-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdata_collection.py
227 lines (183 loc) · 8.82 KB
/
data_collection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import ipywidgets as widgets
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import geemap
import ee
#ee.Authenticate()
#ee.Initialize()
def get_data(long, lat, start_date, end_date):
Map = geemap.Map()
# geometry1 = ee.Geometry.Point([long,lat])
#start_date = '2021-01-01'
#end_date = '2021-06-30'
# Kankaria Lake, Ahmedabad
# geometry1 = ee.Geometry.Point([72.6026,23.0063])
geometry = ee.Geometry.Point([long,lat])
image = ee.ImageCollection("COPERNICUS/S2_SR") \
.filterBounds(geometry) \
.filter(ee.Filter.lte('CLOUDY_PIXEL_PERCENTAGE',20)) \
.first()
# Create an NDWI image, define visualization parameters and display.
ndwi = image.normalizedDifference(['B3', 'B8'])
# Mask the non-watery parts of the image, where NDWI < 0.4.
ndwiMasked = ndwi.updateMask(ndwi.gte(0.4))
ndwiMasked1= ndwiMasked.toInt()
# vectors = ndwiMasked1.reduceToVectors({
# 'scale': 30.0,
# 'geometryType': 'polygon',
# 'eightConnected': False,
# 'maxPixels':10000000
# })
vectors = ndwiMasked1.reduceToVectors(scale = 30.0, geometryType = 'polygon', eightConnected = False, maxPixels = 10000000, bestEffort=True)
# geometry = ee.Geometry.Polygon([
# [72.5986408493042,23.006549566021803],
# [72.59902708740235,23.004890477468116],
# [72.60070078582764,23.003863412427236],
# [72.60040037841797,23.007142092704626],
# [72.60215990753174,23.006668071566512],
# [72.60173075408936,23.003784407100333],
# [72.60366194458008,23.00516699364359],
# [72.60374777526856,23.00686558057643],
# [72.6026748916626,23.00805062856477],
# [72.60082953186036,23.00880115357416],
# [72.59945624084473,23.00809012998513],
# [72.5986408493042,23.006549566021803],
# [72.5986408493042,23.006549566021803],
# [72.59902708740235,23.004890477468116],
# [72.60070078582764,23.003863412427236],
# [72.60040037841797,23.007142092704626],
# [72.60215990753174,23.006668071566512],
# [72.60173075408936,23.003784407100333],
# [72.60366194458008,23.00516699364359],
# [72.60374777526856,23.00686558057643],
# [72.6026748916626,23.00805062856477],
# [72.60082953186036,23.00880115357416],
# [72.59945624084473,23.00809012998513],
# [72.5986408493042,23.006549566021803]
# ])
Map.addLayer(geometry)
sentinel = ee.ImageCollection("COPERNICUS/S2_SR").filterBounds(vectors) \
.filterDate(start_date,end_date) \
.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',20)) \
.median()
visualization = {
'min': 0,
'max': 3000,
'bands': ['B4', 'B3', 'B2'],
}
Map.addLayer(sentinel, visualization, 'sent2rgb')
mndwi = sentinel.normalizedDifference(['B3','B11']).rename('mndwi')
mndwitr = mndwi.gt(0)
ndsi = sentinel.normalizedDifference(['B11','B12']).rename('ndsi')
ndsi2 = sentinel.normalizedDifference(['B11','B12']).rename('ndsi2').mask(mndwitr)
Map.addLayer(ndsi2,{'min':0.1,'max':0.4,'palette':['cyan','orange','red']},'salinity')
ndti = sentinel.normalizedDifference(['B4','B3']).rename('ndti')
ndti2 = sentinel.normalizedDifference(['B4','B3']).rename('ndti2').mask(mndwitr)
Map.addLayer(ndti2,{'min':-1,'max':+1,'palette':['blue','pink','brown']},'turbidity')
ndci = sentinel.normalizedDifference(['B5','B4']).rename('ndci')
ndci2 = sentinel.normalizedDifference(['B5','B4']).rename('ndci2').mask(mndwitr)
Map.addLayer(ndci2,{'min':-1,'max':+1,'palette':['green','pink','brown']},'chlorophyll')
ph = ee.Image(8.339).subtract(ee.Image(0.827).multiply(sentinel.select('B1').divide(sentinel.select('B8')))).rename('ph')
ph2 = ee.Image(8.339).subtract(ee.Image(0.827).multiply(sentinel.select('B1').divide(sentinel.select('B8')))).rename('ph2').mask(mndwitr)
Map.addLayer(ph2,{'min':0,'max':14,'palette':['red','yellow','cyan']},'ph')
dissolvedoxygen = ee.Image(-0.0167).multiply(sentinel.select('B8')).add(ee.Image(0.0067).multiply(sentinel.select('B9'))).add(ee.Image(0.0083).multiply(sentinel.select('B11'))).add(ee.Image(9.577)).rename('dissolvedoxygen')
dissolvedoxygen2 = ee.Image(-0.0167).multiply(sentinel.select('B8')).add(ee.Image(0.0067).multiply(sentinel.select('B9'))).add(ee.Image(0.0083).multiply(sentinel.select('B11'))).add(ee.Image(9.577)).rename('dissolvedoxygen2').mask(mndwitr)
Map.addLayer(dissolvedoxygen2,{'min':6.5,'max':8,'palette':['red','green','blue']},'do')
col = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') \
.filterDate(start_date,end_date) \
.filterBounds(vectors).median()
temp = col.select('ST_B.*').multiply(0.00341802).add(149.0).subtract(273.15).rename('temp')
## Test Data
starting = start_date
ending = end_date
data = ee.ImageCollection('COPERNICUS/S3/OLCI').filterDate(starting, ending).filterBounds(vectors)
rgb = data.select(['Oa08_radiance', 'Oa06_radiance', 'Oa04_radiance'])\
.median().multiply(ee.Image([0.00876539, 0.0123538, 0.0115198])).clip(vectors)
dm_2021_Jan_August_test = rgb.select('Oa08_radiance').divide(rgb.select('Oa04_radiance')).rename('dom')
dom2 = rgb.select('Oa08_radiance').divide(rgb.select('Oa04_radiance')).mask(mndwitr)
Map.addLayer(dom2,{'min':0,'max':0.8,'palette':['green','red','yellow']},'Dissolved organic matter')
suspended_matter_2021_Jan_August_test= rgb.select('Oa08_radiance').divide(rgb.select('Oa06_radiance')).rename('suspended_matter')
suspended_matter2 = rgb.select('Oa08_radiance').divide(rgb.select('Oa06_radiance')).mask(mndwitr)
Map.addLayer(suspended_matter2,{'min':0,'max':0.8,'palette':['green','red','yellow']},'suspended_matter')
Map.to_streamlit(width = 100, height=900)
latlon = ee.Image.pixelLonLat().addBands(dm_2021_Jan_August_test)
# apply reducer to list
latlon = latlon.reduceRegion(
reducer=ee.Reducer.toList(),
geometry=vectors,
scale=100,
tileScale = 16)
# get data into three different arrays
data_dom_2021_Jan_August_test = np.array((ee.Array(latlon.get("dom")).getInfo()))
latlon = ee.Image.pixelLonLat().addBands(suspended_matter_2021_Jan_August_test)
# apply reducer to list
latlon = latlon.reduceRegion(
reducer=ee.Reducer.toList(),
geometry=vectors,
scale=100,
tileScale = 16)
# get data into three different arrays
data_sm_2021_Jan_August_test= np.array((ee.Array(latlon.get("suspended_matter")).getInfo()))
latlon = ee.Image.pixelLonLat().addBands(temp)
latlon = latlon.reduceRegion(
reducer=ee.Reducer.toList(),
geometry=vectors,
scale=100)
data_lst = np.array((ee.Array(latlon.get("temp")).getInfo()))
latlon = ee.Image.pixelLonLat().addBands(ndti)
# apply reducer to list
latlon = latlon.reduceRegion(
reducer=ee.Reducer.toList(),
geometry=vectors,
scale=100)
# get data into three different arrays
data_ndti = np.array((ee.Array(latlon.get("ndti")).getInfo()))
latlon = ee.Image.pixelLonLat().addBands(ndsi)
# apply reducer to list
latlon = latlon.reduceRegion(
reducer=ee.Reducer.toList(),
geometry=vectors,
scale=100)
# get data into three different arrays
data_ndsi = np.array((ee.Array(latlon.get("ndsi")).getInfo()))
latlon = ee.Image.pixelLonLat().addBands(ndci)
# apply reducer to list
latlon = latlon.reduceRegion(
reducer=ee.Reducer.toList(),
geometry=vectors,
scale=100)
# get data into three different arrays
data_ndci = np.array((ee.Array(latlon.get("ndci")).getInfo()))
latlon = ee.Image.pixelLonLat().addBands(dissolvedoxygen)
# apply reducer to list
latlon = latlon.reduceRegion(
reducer=ee.Reducer.toList(),
geometry=vectors,
scale=100,
tileScale = 16)
# get data into three different arrays
data_do = np.array((ee.Array(latlon.get("dissolvedoxygen")).getInfo()))
latlon = ee.Image.pixelLonLat().addBands(ph)
# apply reducer to list
latlon = latlon.reduceRegion(
reducer=ee.Reducer.toList(),
geometry=vectors,
scale=100)
# get data into three different arrays
data_ph = np.array((ee.Array(latlon.get("ph")).getInfo()))
df = pd.concat([pd.DataFrame(data_do, columns = ['Dissolved Oxygen']),\
pd.DataFrame(data_ndsi, columns = ['Salinity']),\
pd.DataFrame(data_lst, columns = ['Temperature']),\
pd.DataFrame(data_ph, columns = ['pH']),\
pd.DataFrame(data_ndti, columns = ['Turbidity']),\
pd.DataFrame(data_dom_2021_Jan_August_test, columns = ['Dissolved Organic Matter']),\
pd.DataFrame(data_sm_2021_Jan_August_test, columns = ['Suspended Matter']),\
pd.DataFrame(data_ndci, columns = ['Chlorophyll'])], axis=1, sort=False)
return df
def send_df(df2):
df2 = df2.dropna()
df2['Dissolved Organic Matter'] = df2['Dissolved Organic Matter']*1000
df2['Suspended Matter'] = df2['Suspended Matter']*1000
test = pd.DataFrame(MinMaxScaler().fit_transform(df2.drop(['Salinity'], axis=1)), columns=df2.drop(['Salinity'], axis=1).columns)
return df2, test