-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtriangulation2d.cpp
85 lines (73 loc) · 2.2 KB
/
triangulation2d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#include <cstddef>
#include <cstring>
#include <vector>
#include <cstdio>
#include "triangulation2d.hpp"
namespace polylower {
inline double cross2d(const Point &p1, const Point &p2) {
return (p1.x * p2.y) - (p1.y * p2.x);
}
inline Point sub(const Point &p1, const Point &p2) {
return (Point){p1.x - p2.x, p1.y - p2.y};
}
bool point_in_triangle(const Point &p, const Point &p1, const Point &p2, const Point &p3) {
Point v1 = (Point){p1.x - p.x, p1.y - p.y};
Point v2 = (Point){p2.x - p.x, p2.y - p.y};
Point v3 = (Point){p3.x - p.x, p3.y - p.y};
double c1 = cross2d(v1, v2);
double c2 = cross2d(v2, v3);
double c3 = cross2d(v3, v1);
return (c1 > 0 && c2 > 0 && c3 > 0) || (c1 < 0 && c2 < 0 && c3 < 0);
}
bool is_ear(int x, Point *p, int *prev, int *next) {
if (cross2d(sub(p[x], p[prev[x]]), sub(p[next[x]], p[x])) <= 0) {
// printf("spike %d\n", x);
return false;
}
for (int i = next[next[x]]; i != prev[x]; i = next[i]) {
if (point_in_triangle(p[i], p[prev[x]], p[x], p[next[x]])) {
return false;
}
}
return true;
}
/* return a triangle list vector<int> = {t1a, t1b, t1c, t2a, t2b, t2c, ...} */
std::vector<int> triangulation2d(Point *plist, size_t p_num) {
int *prev = new int[p_num];
int *next = new int[p_num];
int *ear = new int[p_num];
for (int i = 0; i < p_num; i++) {
prev[i] = i - 1;
next[i] = i + 1;
}
prev[0] = p_num-1;
next[p_num-1] = 0;
memset(ear, -1, p_num * sizeof(int));
std::vector<int> tv(3 * (p_num - 2));
int i = 0;
int k;
for (k = 0; k < p_num-3; k++) {
while (true) {
if (ear[i] == -1) ear[i] = is_ear(i, plist, prev, next);
if (ear[i] == 1) break;
i = next[i];
}
// printf("found ear %d\n", i);
// make prev[i], i, next[i] a triangle
tv[k*3] = prev[i];
tv[k*3+1] = i;
tv[k*3+2] = next[i];
ear[prev[i]] = ear[next[i]] = -1;
next[prev[i]] = next[i];
prev[next[i]] = prev[i];
i = next[i];
}
tv[k * 3] = prev[i];
tv[k * 3 + 1] = i;
tv[k * 3 + 2] = next[i];
delete [] prev;
delete [] next;
delete [] ear;
return tv;
}
};