CurrentModule = MultivariatePolynomials
AbstractVariable
variable
name
name_base_indices
variable_union_type
similar_variable
@similar_variable
conj(::AbstractVariable)
real(::AbstractVariable)
imag(::AbstractVariable)
isreal(::AbstractVariable)
isrealpart
isimagpart
isconj
ordinary_variable
AbstractMonomialLike
AbstractMonomial
monomial_type
variables
effective_variables
nvariables
exponents
degree
isconstant
powers
constant_monomial
map_exponents
multiplication_preserves_monomial_order
AbstractTermLike
AbstractTerm
Term
term
term_type
coefficient
coefficient_type
monomial
constant_term
zero_term
degree_complex
halfdegree
AbstractPolynomialLike
AbstractPolynomial
Polynomial
polynomial
polynomial_type
terms
nterms
coefficients
coefficient(p::AbstractPolynomialLike, m::AbstractMonomialLike, vars)
monomials
ordering
mindegree
maxdegree
extdegree
leading_term
leading_coefficient
leading_monomial
remove_leading_term
remove_monomials
monic
map_coefficients
map_coefficients!
map_coefficients_to!
conj(::_APL)
real(::_APL)
imag(::_APL)
isreal(::_APL)
mindegree_complex
minhalfdegree
maxdegree_complex
maxhalfdegree
extdegree_complex
exthalfdegree
A rational polynomial function can be constructed with the /
operator. Common operations such as +
, -
, *
, -
have been implemented between rational functions.
The numerator and denominator polynomials can be retrieved by the numerator
and denominator
functions.
monomial_vector
monomial_vector_type
empty_monomial_vector
sort_monomial_vector
merge_monomial_vectors
conj(::AbstractVector{<:AbstractMonomial})
real(::AbstractVector{<:AbstractMonomial})
imag(::AbstractVector{<:AbstractMonomial})
isreal(::AbstractVector{<:AbstractMonomial})