-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathrun_model.py
83 lines (66 loc) · 3.08 KB
/
run_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/env python
# Please do *not* edit this script. Changes will be discarded so that we can run the trained models consistently.
# This file contains functions for running your model for the Challenge. You can run it as follows:
#
# python run_model.py -d data -m model -o outputs -v
#
# where 'data' is a folder containing the Challenge data, 'model' is a folder containing the your trained model, 'outputs' is a
# folder for saving your model's outputs, and -v is an optional verbosity flag.
import argparse
import os
import sys
from helper_code import *
from team_code import load_model, run_model
# Parse arguments.
def get_parser():
description = 'Run the trained Challenge models.'
parser = argparse.ArgumentParser(description=description)
parser.add_argument('-d', '--data_folder', type=str, required=True)
parser.add_argument('-m', '--model_folder', type=str, required=True)
parser.add_argument('-o', '--output_folder', type=str, required=True)
parser.add_argument('-v', '--verbose', action='store_true')
parser.add_argument('-f', '--allow_failures', action='store_true')
return parser
# Run the code.
def run(args):
# Load the models.
if args.verbose:
print('Loading the Challenge model...')
# You can use these functions to perform tasks, such as loading your model, that you only need to perform once.
model = load_model(args.model_folder, args.verbose) ### Teams: Implement this function!!!
# Find the Challenge data.
if args.verbose:
print('Finding the Challenge data...')
records = find_records(args.data_folder)
num_records = len(records)
if num_records == 0:
raise Exception('No data were provided.')
# Create a folder for the Challenge outputs if it does not already exist.
os.makedirs(args.output_folder, exist_ok=True)
# Run the team's model on the Challenge data.
if args.verbose:
print('Running the Challenge model on the Challenge data...')
# Iterate over the records.
for i, record in enumerate(records):
if args.verbose:
width = len(str(record))
print(f'- {i+1:>{width}}/{num_records}: {record}...')
# Allow or disallow the model to fail on parts of the data; this can be helpful for debugging.
try:
binary_output, probability_output = run_model(os.path.join(args.data_folder, record), model, args.verbose) ### Teams: Implement this function!!!
except:
if args.allow_failures:
if args.verbose:
print('... failed.')
binary_output, probability_output = float('nan'), float('nan')
else:
raise
# Save Challenge outputs.
output_path = os.path.join(args.output_folder, os.path.dirname(record))
os.makedirs(output_path, exist_ok=True)
output_file = os.path.join(args.output_folder, record + '.txt')
save_outputs(output_file, record, binary_output, probability_output)
if args.verbose:
print('Done.')
if __name__ == '__main__':
run(get_parser().parse_args(sys.argv[1:]))