-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathutils.py
313 lines (271 loc) · 15.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from typing import List, Dict, Any, Tuple, Union, Callable
import pickle
import json
from datetime import datetime
from typing import Dict, List
from USACOBench.evaluation.metrics import pass_at_k
from USACOBench.prompts import solve_prompt_fn, retrieval_prompt_fn, reflexion_prompt_fn, RetrievalType
from rank_bm25 import BM25Okapi
from evaluate import evaluate_model
from functools import partial
Problem = Dict[Any, Any]
Solution = Dict[str, Union[str, None]]
SolutionSet = List[Solution]
SolutionDict = Dict[str, SolutionSet]
Result = Dict[str, str]
ResultSet = List[Result]
ResultDict = Dict[str, ResultSet]
Query = Dict[str, str]
# NOTE: these are technically not thread-safe, although they are up to
# microsecond approximation due to timestamps
def save_json(obj, path, timestamp=True, verbose=True):
if timestamp:
timestamp_str = datetime.now().strftime("%m_%d_%Y_%H_%M_%S_%f")
fname = '{}_{}.json'.format(path, timestamp_str)
else:
fname = '{}.json'.format(path)
print('Saved json at {}'.format(fname))
with open(fname, 'w') as f:
json.dump(obj, f)
return fname
def load_json(fname, verbose=True):
with open(fname + '.json', 'r') as f:
return json.load(f)
def save_pickle(obj, path, timestamp=True, verbose=True):
if timestamp:
timestamp_str = datetime.now().strftime("%m_%d_%Y_%H_%M_%S_%f")
fname = '{}_{}.pickle'.format(path, timestamp_str)
else:
fname = '{}.pickle'.format(path)
print('Saved pickle at {}'.format(fname))
with open(fname, 'wb') as f:
pickle.dump(obj, f)
def load_pickle(fname, verbose=True):
with open(fname + '.pickle', 'rb') as f:
return pickle.load(f)
def get_rdict(rs, ss):
'''
Takes (index-matched) lists of result sets and solution sets and returns
the relevant result dictionary, i.e. dictionary from problem_id to result set
Assumes at least one attempt for each problem.
'''
rdict = {}
for r, s in zip(rs, ss):
rdict[s[0]['problem_id']] = r
return rdict
def filter(result_sets, difficulties=['bronze'], problem_dict=None):
output = []
for result_set in result_sets:
trues = False
for difficulty in difficulties:
trues = trues or problem_dict[result_set[0]['problem_id']]['problem_level'] == difficulty
if trues:
output.append(result_set)
return output
def search(text, problem_descriptions, problem_ids):
for i, problem in enumerate(problem_descriptions):
if text == problem:
return problem_ids[i]
return None
def combine(result_sets1, result_sets2):
combined = []
for result_set in result_sets1:
temp = result_set + find(result_set[0]['problem_id'], result_sets2)
combined.append(temp)
return combined
def find(problem_id, result_sets):
for result_set in result_sets:
if result_set[0]['problem_id'] == problem_id:
return result_set
return None
def calculate_percentage_identical(queries, target_queries):
target_queries_dict = {}
score = 0
for query in target_queries:
target_queries_dict[query['problem_id']] = query
for query in queries:
if query['similar_problem_id'] == target_queries_dict[query['problem_id']]['similar_problem_id']:
score += 1
return score / len(queries) * 100
def filter_queries(in_queries, queries):
in_set = set([query['problem_id'] for query in in_queries])
result = []
for query in queries:
if query['problem_id'] in in_set:
result.append(query)
return result
def parse_execution_output(execution_output):
result_list = execution_output['result_list']
if not result_list:
result_list_str = execution_output['status']
else:
result_list_str = '\n'.join([result['status'] for result in result_list])
num_tests = execution_output['num_tests']
num_passed = execution_output['num_passed']
return f'Testing Output: \n {result_list_str} \n Number of tests: {num_tests} \n Number passed: {num_passed}'
def get_difficulty_performances(full_results, problem_dict, k=1):
bronze = filter(full_results, ['bronze'], problem_dict=problem_dict)
silver = filter(full_results, ['silver'], problem_dict=problem_dict)
gold = filter(full_results, ['gold'], problem_dict=problem_dict)
platinum = filter(full_results, ['platinum'], problem_dict=problem_dict)
return pass_at_k(bronze, k=k)[0], pass_at_k(silver, k=k)[0], pass_at_k(gold, k=k)[0], pass_at_k(platinum, k=k)[0]
####################################################################################################
# Query Generation Functions
####################################################################################################
# p is the number of problems retrieved
def generate_episodic_retrieval_queries(p, problem_dict, solution_sets):
corpus = [problem_dict[problem_id]['description'] + '\nSolution: \n' + problem_dict[problem_id]['solution_english'] + '\nSolution Code: \n' + problem_dict[problem_id]['solution_python3'] for problem_id in problem_dict.keys()]
solutions = solution_sets
query_texts = []
problem_ids = []
for solution in solutions:
solution_text = solution[0]['solution']
problem_id = solution[0]['problem_id']
if problem_id in problem_dict.keys():
query_texts.append(problem_dict[problem_id]['description'] + '\n' + solution_text)
problem_ids.append(problem_id)
sim_prob_queries_new_code = []
for i, problem_id in enumerate(problem_ids):
curr_description = problem_dict[problem_id]['description'] + '\nSolution: \n' + problem_dict[problem_id]['solution_english'] + '\nSolution Code: \n' + problem_dict[problem_id]['solution_python3']
duplicated = corpus[:]
duplicated.remove(curr_description)
tokenized_corpus = [doc.split(' ') for doc in duplicated]
bm25 = BM25Okapi(tokenized_corpus)
curr_query = query_texts[i]
tokenized_query = curr_query.split(" ")
similar_problem_texts = bm25.get_top_n(tokenized_query, duplicated, n=p)
similar_problem_text = ""
words = ["First", "Second", "Third", "Fourth", "Fifth", "Sixth", "Seventh"]
similar_problem_ids = []
for i, text in enumerate(similar_problem_texts):
similar_problem_text += f"\n\n {words[i]} problem and solution \n\n" + text
similar_problem_ids.append(search(text, corpus, list(problem_dict.keys())))
for val in similar_problem_ids:
if val == None:
print(similar_problem_texts)
assert 1 == 2
sim_prob_queries_new_code.append({'problem_id': problem_id, 'retrieval_text': '[BEGIN SIMILAR PROBLEMS]\n' + similar_problem_text + '\n[END SIMILAR PROBLEMS]\n', 'retrieval_problem_ids': similar_problem_ids, 'problem_description': problem_dict[problem_id]['description']})
save_json(sim_prob_queries_new_code, f'queries_firstsolve_{p}problem_episodic')
return sim_prob_queries_new_code
def generate_semantic_retrieval_queries(problem_dict, solution_sets, model_name):
# Fetching the corpus to pass in: The corpus being textbook chapters
textbook = load_json('data/corpuses/cpbook_v2')
textbook_corpus = [article['full_article'] for article in textbook]
tokenized_corpus = [chapter.split(' ') for chapter in textbook_corpus]
bm25 = BM25Okapi(tokenized_corpus)
query_texts = dict()
solutions = solution_sets
query_texts = []
problem_ids = []
for solution in solutions:
solution_text = solution[0]['solution']
problem_id = solution[0]['problem_id']
if problem_id in problem_dict.keys():
query_texts.append(problem_dict[problem_id]['description'] + '\n' + solution_text)
problem_ids.append(problem_id)
textbook_queries_new_code = []
for i, problem_id in enumerate(problem_ids):
curr_query = query_texts[i]
tokenized_query = curr_query.split(" ")
if '3.5' in model_name:
textbook_text = bm25.get_top_n(tokenized_query, textbook_corpus, n=1)[0][:7000]
else:
textbook_text = bm25.get_top_n(tokenized_query, textbook_corpus, n=1)[0]
textbook_queries_new_code.append({'problem_id': problem_id, 'retrieval_text': '[BEGIN TEXTBOOK EXCERPT]\n' + textbook_text + '\n[END TEXTBOOK EXCERPT]\n', 'problem_description': problem_dict[problem_id]['description']})
save_json(textbook_queries_new_code, 'queries_firstsolve_semantic')
return textbook_queries_new_code
def generate_episodic_semantic_retrieval_queries(num_problems_fetched, problem_dict, solution_sets, model_name):
textbook_queries = generate_semantic_retrieval_queries(problem_dict, solution_sets, model_name)
episodic_queries = generate_episodic_retrieval_queries(num_problems_fetched, problem_dict, solution_sets)
textbook_queries_dict = dict()
episodic_queries_dict = dict()
for query in textbook_queries:
textbook_queries_dict[query['problem_id']] = query
for query in episodic_queries:
episodic_queries_dict[query['problem_id']] = query
final_queries = []
for query in textbook_queries:
retrieval_text_textbook = query['retrieval_text']
episodic_query = episodic_queries_dict[query['problem_id']]
retrieval_text_episodic = episodic_query['retrieval_text']
retrieval_text = retrieval_text_episodic + '\n\n' + retrieval_text_textbook
final_queries.append({'retrieval_problem_ids': episodic_query['retrieval_problem_ids'], 'retrieval_text': retrieval_text, 'problem_id': query['problem_id'], 'problem_description': query['problem_description']})
save_json(final_queries, 'queries_firstsolve_episodic_semantic')
return final_queries
def generate_reflexion_queries(rdict, sdict, problem_dict, model_name, iteration, prev_queries_dict=None, retrieval=False):
reflection_queries_dict = dict()
for problem_id in sdict.keys():
if problem_id in problem_dict.keys():
for solution in sdict[problem_id][:1]:
prev_buffer = ''
if prev_queries_dict:
prev_buffer = prev_queries_dict[problem_id]['reflection_buffer']
current_response = solution['solution']
current_execution_output = rdict[solution['problem_id']][0]['result_list']
num_samples = problem_dict[problem_id]['description'].count("SAMPLE INPUT")
execution_output = ""
if current_execution_output:
current_execution_output = current_execution_output[:num_samples]
for i, result in enumerate(current_execution_output):
execution_output += f"Test Case {i}\n" + result['status'] + "\n"
else:
execution_output = "No submission, formatting error during judging."
if retrieval:
retrieval_text = prev_queries_dict[problem_id]['retrieval_text']
retrieval_problem_ids = prev_queries_dict[problem_id]['retrieval_problem_ids']
reflection_queries_dict[problem_id] = {'problem_id': problem_id, 'reflection_buffer': prev_buffer + f'\n Reflection Response Number {iteration+1}: \n' + current_response + f'\n Reflection Response Execution Output Number {iteration+1}:\n' + execution_output, 'retrieval_text': retrieval_text, 'retrieval_problem_ids': retrieval_problem_ids, 'problem_description': problem_dict[problem_id]['description']}
else:
reflection_queries_dict[problem_id] = {'problem_id': problem_id, 'reflection_buffer': prev_buffer + f'\n Reflection Response Number {iteration+1} \n' + current_response + f'\n Reflection Response Execution Output Number {iteration+1}:\n' + execution_output, 'problem_description': problem_dict[problem_id]['description']}
if retrieval:
name = f'queries_dict_{model_name}_retrieval_reflexion'
else:
name = f'queries_dict_{model_name}_reflexion'
save_json(reflection_queries_dict, name, timestamp=False)
return reflection_queries_dict
def calculate_final_rs(reflexions, problem_dict):
rs = []
for problem_id in reflexions[0].keys():
num_samples = problem_dict[problem_id]['description'].count('SAMPLE INPUT')
for i, reflexion_result in enumerate(reflexions):
if reflexion_result[problem_id][0]['result_list']:
sample_testing_results = reflexion_result[problem_id][0]['result_list'][:num_samples]
elif i == len(reflexions)-1:
rs.append(reflexion_result[problem_id])
break
else:
continue
passed = True
for result in sample_testing_results:
if result['result_type'] != 1:
passed = False
break
if passed or i == len(reflexions)-1:
rs.append(reflexion_result[problem_id])
break
return rs
####################################################################################################
# Run Functions
####################################################################################################
def run_solve(model_fn, model_name, problem_dict, attempts, return_queries=False):
queries = []
for problem_id in problem_dict.keys():
queries.append({'problem_id': problem_id, 'problem_description': problem_dict[problem_id]['description']})
rdict, sdict, rs, ss = evaluate_model(model_fn, solve_prompt_fn, queries=queries, verbose=True, attempts=attempts, problem_ids=list(problem_dict.keys()))
save_json([rdict, sdict, rs, ss], f'results/results_{model_name}_solve_{attempts}attempts')
return (rdict, sdict, rs, ss) if not return_queries else (rdict, sdict, rs, ss, queries)
def run_retrieval(model_fn, model_name, problem_dict, attempts, solution_sets, num_retrieved, retrieval_type, return_queries=False):
if retrieval_type == RetrievalType.EPISODIC:
queries = generate_episodic_retrieval_queries(num_retrieved, problem_dict, solution_sets)
elif retrieval_type == RetrievalType.SEMANTIC:
queries = generate_semantic_retrieval_queries(problem_dict, solution_sets, model_name)
else:
queries = generate_episodic_semantic_retrieval_queries(num_retrieved, problem_dict, solution_sets, model_name)
r_prompt_fn = partial(retrieval_prompt_fn, retrieval_type=retrieval_type)
rdict, sdict, rs, ss = evaluate_model(model_fn, r_prompt_fn, queries=queries, verbose=True, attempts=attempts, problem_ids=list(problem_dict.keys()))
save_json([rdict, sdict, rs, ss], f'results/results_{model_name}_episodic_retrieval_{attempts}attempts')
return (rdict, sdict, rs, ss) if not return_queries else (rdict, sdict, rs, ss, queries)
def run_reflexion(model_fn, model_name, problem_dict, attempts, prev_result_dict, prev_solution_dict, prev_queries_dict, iteration, return_queries=True, retrieval=False):
new_reflexion_queries_dict = generate_reflexion_queries(prev_result_dict, prev_solution_dict, problem_dict, model_name, iteration, prev_queries_dict=prev_queries_dict, retrieval=retrieval)
rdict, sdict, rs, ss = evaluate_model(model_fn, reflexion_prompt_fn, queries=list(new_reflexion_queries_dict.values()), verbose=True, attempts=attempts)
save_json([rdict, sdict, rs, ss], f'results_{model_name}_reflexion_{str(iteration)}iteration')
return (rdict, sdict, rs, ss) if not return_queries else (rdict, sdict, rs, ss, new_reflexion_queries_dict)