forked from patham9/NarsGPT
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathMemory.py
455 lines (428 loc) · 21.2 KB
/
Memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
"""
* The MIT License
*
* Copyright 2023 Patrick Hammer.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
* """
from ast import literal_eval
from os.path import exists
import json
import sys
import os
cwd = os.getcwd()
sys.path.append(cwd + "/OpenNARS-for-Applications/misc/Python/")
os.chdir(cwd + "/OpenNARS-for-Applications/misc/Python/")
import NAR
os.chdir(cwd)
from Truth import *
import time
import nltk
import numpy as np
from nltk import WordNetLemmatizer
from nltk.corpus import wordnet
nltk.download('wordnet', quiet=True)
nltk.download('omw-1.4', quiet=True)
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
def get_embedding(client, text, model="text-embedding-3-large"): # model = "deployment_name"
return client.embeddings.create(input = [text], model=model).data[0].embedding
Print = False
def SetPrint(Flag):
global Print
Print = Flag
def GetPrint():
return Print
def ReplaceEncode(word):
if word.endswith("encode") and len(word) > 6: #no idea why GPT adds Encode at the end for new words
word = word[:-6]
return word
def MergeInto(RET_DICT, ret):
for key in ret:
if key in RET_DICT and key != "reason": #list (only last reason is returned, consistent with NAR.py)
RET_DICT[key] = RET_DICT[key] + ret[key]
else:
RET_DICT[key] = ret[key]
def get_embedding_robust(client, inp):
while True:
try:
ret = get_embedding(client, inp)
except Exception as e:
print("//Failed get embedding, will retry API call in 10s", e)
time.sleep(10)
continue
break
return ret
def ProductPrettify(term):
if " --> " in term and " * " in term.split(" --> ")[0]:
arg1 = term.split(" * ")[0].strip()
arg2 = term.split(" * ")[1].split(" --> ")[0].strip()
relarg = term.split(" --> ")[1].strip()
term = arg1 + " " + relarg + " " + arg2
return term.replace("(","").replace(")","")
def Term_AsSentence(T):
term = T[1:-1] if "<" in T else T
if "=/>" not in term:
term = ProductPrettify(term)
else:
if " =/> " in term:
prec_op = [ProductPrettify(p) for p in term.split(" =/> ")[0].split(" &/ ")]
removeParentheses = lambda u: u.replace(" --> ["," hasproperty ").replace(" --> "," isa ").replace(" - ", " and not ").replace("(",""). \
replace("<","").replace(")","").replace(">","").replace(" "," ").strip()
precs = removeParentheses(" and when then ".join(prec_op[:-1]))
op = prec_op[-1]
if " --> " in op:
op = removeParentheses(prec_op[-1].split(" --> ")[1] + " " + prec_op[-1].split(" --> ")[0]).replace("{SELF} *", "")
term = "When '" + precs + "' then '" + removeParentheses(op) + "' causes '" + removeParentheses(term.split(" =/> ")[1]) + "'"
term = term.replace(" --> [", " hasproperty ").replace("]","").replace("[","").replace(" --> ", " isa ").replace(" &/ ", " then ").replace(" =/> ", " causes ")
return term.replace(" + ", " ")
def Term_Embedded(client, T):
return get_embedding_robust(client, Term_AsSentence(T).replace("-"," ").replace("_"," "))
def RetrieveQuestionRelatedBeliefs(client, memory, view, inp, max_LTM_retrievals=30):
primed = {}
qu_embed = get_embedding_robust(client, inp)
for m in list(memory.items()):
if m not in view:
matchQuality = cosine_similarity(qu_embed, m[1][4])
primed[m[0]] = (matchQuality, m[1])
primed = list(primed.items())
primed.sort(key=lambda x: (-x[1][0], -Truth_Expectation(x[1][1][2]))) #sort by query match first then by truth expectation
primed = primed[:max_LTM_retrievals]
#for m in primed:
# print("//Retrieved from LTM:", m[0], m[1][:-1])
primed = [(x[0],x[1][1]) for x in primed]
return list(reversed(primed))
def Memory_view(client, memory, relevantViewSize, recentViewSize, inpQuestion = None):
view=[]
recent_item_list = list(memory.items())
#find recentViewSize items:
recent_item_list.sort(key=lambda x: -x[1][0])
view += reversed(recent_item_list[0:recentViewSize]) #newer comes later in prompt
if inpQuestion is not None:
view = RetrieveQuestionRelatedBeliefs(client, memory, view, inpQuestion, relevantViewSize) + view
return view
def Memory_generate_prompt(client, currentTime, memory, prompt_start, prompt_end, relevantViewSize, recentViewSize, inpQuestion = None):
prompt_memory = ""
buf = Memory_view(client, memory, relevantViewSize, recentViewSize, inpQuestion)
if len(buf) == 0:
prompt_memory = "EMPTY!"
for i,x in enumerate(buf):
time = x[0][1]
(f,c) = x[1][2]
timeterm = ""
if time != "eternal":
timeterm = "time=" + str(time) + " "
(f,c) = Truth_Projection((f,c), float(time), float(currentTime))
term = Term_AsSentence(x[0][0])
if f < 0.5:
words = term.split(" ")
term = (words[0] + " not " + " ".join(words[1:])).replace(" not isa ", " is not a ").replace(" isa ", " is a ")
prompt_memory += f"i={i}: {term}. {timeterm}confidence={c}\n"
return buf, prompt_start + prompt_memory + prompt_end
lemma = WordNetLemmatizer()
def Lemmatize(word, tag):
global used_verbs
word = ReplaceEncode(word.lower().replace(" ", "_").replace("-","_"))
if "_" in word and tag == wordnet.NOUN:
parts = word.split("_")
lastpart = lemma.lemmatize(parts[-1], pos = tag).strip().lower().replace(" ","_").replace("-","_")
ret = "_".join(parts[:-1]) + "_" + lastpart
else:
ret = lemma.lemmatize(word.lower(), pos = tag).strip().lower().replace(" ","_").replace("-","_")
if tag == wordnet.VERB:
if ret == "is" or ret == "isa" or ret == "is_a" or ret == "be" or ret == "are" or ret == "were" or ret == "arelike" or ret == "islike":
return "isa"
return ret
def Atomize(client, atom, atoms, pos, atomCreationThreshold):
splitter = ";;"
key = atom + splitter + str(pos)
atomembedding = atoms[key] if key in atoms else get_embedding_robust(client, atom)
closest_atom = None
closest_quality = None
for key2 in atoms:
atom2, pos2 = key2.split(splitter)
if pos2 == pos:
embedding = atoms[key2]
matchQuality = cosine_similarity(atomembedding, embedding)
#print("!!!", atom2, atom, matchQuality)
if closest_atom is None or matchQuality > closest_quality:
closest_atom = atom2
closest_quality = matchQuality
if closest_quality is None or closest_quality < atomCreationThreshold:
ret = atom
atoms[key] = atomembedding
else:
#print(f"REPLACED {atom} with {closest_atom} matchVal={matchQuality}")
ret = closest_atom
return ret
retrieved = set([])
def Allow_requery_if_not_in_ONA(RET_DICT, term, time):
#check if previously queried item is not in ONA memory anymore else we need
#to set it up for re-query by removing it from retrieved
if (term, time) in retrieved:
ret = NAR.AddInput(term + "?", Print=Print)
MergeInto(RET_DICT, ret)
if "answers" in ret and ret["answers"]:
answer = ret["answers"][0]
if "truth" not in answer and answer["term"] == "None":
retrieved.remove(term, time)
def query(client, RET_DICT, currentTime, memory, term, time):
global retrieved
if time != "eternal":
return currentTime
Allow_requery_if_not_in_ONA(RET_DICT, term, time)
if (term, time) not in retrieved and (term, time) in memory:
retrieved.add((term, time))
(_, _, (f, c), stamp, _) = memory[(term, time)]
NAR.AddInput("*stampimport=" + str(stamp), Print=Print)
if time == "eternal":
_, currentTime = ProcessInput(client, RET_DICT, currentTime, memory, f"{term}. {{{f} {c}}}")
if "?1" in term: #simple query matching
parts = term.split("?1")
bestTerm, bestTruth, bestTime, bestStamp = (None, (0.0, 0.5), "eternal", [])
for (term2, time2) in memory:
(_, _, (f2, c2), stamp, _) = memory[(term2, time2)]
if time2 == "eternal" and term2.startswith(parts[0]) and term2.endswith(parts[1]):
if Truth_Expectation((f2, c2)) > Truth_Expectation((bestTruth[0], bestTruth[1])):
bestTerm = term2
bestTruth = (f2, c2)
bestTime = time2
bestStamp = stamp
if bestTerm is not None:
Allow_requery_if_not_in_ONA(bestTerm, time)
if bestTerm is not None and (bestTerm, bestTime) not in retrieved:
retrieved.add((bestTerm, bestTime))
NAR.AddInput("*stampimport=" + str(bestStamp), Print=Print)
if bestTime == "eternal":
_, currentTime = ProcessInput(client, RET_DICT, currentTime, memory, f"{bestTerm}. {{{bestTruth[0]} {bestTruth[1]}}}")
retrieved.add((term, time))
return currentTime
def ProcessInput(client, RET_DICT, currentTime, memory, inputforNAR, backups = ["input", "answers", "derivations"]):
ret = NAR.AddInput(inputforNAR, Print=Print)
MergeInto(RET_DICT, ret)
TestedCausalHypotheses = []
for execution in ret["executions"]:
reason = ""
desire = 0.0
if "reason" in ret and ret["reason"] is not None:
reason = ret["reason"]["hypothesis"]
desire = ret["reason"]["desire"]
TestedCausalHypotheses.append(ret["reason"]["hypothesis"])
print(execution, "expectation="+str(desire), reason)
for backup in backups:
it = ret[backup] + TestedCausalHypotheses if backup == "input" else ret[backup] #append causal hypotheses to be added to memory!
for derivation in it:
if derivation["punctuation"] == "." and derivation["term"] != "None":
term = derivation["term"]
Continue = False
for forbidden in [" /1 ", " \\1 ", " /2 ", " \\2 ", " & ", " | ", " ~ ", " - ", " <=> ", " && ", " || ", " ==> ", " <-> ", " =/> ", " . "]:
if forbidden in term and derivation not in TestedCausalHypotheses:
Continue = True
if Continue:
continue
if term.startswith("dt="): #we don't need to store time deltas
term = " ".join(term.split(" ")[1:])
if term.startswith("<[") or (" --> " in term and " * " in term.split(" --> ")[1]):
continue
time = derivation["occurrenceTime"]
stamp = derivation["Stamp"]
if str(time).isdigit():
time = int(time)
currentTime = query(client, RET_DICT, currentTime, memory, term, time)
f2 = float(derivation["truth"]["frequency"])
c2 = float(derivation["truth"]["confidence"])
usefulnessAddition = 1000000 if "Priority" not in derivation or derivation["Priority"] == 1.0 else 1
if (term, time) in memory:
(t, usefulness, (f, c), _, embedding) = memory[(term, time)]
if c2 > c:
memory[(term, time)] = (currentTime, usefulness + usefulnessAddition, (f2, c2), stamp, embedding)
else:
#optimization: if there is already an eternalized version with the same term, use that embedding:
if (term, "eternal") in memory:
embedding = memory[(term, "eternal")][4]
else:
embedding = Term_Embedded(client, term)
#now where we got the embedding too, make entry to memory:
memory[(term, time)] = (currentTime, usefulnessAddition, (f2, c2), stamp, embedding)
if ">." in inputforNAR or "! :|:" in inputforNAR or ". :|:" in inputforNAR:
currentTime += 1
if inputforNAR.isdigit():
currentTime += int(inputforNAR)
return ret, currentTime
def notIncluded(word, inp):
word = ReplaceEncode(word)
return word.replace("_", " ") not in inp.replace(". "," ").replace("'","")
relations = set(["isa", "are", "hasproperty"])
def Relation(client, RET_DICT, inp, currentTime, memory, atoms, s, v, p, punctuation_tv, ImportGPTKnowledge, atomCreationThreshold):
global relations
sentence = ""
if not ImportGPTKnowledge and (notIncluded(s, inp) or notIncluded(p, inp)):
#print("//!!!! filtered out", s, v, p)
return False, currentTime, sentence
s = Atomize(client, Lemmatize(s, wordnet.NOUN), atoms, "NOUN", atomCreationThreshold)
p = Atomize(client, Lemmatize(p, wordnet.NOUN), atoms, "NOUN", atomCreationThreshold)
v = Atomize(client, Lemmatize(v, wordnet.VERB), atoms, "VERB", atomCreationThreshold)
relations.add(v)
if s == "" or v == "" or p == "":
return False, currentTime, sentence
if v == "isa" or v == "are":
if s == p:
return False, currentTime, sentence
sentence = f"<{s} --> {p}>" + punctuation_tv
_, currentTime = ProcessInput(client, RET_DICT, currentTime, memory, sentence)
else:
sentence = f"<({s} * {p}) --> {v}>" + punctuation_tv
_, currentTime = ProcessInput(client, RET_DICT, currentTime, memory, sentence)
return True, currentTime, sentence
def Property(client, RET_DICT, inp, currentTime, memory, atoms, s, p, punctuation_tv, ImportGPTKnowledge, atomCreationThreshold):
sentence = ""
if not ImportGPTKnowledge and (notIncluded(s, inp) or notIncluded(p, inp)):
#print("//!!!! filtered out", s, "hasproperty", p)
return False, currentTime, sentence
s = Atomize(client, Lemmatize(s, wordnet.NOUN), atoms, "NOUN", atomCreationThreshold)
p = Atomize(client, Lemmatize(p, wordnet.ADJ), atoms, "ADJ", atomCreationThreshold)
if s == "" or p == "" or s == p:
return False, currentTime, sentence
sentence = f"<{s} --> [{p}]>" + punctuation_tv
_, currentTime = ProcessInput(client, RET_DICT, currentTime, memory, sentence)
return True, currentTime, sentence
lastTime = 0
hadRelation = set([])
def Memory_digest_sentence(client, RET_DICT, inp, currentTime, memory, atoms, sentence, truth, userGoal, PrintMemoryUpdates, TimeHandling, ImportGPTKnowledge, atomCreationThreshold):
global lastTime, hadRelation
#print(">>>>", sentence)
if currentTime != lastTime:
hadRelation = set([])
if sentence in hadRelation:
return False, currentTime, ""
lastTime = currentTime
pieces = [x.strip().replace(" ","_") for x in sentence.split(",")]
punctuation = "!" if userGoal else "."
punctuation_tv = f"{punctuation} :|: {{{truth[0]} {truth[1]}}}" if TimeHandling else f"{punctuation} {{{truth[0]} {truth[1]}}}"
if len(pieces) == 3:
if pieces[1] == "hasproperty":
return Property(client, RET_DICT, inp, currentTime, memory, atoms, pieces[0], pieces[2], punctuation_tv, ImportGPTKnowledge, atomCreationThreshold)
else:
return Relation(client, RET_DICT, inp, currentTime, memory, atoms, *pieces, punctuation_tv, ImportGPTKnowledge, atomCreationThreshold)
else:
#print("//!!!! Can't form relation:", pieces)
return False, currentTime, ""
def Memory_load(filename):
memory = {} #the NARS-style long-term memory
atoms = dict({}) #atom to embedding mapping
currentTime = 1
if exists(filename):
with open(filename) as json_file:
print("//Loaded memory content from", filename)
(mt, currentTime) = json.load(json_file)
memory = {literal_eval(k): v for k, v in mt.items()}
atomfile = filename.replace(".json", "_atoms.json")
with open(atomfile) as json_file:
print("//Loaded atoms with embeddings from", filename)
atoms = json.load(json_file)
maxBaseId = 0
for key in memory:
maxBaseId = max([maxBaseId] + memory[key][3])
return (memory, atoms, currentTime, maxBaseId)
def Memory_store(filename, memory, atoms, currentTime):
with open(filename, 'w') as f:
json.dump(({str(k): v for k, v in memory.items()}, currentTime), f)
atomfile = filename.replace(".json", "_atoms.json")
with open(atomfile, 'w') as f:
json.dump(atoms, f)
def Memory_QuestionPriming(client, RET_DICT, currentTime, cmd, memory, buf):
#1. get all memory index references
indexrefs = [x+" " for x in cmd.replace("i=", "item ").split("item ")]
indices=[]
for valstr in indexrefs:
curdigits = ""
i = 0
while i<len(valstr):
if valstr[i].isdigit():
curdigits += valstr[i]
else:
if curdigits.isdigit():
indices.append(int(curdigits))
curdigits = ""
if valstr[i] != "," and valstr[i] != "-":
break
i += 1
#2. check if they are in buf and prime ONA's memory with the question which will activate the concepts:
for index in indices:
if index >= 0 and index < len(buf):
item = buf[index]
query(client, RET_DICT, currentTime, memory, item[0][0], item[0][1])
def Memory_Eternalize(currentTime, memory, eternalizationDistance):
deletes = []
additions = []
for (m, t) in memory:
belief = memory[(m, t)]
if t != "eternal" and currentTime - t > eternalizationDistance:
previous_lastUsed = 0
previous_useCount = 0
if (m, "eternal") in memory:
belief_old = memory[(m, "eternal")]
previous_lastUsed = belief_old[0]
previous_useCount = belief_old[1]
deletes.append((m, t))
#Get belief truth from ONA
answers = NAR.AddInput(m + "?", Print=Print)["answers"]
if answers and "truth" in answers[0]:
f,c = float(answers[0]["truth"]["frequency"]), float(answers[0]["truth"]["confidence"])
stamp = answers[0]["Stamp"]
additions.append(((m, "eternal"), (max(previous_lastUsed, belief[0]), previous_useCount + belief[1], (f,c), stamp, belief[4])))
for k in deletes:
del memory[k]
for (k, v) in additions:
memory[k] = v
def Memory_inject_commands(client, RET_DICT, inp, buf, currentTime, memory, atoms, cmd, userQuestion, userGoal, PrintAnswer, PrintMemoryUpdates, PrintTruthValues, QuestionPriming, TimeHandling, ImportGPTKnowledge, atomCreationThreshold):
AlreadyExecuted = set([])
for x in cmd:
if len(x) < 3:
continue
if x[1] == "." and x[2] == " ": #1. Deduce( (it often outputs in a list like that)
x = " ".join(x.split(" ")[1:])
if "#" in x:
x = x.split("#")[0].strip()
if x in AlreadyExecuted or "hasproperty none" in x.lower() or "isa none" in x.lower() \
or "none hasproperty" in x.lower() or "none isa" in x.lower(): #avoids some none calls
continue
AlreadyExecuted.add(x)
truth = (1.0, 0.9)
systemQuestion = x.startswith("Question(")
if userQuestion or systemQuestion:
if PrintAnswer:
print(x)
isNegated = False
if x.startswith("NegatedRelationClaim") or x.startswith("NegatedPropertyClaim"):
isNegated = True
x = x[7:].replace(" ", " ") #.replace('"', "").replace("'", "")
truth = (0.0, 0.9)
if x.startswith("RelationClaim") or x.startswith("PropertyClaim"):
x = x.replace(" ", " ") #.replace('"', "").replace("'", "")
isInput = x.startswith("RelationClaim(") or x.startswith("PropertyClaim(")
if isInput and ")" in x:
sentence = x.split("(")[1].split(")")[0].replace('"','').replace("'","").replace(".", "").lower()
digested, currentTime, retsentence = Memory_digest_sentence(client, RET_DICT, inp, currentTime, memory, atoms, sentence, truth, userGoal, PrintMemoryUpdates, TimeHandling, ImportGPTKnowledge, atomCreationThreshold) #currentTime updated
if digested and PrintAnswer:
printsentence = retsentence if isInput else x
print(printsentence)
if userQuestion and QuestionPriming:
Memory_QuestionPriming(client, RET_DICT, currentTime, "\n".join(cmd), memory, buf)
return currentTime