|
916 | 916 | sorted_edges::Union{Vector{Edge}, Nothing} = nothing) |
917 | 917 | vars = unique(transition_matrix(PM)) |
918 | 918 | edge_gens = [x => 1:n_edges(graph(PM)) for x in vars] |
919 | | - R, r, x... = polynomial_ring(base_field(PM), |
920 | | - root_distribution(PM), |
921 | | - edge_gens...; cached=cached) |
| 919 | + CR, r = polynomial_ring(base_field(PM), root_distribution(PM); cached=false) |
| 920 | + R, x... = polynomial_ring(CR, edge_gens...; cached=cached) |
922 | 921 |
|
923 | 922 | R, Dict{Tuple{VarName, Edge}, MPolyRingElem}( |
924 | 923 | (vars[i], e) => x[i][j] for i in 1:length(vars), |
|
958 | 957 | root_vars = gens(coefficient_ring(trans_ring)) |
959 | 958 |
|
960 | 959 | edge_gens = [x => 1:n_edges(graph(PM)) for x in Symbol.(transition_vars)] |
961 | | - R, rv, x... = polynomial_ring(base_field(PM), Symbol.(root_vars), edge_gens..., ; cached=cached) |
| 960 | + CR, rv = polynomial_ring(base_field(PM), Symbol.(root_vars); cached=cached) |
| 961 | + R, x... = polynomial_ring(CR, edge_gens..., ; cached=cached) |
962 | 962 |
|
963 | | - coef_map = hom(coefficient_ring(trans_ring), R, rv) |
| 963 | + coef_map = hom(coefficient_ring(trans_ring), CR, rv) |
964 | 964 |
|
965 | 965 | # the union here is used to ensure it's a GraphDict |
966 | 966 | dict_maps = Dict{Union{Edge, Int}, Oscar.MPolyAnyMap}() |
@@ -1030,9 +1030,9 @@ end |
1030 | 1030 | edge_gens = [x => 1:n_edges(N) for x in vars] |
1031 | 1031 | h_nodes = hybrid_vertices(N) |
1032 | 1032 | R, r, l, x... = polynomial_ring(base_field(PM), |
1033 | | - root_distribution(PM), |
1034 | | - :l => (1:length(h_nodes), 1:2), |
1035 | | - edge_gens...; cached=cached) |
| 1033 | + root_distribution(PM), |
| 1034 | + :l => (1:length(h_nodes), 1:2), |
| 1035 | + edge_gens...; cached=cached) |
1036 | 1036 |
|
1037 | 1037 | hyb = hybrids(N) |
1038 | 1038 | R, Dict{Tuple{VarName, Edge}, MPolyRingElem}( |
|
0 commit comments