-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsales2017.py
39 lines (38 loc) · 1.02 KB
/
sales2017.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pandas
import numpy
F = "FEW-CN"
#orders=r"order.xlsx"
sales_2017 = pandas.read_excel("order.xlsx")
#print(type(sales_2017))
#print(sales_2017.dtypes)
#print(sales_2017)
#print(sales_2017.head(300))
#print(sales_2017.tail(50))
#print(sales_2017.columns)
#print(sales_2017.shape)
#print(sales_2017.loc[10:30])
#SO = sales_2017["Sales Orde"]
#print(SO)
column = ["Sales Orde", "Quantity"]
order_qty = sales_2017[column]
print(order_qty)
col_name = sales_2017.columns.tolist()
print(col_name)
type_column = []
#print(type_column)
for c in col_name:
if c.endswith(("t")):
type_column.append(c)
typeofEMF = sales_2017[type_column]
#print(type_column.append(c))
print(typeofEMF)
#print(typeofEMF.head(3))
#unitprice = sales_2017("Net value")/sales_2017("Quantity")
unitprice = sales_2017["Net value"]/sales_2017["Quantity"]
#2columns = sales_2017[0:2]
#print(sales_2017.loc[0:2])
print(sales_2017.shape)
sales_2017["Unit Price"] = unitprice
print(sales_2017.shape)
maxnetvalue = sales_2017["Net value"].max()
print(maxnetvalue)