Open
Description
Hi,
ValueError: Module down_blocks.0.attentions.0.proj_in is not a LoRACompatibleConv or LoRACompatibleLinear module.
This kind of error appears when super().load_lora_weights(...)
is called.
(Location: File Live2Diff/live2diff/animatediff/pipeline/loader.py line 21, in load_lora_weights)
File "/c1/username/Live2Diff/live2diff/utils/wrapper.py", line 451, in _load_model [32/1823]
stream.load_lora(few_step_lora)
File "/c1/username/Live2Diff/live2diff/pipeline_stream_animation_depth.py", line 140, in load_lora
self.pipe.load_lora_weights(
File "/c1/username/Live2Diff/live2diff/animatediff/pipeline/loader.py", line 21, in load_lora_weights
super().load_lora_weights(pretrained_model_name_or_path_or_dict, adapter_name=adapter_name, strict=False, **kwargs) #
ignore the incompatible layers
File "/c1/username/anaconda3/envs/live2diff/lib/python3.10/site-packages/diffusers/loaders/lora.py", line 117, in load_
lora_weights
self.load_lora_into_unet(
File "/c1/username/anaconda3/envs/live2diff/lib/python3.10/site-packages/diffusers/loaders/lora.py", line 479, in load_
lora_into_unet
unet.load_attn_procs(
File "/c1/username/anaconda3/envs/live2diff/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 11
8, in _inner_fn
return fn(*args, **kwargs)
File "/c1/username/anaconda3/envs/live2diff/lib/python3.10/site-packages/diffusers/loaders/unet.py", line 294, in load_
attn_procs
raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")
I printed both state_dict keys and unet... and found out that only the Linear layers from the unet are converted into LoRACompatibleLinear, while Conv2d layers (proj_in and proj_out in BasicTransformerBlock) are still remaining as Conv2d.
unet_warmup
UNet3DConditionWarmupModel(
. . .
(down_blocks): ModuleList(
(0): CrossAttnDownBlock3DWarmup(
(attentions): ModuleList(
(0-1): 2 x Transformer3DModel(
(norm): GroupNorm(32, 320, eps=1e-06, affine=True)
(proj_in): **Conv2d**(320, 320, kernel_size=(1, 1), stride=(1, 1))
(transformer_blocks): ModuleList(
(0): BasicTransformerBlock(
(attn1): Attention(
(to_q): **LoRACompatibleLinear**(in_features=320, out_features=320, bias=False)
(to_k): **LoRACompatibleLinear**(in_features=320, out_features=320, bias=False)
(to_v): **LoRACompatibleLinear**(in_features=320, out_features=320, bias=False)
(to_out): ModuleList(
(0): **LoRACompatibleLinear**(in_features=320, out_features=320, bias=True)
(1): Dropout(p=0.0, inplace=False)
)
)
(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
(attn2): Attention(
(to_q): **LoRACompatibleLinear**(in_features=320, out_features=320, bias=False)
(to_k): **LoRACompatibleLinear**(in_features=768, out_features=320, bias=False)
(to_v): **LoRACompatibleLinear**(in_features=768, out_features=320, bias=False)
(to_out): ModuleList(
(0): **LoRACompatibleLinear**(in_features=320, out_features=320, bias=True)
(1): Dropout(p=0.0, inplace=False)
)
)
(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
(ff): FeedForward(
(net): ModuleList(
(0): GEGLU(
(proj): **LoRACompatibleLinear**(in_features=320, out_features=2560, bias=True)
)
(1): Dropout(p=0.0, inplace=False)
(2): **LoRACompatibleLinear**(in_features=1280, out_features=320, bias=True)
)
)
(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
)
)
(proj_out): **Conv2d**(320, 320, kernel_size=(1, 1), stride=(1, 1))
)
)
state_dicts
unet.down_blocks.0.attentions.0.proj_in.lora.down.weight
unet.down_blocks.0.attentions.0.proj_in.lora.up.weight
unet.down_blocks.0.attentions.0.proj_out.lora.down.weight
unet.down_blocks.0.attentions.0.proj_out.lora.up.weight
unet.down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.down.weight
unet.down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_k_lora.up.weight
unet.down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.down.weight
unet.down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_out_lora.up.weight
unet.down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.down.weight
unet.down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.up.weight
unet.down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.down.weight
unet.down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_v_lora.up.weight
. . .
My environment:
- diffusers : 0.25.0
- peft : 0.10.0
- huggingface-hub : 0.19.4
Metadata
Metadata
Assignees
Labels
No labels