-
Notifications
You must be signed in to change notification settings - Fork 214
/
Copy pathtest_utils.hpp
1068 lines (965 loc) · 44.7 KB
/
test_utils.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//*****************************************************************************
// Copyright 2020-2021 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <filesystem>
#include <functional>
#include <map>
#include <memory>
#include <optional>
#include <sstream>
#include <string>
#include <thread>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <spdlog/spdlog.h>
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wall"
#include "tensorflow_serving/apis/prediction_service.grpc.pb.h"
#pragma GCC diagnostic pop
#include "../capi_frontend/inferencerequest.hpp"
#include "../capi_frontend/inferenceresponse.hpp"
#include "../config.hpp"
#include "../dags/node_library.hpp"
#include "../execution_context.hpp"
#include "../kfs_frontend/kfs_grpc_inference_service.hpp"
#include "../kfs_frontend/kfs_utils.hpp"
#if (MEDIAPIPE_DISABLE == 0)
#include "../mediapipe_internal/mediapipegraphdefinition.hpp"
#include "../mediapipe_internal/mediapipegraphexecutor.hpp"
#endif
#include "../metric_registry.hpp"
#include "../modelinstance.hpp"
#include "../modelmanager.hpp"
#include "../shape.hpp"
#include "../status.hpp"
#include "../tensorinfo.hpp"
#if (PYTHON_DISABLE == 0)
#include "../python/pythonnoderesources.hpp"
#endif
using inputs_info_t = std::map<std::string, std::tuple<ovms::signed_shape_t, ovms::Precision>>;
const std::string& getGenericFullPathForSrcTest(const std::string& linuxPath, bool logChange = true);
const std::string& getGenericFullPathForSrcTest(const char* linuxPath, bool logChange = true);
const std::string& getGenericFullPathForTmp(const std::string& linuxPath, bool logChange = true);
const std::string& getGenericFullPathForTmp(const char* linuxPath, bool logChange = true);
const std::string& getGenericFullPathForBin(const std::string& linuxPath, bool logChange = true);
void adjustConfigForTargetPlatform(std::string& input);
const std::string& adjustConfigForTargetPlatformReturn(std::string& input);
const std::string dummy_model_location = getGenericFullPathForSrcTest(std::filesystem::current_path().u8string() + "/src/test/dummy", false);
const std::string dummy_fp64_model_location = getGenericFullPathForSrcTest(std::filesystem::current_path().u8string() + "/src/test/dummy_fp64", false);
const std::string sum_model_location = getGenericFullPathForSrcTest(std::filesystem::current_path().u8string() + "/src/test/add_two_inputs_model", false);
const std::string increment_1x3x4x5_model_location = getGenericFullPathForSrcTest(std::filesystem::current_path().u8string() + "/src/test/increment_1x3x4x5", false);
const std::string passthrough_model_location = getGenericFullPathForSrcTest(std::filesystem::current_path().u8string() + "/src/test/passthrough", false);
const std::string passthrough_string_model_location = getGenericFullPathForSrcTest(std::filesystem::current_path().u8string() + "/src/test/passthrough_string", false);
const std::string dummy_saved_model_location = getGenericFullPathForSrcTest(std::filesystem::current_path().u8string() + "/src/test/dummy_saved_model", false);
const std::string dummy_tflite_location = getGenericFullPathForSrcTest(std::filesystem::current_path().u8string() + "/src/test/dummy_tflite", false);
const std::string scalar_model_location = getGenericFullPathForSrcTest(std::filesystem::current_path().u8string() + "/src/test/scalar", false);
const std::string no_name_output_model_location = getGenericFullPathForSrcTest(std::filesystem::current_path().u8string() + "/src/test/no_name_output", false);
const ovms::ModelConfig DUMMY_MODEL_CONFIG{
"dummy",
dummy_model_location, // base path
"CPU", // target device
"1", // batchsize
1, // NIREQ
false, // is stateful
true, // idle sequence cleanup enabled
false, // low latency transformation enabled
500, // stateful sequence max number
"", // cache directory
1, // model_version unused since version are read from path
dummy_model_location, // local path
};
const ovms::ModelConfig DUMMY_FP64_MODEL_CONFIG{
"dummy_fp64",
dummy_fp64_model_location, // base path
"CPU", // target device
"1", // batchsize
1, // NIREQ
false, // is stateful
true, // idle sequence cleanup enabled
false, // low latency transformation enabled
500, // stateful sequence max number
"", // cache directory
1, // model_version unused since version are read from path
dummy_fp64_model_location, // local path
};
const ovms::ModelConfig SUM_MODEL_CONFIG{
"sum",
sum_model_location, // base path
"CPU", // target device
"1", // batchsize
1, // NIREQ
false, // is stateful
true, // idle sequence cleanup enabled
false, // low latency transformation enabled
500, // stateful sequence max number
"", // cache directory
1, // model_version unused since version are read from path
sum_model_location, // local path
};
const ovms::ModelConfig INCREMENT_1x3x4x5_MODEL_CONFIG{
"increment_1x3x4x5",
increment_1x3x4x5_model_location, // base path
"CPU", // target device
"1", // batchsize
1, // NIREQ
false, // is stateful
true, // idle sequence cleanup enabled
false, // low latency transformation enabled
500, // stateful sequence max number
"", // cache directory
1, // model_version unused since version are read from path
increment_1x3x4x5_model_location, // local path
};
const ovms::ModelConfig PASSTHROUGH_MODEL_CONFIG{
"passthrough",
passthrough_model_location, // base path
"CPU", // target device
"1", // batchsize
1, // NIREQ
false, // is stateful
true, // idle sequence cleanup enabled
false, // low latency transformation enabled
500, // stateful sequence max number
"", // cache directory
1, // model_version unused since version are read from path
passthrough_model_location, // local path
};
const ovms::ModelConfig NATIVE_STRING_MODEL_CONFIG{
"passthrough_string",
passthrough_string_model_location, // base path
"CPU", // target device
"", // batchsize
1, // NIREQ
false, // is stateful
true, // idle sequence cleanup enabled
false, // low latency transformation enabled
500, // stateful sequence max number
"", // cache directory
1, // model_version unused since version are read from path
passthrough_string_model_location, // local path
};
const ovms::ModelConfig DUMMY_SAVED_MODEL_CONFIG{
"dummy_saved_model",
dummy_saved_model_location, // base path
"CPU", // target device
"1", // batchsize
1, // NIREQ
false, // is stateful
true, // idle sequence cleanup enabled
false, // low latency transformation enabled
500, // stateful sequence max number
"", // cache directory
1, // model_version unused since version are read from path
dummy_saved_model_location, // local path
};
const ovms::ModelConfig DUMMY_TFLITE_CONFIG{
"dummy_tflite",
dummy_tflite_location, // base path
"CPU", // target device
"1", // batchsize
1, // NIREQ
false, // is stateful
true, // idle sequence cleanup enabled
false, // low latency transformation enabled
500, // stateful sequence max number
"", // cache directory
1, // model_version unused since version are read from path
dummy_tflite_location, // local path
};
const ovms::ModelConfig SCALAR_MODEL_CONFIG{
"scalar",
scalar_model_location, // base path
"CPU", // target device
"", // batchsize needs to be empty to emulate missing --batch_size param
1, // NIREQ
false, // is stateful
true, // idle sequence cleanup enabled
false, // low latency transformation enabled
500, // stateful sequence max number
"", // cache directory
1, // model_version unused since version are read from path
scalar_model_location, // local path
};
const ovms::ModelConfig NO_NAME_MODEL_CONFIG{
"no_name_output",
no_name_output_model_location, // base path
"CPU", // target device
"1", // batchsize
1, // NIREQ
false, // is stateful
true, // idle sequence cleanup enabled
false, // low latency transformation enabled
500, // stateful sequence max number
"", // cache directory
1, // model_version unused since version are read from path
no_name_output_model_location, // local path
};
constexpr const char* DUMMY_MODEL_INPUT_NAME = "b";
constexpr const char* DUMMY_MODEL_OUTPUT_NAME = "a";
constexpr const int DUMMY_MODEL_INPUT_SIZE = 10;
constexpr const int DUMMY_MODEL_OUTPUT_SIZE = 10;
constexpr const float DUMMY_ADDITION_VALUE = 1.0;
const ovms::signed_shape_t DUMMY_MODEL_SHAPE{1, 10};
const ovms::Shape DUMMY_MODEL_SHAPE_META{1, 10};
constexpr const char* DUMMY_FP64_MODEL_INPUT_NAME = "input:0";
constexpr const char* DUMMY_FP64_MODEL_OUTPUT_NAME = "output:0";
constexpr const char* SUM_MODEL_INPUT_NAME_1 = "input1";
constexpr const char* SUM_MODEL_INPUT_NAME_2 = "input2";
constexpr const char* SUM_MODEL_OUTPUT_NAME = "sum";
constexpr const int SUM_MODEL_INPUT_SIZE = 10;
constexpr const int SUM_MODEL_OUTPUT_SIZE = 10;
constexpr const char* INCREMENT_1x3x4x5_MODEL_INPUT_NAME = "input";
constexpr const char* INCREMENT_1x3x4x5_MODEL_OUTPUT_NAME = "output";
constexpr const float INCREMENT_1x3x4x5_ADDITION_VALUE = 1.0;
constexpr const char* PASSTHROUGH_MODEL_INPUT_NAME = "input";
constexpr const char* PASSTHROUGH_MODEL_OUTPUT_NAME = "copy:0";
constexpr const char* PASSTHROUGH_STRING_MODEL_INPUT_NAME = "my_name";
constexpr const char* PASSTHROUGH_STRING_MODEL_OUTPUT_NAME = "my_name";
constexpr const char* SCALAR_MODEL_INPUT_NAME = "model_scalar_input";
constexpr const char* SCALAR_MODEL_OUTPUT_NAME = "model_scalar_output";
const std::string UNUSED_SERVABLE_NAME = "UNUSED_SERVABLE_NAME";
constexpr const ovms::model_version_t UNUSED_MODEL_VERSION = 42; // Answer to the Ultimate Question of Life
static const ovms::ExecutionContext DEFAULT_TEST_CONTEXT{ovms::ExecutionContext::Interface::GRPC, ovms::ExecutionContext::Method::Predict};
using TFSRequestType = tensorflow::serving::PredictRequest;
using TFSResponseType = tensorflow::serving::PredictResponse;
using TFSInputTensorType = tensorflow::TensorProto;
using TFSOutputTensorType = tensorflow::TensorProto;
using TFSShapeType = tensorflow::TensorShapeProto;
using TFSInputTensorIteratorType = google::protobuf::Map<std::string, TFSInputTensorType>::const_iterator;
using TFSOutputTensorIteratorType = google::protobuf::Map<std::string, TFSOutputTensorType>::const_iterator;
using TFSInterface = std::pair<TFSRequestType, TFSResponseType>;
using KFSInterface = std::pair<KFSRequest, KFSResponse>;
using CAPIInterface = std::pair<ovms::InferenceRequest, ovms::InferenceResponse>;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
ovms::tensor_map_t prepareTensors(
const std::unordered_map<std::string, ovms::Shape>&& tensors,
ovms::Precision precision = ovms::Precision::FP32);
void preparePredictRequest(tensorflow::serving::PredictRequest& request, inputs_info_t requestInputs, const std::vector<float>& data = std::vector<float>{});
KFSTensorInputProto* findKFSInferInputTensor(::KFSRequest& request, const std::string& name);
std::string* findKFSInferInputTensorContentInRawInputs(::KFSRequest& request, const std::string& name);
template <typename T = float>
void prepareKFSInferInputTensor(::KFSRequest& request, const std::string& name, const std::tuple<ovms::signed_shape_t, const std::string>& inputInfo,
const std::vector<T>& data = std::vector<float>{}, bool putBufferInInputTensorContent = false) {
auto it = request.mutable_inputs()->begin();
size_t bufferId = 0;
while (it != request.mutable_inputs()->end()) {
if (it->name() == name)
break;
++it;
++bufferId;
}
KFSTensorInputProto* tensor;
std::string* content = nullptr;
if (it != request.mutable_inputs()->end()) {
tensor = &*it;
if (!putBufferInInputTensorContent) {
content = request.mutable_raw_input_contents()->Mutable(bufferId);
}
} else {
tensor = request.add_inputs();
if (!putBufferInInputTensorContent) {
content = request.add_raw_input_contents();
}
}
auto [shape, datatype] = inputInfo;
tensor->set_name(name);
tensor->set_datatype(datatype);
size_t elementsCount = 1;
tensor->mutable_shape()->Clear();
bool isNegativeShape = false;
for (auto const& dim : shape) {
tensor->add_shape(dim);
if (dim < 0) {
isNegativeShape = true;
}
elementsCount *= dim;
}
size_t dataSize = isNegativeShape ? data.size() : elementsCount;
if (!putBufferInInputTensorContent) {
if (data.size() == 0) {
content->assign(dataSize * ovms::KFSDataTypeSize(datatype), '1');
} else {
content->resize(dataSize * ovms::KFSDataTypeSize(datatype));
std::memcpy(content->data(), data.data(), content->size());
}
} else {
switch (ovms::KFSPrecisionToOvmsPrecision(datatype)) {
case ovms::Precision::FP64: {
for (size_t i = 0; i < dataSize; ++i) {
auto ptr = tensor->mutable_contents()->mutable_fp64_contents()->Add();
*ptr = (data.size() ? data[i] : 1);
}
break;
}
case ovms::Precision::FP32: {
for (size_t i = 0; i < dataSize; ++i) {
auto ptr = tensor->mutable_contents()->mutable_fp32_contents()->Add();
*ptr = (data.size() ? data[i] : 1);
}
break;
}
// uint64_contents
case ovms::Precision::U64: {
for (size_t i = 0; i < dataSize; ++i) {
auto ptr = tensor->mutable_contents()->mutable_uint64_contents()->Add();
*ptr = (data.size() ? data[i] : 1);
}
break;
}
// uint_contents
case ovms::Precision::U8:
case ovms::Precision::U16:
case ovms::Precision::U32: {
for (size_t i = 0; i < dataSize; ++i) {
auto ptr = tensor->mutable_contents()->mutable_uint_contents()->Add();
*ptr = (data.size() ? data[i] : 1);
}
break;
}
// int64_contents
case ovms::Precision::I64: {
for (size_t i = 0; i < dataSize; ++i) {
auto ptr = tensor->mutable_contents()->mutable_int64_contents()->Add();
*ptr = (data.size() ? data[i] : 1);
}
break;
}
// bool_contents
case ovms::Precision::BOOL: {
for (size_t i = 0; i < dataSize; ++i) {
auto ptr = tensor->mutable_contents()->mutable_bool_contents()->Add();
*ptr = (data.size() ? data[i] : 1);
}
break;
}
// int_contents
case ovms::Precision::I8:
case ovms::Precision::I16:
case ovms::Precision::I32: {
for (size_t i = 0; i < dataSize; ++i) {
auto ptr = tensor->mutable_contents()->mutable_int_contents()->Add();
*ptr = (data.size() ? data[i] : 1);
}
break;
}
case ovms::Precision::FP16:
case ovms::Precision::U1:
case ovms::Precision::CUSTOM:
case ovms::Precision::UNDEFINED:
case ovms::Precision::DYNAMIC:
case ovms::Precision::MIXED:
case ovms::Precision::Q78:
case ovms::Precision::BIN:
default: {
}
}
}
}
template <>
inline void prepareKFSInferInputTensor<bool>(::KFSRequest& request, const std::string& name, const std::tuple<ovms::signed_shape_t, const std::string>& inputInfo,
const std::vector<bool>& data, bool putBufferInInputTensorContent) {
// TODO: Implement for putBufferInInputTensorContent == 0
if (putBufferInInputTensorContent == 0) {
throw std::string("Unsupported");
}
auto it = request.mutable_inputs()->begin();
size_t bufferId = 0;
while (it != request.mutable_inputs()->end()) {
if (it->name() == name)
break;
++it;
++bufferId;
}
KFSTensorInputProto* tensor;
if (it != request.mutable_inputs()->end()) {
tensor = &*it;
} else {
tensor = request.add_inputs();
}
auto [shape, datatype] = inputInfo;
tensor->set_name(name);
tensor->set_datatype(datatype);
size_t elementsCount = 1;
tensor->mutable_shape()->Clear();
bool isNegativeShape = false;
for (auto const& dim : shape) {
tensor->add_shape(dim);
if (dim < 0) {
isNegativeShape = true;
}
elementsCount *= dim;
}
size_t dataSize = isNegativeShape ? data.size() : elementsCount;
for (size_t i = 0; i < dataSize; ++i) {
auto ptr = tensor->mutable_contents()->mutable_bool_contents()->Add();
*ptr = (data.size() ? data[i] : 1);
}
}
template <typename T = float>
void prepareKFSInferInputTensor(::KFSRequest& request, const std::string& name, const std::tuple<ovms::signed_shape_t, const ovms::Precision>& inputInfo,
const std::vector<T>& data = std::vector<float>{}, bool putBufferInInputTensorContent = false) {
auto [shape, type] = inputInfo;
prepareKFSInferInputTensor(request, name,
{shape, ovmsPrecisionToKFSPrecision(type)},
data, putBufferInInputTensorContent);
}
void prepareCAPIInferInputTensor(ovms::InferenceRequest& request, const std::string& name, const std::tuple<ovms::signed_shape_t, OVMS_DataType>& inputInfo,
const std::vector<float>& data, uint32_t decrementBufferSize = 0, OVMS_BufferType bufferType = OVMS_BUFFERTYPE_CPU, std::optional<uint32_t> deviceId = std::nullopt);
void prepareCAPIInferInputTensor(ovms::InferenceRequest& request, const std::string& name, const std::tuple<ovms::signed_shape_t, const ovms::Precision>& inputInfo,
const std::vector<float>& data, uint32_t decrementBufferSize = 0, OVMS_BufferType bufferType = OVMS_BUFFERTYPE_CPU, std::optional<uint32_t> deviceId = std::nullopt);
template <typename T = float>
void preparePredictRequest(::KFSRequest& request, inputs_info_t requestInputs, const std::vector<T>& data = std::vector<float>{}, bool putBufferInInputTensorContent = false) {
request.mutable_inputs()->Clear();
request.mutable_raw_input_contents()->Clear();
for (auto const& it : requestInputs) {
prepareKFSInferInputTensor(request, it.first, it.second, data, putBufferInInputTensorContent);
}
}
void preparePredictRequest(ovms::InferenceRequest& request, inputs_info_t requestInputs, const std::vector<float>& data,
uint32_t decrementBufferSize = 0, OVMS_BufferType bufferType = OVMS_BUFFERTYPE_CPU, std::optional<uint32_t> deviceId = std::nullopt);
void prepareInferStringTensor(::KFSRequest::InferInputTensor& tensor, const std::string& name, const std::vector<std::string>& data, bool putBufferInInputTensorContent, std::string* content);
void prepareInferStringTensor(tensorflow::TensorProto& tensor, const std::string& name, const std::vector<std::string>& data, bool putBufferInInputTensorContent, std::string* content);
void prepareInferStringTensor(ovms::InferenceTensor& tensor, const std::string& name, const std::vector<std::string>& data, bool putBufferInInputTensorContent, std::string* content);
void prepareInferStringRequest(::KFSRequest& request, const std::string& name, const std::vector<std::string>& data, bool putBufferInInputTensorContent = true);
void prepareInferStringRequest(tensorflow::serving::PredictRequest& request, const std::string& name, const std::vector<std::string>& data, bool putBufferInInputTensorContent = true);
void prepareInferStringRequest(ovms::InferenceRequest& request, const std::string& name, const std::vector<std::string>& data, bool putBufferInInputTensorContent = true); // CAPI binary not supported
void assertOutputTensorMatchExpectations(const ov::Tensor& tensor, std::vector<std::string> expectedStrings);
void prepareBinaryPredictRequest(tensorflow::serving::PredictRequest& request, const std::string& inputName, const int batchSize);
void prepareBinaryPredictRequest(::KFSRequest& request, const std::string& inputName, const int batchSize);
void prepareBinaryPredictRequest(ovms::InferenceRequest& request, const std::string& inputName, const int batchSize); // CAPI binary not supported
void prepareBinaryPredictRequestNoShape(tensorflow::serving::PredictRequest& request, const std::string& inputName, const int batchSize);
void prepareBinaryPredictRequestNoShape(::KFSRequest& request, const std::string& inputName, const int batchSize);
void prepareBinaryPredictRequestNoShape(ovms::InferenceRequest& request, const std::string& inputName, const int batchSize); // CAPI binary not supported
void prepareBinary4x4PredictRequest(tensorflow::serving::PredictRequest& request, const std::string& inputName, const int batchSize = 1);
void prepareBinary4x4PredictRequest(::KFSRequest& request, const std::string& inputName, const int batchSize = 1);
void prepareBinary4x4PredictRequest(ovms::InferenceRequest& request, const std::string& inputName, const int batchSize = 1); // CAPI binary not supported
template <typename TensorType>
void prepareInvalidImageBinaryTensor(TensorType& tensor);
template <typename T>
std::string readableError(const T* expected_output, const T* actual_output, const size_t size) {
std::stringstream ss;
for (size_t i = 0; i < size; ++i) {
if (actual_output[i] != expected_output[i]) {
ss << "Expected:" << expected_output[i] << ", actual:" << actual_output[i] << " at place:" << i << std::endl;
break;
}
}
return ss.str();
}
std::string readableSetError(std::unordered_set<std::string> expected, std::unordered_set<std::string> actual);
void checkDummyResponse(const std::string outputName,
const std::vector<float>& requestData,
tensorflow::serving::PredictRequest& request, tensorflow::serving::PredictResponse& response, int seriesLength, int batchSize = 1, const std::string& servableName = "", size_t expectedOutputsCount = 1);
static std::string vectorTypeToKfsString(const std::type_info& vectorType) {
// {Precision::BF16, "BF16"},
// {Precision::FP16, "FP16"},
// {Precision::FP62, "FP62"},
if (vectorType == typeid(float))
return std::string("FP32");
// {Precision::I32, "INT32"},
if (vectorType == typeid(int32_t))
return std::string("INT32");
// {Precision::FP64, "FP64"},
if (vectorType == typeid(double))
return std::string("FP64");
// {Precision::I64, "INT64"},
if (vectorType == typeid(int64_t))
return std::string("INT64");
// {Precision::I16, "INT16"},
if (vectorType == typeid(int16_t))
return std::string("INT16");
// {Precision::I8, "INT8"},
if (vectorType == typeid(int8_t))
return std::string("INT8");
// {Precision::U64, "UINT64"},
if (vectorType == typeid(uint64_t))
return std::string("UINT64");
// {Precision::U32, "UINT32"},
if (vectorType == typeid(uint32_t))
return std::string("UINT32");
// {Precision::U16, "UINT16"},
if (vectorType == typeid(uint16_t))
return std::string("UINT16");
// {Precision::U8, "UINT8"},
if (vectorType == typeid(uint8_t))
return std::string("UINT8");
// {Precision::BOOL, "BOOL"},
if (vectorType == typeid(bool))
return std::string("BOOL");
// {Precision::UNDEFINED, "UNDEFINED"}};
return std::string("UNDEFINED");
}
template <typename T = float>
void checkDummyResponse(const std::string outputName,
const std::vector<T>& requestData,
::KFSRequest& request, ::KFSResponse& response, int seriesLength, int batchSize = 1, const std::string& servableName = "", size_t expectedOutputsCount = 1) {
ASSERT_EQ(response.model_name(), servableName);
ASSERT_EQ(response.outputs_size(), expectedOutputsCount);
ASSERT_EQ(response.raw_output_contents_size(), expectedOutputsCount);
// Finding the output with given name
auto it = std::find_if(response.outputs().begin(), response.outputs().end(), [&outputName](const ::KFSResponse::InferOutputTensor& tensor) {
return tensor.name() == outputName;
});
ASSERT_NE(it, response.outputs().end());
auto outputIndex = it - response.outputs().begin();
const auto& output_proto = *it;
std::string* content = response.mutable_raw_output_contents(outputIndex);
ASSERT_EQ(content->size(), batchSize * DUMMY_MODEL_OUTPUT_SIZE * sizeof(T));
ASSERT_EQ(output_proto.datatype(), vectorTypeToKfsString(typeid(T)));
ASSERT_EQ(output_proto.shape_size(), 2);
ASSERT_EQ(output_proto.shape(0), batchSize);
ASSERT_EQ(output_proto.shape(1), DUMMY_MODEL_OUTPUT_SIZE);
std::vector<T> responseData = requestData;
std::for_each(responseData.begin(), responseData.end(), [seriesLength](T& v) {
v += 1.0 * seriesLength;
});
T* actual_output = (T*)content->data();
T* expected_output = responseData.data();
const int dataLengthToCheck = DUMMY_MODEL_OUTPUT_SIZE * batchSize * sizeof(T);
EXPECT_EQ(0, std::memcmp(actual_output, expected_output, dataLengthToCheck))
<< readableError(expected_output, actual_output, dataLengthToCheck / sizeof(T));
}
void checkScalarResponse(const std::string outputName,
float inputScalar, tensorflow::serving::PredictResponse& response, const std::string& servableName = "");
void checkScalarResponse(const std::string outputName,
float inputScalar, ::KFSResponse& response, const std::string& servableName = "");
void checkStringResponse(const std::string outputName,
const std::vector<std::string>& inputStrings, tensorflow::serving::PredictResponse& response, const std::string& servableName = "");
void checkStringResponse(const std::string outputName,
const std::vector<std::string>& inputStrings, ::KFSResponse& response, const std::string& servableName = "");
void assertStringOutputProto(const tensorflow::TensorProto& proto, const std::vector<std::string>& expectedStrings);
void assertStringOutputProto(const KFSTensorOutputProto& proto, const std::vector<std::string>& expectedStrings);
void assertStringOutputProto(const ovms::InferenceTensor& proto, const std::vector<std::string>& expectedStrings);
void assertStringResponse(const tensorflow::serving::PredictResponse& proto, const std::vector<std::string>& expectedStrings, const std::string& outputName);
void assertStringResponse(const ::KFSResponse& proto, const std::vector<std::string>& expectedStrings, const std::string& outputName);
void assertStringResponse(const ovms::InferenceResponse& proto, const std::vector<std::string>& expectedStrings, const std::string& outputName);
void checkAddResponse(const std::string outputName,
const std::vector<float>& requestData1,
const std::vector<float>& requestData2,
::KFSRequest& request, const ::KFSResponse& response, int seriesLength, int batchSize, const std::string& servableName);
template <typename T>
void checkIncrement4DimResponse(const std::string outputName,
const std::vector<T>& expectedData,
tensorflow::serving::PredictResponse& response,
const std::vector<size_t>& expectedShape,
bool checkRaw = true) {
ASSERT_EQ(response.outputs().count(outputName), 1) << "Did not find:" << outputName;
const auto& output_proto = response.outputs().at(outputName);
auto elementsCount = std::accumulate(expectedShape.begin(), expectedShape.end(), 1, std::multiplies<size_t>());
ASSERT_EQ(output_proto.tensor_content().size(), elementsCount * sizeof(T));
ASSERT_EQ(output_proto.tensor_shape().dim_size(), expectedShape.size());
for (size_t i = 0; i < expectedShape.size(); i++) {
ASSERT_EQ(output_proto.tensor_shape().dim(i).size(), expectedShape[i]);
}
T* actual_output = (T*)output_proto.tensor_content().data();
T* expected_output = (T*)expectedData.data();
const int dataLengthToCheck = elementsCount * sizeof(T);
EXPECT_EQ(0, std::memcmp(actual_output, expected_output, dataLengthToCheck))
<< readableError(expected_output, actual_output, dataLengthToCheck / sizeof(T));
}
template <typename T>
void checkIncrement4DimResponse(const std::string outputName,
const std::vector<T>& expectedData,
::KFSResponse& response,
const std::vector<size_t>& expectedShape,
bool checkRaw = true) {
ASSERT_EQ(response.outputs_size(), 1);
ASSERT_EQ(response.mutable_outputs(0)->name(), outputName);
ASSERT_EQ(response.outputs(0).shape_size(), expectedShape.size());
for (size_t i = 0; i < expectedShape.size(); i++) {
ASSERT_EQ(response.outputs(0).shape(i), expectedShape[i]);
}
if (checkRaw) {
ASSERT_EQ(response.raw_output_contents_size(), 1);
auto elementsCount = std::accumulate(expectedShape.begin(), expectedShape.end(), 1, std::multiplies<size_t>());
ASSERT_EQ(response.raw_output_contents(0).size(), elementsCount * sizeof(T));
T* actual_output = (T*)response.raw_output_contents(0).data();
T* expected_output = (T*)expectedData.data();
const int dataLengthToCheck = elementsCount * sizeof(T);
EXPECT_EQ(0, std::memcmp(actual_output, expected_output, dataLengthToCheck))
<< readableError(expected_output, actual_output, dataLengthToCheck / sizeof(T));
} else {
ASSERT_EQ(response.outputs(0).datatype(), "UINT8") << "other precision testing currently not supported";
ASSERT_EQ(sizeof(T), 1) << "other precision testing currently not supported";
ASSERT_EQ(response.outputs(0).contents().uint_contents_size(), expectedData.size());
for (size_t i = 0; i < expectedData.size(); i++) {
ASSERT_EQ(response.outputs(0).contents().uint_contents(i), expectedData[i]);
}
}
}
void checkIncrement4DimShape(const std::string outputName,
tensorflow::serving::PredictResponse& response,
const std::vector<size_t>& expectedShape);
static std::vector<int> asVector(const tensorflow::TensorShapeProto& proto) {
std::vector<int> shape;
for (int i = 0; i < proto.dim_size(); i++) {
shape.push_back(proto.dim(i).size());
}
return shape;
}
static std::vector<google::protobuf::int32> asVector(google::protobuf::RepeatedField<google::protobuf::int32>* container) {
std::vector<google::protobuf::int32> result(container->size(), 0);
std::memcpy(result.data(), container->mutable_data(), result.size() * sizeof(google::protobuf::int32));
return result;
}
// returns path to a file.
bool createConfigFileWithContent(const std::string& content, std::string filename = "/tmp/ovms_config_file.json");
#pragma GCC diagnostic pop
template <typename T>
static std::vector<T> asVector(const std::string& tensor_content) {
std::vector<T> v(tensor_content.size() / sizeof(T) + 1);
std::memcpy(
reinterpret_cast<char*>(v.data()),
reinterpret_cast<const char*>(tensor_content.data()),
tensor_content.size());
v.resize(tensor_content.size() / sizeof(T));
return v;
}
class ConstructorEnabledModelManager : public ovms::ModelManager {
ovms::MetricRegistry registry;
public:
ConstructorEnabledModelManager(const std::string& modelCacheDirectory = "", ovms::PythonBackend* pythonBackend = nullptr) :
ovms::ModelManager(modelCacheDirectory, ®istry, pythonBackend) {}
~ConstructorEnabledModelManager() {
join();
spdlog::info("Destructor of modelmanager(Enabled one). Models #:{}", models.size());
models.clear();
spdlog::info("Destructor of modelmanager(Enabled one). Models #:{}", models.size());
}
ovms::Status loadConfig(const std::string& jsonFilename) {
return ModelManager::loadConfig(jsonFilename);
}
/**
* @brief Updates OVMS configuration with cached configuration file. Will check for newly added model versions
*/
void updateConfigurationWithoutConfigFile() {
ModelManager::updateConfigurationWithoutConfigFile();
}
void setWaitForModelLoadedTimeoutMs(int value) {
this->waitForModelLoadedTimeoutMs = value;
}
};
class MockedMetadataModelIns : public ovms::ModelInstance {
public:
MockedMetadataModelIns(ov::Core& ieCore) :
ModelInstance("UNUSED_NAME", 42, ieCore) {}
MOCK_METHOD(const ovms::tensor_map_t&, getInputsInfo, (), (const, override));
MOCK_METHOD(const ovms::tensor_map_t&, getOutputsInfo, (), (const, override));
MOCK_METHOD(std::optional<ovms::Dimension>, getBatchSize, (), (const, override));
MOCK_METHOD(const ovms::ModelConfig&, getModelConfig, (), (const, override));
const ovms::Status mockValidate(const tensorflow::serving::PredictRequest* request) {
return validate(request);
}
const ovms::Status mockValidate(const ::KFSRequest* request) {
return validate(request);
}
const ovms::Status mockValidate(const ovms::InferenceRequest* request) {
return validate(request);
}
};
class ResourcesAccessModelManager : public ConstructorEnabledModelManager {
public:
int getResourcesSize() {
return resources.size();
}
void setResourcesCleanupIntervalMillisec(uint32_t value) {
this->resourcesCleanupIntervalMillisec = value;
}
};
class TestWithTempDir : public ::testing::Test {
protected:
void SetUp() override {
const ::testing::TestInfo* const test_info =
::testing::UnitTest::GetInstance()->current_test_info();
std::stringstream ss;
ss << std::string(test_info->test_suite_name())
<< "/"
<< std::string(test_info->name());
const std::string directoryName = ss.str();
directoryPath = getGenericFullPathForTmp("/tmp/" + directoryName);
std::filesystem::remove_all(directoryPath);
std::filesystem::create_directories(directoryPath);
}
void TearDown() override {
std::filesystem::remove_all(directoryPath);
}
std::string directoryPath;
};
/**
* Wait until ModelManager::configFileReloadNeeded returns false or timeout is reached
*/
void waitForOVMSConfigReload(ovms::ModelManager& manager);
void waitForOVMSResourcesCleanup(ovms::ModelManager& manager);
template <typename T>
static ovms::NodeLibrary createLibraryMock() {
return ovms::NodeLibrary{
T::initialize,
T::deinitialize,
T::execute,
T::getInputsInfo,
T::getOutputsInfo,
T::release};
}
bool isShapeTheSame(const tensorflow::TensorShapeProto&, const std::vector<int64_t>&&);
bool isShapeTheSame(const KFSShapeType&, const std::vector<int64_t>&&);
void readRgbJpg(size_t& filesize, std::unique_ptr<char[]>& image_bytes);
void read4x4RgbJpg(size_t& filesize, std::unique_ptr<char[]>& image_bytes);
void readImage(const std::string& path, size_t& filesize, std::unique_ptr<char[]>& image_bytes);
static const std::vector<ovms::Precision> SUPPORTED_INPUT_PRECISIONS{
// ovms::Precision::UNDEFINED,
// ovms::Precision::MIXED,
ovms::Precision::FP64,
ovms::Precision::FP32,
ovms::Precision::FP16,
// ovms::Precision::Q78,
ovms::Precision::I16,
ovms::Precision::U8,
ovms::Precision::I8,
ovms::Precision::U16,
ovms::Precision::U32,
ovms::Precision::I32,
ovms::Precision::I64,
// ovms::Precision::BIN,
// ovms::Precision::BOOL
// ovms::Precision::CUSTOM)
};
static const std::vector<ovms::Precision> UNSUPPORTED_INPUT_PRECISIONS{
ovms::Precision::UNDEFINED,
ovms::Precision::MIXED,
// ovms::Precision::FP64,
// ovms::Precision::FP32,
// ovms::Precision::FP16,
ovms::Precision::Q78,
// ovms::Precision::I16,
// ovms::Precision::U8,
// ovms::Precision::I8,
// ovms::Precision::U16,
// ovms::Precision::I32,
// ovms::Precision::I64,
ovms::Precision::BIN,
ovms::Precision::BOOL
// ovms::Precision::CUSTOM)
};
static const std::vector<ovms::Precision> SUPPORTED_CAPI_INPUT_PRECISIONS{
// ovms::Precision::UNDEFINED,
// ovms::Precision::MIXED,
ovms::Precision::FP64,
ovms::Precision::FP32,
ovms::Precision::FP16,
// ovms::Precision::Q78,
ovms::Precision::I16,
ovms::Precision::U8,
ovms::Precision::U1,
ovms::Precision::I8,
ovms::Precision::U16,
ovms::Precision::I32,
ovms::Precision::I64,
ovms::Precision::U32,
ovms::Precision::U64,
// ovms::Precision::BIN,
ovms::Precision::BOOL
// ovms::Precision::CUSTOM)
};
static const std::vector<ovms::Precision> UNSUPPORTED_CAPI_INPUT_PRECISIONS{
ovms::Precision::UNDEFINED,
ovms::Precision::MIXED,
// ovms::Precision::FP64,
// ovms::Precision::FP32,
// ovms::Precision::FP16,
ovms::Precision::Q78,
// ovms::Precision::I16,
// ovms::Precision::U8,
// ovms::Precision::U1,
// vms::Precision::I8,
// ovms::Precision::U16,
// ovms::Precision::I32,
// ovms::Precision::I64,
// ovms::Precision::U32,
// ovms::Precision::U64,
ovms::Precision::BIN,
// ovms::Precision::BOOL
ovms::Precision::CUSTOM};
static const std::vector<ovms::Precision> SUPPORTED_KFS_INPUT_PRECISIONS{
// ovms::Precision::UNDEFINED,
// ovms::Precision::MIXED,
ovms::Precision::FP64,
ovms::Precision::FP32,
ovms::Precision::FP16,
// ovms::Precision::Q78,
ovms::Precision::I16,
ovms::Precision::U8,
ovms::Precision::I8,
ovms::Precision::U16,
ovms::Precision::I32,
ovms::Precision::I64,
ovms::Precision::U32,
ovms::Precision::U64,
// ovms::Precision::BIN,
ovms::Precision::BOOL
// ovms::Precision::CUSTOM)
};
static const std::vector<ovms::Precision> UNSUPPORTED_KFS_INPUT_PRECISIONS{
ovms::Precision::UNDEFINED,
ovms::Precision::MIXED,
// ovms::Precision::FP64,
// ovms::Precision::FP32,
// ovms::Precision::FP16,
ovms::Precision::Q78,
// ovms::Precision::I16,
// ovms::Precision::U8,
// ovms::Precision::I8,
// ovms::Precision::U16,
// ovms::Precision::I32,
// ovms::Precision::I64,
// ovms::Precision::U32,
// ovms::Precision::U64,
ovms::Precision::BIN,
// ovms::Precision::BOOL
ovms::Precision::CUSTOM};
static const std::vector<ovms::Precision> SUPPORTED_KFS_INPUT_PRECISIONS_TENSORINPUTCONTENT{
// ovms::Precision::UNDEFINED,
// ovms::Precision::MIXED,
ovms::Precision::FP64,
ovms::Precision::FP32,
// ovms::Precision::FP16,
// ovms::Precision::Q78,
ovms::Precision::I16,
ovms::Precision::U8,
ovms::Precision::I8,
ovms::Precision::U16,
ovms::Precision::I32,
ovms::Precision::I64,
ovms::Precision::U32,
ovms::Precision::U64,
// ovms::Precision::BIN,
ovms::Precision::BOOL
// ovms::Precision::CUSTOM)
};
static const std::vector<ovms::Precision> UNSUPPORTED_KFS_INPUT_PRECISIONS_TENSORINPUTCONTENT{
ovms::Precision::UNDEFINED,
ovms::Precision::MIXED,
// ovms::Precision::FP64,
// ovms::Precision::FP32,
ovms::Precision::FP16,
ovms::Precision::Q78,
// ovms::Precision::I16,
// ovms::Precision::U8,
// ovms::Precision::I8,
// ovms::Precision::U16,
// ovms::Precision::I32,
// ovms::Precision::I64,
// ovms::Precision::U32,
// ovms::Precision::U64,
ovms::Precision::BIN,
// ovms::Precision::BOOL
// ovms::Precision::CUSTOM)
};
static const std::vector<ovms::Precision> SUPPORTED_CAPI_INPUT_PRECISIONS_TENSORINPUTCONTENT{
// ovms::Precision::UNDEFINED,
// ovms::Precision::MIXED,
ovms::Precision::FP64,
ovms::Precision::FP32,
// ovms::Precision::FP16,
// ovms::Precision::Q78,
ovms::Precision::I16,
ovms::Precision::U8,
ovms::Precision::I8,
ovms::Precision::U16,
ovms::Precision::I32,
ovms::Precision::I64,
ovms::Precision::U32,
ovms::Precision::U64,
// ovms::Precision::BIN,
ovms::Precision::BOOL
// ovms::Precision::CUSTOM)
};
static const std::vector<ovms::Precision> UNSUPPORTED_CAPI_INPUT_PRECISIONS_TENSORINPUTCONTENT{
ovms::Precision::UNDEFINED,
ovms::Precision::MIXED,
// ovms::Precision::FP64,
// ovms::Precision::FP32,
ovms::Precision::FP16,
ovms::Precision::Q78,
// ovms::Precision::I16,
// ovms::Precision::U8,
// ovms::Precision::I8,
// ovms::Precision::U16,
// ovms::Precision::I32,
// ovms::Precision::I64,
// ovms::Precision::U32,
// ovms::Precision::U64,