Skip to content

Commit e62c8c4

Browse files
authored
Bump version to 0.4.0
Bump version to 0.4.0
2 parents b0cf073 + d8b1353 commit e62c8c4

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

63 files changed

+2911
-188
lines changed

.circleci/test.yml

Lines changed: 4 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -99,7 +99,7 @@ jobs:
9999
type: string
100100
cuda:
101101
type: enum
102-
enum: ["10.1", "10.2", "11.1","11.0"]
102+
enum: ["10.1", "10.2", "11.1", "11.0"]
103103
cudnn:
104104
type: integer
105105
default: 7
@@ -151,8 +151,7 @@ workflows:
151151

152152
pr_stage_test:
153153
when:
154-
not:
155-
<< pipeline.parameters.lint_only >>
154+
not: << pipeline.parameters.lint_only >>
156155
jobs:
157156
- lint:
158157
name: lint
@@ -164,7 +163,7 @@ workflows:
164163
name: minimum_version_cpu
165164
torch: 1.8.0
166165
torchvision: 0.9.0
167-
python: 3.8.0 # The lowest python 3.6.x version available on CircleCI images
166+
python: 3.8.0 # The lowest python 3.7.x version available on CircleCI images
168167
requires:
169168
- lint
170169
- build_cpu:
@@ -188,8 +187,7 @@ workflows:
188187
- hold
189188
merge_stage_test:
190189
when:
191-
not:
192-
<< pipeline.parameters.lint_only >>
190+
not: << pipeline.parameters.lint_only >>
193191
jobs:
194192
- build_cuda:
195193
name: minimum_version_gpu

.gitignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -115,6 +115,7 @@ data
115115
*.log.json
116116
docs/modelzoo_statistics.md
117117
mmyolo/.mim
118+
output/
118119
work_dirs
119120
yolov5-6.1/
120121

README.md

Lines changed: 70 additions & 44 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
<div align="center">
2-
<img src="resources/mmyolo-logo.png" width="600"/>
2+
<img width="100%" src="https://user-images.githubusercontent.com/27466624/213130448-1f8529fd-2247-4ac4-851c-acd0148a49b9.png"/>
33
<div>&nbsp;</div>
44
<div align="center">
55
<b><font size="5">OpenMMLab website</font></b>
@@ -40,38 +40,31 @@ English | [简体中文](README_zh-CN.md)
4040

4141
</div>
4242

43-
## Introduction
43+
## 📄 Table of Contents
4444

45-
MMYOLO is an open source toolbox for YOLO series algorithms based on PyTorch and [MMDetection](https://github.com/open-mmlab/mmdetection). It is a part of the [OpenMMLab](https://openmmlab.com/) project.
46-
47-
The master branch works with **PyTorch 1.6+**.
48-
<img src="https://user-images.githubusercontent.com/45811724/190993591-bd3f1f11-1c30-4b93-b5f4-05c9ff64ff7f.gif"/>
49-
50-
<details open>
51-
<summary>Major features</summary>
52-
53-
- **Unified and convenient benchmark**
54-
55-
MMYOLO unifies the implementation of modules in various YOLO algorithms and provides a unified benchmark. Users can compare and analyze in a fair and convenient way.
56-
57-
- **Rich and detailed documentation**
58-
59-
MMYOLO provides rich documentation for getting started, model deployment, advanced usages, and algorithm analysis, making it easy for users at different levels to get started and make extensions quickly.
60-
61-
- **Modular Design**
62-
63-
MMYOLO decomposes the framework into different components where users can easily customize a model by combining different modules with various training and testing strategies.
45+
- [🥳 🚀 What's New](#--whats-new-)
46+
- [✨ Highlight](#-highlight-)
47+
- [📖 Introduction](#-introduction-)
48+
- [🛠️ Installation](#%EF%B8%8F-installation-)
49+
- [👨‍🏫 Tutorial](#-tutorial-)
50+
- [📊 Overview of Benchmark and Model Zoo](#-overview-of-benchmark-and-model-zoo-)
51+
- [❓ FAQ](#-faq-)
52+
- [🙌 Contributing](#-contributing-)
53+
- [🤝 Acknowledgement](#-acknowledgement-)
54+
- [🖊️ Citation](#️-citation-)
55+
- [🎫 License](#-license-)
56+
- [🏗️ Projects in OpenMMLab](#%EF%B8%8F-projects-in-openmmlab-)
6457

65-
<img src="https://user-images.githubusercontent.com/27466624/199999337-0544a4cb-3cbd-4f3e-be26-bcd9e74db7ff.jpg" alt="BaseModule-P5"/>
66-
The figure above is contributed by RangeKing@GitHub, thank you very much!
58+
## 🥳 🚀 What's New [🔝](#-table-of-contents)
6759

68-
And the figure of P6 model is in [model_design.md](docs/en/algorithm_descriptions/model_design.md).
60+
💎 **v0.4.0** was released on 18/1/2023:
6961

70-
</details>
62+
1. Implemented [YOLOv8](https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov8/README.md) object detection model, and supports model deployment in [projects/easydeploy](https://github.com/open-mmlab/mmyolo/blob/dev/projects/easydeploy)
63+
2. Added Chinese and English versions of [Algorithm principles and implementation with YOLOv8](https://github.com/open-mmlab/mmyolo/blob/dev/docs/en/algorithm_descriptions/yolov8_description.md)
7164

72-
## What's New
65+
For release history and update details, please refer to [changelog](https://mmyolo.readthedocs.io/en/latest/notes/changelog.html).
7366

74-
### Highlight
67+
### Highlight [🔝](#-table-of-contents)
7568

7669
We are excited to announce our latest work on real-time object recognition tasks, **RTMDet**, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the [technical report](https://arxiv.org/abs/2212.07784). Pre-trained models are [here](configs/rtmdet).
7770

@@ -91,16 +84,36 @@ We are excited to announce our latest work on real-time object recognition tasks
9184

9285
MMYOLO currently only implements the object detection algorithm, but it has a significant training acceleration compared to the MMDeteciton version. The training speed is 2.6 times faster than the previous version.
9386

94-
💎 **v0.3.0** was released on 8/1/2023:
87+
## 📖 Introduction [🔝](#-table-of-contents)
9588

96-
1. Implement fast version of [RTMDet](https://github.com/open-mmlab/mmyolo/blob/dev/configs/rtmdet/README.md). RTMDet-s 8xA100 training takes only 14 hours. The training speed is 2.6 times faster than the previous version.
97-
2. Support [PPYOLOE](https://github.com/open-mmlab/mmyolo/blob/dev/configs/ppyoloe/README.md) training
98-
3. Support `iscrowd` attribute training in [YOLOv5](https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov5/crowdhuman/yolov5_s-v61_8xb16-300e_ignore_crowdhuman.py)
99-
4. Support [YOLOv5 assigner result visualization](https://github.com/open-mmlab/mmyolo/blob/dev/projects/assigner_visualization/README.md)
89+
MMYOLO is an open source toolbox for YOLO series algorithms based on PyTorch and [MMDetection](https://github.com/open-mmlab/mmdetection). It is a part of the [OpenMMLab](https://openmmlab.com/) project.
10090

101-
For release history and update details, please refer to [changelog](https://mmyolo.readthedocs.io/en/latest/notes/changelog.html).
91+
The master branch works with **PyTorch 1.6+**.
92+
<img src="https://user-images.githubusercontent.com/45811724/190993591-bd3f1f11-1c30-4b93-b5f4-05c9ff64ff7f.gif"/>
93+
94+
<details open>
95+
<summary>Major features</summary>
96+
97+
- 🕹️ **Unified and convenient benchmark**
98+
99+
MMYOLO unifies the implementation of modules in various YOLO algorithms and provides a unified benchmark. Users can compare and analyze in a fair and convenient way.
100+
101+
- 📚 **Rich and detailed documentation**
102+
103+
MMYOLO provides rich documentation for getting started, model deployment, advanced usages, and algorithm analysis, making it easy for users at different levels to get started and make extensions quickly.
104+
105+
- 🧩 **Modular Design**
102106

103-
## Installation
107+
MMYOLO decomposes the framework into different components where users can easily customize a model by combining different modules with various training and testing strategies.
108+
109+
<img src="https://user-images.githubusercontent.com/27466624/199999337-0544a4cb-3cbd-4f3e-be26-bcd9e74db7ff.jpg" alt="BaseModule-P5"/>
110+
The figure above is contributed by RangeKing@GitHub, thank you very much!
111+
112+
And the figure of P6 model is in [model_design.md](docs/en/algorithm_descriptions/model_design.md).
113+
114+
</details>
115+
116+
## 🛠️ Installation [🔝](#-table-of-contents)
104117

105118
MMYOLO relies on PyTorch, MMCV, MMEngine, and MMDetection. Below are quick steps for installation. Please refer to the [Install Guide](docs/en/get_started.md) for more detailed instructions.
106119

@@ -119,7 +132,7 @@ pip install -r requirements/albu.txt
119132
mim install -v -e .
120133
```
121134

122-
## Tutorial
135+
## 👨‍🏫 Tutorial [🔝](#-table-of-contents)
123136

124137
MMYOLO is based on MMDetection and adopts the same code structure and design approach. To get better use of this, please read [MMDetection Overview](https://mmdetection.readthedocs.io/en/latest/get_started.html) for the first understanding of MMDetection.
125138

@@ -144,6 +157,8 @@ For different parts from MMDetection, we have also prepared user guides and adva
144157
- [Model design-related instructions](docs/en/algorithm_descriptions/model_design.md)
145158
- [Algorithm principles and implementation](https://mmyolo.readthedocs.io/en/latest/algorithm_descriptions/index.html#algorithm-principles-and-implementation)
146159
- [Algorithm principles and implementation with YOLOv5](docs/en/algorithm_descriptions/yolov5_description.md)
160+
- [Algorithm principles and implementation with RTMDet](docs/en/algorithm_descriptions/rtmdet_description.md)
161+
- [Algorithm principles and implementation with YOLOv8](docs/en/algorithm_descriptions/yolov8_description.md)
147162

148163
- Deployment Guides
149164

@@ -158,7 +173,7 @@ For different parts from MMDetection, we have also prepared user guides and adva
158173
- [How to](docs/en/advanced_guides/how_to.md)
159174
- [Plugins](docs/en/advanced_guides/plugins.md)
160175

161-
## Overview of Benchmark and Model Zoo
176+
## 📊 Overview of Benchmark and Model Zoo [🔝](#-table-of-contents)
162177

163178
Results and models are available in the [model zoo](docs/en/model_zoo.md).
164179

@@ -171,6 +186,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
171186
- [x] [YOLOv6](configs/yolov6)
172187
- [x] [YOLOv7](configs/yolov7)
173188
- [x] [PPYOLOE](configs/ppyoloe)
189+
- [x] [YOLOv8](configs/yolov8)
174190

175191
</details>
176192

@@ -198,16 +214,21 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
198214
<td>
199215
<ul>
200216
<li>YOLOv5CSPDarknet</li>
217+
<li>YOLOv8CSPDarknet</li>
201218
<li>YOLOXCSPDarknet</li>
202219
<li>EfficientRep</li>
203220
<li>CSPNeXt</li>
204221
<li>YOLOv7Backbone</li>
205222
<li>PPYOLOECSPResNet</li>
223+
<li>mmdet backbone</li>
224+
<li>mmcls backbone</li>
225+
<li>timm</li>
206226
</ul>
207227
</td>
208228
<td>
209229
<ul>
210230
<li>YOLOv5PAFPN</li>
231+
<li>YOLOv8PAFPN</li>
211232
<li>YOLOv6RepPAFPN</li>
212233
<li>YOLOXPAFPN</li>
213234
<li>CSPNeXtPAFPN</li>
@@ -218,6 +239,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
218239
<td>
219240
<ul>
220241
<li>IoULoss</li>
242+
<li>mmdet loss</li>
221243
</ul>
222244
</td>
223245
<td>
@@ -232,22 +254,26 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
232254

233255
</details>
234256

235-
## FAQ
257+
## FAQ [🔝](#-table-of-contents)
236258

237259
Please refer to the [FAQ](docs/en/notes/faq.md) for frequently asked questions.
238260

239-
## Contributing
261+
## 🙌 Contributing [🔝](#-table-of-contents)
240262

241263
We appreciate all contributions to improving MMYOLO. Ongoing projects can be found in our [GitHub Projects](https://github.com/open-mmlab/mmyolo/projects). Welcome community users to participate in these projects. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
242264

243-
## Acknowledgement
265+
## 🤝 Acknowledgement [🔝](#-table-of-contents)
244266

245267
MMYOLO is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedback.
246-
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors.
268+
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to re-implement existing methods and develop their own new detectors.
269+
270+
<div align="center">
271+
<a href="https://github.com/open-mmlab/mmyolo/graphs/contributors"><img src="https://contrib.rocks/image?repo=open-mmlab/mmyolo"/></a>
272+
</div>
247273

248-
## Citation
274+
## 🖊️ Citation [🔝](#-table-of-contents)
249275

250-
If you find this project useful in your research, please consider cite:
276+
If you find this project useful in your research, please consider citing:
251277

252278
```latex
253279
@misc{mmyolo2022,
@@ -258,11 +284,11 @@ If you find this project useful in your research, please consider cite:
258284
}
259285
```
260286

261-
## License
287+
## 🎫 License [🔝](#-table-of-contents)
262288

263289
This project is released under the [GPL 3.0 license](LICENSE).
264290

265-
## Projects in OpenMMLab
291+
## 🏗️ Projects in OpenMMLab [🔝](#-table-of-contents)
266292

267293
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models.
268294
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.

0 commit comments

Comments
 (0)