Skip to content

Commit 8c4d9dc

Browse files
authored
Bump version to 0.6.0
Bump version to 0.6.0
2 parents dc85144 + fa86dd2 commit 8c4d9dc

File tree

203 files changed

+13243
-505
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

203 files changed

+13243
-505
lines changed

.circleci/test.yml

+17-6
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@ jobs:
6767
command: |
6868
pip install -U openmim
6969
mim install git+https://github.com/open-mmlab/mmengine.git@main
70-
mim install 'mmcv >= 2.0.0rc4'
70+
mim install 'mmcv >= 2.0.0'
7171
mim install git+https://github.com/open-mmlab/[email protected]
7272
pip install -r requirements/albu.txt
7373
pip install -r requirements/tests.txt
@@ -90,16 +90,17 @@ jobs:
9090
name: Run unittests
9191
command: |
9292
export LD_LIBRARY_PATH=/home/circleci/project/onnxruntime-linux-x64-1.8.1/lib:${LD_LIBRARY_PATH}
93-
coverage run --branch --source mmyolo -m pytest tests/
94-
coverage xml
95-
coverage report -m
93+
pytest tests/
94+
# coverage run --branch --source mmyolo -m pytest tests/
95+
# coverage xml
96+
# coverage report -m
9697
build_cuda:
9798
parameters:
9899
torch:
99100
type: string
100101
cuda:
101102
type: enum
102-
enum: ["10.1", "10.2", "11.1", "11.0"]
103+
enum: ["10.1", "10.2", "11.0", "11.7"]
103104
cudnn:
104105
type: integer
105106
default: 7
@@ -125,7 +126,7 @@ jobs:
125126
command: |
126127
docker exec mmyolo pip install -U openmim
127128
docker exec mmyolo mim install -e /mmengine
128-
docker exec mmyolo mim install 'mmcv >= 2.0.0rc4'
129+
docker exec mmyolo mim install 'mmcv >= 2.0.0'
129130
docker exec mmyolo pip install -e /mmdetection
130131
docker exec mmyolo pip install -r requirements/albu.txt
131132
docker exec mmyolo pip install -r requirements/tests.txt
@@ -168,6 +169,9 @@ workflows:
168169
- lint
169170
- build_cpu:
170171
name: maximum_version_cpu
172+
# mmdeploy not supported
173+
# torch: 2.0.0
174+
# torchvision: 0.15.1
171175
torch: 1.12.1
172176
torchvision: 0.13.1
173177
python: 3.9.0
@@ -185,6 +189,13 @@ workflows:
185189
cuda: "10.2"
186190
requires:
187191
- hold
192+
- build_cuda:
193+
name: maximum_version_gpu
194+
torch: 2.0.0
195+
cuda: "11.7"
196+
cudnn: 8
197+
requires:
198+
- hold
188199
merge_stage_test:
189200
when:
190201
not: << pipeline.parameters.lint_only >>

.dev_scripts/gather_models.py

+1
Original file line numberDiff line numberDiff line change
@@ -108,6 +108,7 @@ def get_dataset_name(config):
108108
name_map = dict(
109109
CityscapesDataset='Cityscapes',
110110
CocoDataset='COCO',
111+
PoseCocoDataset='COCO Person',
111112
YOLOv5CocoDataset='COCO',
112113
CocoPanopticDataset='COCO',
113114
YOLOv5DOTADataset='DOTA 1.0',

README.md

+16-15
Original file line numberDiff line numberDiff line change
@@ -77,17 +77,13 @@ English | [简体中文](README_zh-CN.md)
7777

7878
## 🥳 🚀 What's New [🔝](#-table-of-contents)
7979

80-
💎 **v0.5.0** was released on 2/3/2023:
81-
82-
1. Support [RTMDet-R](https://github.com/open-mmlab/mmyolo/blob/dev/configs/rtmdet/README.md#rotated-object-detection) rotated object detection
83-
2. Support for using mask annotation to improve [YOLOv8](https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov8/README.md) object detection performance
84-
3. Support [MMRazor](https://github.com/open-mmlab/mmyolo/blob/dev/configs/razor/subnets/README.md) searchable NAS sub-network as the backbone of YOLO series algorithm
85-
4. Support calling [MMRazor](https://github.com/open-mmlab/mmyolo/blob/dev/configs/rtmdet/distillation/README.md) to distill the knowledge of RTMDet
86-
5. [MMYOLO](https://mmyolo.readthedocs.io/zh_CN/dev/) document structure optimization, comprehensive content upgrade
87-
6. Improve YOLOX mAP and training speed based on RTMDet training hyperparameters
88-
7. Support calculation of model parameters and FLOPs, provide GPU latency data on T4 devices, and update [Model Zoo](https://github.com/open-mmlab/mmyolo/blob/dev/docs/en/model_zoo.md)
89-
8. Support test-time augmentation (TTA)
90-
9. Support RTMDet, YOLOv8 and YOLOv7 assigner visualization
80+
💎 **v0.6.0** was released on 15/8/2023:
81+
82+
- Support YOLOv5 instance segmentation
83+
- Support YOLOX-Pose based on MMPose
84+
- Add 15 minutes instance segmentation tutorial.
85+
- YOLOv5 supports using mask annotation to optimize bbox
86+
- Add Multi-scale training and testing docs
9187

9288
For release history and update details, please refer to [changelog](https://mmyolo.readthedocs.io/en/latest/notes/changelog.html).
9389

@@ -150,7 +146,7 @@ conda activate mmyolo
150146
pip install openmim
151147
mim install "mmengine>=0.6.0"
152148
mim install "mmcv>=2.0.0rc4,<2.1.0"
153-
mim install "mmdet>=3.0.0rc6,<3.1.0"
149+
mim install "mmdet>=3.0.0,<4.0.0"
154150
git clone https://github.com/open-mmlab/mmyolo.git
155151
cd mmyolo
156152
# Install albumentations
@@ -184,6 +180,7 @@ For different parts from MMDetection, we have also prepared user guides and adva
184180
<summary>Recommended Topics</summary>
185181

186182
- [How to contribute code to MMYOLO](docs/en/recommended_topics/contributing.md)
183+
- [Training testing tricks](docs/en/recommended_topics/training_testing_tricks.md)
187184
- [MMYOLO model design](docs/en/recommended_topics/model_design.md)
188185
- [Algorithm principles and implementation](docs/en/recommended_topics/algorithm_descriptions/)
189186
- [Replace the backbone network](docs/en/recommended_topics/replace_backbone.md)
@@ -192,7 +189,7 @@ For different parts from MMDetection, we have also prepared user guides and adva
192189
- [Visualization](docs/en/recommended_topics/visualization.md)
193190
- [Model deployment](docs/en/recommended_topics/deploy/)
194191
- [Troubleshooting steps](docs/en/recommended_topics/troubleshooting_steps.md)
195-
- [MMYOLO industry examples](docs/en/recommended_topics/industry_examples.md)
192+
- [MMYOLO application examples](docs/en/recommended_topics/application_examples/)
196193
- [MM series repo essential basics](docs/en/recommended_topics/mm_basics.md)
197194
- [Dataset preparation and description](docs/en/recommended_topics/dataset_preparation.md)
198195

@@ -204,6 +201,7 @@ For different parts from MMDetection, we have also prepared user guides and adva
204201
- [Resume training](docs/en/common_usage/resume_training.md)
205202
- [Enabling and disabling SyncBatchNorm](docs/en/common_usage/syncbn.md)
206203
- [Enabling AMP](docs/en/common_usage/amp_training.md)
204+
- [Multi-scale training and testing](docs/en/common_usage/ms_training_testing.md)
207205
- [TTA Related Notes](docs/en/common_usage/tta.md)
208206
- [Add plugins to the backbone network](docs/en/common_usage/plugins.md)
209207
- [Freeze layers](docs/en/common_usage/freeze_layers.md)
@@ -283,6 +281,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
283281
<summary><b>Supported Algorithms</b></summary>
284282

285283
- [x] [YOLOv5](configs/yolov5)
284+
- [ ] [YOLOv5u](configs/yolov5/yolov5u) (Inference only)
286285
- [x] [YOLOX](configs/yolox)
287286
- [x] [RTMDet](configs/rtmdet)
288287
- [x] [RTMDet-Rotated](configs/rtmdet)
@@ -405,8 +404,8 @@ This project is released under the [GPL 3.0 license](LICENSE).
405404

406405
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models.
407406
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
408-
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
409-
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
407+
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab pre-training toolbox and benchmark.
408+
- [MMagic](https://github.com/open-mmlab/mmagic): Open**MM**Lab **A**dvanced, **G**enerative and **I**ntelligent **C**reation toolbox.
410409
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
411410
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
412411
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
@@ -424,4 +423,6 @@ This project is released under the [GPL 3.0 license](LICENSE).
424423
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
425424
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
426425
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
426+
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
427427
- [MMEval](https://github.com/open-mmlab/mmeval): OpenMMLab machine learning evaluation library.
428+
- [Playground](https://github.com/open-mmlab/playground): A central hub for gathering and showcasing amazing projects built upon OpenMMLab.

README_zh-CN.md

+18-17
Original file line numberDiff line numberDiff line change
@@ -78,17 +78,13 @@
7878

7979
## 🥳 🚀 最新进展 [🔝](#-table-of-contents)
8080

81-
💎 **v0.5.0** 版本已经在 2023.3.2 发布:
82-
83-
1. 支持了 [RTMDet-R](https://github.com/open-mmlab/mmyolo/blob/dev/configs/rtmdet/README.md#rotated-object-detection) 旋转框目标检测任务和算法
84-
2. [YOLOv8](https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov8/README.md) 支持使用 mask 标注提升目标检测模型性能
85-
3. 支持 [MMRazor](https://github.com/open-mmlab/mmyolo/blob/dev/configs/razor/subnets/README.md) 搜索的 NAS 子网络作为 YOLO 系列算法的 backbone
86-
4. 支持调用 [MMRazor](https://github.com/open-mmlab/mmyolo/blob/dev/configs/rtmdet/distillation/README.md) 对 RTMDet 进行知识蒸馏
87-
5. [MMYOLO](https://mmyolo.readthedocs.io/zh_CN/dev/) 文档结构优化,内容全面升级
88-
6. 基于 RTMDet 训练超参提升 YOLOX 精度和训练速度
89-
7. 支持模型参数量、FLOPs 计算和提供 T4 设备上 GPU 延时数据,并更新了 [Model Zoo](https://github.com/open-mmlab/mmyolo/blob/dev/docs/zh_cn/model_zoo.md)
90-
8. 支持测试时增强 TTA
91-
9. 支持 RTMDet、YOLOv8 和 YOLOv7 assigner 可视化
81+
💎 **v0.6.0** 版本已经在 2023.8.15 发布:
82+
83+
- 支持 YOLOv5 实例分割
84+
- 基于 MMPose 支持 YOLOX-Pose
85+
- 添加 15 分钟的实例分割教程
86+
- YOLOv5 支持使用 mask 标注来优化边界框
87+
- 添加多尺度训练和测试文档
9288

9389
我们提供了实用的**脚本命令速查表**
9490

@@ -108,7 +104,7 @@
108104
| 🌟 | 自定义数据集从标注到部署保姆级教程 | [![Link](https://i2.hdslb.com/bfs/archive/13f566c89a18c9c881713b63ec14da952d4c0b14.jpg@112w_63h_1c.webp)](https://www.bilibili.com/video/BV1RG4y137i5) [![bilibili](https://img.shields.io/badge/dynamic/json?label=views&style=social&logo=bilibili&query=data.stat.view&url=https%3A%2F%2Fapi.bilibili.com%2Fx%2Fweb-interface%2Fview%3Fbvid%3DBV1RG4y137i5)](https://www.bilibili.com/video/BV1JG4y1d7GC) | [自定义数据集从标注到部署保姆级教程](https://github.com/open-mmlab/mmyolo/blob/dev/docs/zh_cn/user_guides/custom_dataset.md) |
109105
| 🌟 | 顶会第一步 · 模块自定义 | [![Link](http://i2.hdslb.com/bfs/archive/5b23d41ac57466824eaf185ef806ef734414e93b.jpg@112w_63h_1c.webp)](https://www.bilibili.com/video/BV1yd4y1j7VD) [![bilibili](https://img.shields.io/badge/dynamic/json?label=views&style=social&logo=bilibili&query=data.stat.view&url=https%3A%2F%2Fapi.bilibili.com%2Fx%2Fweb-interface%2Fview%3Fbvid%3DBV1yd4y1j7VD)](https://www.bilibili.com/video/BV1yd4y1j7VD) | [顶会第一步·模块自定义.ipynb](https://github.com/open-mmlab/OpenMMLabCourse/blob/main/codes/MMYOLO_tutorials/[实用类第四期]顶会第一步·模块自定义.ipynb) |
110106

111-
完整视频列表请参考 [资源汇总页面](https://mmyolo.readthedocs.io/zh_CN/latest/article.html)
107+
完整视频列表请参考 [中文解读资源汇总 - 视频](https://mmyolo.readthedocs.io/zh_CN/latest/get_started/article.html)
112108

113109
发布历史和更新细节请参考 [更新日志](https://mmyolo.readthedocs.io/zh_CN/latest/notes/changelog.html)
114110

@@ -171,7 +167,7 @@ conda activate mmyolo
171167
pip install openmim
172168
mim install "mmengine>=0.6.0"
173169
mim install "mmcv>=2.0.0rc4,<2.1.0"
174-
mim install "mmdet>=3.0.0rc6,<3.1.0"
170+
mim install "mmdet>=3.0.0,<4.0.0"
175171
git clone https://github.com/open-mmlab/mmyolo.git
176172
cd mmyolo
177173
# Install albumentations
@@ -205,6 +201,7 @@ MMYOLO 用法和 MMDetection 几乎一致,所有教程都是通用的,你也
205201
<summary>推荐专题</summary>
206202

207203
- [如何给 MMYOLO 贡献代码](docs/zh_cn/recommended_topics/contributing.md)
204+
- [训练和测试技巧](docs/zh_cn/recommended_topics/training_testing_tricks.md)
208205
- [MMYOLO 模型结构设计](docs/zh_cn/recommended_topics/model_design.md)
209206
- [原理和实现全解析](docs/zh_cn/recommended_topics/algorithm_descriptions/)
210207
- [轻松更换主干网络](docs/zh_cn/recommended_topics/replace_backbone.md)
@@ -213,7 +210,7 @@ MMYOLO 用法和 MMDetection 几乎一致,所有教程都是通用的,你也
213210
- [关于可视化的一切](docs/zh_cn/recommended_topics/visualization.md)
214211
- [模型部署流程](docs/zh_cn/recommended_topics/deploy/)
215212
- [常见错误排查步骤](docs/zh_cn/recommended_topics/troubleshooting_steps.md)
216-
- [MMYOLO 产业范例介绍](docs/zh_cn/recommended_topics/industry_examples.md)
213+
- [MMYOLO 应用范例介绍](docs/zh_cn/recommended_topics/application_examples/)
217214
- [MM 系列 Repo 必备基础](docs/zh_cn/recommended_topics/mm_basics.md)
218215
- [数据集准备和说明](docs/zh_cn/recommended_topics/dataset_preparation.md)
219216

@@ -225,9 +222,10 @@ MMYOLO 用法和 MMDetection 几乎一致,所有教程都是通用的,你也
225222
- [恢复训练](docs/zh_cn/common_usage/resume_training.md)
226223
- [开启和关闭 SyncBatchNorm](docs/zh_cn/common_usage/syncbn.md)
227224
- [开启混合精度训练](docs/zh_cn/common_usage/amp_training.md)
225+
- [多尺度训练和测试](docs/zh_cn/common_usage/ms_training_testing.md)
228226
- [测试时增强相关说明](docs/zh_cn/common_usage/tta.md)
229227
- [给主干网络增加插件](docs/zh_cn/common_usage/plugins.md)
230-
- [冻结指定网络层权重](docs/zh_cn/common_usage/common_usage/freeze_layers.md)
228+
- [冻结指定网络层权重](docs/zh_cn/common_usage/freeze_layers.md)
231229
- [输出模型预测结果](docs/zh_cn/common_usage/output_predictions.md)
232230
- [设置随机种子](docs/zh_cn/common_usage/set_random_seed.md)
233231
- [算法组合替换教程](docs/zh_cn/common_usage/module_combination.md)
@@ -305,6 +303,7 @@ MMYOLO 用法和 MMDetection 几乎一致,所有教程都是通用的,你也
305303
<summary><b>支持的算法</b></summary>
306304

307305
- [x] [YOLOv5](configs/yolov5)
306+
- [ ] [YOLOv5u](configs/yolov5/yolov5u) (仅推理)
308307
- [x] [YOLOX](configs/yolox)
309308
- [x] [RTMDet](configs/rtmdet)
310309
- [x] [RTMDet-Rotated](configs/rtmdet)
@@ -426,8 +425,8 @@ MMYOLO 是一款由来自不同高校和企业的研发人员共同参与贡献
426425

427426
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab 深度学习模型训练基础库
428427
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
429-
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
430-
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱
428+
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab 深度学习预训练工具箱
429+
- [MMagic](https://github.com/open-mmlab/mmagic): OpenMMLab 新一代人工智能内容生成(AIGC)工具箱
431430
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
432431
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
433432
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准
@@ -445,7 +444,9 @@ MMYOLO 是一款由来自不同高校和企业的研发人员共同参与贡献
445444
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱
446445
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
447446
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
447+
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
448448
- [MMEval](https://github.com/open-mmlab/mmeval): OpenMMLab 机器学习算法评测库
449+
- [Playground](https://github.com/open-mmlab/playground): 收集和展示 OpenMMLab 相关的前沿、有趣的社区项目
449450

450451
## ❤️ 欢迎加入 OpenMMLab 社区 [🔝](#-table-of-contents)
451452

configs/_base_/default_runtime.py

+16-7
Original file line numberDiff line numberDiff line change
@@ -25,10 +25,19 @@
2525
load_from = None
2626
resume = False
2727

28-
# file_client_args = dict(
29-
# backend='petrel',
30-
# path_mapping=dict({
31-
# './data/': 's3://openmmlab/datasets/detection/',
32-
# 'data/': 's3://openmmlab/datasets/detection/'
33-
# }))
34-
file_client_args = dict(backend='disk')
28+
# Example to use different file client
29+
# Method 1: simply set the data root and let the file I/O module
30+
# automatically infer from prefix (not support LMDB and Memcache yet)
31+
32+
# data_root = 's3://openmmlab/datasets/detection/coco/'
33+
34+
# Method 2: Use `backend_args`, `file_client_args` in versions
35+
# before MMDet 3.0.0rc6
36+
# backend_args = dict(
37+
# backend='petrel',
38+
# path_mapping=dict({
39+
# './data/': 's3://openmmlab/datasets/detection/',
40+
# 'data/': 's3://openmmlab/datasets/detection/'
41+
# }))
42+
43+
backend_args = None

configs/_base_/det_p5_tta.py

+5-4
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,12 @@
1-
# TODO: Need to solve the problem of multiple file_client_args parameters
2-
# _file_client_args = dict(
1+
# TODO: Need to solve the problem of multiple backend_args parameters
2+
# _backend_args = dict(
33
# backend='petrel',
44
# path_mapping=dict({
55
# './data/': 's3://openmmlab/datasets/detection/',
66
# 'data/': 's3://openmmlab/datasets/detection/'
77
# }))
8-
_file_client_args = dict(backend='disk')
8+
9+
_backend_args = None
910

1011
tta_model = dict(
1112
type='mmdet.DetTTAModel',
@@ -37,7 +38,7 @@
3738
]
3839

3940
tta_pipeline = [
40-
dict(type='LoadImageFromFile', file_client_args=_file_client_args),
41+
dict(type='LoadImageFromFile', backend_args=_backend_args),
4142
dict(
4243
type='TestTimeAug',
4344
transforms=[

0 commit comments

Comments
 (0)