You can download all required packages by using the following command.
conda env create -f environment.yml
You can download each dataset by clicking the dataset name.
You can download the pretrained models that attend to irrelevant areas at this link. Please download and place the models under the folder model
.
You can download the files for the saliency maps for the pretrained models at this link. Please download and place them under the folder interpretation
.
We suggest you to save data, models, and interpretation results following the file structure below.
.
├─ data
│ ├─ waterbirds
│ │ ├─ images: contains 200 folders; each folder for each bird species
│ │ └─ metadata.csv
│ ├─ biased_celeba
│ │ ├─ celeba
│ │ │ └─ img_align_celeba: this folder contains images
│ │ ├─ list_attr_celeba.txt
│ │ ├─ biased_celeba_black_hair_1_100_train.csv
│ │ └─ biased_celeba_black_hair_test.csv
│ └─ background
│ │ ├─ original
│ │ │ ├─ train: contains 9 folders; each folder for each class
│ │ │ └─ val: contains 9 folders; each folder for each class
│ │ ├─ mixed_same
│ │ │ └─ val: contains 9 folders; each folder for each class
│ │ ├─ mixed_rand
│ │ │ └─ val: contains 9 folders; each folder for each class
│ │ └─ only_fg
│ │ │ └─ val: contains 9 folders; each folder for each class
├─ model
│ ├─ waterbirds_resnet50.pth
│ ├─ biased_celeba_resnet50.pth
│ └─ background_resnet50.pt
├─ interpretation
│ ├─ waterbirds_gradcam.json
│ ├─ biased_celeba_gradcam.json
│ └─ background_gradcam.json
├─ annotation
├─ performance
├─ script
├─ src
└─ README.md
On the command line, type as following:
cd script/DATA_NAME
sh METHOD_NAME.sh
For example, if you want to run CRAYON-Attention for the Waterbirds dataset, you can run the code below:
cd script/waterbirds
sh crayon_att.sh
CRAYON achieves state-of-the-art performance, outperforming 12 methods across 3 benchmark datasets, surpassing approaches that require more complex annotations. You can see more details about the training configurations of CRAYON and compared methods at this link.
Method | Annotation | WGA | MGA |
---|---|---|---|
Original (Unrefined) | - | 28.35 | 72.08 |
CRAYON-Attention (ours) | Yes-No | 72.31 | 85.23 |
CRAYON-Pruning (ours) | Yes-No | 68.97 | 83.13 |
CRAYON-Pruning+Attention (ours) | Yes-No | 76.04 | 86.03 |
JtT | - | 46.88 | 78.29 |
MaskTune | - | 45.67 | 79.13 |
LfF | - | 44.64 | 77.24 |
SoftCon | - | 46.10 | 79.93 |
FLAC | - | 40.68 | 80.77 |
LC | - | 61.65 | 80.43 |
CnC | - | 46.98 | 77.80 |
RRR | Map | 53.96 | 82.29 |
GradMask | Map | 58.38 | 82.78 |
ActDiff | Map | 64.58 | 84.54 |
GradIA | Yes-No, Map | 60.87 | 83.17 |
Bounding Box | Bounding Box | 66.36 | 85.85 |
Method | Annotation | WGA | MGA |
---|---|---|---|
Original (Unrefined) | - | 32.60 | 73.71 |
CRAYON-Attention (ours) | Yes-No | 83.29 | 89.61 |
CRAYON-Pruning (ours) | Yes-No | 69.51 | 86.75 |
CRAYON-Pruning+Attention (ours) | Yes-No | 84.38 | 90.13 |
JtT | - | 35.25 | 74.29 |
MaskTune | - | 37.72 | 78.85 |
LfF | - | 44.35 | 77.05 |
SoftCon | - | 42.38 | 76.16 |
FLAC | - | 39.31 | 76.73 |
LC | - | 64.98 | 84.80 |
CnC | - | 37.76 | 75.34 |
RRR | Map | 42.16 | 78.64 |
GradMask | Map | 8.43 | 65.72 |
ActDiff | Map | 41.29 | 79.08 |
GradIA | Yes-No, Map | 41.80 | 76.58 |
Bounding Box | Bounding Box | 33.34 | 73.03 |
We note that lower BG-Gap means better performance.
Method | Annotation | MR | BG-Gap |
---|---|---|---|
Original (Unrefined) | - | 78.27 | 12.99 |
CRAYON-Attention (ours) | Yes-No | 80.85 | 8.52 |
CRAYON-Pruning (ours) | Yes-No | 78.61 | 12.18 |
CRAYON-Pruning+Attention (ours) | Yes-No | 81.66 | 8.40 |
JtT | - | 77.61 | 12.99 |
MaskTune | - | 78.14 | 12.54 |
LfF | - | 78.23 | 12.41 |
SoftCon | - | 73.14 | 11.58 |
FLAC | - | 79.91 | 9.75 |
LC | - | 74.78 | 13.35 |
CnC | - | 77.87 | 12.91 |
RRR | Map | 80.08 | 10.68 |
GradMask | Map | 80.11 | 10.63 |
ActDiff | Map | 75.84 | 11.73 |
GradIA | Yes-No, Map | 79.79 | 11.26 |
Bounding Box | Bounding Box | 80.82 | 9.81 |
We evaluate how the number of annotations affects CRAYON's performance.
Waterbirds | |
Biased CelebA | |
Backgrounds Challenge |
We examine how the two hyperparameters,
Waterbirds | |
Biased CelebA | |
Backgrounds Challenge |
Likewise, we also examine the effect on CRAYON-Pruning+Attention.
Waterbirds | |
Biased CelebA | |
Backgrounds Challenge |