-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathrtx_timer.go
250 lines (211 loc) · 5.48 KB
/
rtx_timer.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
// SPDX-FileCopyrightText: 2023 The Pion community <https://pion.ly>
// SPDX-License-Identifier: MIT
package sctp
import (
"math"
"sync"
"time"
)
const (
// RTO.Initial in msec
rtoInitial float64 = 1.0 * 1000
// RTO.Min in msec
rtoMin float64 = 1.0 * 1000
// RTO.Max in msec
defaultRTOMax float64 = 60.0 * 1000
// RTO.Alpha
rtoAlpha float64 = 0.125
// RTO.Beta
rtoBeta float64 = 0.25
// Max.Init.Retransmits:
maxInitRetrans uint = 8
// Path.Max.Retrans
pathMaxRetrans uint = 5
noMaxRetrans uint = 0
)
// rtoManager manages Rtx timeout values.
// This is an implementation of RFC 4960 sec 6.3.1.
type rtoManager struct {
srtt float64
rttvar float64
rto float64
noUpdate bool
mutex sync.RWMutex
rtoMax float64
}
// newRTOManager creates a new rtoManager.
func newRTOManager(rtoMax float64) *rtoManager {
mgr := rtoManager{
rto: rtoInitial,
rtoMax: rtoMax,
}
if mgr.rtoMax == 0 {
mgr.rtoMax = defaultRTOMax
}
return &mgr
}
// setNewRTT takes a newly measured RTT then adjust the RTO in msec.
func (m *rtoManager) setNewRTT(rtt float64) float64 {
m.mutex.Lock()
defer m.mutex.Unlock()
if m.noUpdate {
return m.srtt
}
if m.srtt == 0 {
// First measurement
m.srtt = rtt
m.rttvar = rtt / 2
} else {
// Subsequent rtt measurement
m.rttvar = (1-rtoBeta)*m.rttvar + rtoBeta*(math.Abs(m.srtt-rtt))
m.srtt = (1-rtoAlpha)*m.srtt + rtoAlpha*rtt
}
m.rto = math.Min(math.Max(m.srtt+4*m.rttvar, rtoMin), m.rtoMax)
return m.srtt
}
// getRTO simply returns the current RTO in msec.
func (m *rtoManager) getRTO() float64 {
m.mutex.RLock()
defer m.mutex.RUnlock()
return m.rto
}
// reset resets the RTO variables to the initial values.
func (m *rtoManager) reset() {
m.mutex.Lock()
defer m.mutex.Unlock()
if m.noUpdate {
return
}
m.srtt = 0
m.rttvar = 0
m.rto = rtoInitial
}
// set RTO value for testing
func (m *rtoManager) setRTO(rto float64, noUpdate bool) {
m.mutex.Lock()
defer m.mutex.Unlock()
m.rto = rto
m.noUpdate = noUpdate
}
// rtxTimerObserver is the inteface to a timer observer.
// NOTE: Observers MUST NOT call start() or stop() method on rtxTimer
// from within these callbacks.
type rtxTimerObserver interface {
onRetransmissionTimeout(timerID int, n uint)
onRetransmissionFailure(timerID int)
}
type rtxTimerState uint8
const (
rtxTimerStopped rtxTimerState = iota
rtxTimerStarted
rtxTimerClosed
)
// rtxTimer provides the retnransmission timer conforms with RFC 4960 Sec 6.3.1
type rtxTimer struct {
timer *time.Timer
observer rtxTimerObserver
id int
maxRetrans uint
rtoMax float64
mutex sync.Mutex
rto float64
nRtos uint
state rtxTimerState
pending uint8
}
// newRTXTimer creates a new retransmission timer.
// if maxRetrans is set to 0, it will keep retransmitting until stop() is called.
// (it will never make onRetransmissionFailure() callback.
func newRTXTimer(id int, observer rtxTimerObserver, maxRetrans uint,
rtoMax float64,
) *rtxTimer {
timer := rtxTimer{
id: id,
observer: observer,
maxRetrans: maxRetrans,
rtoMax: rtoMax,
}
if timer.rtoMax == 0 {
timer.rtoMax = defaultRTOMax
}
timer.timer = time.AfterFunc(math.MaxInt64, timer.timeout)
timer.timer.Stop()
return &timer
}
func (t *rtxTimer) calculateNextTimeout() time.Duration {
timeout := calculateNextTimeout(t.rto, t.nRtos, t.rtoMax)
return time.Duration(timeout) * time.Millisecond
}
func (t *rtxTimer) timeout() {
t.mutex.Lock()
if t.pending--; t.pending == 0 && t.state == rtxTimerStarted {
if t.nRtos++; t.maxRetrans == 0 || t.nRtos <= t.maxRetrans {
t.timer.Reset(t.calculateNextTimeout())
t.pending++
defer t.observer.onRetransmissionTimeout(t.id, t.nRtos)
} else {
t.state = rtxTimerStopped
defer t.observer.onRetransmissionFailure(t.id)
}
}
t.mutex.Unlock()
}
// start starts the timer.
func (t *rtxTimer) start(rto float64) bool {
t.mutex.Lock()
defer t.mutex.Unlock()
// this timer is already closed or aleady running
if t.state != rtxTimerStopped {
return false
}
// Note: rto value is intentionally not capped by RTO.Min to allow
// fast timeout for the tests. Non-test code should pass in the
// rto generated by rtoManager getRTO() method which caps the
// value at RTO.Min or at RTO.Max.
t.rto = rto
t.nRtos = 0
t.state = rtxTimerStarted
t.pending++
t.timer.Reset(t.calculateNextTimeout())
return true
}
// stop stops the timer.
func (t *rtxTimer) stop() {
t.mutex.Lock()
defer t.mutex.Unlock()
if t.state == rtxTimerStarted {
if t.timer.Stop() {
t.pending--
}
t.state = rtxTimerStopped
}
}
// closes the timer. this is similar to stop() but subsequent start() call
// will fail (the timer is no longer usable)
func (t *rtxTimer) close() {
t.mutex.Lock()
defer t.mutex.Unlock()
if t.state == rtxTimerStarted && t.timer.Stop() {
t.pending--
}
t.state = rtxTimerClosed
}
// isRunning tests if the timer is running.
// Debug purpose only
func (t *rtxTimer) isRunning() bool {
t.mutex.Lock()
defer t.mutex.Unlock()
return t.state == rtxTimerStarted
}
func calculateNextTimeout(rto float64, nRtos uint, rtoMax float64) float64 {
// RFC 4096 sec 6.3.3. Handle T3-rtx Expiration
// E2) For the destination address for which the timer expires, set RTO
// <- RTO * 2 ("back off the timer"). The maximum value discussed
// in rule C7 above (RTO.max) may be used to provide an upper bound
// to this doubling operation.
if nRtos < 31 {
m := 1 << nRtos
return math.Min(rto*float64(m), rtoMax)
}
return rtoMax
}