Skip to content

[Bug]: CPU Inference Fails with AvgPool Dimension Error #33794

@iasolis

Description

@iasolis

OpenVINO Version

2025.4.1

Operating System

Other (Please specify in description)

Device used for inference

CPU

Framework

ONNX

Model used

https://huggingface.co/csukuangfj/speaker-embedding-models/blob/main/3dspeaker_speech_campplus_sv_zh_en_16k-common_advanced.onnx

Issue description

OS: Ubuntu 24.04.3 LTS

Context
I am attempting inference using an OpenVINO model converted from the original campplus_sv_zh_en model (originally in PyTorch, exported to ONNX). a PyTorch implementation of the CAMPPlus model.

CPU Inference - fails with the error
GPU Inference – completes successfully.

What is the cause of this behavior?

Step-by-step reproduction

#Python 3.10.17
import numpy as np
from openvino import Core

dummy_input = np.random.randn(1, 148, 80).astype(np.float32)

core = Core()
model = core.read_model("models/diar/onnx/3dspeaker_speech_campplus_sv_zh_en_16k-common_advanced.onnx")

compiled_model = core.compile_model(model, "CPU")

output_layer = compiled_model.output(0)
result = compiled_model([dummy_input])[output_layer]

Relevant log output

RuntimeError: Exception from src/inference/src/cpp/infer_request.cpp:223:
Exception from src/plugins/intel_cpu/src/node.cpp:725:
[CPU] AvgPool node with name '/xvector/block1/tdnnd1/cam_layer/AveragePool' Check 'cmp::le(kernel, dim.get_length())' failed at src/core/shape_inference/include/pooling_shape_inference_util.hpp:145:
While validating node 'opset1::AvgPool /xvector/block1/tdnnd1/cam_layer/AveragePool (opset1::Relu /xvector/block1/tdnnd1/nonlinear2/relu/Relu[0]:f32[?,128,1..]) -> (f32[?,128,1..])' with friendly_name '/xvector/block1/tdnnd1/cam_layer/AveragePool':
Kernel after dilation has size (dim: 100) larger than the data shape after padding (dim: 74) at axis 0.

Issue submission checklist

  • I'm reporting an issue. It's not a question.
  • I checked the problem with the documentation, FAQ, open issues, Stack Overflow, etc., and have not found a solution.
  • There is reproducer code and related data files such as images, videos, models, etc.

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions