-
Notifications
You must be signed in to change notification settings - Fork 263
/
Copy pathdescription.txt
71 lines (63 loc) · 2.45 KB
/
description.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
Hello Every one,
We didn't know what to do, so we are asking for your help.
A friend of us sent us the following text:
I used an elliptic curve encrytion for the first time.
The only thing that i kown about elliptic curve is that a number K must always be hidden.
so i made multiple encryption to send some information.
Here is all the informations about the elliptic curve that i used excep the K number.
The elliptic curve is :
y^2 = x^3 + A*x + B
A = 658974
Sorry i forget the B :/ , I just remember that it's most significant number is 6
As an order of a finite field must be a prime power, i used p = 962280654317 (FiniteField(p)).
as a starter point, i used the generator G for this elliptic curve: (518459267012 : 339109212996 : 1)
and each time i reuse it to encrypt again
let my secret message be K .
for exemple I divided my K to 2 elements k1 and k2
then Q1 is k1*G
and Q2 is k2*G
here are the Qi that i got:
[(656055339629 : 670956206845 : 1),
(714432985374 : 30697818482 : 1),
(519532969453 : 833497145865 : 1),
(606806384185 : 353033449641 : 1),
(370553209582 : 211121736115 : 1),
(95617246846 : 666814491609 : 1),
(474872055371 : 795112698430 : 1),
(249845085299 : 222352033875 : 1),
(850954431245 : 810446463695 : 1),
(188731559428 : 877002121896 : 1),
(168665615402 : 464872506873 : 1),
(26722558561 : 269217869309 : 1),
(16403346294 : 478534963882 : 1),
(539749282946 : 332444159141 : 1),
(932295517649 : 23439478940 : 1),
(765194933041 : 920187938377 : 1),
(853124087439 : 845601917928 : 1),
(246454416048 : 212483699689 : 1),
(312547608490 : 688107262695 : 1),
(43261158649 : 439444472742 : 1),
(320785434805 : 477080449838 : 1),
(741706320740 : 672809544395 : 1),
(361762297756 : 858805805323 : 1),
(782235980044 : 600673464737 : 1),
(69196762074 : 327427680437 : 1),
(876001563166 : 573218279075 : 1),
(117946101727 : 954797129239 : 1),
(771781111553 : 314018907599 : 1),
(579549799021 : 322325160055 : 1),
(857081196493 : 464260539273 : 1),
(852938568103 : 429083796488 : 1),
(850954431245 : 810446463695 : 1),
(55203632714 : 255470537391 : 1),
(600464434215 : 605840305721 : 1),
(620532163623 : 575613893944 : 1),
(215810002861 : 481354983411 : 1),
(538481263994 : 666638294130 : 1),
(528666082457 : 895034116069 : 1),
(296218553972 : 899557390183 : 1),
(428618251485 : 445768511836 : 1),
(632412058600 : 685699421425 : 1),
(634041855232 : 495546745721 : 1),
(570481762204 : 252944477333 : 1),
(760959783781 : 435626456209 : 1)]