-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathPopulationAndSampling.nb
527 lines (484 loc) · 22.4 KB
/
PopulationAndSampling.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 22772, 518]
NotebookOptionsPosition[ 21183, 455]
NotebookOutlinePosition[ 21538, 471]
CellTagsIndexPosition[ 21495, 468]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Sample Distribution", "Title",
CellChangeTimes->{{3.701068293370839*^9, 3.7010683068254004`*^9}}],
Cell[CellGroupData[{
Cell["Normal Distribution ", "Subchapter",
CellChangeTimes->{{3.7010683160314217`*^9, 3.7010683310426493`*^9}, {
3.701070998235939*^9, 3.701071001731906*^9}, 3.701071088614799*^9}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"n", "=",
RowBox[{"NormalDistribution", "[",
RowBox[{"0.5", ",", "0.1"}], "]"}]}]], "Input",
CellChangeTimes->{{3.7010627215097427`*^9, 3.7010627251108303`*^9}, {
3.7010627772635517`*^9, 3.701062791109877*^9}, {3.7010628870693007`*^9,
3.7010628928573914`*^9}, {3.701063971069886*^9, 3.701063976571301*^9}, {
3.7010650395384502`*^9, 3.7010650411239347`*^9}}],
Cell[BoxData[
RowBox[{"NormalDistribution", "[",
RowBox[{"0.5`", ",", "0.1`"}], "]"}]], "Output",
CellChangeTimes->{{3.701062780969357*^9, 3.701062791784175*^9}, {
3.701062888950458*^9, 3.701062893386395*^9}, {3.70106397151443*^9,
3.701063976979664*^9}, 3.701065041542082*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"PDF", "[",
RowBox[{"n", ",", "x"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.701062804290863*^9, 3.701062865823359*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJw1mnc8lf/7x62QdSKKUkYSMhr0ETqvW0VIWamUkUqiJaSUhlWKJKREyIwi
Kzs7e+8k59jrcGSWUb/z/eP3z30/no/343rf13i9r/f1xy1x/oaxDQsTE1MT
4/G/t57NaHPxmCnZaaWo9ZsCnTyScvI8RUQZn1V8WtYn0skbuNv9M0QOg0Z0
Nm9aP01W3C8Y907kBErdR2M5gqbJak17UwNFLmLJ0an0asQvcnFYmcpzEWfE
R78NejI8S1ZuuZO2/ewtKJdVjjspz5ETORUVCsNdcMtDIt/Lc44ceOuNFF3M
Fag9pii1fZ58weDaeiPpB4jl10aTywLZ0933zjMRL1To8v3MP/WHXCh6Ketk
nhdGm1Vz/+T+If/OJuYkz3rjvT6nceyWJfLVqfkb+eGPcdaBTDcZWyKfOHvO
lib2FKuScZwpgStkaRWVk8el/VGvfTCOU4QJ55pIwZsq/bFiyVzecJIJYVfG
m4dtX0ChZD7r9ismcDY3xhedCED9xn7PB0LMcOPwljwd8hIOweMDOeIsuOhM
F3kqEoyWX23K9ZfYsJc18G66QzAy9svc6cljA0ug8o8flcG4+PxB8751axD5
2TVc0eUVmL5b7qYWrkH3OKtYW0sI1lW4nXkpz4EPrvEPV2Vfw+yKsb+XLwdu
c+pSpd1fI77s562JCQ4ISvu/d1V6g8V0TQ65NE4YWAtLifmFIt89Y2bNcS5s
nc7z0hkIhaTXVtY9uVygPbAYuqn2Fh0LZ3j/befGs/Do+PLRt5B32aYUzMaD
8k55WXutcLD9mpA63cELteOail/+RsAwifPq6ug6cP4c8O81jYSr9PKHzQr8
6LzymM6RHAkv62cJcORHXrnN6WSFKJRZLnYl/OPH6f4kEaaeKFgJPLG7uGM9
imRXqoM53oPcKZ+72Xk9pG8euyu79z2yDvutLJasx/w/erfxs/fwe/ZpUcla
EIFbVMLjVKOhTGteK5QihKWLj/XVLkYjIYmn355tA6w/da40vIiGv+Dhk5zm
G7BL/a7F7+FoqHtyucuTNqL+dNHWo69iMDzEaxDhLQzOYN33079ikTuo+fhR
9mYsq/Ytv98UhwpmrVHjLaKY+nnnpMmhOKx7b2/61EsUrTs+cGcFx0HOw6hQ
+dQWROSzu9z7Lx7Md8XG1vKJQXmgTI/9fgLYbm+O/XdeAjt8zsZlxyUgTO5e
k3y0BDYpzP673JCAOdY2KPdL4J+L5JdasQ/YV7KN5+dFSdRwuYu9LP0A+6zQ
/cPO23BuD3luM2cSDtypaHYs3Q6Tzvbj9buSUP05MCx2nTS03a4lPjBLgqzc
3YN9VtLYWRFu2ZeUBDX7tNc+zDuwYLZcFX/sIwrV5uPpRjLwc895tzvoE4Ry
VSYOye3EQ2nD3/35n9B72Um27tlOONaOGAcPfoLO+ExtKG0nTglt5FxUScag
bL2NUKY8JBNvORZ0JWNv1bsYZhNFZDftOXJk62cUJfrqqY3vgv8YTUde+zP6
500PuUntxiWWBD3+65+hwjpk6ma1GxuUNx//8fUzKlzPjxR17kZ+rXtStmIq
vlTRmUOa92Czkn3a0YZUPEznNY2gKeOx+pE95P5UEGnpln17VTBzRCpj10Iq
NjtYkLjcVFBzrjdTaGsahMIaDm4k7cPdQOMcyrU0cPXYfLhO/IfuebUiJ950
CPCb/nrTsh/aLMLEJYl0aHGv3PeTVUM633zxaZV0WJifKQh2V8OzHZ9LD1ik
Q5u9XnlaWR1qZtsqOJLT4WXfe0IpUQOhBdz1YfoZILGuODTUAGzVo8f8z2XA
MvLZfaNNBBzavzU8cs5A7/Qepn4DAjpTD5tswjMw0OZrvVpA4LfYXKsSLQMb
fHLkT0Rq4rRnT3eZbyY2qMbL6Dw+hHVUaXnb95moNmV1YK47hGqNm/e5sjNR
9fi2RZzAYagtrBE36s/Er8X7aTnRh7HZTsmmV/ULTnbYF1s1aKH3uAf999AX
ZGYJlVud1EHIxzoifPkLmqb5hhU/6cCAc2Mg+LNgqOnxZROrLopLPio/1sjC
CcOZLSczdfFeud11fVAWCmjqDwqljuLiJhk2RSIb4RVphU+J4xC97WjabJqN
l743mdoTj6O9tSDe+Uo2uE7yPL0jaADt50a6+SHZiOeJq+6aNMAOpnv+OpMM
di96mNtliPGheuELb3PANGwqN1VkjOiDwvbsqTkYG1M1O8VkgjOR5/MTv+XA
ssmPO0DTBLWnFy2mp3OQUDaR5Fphgk+14jH3j+QivLlwo1P3CdxIc1J4M5eL
w4WNf8kKpzCl0ddazZmH+CdGs89cTuFq1fG7y6J5cCNMJz8Xn8JlimylpVYe
ZqSuqvufOo1zvNRz20PysHep36v3hRkM7fSD0//Lx/lQN7NZeXM0zOWqDR7N
R53b8tUZL3PoP9rRJ3QuH4ZalhYzP82h85pF0dUnH8fnJmP+BVqA+JZTie/5
wGGDvvC1VtglsX257m4BDpw4ez9VyBopnwLf//UvAKdPyKqVnjXkVZl0dsUU
IKH3h0DCQ2vIGPwIDqotwEfHdE0WmjXE779UPCP6Fa6l2jYidefB/33VeuTr
V2y3YZvW+HgRARevcIq0fEXM1Jls2fGL4JvuStEb/ooPlU5DVbI24OLIXE7m
K0T5hiNZ2z/agEXF/pWzVSHYclO7/LIuYSago4qZuQiBMTdyC35dRsHVNAxu
KIJNgaEdyyE7PNHxy6qQL4KIHPte8is7iDIdjPU9XYT8s8L50Rr20LqR/FAo
lcEGyxFXXl9BnfTBsGClYmy//rrO8eF1pAV/7vBWK8bC0wZv277rCGHZInBb
qxi+1XJrHh2+AeveRR+zs8Ww9Vo4K8jhgIVXyS5bnxTjj83u8K5OB4ivETH+
0FuM372mixqvHbHG6fHz0LFibPNMWrexxRHj1NmqZ3PF2HP6tu87Xid8KWjA
Na4SuN463JT12Al6zl4Ke/aV4Pg260/H3J3hPEDnLHheghCbFNuMUBeYGVkc
Tn5TAsUhq6t7qS4gF9U8jIgpwfd9vg4PdtzG2rC4hUe5JbAnqebfz7mNCOOz
g1pDJRhV7VQ3H7yDqpKKokaNUlhajGU+tLmH+LqVwedHSjGnNG0onXMP3p17
uPSNS2GW2eCZzu2Gg5MRJ6psSzH7wiDR64sbCoRvjxUHlqLxEVe/geADpN7Y
sT59tBRr1ej9Oo8ewf+uharDbCkyMzcVnEh7hGveQRaKf0txmsJxZ7j/EeTC
/iUkrS/Dj4tKOVFH3BFb0akRQy5j3DPPm4I3euDNFp9LwcFl2D7HKvKhxRMu
MoW+xpFliHkc8jiNxwume+dS1yWVYY4jIOTkES8I6J5b9isqw+et+2+6FnrB
z1k1wHu8DA6GvQ+PZnrjUe1orgtRjuR6L0uXoiewc9XlNaOV491HjyP7rPyQ
tJnfwnKhHKVWpacMk/xA+9r16QLTN6SUHnQWW/DDdZbL+tcFv6HvhU53/4vn
cPZ97Oup8Q2/P7DKydb54+G7srUpft/Q76YU+TQzAAylmGWEfMOpSFNjUWoA
WPqNE3OivsFyr5jaBp6X8JLu1ynLZOxH2cJ2yOYlnn1m8unq+QahrFWzN6KB
eFVygJ1VoQIuGiffzkcGoePCmpOc/1VALS/R8UJLEITZ6+N4NStQc+hdmPaa
YLzVM9cSNq2AogD1rcPVYES13vVSuF+Bvrbob9eIV/g4lM1yur4CgvvZYof+
haBk7Z5/n65V4qt906XhgbeQObEr+9mdSpw2l1QPlQ9DQITijcuelaD7yjet
3ArDub07KdtCK5H8YpCrhyscf82lit6WV8L0yUb6tgPvoJa64aHP5iok6Wxq
kfsWieglwf8uSVdhVaXzVgNPFNZqracf2l2Fqg4v3qv/RaHrO8nqn3YVItuT
13c9j8Jt1rVwcayC732zA8/wHpknl/9eqK5Cx4r5Mf7saIi+/5Ol2VaFF+Iy
HAsj0fCcWLwuRqmC+Yxvrr5IDIwfzfV2z1Ux4iVemtyPwXTiZKGReDVoLt0b
qHqxUFilPMDtajzqcVApWYlDfEz5303ba/AvNJTDqDQRDt4n+qBUg6ypRmf6
30So2w6WXdxfA7mOmyQejSQ0ybE9TTlWA2//dRpl2Un4k3Zo/UGXGpCjUnI0
v3yEfnHpDrvKGtz4Nbp0uDoZG6KNufyba5CfTX+oxJeCPs9+WvqPGnDL7Lka
b5IClyMs6Sv0GpyVG1c8QE1BVIOmRoBwLT4bTx0WZErFbE+xYbZdLSqu+1UP
KaShsNBwb49TLZSoV5YXTqTBJ4oqxPygFiX29mtPuqVB9CLTD73AWqid2ZD9
rzYN2hOw6c2rReWjrTakG+l4+6fQdQ1PHSQGpFQDyzNAbPgabZJSh0Mtl+pb
U7PA9krohlZOHU7w8rbE9WWhav119f9K67Ajxnu2RSAbBvxibZs66iDipp5C
uGTDksd9Tf9qHdhWT3K4aubgHovWZYdj9VD6283eOZbLyGOdwnNaPV5J7bVV
evwVd69tX3qwUA/mT356LmVfQabdr3BgasCnI/aQYy7EtzFFqxOCDbi161r+
j/uFaBsMCNis0YAr7s/jbrkVYab7xGyibwN2jsaueFcWQ6GyJ6dCrhFDyZu1
ODjKsGHqymSASiPeaP66arSrDExCyxJniUYkjYxeGzErQ9t5EV+6aSPcaGGR
v5PL4PbX1ELYvRH8R3yO55uVo06lkdm+sxFOg8scYsXfoNJyLo79YBN2TG7n
Na1l6NrmQ9GVI034uyx8YvxvFbb+oX9v0m8ClzM32/c91eAUf8gXdqoJpS9z
LcrDqtFz7d1tpWtN2B2nqkq5WQOvtd26p980wSfy7N8nSnVoI0ymEqeaMFw8
drtothFLkQPv0mebwE886fbd2ASJf07H8n834UOnNp+NShOufw3+VMfSDM2H
T29E3mwCh1qHPX1DM/YsC+3eT2uC2l6zEWU048+iq4PseDOitltRi140o/SR
udFBrjZUeNFfVAU3gzwltGtCoQ2TAw/RHNqM2sSs6QqjNqhFR0X0xzSjv0u5
cePbNrRu7Tdfk9OMkoF8FimFdrAL23zXozZDUvGFKJ9FB65yXWlp39WCFe/Q
4QtDXYj/uiFLb18L+JLn8ozWfwfFoTS0SL0FTdwRU+6a32HcKWKdqN0C+gYp
g6SI71CNraK7mbcgdHlpTNy8G2xkaV4pnxZciqjwbxv4gfCbfUccKS2QPxAa
UrqDgg6p5ztHBlswr/gh67wlBaQuVZL5eAtMrLZ8OPqKAg9yQIfWfAvMm3ZZ
rjBTcZkbNiLcrXCpTDp/3pEK5bhwj+J9rTg3/VdA+kwfartOfeXzb4VnbI+G
pPYAPLpHhOyDWvE1VKEiyGYAqj23r39704oYzZApOe8BxFJei7nFtCJvcdaq
pnwAbsOd7mM5rcho0glo1BqEwtwp7fKBVig86GpiMhjCC9LpRtf9bcj+Vm92
7sEITLRP9w0OtqHFtDf0uAkNeet3Nw6MteGpX41RoSsNkn1rv/ZPtaG6+XKx
YRQNM/fy31B/t6Egi6fk5yQNAWlbDXt42uF5R+rAm2eTqBMdKmxVbkekxtnM
5zVTODx7M7zUqx3VfLH5u9KnsS/K91SUVAfehfFKrj6YRWrJQ1duuQ4cn/JK
c3wzi50DTmEuSh24rzdjvZw2C3Fpc4q+Wgdsw6wWtIZmwf1J3vaPQQe4Yudf
FerPgZpd72J8rwNHuo6q7hGbh28jKYStpQMaAmFX8psXQP0b1Hb5YSdcst6Z
nbRbwpBuY8yGsi4wT//xMepgIlJDKa7NEt2YKJE3ervARsT5sD6VvfsDYqbS
KzM9nITAoM8DxYc/cMigvCtrnJN4BD7nvV4/8MfM8rfjb07izIKw1QH/HxAk
NX9sXb+WIF1UVDGK/oEfl88HKeutJVxh1nen5gesn7ZNWX9ZSxxbSNlftakH
jw+Ky3V5cRF5RspK9WI9eObZmHrvJRchk5wr1SLVg9KzGr2CEVwEy8VyUo9i
Dxoikn7syOYispu/D9EP9uBIufuOhlEuQiKZLXDjlR5wczaf4dLjJuYvnBm/
lN+D9DnpM1msPITL+uX1XcU9UDi4L6+LxEMslIYd0K3oAeu5Gk7aZgZL/AzY
2dyD5P4i/qG9PMRvitV/08M9UOsM37/1Ag+xdNbGy1XgJ/oIb5s3hTwE0wmH
rX52P1HNqh7Ga8dLPGLl11m9/hPnh58REk68BHNG2s3rzj8h2niCY9t9XoJF
YLbc8CHDXkwzYTqAl2BtunVF6NVPRB6d+52WzUuw69/LiSj+iUID7eB8Zj6C
+/Bj47SNvfAVv2xg+4SP0Ci6wV8h2guPvSk1r/35iOtqZk3dEr2YSjVIzXrF
R7Tskj/OJt8LfiOnx0UxfMTbLS26p4heHNjwfHG5kI+QWdyiuXq5F3O3ZbYI
zfARZxw5mASu96LPW/mc9G8+wm9yulDaqRfhh0b1tv/lI+gDZRqG93sxzj43
PrGWRGQ12anGvOzFvTIv6TBxEnE46YuSbl4vuL+kP7yjRyJctkdOWRT1gs2O
w9DKgER8iPJJdizvxccttdv3niAR3K/P7gxv6IWKfubX9xYkosWTeQe9vxfb
fqh8DL1BItj+jQ+xjvaCa51a+ogTidh3ty1WeLIXVjNWdyXvkIhQhwTJg4u9
OF3tpWj5iEScszi29RU3BT+HJI0mX5CIwK59PxPXUeAurugbFUQiyk3EwwuF
KOBvoOoRr0nEDr1ZkVExCsavyxBaESRial+okLoyBXNHIvUvfiQR4ukebQb7
KeDt11m9m0IijBWuBl0kU/APEswP0kjEl23g99ehQEqrc0Inm0S4rRvi6TOn
YOOtjOxfJSRCrjud6LGmQI3FVMmynER8j3nk3HmJgtBZ25DsCkY8/4n21DtQ
UPVlVWJ3LYkYZBonVd+ioPHMRbJRPYkIqsk+VH6Xgr9SbGqWjSRi2sLkY54X
Bazb9xSTW0lExA4JypenFITr5BwSaCcRx35NCaT5UyDhYfumpYNEJHk9u5vw
hgI5rZQPIt0k4vTx0ynR7xj2ciaWUT9IBLuwdP+7aApuTap/X/+TRFz4WKIb
/ImCzABHwRIKiRC49eL+izSG/2aDjUtUElFMtkh7lkXBA2qftkQ/ibjOuXPI
O5+CjxdO3FYeIBGiLb+F3YspeC+kY6U8SCJqwir03b5RQJGirYgPkQhXm+BH
t2soYCsJPL7EYBml85mOjRSG/tOMi4dJRMdvpdFrbRTIelA4nEZIhFfp6ma7
7xQk//f9qsAoidjrV2twsZeC/2LcHkUwuN801NNqgIL5A7WaG8dIRICYbfaZ
UQruvR377MZg8pjyhOkkBedtxWoaGDyZziJmNEPBlZudL3jHSUS4W5Ox/iIF
x+MimfYzWE874vGRFUa9+WVFjRi8wrHP4j0TFYODR/pNGdxGE13cykpFg9Os
8REGf2xmfRm+hoqYvdrXtzPYI2tcbhMnFSUF95WnGd8zC2suf81FZehzKS6B
wbse5VgK8VIBZc2yowzmsIn8HUii4uriol8PI55e3ceB6wSomJYdYz3D4C+K
1+T9BamIXGWWLWfkw2/9iQrujVSoFhivbmLwxd9q556KULG7nM/DkpE/9Z8S
S+yiVAh6++X4M/IrUMoZ7LWVCod7WtEfGfUYj6crsEhQcVG+g/jCqNcbh6/W
q9up+EyJjPHvIxE3TGOX78pQITxWfMWSUW9tNd9Xv+UY9/Lnp9ObGHqYZzWr
nlWiIr/5/P4zPSSibhQXbu6hIizQkeUnQ1+x9dKrU8pUrNTIBOp/Z5yX13O7
xvdTkXyPnX+GoU9Ztx81thpUZJcfYpdpIxFM1qUXh8hUHBc0adBrIRGf5QLe
UA8x8j0VMHiygUTwFO5k6jxGxRa2vICn3xj10xfPfGbIyC9zRdWvUhLR8EPw
MtmECur6saBDxSTixZ/VxrjTVASte7gUk8eIX6Up0vkCY/8bLzJPM87vbFm5
icwlhn9TH5X4GOe7zTiXo+cyFaTOYofkBBLxyiH6xqHrVGRdLrFOjCIRwp+c
IeBKRc2x+tbXL0nEHzW72W/3qHjnJGgc/pxEdFdbJLg+YPDukbZnT0lE2Ig2
qc+TCke9YS5pdxKxdZsI5bM/Fb58uionGf1M6u3XB8diqdi5S5wp/giJWCOb
voc5gYozD+/tMzhIIoaz44czE6kYbslaN6BBIhLaXxwX/UxFP3NWb81uRj/h
P791IpeKClLazvBNDD35sBf6NFIx/1j6muEoH8G/cfmmRgtjbnpdG5bYx0fM
xNG3T7dRsYv3xP6pbj4io6zr+aluKjQP+PzZX89H7PuXZCE9RMWqYLLkz1Q+
4oCLwWrZEhXxwlc0rJz5iAX70Xu6q1SYTZgo/L3KR6RauS81/KNC//VzTj8b
PkJSN2PxO1sf7LyKM5xP8hGcohtn6Hx90BudPHvvPz6iraR3ePO2PpyipRy2
X+AlrvJeb3I62oe3Vafu7bvMS0izcBj8OdYHE8ntlQ2WvARlIbL+gWEfhP1e
954y5SWMqc01T037oO6zIUPjIC+hmqHyLdKKYd+zucZ4My/BZraaW+vUh1Ax
qy9FNTxEeKxfzLbwPsy+KpgQFuMhrA7t1aBE9OF73wWVFQEeQrL/e9vb933Q
jWnWamLnIT6I7WAXSOjDS1FH0aNT3ETm25LLTOl9oF/LN/Av4CbqAhYUflb2
YfM3V99zJ7mJVbdzOSGzjO9/q1cYfshFWJoq16892g8b6/fO+1I5iS/tNkGF
C/34+9C3/E0VG7G/LpVlOGQAEjbukSdZmQlxrUvzQYcHQVu5x+6ktgQVZZWX
mcODMDIfUiwqnsWu1xuO7xobxObGlc/6ibOQW1rk+jQxiDz1PxrjLxnzXnGe
V8z0IOYjnkaYXpgFlz5xJ3CJsS6b5zjFPgvqhaNWDnxDyPrD7KxkNINnQdYK
8vuGsO+/56/EZqbhtXBwPEF1CMJ3KcJfe6bx0EwqYZv6EKK7q+9fqZyGs9iI
+GZiCDoVZqtL4dOw+nhVkEtvCCJv9h8c0pmGctnt5RGLIfx9nVbbeoQOyszz
6hjvIbSZZ5Kf1tMw+M8tytRnCOTPmZ9KY2gY5bl6m8N3CFevPXkkdZeGaWm9
7VcChqAXOmZmvYMGprPs7nvChjDU1lFa5DkBybIHqiWpQ9DdTWvlPTyOS0E3
Enp/DOFj6bq3zf0jsI+yfBDQOwSFRPlW/sIRXE8+ZnqwbwiRt/Z3u4aO4Hbl
Ttb44SGUZ97cWWI4Ap/lEctrv4YgOH26YGfJMBIvnNuwwj6MbVsEai8lDoG2
18hbZM8wQk38BEVeD6A6flD6nfIwGjQuZ5i7DiBe5E6V+H/DkGfudi85O4Bz
/yK4ZTSGId597NaU+ABaa2gv92kPY4h6V6rtUz/yrH0iTM4MY4P5xZCSmj48
fVGU/dxjGDqGe5YyGX34EouJGb/3MCb6BV4zMe6Ng7eGl4KfDCM1wTKvo4OC
lTO85HC/YagYVPyncZMCB+mz5Ukhw/AYks6lfWDMOV8XmiqThtHTm15Quu0n
pCcUxplbh2HQazaipN0NHs7GuPx2RnxvNG6+2dCNWSkH61tdw3BpWmNzeOQ7
ii3Tu0Z/DmNkQ1i6zdPvONOyr7JxdBjDvFnzlU1d8M9F7Lu/w3jfFsT140on
5p8YWe6XGwHvghpPRnMbemJnRGblRzBToWe8JakNpSVB7Z+URiDWsGe5zKMN
/svt+uIqI9iazPn8m3IbZG6cUecgRrBiKGQUFNYK85MXhNtNR6ArrLVD2rkF
5VK3WhzcR6DM7Mv73KAJngl5p1c8R/Dks+W6/3Y34aAcE+XJ4xG4urCfIK1v
QomS70SE7wg0ed7nBaU0olDtPVv9qxG84Om2KytrQLZh/T7ZpBGUabZTBv/W
Iclte1hfywhaX+sGBH6pht0/e4lr7SO4ZZsj+9WzGjIeqQm/O0fwM1TzlKpx
NeKfqGeSfo7Ahq1jYet0FWICjeoPjIyArceYM0apCuEf7v8LXR5BV1jkkPLX
Crxoa79gLDWK80VDNUukcvg9eC7VLD2KUX3S8PHRMjyT0RoykB1FkeWam0PF
ZfB2y7x0THEU0iVnnnQ5luGeVJCdjuoo2v2GQuq/l8LW2fAGWX8Us+rpI0kZ
JYBg7V0551GUdEm9mJUtgkahh3qiyyiqqUevLI0VQu2y2soO11EUHPabv5lU
CJWCxPvbH4yCs/RQUqp8IXZe9Hkk7jMKZdXNlWf3fcXGTK3HG8JHUe9t0Ddg
kQ+6SfFLlvJRPMmySP70JxsLCd5XsytGoROQ8+50aTb+LusduVo9iuFOZRsn
32zwxLavtDeM4oFWaPrM1mzIzI3bJn4fxerznhW2o1k4FyxENqSPIj6b/zA1
KxO2o93Ca2ZGEW5yrHzH40xc14iazZ0bxc0WHcNW00y4DcolblsahZD6jl8m
Cxl4o0wILrKN4S9HrNaYegaa2uzH320aw9uX7ms6utLQKbPrm/GWMZS+uxLN
n5KGXrf5SA7xMeyK+Lk3wTMNNKlHpje3jyFyjV3lT6U0cN56VXx41xjaZG17
bf1SoSlUHDKhNQbly7uFO5NSkG4qdGj/zTF8dWoxv6ydhEDSw9EipzE4tYdo
Oa9NgmP16HNtlzGc8gh0X61LxO4DBV0m98bALyMZ7GWaiFSpC9eve49B8s/x
b8eufkDKbGpoTOgYqky+dQimxsM/eRPkwhn+ae5dCbwbj+u2XoOpEWPob1V3
dNeKh8KPU0qFMWP4U9K291NPHD6V/i3vSmbYi314tG1dHJJe6k/zlo4h4vor
lelnMXh2NOtVcPkYSOMBu4XNY2C/Rlx9c+UY1I/JesYqxEDWddZbpm4MBeTk
oyPN0fhw7u3mQx1jKLEb+sAsFo14pVHtO+Nj6Apu8JqqiUJMvee7foFx8PFU
8LPXhMNv97J5pNA4cvfS9/10C4fLK0dRc+FxeO7z8rm+Kxw6FtZh7VvGUenz
KDo3NAxTNHJolcw4xlknOyud30KVZyk4hTyOsw+IZ/ePvoGEw80TVzTH8R+H
AEV77RtwtY2ul/lfX980eTCj8jV+hnUGvtcdx81Ol/Ib2q/hsfNLQPCJcZRf
yeYyPhqCej0Hv7v24xjW7FkfcjMYWSkjR/+7Ng7u69+ifqkGI0rAinvuxjjo
Oafv/mAKhmP3sWfXbo1jf7X/btPAIAjb7/Q592gcJ0bKVwrzA3H+6bCndsg4
lGtEbtvseInFSvN7AqXjMIld4rye6YetJtq3SsvH4eVsHVVzwQ/avUo3HCvH
0TCwa2Z+vR9C5lgutNSNI2Nyv1Oaiy+UJRL1AjvHIZtffuOp1jM43p0XEZgc
h5xUeoQyhw/erqGsL6WPo+L3xpMfSp+gJKCK13FmHO/aLqxtfPAE6xLCmFsW
xxHzVHZE8c9jfG7VHHvJMoFVzi3V3AveoMn75/ALT+CJS0NCL58XBHNup5ds
mkBkluLqtzZPqB+y/nRzywRGzlSUHQnzxDMz5ahmyQnEFAlMCMp5QvZx95OX
ChP46ju+K+W4By5RpE/xH5pA4OPa00npj0B9WTS/7voEnAeC9vvl3gPV41he
oMME1mh53Tx79R76nH48EHSaQPRfsclpsXvoN13kEL4zgd9/9z62fXoXAyJK
m8Q8JlCw8mPEyMYVw+8jyAohE/jmkbwjHLcxHCjP+vnNBHqSVPmZ/rpg2DOv
clfYBKjqwYqkry4YsekwVI6aYPSZziyZAy4YleW7oJ40AcJr08stWrcwkXb/
iW7hBOa39F3+6ugEWjS3fm3xBErElli2qjM4KHTdsbIJeB6LYxdgY/CtL6GG
VRPoW/YvTXntiKn9kx9PtUyg6KrVQvC3m5guMW+yGZ7Au14SnabmgOn08eCR
0QlY/3spPMjtgF8xd8zsJibQKzgWn5F3AzPewf1XpycwExV/7A7rDczq1s05
LU2Az2CBfivqGhaa1UU8+GiIOt99l8x+BUzXOhf389NQe/XNIpFqDy5Op45f
62lINo7hPXjWHlvJSUHWIjQoSpnpqGTaQStJmE9TioaDttv2hNy8jGCPeRYm
NRpO5+lKcwpfQsSWl33ZGjTEmurxFjXZ4EOOfPEN0GA3Wm6n/8wGBVMX7lMO
0yCWWKzX9+8iBs+0LBYa0HCWM9oic+4C9u79TLtvQ4Oo1gbjjaznodGgV6ty
mQZbW08b+SpraNsNJ07a02BUG/V4/rk1zkRusbVwoOGM+wJf+GZreHD79Wnc
o+FZcu5GNpxDy8DljuUAGqIbV4IP6Fqg5wHbl4wgGk5dsNSWGjXHsEhU0JUQ
GtI5TQ1VfcyxZNBp+COMhk1piyvdtWchUaBVmxdPw7e4DM+Uc2fgECxZ7FpA
Q6LDT/6qr6dg/Oq8HWsRY/1se6G20ymohEQLPC+hQTvoaVKU7CksvZa0iaqg
4ceHgV89b07CO0ySq7KJMWdu6br8n7sp3kZLnhAcosFi28yFJ7dN4BZzfvXd
CA0X2/8Fp+w3gVVsdPyOcRpkvOyN/VeMIRUv+UeNTsOXfZP3b3gZ43OiZIT1
Hxr29r/66x5uhPJUydEU3knsmGqz9e4yQHza+Zeq6yaROLl7p6ijAZ6mR6uV
CkziRVnv11EeAxzPlHzevnESUv5RRULax/E9W3LPisQkdh7Zv+V8hT6mCiXd
dPdN4iX9y9rFZV00FZ3f3qo6Cd4x0102CbrIKI5uMFefRKgKLaHDRBd3SiUl
HIhJeEnXMeV81gFLhWRFiN4k0r0T1Lc7HcHGesl1g5aT+Gf7K19HWguq822z
56wnceH+4TurfYdxesuTzp8XJhH9/IiWR8RhvL02EdF5eRKb36p3z4gcxla+
TIVax0l4VA/n79p0CNIGWkfTH09CXsKvWJWsiSO3FxWVnk7CaIpVeniNJi5H
Jgp88p1ER9z0Wc0GAkl03u64gEnkKG60+3OOgGJAx+XQt5No3f9i2lkUUGm2
ffwoZRJcT3NDqng0cPKPiP1q6iQy2++7b0lVh4tE3bG7GZPQp63wBJ9QR87N
XULOOZMo3dnQ1BWlBg2BPzG2pZNo3lLvfUl7Pw6bPCs53jGJ6sDN77tL98Hm
nkZcbdckhgaKyI0u+/A4ZspH58ckTNgp3pk796Fq1tjwIHUSCr5BU1pvVKAf
vJmiMj6JFO2qwf/clGHS/mlF9O8k7Awqzfmu7cGDhKtLjUxTYDnQ5+Yvuwcf
XOV/e7BOYWhEafuf4d1Y2fJpdpRzCmNRfuIeF3cj/tLH8cz1U+C6nbuP334X
lhYTu/Rlp1DU7Nliu18BUjV2Hf92ToFNMPAef708DMJl29IVp9BU3BWgel4e
sURio7DyFDY0zByfCNiJ408/VAySp2BQtexr/k8W0ZsSMt1OTMH0FlXLTnQH
6miX0pVOTaGNzVor95s0FgulU/vNplBx7bIL2UEa+hfiP+pYTaF8n6FaV9V2
LHyMixa0n4LFMcWE7idS0DsQG/Dp4RRamW58r98vCWfSRX8rjyk8OZ9yNnZO
ApF92/wEvKfAczcm3zlVAnPeMU/uPJuCdrxg/bycBCIaoh8cfjUF+xAjv607
xTFj9f5qT9IUUn36cz8liWL+9RoV6+QppMV1C88cEsXvRrvVoc9TeLmz5GRI
72b8wx5/eibDX4+8irGNm8EjXvaZpWgKuZsfFh96K4Lt1MEZmdYp0Mr3msl0
b4CMsG5+cvsUhL+Ov774ZAPkDZM993Qx8v+7oa1QZQP2FN8S1Pg5hTOv1TIL
XwmBHMW+z2BkCoGNlRd9zgvi9DkZ11vLUzioJvBMV14AZ9/4aS6tTsE3tiGk
Yowflk3Tax8y0bG575S4/Ad+2BC5b33W0CFmhQ+xO/jhKK5XEEaiY93y8yd/
dq2DH/XKv5JtdLx/0XrnYTsPXgg3VWpL02E/myrTa8+DQEPlgFoZOgTNjrR8
YeZBaPGKeLsCHfV3ss4W7OVGfNTzg6P/0XHo0VxC5Ie1KDr32ZtPn44b7Er/
8prZkdd49WjvcTr27rl9KdqRHVlkOf4UIzroeyz51gix45NoXPixU3R8fieZ
v91yDd52vc3wO08H26CLqAYzG0KOnHY1t6FDoNvN72IyK15mCUH+Mh12W6Vu
/DzDCp/ggJraa3Sc9wz1/ZTLgluGj/u4XOnY9l6XVfUxMxyKDiV036OjIyHz
8lkNZlxVZL6W9IAOi+GjnImzTDjP4/Zb14uOoq0bRdNsmGBYdZP09AUd/Gt7
tBeS/5J3EhYHOOLpqNKlbs9vXyJLf97E2vmBjtpr7g/PXFgiS27tqor/SMel
hGXj+pk/ZOEV4xPaaXR0P7nJzb/xD5k9R+eKdwEd/juMRgycF8ksO9h3mxbR
4VG7/041aZG8+qpsQaqUjq7bF62pnxbIc05kj/JKOt5U3f9bNzFP7lNSDmVt
pSPm+Y5v8/fmyD0Rvyxb2+kY1/FoSt42R+7i/SwV00XHywgSV2vdLLlhQjb1
YC8dCxHCr45vmyUXJIhVuo/RUWJj5nyT+oucs+GnnxGNzrhXjpT9CfxFzvB+
ayxBpyP4hvCNcu1f5KQLQr3Fc3TMNZ6a4EmfJse1tMQELNLxVzvh1yO7aXKU
ZoDduSU6uK9uKN4mOU0OTz2mtGuVDtq6OHJfNp38Wox7/t8/Ov7/f+f/AzST
/2Q=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 1}, {0., 3.989421623057398}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.701062838121211*^9, 3.701062894532304*^9}, {
3.70106397294775*^9, 3.701063978006325*^9}, 3.701065042678355*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData["n"], "Input",
CellChangeTimes->{3.70106489926648*^9}],
Cell[BoxData[
RowBox[{"NormalDistribution", "[",
RowBox[{"0.5`", ",", "0.1`"}], "]"}]], "Output",
CellChangeTimes->{3.701065046926878*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Population", "Subchapter",
CellChangeTimes->{{3.7010683160314217`*^9, 3.7010683310426493`*^9}, {
3.701070991421811*^9, 3.7010710067876987`*^9}, {3.701071096942543*^9,
3.7010710992771673`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"Population", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"RandomVariate", "[", "n", "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "1000"}], "}"}]}], "]"}]}], ";"}]], "Input",\
CellChangeTimes->{{3.7010650216057453`*^9, 3.701065023309654*^9}, {
3.701065062852921*^9, 3.701065093871217*^9}, 3.701067780704569*^9, {
3.701068193022941*^9, 3.701068193793632*^9}, {3.701071051367497*^9,
3.7010710545607157`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Mean", "[", "Population", "]"}]], "Input",
CellChangeTimes->{{3.701071039910636*^9, 3.701071066793366*^9}}],
Cell[BoxData["0.5040844704634146`"], "Output",
CellChangeTimes->{3.701071067078824*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Variance", "[", "Population", "]"}]], "Input",
CellChangeTimes->{{3.7010710704976788`*^9, 3.70107107688916*^9}}],
Cell[BoxData["0.009835401118322155`"], "Output",
CellChangeTimes->{3.701071077200326*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Sample", "Subchapter",
CellChangeTimes->{{3.7010683160314217`*^9, 3.7010683310426493`*^9}, {
3.701070991421811*^9, 3.7010710067876987`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"Sample", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Mean", "[",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"RandomVariate", "[", "n", "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "1000"}], "}"}]}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "100"}], "}"}]}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.701068164827525*^9, 3.701068216817162*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Mean", "[", "Sample", "]"}]], "Input",
CellChangeTimes->{{3.7010651065358877`*^9, 3.701065110243441*^9}}],
Cell[BoxData["0.4998994029563285`"], "Output",
CellChangeTimes->{3.701065110523158*^9, 3.701067784976383*^9,
3.701068219387047*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Variance", "[", "Sample", "]"}]], "Input",
CellChangeTimes->{{3.701065112954515*^9, 3.70106513098206*^9}}],
Cell[BoxData["9.613511503606018`*^-6"], "Output",
CellChangeTimes->{{3.7010651179538193`*^9, 3.7010651314817266`*^9},
3.701067785962531*^9, 3.701068220641078*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"0.01", "/", "1000"}]], "Input",
CellChangeTimes->{{3.701068236440528*^9, 3.701068256235045*^9}}],
Cell[BoxData["0.00001`"], "Output",
CellChangeTimes->{{3.701068241817233*^9, 3.701068256563095*^9}}]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["", "Title",
CellChangeTimes->{{3.7011105776294947`*^9, 3.7011105937272253`*^9}}],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.7011105805891953`*^9, 3.701110581263383*^9}}]
}, Open ]]
},
WindowSize->{1205, 698},
WindowMargins->{{Automatic, 77}, {Automatic, 0}},
FrontEndVersion->"10.1 for Mac OS X x86 (32-bit, 64-bit Kernel) (March 23, \
2015)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 104, 1, 92, "Title"],
Cell[CellGroupData[{
Cell[709, 27, 184, 2, 62, "Subchapter"],
Cell[CellGroupData[{
Cell[918, 33, 395, 7, 28, "Input"],
Cell[1316, 42, 288, 5, 28, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[1641, 52, 261, 7, 28, "Input"],
Cell[1905, 61, 15937, 273, 242, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[17879, 339, 68, 1, 28, "Input"],
Cell[17950, 342, 143, 3, 28, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[18142, 351, 204, 3, 62, "Subchapter"],
Cell[18349, 356, 487, 12, 28, "Input"],
Cell[CellGroupData[{
Cell[18861, 372, 132, 2, 28, "Input"],
Cell[18996, 376, 88, 1, 28, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[19121, 382, 137, 2, 28, "Input"],
Cell[19261, 386, 90, 1, 28, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[19400, 393, 149, 2, 62, "Subchapter"],
Cell[19552, 397, 477, 13, 28, "Input"],
Cell[CellGroupData[{
Cell[20054, 414, 130, 2, 28, "Input"],
Cell[20187, 418, 135, 2, 28, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[20359, 425, 131, 2, 28, "Input"],
Cell[20493, 429, 167, 2, 32, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[20697, 436, 121, 2, 28, "Input"],
Cell[20821, 440, 101, 1, 28, "Output"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[20983, 448, 87, 1, 92, "Title"],
Cell[21073, 451, 94, 1, 28, "Input"]
}, Open ]]
}
]
*)
(* End of internal cache information *)