@@ -17,15 +17,15 @@ Here is a list of the fields available in OSCAR:
1717| Field | How to create | Remark | Reference |
1818| ------------ | ----------- | --------- | ------|
1919| $\mathbb{Q}$ | ` rational_field() ` | Also available as ` QQ ` | [ Rationals] (@ref rationals_section) |
20- | $\mathbb{F}_ q$ | ` GF(q) ` | See also ` finite_field ` | [ Finite fields] ( @ref ) |
21- | $\mathbb{F}_ q[ X] /(f)$ | ` finite_field(f) ` | | [ Finite fields] ( @ref ) |
22- | $\overline{\mathbb{Q}}$ | ` algebraic_closure(QQ) ` | | [ Algebraic closure of the rational numbers] ( @ref ) |
20+ | $\mathbb{F}_ q$ | ` GF(q) ` | See also ` finite_field ` | [ Finite fields] (@ref finite_fields_section ) |
21+ | $\mathbb{F}_ q[ X] /(f)$ | ` finite_field(f) ` | | [ Finite fields] (@ref finite_fields_section )|
22+ | $\overline{\mathbb{Q}}$ | ` algebraic_closure(QQ) ` | | [ Algebraic closure of the rational numbers] (@ref qqbar_section ) |
2323| $\overline{\mathbb{F}}_ q$ | ` algebraic_closure(F) ` | | [ Algebraic closure of finite prime fields] ( @ref )
2424| $\mathbb{Q}^{\mathrm{ab}}$ | ` abelian_closure(QQ) ` | | [ Abelian closure of the rationals] ( @ref )
2525| $\mathbb{Q}[ X] /(f)$ | ` number_field(f) ` |
2626| $\mathbb{Q}(\alpha) \subseteq \R$ | ` embedded_number_field ` | Ordered field
27- | $\mathbb{R}$ | ` real_field() ` | Ball arithmetic | [ Arbitrary precision real balls] ( @ref )
28- | $\mathbb{C}$ | ` complex_field() ` | Ball arithmetic | [ Arbitrary precision complex balls] ( @ref )
27+ | $\mathbb{R}$ | ` real_field() ` | Ball arithmetic | [ Arbitrary precision real balls] (@ref real_field_section )
28+ | $\mathbb{C}$ | ` complex_field() ` | Ball arithmetic | [ Arbitrary precision complex balls] (@ref complex_field_section )
2929| $\mathbb{Q}_ p$ | ` padic_field(p) ` | | [ Padics] ( @ref )
3030| $\mathbb{Q}_ {p^n}$ | ` qadic_field(p, n) ` | Unramified extensions of $\mathbb{Q}_ p$ | [ Qadics] ( @ref )
3131| $R/(f)$ | ` residue_field(R, f) ` | $R$ must be a principal ideal domain
0 commit comments