-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffusion_model_map.py
380 lines (317 loc) · 14.2 KB
/
diffusion_model_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import polyline_encoder
class WeightedMSELoss(nn.Module):
def __init__(self):
super(WeightedMSELoss, self).__init__()
def forward(self, pred, target, weight=1.0):
loss = self._loss(pred, target)
WeightedLoss = (loss * weight).mean()
return WeightedLoss
class WeightedL1(WeightedMSELoss):
def _loss(self, pred, target):
return torch.abs(pred - target)
class WeightedL2(WeightedMSELoss):
def _loss(self, pred, target):
return F.mse_loss(pred, target, reduction='none')
Losses = {
'l1': WeightedL1,
'l2': WeightedL2
}
def extract(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super(SinusoidalPosEmb, self).__init__()
self.dim = dim
def forward(self, x):
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
emb = x[:, None] * emb[None, :]
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
class MLPMap(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim, device, t_dim, num_polylines, num_points_each_polylines, in_channels, num_layers, num_pre_layers, out_channels, mlp_hidden_dim, mlp_out_dim):
super(MLPMap, self).__init__()
self.t_dim = t_dim
self.a_dim = action_dim
self.device = device
# self.agent_polyline_encoder = polyline_encoder.PointNetPolylineEncoder(
# in_channels, hidden_dim, num_layers, num_pre_layers, out_channels)
mlp_in_dim = num_polylines * out_channels
# print("mlp_in_dim:", mlp_in_dim)
self.MLP_polyline_encoder = nn.Sequential(
nn.Linear(num_polylines * num_points_each_polylines * in_channels, hidden_dim),
nn.Mish(),
nn.Linear(hidden_dim, hidden_dim),
nn.Mish(),
nn.Linear(hidden_dim, mlp_in_dim),
nn.Mish(),)
self.time_mlp = nn.Sequential(
SinusoidalPosEmb(t_dim),
nn.Linear(t_dim, t_dim * 2),
nn.Mish(),
nn.Linear(t_dim * 2, t_dim)
)
input_dim = mlp_in_dim + action_dim + t_dim
print("input_dim:", input_dim)
print("action_dim:", action_dim)
self.input_layer = nn.Sequential(
nn.Linear(input_dim, mlp_hidden_dim),
nn.Mish(),
)
self.mid_layer = nn.Sequential(
nn.Linear(mlp_hidden_dim, mlp_hidden_dim),
nn.Mish(),
nn.Linear(mlp_hidden_dim, 2 * mlp_hidden_dim),
nn.Mish(),
nn.Linear(2*mlp_hidden_dim, 2 * mlp_hidden_dim),
nn.Mish(),
nn.Linear(2 * mlp_hidden_dim, mlp_hidden_dim),
nn.Mish(),
nn.Linear(mlp_hidden_dim, action_dim),
nn.Mish(),
)
self.final_layer = nn.Linear(action_dim, action_dim)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
def forward(self, x, time, state, **kwargs):
t_emb = self.time_mlp(time)
# polylines, polylines_mask = state['polylines'], state['polylines_mask']
# encoded_features = self.agent_polyline_encoder(polylines, polylines_mask)
# encoded_features = encoded_features.reshape(encoded_features.shape[0], -1)
encoded_features = self.MLP_polyline_encoder(state['polylines'].view(state['polylines'].shape[0], -1))
x = torch.cat([x, encoded_features, t_emb], dim=1)
x1 = self.input_layer(x)
x = self.mid_layer(x1)
# x = torch.cat([x, x1], dim=1)
# x = x + state['polylines'].view(state['polylines'].shape[0], -1)
x = self.final_layer(x)
return x
class Diffusion(nn.Module):
def __init__(self, loss_type, beta_schedule, clip_denoised, predict_epsilon, obs_dim, act_dim, hidden_dim, device, T, t_dim, num_polylines, num_points_each_polylines, in_channels, num_layers, num_pre_layers, out_channels, mlp_hidden_dim, mlp_out_dim):
super(Diffusion, self).__init__()
self.state_dim = obs_dim
self.action_dim = act_dim
self.hidden_dim = hidden_dim
self.device = torch.device(device)
self.T = T
self.clip_denoised = clip_denoised
self.predict_epsilon = predict_epsilon
self.model = MLPMap(self.state_dim, self.action_dim, self.hidden_dim, self.device, t_dim, num_polylines, num_points_each_polylines, in_channels, num_layers, num_pre_layers, out_channels, mlp_hidden_dim, mlp_out_dim).to(device)
if beta_schedule == 'linear':
betas = torch.linspace(0.0001, 0.02, self.T, dtype=torch.float32, device=self.device)
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, 0)
alphas_cumprod_prev = torch.cat([torch.tensor([1.0], device=self.device), alphas_cumprod[:-1]], dim=0)
self.register_buffer('betas', betas)
self.register_buffer('alphas', alphas)
self.register_buffer('alphas_cumprod', alphas_cumprod)
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
self.register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1.0 - alphas_cumprod))
posterior_variance = (betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod))
self.register_buffer('posterior_variance', posterior_variance)
self.register_buffer("posterior_log_variance_clipped", torch.log(posterior_variance.clamp(min=1e-20)))
self.register_buffer("sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod))
self.register_buffer("sqrt_recipm_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod - 1))
self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod))
self.register_buffer('posterior_mean_coef2', (1.0 - alphas_cumprod_prev) * torch.sqrt(betas) / (1.0 - alphas_cumprod))
self.loss_fn = Losses[loss_type]()
def q_posterior(self, x_start, x, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x.shape) * x_start +
extract(self.posterior_mean_coef2, t, x.shape) * x
)
posterior_variance = extract(self.posterior_variance, t, x.shape)
posterior_log_variance = extract(self.posterior_log_variance_clipped, t, x.shape)
return posterior_mean, posterior_variance, posterior_log_variance
def predict_start_from_noise(self, x, t, pred_noise):
'''
if self.predict_epsilon, model output is (scaled) noise;
otherwise, model predicts x0 directly
'''
if self.predict_epsilon:
return (
extract(self.sqrt_recip_alphas_cumprod, t, x.shape) * x -
extract(self.sqrt_recipm_alphas_cumprod, t, x.shape) * pred_noise
)
else:
return pred_noise
# return (
# extract(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
# - extract(self.sqrt_recipm_alphas_cumprod, t, x.shape) * pred_noise
# )
def p_mean_variance(self, x, t, state):
pred_noise = self.model(x, t, state)
x_recon = self.predict_start_from_noise(x, t, pred_noise)
if self.clip_denoised:
pred_noise = torch.clamp(pred_noise, -1.0, 1.0)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_recon, x, t)
return model_mean, posterior_log_variance
def p_sample(self, x, t, state):
batchsize, *_, device = *x.shape, x.device
model_mean, model_log_variance = self.p_mean_variance(x, t, state)
noise = torch.randn_like(x)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(batchsize, *((1,) * (len(x.shape) - 1)))
return model_mean + torch.exp(0.5 * model_log_variance) * noise * nonzero_mask
def p_sample_loop(self, state, shape, *args, **kwargs):
device = self.device
batch_size = state['polylines'].shape[0]
x = torch.randn(shape, device=device, requires_grad=False)
self.diffusion_steps = []
for i in reversed(range(0, self.T)):
t = torch.full((batch_size,), i, device=device, dtype=torch.long)
x = self.p_sample(x, t, state)
self.diffusion_steps.append(x.clone())
return x
def sample(self, state, *args, **kwargs):
batch_size = state['polylines'].shape[0]
shape = [batch_size, self.action_dim]
action = self.p_sample_loop(state, shape, *args, **kwargs)
return action, self.diffusion_steps
def q_sample(self, x_start, t, noise):
if noise is None:
noise = torch.randn_like(x_start, device=self.device)
sample = (extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
return sample
def p_losses(self, x_start, state, t, weights=1.0):
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_recon = self.model(x_noisy, t, state)
assert noise.shape == x_recon.shape
polylines_mask = state['polylines_mask'].unsqueeze(-1).expand_as(state['polylines']).contiguous()
# print("x_recon Shape:", x_recon.shape)
# print("noise Shape:", noise.shape)
# print("polylines_mask:", polylines_mask.shape)
batch_size = x_start.shape[0]
# print("batch_size:", batch_size)
weights = polylines_mask.view(batch_size, -1).float()
# print("weights Shape:", weights.shape)
if self.predict_epsilon:
loss = self.loss_fn(x_recon, noise, weights)
else:
loss = self.loss_fn(x_recon, x_start, weights)
# print("loss Shape:", loss.shape)
return loss
def loss(self, x, state, weights=1.0):
batch_size = len(x)
t = torch.randint(0, self.T, (batch_size,), device=self.device).long()
return self.p_losses(x, state, t, weights)
def forward(self, state, *args, **kwargs):
return self.sample(state, *args, **kwargs)
if __name__ == '__main__':
device = 'cuda' if torch.cuda.is_available() else 'cpu'
obs_dim = 11
batch_size = 100
num_polylines = 8
num_points_each_polylines = 20
in_channels = 2
hidden_dim = 256
T = 10
loss_type = 'l2'
beta_schedule = 'linear'
clip_denoised = True
predict_epsilon = True
t_dim = 16
num_layers = 3
num_pre_layers = 1
out_channels = 10
mlp_hidden_dim = 256
mlp_out_dim = 320
act_dim = 320
polylines = torch.randn(batch_size, num_polylines, num_points_each_polylines, in_channels).to(device)
polylines_mask = torch.randint(0, 2, (batch_size, num_polylines, num_points_each_polylines)).bool().to(device)
x = torch.randn(batch_size, act_dim).to(device)
state = {'polylines': polylines, 'polylines_mask': polylines_mask}
model = Diffusion(
loss_type=loss_type,
beta_schedule=beta_schedule,
clip_denoised=clip_denoised,
predict_epsilon=predict_epsilon,
obs_dim=obs_dim,
act_dim=act_dim,
hidden_dim=hidden_dim,
device=device,
T=T,
t_dim=t_dim,
num_polylines=num_polylines,
num_points_each_polylines=num_points_each_polylines,
in_channels=in_channels,
num_layers=num_layers,
num_pre_layers=num_pre_layers,
out_channels=out_channels,
mlp_hidden_dim=mlp_hidden_dim,
mlp_out_dim=mlp_out_dim
)
result, diffusion_steps = model(state)
loss = model.loss(x, state)
print(f"action: {result}; loss: {loss.item()}")
print("polylines:", polylines)
import matplotlib.pyplot as plt
import torch.optim as optim
optimizer = optim.Adam(model.parameters(), lr=0.0002)
model.train()
for i in range(10000):
loss = model.loss(x, state)
loss.backward()
print(f"loss: {loss.item()}")
optimizer.step()
optimizer.zero_grad()
state_test = {'polylines': polylines[0:1], 'polylines_mask': polylines_mask[0:1]}
x_test = x[0:1]
action, diffusion_steps = model.sample(state_test)
loss = model.loss(x_test, state_test)
print(f"action: {action}; loss: {loss.item()}")
print(x_test)
print(len(diffusion_steps))
# Plot the polylines before applying the mask
plt.figure(figsize=(10, 5))
for i in range(num_polylines):
plt.plot(polylines[0, i, :, 0].cpu().numpy(), polylines[0, i, :, 1].cpu().numpy(), label=f'Polyline {i+1}')
plt.title('Polylines Before Applying Mask')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.savefig('before.png')
# Apply the mask to remove the specific line
masked_polylines = polylines.clone()
masked_polylines[~polylines_mask] = float('nan') # Set masked points to NaN for plotting
# Plot the polylines after applying the mask
plt.figure(figsize=(10, 5))
for i in range(num_polylines):
plt.plot(masked_polylines[0, i, :, 0].cpu().numpy(), masked_polylines[0, i, :, 1].cpu().numpy(), label=f'Polyline {i+1}')
plt.title('Polylines After Applying Mask')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.savefig('after.png')
num_steps = len(diffusion_steps)
steps_to_plot = [int(i * num_steps / 10) for i in range(10)] + [num_steps - 1]
x_test = x_test.cpu().detach().numpy().flatten()
plt.figure(figsize=(15, 5))
for step_idx in steps_to_plot:
step = diffusion_steps[step_idx].cpu().detach().numpy().flatten()
plt.scatter([step_idx] * len(step), step, label=f'Step {step_idx}')
plt.scatter([steps_to_plot[-1]] * len(x_test), x_test, label='Ground Truth')
plt.title('Diffusion Process')
plt.xlabel('Index')
plt.ylabel('Value')
plt.legend()
plt.tight_layout()
plt.savefig('diffusion.png')
plt.show()