-
Notifications
You must be signed in to change notification settings - Fork 678
Description
Checklist
- I have searched related issues but cannot get the expected help.
- 2. I have read the FAQ documentation but cannot get the expected help.
- 3. The bug has not been fixed in the latest version.
Describe the bug
I trained an RTMPose-X (384×288, Halpe26) model on a custom dataset with 38 keypoints. After training, I converted the model to TensorRT, but the PCK score dropped drastically from 0.97 to 0.006. In contrast, the ONNX model performs correctly without this issue.
I also tested the default RTMPose-X configuration (26 keypoints with the default checkpoints) TensorRT works fine for both batch size = 1 (static) and batch size = 2
base = ['./pose-detection_static.py', '../base/backends/tensorrt-fp16.py']
onnx_config = dict(
input_names=['input'],
output_names=['simcc_x', 'simcc_y'],
input_shape=[288, 384],
optimize=True,
dynamic_axes={
'input': {
0: 'batch',
},
'simcc_x': {
0: 'batch'
},
'simcc_y': {
0: 'batch'
}
}
)
backend_config = dict(
type='tensorrt',
common_config=dict(
fp16_mode=True,
max_workspace_size=1 << 30),
model_inputs=[
dict(
input_shapes=dict(
input=dict(
min_shape=[1, 3, 384, 288],
opt_shape=[1, 3, 384, 288],
max_shape=[1, 3, 384, 288])))
])
Reproduction
both config file same results
auto_scale_lr = dict(base_batch_size=1024)
backend_args = dict(backend='local')
base_lr = 0.004
custom_halpe26 = [
(
0,
0,
),
(
1,
1,
),
(
2,
2,
),
(
3,
3,
),
(
4,
4,
),
(
5,
5,
),
(
6,
6,
),
(
7,
7,
),
(
8,
8,
),
(
9,
9,
),
(
10,
10,
),
(
11,
11,
),
(
12,
12,
),
(
13,
13,
),
(
14,
14,
),
(
15,
15,
),
(
16,
16,
),
(
17,
17,
),
(
18,
18,
),
(
19,
19,
),
(
20,
20,
),
(
21,
21,
),
(
22,
22,
),
(
23,
23,
),
(
24,
24,
),
(
25,
25,
),
(
26,
26,
),
(
27,
27,
),
(
28,
28,
),
(
29,
29,
),
(
30,
30,
),(
31,
31,
),
(
32,
32,
),
(
33,
33,
),
(
34,
34,
),
(
35,
35,
),
(
36,
36,
),
(
37,
37,
),
]
codec = dict(
input_size=(
288,
384,
),
normalize=False,
sigma=(
6.0,
6.93,
),
simcc_split_ratio=2.0,
type='SimCCLabel',
use_dark=False)
custom_hooks = [
dict(
ema_type='ExpMomentumEMA',
momentum=0.0002,
priority=49,
type='EMAHook',
update_buffers=True),
dict(
switch_epoch=680,
switch_pipeline=[
dict(backend_args=dict(backend='local'), type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(direction='horizontal', type='RandomFlip'),
dict(type='RandomHalfBody'),
dict(
rotate_factor=90,
scale_factor=[
0.5,
1.5,
],
shift_factor=0.0,
type='RandomBBoxTransform'),
dict(input_size=(
288,
384,
), type='TopdownAffine'),
dict(
transforms=[
dict(p=0.1, type='Blur'),
dict(p=0.1, type='MedianBlur'),
dict(
max_height=0.4,
max_holes=1,
max_width=0.4,
min_height=0.2,
min_holes=1,
min_width=0.2,
p=0.5,
type='CoarseDropout'),
],
type='Albumentation'),
dict(
encoder=dict(
input_size=(
288,
384,
),
normalize=False,
sigma=(
6.0,
6.93,
),
simcc_split_ratio=2.0,
type='SimCCLabel',
use_dark=False),
type='GenerateTarget',
use_dataset_keypoint_weights=True),
dict(type='PackPoseInputs'),
],
type='mmdet.PipelineSwitchHook'),
]
data_mode = 'topdown'
data_root = '../mmpose/data/person_racket/'
dataset_coco = dict(
data_root=data_root,
metainfo=dict(from_file='../mmpose/configs/datasets/custom_player_racket.py'),
data_mode=data_mode,
ann_file='annotations/train.json',
data_prefix=dict(img='images/'),
pipeline=[
dict(
mapping=custom_halpe26,
num_keypoints=38,
type='KeypointConverter'),
],
type='CocoDataset')
default_hooks = dict(
badcase=dict(
badcase_thr=5,
enable=False,
metric_type='loss',
out_dir='badcase',
type='BadCaseAnalysisHook'),
checkpoint=dict(
interval=10,
max_keep_ckpts=1,
rule='greater',
save_best='PCK',
type='CheckpointHook'),
logger=dict(interval=50, type='LoggerHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
sampler_seed=dict(type='DistSamplerSeedHook'),
timer=dict(type='IterTimerHook'),
visualization=dict(enable=False, type='PoseVisualizationHook'))
default_scope = 'mmpose'
env_cfg = dict(
cudnn_benchmark=False,
dist_cfg=dict(backend='nccl'),
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
input_size = (
288,
384,
)
load_from = None
log_level = 'INFO'
log_processor = dict(
by_epoch=True, num_digits=6, type='LogProcessor', window_size=50)
max_epochs = 700
model = dict(
backbone=dict(
scope='mmdet',
act_cfg=dict(type='SiLU'),
arch='P5',
channel_attention=True,
deepen_factor=1.33,
expand_ratio=0.5,
init_cfg=dict(
checkpoint=
'https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/cspnext-x_udp-body7_210e-384x288-d28b58e6_20230529.pth',
prefix='backbone.',
type='Pretrained'),
norm_cfg=dict(type='SyncBN'),
out_indices=(4, ),
type='CSPNeXt',
widen_factor=1.25),
data_preprocessor=dict(
bgr_to_rgb=True,
mean=[
123.675,
116.28,
103.53,
],
std=[
58.395,
57.12,
57.375,
],
type='PoseDataPreprocessor'),
head=dict(
decoder=dict(
input_size=(
288,
384,
),
normalize=False,
sigma=(
6.0,
6.93,
),
simcc_split_ratio=2.0,
type='SimCCLabel',
use_dark=False),
final_layer_kernel_size=7,
gau_cfg=dict(
act_fn='SiLU',
drop_path=0.0,
dropout_rate=0.0,
expansion_factor=2,
hidden_dims=256,
pos_enc=False,
s=128,
use_rel_bias=False),
in_channels=1280,
in_featuremap_size=(
9,
12,
),
input_size=(
288,
384,
),
loss=dict(
beta=10.0,
label_softmax=True,
type='KLDiscretLoss',
use_target_weight=True),
out_channels=38,
simcc_split_ratio=2.0,
type='RTMCCHead'),
test_cfg=dict(flip_test=True),
type='TopdownPoseEstimator')
num_keypoints = 38
optim_wrapper = dict(
clip_grad=dict(max_norm=35, norm_type=2),
optimizer=dict(lr=0.004, type='AdamW', weight_decay=0.05),
paramwise_cfg=dict(
bias_decay_mult=0, bypass_duplicate=True, norm_decay_mult=0),
type='OptimWrapper')
param_scheduler = [
dict(
begin=0, by_epoch=False, end=1000, start_factor=1e-05,
type='LinearLR'),
dict(
T_max=350,
begin=350,
by_epoch=True,
convert_to_iter_based=True,
end=700,
eta_min=0.0002,
type='CosineAnnealingLR'),
]
randomness = dict(seed=21)
resume = False
stage2_num_epochs = 20
test_cfg = dict()
test_dataloader = dict(
batch_size=64,
dataset=dict(
datasets=[
dict(
data_root='../mmpose/data/person_racket/',
ann_file='annotations/val.json',
data_mode='topdown',
data_prefix=dict(img='images/'),
pipeline=[
dict(
mapping=custom_halpe26,
num_keypoints=38,
type='KeypointConverter'),
],
type='CocoDataset'),
],
metainfo=dict(from_file='../mmpose/configs/datasets/custom_player_racket.py'),
pipeline=[
dict(backend_args=dict(backend='local'), type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(input_size=(
288,
384,
), type='TopdownAffine'),
dict(type='PackPoseInputs'),
],
test_mode=True,
type='CombinedDataset'),
drop_last=False,
num_workers=10,
persistent_workers=True,
sampler=dict(round_up=False, shuffle=False, type='DefaultSampler'))
train_batch_size = 16
train_cfg = dict(by_epoch=True, max_epochs=700, val_interval=1)
train_dataloader = dict(
batch_size=16,
dataset=dict(
datasets=[
dict(
data_root='../mmpose/data/person_racket/',
ann_file='annotations/train.json',
data_mode='topdown',
data_prefix=dict(img='images/'),
pipeline=[
dict(
mapping=custom_halpe26,
num_keypoints=38,
type='KeypointConverter'),
],
type='CocoDataset'),
],
metainfo=dict(from_file='../mmpose/configs/datasets/custom_player_racket.py'),
pipeline=[
dict(backend_args=dict(backend='local'), type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(direction='horizontal', type='RandomFlip'),
dict(type='RandomHalfBody'),
dict(
rotate_factor=90,
scale_factor=[
0.5,
1.5,
],
type='RandomBBoxTransform'),
dict(input_size=(
288,
384,
), type='TopdownAffine'),
dict(type='PhotometricDistortion'),
dict(
transforms=[
dict(p=0.1, type='Blur'),
dict(p=0.1, type='MedianBlur'),
dict(
max_height=0.4,
max_holes=1,
max_width=0.4,
min_height=0.2,
min_holes=1,
min_width=0.2,
p=1.0,
type='CoarseDropout'),
],
type='Albumentation'),
dict(
encoder=dict(
input_size=(
288,
384,
),
normalize=False,
sigma=(
6.0,
6.93,
),
simcc_split_ratio=2.0,
type='SimCCLabel',
use_dark=False),
type='GenerateTarget',
use_dataset_keypoint_weights=True),
dict(type='PackPoseInputs'),
],
test_mode=False,
type='CombinedDataset'),
num_workers=10,
persistent_workers=True,
pin_memory=True,
sampler=dict(shuffle=True, type='DefaultSampler'))
train_pipeline = [
dict(backend_args=dict(backend='local'), type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(direction='horizontal', type='RandomFlip'),
dict(type='RandomHalfBody'),
dict(
rotate_factor=90,
scale_factor=[
0.5,
1.5,
],
type='RandomBBoxTransform'),
dict(input_size=(
288,
384,
), type='TopdownAffine'),
dict(type='PhotometricDistortion'),
dict(
transforms=[
dict(p=0.1, type='Blur'),
dict(p=0.1, type='MedianBlur'),
dict(
max_height=0.4,
max_holes=1,
max_width=0.4,
min_height=0.2,
min_holes=1,
min_width=0.2,
p=1.0,
type='CoarseDropout'),
],
type='Albumentation'),
dict(
encoder=dict(
input_size=(
288,
384,
),
normalize=False,
sigma=(
6.0,
6.93,
),
simcc_split_ratio=2.0,
type='SimCCLabel',
use_dark=False),
type='GenerateTarget',
use_dataset_keypoint_weights=True),
dict(type='PackPoseInputs'),
]
train_pipeline_stage2 = [
dict(backend_args=dict(backend='local'), type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(direction='horizontal', type='RandomFlip'),
dict(type='RandomHalfBody'),
dict(
rotate_factor=90,
scale_factor=[
0.5,
1.5,
],
shift_factor=0.0,
type='RandomBBoxTransform'),
dict(input_size=(
288,
384,
), type='TopdownAffine'),
dict(
transforms=[
dict(p=0.1, type='Blur'),
dict(p=0.1, type='MedianBlur'),
dict(
max_height=0.4,
max_holes=1,
max_width=0.4,
min_height=0.2,
min_holes=1,
min_width=0.2,
p=0.5,
type='CoarseDropout'),
],
type='Albumentation'),
dict(
encoder=dict(
input_size=(
288,
384,
),
normalize=False,
sigma=(
6.0,
6.93,
),
simcc_split_ratio=2.0,
type='SimCCLabel',
use_dark=False),
type='GenerateTarget',
use_dataset_keypoint_weights=True),
dict(type='PackPoseInputs'),
]
val_batch_size = 16
val_cfg = dict()
val_coco = dict(
data_root='../mmpose/data/person_racket/',
data_mode='topdown',
ann_file='annotations/val.json',
data_prefix=dict(img='images/'),
pipeline=[
dict(
mapping=custom_halpe26,
num_keypoints=38,
type='KeypointConverter'),
],
type='CocoDataset')
val_dataloader = dict(
batch_size=16,
dataset=dict(
datasets=[
dict(
data_root='../mmpose/data/person_racket/',
data_mode='topdown',
ann_file='annotations/val.json',
data_prefix=dict(img='images/'),
pipeline=[
dict(
mapping=custom_halpe26,
num_keypoints=38,
type='KeypointConverter'),
],
type='CocoDataset'),
],
metainfo=dict(from_file='../mmpose/configs/datasets/custom_player_racket.py'),
pipeline=[
dict(backend_args=dict(backend='local'), type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(input_size=(
288,
384,
), type='TopdownAffine'),
dict(type='PackPoseInputs'),
],
test_mode=True,
type='CombinedDataset'),
drop_last=False,
num_workers=10,
persistent_workers=True,
sampler=dict(round_up=False, shuffle=False, type='DefaultSampler'))
val_evaluator = [
dict(thr=0.1, type='PCKAccuracy'),
dict(type='AUC'),
]
val_pipeline = [
dict(backend_args=dict(backend='local'), type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(input_size=(
288,
384,
), type='TopdownAffine'),
dict(type='PackPoseInputs'),
]
vis_backends = [
dict(type='LocalVisBackend'),
]
visualizer = dict(
name='visualizer',
type='PoseLocalVisualizer',
vis_backends=[
dict(type='LocalVisBackend'),
])
test_evaluator=val_evaluator
/////
base = ['mmpose::base/default_runtime.py']
common setting
num_keypoints = 38
input_size = (288, 384)
runtime
max_epochs = 300
stage2_num_epochs = 20
base_lr = 4e-3
train_batch_size = 16
val_batch_size = 16
train_cfg = dict(max_epochs=max_epochs, val_interval=1)
randomness = dict(seed=21)
optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
clip_grad=dict(max_norm=35, norm_type=2),
paramwise_cfg=dict(
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
learning rate
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0e-5,
by_epoch=False,
begin=0,
end=1000),
dict(
type='CosineAnnealingLR',
eta_min=base_lr * 0.05,
begin=max_epochs // 2,
end=max_epochs,
T_max=max_epochs // 2,
by_epoch=True,
convert_to_iter_based=True),
]
automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=1024)
codec settings
codec = dict(
type='SimCCLabel',
input_size=input_size,
sigma=(6., 6.93),
simcc_split_ratio=2.0,
normalize=False,
use_dark=False)
model settings
model = dict(
type='TopdownPoseEstimator',
data_preprocessor=dict(
type='PoseDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True),
backbone=dict(
scope='mmdet',
type='CSPNeXt',
arch='P5',
expand_ratio=0.5,
deepen_factor=1.33,
widen_factor=1.25,
out_indices=(4, ),
channel_attention=True,
norm_cfg=dict(type='SyncBN'),
act_cfg=dict(type='SiLU'),
init_cfg=None),
head=dict(
type='RTMCCHead',
in_channels=1280,
out_channels=num_keypoints,
input_size=input_size,
in_featuremap_size=tuple([s // 32 for s in input_size]),
simcc_split_ratio=codec['simcc_split_ratio'],
final_layer_kernel_size=7,
gau_cfg=dict(
hidden_dims=256,
s=128,
expansion_factor=2,
dropout_rate=0.,
drop_path=0.,
act_fn='SiLU',
use_rel_bias=False,
pos_enc=False),
loss=dict(
type='KLDiscretLoss',
use_target_weight=True,
beta=10.,
label_softmax=True),
decoder=codec),
test_cfg=dict(flip_test=True))
base dataset settings
dataset_type = 'CocoDataset'
data_mode = 'topdown'
data_root = '../mmpose/data/person_racket/'
backend_args = dict(backend='local')
pipelines
train_pipeline = [
dict(type='LoadImage', backend_args=backend_args),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(
type='RandomBBoxTransform', scale_factor=[0.5, 1.5], rotate_factor=90),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='PhotometricDistortion'),
dict(
type='Albumentation',
transforms=[
dict(type='Blur', p=0.1),
dict(type='MedianBlur', p=0.1),
dict(
type='CoarseDropout',
max_holes=1,
max_height=0.4,
max_width=0.4,
min_holes=1,
min_height=0.2,
min_width=0.2,
p=1.0),
]),
dict(
type='GenerateTarget',
encoder=codec,
use_dataset_keypoint_weights=True),
dict(type='PackPoseInputs')
]
val_pipeline = [
dict(type='LoadImage', backend_args=backend_args),
dict(type='GetBBoxCenterScale'),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='PackPoseInputs')
]
train_pipeline_stage2 = [
dict(type='LoadImage', backend_args=backend_args),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(
type='RandomBBoxTransform',
shift_factor=0.,
scale_factor=[0.5, 1.5],
rotate_factor=90),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(
type='Albumentation',
transforms=[
dict(type='Blur', p=0.1),
dict(type='MedianBlur', p=0.1),
dict(
type='CoarseDropout',
max_holes=1,
max_height=0.4,
max_width=0.4,
min_holes=1,
min_height=0.2,
min_width=0.2,
p=0.5),
]),
dict(
type='GenerateTarget',
encoder=codec,
use_dataset_keypoint_weights=True),
dict(type='PackPoseInputs')
]
#halpe26_to_custom38 = [(i, i) for i in range(26)]
data loaders
train_dataloader = dict(
batch_size=train_batch_size,
num_workers=10,
pin_memory=True,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
metainfo=dict(from_file='../mmpose/configs/datasets/custom_player_racket.py'),
data_mode=data_mode,
ann_file='annotations/train.json',
data_prefix=dict(img='images/'),
pipeline=train_pipeline,
test_mode=False,
))
val_dataloader = dict(
batch_size=val_batch_size,
num_workers=10,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
metainfo=dict(from_file='../mmpose/configs/datasets/custom_player_racket.py'),
data_mode=data_mode,
ann_file='annotations/val.json',
data_prefix=dict(img='images/'),
pipeline=val_pipeline,
test_mode=True,
))
test_dataloader = val_dataloader
hooks
default_hooks = dict(
checkpoint=dict(save_best='PCK', rule='greater', max_keep_ckpts=1))
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0002,
update_buffers=True,
priority=49),
dict(
type='mmdet.PipelineSwitchHook',
switch_epoch=max_epochs - stage2_num_epochs,
switch_pipeline=train_pipeline_stage2)
]
evaluators
test_evaluator = [dict(type='PCKAccuracy', thr=0.1), dict(type='AUC')]
val_evaluator = test_evaluator
visualizer = dict(
name='visualizer',
type='PoseLocalVisualizer',
vis_backends=[
dict(type='LocalVisBackend'),
dict(type='TensorboardVisBackend'),
]
)
Environment
I tested both Docker "openmmlab/mmdeploy:ubuntu20.04-cuda11.8-mmdeploy1.3.1" and venv "absl-py==2.3.1
addict==2.4.0
aenum==3.1.16
albucore==0.0.17
albumentations==1.4.18
aliyun-python-sdk-core==2.16.0
aliyun-python-sdk-kms==2.16.5
annotated-types==0.7.0
attrs==25.3.0
Brotli==1.1.0
cachetools==5.5.2
certifi==2025.7.14
cffi==1.17.1
charset-normalizer==3.4.2
chumpy==0.70
click==8.1.8
colorama==0.4.6
coloredlogs==15.0.1
contourpy==1.1.1
coverage==7.6.1
crcmod==1.7
cryptography==45.0.4
cycler==0.12.1
Cython==3.1.2
dill==0.4.0
eval_type_backport==0.2.2
exceptiongroup==1.3.0
filelock==3.14.0
flake8==7.1.2
flatbuffers==25.2.10
fonttools==4.57.0
fsspec==2025.3.0
future==1.0.0
gmpy2==2.2.1
google-auth==2.40.3
google-auth-oauthlib==1.0.0
grpcio==1.70.0
h2==4.1.0
hpack==4.0.0
humanfriendly==10.0
hyperframe==6.0.1
idna==3.10
imageio==2.35.1
importlib_metadata==8.5.0
importlib_resources==6.4.5
iniconfig==2.1.0
interrogate==1.7.0
isort==4.3.21
Jinja2==3.1.3
jmespath==0.10.0
json-tricks==3.17.3
kiwisolver==1.4.7
lazy_loader==0.4
Mako==1.3.10
Markdown==3.7
markdown-it-py==3.0.0
MarkupSafe==2.1.5
matplotlib==3.7.5
mccabe==0.7.0
mdurl==0.1.2
mmcv==2.1.0
mmdeploy==1.3.1
mmdeploy-runtime-gpu==1.3.1
mmdet==3.3.0
mmengine==0.10.4
mmpose==1.2.0
model-index==0.1.11
mpmath==1.3.0
multiprocess==0.70.18
munkres==1.1.4
myutils==0.0.21
networkx==3.0
numpy==1.24.4
nvidia-cublas-cu11==11.10.3.66
nvidia-cublas-cu12==12.1.3.1
nvidia-cuda-cupti-cu12==12.1.105
nvidia-cuda-nvrtc-cu11==11.7.99
nvidia-cuda-nvrtc-cu12==12.1.105
nvidia-cuda-runtime-cu11==11.7.99
nvidia-cuda-runtime-cu12==12.1.105
nvidia-cudnn-cu11==8.5.0.96
nvidia-cudnn-cu12==9.1.0.70
nvidia-cufft-cu12==11.0.2.54
nvidia-curand-cu12==10.3.2.106
nvidia-cusolver-cu12==11.4.5.107
nvidia-cusparse-cu12==12.1.0.106
nvidia-nccl-cu12==2.20.5
nvidia-nvjitlink-cu12==12.1.105
nvidia-nvtx-cu12==12.1.105
oauthlib==3.3.1
onnx==1.17.0
onnxruntime-gpu==1.15.1
opencv-python==4.11.0.86
opencv-python-headless==4.12.0.88
opendatalab==0.0.10
openmim==0.3.9
openxlab==0.1.2
ordered-set==4.1.0
oss2==2.17.0
packaging==24.2
pandas==2.0.3
parameterized==0.9.0
pillow==10.2.0
platformdirs==4.3.6
pluggy==1.5.0
prettytable==3.11.0
protobuf==3.20.2
py==1.11.0
pyasn1==0.6.1
pyasn1_modules==0.4.2
pycocotools==2.0.7
pycodestyle==2.12.1
pycparser==2.22
pycryptodome==3.23.0
pycuda==2025.1.1
pydantic==2.10.6
pydantic_core==2.27.2
pyflakes==3.2.0
Pygments==2.19.1
pyparsing==3.1.4
PySocks==1.7.1
pytest==8.3.5
pytest-runner==6.0.1
python-dateutil==2.9.0.post0
pytools==2024.1.14
pytz==2023.4
PyWavelets==1.4.1
PyYAML==6.0.2
requests==2.28.2
requests-oauthlib==2.0.0
rich==13.4.2
rsa==4.9.1
scikit-image==0.21.0
scipy==1.10.1
shapely==2.0.7
six==1.17.0
sympy==1.13.3
tabulate==0.9.0
tensorboard==2.14.0
tensorboard-data-server==0.7.2
tensorrt==10.12.0.36
tensorrt-cu12==10.12.0.36
tensorrt-dispatch-cu12==10.12.0.36
tensorrt-lean-cu12==10.12.0.36
tensorrt_cu12_bindings==10.12.0.36
tensorrt_cu12_libs==10.12.0.36
tensorrt_dispatch_cu12_bindings==10.12.0.36
tensorrt_dispatch_cu12_libs==10.12.0.36
tensorrt_lean_cu12_bindings==10.12.0.36
tensorrt_lean_cu12_libs==10.12.0.36
termcolor==2.4.0
terminaltables==3.1.10
tifffile==2023.7.10
tomli==2.2.1
torch==2.4.1
torchvision==0.19.1
tqdm==4.65.2
triton==3.0.0
typing_extensions==4.13.2
tzdata==2025.2
urllib3==1.26.20
wcwidth==0.2.13
Werkzeug==3.0.6
xdoctest==1.2.0
xtcocotools==1.14.3
yapf==0.43.0
zipp==3.20.2
zstandard==0.23.0
"
Error traceback
python3 tools/deploy.py configs/mmpose/pose-detection_tensorrt-fp16_static-384x288.py ../test_config_model.py work_dirs/rtmpose_x_288x384/best_PCK_epoch_200.pth test_img2.jpg --work-dir mmdeploy_models/mmpose/trt --device cuda --dump-info --show
08/21 09:08:53 - mmengine - WARNING - Failed to search registry with scope "mmpose" in the "Codebases" registry tree. As a workaround, the current "Codebases" registry in "mmdeploy" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmpose" is a correct scope, or whether the registry is initialized.
08/21 09:08:53 - mmengine - WARNING - Failed to search registry with scope "mmpose" in the "mmpose_tasks" registry tree. As a workaround, the current "mmpose_tasks" registry in "mmdeploy" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmpose" is a correct scope, or whether the registry is initialized.
08/21 09:08:55 - mmengine - INFO - Start pipeline mmdeploy.apis.pytorch2onnx.torch2onnx in subprocess
08/21 09:08:56 - mmengine - WARNING - Failed to search registry with scope "mmpose" in the "Codebases" registry tree. As a workaround, the current "Codebases" registry in "mmdeploy" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmpose" is a correct scope, or whether the registry is initialized.
08/21 09:08:56 - mmengine - WARNING - Failed to search registry with scope "mmpose" in the "mmpose_tasks" registry tree. As a workaround, the current "mmpose_tasks" registry in "mmdeploy" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmpose" is a correct scope, or whether the registry is initialized.
Loads checkpoint by local backend from path: work_dirs/rtmpose_x_288x384/best_PCK_epoch_200.pth
08/21 09:08:57 - mmengine - WARNING - DeprecationWarning: get_onnx_config will be deprecated in the future.
08/21 09:08:57 - mmengine - INFO - Export PyTorch model to ONNX: mmdeploy_models/mmpose/trt/end2end.onnx.
08/21 09:08:57 - mmengine - WARNING - Can not find torch.nn.functional._scaled_dot_product_attention, function rewrite will not be applied
08/21 09:08:57 - mmengine - WARNING - Can not find mmdet.models.utils.transformer.PatchMerging.forward, function rewrite will not be applied
08/21 09:09:01 - mmengine - INFO - Execute onnx optimize passes.
============= Diagnostic Run torch.onnx.export version 2.0.0+cu118 =============
verbose: False, log level: Level.ERROR
======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ========================
08/21 09:09:02 - mmengine - INFO - Finish pipeline mmdeploy.apis.pytorch2onnx.torch2onnx
08/21 09:09:05 - mmengine - INFO - Start pipeline mmdeploy.apis.utils.utils.to_backend in subprocess
08/21 09:09:05 - mmengine - WARNING - Could not load the library of tensorrt plugins. Because the file does not exist:
[08/21/2025-09:09:05] [TRT] [I] [MemUsageChange] Init CUDA: CPU +18, GPU +0, now: CPU 116, GPU 148 (MiB)
[08/21/2025-09:09:11] [TRT] [I] [MemUsageChange] Init builder kernel library: CPU +1460, GPU +266, now: CPU 1652, GPU 414 (MiB)
[08/21/2025-09:09:11] [TRT] [I] ----------------------------------------------------------------
[08/21/2025-09:09:11] [TRT] [I] Input filename: mmdeploy_models/mmpose/trt/end2end.onnx
[08/21/2025-09:09:11] [TRT] [I] ONNX IR version: 0.0.6
[08/21/2025-09:09:11] [TRT] [I] Opset version: 11
[08/21/2025-09:09:11] [TRT] [I] Producer name: pytorch
[08/21/2025-09:09:11] [TRT] [I] Producer version: 2.0.0
[08/21/2025-09:09:11] [TRT] [I] Domain:
[08/21/2025-09:09:11] [TRT] [I] Model version: 0
[08/21/2025-09:09:11] [TRT] [I] Doc string:
[08/21/2025-09:09:11] [TRT] [I] ----------------------------------------------------------------
[08/21/2025-09:09:12] [TRT] [W] onnx2trt_utils.cpp:374: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.
[08/21/2025-09:09:12] [TRT] [I] Graph optimization time: 0.0681861 seconds.
[08/21/2025-09:09:12] [TRT] [I] Local timing cache in use. Profiling results in this builder pass will not be stored.
[08/21/2025-09:16:34] [TRT] [I] Detected 1 inputs and 2 output network tensors.
[08/21/2025-09:16:35] [TRT] [I] Total Host Persistent Memory: 567712
[08/21/2025-09:16:35] [TRT] [I] Total Device Persistent Memory: 17408
[08/21/2025-09:16:35] [TRT] [I] Total Scratch Memory: 4608
[08/21/2025-09:16:35] [TRT] [I] [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 111 MiB, GPU 100 MiB
[08/21/2025-09:16:35] [TRT] [I] [BlockAssignment] Started assigning block shifts. This will take 289 steps to complete.
[08/21/2025-09:16:35] [TRT] [I] [BlockAssignment] Algorithm ShiftNTopDown took 23.9186ms to assign 8 blocks to 289 nodes requiring 9134592 bytes.
[08/21/2025-09:16:35] [TRT] [I] Total Activation Memory: 9133568
[08/21/2025-09:16:35] [TRT] [W] TensorRT encountered issues when converting weights between types and that could affect accuracy.
[08/21/2025-09:16:35] [TRT] [W] If this is not the desired behavior, please modify the weights or retrain with regularization to adjust the magnitude of the weights.
[08/21/2025-09:16:35] [TRT] [W] Check verbose logs for the list of affected weights.
[08/21/2025-09:16:35] [TRT] [W] - 100 weights are affected by this issue: Detected subnormal FP16 values.
[08/21/2025-09:16:35] [TRT] [W] - 69 weights are affected by this issue: Detected values less than smallest positive FP16 subnormal value and converted them to the FP16 minimum subnormalized value.
[08/21/2025-09:16:35] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in building engine: CPU +97, GPU +100, now: CPU 97, GPU 100 (MiB)
08/21 09:16:36 - mmengine - INFO - Finish pipeline mmdeploy.apis.utils.utils.to_backend
08/21 09:16:37 - mmengine - INFO - visualize tensorrt model start.
08/21 09:16:40 - mmengine - WARNING - Failed to search registry with scope "mmpose" in the "Codebases" registry tree. As a workaround, the current "Codebases" registry in "mmdeploy" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmpose" is a correct scope, or whether the registry is initialized.
08/21 09:16:40 - mmengine - WARNING - Failed to search registry with scope "mmpose" in the "mmpose_tasks" registry tree. As a workaround, the current "mmpose_tasks" registry in "mmdeploy" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmpose" is a correct scope, or whether the registry is initialized.
08/21 09:16:40 - mmengine - WARNING - Failed to search registry with scope "mmpose" in the "backend_segmentors" registry tree. As a workaround, the current "backend_segmentors" registry in "mmdeploy" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmpose" is a correct scope, or whether the registry is initialized.
08/21 09:16:40 - mmengine - WARNING - Could not load the library of tensorrt plugins. Because the file does not exist:
08/21 09:16:41 - mmengine - WARNING - render and display result skipped for headless device, exception No module named 'tkinter'
08/21 09:16:42 - mmengine - INFO - visualize tensorrt model success.
08/21 09:16:42 - mmengine - INFO - visualize pytorch model start.
08/21 09:16:45 - mmengine - WARNING - Failed to search registry with scope "mmpose" in the "Codebases" registry tree. As a workaround, the current "Codebases" registry in "mmdeploy" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmpose" is a correct scope, or whether the registry is initialized.
08/21 09:16:45 - mmengine - WARNING - Failed to search registry with scope "mmpose" in the "mmpose_tasks" registry tree. As a workaround, the current "mmpose_tasks" registry in "mmdeploy" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmpose" is a correct scope, or whether the registry is initialized.
Loads checkpoint by local backend from path: work_dirs/rtmpose_x_288x384/best_PCK_epoch_200.pth
08/21 09:16:47 - mmengine - WARNING - render and display result skipped for headless device, exception No module named 'tkinter'
08/21 09:16:48 - mmengine - INFO - visualize pytorch model success.
08/21 09:16:48 - mmengine - INFO - All process success.
root@f2b64220fba9:/RnD.Pose_CVAT/mmdeploy# python3 tools/test.py configs/mmpose/pose-detection_tensorrt-fp16_static-384x288.py ../test_config_model.py --model mmdeploy_models/mmpose/trt/end2end.engine --device cuda
08/21 09:18:01 - mmengine - WARNING - Failed to search registry with scope "mmpose" in the "Codebases" registry tree. As a workaround, the current "Codebases" registry in "mmdeploy" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmpose" is a correct scope, or whether the registry is initialized.
08/21 09:18:01 - mmengine - WARNING - Failed to search registry with scope "mmpose" in the "mmpose_tasks" registry tree. As a workaround, the current "mmpose_tasks" registry in "mmdeploy" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmpose" is a correct scope, or whether the registry is initialized.
/usr/local/lib/python3.8/dist-packages/mmpose/datasets/datasets/utils.py:102: UserWarning: The metainfo config file "configs/_base_/datasets/coco.py" does not exist. A matched config file "/usr/local/lib/python3.8/dist-packages/mmpose/.mim/configs/_base_/datasets/coco.py" will be used instead.
warnings.warn(
loading annotations into memory...
Done (t=0.04s)
creating index...
index created!
08/21 09:18:01 - mmengine - WARNING - Failed to search registry with scope "mmpose" in the "backend_segmentors" registry tree. As a workaround, the current "backend_segmentors" registry in "mmdeploy" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmpose" is a correct scope, or whether the registry is initialized.
08/21 09:18:01 - mmengine - WARNING - Could not load the library of tensorrt plugins. Because the file does not exist:
08/21 09:18:02 - mmengine - INFO -
------------------------------------------------------------
System environment:
sys.platform: linux
Python: 3.8.10 (default, May 26 2023, 14:05:08) [GCC 9.4.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 1810311327
GPU 0: NVIDIA GeForce RTX 4070 Laptop GPU
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.8, V11.8.89
GCC: x86_64-linux-gnu-gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
PyTorch: 2.0.0+cu118
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.8
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
- CuDNN 8.7
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.15.0+cu118
OpenCV: 4.5.4
MMEngine: 0.10.3
Runtime environment:
dist_cfg: {'backend': 'nccl'}
seed: 1810311327
Distributed launcher: none
Distributed training: False
GPU number: 1
------------------------------------------------------------
08/21 09:18:02 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) RuntimeInfoHook
(BELOW_NORMAL) LoggerHook
--------------------
before_train:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(VERY_LOW ) CheckpointHook
--------------------
before_train_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) DistSamplerSeedHook
--------------------
before_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
--------------------
after_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train_epoch:
(NORMAL ) IterTimerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
before_val:
(VERY_HIGH ) RuntimeInfoHook
--------------------
before_val_epoch:
(NORMAL ) IterTimerHook
--------------------
before_val_iter:
(NORMAL ) IterTimerHook
--------------------
after_val_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_val_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_val:
(VERY_HIGH ) RuntimeInfoHook
--------------------
after_train:
(VERY_HIGH ) RuntimeInfoHook
(VERY_LOW ) CheckpointHook
--------------------
before_test:
(VERY_HIGH ) RuntimeInfoHook
--------------------
before_test_epoch:
(NORMAL ) IterTimerHook
--------------------
before_test_iter:
(NORMAL ) IterTimerHook
--------------------
after_test_iter:
(NORMAL ) IterTimerHook
(NORMAL ) BadCaseAnalysisHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) BadCaseAnalysisHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test:
(VERY_HIGH ) RuntimeInfoHook
--------------------
after_run:
(BELOW_NORMAL) LoggerHook
--------------------
08/21 09:18:02 - mmengine - WARNING - The prefix is not set in metric class PCKAccuracy.
08/21 09:18:02 - mmengine - WARNING - The prefix is not set in metric class AUC.
08/21 09:18:03 - mmengine - INFO - Epoch(test) [ 50/755] eta: 0:00:13 time: 0.0112 data_time: 0.0025 memory: 16
08/21 09:18:03 - mmengine - INFO - Epoch(test) [100/755] eta: 0:00:10 time: 0.0114 data_time: 0.0025 memory: 16
08/21 09:18:04 - mmengine - INFO - Epoch(test) [150/755] eta: 0:00:08 time: 0.0120 data_time: 0.0026 memory: 16
08/21 09:18:05 - mmengine - INFO - Epoch(test) [200/755] eta: 0:00:07 time: 0.0124 data_time: 0.0028 memory: 16
08/21 09:18:05 - mmengine - INFO - Epoch(test) [250/755] eta: 0:00:06 time: 0.0125 data_time: 0.0030 memory: 16
08/21 09:18:06 - mmengine - INFO - Epoch(test) [300/755] eta: 0:00:06 time: 0.0125 data_time: 0.0029 memory: 16
08/21 09:18:06 - mmengine - INFO - Epoch(test) [350/755] eta: 0:00:05 time: 0.0128 data_time: 0.0030 memory: 16
08/21 09:18:07 - mmengine - INFO - Epoch(test) [400/755] eta: 0:00:04 time: 0.0123 data_time: 0.0028 memory: 16
08/21 09:18:08 - mmengine - INFO - Epoch(test) [450/755] eta: 0:00:04 time: 0.0124 data_time: 0.0029 memory: 16
08/21 09:18:08 - mmengine - INFO - Epoch(test) [500/755] eta: 0:00:03 time: 0.0097 data_time: 0.0023 memory: 16
08/21 09:18:09 - mmengine - INFO - Epoch(test) [550/755] eta: 0:00:02 time: 0.0127 data_time: 0.0033 memory: 16
08/21 09:18:10 - mmengine - INFO - Epoch(test) [600/755] eta: 0:00:01 time: 0.0128 data_time: 0.0027 memory: 16
08/21 09:18:10 - mmengine - INFO - Epoch(test) [650/755] eta: 0:00:01 time: 0.0124 data_time: 0.0028 memory: 16
08/21 09:18:11 - mmengine - INFO - Epoch(test) [700/755] eta: 0:00:00 time: 0.0117 data_time: 0.0027 memory: 16
08/21 09:18:11 - mmengine - INFO - Epoch(test) [750/755] eta: 0:00:00 time: 0.0120 data_time: 0.0024 memory: 16
08/21 09:18:11 - mmengine - INFO - Evaluating PCKAccuracy (normalized by ``"bbox_size"``)...
08/21 09:18:11 - mmengine - INFO - Evaluating AUC...
08/21 09:18:12 - mmengine - INFO - Epoch(test) [755/755] PCK: 0.0061 AUC: 0.0052 data_time: 0.0031 time: 0.0127
root@f2b64220fba9:/RnD.Pose_CVAT/mmdeploy# python3 tools/test.py configs/mmpose/pose-detection_onnxruntime_static.py ../test_config_model.py --m
odel mmdeploy_models/mmpose/trt/end2end.onnx
08/21 09:19:07 - mmengine - WARNING - Failed to search registry with scope "mmpose" in the "Codebases" registry tree. As a workaround, the current "Codebases" registry in "mmdeploy" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmpose" is a correct scope, or whether the registry is initialized.
08/21 09:19:07 - mmengine - WARNING - Failed to search registry with scope "mmpose" in the "mmpose_tasks" registry tree. As a workaround, the current "mmpose_tasks" registry in "mmdeploy" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmpose" is a correct scope, or whether the registry is initialized.
/usr/local/lib/python3.8/dist-packages/mmpose/datasets/datasets/utils.py:102: UserWarning: The metainfo config file "configs/_base_/datasets/coco.py" does not exist. A matched config file "/usr/local/lib/python3.8/dist-packages/mmpose/.mim/configs/_base_/datasets/coco.py" will be used instead.
warnings.warn(
loading annotations into memory...
Done (t=0.04s)
creating index...
index created!
08/21 09:19:07 - mmengine - WARNING - Failed to search registry with scope "mmpose" in the "backend_segmentors" registry tree. As a workaround, the current "backend_segmentors" registry in "mmdeploy" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmpose" is a correct scope, or whether the registry is initialized.
08/21 09:19:07 - mmengine - WARNING - The library of onnxruntime custom ops doesnot exist:
08/21 09:19:09 - mmengine - INFO -
------------------------------------------------------------
System environment:
sys.platform: linux
Python: 3.8.10 (default, May 26 2023, 14:05:08) [GCC 9.4.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 915285648
GPU 0: NVIDIA GeForce RTX 4070 Laptop GPU
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.8, V11.8.89
GCC: x86_64-linux-gnu-gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
PyTorch: 2.0.0+cu118
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.8
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
- CuDNN 8.7
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.15.0+cu118
OpenCV: 4.5.4
MMEngine: 0.10.3
Runtime environment:
dist_cfg: {'backend': 'nccl'}
seed: 915285648
Distributed launcher: none
Distributed training: False
GPU number: 1
------------------------------------------------------------
08/21 09:19:09 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) RuntimeInfoHook
(BELOW_NORMAL) LoggerHook
--------------------
before_train:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(VERY_LOW ) CheckpointHook
--------------------
before_train_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) DistSamplerSeedHook
--------------------
before_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
--------------------
after_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train_epoch:
(NORMAL ) IterTimerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
before_val:
(VERY_HIGH ) RuntimeInfoHook
--------------------
before_val_epoch:
(NORMAL ) IterTimerHook
--------------------
before_val_iter:
(NORMAL ) IterTimerHook
--------------------
after_val_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_val_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_val:
(VERY_HIGH ) RuntimeInfoHook
--------------------
after_train:
(VERY_HIGH ) RuntimeInfoHook
(VERY_LOW ) CheckpointHook
--------------------
before_test:
(VERY_HIGH ) RuntimeInfoHook
--------------------
before_test_epoch:
(NORMAL ) IterTimerHook
--------------------
before_test_iter:
(NORMAL ) IterTimerHook
--------------------
after_test_iter:
(NORMAL ) IterTimerHook
(NORMAL ) BadCaseAnalysisHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) BadCaseAnalysisHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test:
(VERY_HIGH ) RuntimeInfoHook
--------------------
after_run:
(BELOW_NORMAL) LoggerHook
--------------------
08/21 09:19:09 - mmengine - WARNING - The prefix is not set in metric class PCKAccuracy.
08/21 09:19:09 - mmengine - WARNING - The prefix is not set in metric class AUC.
08/21 09:19:25 - mmengine - INFO - Epoch(test) [ 50/755] eta: 0:03:45 time: 0.3133 data_time: 0.0028 memory: 0
08/21 09:19:41 - mmengine - INFO - Epoch(test) [100/755] eta: 0:03:33 time: 0.3407 data_time: 0.0026 memory: 0
08/21 09:19:57 - mmengine - INFO - Epoch(test) [150/755] eta: 0:03:14 time: 0.3075 data_time: 0.0024 memory: 0
08/21 09:20:14 - mmengine - INFO - Epoch(test) [200/755] eta: 0:03:00 time: 0.3551 data_time: 0.0025 memory: 0
08/21 09:20:29 - mmengine - INFO - Epoch(test) [250/755] eta: 0:02:42 time: 0.3188 data_time: 0.0026 memory: 0
08/21 09:20:47 - mmengine - INFO - Epoch(test) [300/755] eta: 0:02:28 time: 0.4041 data_time: 0.0026 memory: 0
08/21 09:21:03 - mmengine - INFO - Epoch(test) [350/755] eta: 0:02:11 time: 0.3127 data_time: 0.0025 memory: 0
08/21 09:21:18 - mmengine - INFO - Epoch(test) [400/755] eta: 0:01:55 time: 0.3258 data_time: 0.0026 memory: 0
08/21 09:21:35 - mmengine - INFO - Epoch(test) [450/755] eta: 0:01:38 time: 0.3343 data_time: 0.0027 memory: 0
08/21 09:21:50 - mmengine - INFO - Epoch(test) [500/755] eta: 0:01:22 time: 0.3151 data_time: 0.0026 memory: 0
08/21 09:22:07 - mmengine - INFO - Epoch(test) [550/755] eta: 0:01:06 time: 0.3217 data_time: 0.0026 memory: 0
08/21 09:22:22 - mmengine - INFO - Epoch(test) [600/755] eta: 0:00:50 time: 0.3142 data_time: 0.0027 memory: 0
08/21 09:22:38 - mmengine - INFO - Epoch(test) [650/755] eta: 0:00:33 time: 0.3270 data_time: 0.0026 memory: 0
08/21 09:22:54 - mmengine - INFO - Epoch(test) [700/755] eta: 0:00:17 time: 0.3120 data_time: 0.0027 memory: 0
08/21 09:23:10 - mmengine - INFO - Epoch(test) [750/755] eta: 0:00:01 time: 0.3142 data_time: 0.0025 memory: 0
08/21 09:23:11 - mmengine - INFO - Evaluating PCKAccuracy (normalized by ``"bbox_size"``)...
08/21 09:23:11 - mmengine - INFO - Evaluating AUC...
08/21 09:23:12 - mmengine - INFO - Epoch(test) [755/755] PCK: 0.9733 AUC: 0.7570 data_time: 0.0031 time: 0.3214