - pyplot.step( - x=radius_bins_edges[:-1] / si.um, - y=particulator.formulae.particle_shape_and_density.volume_to_mass( - particulator.products['dv/dlnr'].get()[0] - ) / si.g, - where='post', label=f"t = {step}s" - ) - -pyplot.xscale('log') -pyplot.xlabel('particle radius [µm]') -pyplot.ylabel("dm/dlnr [g/m$^3$/(unit dr/r)]") -pyplot.legend() -pyplot.savefig('readme.png') -``` -
- -The resultant plot (generated with the Python code) looks as follows: - -![plot](https://github.com/open-atmos/PySDM/releases/download/tip/readme.png) - -The component submodules used to create this simulation are visualized below: -```mermaid - graph - COAL[":Coalescence"] --->|passed as arg to| BUILDER_ADD_DYN(["Builder.add_dynamic()"]) - BUILDER_INSTANCE["builder :Builder"] -...-|has a method| BUILDER_BUILD(["Builder.build()"]) - ATTRIBUTES[attributes: dict] -->|passed as arg to| BUILDER_BUILD - N_SD["n_sd :int"] ---->|passed as arg to| BUILDER_INIT - BUILDER_INIT(["Builder.__init__()"]) --->|instantiates| BUILDER_INSTANCE - BUILDER_INSTANCE -..-|has a method| BUILDER_ADD_DYN(["Builder.add_dynamic()"]) - ENV_INIT(["Box.__init__()"]) -->|instantiates| ENV - DT[dt :float] -->|passed as arg to| ENV_INIT - DV[dv :float] -->|passed as arg to| ENV_INIT - ENV[":Box"] -->|passed as arg to| BUILDER_INIT - B["b: float"] --->|passed as arg to| KERNEL_INIT(["Golovin.__init__()"]) - KERNEL_INIT -->|instantiates| KERNEL - KERNEL[collision_kernel: Golovin] -->|passed as arg to| COAL_INIT(["Coalesncence.__init__()"]) - COAL_INIT -->|instantiates| COAL - PRODUCTS[products: list] ----->|passed as arg to| BUILDER_BUILD - NORM_FACTOR[norm_factor: float]-->|passed as arg to| EXP_INIT - SCALE[scale: float]-->|passed as arg to| EXP_INIT - EXP_INIT(["Exponential.__init__()"]) -->|instantiates| IS - IS["initial_spectrum :Exponential"] -->|passed as arg to| CM_INIT - CM_INIT(["ConstantMultiplicity.__init__()"]) -->|instantiates| CM_INSTANCE - CM_INSTANCE[":ConstantMultiplicity"] -.-|has a method| SAMPLE - SAMPLE(["ConstantMultiplicity.sample()"]) -->|returns| n - SAMPLE -->|returns| volume - n -->|added as element of| ATTRIBUTES - PARTICULATOR_INSTANCE -.-|has a method| PARTICULATOR_RUN(["Particulator.run()"]) - volume -->|added as element of| ATTRIBUTES - BUILDER_BUILD -->|returns| PARTICULATOR_INSTANCE["particulator :Particulator"] - PARTICULATOR_INSTANCE -.-|has a field| PARTICULATOR_PROD(["Particulator.products:dict"]) - BACKEND_INSTANCE["backend :CPU"] ---->|passed as arg to| BUILDER_INIT - PRODUCTS -.-|accessible via| PARTICULATOR_PROD - NP_LOGSPACE(["np.logspace()"]) -->|returns| EDGES - EDGES[radius_bins_edges: np.ndarray] -->|passed as arg to| SPECTRUM_INIT - SPECTRUM_INIT["ParticleVolumeVersusRadiusLogarithmSpectrum.__init__()"] -->|instantiates| SPECTRUM - SPECTRUM[":ParticleVolumeVersusRadiusLogarithmSpectrum"] -->|added as element of| PRODUCTS - - click COAL "https://open-atmos.github.io/PySDM/PySDM/dynamics/collisions/collision.html#Coalescence" - click BUILDER_INSTANCE "https://open-atmos.github.io/PySDM/PySDM/builder.html" - click BUILDER_INIT "https://open-atmos.github.io/PySDM/PySDM/builder.html" - click BUILDER_ADD_DYN "https://open-atmos.github.io/PySDM/PySDM/builder.html" - click ENV_INIT "https://open-atmos.github.io/PySDM/PySDM/environments.html" - click ENV "https://open-atmos.github.io/PySDM/PySDM/environments.html" - click KERNEL_INIT "https://open-atmos.github.io/PySDM/PySDM/dynamics/collisions/collision_kernels.html" - click KERNEL "https://open-atmos.github.io/PySDM/PySDM/dynamics/collisions/collision_kernels.html" - click EXP_INIT "https://open-atmos.github.io/PySDM/PySDM/initialisation/spectra.html" - click IS "https://open-atmos.github.io/PySDM/PySDM/initialisation/spectra.html" - click CM_INIT "https://open-atmos.github.io/PySDM/PySDM/initialisation/sampling/spectral_sampling.html" - click CM_INSTANCE "https://open-atmos.github.io/PySDM/PySDM/initialisation/sampling/spectral_sampling.html" - click SAMPLE "https://open-atmos.github.io/PySDM/PySDM/initialisation/sampling/spectral_sampling.html" - click PARTICULATOR_INSTANCE "https://open-atmos.github.io/PySDM/PySDM/particulator.html" - click BACKEND_INSTANCE "https://open-atmos.github.io/PySDM/PySDM/backends/numba.html" - click BUILDER_BUILD "https://open-atmos.github.io/PySDM/PySDM/builder.html" - click NP_LOGSPACE "https://numpy.org/doc/stable/reference/generated/numpy.logspace.html" - click SPECTRUM_INIT "https://open-atmos.github.io/PySDM/PySDM/products/size_spectral/particle_volume_versus_radius_logarithm_spectrum.html" - click SPECTRUM "https://open-atmos.github.io/PySDM/PySDM/products/size_spectral/particle_volume_versus_radius_logarithm_spectrum.html" -``` - -## Hello-world condensation example in Python, Julia and Matlab - -In the following example, a condensation-only setup is used with the adiabatic -[`Parcel`](https://open-atmos.github.io/PySDM/PySDM/environments/parcel.html) environment. -An initial [`Lognormal`](https://open-atmos.github.io/PySDM/PySDM/initialisation/spectra/lognormal.html#Lognormal) -spectrum of dry aerosol particles is first initialised to equilibrium wet size for the given -initial humidity. -Subsequent particle growth due to [`Condensation`](https://open-atmos.github.io/PySDM/PySDM/dynamics/condensation.html) of water vapour (coupled with the release of latent heat) -causes a subset of particles to activate into cloud droplets. -Results of the simulation are plotted against vertical -[`ParcelDisplacement`](https://open-atmos.github.io/PySDM/PySDM/products/housekeeping/parcel_displacement.html) -and depict the evolution of -[`PeakSupersaturation`](https://open-atmos.github.io/PySDM/PySDM/products/condensation/peak_supersaturation.html), -[`EffectiveRadius`](https://open-atmos.github.io/PySDM/PySDM/products/size_spectral/effective_radius.html), -[`ParticleConcentration`](https://open-atmos.github.io/PySDM/PySDM/products/size_spectral/particle_concentration.html#ParticleConcentration) -and the -[`WaterMixingRatio `](https://open-atmos.github.io/PySDM/PySDM/products/size_spectral/water_mixing_ratio.html). - -
-Julia (click to expand) - -```Julia -using PyCall -using Plots; plotlyjs() -si = pyimport("PySDM.physics").si -spectral_sampling = pyimport("PySDM.initialisation.sampling").spectral_sampling -discretise_multiplicities = pyimport("PySDM.initialisation").discretise_multiplicities -Lognormal = pyimport("PySDM.initialisation.spectra").Lognormal -equilibrate_wet_radii = pyimport("PySDM.initialisation").equilibrate_wet_radii -CPU = pyimport("PySDM.backends").CPU -AmbientThermodynamics = pyimport("PySDM.dynamics").AmbientThermodynamics -Condensation = pyimport("PySDM.dynamics").Condensation -Parcel = pyimport("PySDM.environments").Parcel -Builder = pyimport("PySDM").Builder -Formulae = pyimport("PySDM").Formulae -products = pyimport("PySDM.products") - -env = Parcel( - dt=.25 * si.s, - mass_of_dry_air=1e3 * si.kg, - p0=1122 * si.hPa, - initial_water_vapour_mixing_ratio=20 * si.g / si.kg, - T0=300 * si.K, - w= 2.5 * si.m / si.s -) -spectrum = Lognormal(norm_factor=1e4/si.mg, m_mode=50*si.nm, s_geom=1.4) -kappa = .5 * si.dimensionless -cloud_range = (.5 * si.um, 25 * si.um) -output_interval = 4 -output_points = 40 -n_sd = 256 - -formulae = Formulae() -builder = Builder(backend=CPU(formulae), n_sd=n_sd, environment=env) -builder.add_dynamic(AmbientThermodynamics()) -builder.add_dynamic(Condensation()) - -r_dry, specific_concentration = spectral_sampling.Logarithmic(spectrum).sample(n_sd) -v_dry = formulae.trivia.volume(radius=r_dry) -r_wet = equilibrate_wet_radii(r_dry=r_dry, environment=builder.particulator.environment, kappa_times_dry_volume=kappa * v_dry) - -attributes = Dict() -attributes["multiplicity"] = discretise_multiplicities(specific_concentration * env.mass_of_dry_air) -attributes["dry volume"] = v_dry -attributes["kappa times dry volume"] = kappa * v_dry -attributes["volume"] = formulae.trivia.volume(radius=r_wet) - -particulator = builder.build(attributes, products=[ - products.PeakSupersaturation(name="S_max", unit="%"), - products.EffectiveRadius(name="r_eff", unit="um", radius_range=cloud_range), - products.ParticleConcentration(name="n_c_cm3", unit="cm^-3", radius_range=cloud_range), - products.WaterMixingRatio(name="liquid water mixing ratio", unit="g/kg", radius_range=cloud_range), - products.ParcelDisplacement(name="z") -]) - -cell_id=1 -output = Dict() -for (_, product) in particulator.products - output[product.name] = Array{Float32}(undef, output_points+1) - output[product.name][1] = product.get()[cell_id] -end - -for step = 2:output_points+1 - particulator.run(steps=output_interval) - for (_, product) in particulator.products - output[product.name][step] = product.get()[cell_id] - end -end - -plots = [] -ylbl = particulator.products["z"].unit -for (_, product) in particulator.products - if product.name != "z" - append!(plots, [plot(output[product.name], output["z"], ylabel=ylbl, xlabel=product.unit, title=product.name)]) - end - global ylbl = "" -end -plot(plots..., layout=(1, length(output)-1)) -savefig("parcel.svg") -``` -
-
-Matlab (click to expand) - -```Matlab -si = py.importlib.import_module('PySDM.physics').si; -spectral_sampling = py.importlib.import_module('PySDM.initialisation.sampling').spectral_sampling; -discretise_multiplicities = py.importlib.import_module('PySDM.initialisation').discretise_multiplicities; -Lognormal = py.importlib.import_module('PySDM.initialisation.spectra').Lognormal; -equilibrate_wet_radii = py.importlib.import_module('PySDM.initialisation').equilibrate_wet_radii; -CPU = py.importlib.import_module('PySDM.backends').CPU; -AmbientThermodynamics = py.importlib.import_module('PySDM.dynamics').AmbientThermodynamics; -Condensation = py.importlib.import_module('PySDM.dynamics').Condensation; -Parcel = py.importlib.import_module('PySDM.environments').Parcel; -Builder = py.importlib.import_module('PySDM').Builder; -Formulae = py.importlib.import_module('PySDM').Formulae; -products = py.importlib.import_module('PySDM.products'); - -env = Parcel(pyargs( ... - 'dt', .25 * si.s, ... - 'mass_of_dry_air', 1e3 * si.kg, ... - 'p0', 1122 * si.hPa, ... - 'initial_water_vapour_mixing_ratio', 20 * si.g / si.kg, ... - 'T0', 300 * si.K, ... - 'w', 2.5 * si.m / si.s ... -)); -spectrum = Lognormal(pyargs('norm_factor', 1e4/si.mg, 'm_mode', 50 * si.nm, 's_geom', 1.4)); -kappa = .5; -cloud_range = py.tuple({.5 * si.um, 25 * si.um}); -output_interval = 4; -output_points = 40; -n_sd = 256; - -formulae = Formulae(); -builder = Builder(pyargs('backend', CPU(formulae), 'n_sd', int32(n_sd), 'environment', env)); -builder.add_dynamic(AmbientThermodynamics()); -builder.add_dynamic(Condensation()); - -tmp = spectral_sampling.Logarithmic(spectrum).sample(int32(n_sd)); -r_dry = tmp{1}; -v_dry = formulae.trivia.volume(pyargs('radius', r_dry)); -specific_concentration = tmp{2}; -r_wet = equilibrate_wet_radii(pyargs(... - 'r_dry', r_dry, ... - 'environment', builder.particulator.environment, ... - 'kappa_times_dry_volume', kappa * v_dry... -)); - -attributes = py.dict(pyargs( ... - 'multiplicity', discretise_multiplicities(specific_concentration * env.mass_of_dry_air), ... - 'dry volume', v_dry, ... - 'kappa times dry volume', kappa * v_dry, ... - 'volume', formulae.trivia.volume(pyargs('radius', r_wet)) ... -)); - -particulator = builder.build(attributes, py.list({ ... - products.PeakSupersaturation(pyargs('name', 'S_max', 'unit', '%')), ... - products.EffectiveRadius(pyargs('name', 'r_eff', 'unit', 'um', 'radius_range', cloud_range)), ... - products.ParticleConcentration(pyargs('name', 'n_c_cm3', 'unit', 'cm^-3', 'radius_range', cloud_range)), ... - products.WaterMixingRatio(pyargs('name', 'liquid water mixing ratio', 'unit', 'g/kg', 'radius_range', cloud_range)) ... - products.ParcelDisplacement(pyargs('name', 'z')) ... -})); - -cell_id = int32(0); -output_size = [output_points+1, length(py.list(particulator.products.keys()))]; -output_types = repelem({'double'}, output_size(2)); -output_names = [cellfun(@string, cell(py.list(particulator.products.keys())))]; -output = table(... - 'Size', output_size, ... - 'VariableTypes', output_types, ... - 'VariableNames', output_names ... -); -for pykey = py.list(keys(particulator.products)) - get = py.getattr(particulator.products{pykey{1}}.get(), '__getitem__'); - key = string(pykey{1}); - output{1, key} = get(cell_id); -end - -for i=2:output_points+1 - particulator.run(pyargs('steps', int32(output_interval))); - for pykey = py.list(keys(particulator.products)) - get = py.getattr(particulator.products{pykey{1}}.get(), '__getitem__'); - key = string(pykey{1}); - output{i, key} = get(cell_id); - end -end - -i=1; -for pykey = py.list(keys(particulator.products)) - product = particulator.products{pykey{1}}; - if string(product.name) ~= "z" - subplot(1, width(output)-1, i); - plot(output{:, string(pykey{1})}, output.z, '-o'); - title(string(product.name), 'Interpreter', 'none'); - xlabel(string(product.unit)); - end - if i == 1 - ylabel(string(particulator.products{"z"}.unit)); - end - i=i+1; -end -saveas(gcf, "parcel.png"); -``` -
-
-Python (click to expand) - -```Python -from matplotlib import pyplot -from PySDM.physics import si -from PySDM.initialisation import discretise_multiplicities, equilibrate_wet_radii -from PySDM.initialisation.spectra import Lognormal -from PySDM.initialisation.sampling import spectral_sampling -from PySDM.backends import CPU -from PySDM.dynamics import AmbientThermodynamics, Condensation -from PySDM.environments import Parcel -from PySDM import Builder, Formulae, products - -env = Parcel( - dt=.25 * si.s, - mass_of_dry_air=1e3 * si.kg, - p0=1122 * si.hPa, - initial_water_vapour_mixing_ratio=20 * si.g / si.kg, - T0=300 * si.K, - w=2.5 * si.m / si.s -) -spectrum = Lognormal(norm_factor=1e4 / si.mg, m_mode=50 * si.nm, s_geom=1.5) -kappa = .5 * si.dimensionless -cloud_range = (.5 * si.um, 25 * si.um) -output_interval = 4 -output_points = 40 -n_sd = 256 - -formulae = Formulae() -builder = Builder(backend=CPU(formulae), n_sd=n_sd, environment=env) -builder.add_dynamic(AmbientThermodynamics()) -builder.add_dynamic(Condensation()) - -r_dry, specific_concentration = spectral_sampling.Logarithmic(spectrum).sample(n_sd) -v_dry = formulae.trivia.volume(radius=r_dry) -r_wet = equilibrate_wet_radii(r_dry=r_dry, environment=builder.particulator.environment, kappa_times_dry_volume=kappa * v_dry) - -attributes = { - 'multiplicity': discretise_multiplicities(specific_concentration * env.mass_of_dry_air), - 'dry volume': v_dry, - 'kappa times dry volume': kappa * v_dry, - 'volume': formulae.trivia.volume(radius=r_wet) -} - -particulator = builder.build(attributes, products=[ - products.PeakSupersaturation(name='S_max', unit='%'), - products.EffectiveRadius(name='r_eff', unit='um', radius_range=cloud_range), - products.ParticleConcentration(name='n_c_cm3', unit='cm^-3', radius_range=cloud_range), - products.WaterMixingRatio(name='liquid water mixing ratio', unit='g/kg', radius_range=cloud_range), - products.ParcelDisplacement(name='z') -]) - -cell_id = 0 -output = {product.name: [product.get()[cell_id]] for product in particulator.products.values()} - -for step in range(output_points): - particulator.run(steps=output_interval) - for product in particulator.products.values(): - output[product.name].append(product.get()[cell_id]) - -fig, axs = pyplot.subplots(1, len(particulator.products) - 1, sharey="all") -for i, (key, product) in enumerate(particulator.products.items()): - if key != 'z': - axs[i].plot(output[key], output['z'], marker='.') - axs[i].set_title(product.name) - axs[i].set_xlabel(product.unit) - axs[i].grid() -axs[0].set_ylabel(particulator.products['z'].unit) -pyplot.savefig('parcel.svg') -``` -
- -The resultant plot (generated with the Matlab code) looks as follows: - -![plot](https://github.com/open-atmos/PySDM/releases/download/tip/parcel.png) - ## Contributing, reporting issues, seeking support #### Our technologicial stack: @@ -786,75 +160,9 @@ We encourage to use the [GitHub Discussions](https://github.com/open-atmos/PySDM We look forward to your contributions and feedback. -## Credits: - -The development and maintenance of PySDM is led by [Sylwester Arabas](https://github.com/slayoo/). -[Piotr Bartman](https://github.com/piotrbartman/) had been the architect and main developer -of technological solutions in PySDM. -PySDM includes contributions from researchers -from [Jagiellonian University](https://en.uj.edu.pl/en) departments of computer science, physics and chemistry; -from [Caltech's Climate Modelling Alliance](https://clima.caltech.edu/), -from [University of Warsaw](https://en.uw.edu.pl/) (dept. physics), and -from [AGH University of Krakow](https://agh.edu.pl/en) (dept. physics \& applied computer science) where release maintenance takes place currently. - -Development of PySDM had been initially supported by the EU through a grant of the -[Foundation for Polish Science](https://www.fnp.org.pl/)) (grant no. POIR.04.04.00-00-5E1C/18) -realised at the [Jagiellonian University](https://en.uj.edu.pl/en). -The immersion freezing support in PySDM was developed with support from the -US Department of Energy [Atmospheric System Research](https://asr.science.energy.gov/) programme -through a grant (no. DE-SC0021034) realised at the -[University of Illinois at Urbana-Champaign](https://illinois.edu/). -Development of isotopic fractionation representation and mixed-phase support is carried out with support from -the [Polish National Science Centre](https://ncn.gov.pl/en) (grant no. 2020/39/D/ST10/01220). +## Licensing: copyright: [Jagiellonian University](https://en.uj.edu.pl/en) (2019-2023) & [AGH University of Krakow](https://agh.edu.pl/en) (2023-...) licence: [GPL v3](https://www.gnu.org/licenses/gpl-3.0.html) -## Related resources and open-source projects - -### SDM patents (some expired, some withdrawn): -- https://patents.google.com/patent/US7756693B2 -- https://patents.google.com/patent/EP1847939A3 -- https://patents.google.com/patent/JP4742387B2 -- https://patents.google.com/patent/CN101059821B - -### Other SDM implementations: -- SCALE-SDM (Fortran): - https://github.com/Shima-Lab/SCALE-SDM_BOMEX_Sato2018/blob/master/contrib/SDM/sdm_coalescence.f90 -- Pencil Code (Fortran): - https://github.com/pencil-code/pencil-code/blob/master/src/particles_coagulation.f90 -- PALM LES (Fortran): - https://palm.muk.uni-hannover.de/trac/browser/palm/trunk/SOURCE/lagrangian_particle_model_mod.f90 -- libcloudph++ (C++): - https://github.com/igfuw/libcloudphxx/blob/master/src/impl/particles_impl_coal.ipp -- LCM1D (Python) - https://github.com/SimonUnterstrasser/ColumnModel -- superdroplet (Cython/Numba/C++11/Fortran 2008/Julia) - https://github.com/darothen/superdroplet -- NTLP (FORTRAN) - https://github.com/Folca/NTLP/blob/SuperDroplet/les.F -- CLEO (C++) - https://yoctoyotta1024.github.io/CLEO/ -- droplets.jl (Julia) - https://github.com/emmacware/droplets.jl -- LacmoPy (Python/Numba) - https://github.com/JanKBohrer/LacmoPy/blob/master/collision/all_or_nothing.py -- McSnow (FORTRAN): - https://gitlab.dkrz.de/mcsnow/mcsnow/-/blob/master/src/mo_coll.f90 - -### non-SDM probabilistic particle-based coagulation solvers - -- PartMC (Fortran): - https://github.com/compdyn/partmc - -### Python models with discrete-particle (moving-sectional) representation of particle size spectrum - -- pyrcel: https://github.com/darothen/pyrcel -- PyBox: https://github.com/loftytopping/PyBox -- py-cloud-parcel-model: https://github.com/emmasimp/py-cloud-parcel-model - -### non-Python cloud microphysics open-source software - -- CloudMicrophysics.jl: https://github.com/CliMA/CloudMicrophysics.jl -- McSnow: https://gitlab.dkrz.de/mcsnow/mcsnow diff --git a/docs/markdown/pysdm_landing.md b/docs/markdown/pysdm_landing.md new file mode 100644 index 000000000..81b49649f --- /dev/null +++ b/docs/markdown/pysdm_landing.md @@ -0,0 +1,700 @@ +# Introduction + +pysdm logo + +PySDM offers a set of building blocks for development of atmospheric cloud +simulation systems revolving around the particle-based microphysics modelling concept +and the Super-Droplet Method algorithm ([Shima et al. 2009](https://doi.org/10.1002/qj.441)) +for numerically tackling the probabilistic representation of particle coagulation. + +For details on PySDM dependencies and installation procedures, see +[project docs homepage](https://open-atmos.github.io/PySDM). + +Below, a set of basic usage examples in **Python**, **Julia** and **Matlab** is provided +as a tutorial +More elaborate examples reproducing results from literature, engineered in Python and accompanied by Jupyter +notebooks are maintained in the +[PySDM-examples package](https://open-atmos.github.io/PySDM/PySDM_examples). + +# Tutorials + +## Hello-world coalescence example in Python, Julia and Matlab + +In order to depict the PySDM API with a practical example, the following + listings provide sample code roughly reproducing the + Figure 2 from [Shima et al. 2009 paper](http://doi.org/10.1002/qj.441) + using PySDM from Python, Julia and Matlab. +It is a [`Coalescence`](https://open-atmos.github.io/PySDM/PySDM/dynamics/collisions/sollision.html#Coalescence)-only set-up in which the initial particle size + spectrum is [`Exponential`](https://open-atmos.github.io/PySDM/PySDM/initialisation/spectra/exponential.html#Exponential) and is deterministically sampled to match + the condition of each super-droplet having equal initial multiplicity: +
+Julia (click to expand) + +```Julia +using Pkg +Pkg.add("PyCall") +Pkg.add("Plots") +Pkg.add("PlotlyJS") + +using PyCall +si = pyimport("PySDM.physics").si +ConstantMultiplicity = pyimport("PySDM.initialisation.sampling.spectral_sampling").ConstantMultiplicity +Exponential = pyimport("PySDM.initialisation.spectra").Exponential + +n_sd = 2^15 +initial_spectrum = Exponential(norm_factor=8.39e12, scale=1.19e5 * si.um^3) +attributes = Dict() +attributes["volume"], attributes["multiplicity"] = ConstantMultiplicity(spectrum=initial_spectrum).sample(n_sd) +``` +
+
+Matlab (click to expand) + +```Matlab +si = py.importlib.import_module('PySDM.physics').si; +ConstantMultiplicity = py.importlib.import_module('PySDM.initialisation.sampling.spectral_sampling').ConstantMultiplicity; +Exponential = py.importlib.import_module('PySDM.initialisation.spectra').Exponential; + +n_sd = 2^15; +initial_spectrum = Exponential(pyargs(... + 'norm_factor', 8.39e12, ... + 'scale', 1.19e5 * si.um ^ 3 ... +)); +tmp = ConstantMultiplicity(initial_spectrum).sample(int32(n_sd)); +attributes = py.dict(pyargs('volume', tmp{1}, 'multiplicity', tmp{2})); +``` +
+
+Python (click to expand) + +```Python +from PySDM.physics import si +from PySDM.initialisation.sampling.spectral_sampling import ConstantMultiplicity +from PySDM.initialisation.spectra.exponential import Exponential + +n_sd = 2 ** 15 +initial_spectrum = Exponential(norm_factor=8.39e12, scale=1.19e5 * si.um ** 3) +attributes = {} +attributes['volume'], attributes['multiplicity'] = ConstantMultiplicity(initial_spectrum).sample(n_sd) +``` +
+ +The key element of the PySDM interface is the [``Particulator``](https://open-atmos.github.io/PySDM/PySDM/particulator.html#Particulator) + class instances of which are used to manage the system state and control the simulation. +Instantiation of the [``Particulator``](https://open-atmos.github.io/PySDM/PySDM/particulator.html#Particulator) class is handled by the [``Builder``](https://open-atmos.github.io/PySDM/PySDM/builder.html#Builder) + as exemplified below: +
+Julia (click to expand) + +```Julia +Builder = pyimport("PySDM").Builder +Box = pyimport("PySDM.environments").Box +Coalescence = pyimport("PySDM.dynamics").Coalescence +Golovin = pyimport("PySDM.dynamics.collisions.collision_kernels").Golovin +CPU = pyimport("PySDM.backends").CPU +ParticleVolumeVersusRadiusLogarithmSpectrum = pyimport("PySDM.products").ParticleVolumeVersusRadiusLogarithmSpectrum + +radius_bins_edges = 10 .^ range(log10(10*si.um), log10(5e3*si.um), length=32) + +env = Box(dt=1 * si.s, dv=1e6 * si.m^3) +builder = Builder(n_sd=n_sd, backend=CPU(), environment=env) +builder.add_dynamic(Coalescence(collision_kernel=Golovin(b=1.5e3 / si.s))) +products = [ParticleVolumeVersusRadiusLogarithmSpectrum(radius_bins_edges=radius_bins_edges, name="dv/dlnr")] +particulator = builder.build(attributes, products) +``` +
+
+Matlab (click to expand) + +```Matlab +Builder = py.importlib.import_module('PySDM').Builder; +Box = py.importlib.import_module('PySDM.environments').Box; +Coalescence = py.importlib.import_module('PySDM.dynamics').Coalescence; +Golovin = py.importlib.import_module('PySDM.dynamics.collisions.collision_kernels').Golovin; +CPU = py.importlib.import_module('PySDM.backends').CPU; +ParticleVolumeVersusRadiusLogarithmSpectrum = py.importlib.import_module('PySDM.products').ParticleVolumeVersusRadiusLogarithmSpectrum; + +radius_bins_edges = logspace(log10(10 * si.um), log10(5e3 * si.um), 32); + +env = Box(pyargs('dt', 1 * si.s, 'dv', 1e6 * si.m ^ 3)); +builder = Builder(pyargs('n_sd', int32(n_sd), 'backend', CPU(), 'environment', env)); +builder.add_dynamic(Coalescence(pyargs('collision_kernel', Golovin(1.5e3 / si.s)))); +products = py.list({ ParticleVolumeVersusRadiusLogarithmSpectrum(pyargs( ... + 'radius_bins_edges', py.numpy.array(radius_bins_edges), ... + 'name', 'dv/dlnr' ... +)) }); +particulator = builder.build(attributes, products); +``` +
+
+Python (click to expand) + +```Python +import numpy as np +from PySDM import Builder +from PySDM.environments import Box +from PySDM.dynamics import Coalescence +from PySDM.dynamics.collisions.collision_kernels import Golovin +from PySDM.backends import CPU +from PySDM.products import ParticleVolumeVersusRadiusLogarithmSpectrum + +radius_bins_edges = np.logspace(np.log10(10 * si.um), np.log10(5e3 * si.um), num=32) + +env = Box(dt=1 * si.s, dv=1e6 * si.m ** 3) +builder = Builder(n_sd=n_sd, backend=CPU(), environment=env) +builder.add_dynamic(Coalescence(collision_kernel=Golovin(b=1.5e3 / si.s))) +products = [ParticleVolumeVersusRadiusLogarithmSpectrum(radius_bins_edges=radius_bins_edges, name='dv/dlnr')] +particulator = builder.build(attributes, products) +``` +
+ +The ``backend`` argument may be set to ``CPU`` or ``GPU`` + what translates to choosing the multi-threaded backend or the + GPU-resident computation mode, respectively. +The employed [`Box`](https://open-atmos.github.io/PySDM/PySDM/environments/box.html#Box) environment corresponds to a zero-dimensional framework + (particle positions are not considered). +The vectors of particle multiplicities ``n`` and particle volumes ``v`` are + used to initialise super-droplet attributes. +The [`Coalescence`](https://open-atmos.github.io/PySDM/PySDM/dynamics/collisions/collision.html#Coalescence) + Monte-Carlo algorithm (Super Droplet Method) is registered as the only + dynamic in the system. +Finally, the [`build()`](https://open-atmos.github.io/PySDM/PySDM/builder.html#Builder.build) method is used to obtain an instance + of [`Particulator`](https://open-atmos.github.io/PySDM/PySDM/particulator.html#Particulator) which can then be used to control time-stepping and + access simulation state. + +The [`run(nt)`](https://open-atmos.github.io/PySDM/PySDM/particulator.html#Particulator.run) method advances the simulation by ``nt`` timesteps. +In the listing below, its usage is interleaved with plotting logic + which displays a histogram of particle mass distribution + at selected timesteps: +
+Julia (click to expand) + +```Julia +using Plots; plotlyjs() + +for step = 0:1200:3600 + particulator.run(step - particulator.n_steps) + plot!( + radius_bins_edges[1:end-1] / si.um, + particulator.formulae.particle_shape_and_density.volume_to_mass( + particulator.products["dv/dlnr"].get()[:] + )/ si.g, + linetype=:steppost, + xaxis=:log, + xlabel="particle radius [µm]", + ylabel="dm/dlnr [g/m^3/(unit dr/r)]", + label="t = $step s" + ) +end +savefig("plot.svg") +``` +
+
+Matlab (click to expand) + +```Matlab +for step = 0:1200:3600 + particulator.run(int32(step - particulator.n_steps)); + x = radius_bins_edges / si.um; + y = particulator.formulae.particle_shape_and_density.volume_to_mass( ... + particulator.products{"dv/dlnr"}.get() ... + ) / si.g; + stairs(... + x(1:end-1), ... + double(py.array.array('d',py.numpy.nditer(y))), ... + 'DisplayName', sprintf("t = %d s", step) ... + ); + hold on +end +hold off +set(gca,'XScale','log'); +xlabel('particle radius [µm]') +ylabel("dm/dlnr [g/m^3/(unit dr/r)]") +legend() +``` +
+
+Python (click to expand) + +```Python +from matplotlib import pyplot + +for step in [0, 1200, 2400, 3600]: + particulator.run(step - particulator.n_steps) + pyplot.step( + x=radius_bins_edges[:-1] / si.um, + y=particulator.formulae.particle_shape_and_density.volume_to_mass( + particulator.products['dv/dlnr'].get()[0] + ) / si.g, + where='post', label=f"t = {step}s" + ) + +pyplot.xscale('log') +pyplot.xlabel('particle radius [µm]') +pyplot.ylabel("dm/dlnr [g/m$^3$/(unit dr/r)]") +pyplot.legend() +pyplot.savefig('readme.png') +``` +
+ +The resultant plot (generated with the Python code) looks as follows: + +![plot](https://github.com/open-atmos/PySDM/releases/download/tip/readme.png) + +The component submodules used to create this simulation are visualized below: +```mermaid + graph + COAL[":Coalescence"] --->|passed as arg to| BUILDER_ADD_DYN(["Builder.add_dynamic()"]) + BUILDER_INSTANCE["builder :Builder"] -...-|has a method| BUILDER_BUILD(["Builder.build()"]) + ATTRIBUTES[attributes: dict] -->|passed as arg to| BUILDER_BUILD + N_SD["n_sd :int"] ---->|passed as arg to| BUILDER_INIT + BUILDER_INIT(["Builder.__init__()"]) --->|instantiates| BUILDER_INSTANCE + BUILDER_INSTANCE -..-|has a method| BUILDER_ADD_DYN(["Builder.add_dynamic()"]) + ENV_INIT(["Box.__init__()"]) -->|instantiates| ENV + DT[dt :float] -->|passed as arg to| ENV_INIT + DV[dv :float] -->|passed as arg to| ENV_INIT + ENV[":Box"] -->|passed as arg to| BUILDER_INIT + B["b: float"] --->|passed as arg to| KERNEL_INIT(["Golovin.__init__()"]) + KERNEL_INIT -->|instantiates| KERNEL + KERNEL[collision_kernel: Golovin] -->|passed as arg to| COAL_INIT(["Coalesncence.__init__()"]) + COAL_INIT -->|instantiates| COAL + PRODUCTS[products: list] ----->|passed as arg to| BUILDER_BUILD + NORM_FACTOR[norm_factor: float]-->|passed as arg to| EXP_INIT + SCALE[scale: float]-->|passed as arg to| EXP_INIT + EXP_INIT(["Exponential.__init__()"]) -->|instantiates| IS + IS["initial_spectrum :Exponential"] -->|passed as arg to| CM_INIT + CM_INIT(["ConstantMultiplicity.__init__()"]) -->|instantiates| CM_INSTANCE + CM_INSTANCE[":ConstantMultiplicity"] -.-|has a method| SAMPLE + SAMPLE(["ConstantMultiplicity.sample()"]) -->|returns| n + SAMPLE -->|returns| volume + n -->|added as element of| ATTRIBUTES + PARTICULATOR_INSTANCE -.-|has a method| PARTICULATOR_RUN(["Particulator.run()"]) + volume -->|added as element of| ATTRIBUTES + BUILDER_BUILD -->|returns| PARTICULATOR_INSTANCE["particulator :Particulator"] + PARTICULATOR_INSTANCE -.-|has a field| PARTICULATOR_PROD(["Particulator.products:dict"]) + BACKEND_INSTANCE["backend :CPU"] ---->|passed as arg to| BUILDER_INIT + PRODUCTS -.-|accessible via| PARTICULATOR_PROD + NP_LOGSPACE(["np.logspace()"]) -->|returns| EDGES + EDGES[radius_bins_edges: np.ndarray] -->|passed as arg to| SPECTRUM_INIT + SPECTRUM_INIT["ParticleVolumeVersusRadiusLogarithmSpectrum.__init__()"] -->|instantiates| SPECTRUM + SPECTRUM[":ParticleVolumeVersusRadiusLogarithmSpectrum"] -->|added as element of| PRODUCTS + + click COAL "https://open-atmos.github.io/PySDM/PySDM/dynamics/collisions/collision.html#Coalescence" + click BUILDER_INSTANCE "https://open-atmos.github.io/PySDM/PySDM/builder.html" + click BUILDER_INIT "https://open-atmos.github.io/PySDM/PySDM/builder.html" + click BUILDER_ADD_DYN "https://open-atmos.github.io/PySDM/PySDM/builder.html" + click ENV_INIT "https://open-atmos.github.io/PySDM/PySDM/environments.html" + click ENV "https://open-atmos.github.io/PySDM/PySDM/environments.html" + click KERNEL_INIT "https://open-atmos.github.io/PySDM/PySDM/dynamics/collisions/collision_kernels.html" + click KERNEL "https://open-atmos.github.io/PySDM/PySDM/dynamics/collisions/collision_kernels.html" + click EXP_INIT "https://open-atmos.github.io/PySDM/PySDM/initialisation/spectra.html" + click IS "https://open-atmos.github.io/PySDM/PySDM/initialisation/spectra.html" + click CM_INIT "https://open-atmos.github.io/PySDM/PySDM/initialisation/sampling/spectral_sampling.html" + click CM_INSTANCE "https://open-atmos.github.io/PySDM/PySDM/initialisation/sampling/spectral_sampling.html" + click SAMPLE "https://open-atmos.github.io/PySDM/PySDM/initialisation/sampling/spectral_sampling.html" + click PARTICULATOR_INSTANCE "https://open-atmos.github.io/PySDM/PySDM/particulator.html" + click BACKEND_INSTANCE "https://open-atmos.github.io/PySDM/PySDM/backends/numba.html" + click BUILDER_BUILD "https://open-atmos.github.io/PySDM/PySDM/builder.html" + click NP_LOGSPACE "https://numpy.org/doc/stable/reference/generated/numpy.logspace.html" + click SPECTRUM_INIT "https://open-atmos.github.io/PySDM/PySDM/products/size_spectral/particle_volume_versus_radius_logarithm_spectrum.html" + click SPECTRUM "https://open-atmos.github.io/PySDM/PySDM/products/size_spectral/particle_volume_versus_radius_logarithm_spectrum.html" +``` +## Hello-world condensation example in Python, Julia and Matlab + +In the following example, a condensation-only setup is used with the adiabatic +[`Parcel`](https://open-atmos.github.io/PySDM/PySDM/environments/parcel.html) environment. +An initial [`Lognormal`](https://open-atmos.github.io/PySDM/PySDM/initialisation/spectra/lognormal.html#Lognormal) +spectrum of dry aerosol particles is first initialised to equilibrium wet size for the given +initial humidity. +Subsequent particle growth due to [`Condensation`](https://open-atmos.github.io/PySDM/PySDM/dynamics/condensation.html) of water vapour (coupled with the release of latent heat) +causes a subset of particles to activate into cloud droplets. +Results of the simulation are plotted against vertical +[`ParcelDisplacement`](https://open-atmos.github.io/PySDM/PySDM/products/housekeeping/parcel_displacement.html) +and depict the evolution of +[`PeakSupersaturation`](https://open-atmos.github.io/PySDM/PySDM/products/condensation/peak_supersaturation.html), +[`EffectiveRadius`](https://open-atmos.github.io/PySDM/PySDM/products/size_spectral/effective_radius.html), +[`ParticleConcentration`](https://open-atmos.github.io/PySDM/PySDM/products/size_spectral/particle_concentration.html#ParticleConcentration) +and the +[`WaterMixingRatio `](https://open-atmos.github.io/PySDM/PySDM/products/size_spectral/water_mixing_ratio.html). + +
+Julia (click to expand) + +```Julia +using PyCall +using Plots; plotlyjs() +si = pyimport("PySDM.physics").si +spectral_sampling = pyimport("PySDM.initialisation.sampling").spectral_sampling +discretise_multiplicities = pyimport("PySDM.initialisation").discretise_multiplicities +Lognormal = pyimport("PySDM.initialisation.spectra").Lognormal +equilibrate_wet_radii = pyimport("PySDM.initialisation").equilibrate_wet_radii +CPU = pyimport("PySDM.backends").CPU +AmbientThermodynamics = pyimport("PySDM.dynamics").AmbientThermodynamics +Condensation = pyimport("PySDM.dynamics").Condensation +Parcel = pyimport("PySDM.environments").Parcel +Builder = pyimport("PySDM").Builder +Formulae = pyimport("PySDM").Formulae +products = pyimport("PySDM.products") + +env = Parcel( + dt=.25 * si.s, + mass_of_dry_air=1e3 * si.kg, + p0=1122 * si.hPa, + initial_water_vapour_mixing_ratio=20 * si.g / si.kg, + T0=300 * si.K, + w= 2.5 * si.m / si.s +) +spectrum = Lognormal(norm_factor=1e4/si.mg, m_mode=50*si.nm, s_geom=1.4) +kappa = .5 * si.dimensionless +cloud_range = (.5 * si.um, 25 * si.um) +output_interval = 4 +output_points = 40 +n_sd = 256 + +formulae = Formulae() +builder = Builder(backend=CPU(formulae), n_sd=n_sd, environment=env) +builder.add_dynamic(AmbientThermodynamics()) +builder.add_dynamic(Condensation()) + +r_dry, specific_concentration = spectral_sampling.Logarithmic(spectrum).sample(n_sd) +v_dry = formulae.trivia.volume(radius=r_dry) +r_wet = equilibrate_wet_radii(r_dry=r_dry, environment=builder.particulator.environment, kappa_times_dry_volume=kappa * v_dry) + +attributes = Dict() +attributes["multiplicity"] = discretise_multiplicities(specific_concentration * env.mass_of_dry_air) +attributes["dry volume"] = v_dry +attributes["kappa times dry volume"] = kappa * v_dry +attributes["volume"] = formulae.trivia.volume(radius=r_wet) + +particulator = builder.build(attributes, products=[ + products.PeakSupersaturation(name="S_max", unit="%"), + products.EffectiveRadius(name="r_eff", unit="um", radius_range=cloud_range), + products.ParticleConcentration(name="n_c_cm3", unit="cm^-3", radius_range=cloud_range), + products.WaterMixingRatio(name="liquid water mixing ratio", unit="g/kg", radius_range=cloud_range), + products.ParcelDisplacement(name="z") +]) + +cell_id=1 +output = Dict() +for (_, product) in particulator.products + output[product.name] = Array{Float32}(undef, output_points+1) + output[product.name][1] = product.get()[cell_id] +end + +for step = 2:output_points+1 + particulator.run(steps=output_interval) + for (_, product) in particulator.products + output[product.name][step] = product.get()[cell_id] + end +end + +plots = [] +ylbl = particulator.products["z"].unit +for (_, product) in particulator.products + if product.name != "z" + append!(plots, [plot(output[product.name], output["z"], ylabel=ylbl, xlabel=product.unit, title=product.name)]) + end + global ylbl = "" +end +plot(plots..., layout=(1, length(output)-1)) +savefig("parcel.svg") +``` +
+
+Matlab (click to expand) + +```Matlab +si = py.importlib.import_module('PySDM.physics').si; +spectral_sampling = py.importlib.import_module('PySDM.initialisation.sampling').spectral_sampling; +discretise_multiplicities = py.importlib.import_module('PySDM.initialisation').discretise_multiplicities; +Lognormal = py.importlib.import_module('PySDM.initialisation.spectra').Lognormal; +equilibrate_wet_radii = py.importlib.import_module('PySDM.initialisation').equilibrate_wet_radii; +CPU = py.importlib.import_module('PySDM.backends').CPU; +AmbientThermodynamics = py.importlib.import_module('PySDM.dynamics').AmbientThermodynamics; +Condensation = py.importlib.import_module('PySDM.dynamics').Condensation; +Parcel = py.importlib.import_module('PySDM.environments').Parcel; +Builder = py.importlib.import_module('PySDM').Builder; +Formulae = py.importlib.import_module('PySDM').Formulae; +products = py.importlib.import_module('PySDM.products'); + +env = Parcel(pyargs( ... + 'dt', .25 * si.s, ... + 'mass_of_dry_air', 1e3 * si.kg, ... + 'p0', 1122 * si.hPa, ... + 'initial_water_vapour_mixing_ratio', 20 * si.g / si.kg, ... + 'T0', 300 * si.K, ... + 'w', 2.5 * si.m / si.s ... +)); +spectrum = Lognormal(pyargs('norm_factor', 1e4/si.mg, 'm_mode', 50 * si.nm, 's_geom', 1.4)); +kappa = .5; +cloud_range = py.tuple({.5 * si.um, 25 * si.um}); +output_interval = 4; +output_points = 40; +n_sd = 256; + +formulae = Formulae(); +builder = Builder(pyargs('backend', CPU(formulae), 'n_sd', int32(n_sd), 'environment', env)); +builder.add_dynamic(AmbientThermodynamics()); +builder.add_dynamic(Condensation()); + +tmp = spectral_sampling.Logarithmic(spectrum).sample(int32(n_sd)); +r_dry = tmp{1}; +v_dry = formulae.trivia.volume(pyargs('radius', r_dry)); +specific_concentration = tmp{2}; +r_wet = equilibrate_wet_radii(pyargs(... + 'r_dry', r_dry, ... + 'environment', builder.particulator.environment, ... + 'kappa_times_dry_volume', kappa * v_dry... +)); + +attributes = py.dict(pyargs( ... + 'multiplicity', discretise_multiplicities(specific_concentration * env.mass_of_dry_air), ... + 'dry volume', v_dry, ... + 'kappa times dry volume', kappa * v_dry, ... + 'volume', formulae.trivia.volume(pyargs('radius', r_wet)) ... +)); + +particulator = builder.build(attributes, py.list({ ... + products.PeakSupersaturation(pyargs('name', 'S_max', 'unit', '%')), ... + products.EffectiveRadius(pyargs('name', 'r_eff', 'unit', 'um', 'radius_range', cloud_range)), ... + products.ParticleConcentration(pyargs('name', 'n_c_cm3', 'unit', 'cm^-3', 'radius_range', cloud_range)), ... + products.WaterMixingRatio(pyargs('name', 'liquid water mixing ratio', 'unit', 'g/kg', 'radius_range', cloud_range)) ... + products.ParcelDisplacement(pyargs('name', 'z')) ... +})); + +cell_id = int32(0); +output_size = [output_points+1, length(py.list(particulator.products.keys()))]; +output_types = repelem({'double'}, output_size(2)); +output_names = [cellfun(@string, cell(py.list(particulator.products.keys())))]; +output = table(... + 'Size', output_size, ... + 'VariableTypes', output_types, ... + 'VariableNames', output_names ... +); +for pykey = py.list(keys(particulator.products)) + get = py.getattr(particulator.products{pykey{1}}.get(), '__getitem__'); + key = string(pykey{1}); + output{1, key} = get(cell_id); +end + +for i=2:output_points+1 + particulator.run(pyargs('steps', int32(output_interval))); + for pykey = py.list(keys(particulator.products)) + get = py.getattr(particulator.products{pykey{1}}.get(), '__getitem__'); + key = string(pykey{1}); + output{i, key} = get(cell_id); + end +end + +i=1; +for pykey = py.list(keys(particulator.products)) + product = particulator.products{pykey{1}}; + if string(product.name) ~= "z" + subplot(1, width(output)-1, i); + plot(output{:, string(pykey{1})}, output.z, '-o'); + title(string(product.name), 'Interpreter', 'none'); + xlabel(string(product.unit)); + end + if i == 1 + ylabel(string(particulator.products{"z"}.unit)); + end + i=i+1; +end +saveas(gcf, "parcel.png"); +``` +
+
+Python (click to expand) + +```Python +from matplotlib import pyplot +from PySDM.physics import si +from PySDM.initialisation import discretise_multiplicities, equilibrate_wet_radii +from PySDM.initialisation.spectra import Lognormal +from PySDM.initialisation.sampling import spectral_sampling +from PySDM.backends import CPU +from PySDM.dynamics import AmbientThermodynamics, Condensation +from PySDM.environments import Parcel +from PySDM import Builder, Formulae, products + +env = Parcel( + dt=.25 * si.s, + mass_of_dry_air=1e3 * si.kg, + p0=1122 * si.hPa, + initial_water_vapour_mixing_ratio=20 * si.g / si.kg, + T0=300 * si.K, + w=2.5 * si.m / si.s +) +spectrum = Lognormal(norm_factor=1e4 / si.mg, m_mode=50 * si.nm, s_geom=1.5) +kappa = .5 * si.dimensionless +cloud_range = (.5 * si.um, 25 * si.um) +output_interval = 4 +output_points = 40 +n_sd = 256 + +formulae = Formulae() +builder = Builder(backend=CPU(formulae), n_sd=n_sd, environment=env) +builder.add_dynamic(AmbientThermodynamics()) +builder.add_dynamic(Condensation()) + +r_dry, specific_concentration = spectral_sampling.Logarithmic(spectrum).sample(n_sd) +v_dry = formulae.trivia.volume(radius=r_dry) +r_wet = equilibrate_wet_radii(r_dry=r_dry, environment=builder.particulator.environment, kappa_times_dry_volume=kappa * v_dry) + +attributes = { + 'multiplicity': discretise_multiplicities(specific_concentration * env.mass_of_dry_air), + 'dry volume': v_dry, + 'kappa times dry volume': kappa * v_dry, + 'volume': formulae.trivia.volume(radius=r_wet) +} + +particulator = builder.build(attributes, products=[ + products.PeakSupersaturation(name='S_max', unit='%'), + products.EffectiveRadius(name='r_eff', unit='um', radius_range=cloud_range), + products.ParticleConcentration(name='n_c_cm3', unit='cm^-3', radius_range=cloud_range), + products.WaterMixingRatio(name='liquid water mixing ratio', unit='g/kg', radius_range=cloud_range), + products.ParcelDisplacement(name='z') +]) + +cell_id = 0 +output = {product.name: [product.get()[cell_id]] for product in particulator.products.values()} + +for step in range(output_points): + particulator.run(steps=output_interval) + for product in particulator.products.values(): + output[product.name].append(product.get()[cell_id]) + +fig, axs = pyplot.subplots(1, len(particulator.products) - 1, sharey="all") +for i, (key, product) in enumerate(particulator.products.items()): + if key != 'z': + axs[i].plot(output[key], output['z'], marker='.') + axs[i].set_title(product.name) + axs[i].set_xlabel(product.unit) + axs[i].grid() +axs[0].set_ylabel(particulator.products['z'].unit) +pyplot.savefig('parcel.svg') +``` +
+ +The resultant plot (generated with the Matlab code) looks as follows: + +![plot](https://github.com/open-atmos/PySDM/releases/download/tip/parcel.png) + +## Tutorials from Caltech course +There are currently two tutorial notebooks from the Caltech course on Cloud Microphysics available: +- [Part 1: Condensation](https://github.com/open-atmos/PySDM/blob/main/tutorials/condensation/condensation_playground.ipynb) +- [Part 2: Collisions](https://github.com/open-atmos/PySDM/blob/main/tutorials/collisions/collisions_playground.ipynb) + + +# Submodule structure +```mermaid +mindmap + root((PySDM)) + Builder + Formulae + Particulator + ((attributes)) + (physics) + DryVolume: ExtensiveAttribute + Kappa: DerivedAttribute + ... + (chemistry) + Acidity + ... + (...) + ((backends)) + CPU + GPU + ((dynamics)) + AqueousChemistry + Collision + Condensation + ... + ((environments)) + Box + Parcel + Kinematic2D + ... + ((initialisation)) + (spectra) + Lognormal + Exponential + ... + (sampling) + (spectral_sampling) + ConstantMultiplicity + UniformRandom + Logarithmic + ... + (...) + (...) + ((physics)) + (hygroscopicity) + KappaKoehler + ... + (condensation_coordinate) + Volume + VolumeLogarithm + (...) + ((products)) + (size_spectral) + EffectiveRadius + WaterMixingRatio + ... + (ambient_thermodynamics) + AmbientRelativeHumidity + ... + (...) +``` + +# Contributing, reporting issues, seeking support + +See [README.md](https://github.com/open-atmos/PySDM/tree/main/README.md) + +# Related resources and open-source projects + +### SDM patents (some expired, some withdrawn): +- https://patents.google.com/patent/US7756693B2 +- https://patents.google.com/patent/EP1847939A3 +- https://patents.google.com/patent/JP4742387B2 +- https://patents.google.com/patent/CN101059821B + +### Other SDM implementations: +- SCALE-SDM (Fortran): + https://github.com/Shima-Lab/SCALE-SDM_BOMEX_Sato2018/blob/master/contrib/SDM/sdm_coalescence.f90 +- Pencil Code (Fortran): + https://github.com/pencil-code/pencil-code/blob/master/src/particles_coagulation.f90 +- PALM LES (Fortran): + https://palm.muk.uni-hannover.de/trac/browser/palm/trunk/SOURCE/lagrangian_particle_model_mod.f90 +- libcloudph++ (C++): + https://github.com/igfuw/libcloudphxx/blob/master/src/impl/particles_impl_coal.ipp +- LCM1D (Python) + https://github.com/SimonUnterstrasser/ColumnModel +- superdroplet (Cython/Numba/C++11/Fortran 2008/Julia) + https://github.com/darothen/superdroplet +- NTLP (FORTRAN) + https://github.com/Folca/NTLP/blob/SuperDroplet/les.F +- CLEO (C++) + https://yoctoyotta1024.github.io/CLEO/ +- droplets.jl (Julia) + https://github.com/emmacware/droplets.jl +- LacmoPy (Python/Numba) + https://github.com/JanKBohrer/LacmoPy/blob/master/collision/all_or_nothing.py +- McSnow (FORTRAN): + https://gitlab.dkrz.de/mcsnow/mcsnow/-/blob/master/src/mo_coll.f90 + +### non-SDM probabilistic particle-based coagulation solvers + +- PartMC (Fortran): + https://github.com/compdyn/partmc + +### Python models with discrete-particle (moving-sectional) representation of particle size spectrum + +- pyrcel: https://github.com/darothen/pyrcel +- PyBox: https://github.com/loftytopping/PyBox +- py-cloud-parcel-model: https://github.com/emmasimp/py-cloud-parcel-model + +### non-Python cloud microphysics open-source software + +- CloudMicrophysics.jl: https://github.com/CliMA/CloudMicrophysics.jl +- McSnow: https://gitlab.dkrz.de/mcsnow/mcsnow diff --git a/docs/templates/index.html.jinja2 b/docs/templates/index.html.jinja2 new file mode 100644 index 000000000..4f7904c82 --- /dev/null +++ b/docs/templates/index.html.jinja2 @@ -0,0 +1,164 @@ +{% extends "default/index.html.jinja2" %} + +{% block title %}PySDM documentation{% endblock %} + +{% block nav %} + +{% endblock %} + +{% block content %} +
+
+ + PySDM logo + +

Documentation

+
+
+

What is PySDM?

+

+ PySDM is a package for simulating the dynamics of population of particles. + It is intended to serve as a building block for simulation systems modelling fluid flows involving a dispersed phase, with PySDM being responsible for representation of the dispersed phase. + Currently, the development is focused on atmospheric cloud physics applications, in particular on modelling the dynamics of particles immersed in moist air using the particle-based (a.k.a. super-droplet) approach to represent aerosol/cloud/rain microphysics. + The package features a Pythonic high-performance implementation of the Super-Droplet Method (SDM) Monte-Carlo algorithm for representing collisional growth + (Shima et al. 2009), hence the name. +

+
+
+

What is the difference between PySDM and PySDM-examples?

+

+ PySDM is a Python package that provides the implementation of the Super-Droplet Method (SDM) Monte-Carlo algorithm. + It is a library that can be used in your own projects. +

+

+ PySDM-examples is a Python package that provides examples of how to use PySDM. + The package contains common code used in PySDM examples Jupyter notebooks, as well as in PySDM test suite. +

+

The two projects exist separately on PyPI, but their development and issue tracking is hosted at the same GitHub repository.

+
+
+

Important links

+ + + + + + + + + + + + +
PySDMPySDM-examples
+ + + +
+
    +
  • +
  • +
+
+
+
+

Installation

+

+ PySDM is available on PyPI and can be installed using pip: +

+
pip install PySDM
+

Note: the way above will not install test-time dependencies, to install them and run the tests, likely the most convenient way is:

+
git clone https://github.com/open-atmos/PySDM.git
+pip install -e PySDM[tests] -e PySDM/examples[tests]
+pytest PySDM
+

(the above should be a viable way to set up development environment for PySDM, see also our Python dev hints Wiki for further information)

+

+ PySDM-examples is also available on PyPI and can be installed using pip: +

+
pip install PySDM-examples
+

Note: this will also install PySDM if needed, but the examples package wheels do not include the Jupyter notebooks - only common code used from the notebooks. + All PySDM example notebooks can be viewed on GitHub and feature header cells with badges enabling single-click execution on either + Google Colab or mybinder.org platforms. + To try the notebooks out locally, use: +

+
git clone https://github.com/open-atmos/PySDM.git
+pip install -e PySDM -e PySDM/examples
+jupyter-notebook PySDM/examples
+
+
+

Dependencies

+

+ PySDM depends on NumPy, Numba, + ThrustRTC, SciPy, Pint, + chempy, pyevtk and CURandRTC +

+

+ PySDM-examples requires additional packages listed in install_requires in + setup.py. + Amongst them is PySDM. +

+
+
+

Contributing, reporting issues, seeking support

+

+ Submitting new code to both packages is done through the same GitHub repository via + Pull requests. +

+

+ Issues regarding any incorrect, unintuitive or undocumented behaviour of PySDM or PySDM-examples + are best to be reported on the + GitHub issue tracker. +

+

+ We encourage to use the GitHub Discussions + feature (rather than the issue tracker) for seeking support in understanding, + using and extending PySDM code. +

+
+
+

Licensing, credits, acknowledgements

+

+ PySDM and PySDM-examples are free/libre open-source software packages released under the + GNU GPL v3 license. +

+ Development of PySDM was started by Piotr Bartman[-Szwarc], + Sylwester Arabas and collaborators + at the Jagiellonian University in Kraków and at + the CliMA team at Caltech. + For an overview of features of the initial release, see the + 2022 PySDM v1 JOSS paper. +

+

+ The v2 release of PySDM is summarised in the 2023 de Jong, + Singer, et al. JOSS paper. + Current development (towards v3) and maintenance is led by the + Environmental Physics Group at the AGH University of Krakow. + See list of code committers + for a complete list of contributors. +

+

+ Development of PySDM was supported by: +

+

+
+
+ {% include "search.html.jinja2" %} +{% endblock %} + diff --git a/examples/MANIFEST.in b/examples/MANIFEST.in index e2a07a35c..b2f953c2d 100644 --- a/examples/MANIFEST.in +++ b/examples/MANIFEST.in @@ -1,2 +1,3 @@ global-exclude *.ipynb global-exclude *.csv +include docs/*.md \ No newline at end of file diff --git a/examples/PySDM_examples/Abade_and_Albuquerque_2024/__init__.py b/examples/PySDM_examples/Abade_and_Albuquerque_2024/__init__.py index 5234691ad..f74f0c2df 100644 --- a/examples/PySDM_examples/Abade_and_Albuquerque_2024/__init__.py +++ b/examples/PySDM_examples/Abade_and_Albuquerque_2024/__init__.py @@ -2,6 +2,9 @@ """ mixed-phase example using parcel environment based on [Abade & Albuquerque 2024 (QJRMS)](https://doi.org/10.1002/qj.4775) + +fig_2.ipynb: +.. include:: ./fig_2.ipynb.badges.md """ from .simulation import Simulation diff --git a/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/__init__.py b/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/__init__.py index 4f914871d..d46eba5eb 100644 --- a/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/__init__.py +++ b/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/__init__.py @@ -2,4 +2,10 @@ """ condensation example using parcel environment based on [Abdul-Razzak & Ghan 2000 (JGR)](https://doi.org/10.1029/1999JD901161) + +figs1-5.ipynb: +.. include:: ./figs1-5.ipynb.badges.md + +fig_4_kinetic_limitations.ipynb: +.. include:: ./fig_4_kinetic_limitations.ipynb.badges.md """ diff --git a/examples/PySDM_examples/Alpert_and_Knopf_2016/__init__.py b/examples/PySDM_examples/Alpert_and_Knopf_2016/__init__.py index 56e6ef62e..c7d499822 100644 --- a/examples/PySDM_examples/Alpert_and_Knopf_2016/__init__.py +++ b/examples/PySDM_examples/Alpert_and_Knopf_2016/__init__.py @@ -1,6 +1,21 @@ """ box-environment example based on [Alpert & Knopf 2016 (Atmos. Chem. Phys. 16)](https://doi.org/10.5194/acp-16-2083-2016) + +fig_1.ipynb: +.. include:: ./fig_1.ipynb.badges.md + +fig_2.ipynb: +.. include:: ./fig_2.ipynb.badges.md + +fig_3.ipynb: +.. include:: ./fig_3.ipynb.badges.md + +fig_4.ipynb: +.. include:: ./fig_4.ipynb.badges.md + +fig_5.ipynb: +.. include:: ./fig_5.ipynb.badges.md """ # pylint: disable=invalid-name diff --git a/examples/PySDM_examples/Arabas_and_Shima_2017/__init__.py b/examples/PySDM_examples/Arabas_and_Shima_2017/__init__.py index 098ac3f53..f177e4513 100644 --- a/examples/PySDM_examples/Arabas_and_Shima_2017/__init__.py +++ b/examples/PySDM_examples/Arabas_and_Shima_2017/__init__.py @@ -1,6 +1,9 @@ """ condensation-evaportaion parcel example based on [Arabas and Shima 2017 (Nonlin. Processes Geophys. 24)](https://doi.org/10.5194/npg-24-535-2017) + +fig_5.ipynb: +.. include:: ./fig_5.ipynb.badges.md """ # pylint: disable=invalid-name diff --git a/examples/PySDM_examples/Arabas_et_al_2015/__init__.py b/examples/PySDM_examples/Arabas_et_al_2015/__init__.py index ada784b05..78f752574 100644 --- a/examples/PySDM_examples/Arabas_et_al_2015/__init__.py +++ b/examples/PySDM_examples/Arabas_et_al_2015/__init__.py @@ -2,6 +2,12 @@ """ 2D prescribed-flow case extended with Paraview visualisation with spin-up logic from [Arabas et al. 2015](http://doi.org/10.5194/gmd-8-1677-2015) + +gui.ipynb: +.. include:: ./gui.ipynb.badges.md + +paraview_hello_world.ipynb: +.. include:: ./paraview_hello_world.ipynb.badges.md """ from .settings import Settings from .spin_up import SpinUp diff --git a/examples/PySDM_examples/Arabas_et_al_2023/__init__.py b/examples/PySDM_examples/Arabas_et_al_2023/__init__.py index 94e6bd995..757f65c77 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/__init__.py +++ b/examples/PySDM_examples/Arabas_et_al_2023/__init__.py @@ -1,6 +1,27 @@ """ box-model and 2D prescribed-flow immersion-freezing examples based on [Arabas et al. 2023](https://arxiv.org/abs/2308.05015) + +aida.ipynb: +.. include:: ./aida.ipynb.badges.md + +copula_hello.ipynb: +.. include:: ./copula_hello.ipynb.badges.md + +fig_2.ipynb: +.. include:: ./fig_2.ipynb.badges.md + +fig_11.ipynb: +.. include:: ./fig_11.ipynb.badges.md + +fig_A2.ipynb: +.. include:: ./fig_A2.ipynb.badges.md + +figs_3_and_7_and_8.ipynb: +.. include:: ./figs_3_and_7_and_8.ipynb.badges.md + +figs_5_and_6.ipynb: +.. include:: ./figs_5_and_6.ipynb.badges.md """ from .make_particulator import make_particulator diff --git a/examples/PySDM_examples/Bartman_et_al_2021/__init__.py b/examples/PySDM_examples/Bartman_et_al_2021/__init__.py index dc0af4392..02ace29a8 100644 --- a/examples/PySDM_examples/Bartman_et_al_2021/__init__.py +++ b/examples/PySDM_examples/Bartman_et_al_2021/__init__.py @@ -1,4 +1,13 @@ # pylint: disable=invalid-name """ condensation and coalescence adaptivity examples + +demo.ipynb: +.. include:: ./demo.ipynb.badges.md + +demo_fig2.ipynb: +.. include:: ./demo_fig2.ipynb.badges.md + +demo_fig3.ipynb: +.. include:: ./demo_fig3.ipynb.badges.md """ diff --git a/examples/PySDM_examples/Berry_1967/__init__.py b/examples/PySDM_examples/Berry_1967/__init__.py index 3a5da9a8c..f4c1c9d5e 100644 --- a/examples/PySDM_examples/Berry_1967/__init__.py +++ b/examples/PySDM_examples/Berry_1967/__init__.py @@ -1,6 +1,9 @@ """ box-model coalescence-only example based on [Berry 1967 (J. Atmos. Sci. 24)](https://doi.org/10.1175/1520-0469(1967)024%3C0688:CDGBC%3E2.0.CO;2) + +figs_5_8_10.ipynb: +.. include:: ./figs_5_8_10.ipynb.badges.md """ # pylint: disable=invalid-name diff --git a/examples/PySDM_examples/Bieli_et_al_2022/__init__.py b/examples/PySDM_examples/Bieli_et_al_2022/__init__.py index 66e5b62b4..6d3ff07f3 100644 --- a/examples/PySDM_examples/Bieli_et_al_2022/__init__.py +++ b/examples/PySDM_examples/Bieli_et_al_2022/__init__.py @@ -1,5 +1,8 @@ """ collision-only box-model example from [Bieli et al. 2022](https://doi.org/10.1029/2022MS002994) + +make_fig_3.ipynb: +.. include:: ./make_fig_3.ipynb.badges.md """ # pylint: disable=invalid-name diff --git a/examples/PySDM_examples/Bolot_et_al_2013/__init__.py b/examples/PySDM_examples/Bolot_et_al_2013/__init__.py index cec20372c..512e62a61 100644 --- a/examples/PySDM_examples/Bolot_et_al_2013/__init__.py +++ b/examples/PySDM_examples/Bolot_et_al_2013/__init__.py @@ -1,6 +1,9 @@ """ figures from Bolot et al. 2013 (Atmos. Chem. Phys. 13) https://doi.org/10.5194/acp-13-7903-2013 + +fig_1.ipynb: +.. include:: ./fig_1.ipynb.badges.md """ # pylint: disable=invalid-name diff --git a/examples/PySDM_examples/Bulenok_2023_MasterThesis/__init__.py b/examples/PySDM_examples/Bulenok_2023_MasterThesis/__init__.py index f4082a468..015e28221 100644 --- a/examples/PySDM_examples/Bulenok_2023_MasterThesis/__init__.py +++ b/examples/PySDM_examples/Bulenok_2023_MasterThesis/__init__.py @@ -2,4 +2,7 @@ """ Box-model coalescence-breakup performance benchmark from [Bulenok 2023 MSc thesis](https://www.ap.uj.edu.pl/diplomas/166879) + +performance_comparison_Srivastava_Setup.ipynb: +.. include:: ./performance_comparison_Srivastava_Setup.ipynb.badges.md """ diff --git a/examples/PySDM_examples/Gedzelman_and_Arnold_1994/__init__.py b/examples/PySDM_examples/Gedzelman_and_Arnold_1994/__init__.py index 3d536deea..84b9da703 100644 --- a/examples/PySDM_examples/Gedzelman_and_Arnold_1994/__init__.py +++ b/examples/PySDM_examples/Gedzelman_and_Arnold_1994/__init__.py @@ -3,4 +3,7 @@ Formulae-only example depicting changes in drop and ambient vapour isotopic composition upon evaporation of rain in subsaturated environment based on [Gedzelman and Arnold 1994](https://doi.org/10.1029/93JD03518) + +fig_2.ipynb: +.. include:: ./fig_2.ipynb.badges.md """ diff --git a/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/__init__.py b/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/__init__.py index 43f8c75e2..05c050fdf 100644 --- a/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/__init__.py +++ b/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/__init__.py @@ -2,6 +2,21 @@ """ ripening-focused parcel-model example based on [Grabowski & Pawlowska 2023 (GRL)](https://doi.org/10.1029/2022GL101917) + +figure_1.ipynb: +.. include:: ./figure_1.ipynb.badges.md + +figure_2.ipynb: +.. include:: ./figure_2.ipynb.badges.md + +figure_3.ipynb: +.. include:: ./figure_3.ipynb.badges.md + +figure_4.ipynb: +.. include:: ./figure_4.ipynb.badges.md + +figure_ripening_rate.ipynb: +.. include:: ./figure_ripening_rate.ipynb.badges.md """ from .settings import Settings from .simulation import Simulation diff --git a/examples/PySDM_examples/Graf_et_al_2019/__init__.py b/examples/PySDM_examples/Graf_et_al_2019/__init__.py index d678b1ab4..3b2ddcc30 100644 --- a/examples/PySDM_examples/Graf_et_al_2019/__init__.py +++ b/examples/PySDM_examples/Graf_et_al_2019/__init__.py @@ -2,4 +2,10 @@ """ Parcel-model Condensation,Isotope example [Graf.et.al 2019](https://doi.org/10.5194/acp-19-747-2019) + +figure_4.ipynb: +.. include:: ./figure_4.ipynb.badges.md + +Table_1.ipynb: +.. include:: ./Table_1.ipynb.badges.md """ diff --git a/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/__init__.py b/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/__init__.py index ba0171369..3fdbefa5a 100644 --- a/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/__init__.py +++ b/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/__init__.py @@ -2,4 +2,10 @@ """ aqueous-chemistry parcel-model example based on [Jaruga & Pawlowska 2018 (GMD)](https://doi.org/10.5194/gmd-11-3623-2018) + +fig_2.ipynb: +.. include:: ./fig_2.ipynb.badges.md + +fig_3.ipynb: +.. include:: ./fig_3.ipynb.badges.md """ diff --git a/examples/PySDM_examples/Jensen_and_Nugent_2017/__init__.py b/examples/PySDM_examples/Jensen_and_Nugent_2017/__init__.py index e4cb5d00e..6c5602d73 100644 --- a/examples/PySDM_examples/Jensen_and_Nugent_2017/__init__.py +++ b/examples/PySDM_examples/Jensen_and_Nugent_2017/__init__.py @@ -1,2 +1,22 @@ +""" +Fig_1.ipynb: +.. include:: ./Fig_1.ipynb.badges.md + +Fig_3_and_Tab_4_upper_rows.ipynb: +.. include:: ./Fig_3_and_Tab_4_upper_rows.ipynb.badges.md + +Fig_4_and_7_and_Tab_4_bottom_rows.ipynb: +.. include:: ./Fig_4_and_7_and_Tab_4_bottom_rows.ipynb.badges.md + +Fig_5.ipynb: +.. include:: ./Fig_5.ipynb.badges.md + +Fig_6.ipynb: +.. include:: ./Fig_6.ipynb.badges.md + +Fig_8.ipynb: +.. include:: ./Fig_8.ipynb.badges.md +""" + from .settings import Settings from .simulation import Simulation diff --git a/examples/PySDM_examples/Kreidenweis_et_al_2003/__init__.py b/examples/PySDM_examples/Kreidenweis_et_al_2003/__init__.py index 18042c96a..6dce099fd 100644 --- a/examples/PySDM_examples/Kreidenweis_et_al_2003/__init__.py +++ b/examples/PySDM_examples/Kreidenweis_et_al_2003/__init__.py @@ -2,6 +2,9 @@ """ aqueous-phase chemistry parcel-model example from [Kreidenweis et al. 2003 (JGR)](https://doi.org/10.1029/2002JD002697) + +fig_1.ipynb: +.. include:: ./fig_1.ipynb.badges.md """ from .settings import Settings from .simulation import Simulation diff --git a/examples/PySDM_examples/Lamb_et_al_2017/__init__.py b/examples/PySDM_examples/Lamb_et_al_2017/__init__.py index 46c532fc4..8c592ccbb 100644 --- a/examples/PySDM_examples/Lamb_et_al_2017/__init__.py +++ b/examples/PySDM_examples/Lamb_et_al_2017/__init__.py @@ -2,4 +2,7 @@ """ Formulae-only example depicting equilibrium isotopic fractionation over ice based on [Lamb et al. 2017](https://doi.org/10.1073/pnas.1618374114) + +fig_4.ipynb: +.. include:: ./fig_4.ipynb.badges.md """ diff --git a/examples/PySDM_examples/Lowe_et_al_2019/__init__.py b/examples/PySDM_examples/Lowe_et_al_2019/__init__.py index 8e03f9207..ac9848402 100644 --- a/examples/PySDM_examples/Lowe_et_al_2019/__init__.py +++ b/examples/PySDM_examples/Lowe_et_al_2019/__init__.py @@ -2,6 +2,18 @@ """ parcel-model example focused on surfactants based on [Lowe et al. 2019 (Nature Comm.)](https://doi.org/10.1038/s41467-019-12982-0) + +fig_1.ipynb: +.. include:: ./fig_1.ipynb.badges.md + +fig_2.ipynb: +.. include:: ./fig_2.ipynb.badges.md + +fig_3.ipynb: +.. include:: ./fig_3.ipynb.badges.md + +fig_s2.ipynb: +.. include:: ./fig_s2.ipynb.badges.md """ from .settings import Settings from .simulation import Simulation diff --git a/examples/PySDM_examples/Merlivat_and_Nief_1967/__init__.py b/examples/PySDM_examples/Merlivat_and_Nief_1967/__init__.py index d7603595e..d7d0a537c 100644 --- a/examples/PySDM_examples/Merlivat_and_Nief_1967/__init__.py +++ b/examples/PySDM_examples/Merlivat_and_Nief_1967/__init__.py @@ -1,6 +1,9 @@ """ figure from Merlivat and Nief 1967 (Tellus) https://doi.org/10.3402/tellusa.v19i1.9756 + +fig_2.ipynb: +.. include:: ./fig_2.ipynb.badges.md """ # pylint: disable=invalid-name diff --git a/examples/PySDM_examples/Miyake_et_al_1968/__init__.py b/examples/PySDM_examples/Miyake_et_al_1968/__init__.py index 4af571149..961f5b25e 100644 --- a/examples/PySDM_examples/Miyake_et_al_1968/__init__.py +++ b/examples/PySDM_examples/Miyake_et_al_1968/__init__.py @@ -2,4 +2,7 @@ """ isotopic adjustment time plot following [Friedman et al. 1962 (JGR)](https://doi.org/10.1029/JZ067i007p02761) + +fig_19.ipynb: +.. include:: ./fig_19.ipynb.badges.md """ diff --git a/examples/PySDM_examples/Morrison_and_Grabowski_2007/__init__.py b/examples/PySDM_examples/Morrison_and_Grabowski_2007/__init__.py index e8397ef50..15a9af219 100644 --- a/examples/PySDM_examples/Morrison_and_Grabowski_2007/__init__.py +++ b/examples/PySDM_examples/Morrison_and_Grabowski_2007/__init__.py @@ -2,5 +2,11 @@ """ prescribed-flow simulation settings data from [Morrison & Grabowski 2007 (JAS)](https://doi.org/10.1175/JAS3980) + +fig_2.ipynb: +.. include:: ./fig_2.ipynb.badges.md + +fig_3.ipynb: +.. include:: ./fig_3.ipynb.badges.md """ from .cumulus import Cumulus diff --git a/examples/PySDM_examples/Niedermeier_et_al_2014/__init__.py b/examples/PySDM_examples/Niedermeier_et_al_2014/__init__.py index 1eff3edbc..efcbac81f 100644 --- a/examples/PySDM_examples/Niedermeier_et_al_2014/__init__.py +++ b/examples/PySDM_examples/Niedermeier_et_al_2014/__init__.py @@ -1,4 +1,9 @@ -""" based on [Niedermeier et al. 2014](https://doi.org/10.1002/2013GL058684) """ +""" +based on [Niedermeier et al. 2014](https://doi.org/10.1002/2013GL058684) + +fig_2.ipynb: +.. include:: ./fig_2.ipynb.badges.md +""" from .settings import Settings from .simulation import Simulation diff --git a/examples/PySDM_examples/Pierchala_et_al_2022/__init__.py b/examples/PySDM_examples/Pierchala_et_al_2022/__init__.py index 875d20b0b..291d9c8db 100644 --- a/examples/PySDM_examples/Pierchala_et_al_2022/__init__.py +++ b/examples/PySDM_examples/Pierchala_et_al_2022/__init__.py @@ -1,6 +1,12 @@ """ based on Pierchala et al. 2022 (Geochim. Cosmochim. Acta) https://doi.org/10.1016/j.gca.2022.01.020 + +fig_3.ipynb: +.. include:: ./fig_3.ipynb.badges.md + +fig_4.ipynb: +.. include:: ./fig_4.ipynb.badges.md """ # pylint: disable=invalid-name diff --git a/examples/PySDM_examples/Pyrcel/__init__.py b/examples/PySDM_examples/Pyrcel/__init__.py index 49d3aeb6f..b570ce34c 100644 --- a/examples/PySDM_examples/Pyrcel/__init__.py +++ b/examples/PySDM_examples/Pyrcel/__init__.py @@ -2,6 +2,9 @@ """ parcel-model example based on the test case from [Pyrcel package docs](https://pyrcel.readthedocs.io/) + +example_basic_run.ipynb: +.. include:: ./example_basic_run.ipynb.badges.md """ from .settings import Settings from .simulation import Simulation diff --git a/examples/PySDM_examples/Rozanski_and_Sonntag_1982/__init__.py b/examples/PySDM_examples/Rozanski_and_Sonntag_1982/__init__.py index 2f1da4638..6c537aa92 100644 --- a/examples/PySDM_examples/Rozanski_and_Sonntag_1982/__init__.py +++ b/examples/PySDM_examples/Rozanski_and_Sonntag_1982/__init__.py @@ -1,6 +1,9 @@ """ based on Rozanski and Sonntag 1982 (Tellus) https://doi.org/10.3402/tellusa.v34i2.10795 + +figs_4_5_6.ipynb: +.. include:: ./figs_4_5_6.ipynb.badges.md """ # pylint: disable=invalid-name diff --git a/examples/PySDM_examples/Shima_et_al_2009/__init__.py b/examples/PySDM_examples/Shima_et_al_2009/__init__.py index 2933e3ff4..6fd7dd049 100644 --- a/examples/PySDM_examples/Shima_et_al_2009/__init__.py +++ b/examples/PySDM_examples/Shima_et_al_2009/__init__.py @@ -2,4 +2,7 @@ """ box-model coalescence-only example featuring Golovin analytic solution following setup from [Shima et al. 2009](https://doi.org/10.1002/qj.441) + +fig_2.ipynb: +.. include:: ./fig_2.ipynb.badges.md """ diff --git a/examples/PySDM_examples/Shipway_and_Hill_2012/__init__.py b/examples/PySDM_examples/Shipway_and_Hill_2012/__init__.py index 8fb478a61..420b694e0 100644 --- a/examples/PySDM_examples/Shipway_and_Hill_2012/__init__.py +++ b/examples/PySDM_examples/Shipway_and_Hill_2012/__init__.py @@ -2,6 +2,9 @@ """ single-column prescribed-flow constant-temperature example from [Shipway & Hill 2012](https://doi.org/10.1002/qj.1913) + +fig_1.ipynb: +.. include:: ./fig_1.ipynb.badges.md """ from .plot import plot from .settings import Settings diff --git a/examples/PySDM_examples/Singer_Ward/__init__.py b/examples/PySDM_examples/Singer_Ward/__init__.py index e738d6dac..738c9374e 100644 --- a/examples/PySDM_examples/Singer_Ward/__init__.py +++ b/examples/PySDM_examples/Singer_Ward/__init__.py @@ -1 +1,9 @@ +""" +kohler.ipynb: +.. include:: ./kohler.ipynb.badges.md + +MWE_joss_paper.ipynb: +.. include:: ./MWE_joss_paper.ipynb.badges.md +""" + # pylint: disable=invalid-name diff --git a/examples/PySDM_examples/Srivastava_1982/__init__.py b/examples/PySDM_examples/Srivastava_1982/__init__.py index b2236429a..a851a3dc8 100644 --- a/examples/PySDM_examples/Srivastava_1982/__init__.py +++ b/examples/PySDM_examples/Srivastava_1982/__init__.py @@ -1,6 +1,9 @@ """ box-model examples feat. analytic solution for breakup from [Srivastava 1982 (JAS)](https://doi.org/10.1175/1520-0469(1982)039%3C1317:ASMOPC%3E2.0.CO;2) + +figures.ipynb: +.. include:: ./figures.ipynb.badges.md """ from .equations import Equations, EquationsHelpers diff --git a/examples/PySDM_examples/Van_Hook_1968/__init__.py b/examples/PySDM_examples/Van_Hook_1968/__init__.py index 2dc2a8b3e..093808648 100644 --- a/examples/PySDM_examples/Van_Hook_1968/__init__.py +++ b/examples/PySDM_examples/Van_Hook_1968/__init__.py @@ -1,6 +1,9 @@ """ figure from Van Hook 1968 (J. Phys. Chem.) https://doi.org/10.1021/j100850a028 + +fig_1.ipynb: +.. include:: ./fig_1.ipynb.badges.md """ # pylint: disable=invalid-name diff --git a/examples/PySDM_examples/Yang_et_al_2018/__init__.py b/examples/PySDM_examples/Yang_et_al_2018/__init__.py index 83a540db4..29e89d250 100644 --- a/examples/PySDM_examples/Yang_et_al_2018/__init__.py +++ b/examples/PySDM_examples/Yang_et_al_2018/__init__.py @@ -2,6 +2,9 @@ """ parcel-model condensation-evaporation example based on [Yang et al. 2018 (ACP)](https://doi.org/10.5194/acp-18-7313-2018) + +fig_2.ipynb: +.. include:: ./fig_2.ipynb.badges.md """ from .settings import Settings from .simulation import Simulation diff --git a/examples/PySDM_examples/__init__.py b/examples/PySDM_examples/__init__.py index 1f5fa6165..d397f7062 100644 --- a/examples/PySDM_examples/__init__.py +++ b/examples/PySDM_examples/__init__.py @@ -1,6 +1,5 @@ """ -PySDM_examples package includes common Python modules used in PySDM smoke tests -and in example notebooks (but the package wheels do not include the notebooks) +.. include:: ../docs/pysdm_examples_landing.md """ from importlib.metadata import PackageNotFoundError, version diff --git a/examples/PySDM_examples/deJong_Azimi/__init__.py b/examples/PySDM_examples/deJong_Azimi/__init__.py index b5fe97d82..856544a51 100644 --- a/examples/PySDM_examples/deJong_Azimi/__init__.py +++ b/examples/PySDM_examples/deJong_Azimi/__init__.py @@ -1,6 +1,12 @@ """ box- and single-column coalescence-focused examples used to test new moment-based microphysics in (Cloudy.jl)[https://github.com/CliMA/Cloudy.jl] + +box.ipynb: +.. include:: ./box.ipynb.badges.md + +rainshaft.ipynb: +.. include:: ./rainshaft.ipynb.badges.md """ # pylint: disable=invalid-name diff --git a/examples/PySDM_examples/deJong_Mackay_et_al_2023/__init__.py b/examples/PySDM_examples/deJong_Mackay_et_al_2023/__init__.py index 2ee7923c0..8b97329df 100644 --- a/examples/PySDM_examples/deJong_Mackay_et_al_2023/__init__.py +++ b/examples/PySDM_examples/deJong_Mackay_et_al_2023/__init__.py @@ -1,6 +1,18 @@ """ box- and single-column breakup-focused examples from [de Jong et al. 2023](https://doi.org/10.5194/gmd-16-4193-2023) + +fig_9.ipynb: +.. include:: ./fig_9.ipynb.badges.md + +figs_3_4_5.ipynb: +.. include:: ./figs_3_4_5.ipynb.badges.md + +figs_6_7_8.ipynb: +.. include:: ./figs_6_7_8.ipynb.badges.md + +figs_10_11_12_13.ipynb: +.. include:: ./figs_10_11_12_13.ipynb.badges.md """ # pylint: disable=invalid-name diff --git a/examples/PySDM_examples/seeding/__init__.py b/examples/PySDM_examples/seeding/__init__.py index e4cb5d00e..3709bdac7 100644 --- a/examples/PySDM_examples/seeding/__init__.py +++ b/examples/PySDM_examples/seeding/__init__.py @@ -1,2 +1,10 @@ +""" +hello_world.ipynb: +.. include:: ./hello_world.ipynb.badges.md + +seeding_no_collisions.ipynb: +.. include:: ./seeding_no_collisions.ipynb.badges.md +""" + from .settings import Settings from .simulation import Simulation diff --git a/examples/README.md b/examples/README.md index 07631dde6..c309a584d 100644 --- a/examples/README.md +++ b/examples/README.md @@ -1,270 +1,10 @@ -# PySDM-examples +[![License: GPL v3](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0.html) +[![DOI](https://zenodo.org/badge/199064632.svg)](https://zenodo.org/badge/latestdoi/199064632) -### no-env examples depicting isotope-related formulae: -- [Bolot et al. 2013](http://doi.org/10.5194/acp-13-7903-2013): - - Fig. 1: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb) -- [Merlivat & Nief 1967](https://doi.org/10.3402/tellusa.v19i1.9756): - - Fig. 2: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Merlivat_and_Nief_1967/fig_2.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Merlivat_and_Nief_1967/fig_2.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Merlivat_and_Nief_1967/fig_2.ipynb) -- [Miyake et al. 1968](https://doi.org/10.2467/mripapers1950.19.2_243): - - Fig. 19: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Miyake_et_al_1968/fig_19.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Miyake_et_al_1968/fig_19.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Miyake_et_al_1968/fig_19.ipynb) -- [Van Hook 1968](https://doi.org/10.1021/j100850a028): - - Fig. 1: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Van_Hook_1968/fig_1.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Van_Hook_1968/fig_1.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Van_Hook_1968/fig_1.ipynb) -- [Gedzelman & Arnold 1994](https://doi.org/10.1029/93JD03518): - - Fig. 2: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Gedzelman_and_Arnold_1994/fig_2.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Gedzelman_and_Arnold_1994/fig_2.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Gedzelman_and_Arnold_1994/fig_2.ipynb) -- [Bolot et al. 2013](http://doi.org/10.5194/acp-13-7903-2013): - - Fig. 1: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb) -- [Graf et al. 2019](https://doi.org/10.5194/acp-19-747-2019): - - Table. 1: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Graf_et_al_2019/Table_1.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Graf_et_al_2019/Table_1.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Graf_et_al_2019/Table_1.ipynb) -- [Lamb et al. 2017](https://doi.org/10.1073/pnas.1618374114): - - Fig. 4: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lamb_et_al_2017/Fig_4.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Lamb_et_al_2017/Fig_4.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Graf_et_al_2019/Lamb_et_al_2017/Fig_4.ipynb) -- [Pierchala et al. 2022](https://doi.org/10.1016/j.gca.2022.01.020): - - Fig. 3: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Pierchala_et_al_2022/fig_3.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Pierchala_et_al_2022/fig_3.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Pierchala_et_al_2022/fig_3.ipynb) - - Fig. 4: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Pierchala_et_al_2022/fig_4.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Pierchala_et_al_2022/fig_4.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Pierchala_et_al_2022/fig_4.ipynb) +[![PyPI version](https://badge.fury.io/py/PySDM-examples.svg)](https://pypi.org/project/PySDM-examples) +[![API docs](https://img.shields.io/badge/API_docs-pdoc3-blue.svg)](https://open-atmos.github.io/PySDM-examples/) -### 0D box-environment coalescence and breakup examples: -- [Shima et al. 2009](http://doi.org/10.1002/qj.441) (coalescence only, test case employing Golovin analytical solution): - - Fig. 2: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Shima_et_al_2009/fig_2.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Shima_et_al_2009/fig_2.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Shima_et_al_2009/fig_2.ipynb) -- [Berry 1967](https://doi.org/10.1175/1520-0469(1967)024<0688:CDGBC>2.0.CO;2) (coalescence only, test cases for realistic kernels): - - Figs. 5, 8 & 10: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Berry_1967/figs_5_8_10.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Berry_1967/figs_5_8_10.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Berry_1967/figs_5_8_10.ipynb) -- [Bieli et al. 2022](https://www.essoar.org/doi/abs/10.1002/essoar.10510248.1) (coalescence and breakup with fixed coalescence efficiency): - - Fig. 3: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bieli_et_al_2022/make_fig_3.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bieli_et_al_2022/make_fig_3.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bieli_et_al_2022/make_fig_3.ipynb) -- [deJong et al. 2023](https://doi.org/10.5194/gmd-16-4193-2023) (coalescence and breakup): - - Figs. 3-5 (validation against Srivastava 1982 analytic solution): - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Mackay_at_al_2023/figs_3_4_5.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_3_4_5.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_3_4_5.ipynb) - - Figs. 6-8 (Berry 1967 coalescence efficiency): - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Mackay_at_al_2023/figs_6_7_8.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_6_7_8.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_6_7_8.ipynb) -- deJong and Azimi (Ongoing research: Box model, coalescence only): - - Figs. 1-2 (validation of moment-based method against PySDM with Golovin and Geometric kernels): - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Azimi/box.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/deJong_Azimi/box.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Azimi/box.ipynb) +For a list of examples, see [PySDM-examples documentation](https://open-atmos.github.io/PySDM/PySDM_examples.html). -### 0D box-environment immersion freezing-only examples: -- [Alpert & Knopf 2016](https://doi.org/10.5194/acp-16-2083-2016) (stochastic immersion freezing with monodisperse vs. lognormal immersed surface areas): - - Fig. 1: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_1.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_1.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_1.ipynb) - - Fig. 2: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_2.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_2.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_2.ipynb) - - Fig. 3: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_3.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_3.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_3.ipynb) - - Fig. 4: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_4.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_4.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_4.ipynb) - - Fig. 5: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_5.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_5.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_5.ipynb) -- [Arabas et al. 2023](https://doi.org/10.48550/arXiv.2308.05015) (singular vs. time-dependent immersion freezing) - - Fig. 2: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_2.ipynb) - - Figs. 3, 7, 8: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb) - - Figs. 5, 6: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/figs_5_and_6.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/figs_5_and_6.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/figs_5_and_6.ipynb) - -### 0D parcel-environment condensation only examples: -- [Arabas & Shima 2017](http://dx.doi.org/10.5194/npg-24-535-2017) (monodisperse size spectrum activation/deactivation test case): - - Fig. 5: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_and_Shima_2017/fig_5.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_and_Shima_2017/fig_5.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_and_Shima_2017/fig_5.ipynb) -- [Yang et al. 2018](https://doi.org/10.5194/acp-18-7313-2018) (polydisperse size spectrum activation/deactivation test case): - - Fig. 2: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Yang_et_al_2018/fig_2.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Yang_et_al_2018/fig_2.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Yang_et_al_2018/fig_2.ipynb) -- [Abdul-Razzak & Ghan 2000](http://doi.wiley.com/10.1029/1999JD901161) (aerosol activation parameterization for GCMs): - - Figs. 1 - 5: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/figs1-5.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/figs1-5.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/figs1-5.ipynb) -- [Pyrcel documentation example](https://pyrcel.readthedocs.io/en/latest/examples/basic_run.html) (externally mixed polydisperse size spectrum activation test case): - - supersaturation, temperature, wet radii evolution and dry spectra plots: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Pyrcel/example_basic_run.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Pyrcel/example_basic_run.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Pyrcel/example_basic_run.ipynb) -- [Lowe et al. 2019](https://doi.org/10.1038/s41467-019-12982-0) (externally mixed polydisperse size spectrum with surface-active organics case): - - Fig. 1: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb) - - Fig. 2: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb) - - Fig. 3: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb) -- [Grabowski & Pawlowska 2023](https://doi.org/10.1029/2022GL101917) (polydisperse size spectrum activation test case): - - Fig. 1: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_1.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_1.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_1.ipynb) - - Fig. 2: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_2.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_2.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_2.ipynb) - - Fig. 3: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_3.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_3.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_3.ipynb) - - Fig. 4: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_4.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_4.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_4.ipynb) -- [Jensen & Nugent 2017](https://doi.org/10.1175/JAS-D-15-0370.1) (multi-modal + GCCN measurement-based spectrum, updraft-downdraft cycle): - - Fig. 1: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_1.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_1.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_1.ipynb) - - Fig. 3 and Tab. 4 (upper rows): - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_3_and_Tab_4_upper_rows.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_3_and_Tab_4_upper_rows.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_3_and_Tab_4_upper_rows.ipynb) - - Fig. 4 and 7, Tab. 4 (bottom rows): - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_4_and_7_and_Tab_6_bottom_rows.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_4_and_7_and_Tab_6_bottom_rows.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_4_and_7_and_Tab_6_bottom_rows.ipynb) - - Fig. 5: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_5.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_5.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_5.ipynb) - - Fig. 6: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_6.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_6.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_6.ipynb) - - Fig. 8: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_8.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_8.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_8.ipynb) - -### 0D parcel-environment condensation/aqueous-chemistry example: -- [Kreidenweis et al. 2003](https://doi.org/10.1029/2002JD002697) (Adiabatic parcel, polydisperse size spectrum, aqueous‐phase SO2 oxidation test case): - - Fig 1: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Kreidenweis_et_al_2003/fig_1.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Kreidenweis_et_al_2003/fig_1.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Kreidenweis_et_al_2003/fig_1.ipynb) -- [Jaruga and Pawlowska 2018](https://doi.org/10.5194/gmd-11-3623-2018) (same test case as above, different numerical settings): - - Fig 2: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_2.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_2.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_2.ipynb) - - Fig 3: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_3.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_3.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_3.ipynb) - -### 0D parcel-environment condensation/freezing example: -- [Abade & Albuquerque 2024](https://doi.org/10.1002/qj.4775) (Adiabatic parcel, liquid/solid phase partitioning): - - Fig 2: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Abade_and_Albuquerque_2024/fig_2.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Abade_and_Albuquerque_2024/fig_2.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Abade_and_Albuquerque_2024/fig_2.ipynb) - -### OD parcel-environment iterative framework mimicking removal of precipitation -- [Rozanski & Sonntag 1982](https://doi.org/10.1111/j.2153-3490.1982.tb01800.x): - - Figs 4-6: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Rozanski_and_Sonntag_1982/figs_4_5_6.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Rozanski_and_Sonntag_1982/figs_4_5_6.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Rozanski_and_Sonntag_1982/figs_4_5_6.ipynb) - -### 1D kinematic environment (prescribed-flow, single-column): -- [Shipway & Hill 2012](https://doi.org/10.1002/qj.1913): - - Fig 1 (thermodynamics/condensation only, no particle displacement yet): - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Shipway_and_Hill_2012/fig_1.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Shipway_and_Hill_2012/fig_1.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Shipway_and_Hill_2012/fig_1.ipynb) -- [deJong et al. 2023](https://doi.org/10.5194/gmd-16-4193-2023) (Kinematic setup as in Shipway and Hill, including breakup with Berry 1967 coalescence efficiency): - - Figs. 6-8: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_10_11_12_13.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_10_11_12_13.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_10_11_12_13.ipynb) -- deJong and Azimi (Ongoing research: Similar kinematic setup as in Shipway and Hill, but with no condensation (coalescence only) and with power-series representation of the terminal velocity): - - Fig 3: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Azimi/rainshaft.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/deJong_Azimi/rainshaft.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Azimi/rainshaft.ipynb) - -### 2D kinematic environment (prescribed-flow) Sc-mimicking aerosol collisional processing (warm-rain) examples: -- [Arabas et al. 2015](https://doi.org/10.5194/gmd-8-1677-2015) - - Figs. 8 & 9 (interactive web-GUI with product selection, parameter sliders and netCDF/plot export buttons): - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2015/gui.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2015/gui.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2015/gui.ipynb) -- Bartman et al. (in preparation): - - Fig 1 (default-settings based script generating a netCDF file and loading it subsequently to create the animation below): - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bartman_et_al_2021/demo.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bartman_et_al_2021/demo.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bartman_et_al_2021/demo.ipynb) - - Fig 2: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bartman_et_al_2021/demo_fig2.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bartman_et_al_2021/demo_fig2.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bartman_et_al_2021/demo_fig2.ipynb) - - Fig 3: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bartman_et_al_2021/demo_fig3.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bartman_et_al_2021/demo_fig3.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bartman_et_al_2021/demo_fig3.ipynb) - -- [Arabas et al. 2023](https://doi.org/10.48550/arXiv.2308.05015) (singular vs. time-dependent immersion freezing) - - Fig. 11: - [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb) - [![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb) - [![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb) +For information on package development, see [PySDM README](https://github.com/open-atmos/PySDM/blob/main/README.md). diff --git a/examples/docs/pysdm_examples_landing.md b/examples/docs/pysdm_examples_landing.md new file mode 100644 index 000000000..1ec9f79d4 --- /dev/null +++ b/examples/docs/pysdm_examples_landing.md @@ -0,0 +1,125 @@ +# Introduction + +pysdm logo + +PySDM examples are engineered as Jupyter Python notebooks supported by auxiliary Python commons + that constitute a separate PySDM-examples Python package which is also + available at PyPI. +The examples have additional dependencies listed in + PySDM-examples package setup.py file. +Running the example Jupyter notebooks requires the PySDM-examples package to be pip-installed. +For installation instructions see [project docs homepage](https://open-atmos.github.io/PySDM). +Note that the Jupyter notebooks themselves are not included in the package wheels, but are included + in the source .tar.gz file on PyPI, and are conveninently browsable on GitHub. +All notebooks feature header cells with badges enabling single-click execution on + Google Colab and on + mybinder.org. +The examples package is also used in the PySDM test suite. + +# Example gallery + +The examples are named referring to the journal paper they aim to reproduce simulations from +(or sometimes just where the inspiration originated from). +The list below groups all examples by the dimensionality and type of the employed modelling framework +("environment" in PySDM nomenclature, which can be: box, parcel, +single-column, 2D prescribed flow), and by the set of physical processes simulated +(condensation, collisional coagulation and breakup, +drop freezing, isotopic fractionation, aqueous chemistry, +seeding, ...). + +## 2D kinematic environment (prescribed-flow) mimicking Sc deck + +The 2D prescribed-flow framework used here can be traced back to the work of + Kessler 1969 (section 3C). + The setup employed in PySDM-examples, which mimics a stratiform cloud deck and features periodic horizontal boundary condition + and vanishing flow at vertical boundaries, was introduced in Morrison and Grabowski (2007) + and later adopted for particle-based simulations in Arabas et al. (2015). + It uses a non-devergent single-eddy flow field resulting in an updraft-downdraft pair in the domain. + The flow field advects two scalar fields in an Eulerian way: water vapour mixing ratio + and dry-air potential temperature. + In PySDM-examples, the Eulerian advection is handled using the PyMPDATA Numba-based + implementation of the MPDATA numerical scheme of Smolarkiewicz (e.g., 2006). + An animation depicting PySDM simulation capturing aerosol collisional processing by warm rain is shown below: + +![animation](https://github.com/open-atmos/PySDM/wiki/files/kinematic_2D_example.gif) + +Example notebooks: +- `PySDM_examples.Arabas_et_al_2015` + - in-notebook GUI for setting up, running and interactively visualising the 2D kinematic simulations (with an option to export raw data to VTK and netCDF files, as well as to save plots to SVG or PDF): + - "hello world" notebook depicting how to automate using Python the process of loading data and creating animations in Paraview +- `PySDM_examples.Arabas_et_al_2023`: adaptation of the 2D kinematic setup for studying glaciation of the cloud deck by immersion freezing + +## 1D kinematic environment (prescribed-flow, single-column) + +The single-column PySDM environment is a reimplementation of the Met Office KiD framework + introduced in Shipway & Hill 2012. +The framework features a single Eulerian-transported field of water vapour mixing ratio + (vertical profile of potential temperature is fixed). +As in the 2D kinematic framework above, the Eulerian advection is handled by + PyMPDATA. + +Example notebooks: +- `PySDM_examples.Shipway_and_Hill_2012`: reproducing figures from the Shipway & Hill 2012 paper; +- `PySDM_examples.deJong_Mackay_et_al_2023`: reproducing figures from the de Jong et al. 2023 paper where the single-column + framework was used to exemplify operation of the Monte-Carlo collisional breakup scheme in PySDM (scheme introduced in that paper). + +## OD/1D iterative parcel/column environment mimicking removal of precipitation + +This framework uses a parcel model with removal of precipitation for analysis, +iterative equilibration, the isotopic composition of the water vapour and +rain water in a column of air (no Eulerian transport, only iterative passage of a parcel through the column). + +`PySDM_examples.Rozanski_and_Sonntag_1982`: bulk microphysics example (i.e. single super droplet) with +deuterium and heavy-oxygen water isotopologues featured. + +## 0D parcel environment + +The parcel framework implemented in PySDM uses a hydrostatic profile and adiabatic mass and energy conservation + to drive evolution of thermodynamic state and microphysical properties of particles. + +Example notebooks include: +- condensation only + - `PySDM_examples.Arabas_and_Shima_2017`: monodisperse particle spectrum, activation/deactivation cycle + - `PySDM_examples.Yang_et_al_2018`: polydisperse particle spectrum, activation/deactivation cycles + - `PySDM_examples.Abdul_Razzak_Ghan_2000`: polydisperse activation, comparison against GCM parameterisation + - `PySDM_examples.Pyrcel`: polydisperse activation, mimicking example test case from Pyrcel documentation + - `PySDM_examples.Lowe_et_al_2019`: externally mixed polydisperse size spectrum with surface-active organics case + - `PySDM_examples.Grabowski_and_Pawlowska_2023`: polydisperse activation, focus on ripening + - `PySDM_examples.Jensen_and_Nugent_2017`: polydisperse activation featuring giant CCN +- condensation and aqueous-chemistry + - `PySDM_examples.Kreidenweis_et_al_2003`: Hoppel gap simulation setup (i.e. depiction of evolution of aerosol mass spectrum from a monomodal to bimodal due to aqueous‐phase SO2 oxidation) + - `PySDM_examples.Jaruga_and_Pawlowska_2018`: exploration of numerical convergence using the above Hoppel-gap simulation setup + +The parcel environment is also featured in the PySDM tutorials. + +## 0D box environment + +The box environment is void of any spatial or thermodynamic context, it constitutes the most basic framework. + +Example notebooks include: + +- coalescence only: + - `PySDM_examples.Shima_et_al_2009`: using Golovin additive kernel for comparison against analytic solution, featuring interactive in-notebook interface for selecting simulation parameters + - `PySDM_examples.Berry_1967`: examples using geometric, hydrodynamic and electric-field collision kernels +- coalescence and breakup: + - `PySDM_examples.Bieli_et_al_2022`: evolution of moments under collisional growth and breakage + - `PySDM_examples.deJong_Mackay_et_al_2023`: validation of the breakup scheme against analytical solutions from Srivastava 1982 +- immersion freezing only: + - `PySDM_examples.Alpert_and_Knopf_2016`: stochastic immersion freezing with monodisperse vs. lognormal immersed surface areas + - `PySDM_examples.Arabas_et_al_2023`: comparison of time-dependent and singular immersion freezing schemes + +The box environment is also featured in the PySDM tutorials. + +## examples depicting isotope-related formulae (without any simulation context) +- equilibrium isotopic fractionation formulae: + - `PySDM_examples.Lamb_et_al_2017` + - `PySDM_examples.Bolot_et_al_2013` + - `PySDM_examples.Merlivat_and_Nief_1967` + - `PySDM_examples.Van_Hook_1968` + - `PySDM_examples.Graf_et_al_2019` +- Rayleigh fractionation: + - `PySDM_examples.Pierchala_et_al_2022`: reproducing model plots for a triple-isotope lab study, including kinetic fractionation +- isotopic relaxation timescale: + - `PySDM_examples.Miyake_et_al_1968`: incl. comparison of different ventilation parameterisations +- below-cloud kinetic fractionation: + - `PySDM_examples.Gedzelman_and_Arnold_1994` diff --git a/examples/setup.py b/examples/setup.py index ab3dbc4c1..19e1ba97d 100644 --- a/examples/setup.py +++ b/examples/setup.py @@ -1,13 +1,20 @@ import os +import re import platform from setuptools import find_packages, setup def get_long_description(): - with open("README.md", "r", encoding="utf8") as file: - long_description = file.read() - return long_description + """returns contents of the pdoc landing site with pdoc links converted into URLs""" + with open("docs/pysdm_examples_landing.md", "r", encoding="utf8") as file: + pdoc_links = re.compile( + r"(`)([\w\d_-]*).([\w\d_-]*)(`)", re.MULTILINE | re.UNICODE + ) + return pdoc_links.sub( + r'\3', + file.read(), + ) CI = "CI" in os.environ diff --git a/pdoc_templates/index.html.jinja2 b/pdoc_templates/index.html.jinja2 deleted file mode 100644 index 8c11251c2..000000000 --- a/pdoc_templates/index.html.jinja2 +++ /dev/null @@ -1,26 +0,0 @@ -{% extends "default/index.html.jinja2" %} - -{% block title %}PySDM module list{% endblock %} - -{% block nav %} -

Available Modules

-
    - {% for submodule in all_modules if "." not in submodule %} -
  • {{ submodule }}
  • - {% endfor %} -
-{% endblock %} - -{% block content %} -
- - pysdm logo - - - {% filter to_html %} -# PySDM documentation home page - {% endfilter %} - -
- {% include "search.html.jinja2" %} -{% endblock %} From 1b765f3a57e6d5a380bd2a855bc96b97955eac5c Mon Sep 17 00:00:00 2001 From: Sylwester Arabas Date: Sun, 10 Nov 2024 02:46:58 +0100 Subject: [PATCH 41/41] fix badge inclusion --- examples/PySDM_examples/Arabas_et_al_2023/__init__.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/PySDM_examples/Arabas_et_al_2023/__init__.py b/examples/PySDM_examples/Arabas_et_al_2023/__init__.py index 757f65c77..831455779 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/__init__.py +++ b/examples/PySDM_examples/Arabas_et_al_2023/__init__.py @@ -12,7 +12,7 @@ .. include:: ./fig_2.ipynb.badges.md fig_11.ipynb: -.. include:: ./fig_11.ipynb.badges.md +.. include:: ./figs_10_and_11_and_animations.ipynb fig_A2.ipynb: .. include:: ./fig_A2.ipynb.badges.md