forked from jiayihu/pretty-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlongest-common-subsequence.ts
88 lines (77 loc) · 2.75 KB
/
longest-common-subsequence.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import { fill, range } from '../../utils';
/**
* The longest common subsequence (LCS) problem is the problem of finding the
* longest subsequence common to two sequences.
*
* It differs from problems of finding common substrings since subsequences are
* not required to occupy consecutive positions within the original sequences.
*
* The solution uses dynamic-programming.
* @url https://en.wikipedia.org/wiki/Dynamic_programming
*/
/**
* Return the table of common subsequences lengths. See the snapshot in
* `__snapshots` to have a visual rappresentation.
* Time complexity: O(seqA.length * seqB.length)
* @param seqA First sequence
* @param seqB Second sequence
*/
export function lcsLengths(seqA: string, seqB: string): number[][] {
const lengthA = seqA.length;
const lengthB = seqB.length;
const lengths: number[][] = new Array(lengthA + 1);
fill(lengths, () => new Array(lengthB + 1));
range(0, lengthA).forEach(i => (lengths[i][0] = 0));
range(0, lengthB).forEach(i => (lengths[0][i] = 0));
range(0, lengthA - 1).forEach(indexA => {
range(0, lengthB - 1).forEach(indexB => {
const charA = seqA[indexA];
const charB = seqB[indexB];
if (charA === charB) {
lengths[indexA + 1][indexB + 1] = lengths[indexA][indexB] + 1;
} else {
const subSeqALength = lengths[indexA][indexB + 1];
const subSeqBLength = lengths[indexA + 1][indexB];
lengths[indexA + 1][indexB + 1] = Math.max(subSeqALength, subSeqBLength);
}
});
});
return lengths;
}
/**
* Return the LCS of two sequences using the table of lengths
* Time complexity: O(seqA.length + seqB.length)
* @param lengths The table of common subsequences lengths returned by `lcsLengths`
* @param seqA First sequence
* @param seqB Second sequence
* @param indexA seqA index in the reverse LCS walk
* @param indexB seqB index in the reverse LCS walk
*/
function walkLCS(
lengths: number[][],
seqA: string,
seqB: string,
indexA: number,
indexB: number
): string {
if (indexA === 0 || indexB === 0) return '';
if (seqA[indexA - 1] === seqB[indexB - 1]) {
const subLCS = walkLCS(lengths, seqA, seqB, indexA - 1, indexB - 1);
return subLCS + seqA[indexA - 1];
} else if (lengths[indexA - 1][indexB] >= lengths[indexA][indexB - 1]) {
return walkLCS(lengths, seqA, seqB, indexA - 1, indexB);
} else {
return walkLCS(lengths, seqA, seqB, indexA, indexB - 1);
}
}
/**
* Return the longest common subsequence (LCS)
* Time complexity: O(seqA.length * seqB.length)
* @param seqA First sequence
* @param seqB Second sequence
*/
export function findLCS(seqA: string, seqB: string): string {
const lengths = lcsLengths(seqA, seqB);
const lcs = walkLCS(lengths, seqA, seqB, seqA.length, seqB.length);
return lcs;
}