We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
AGENT NAME: A3C 1.1: A3C TITLE CartPole layer info [20, 10, [2, 1]] layer info [20, 10, [2, 1]] {'learning_rate': 0.005, 'linear_hidden_units': [20, 10], 'final_layer_activation': ['SOFTMAX', None], 'gradient_clipping_norm': 5.0, 'discount_rate': 0.99, 'epsilon_decay_rate_denominator': 1.0, 'normalise_rewards': True, 'exploration_worker_difference': 2.0, 'clip_rewards': False, 'Actor': {'learning_rate': 0.0003, 'linear_hidden_units': [64, 64], 'final_layer_activation': 'Softmax', 'batch_norm': False, 'tau': 0.005, 'gradient_clipping_norm': 5, 'initialiser': 'Xavier'}, 'Critic': {'learning_rate': 0.0003, 'linear_hidden_units': [64, 64], 'final_layer_activation': None, 'batch_norm': False, 'buffer_size': 1000000, 'tau': 0.005, 'gradient_clipping_norm': 5, 'initialiser': 'Xavier'}, 'min_steps_before_learning': 400, 'batch_size': 256, 'mu': 0.0, 'theta': 0.15, 'sigma': 0.25, 'action_noise_std': 0.2, 'action_noise_clipping_range': 0.5, 'update_every_n_steps': 1, 'learning_updates_per_learning_session': 1, 'automatically_tune_entropy_hyperparameter': True, 'entropy_term_weight': None, 'add_extra_noise': False, 'do_evaluation_iterations': True, 'output_activation': None, 'hidden_activations': 'relu', 'dropout': 0.0, 'initialiser': 'default', 'batch_norm': False, 'columns_of_data_to_be_embedded': [], 'embedding_dimensions': [], 'y_range': ()} RANDOM SEED 1044929444 Episode 4892, Score: 10.00, Max score seen: 88.00, Rolling score: 9.33, Max rolling score seen: 25.27Process Process-1: Traceback (most recent call last): File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap self.run() File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/process.py", line 99, in run self._target(*self._args, **self._kwargs) File "/home/account/Documents/Deep_RL_Implementations/agents/actor_critic_agents/A3C.py", line 70, in update_shared_model gradients = gradient_updates_queue.get() File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/queues.py", line 113, in get return _ForkingPickler.loads(res) File "/home/account/anaconda3/envs/RL17/lib/python3.7/site-packages/torch/multiprocessing/reductions.py", line 151, in rebuild_storage_fd fd = df.detach() File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/resource_sharer.py", line 57, in detach with _resource_sharer.get_connection(self._id) as conn: File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/resource_sharer.py", line 87, in get_connection c = Client(address, authkey=process.current_process().authkey) File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/connection.py", line 492, in Client c = SocketClient(address) File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/connection.py", line 620, in SocketClient s.connect(address) FileNotFoundError: [Errno 2] No such file or directory
but new question is :
1.1: A3C TITLE CartPole layer info [20, 10, [2, 1]] layer info [20, 10, [2, 1]] {'learning_rate': 0.005, 'linear_hidden_units': [20, 10], 'final_layer_activation': ['SOFTMAX', None], 'gradient_clipping_norm': 5.0, 'discount_rate': 0.99, 'epsilon_decay_rate_denominator': 1.0, 'normalise_rewards': True, 'exploration_worker_difference': 2.0, 'clip_rewards': False, 'Actor': {'learning_rate': 0.0003, 'linear_hidden_units': [64, 64], 'final_layer_activation': 'Softmax', 'batch_norm': False, 'tau': 0.005, 'gradient_clipping_norm': 5, 'initialiser': 'Xavier'}, 'Critic': {'learning_rate': 0.0003, 'linear_hidden_units': [64, 64], 'final_layer_activation': None, 'batch_norm': False, 'buffer_size': 1000000, 'tau': 0.005, 'gradient_clipping_norm': 5, 'initialiser': 'Xavier'}, 'min_steps_before_learning': 400, 'batch_size': 256, 'mu': 0.0, 'theta': 0.15, 'sigma': 0.25, 'action_noise_std': 0.2, 'action_noise_clipping_range': 0.5, 'update_every_n_steps': 1, 'learning_updates_per_learning_session': 1, 'automatically_tune_entropy_hyperparameter': True, 'entropy_term_weight': None, 'add_extra_noise': False, 'do_evaluation_iterations': True, 'output_activation': None, 'hidden_activations': 'relu', 'dropout': 0.0, 'initialiser': 'default', 'batch_norm': False, 'columns_of_data_to_be_embedded': [], 'embedding_dimensions': [], 'y_range': ()} RANDOM SEED 2824610793 Episode 999, Score: 11.00, Max score seen: 99.00, Rolling score: 11.18, Max rolling score seen: 31.03Traceback (most recent call last): File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/resource_sharer.py", line 142, in _serve with self._listener.accept() as conn: File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/connection.py", line 455, in accept deliver_challenge(c, self._authkey) File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/connection.py", line 730, in deliver_challenge response = connection.recv_bytes(256) # reject large message File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/connection.py", line 216, in recv_bytes buf = self._recv_bytes(maxlength) File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytes buf = self._recv(4) File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/connection.py", line 379, in _recv chunk = read(handle, remaining) ConnectionResetError: [Errno 104] Connection reset by peer Time taken: 7.811599016189575
The text was updated successfully, but these errors were encountered:
Hello, I have the same problem as you when implementing the A3C algorithm, have you solved it?
Sorry, something went wrong.
No branches or pull requests
AGENT NAME: A3C
1.1: A3C
TITLE CartPole
layer info [20, 10, [2, 1]]
layer info [20, 10, [2, 1]]
{'learning_rate': 0.005, 'linear_hidden_units': [20, 10], 'final_layer_activation': ['SOFTMAX', None], 'gradient_clipping_norm': 5.0, 'discount_rate': 0.99, 'epsilon_decay_rate_denominator': 1.0, 'normalise_rewards': True, 'exploration_worker_difference': 2.0, 'clip_rewards': False, 'Actor': {'learning_rate': 0.0003, 'linear_hidden_units': [64, 64], 'final_layer_activation': 'Softmax', 'batch_norm': False, 'tau': 0.005, 'gradient_clipping_norm': 5, 'initialiser': 'Xavier'}, 'Critic': {'learning_rate': 0.0003, 'linear_hidden_units': [64, 64], 'final_layer_activation': None, 'batch_norm': False, 'buffer_size': 1000000, 'tau': 0.005, 'gradient_clipping_norm': 5, 'initialiser': 'Xavier'}, 'min_steps_before_learning': 400, 'batch_size': 256, 'mu': 0.0, 'theta': 0.15, 'sigma': 0.25, 'action_noise_std': 0.2, 'action_noise_clipping_range': 0.5, 'update_every_n_steps': 1, 'learning_updates_per_learning_session': 1, 'automatically_tune_entropy_hyperparameter': True, 'entropy_term_weight': None, 'add_extra_noise': False, 'do_evaluation_iterations': True, 'output_activation': None, 'hidden_activations': 'relu', 'dropout': 0.0, 'initialiser': 'default', 'batch_norm': False, 'columns_of_data_to_be_embedded': [], 'embedding_dimensions': [], 'y_range': ()}
RANDOM SEED 1044929444
Episode 4892, Score: 10.00, Max score seen: 88.00, Rolling score: 9.33, Max rolling score seen: 25.27Process Process-1:
Traceback (most recent call last):
File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
self.run()
File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/process.py", line 99, in run
self._target(*self._args, **self._kwargs)
File "/home/account/Documents/Deep_RL_Implementations/agents/actor_critic_agents/A3C.py", line 70, in update_shared_model
gradients = gradient_updates_queue.get()
File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/queues.py", line 113, in get
return _ForkingPickler.loads(res)
File "/home/account/anaconda3/envs/RL17/lib/python3.7/site-packages/torch/multiprocessing/reductions.py", line 151, in rebuild_storage_fd
fd = df.detach()
File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/resource_sharer.py", line 57, in detach
with _resource_sharer.get_connection(self._id) as conn:
File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/resource_sharer.py", line 87, in get_connection
c = Client(address, authkey=process.current_process().authkey)
File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/connection.py", line 492, in Client
c = SocketClient(address)
File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/connection.py", line 620, in SocketClient
s.connect(address)
FileNotFoundError: [Errno 2] No such file or directory
I try to use this medod : #45 change python Quenue instead of torch.multiprocessing Queue**
but new question is :
1.1: A3C
TITLE CartPole
layer info [20, 10, [2, 1]]
layer info [20, 10, [2, 1]]
{'learning_rate': 0.005, 'linear_hidden_units': [20, 10], 'final_layer_activation': ['SOFTMAX', None], 'gradient_clipping_norm': 5.0, 'discount_rate': 0.99, 'epsilon_decay_rate_denominator': 1.0, 'normalise_rewards': True, 'exploration_worker_difference': 2.0, 'clip_rewards': False, 'Actor': {'learning_rate': 0.0003, 'linear_hidden_units': [64, 64], 'final_layer_activation': 'Softmax', 'batch_norm': False, 'tau': 0.005, 'gradient_clipping_norm': 5, 'initialiser': 'Xavier'}, 'Critic': {'learning_rate': 0.0003, 'linear_hidden_units': [64, 64], 'final_layer_activation': None, 'batch_norm': False, 'buffer_size': 1000000, 'tau': 0.005, 'gradient_clipping_norm': 5, 'initialiser': 'Xavier'}, 'min_steps_before_learning': 400, 'batch_size': 256, 'mu': 0.0, 'theta': 0.15, 'sigma': 0.25, 'action_noise_std': 0.2, 'action_noise_clipping_range': 0.5, 'update_every_n_steps': 1, 'learning_updates_per_learning_session': 1, 'automatically_tune_entropy_hyperparameter': True, 'entropy_term_weight': None, 'add_extra_noise': False, 'do_evaluation_iterations': True, 'output_activation': None, 'hidden_activations': 'relu', 'dropout': 0.0, 'initialiser': 'default', 'batch_norm': False, 'columns_of_data_to_be_embedded': [], 'embedding_dimensions': [], 'y_range': ()}
RANDOM SEED 2824610793
Episode 999, Score: 11.00, Max score seen: 99.00, Rolling score: 11.18, Max rolling score seen: 31.03Traceback (most recent call last):
File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/resource_sharer.py", line 142, in _serve
with self._listener.accept() as conn:
File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/connection.py", line 455, in accept
deliver_challenge(c, self._authkey)
File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/connection.py", line 730, in deliver_challenge
response = connection.recv_bytes(256) # reject large message
File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/connection.py", line 216, in recv_bytes
buf = self._recv_bytes(maxlength)
File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
File "/home/account/anaconda3/envs/RL17/lib/python3.7/multiprocessing/connection.py", line 379, in _recv
chunk = read(handle, remaining)
ConnectionResetError: [Errno 104] Connection reset by peer
Time taken: 7.811599016189575
The text was updated successfully, but these errors were encountered: