-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate.py
351 lines (308 loc) · 14.8 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
from utils import utils
from run_language_modeling import load_and_cache_examples, mask_tokens, LineByLineTextDataset
from torch.nn.utils.rnn import pad_sequence
from shift import add_shifted_input, remove_parallel_data
from modifymodel import delete_position_segment_embeddings
from modifyinput import invert, get_language_specific_positions, shift_special_tokens
import logging
import argparse
from typing import List, Any, Set, Tuple, Text
import torch
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
from tqdm import tqdm
import collections
from sklearn.metrics.pairwise import cosine_distances
import numpy as np
import os
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
logger = logging.getLogger(__name__)
def remove_padding(tensor, padding_mask):
if tensor is None:
return []
result = []
for elem, mask in zip(tensor, padding_mask):
if len(elem[mask]) == 0 and len(elem) > 2:
# add the first token after [CLS] if entry is too short
result.append(elem[1:2])
else:
result.append(elem[mask])
return result
def load_and_preprocess_corpus(eval_dataset, add_fake_english, args, tokenizer, model):
if add_fake_english:
add_shifted_input(eval_dataset.examples, args.special_token_indices, model.config.shift)
def collate(examples: List[torch.Tensor]):
if tokenizer._pad_token is None:
return pad_sequence(examples, batch_first=True)
return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate
)
model.eval()
mycounter = 0
all_vectors = collections.defaultdict(list)
all_inputs = collections.defaultdict(list)
count = -1
for batch in tqdm(eval_dataloader, desc="Evaluating"):
count += 1
if count == 68 or count == 1:
pass
#import ipdb;ipdb.set_trace()
if args.invert_order:
invert(batch, model.config.shift)
if args.language_specific_positions:
if args.block_size > 256:
raise ValueError("Language specific posiiton embeddings can only be <256.")
position_ids, segment_ids = get_language_specific_positions(batch, model.config.shift, args.block_size)
position_ids = position_ids.to(args.device)
segment_ids = segment_ids.to(args.device)
else:
position_ids, segment_ids = None, None
# we do not require masking
# inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
if args.shift_special_tokens:
shift_special_tokens(batch, model.config.shift, args.special_token_indices)
# directly get vectors
inputs = batch.to(args.device)
with torch.no_grad():
outputs = model(inputs, position_ids=position_ids, token_type_ids=segment_ids)
padding_mask = (inputs == tokenizer.pad_token_id) | (inputs == tokenizer.pad_token_id + model.config.shift)
padding_mask = padding_mask | (inputs == tokenizer.cls_token_id) | (inputs == tokenizer.cls_token_id + model.config.shift)
padding_mask = padding_mask | (inputs == tokenizer.sep_token_id) | (inputs == tokenizer.sep_token_id + model.config.shift)
padding_mask = ~padding_mask
for layer in args.eval_layers:
all_vectors[layer].extend(remove_padding(outputs[1][layer], padding_mask))
all_inputs["input_ids"].extend(remove_padding(inputs, padding_mask))
all_inputs["position_ids"].extend(remove_padding(position_ids, padding_mask))
all_inputs["token_type_ids"].extend(remove_padding(segment_ids, padding_mask))
# for k, v in all_vectors.items():
# all_vectors[k] = torch.cat(all_vectors[k], dim=0)
return all_vectors, all_inputs
class VocabDataset(LineByLineTextDataset):
def __init__(self, tokenizer: Any, args, block_size=512):
self.examples = [[2, i, 3] for i in range(len(tokenizer.vocab))]
def get_distances(X: np.ndarray, Y: np.ndarray) -> np.ndarray:
return cosine_distances(X, Y)
def get_alignment_matrix(dist: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
m, n = dist.shape
forward = np.eye(n)[dist.argmin(axis=1)] # m x n
backward = np.eye(m)[dist.argmin(axis=0)] # n x m
return forward, backward.transpose()
def symmetrize(forward: np.ndarray, backward: np.ndarray) -> np.ndarray:
return forward * backward
def evaluate_retrieval(vectors, args):
# for each sentence pair get vectors and alignments (using NNs)
n = len(vectors)
if n % 2 != 0:
raise ValueError("Something's wrong.")
vectors_e, vectors_f = vectors[:n // 2], vectors[n // 2:]
vectors_e = np.array([x.cpu().numpy().mean(axis=0) for x in vectors_e])
vectors_f = np.array([x.cpu().numpy().mean(axis=0) for x in vectors_f])
dist = get_distances(vectors_e, vectors_f)
if dist.shape[0] != dist.shape[1]:
print("Number of sentences is different?")
# get different p@k
nns = np.argsort(dist, axis=1)[:, :10]
# import ipdb;ipdb.set_trace()
gt = np.arange(dist.shape[0]).reshape(-1, 1)
p = {}
for considern in [1, 5, 10]:
hits1 = ((nns[:, :considern] == gt).sum(axis=1) > 0).sum()
p[considern] = hits1 / dist.shape[0]
nns = np.argsort(dist, axis=0)[:10, :].transpose()
gt = np.arange(dist.shape[0]).reshape(-1, 1)
pinv = {}
for considern in [1, 5, 10]:
hits1 = ((nns[:, :considern] == gt).sum(axis=1) > 0).sum()
pinv[considern] = hits1 / dist.shape[0]
return p, pinv
def evaluate_alignment(vectors, args):
# for each sentence pair get vectors and alignments (using NNs)
n = len(vectors)
if n % 2 != 0:
raise ValueError("Somethings wrong.")
vectors_e, vectors_f = vectors[:n // 2], vectors[n // 2:]
all_predict = collections.defaultdict(list)
all_trues = []
for i, (e, f) in tqdm(enumerate(zip(vectors_e, vectors_f)), desc='Alignment'):
if min(min(e.shape), min(f.shape)) == 0:
raise ValueError("Empty sentence.")
dist = get_distances(e.cpu().numpy(), f.cpu().numpy())
forward, backward = get_alignment_matrix(dist)
intersect = symmetrize(forward, backward)
if dist.shape[0] != dist.shape[1]:
raise ValueError("Sentence length is different: {}.".format(i))
gold = np.eye(dist.shape[0])
if args.invert_order:
gold = np.flip(gold, (1,))
# filter edges where all systems predicted 0
non_zero = (forward.flatten() + backward.flatten() + intersect.flatten() + gold.flatten()) > 0
all_predict["forward"].extend(list(forward.flatten()[non_zero]))
all_predict["backward"].extend(list(backward.flatten()[non_zero]))
all_predict["intersect"].extend(list(intersect.flatten()[non_zero]))
all_trues.extend(list(gold.flatten()[non_zero]))
result = {}
for k, v in all_predict.items():
acc = accuracy_score(all_trues, v)
prec = precision_score(all_trues, v)
rec = recall_score(all_trues, v)
f1 = f1_score(all_trues, v)
result[k] = acc, prec, rec, f1
return result
def load_perplexity(args):
if not os.path.exists(os.path.join(args.model_name_or_path, "eval_results.txt")):
logger.warning("Perplexity not found.")
return -1
with open(os.path.join(args.model_name_or_path, "eval_results.txt"), "r") as fp:
text = fp.read().strip()
text = text.replace("perplexity = tensor(", "")
text = text.replace(")", "")
perplexity = float(text)
return perplexity
def get_modifications(args, config):
modifications = []
if args.language_specific_positions:
modifications.append("lang-pos")
if args.invert_order:
modifications.append("inv-order")
if args.shift_special_tokens:
modifications.append("shift-special")
if args.replacement_probs:
formating = "repl-probs(" + ",".join(["{}" for x in args.replacement_probs.split(",")]) + ")"
modifications.append(formating.format(*args.replacement_probs.split(",")))
if args.delete_position_segment_embeddings:
modifications.append("del-pos")
if args.do_not_replace_with_random_words:
modifications.append("no-random")
if args.no_parallel_data:
modifications.append("no-parallel")
if args.replace_with_nn > 0:
modifications.append("repl-nn({})".format(args.replace_with_nn))
if args.compute_loss_on_all:
modifications.append("all-loss")
if args.adjust_replacement_probs_with_time > 0:
modifications.append("dyn-replace({})".format(args.adjust_replacement_probs_with_time))
if args.use_anchor_points:
modifications.append("use-dict")
if args.crosslingual_context > 0:
modifications.append("cross-context({})".format(args.crosslingual_context))
if config.hidden_size > 64:
modifications.append("overparam({})".format(config.hidden_size))
if args.vecmap:
modifications.append("vecmap()")
if len(modifications) == 0:
modifications.append("original")
return ";".join(modifications)
def format_result_line(args, perplexity, alignment_results, retrieval_results, translation_results, layer, config):
modifications = get_modifications(args, config)
formatting = "{} " * 32 + "\n"
return formatting.format(
args.modeltype,
args.exid,
args.seed,
modifications,
args.model_name_or_path,
args.take_n_sentences,
layer,
perplexity,
alignment_results['intersect'][3],
0.5 * (retrieval_results[0][1] + retrieval_results[1][1]),
0.5 * (translation_results[0][1] + translation_results[1][1]),
alignment_results['forward'][1],
alignment_results['forward'][2],
alignment_results['forward'][3],
alignment_results['backward'][1],
alignment_results['backward'][2],
alignment_results['backward'][3],
alignment_results['intersect'][1],
alignment_results['intersect'][2],
alignment_results['intersect'][3],
retrieval_results[0][1],
retrieval_results[0][5],
retrieval_results[0][10],
retrieval_results[1][1],
retrieval_results[1][5],
retrieval_results[1][10],
translation_results[0][1],
translation_results[0][5],
translation_results[0][10],
translation_results[1][1],
translation_results[1][5],
translation_results[1][10])
def evaluate_all(args):
outfile = open(args.outfile, "a")
model, tokenizer, config = utils.load_embedding_model(args.model_name_or_path)
args.special_token_indices = set([tokenizer.cls_token_id,
tokenizer.sep_token_id,
tokenizer.mask_token_id,
tokenizer.unk_token_id,
tokenizer.pad_token_id])
eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)
if args.take_n_sentences > 0:
eval_dataset.examples = eval_dataset.examples[:args.take_n_sentences]
vectors, inputs = load_and_preprocess_corpus(eval_dataset, args.add_fake_english, args, tokenizer, model)
vocab_dataset = VocabDataset(tokenizer, args)
vectors_vocab, inputs_vocab = load_and_preprocess_corpus(vocab_dataset, False, args, tokenizer, model)
for layer in args.eval_layers:
alignment_results = evaluate_alignment(vectors[layer], args)
retrieval_results = evaluate_retrieval(vectors[layer], args)
translation_results = evaluate_retrieval(vectors_vocab[layer], args)
perplexity = load_perplexity(args)
line = format_result_line(args, perplexity, alignment_results, retrieval_results, translation_results, layer, config)
outfile.write(line)
outfile.close()
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--eval_data_file",
default=None,
type=str,
help="",
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
help="The model checkpoint for weights initialization.",
)
parser.add_argument(
"--block_size",
default=128,
type=int,
help="Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens).",
)
parser.add_argument(
"--eval_batch_size", default=256, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument("--eval_layers", default="0,8", type=str, help="")
parser.add_argument("--language_specific_positions", action="store_true", help="")
parser.add_argument("--invert_order", action="store_true", help="")
parser.add_argument("--shift_special_tokens", action="store_true", help="")
parser.add_argument("--outfile", default="", type=str, help="", required=True)
parser.add_argument("--exid", default="", type=str, help="", required=True)
parser.add_argument("--seed", default=None, type=int, help="", required=True)
parser.add_argument("--modeltype", default="", type=str, help="", required=True)
parser.add_argument("--take_n_sentences", default=-1, type=int, help="", required=False)
parser.add_argument("--replacement_probs", default="", type=str, help="FAKE NOT REQUIRED", required=False)
parser.add_argument("--delete_position_segment_embeddings", action="store_true", help="FAKE NOT REQUIRED")
parser.add_argument("--do_not_replace_with_random_words", action="store_true", help="FAKE NOT REQUIRED")
parser.add_argument("--no_parallel_data", action="store_true", help="FAKE NOT REQUIRED")
parser.add_argument("--replace_with_nn", type=int, default=-1, help="FAKE NOT REQUIRED")
parser.add_argument("--crosslingual_context", type=float, default=-1, help="FAKE NOT REQUIRED")
parser.add_argument("--compute_loss_on_all", action="store_true", help="FAKE NOT REQUIRED")
parser.add_argument("--use_anchor_points", action="store_true", help="FAKE NOT REQUIRED")
parser.add_argument("--adjust_replacement_probs_with_time", type=float, default=-1, help="FAKE NOT REQUIRED")
parser.add_argument("--vecmap", type=str, default="", help="FAKE NOT REQUIRED")
args = parser.parse_args()
# add some default values
args.line_by_line = True
args.add_fake_english = True
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
args.eval_layers = [int(x) for x in args.eval_layers.split(",")]
evaluate_all(args)
if __name__ == '__main__':
main()