118
118
119
119
Return the matrix representation of the orthogonal reflection in the row vector `v`.
120
120
"""
121
- function reflection (gram:: MatElem , v:: MatElem )
121
+ function _reflection (gram:: MatElem , v:: MatElem )
122
122
n = ncols (gram)
123
123
E = identity_matrix (base_ring (gram), n)
124
124
c = base_ring (gram)(2 ) * ((v * gram * transpose (v)))[1 ,1 ]^ (- 1 )
@@ -154,7 +154,7 @@ function spin(gram_diag::MatElem, isometry::MatElem, check::Bool=true)
154
154
r = v - w
155
155
s = r * G * transpose (r)
156
156
if ! iszero (s)
157
- tau = reflection (G, r)
157
+ tau = _reflection (G, r)
158
158
f = f * tau
159
159
@assert w * f == w
160
160
spinor_norm *= s
@@ -164,8 +164,8 @@ function spin(gram_diag::MatElem, isometry::MatElem, check::Bool=true)
164
164
r2 = v
165
165
s2 = r2 * G * transpose (r2)/ 2
166
166
@assert ! iszero (s1) && ! iszero (s2)
167
- tau1 = reflection (G, r1)
168
- tau2 = reflection (G, r2)
167
+ tau1 = _reflection (G, r1)
168
+ tau2 = _reflection (G, r2)
169
169
f = f * tau2 * tau1
170
170
@assert w * f == w
171
171
spinor_norm *= s1 * s2
@@ -219,15 +219,15 @@ function det_spin(G::QQMatrix, T::QQMatrix, p, nu)
219
219
bm = g - E[k: k,:]
220
220
qm = bm * G * transpose (bm)
221
221
if valuation (qm, p) <= gammaL[k] + 2 * delta
222
- tau1 = reflection (G, bm)
222
+ tau1 = _reflection (G, bm)
223
223
push! (reflection_vectors, bm)
224
224
tau2 = E
225
225
else
226
226
bp = g + E[k: k,:]
227
227
qp = bp * G * transpose (bp)
228
228
@assert valuation (qp, p) <= gammaL[k] + 2 * delta
229
- tau1 = reflection (G, bp)
230
- tau2 = reflection (G, E[k: k,:])
229
+ tau1 = _reflection (G, bp)
230
+ tau2 = _reflection (G, E[k: k,:])
231
231
push! (reflection_vectors,bp)
232
232
push! (reflection_vectors,E[k: k,:])
233
233
end
0 commit comments