-
Notifications
You must be signed in to change notification settings - Fork 162
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Try the following example:
P, (a, b, x, y, z) = QQ[:a, :b, :x, :y, :z]
I = ideal(P, [x^3 + x*y^2 - z^2, a*y - b*z, b*x - y, a*x - z, -a*z + x^2 + y^2, -a^2 + b*y + x, -a^3 + b^2*z + z, -a^2*b + b^2*y + y])
A, _ = quo(P, I)
FA = free_module(A, 8)
rel_mat = [0 0 0 3*a*z - 2*y^2 2*x*y -2*z 0 0; 0 0 0 0 3*a*z - 2*y^2 0 2*x*y -2*z; -6*a*z^2 + 4*y^2*z -4*x*y*z 4*z^2 -6*x*z -4*y*z 3*a*z - 2*y^2 -2*x*z 2*x*y; 0 0 0 6*x*y^2 - 9*z^2 2*y^3 6*x*z 4*x*y^2 -4*y*z; 0 0 0 -3*a*z + 2*y^2 -2*x*y 2*z 0 0; 0 0 0 0 -2*x*y^2 + 3*z^2 0 2*b*z^2 - 2*y^3 -2*x*z; 4*x*y^2*z - 6*z^3 -4*b*z^3 + 4*y^3*z 4*x*z^2 -6*a*z^2 + 6*y^2*z -4*x*y*z -2*x*y^2 + 3*z^2 -2*a*z^2 + 2*y^2*z 2*b*z^2 - 2*y^3; 0 0 0 -6*x*y^2 + 9*z^2 -2*y^3 -6*x*z -4*x*y^2 4*y*z]
rel_mat = matrix_space(A, 8, 8)(rel_mat)
U, inc_U = sub(FA, rel_mat)
J = ideal(A, x)
# saturation(U, J) # throws an error, too!
U_sat = Oscar._saturation(U.sub, J)
U_sat, _ = sub(FA, gens(U_sat))
all(x in U_sat for x in gens(U))In my opinion the last statement should be true, but it returns false for me. The _saturation method delegates directly to singular and its signature suggests that it is suitable for quotient rings. Apparently this is an example where we get wrong results and it seems to me that the problem is actually inside Singular.
Ping @hannes14 , @wdecker , @jankoboehm .
I will try to provide a temporary workaround, soon. But I thought that this might be something that Singular developers want to look at?
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working