This repository was archived by the owner on Oct 31, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSTANtest0ex1.py
370 lines (312 loc) · 13.4 KB
/
STANtest0ex1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# -*- coding: utf-8 -*-
# src:
# - https://github.com/astroML/astroML/blob/main/astroML/datasets/hogg2010test.py
# - https://www.pymc.io/projects/examples/en/latest/generalized_linear_models/GLM-robust-with-outlier-detection.html
import numpy as np, pandas as pd, matplotlib.pyplot as plt, seaborn as sns, arviz as az, scipy
from matplotlib.patches import Ellipse
from cmdstanpy import CmdStanModel
#%% data
dfhogg = pd.DataFrame(dict(
x = [ 201, 244, 47, 287, 203, 58, 210, 202, 198, 158, 165, 201, 157, 131, 166, 160, 186, 125, 218, 146],
y = [ 592, 401, 583, 402, 495, 173, 479, 504, 510, 416, 393, 442, 317, 311, 400, 337, 423, 334, 533, 344],
sigma_x = [ 9, 4, 11, 7, 5, 9, 4, 4, 11, 7, 5, 5, 5, 6, 6, 5, 9, 8, 6, 5],
sigma_y = [ 61, 25, 38, 15, 21, 15, 27, 14, 30, 16, 14, 25, 52, 16, 34, 31, 42, 26, 16, 22],
rho_xy = [-.84, .31, .64, -.27, -.33, .67, -.02, -.05, -.84, -.69, .3, -.46, -.03, .5, .73, -.52, .9, .4, -.78, -.56]
), dtype = "float32")
# scatter plot with error bars
dfhogg.plot.scatter(x = "x", y = "y", xerr = "sigma_x", yerr = "sigma_y", c = "b")
# scatter plot with error ellipsis
plt.scatter(dfhogg["x"].values, dfhogg["y"].values)
ax = plt.gca()
for i in range(len(dfhogg)):
x = dfhogg.iloc[i,0]
y = dfhogg.iloc[i,1]
sigma_x = dfhogg.iloc[i,2]
sigma_y = dfhogg.iloc[i,3]
rho_xy = dfhogg.iloc[i,4]
cov = rho_xy * sigma_x * sigma_y
cov_mat = np.array([[sigma_x**2, cov], [cov, sigma_y**2]])
evals, evecs = scipy.linalg.eigh(cov_mat, eigvals = (0,0)) # eigenvalue, eigenvector
angle = np.degrees(np.arctan2(evecs[1][0], evecs[0][0])) # article by Vincent Spruyt
ellipse = Ellipse((x,y), width=2*sigma_x, height=2*sigma_y, angle=angle, edgecolor="b", facecolor="none")
ax.add_patch(ellipse)
X, Y, sigmaY = dfhogg["x"].values, dfhogg["y"].values, dfhogg["sigma_y"].values
model_data_dict = {"N": len(dfhogg), "X": X, "Y": Y, "sigmaY": sigmaY}
model_data_stan = """
data {
int<lower=0> N;
vector[N] X;
vector[N] Y;
vector<lower=0>[N] sigmaY;
}
"""
model_trans_params_stan = """
transformed parameters {
vector[N] Yhat = b0 + b1 * X;
}
"""
var_name = ["b0", "b1"]
#%% models to deal with outliers
# Simple Linear Model with no Outlier Correction
modelfile_ols = "mdl_ols.stan"
with open(modelfile_ols, "w") as file: file.write(model_data_stan + """
parameters { // discrete parameters impossible
real b0;
real b1;
}
""" + model_trans_params_stan + """
model {
Y ~ normal(Yhat, sigmaY);
}
""")
sm_ols = CmdStanModel(stan_file = modelfile_ols)
fit_ols = sm_ols.sample(
data = model_data_dict, show_progress = True, chains = 4,
iter_sampling = 50000, iter_warmup = 10000, thin = 5
)
fit_ols.draws().shape # iterations, chains, parameters
fit_ols.summary().loc[var_name] # pandas DataFrame
print(fit_ols.diagnose())
posterior_ols = {k: fit_ols.stan_variable(k) for k in var_name}
az_trace_ols = az.from_cmdstanpy(fit_ols)
az.summary(az_trace_ols).loc[var_name] # pandas DataFrame
az.plot_trace(az_trace_ols, var_names = var_name)
gd = sns.jointplot(
x = posterior_ols["b0"], y = posterior_ols["b1"],
marginal_kws = {"kde": True, "kde_kws": {"cut": 1}},
)
gd.plot_joint(sns.kdeplot, zorder = 2, n_levels = 10, cmap = "gray_r")
gd.figure.suptitle("Posterior joint distribution (OLS)", y = 1.02)
# Simple Linear Model with Robust Student-T Likelihood: outliers to have a smaller influence in the likelihood estimation
modelfile_studentt = "mdl_studentt.stan"
with open(modelfile_studentt, "w") as file: file.write(model_data_stan + """
parameters { // discrete parameters impossible
real b0;
real b1;
real<lower=0> df;
}
""" + model_trans_params_stan + """
model {
df ~ inv_gamma(1, 1);
Y ~ student_t(df, Yhat, sigmaY);
}
""")
var_name_studentt = var_name + ["df"]
sm_studentt = CmdStanModel(stan_file = modelfile_studentt)
fit_studentt = sm_studentt.sample(
data = model_data_dict, show_progress = True, chains = 4,
iter_sampling = 50000, iter_warmup = 10000, thin = 5
)
fit_studentt.draws().shape # iterations, chains, parameters
fit_studentt.summary().loc[var_name_studentt] # pandas DataFrame
print(fit_studentt.diagnose())
posterior_studentt = {k: fit_studentt.stan_variable(k) for k in var_name_studentt}
az_trace_studentt = az.from_cmdstanpy(fit_studentt)
az.summary(az_trace_studentt).loc[var_name_studentt] # pandas DataFrame
az.plot_trace(az_trace_studentt, var_names = var_name_studentt)
# Linear Model with Custom Likelihood to Distinguish Outliers: Hogg Method
# idea: mixture model whereby datapoints can be: normal linear model vs outlier (for convenience also be linear)
modelfile_hogg = "mdl_hogg.stan"
with open(modelfile_hogg, "w") as file: file.write(model_data_stan + """
parameters { // discrete parameters impossible
real b0;
real b1;
real Y_outlier; // mean for all outliers
real<lower=0> sigmaY_outlier; // additional variance for outliers
simplex[2] cluster_prob; // mixture ratio
}
""" + model_trans_params_stan + """
model {
b0 ~ normal(0, 5); // weakly informative Normal priors (L2 ridge reg) for inliers
b1 ~ normal(0, 5); // likewise
Y_outlier ~ normal(0, 10);
sigmaY_outlier ~ normal(0, 10); // half-normal because of above constraint
for (n in 1:N) { // custom mixture model: cluster 1 = inlier, 2 = outlier
real cluster1 = log(cluster_prob[1]) + normal_lpdf(Y[n] | Yhat[n], sigmaY[n]);
real cluster2 = log(cluster_prob[2]) + normal_lpdf(Y[n] | Y_outlier, sigmaY[n] + sigmaY_outlier);
target += log_sum_exp(cluster1, cluster2);
}
}
""")
var_name_hogg_array = var_name + ["Y_outlier", "sigmaY_outlier", "cluster_prob[1]", "cluster_prob[2]"]
var_name_hogg_combi = var_name + ["Y_outlier", "sigmaY_outlier", "cluster_prob"]
sm_hogg = CmdStanModel(stan_file = modelfile_hogg)
fit_hogg = sm_hogg.sample(
data = model_data_dict, show_progress = True, chains = 4,
iter_sampling = 50000, iter_warmup = 10000, thin = 5
)
fit_hogg.draws().shape # iterations, chains, parameters
fit_hogg.summary().loc[var_name_hogg_array] # pandas DataFrame
print(fit_hogg.diagnose())
posterior_hogg = {k: fit_hogg.stan_variable(k) for k in var_name_hogg_combi}
az_trace_hogg = az.from_cmdstanpy(fit_hogg)
az.summary(az_trace_hogg) # pandas DataFrame
az.plot_trace(az_trace_hogg, var_names = var_name_hogg_combi)
#%% some plots
Xrange = np.array([X.min() - 1, X.max()])
dfhogg.plot.scatter(x = "x", y = "y", xerr = "sigma_x", yerr = "sigma_y", c = "b", figsize = (8, 6))
for x, y, z in zip(
[posterior_ols, posterior_studentt, posterior_hogg],
["r", "g", "m"],
["OLS", "Student-T", "Hogg method"]
):
b0, b1 = x["b0"].mean(), x["b1"].mean()
plt.plot(Xrange, b0 + b1 * Xrange, c = y, label = f"{z}: $ y = {b0:.1f} + {b1:.1f}x $")
plt.legend(loc = "lower right")
for var in var_name:
a, b, c = posterior_ols[var], posterior_studentt[var], posterior_hogg[var]
data = pd.DataFrame(data = {
"y": np.concatenate((a, b, c)),
"model": np.repeat([
f"OLS: {a.mean():.1f}", f"Student-T: {b.mean():.1f}", f"Hogg method: {c.mean():.1f}"
], 40000) # nb of data pts: 4chains × 50000 iter ÷ 5 thin
})
g = sns.displot(data, x = "y", hue = "model", bins = "sqrt", kde = True, palette = ["r", "g", "m"])
g.figure.suptitle(f"Posterior distribution: {var}")
g.figure.set_figwidth(8)
g.figure.set_figheight(6)
#%% declare outliers
# Compute the un-normalized log probabilities for each cluster
cluster_0_log_prob = scipy.stats.norm.logpdf(
np.expand_dims(Y, axis = 1),
loc = posterior_hogg["b0"] + posterior_hogg["b1"] * np.expand_dims(X, axis = 1),
scale = np.expand_dims(sigmaY, axis = 1)
) + np.log(posterior_hogg["cluster_prob"][:, 0])
cluster_1_log_prob = scipy.stats.norm.logpdf(
np.expand_dims(Y, axis = 1),
loc = posterior_hogg["Y_outlier"],
scale = np.expand_dims(sigmaY, axis = 1) + posterior_hogg["sigmaY_outlier"]
) + np.log(posterior_hogg["cluster_prob"][:, 1])
# Bayes rule to compute the assignment probability: P(cluster = 1 | data) ∝ P(data | cluster = 1) P(cluster = 1)
log_p_assign_1 = cluster_1_log_prob - np.logaddexp(cluster_0_log_prob, cluster_1_log_prob)
# Average across the MCMC chain
log_p_assign_1bis = scipy.special.logsumexp(log_p_assign_1, axis=-1) - np.log(log_p_assign_1.shape[-1])
p_assign_1 = np.exp(log_p_assign_1bis)
dfhogg["is_outlier"] = [f"{100*i:.2f} %" for i in p_assign_1]
dfhogg["classed_as_outlier"] = p_assign_1 >= .95
#%% remove outliers + full model with all variances
# this section not exist in PyMC docs, refer to original paper
no_outliers = dfhogg[~dfhogg.classed_as_outlier]
mdl_full_data = dict(
N = len(no_outliers),
X = no_outliers["x"].values,
Y = no_outliers["y"].values,
sigmaX = no_outliers["sigma_x"].values,
sigmaY = no_outliers["sigma_y"].values,
rhoXY = no_outliers["rho_xy"].values
)
# linear model with gaussian uncertainties
modelfile_full = "mdl_full.stan"
with open(modelfile_full, "w") as file: file.write("""
data {
int<lower=0> N;
vector[N] X;
vector[N] Y;
vector<lower=0>[N] sigmaX;
vector<lower=0>[N] sigmaY;
vector<lower=-1,upper=1>[N] rhoXY;
}
transformed data {
array[N] vector[2] Z; // data pt in vector form
array[N] matrix[2,2] S; // each data point’s covariance matrix
for (i in 1:N) {
Z[i] = [X[i], Y[i]]';
real covXY = rhoXY[i] * sigmaX[i] * sigmaY[i];
S[i] = [[sigmaX[i]^2, covXY], [covXY, sigmaY[i]^2]];
}
}
parameters { // discrete parameters impossible
real m; // slope
real b; // intercept
}
model {
for (i in 1:N) {
real Y_hat_i = m * X[i] + b;
vector[2] Z_hat_i = [X[i], Y_hat_i]';
Z[i] ~ multi_normal(Z_hat_i, S[i]);
}
}
""")
var_name_full = ["m", "b"]
sm_full = CmdStanModel(stan_file = modelfile_full)
fit_full = sm_full.sample(
data = mdl_full_data, show_progress = True, chains = 4,
iter_sampling = 50000, iter_warmup = 10000, thin = 5
)
fit_full.draws().shape # iterations, chains, parameters
fit_full.summary().loc[var_name_full] # pandas DataFrame
print(fit_full.diagnose())
posterior_full = {k: fit_full.stan_variable(k) for k in var_name_full}
az_trace_full = az.from_cmdstanpy(fit_full)
az.summary(az_trace_full) # pandas DataFrame
az.plot_trace(az_trace_full, var_names = var_name_full)
b0, b1 = posterior_full["b"].mean(), posterior_full["m"].mean() # name changed
no_outliers.plot.scatter(x = "x", y = "y", xerr = "sigma_x", yerr = "sigma_y", c = "b")
plt.plot(Xrange, b0 + b1 * Xrange, label = f"$ y = {b0:.1f} + {b1:.1f}x $")
plt.legend(loc = "lower right")
#%% full model with intrinsic scatter
# linear model with arbitrary two-dimensional uncertainties
modelfile_full_intrinsic = "mdl_full_intrinsic.stan"
with open(modelfile_full_intrinsic, "w") as file: file.write("""
data {
int<lower=0> N;
vector[N] X;
vector[N] Y;
vector<lower=0>[N] sigmaX;
vector<lower=0>[N] sigmaY;
vector<lower=-1,upper=1>[N] rhoXY;
}
transformed data {
real angle90 = pi()/2; // a cste
array[N] vector[2] Z; // data pt in vector form
array[N] matrix[2,2] S; // each data point’s covariance matrix
for (i in 1:N) {
Z[i] = [X[i], Y[i]]';
real covXY = rhoXY[i]*sigmaX[i]*sigmaY[i];
S[i] = [[sigmaX[i]^2, covXY], [covXY, sigmaY[i]^2]];
}
}
parameters { // discrete parameters impossible
real<lower=-angle90,upper=angle90> theta; // angle of the fitted line
real b; // intercept
real<lower=0> V; // intrinsic Gaussian variance orthogonal to the line
}
transformed parameters {
vector[2] v = [-sin(theta), cos(theta)]'; // unit vector orthogonal to the line
vector[N] lp; // log prob
for (i in 1:N) {
real delta = dot_product(v, Z[i]) - b*v[2]; // orthogonal displacement of each data point from the line
real sigma2 = quad_form(S[i], v); // orthogonal variance of projection of each data point to the line
real tmp = sigma2 + V; // intermediary result
lp[i] = .5*(log(tmp) + delta^2/tmp); // sum(lp) is faster than +=
}
}
model {
theta ~ uniform(-angle90, angle90);
target += -sum(lp); // ATTENTION sign
}
generated quantities {
real m = tan(theta); // slope
real move_up = sqrt(V) / v[2];
}
""")
var_name_full_intrinsic = var_name_full + ["theta", "V", "move_up"]
sm_full_intrinsic = CmdStanModel(stan_file = modelfile_full_intrinsic)
fit_full_intrinsic = sm_full_intrinsic.sample(
data = mdl_full_data, show_progress = True, chains = 4,
iter_sampling = 50000, iter_warmup = 10000, thin = 5
)
fit_full_intrinsic.draws().shape # iterations, chains, parameters
fit_full_intrinsic.summary().loc[var_name_full_intrinsic] # pandas DataFrame
print(fit_full_intrinsic.diagnose())
posterior_full_intrinsic = {k: fit_full_intrinsic.stan_variable(k) for k in var_name_full_intrinsic}
az_trace_full_intrinsic = az.from_cmdstanpy(fit_full_intrinsic)
az.summary(az_trace_full_intrinsic) # pandas DataFrame
az.plot_trace(az_trace_full_intrinsic, var_names = var_name_full_intrinsic)
b0, b1 = posterior_full_intrinsic["b"].mean(), posterior_full_intrinsic["m"].mean()
move_up = posterior_full_intrinsic["move_up"].mean()
no_outliers.plot.scatter(x = "x", y = "y", xerr = "sigma_x", yerr = "sigma_y", c = "b")
plt.plot(Xrange, b0 + b1 * Xrange, label = f"$ y = {b0:.1f} + {b1:.1f}x $")
plt.plot(Xrange, b0 + b1 * Xrange + move_up, linestyle = "--")
plt.plot(Xrange, b0 + b1 * Xrange - move_up, linestyle = "--")
plt.legend(loc = "lower right")