@@ -89,28 +89,32 @@ With incompatibilities, we would note
89
89
\Rightarrow \quad \\ { a: T_a, c: \overline{T_c} \\ }. \\ ]
90
90
91
91
This is the simplified version of the rule of resolution.
92
- For the generalization, let's reuse the "more mathematical" notation of conjunctions
93
- for incompatibilities \\ ( T_a \land T_b \\ ) and the above rule would be
92
+ For the generalization, let's write them as [ boolean expressions] [ boolean_expression ] .
94
93
95
- \\ [ T_a \land \overline{T_b}, \quad
96
- T_b \land \overline{T_c} \quad
97
- \Rightarrow \quad T_a \land \overline{T_c}. \\ ]
94
+ \\ [ \neg ( T_a \land \overline{T_b}) \quad \land \quad
95
+ \neg ( T_b \land \overline{T_c}) \quad
96
+ \Rightarrow \quad \neg ( T_a \land \overline{T_c}) . \\ ]
98
97
99
98
In fact, the above rule can also be expressed as follows
100
99
101
- \\ [ T_a \land \overline{T_b}, \quad
102
- T_b \land \overline{T_c} \quad
103
- \Rightarrow \quad T_a \land (\overline{T_b} \lor T_b) \land \overline{T_c} \\ ]
100
+ \\ [ \neg ( T_a \land \overline{T_b}) \quad \land \quad
101
+ \neg ( T_b \land \overline{T_c}) \quad
102
+ \Rightarrow \quad \neg ( T_a \land (\overline{T_b} \lor T_b) \land \overline{T_c}) \\ ]
104
103
105
104
since for any term \\ ( T \\ ), the disjunction \\ ( T \lor \overline{T} \\ ) is always true.
106
- In general, for any two incompatibilities \\ ( T_a^1 \land T_b^1 \land \ cdots \land T_z^1 \\ )
107
- and \\ ( T_a^2 \land T_b^2 \land \ cdots \land T_z^2 \\ ) we can deduce a third,
108
- called the resolvent whose expression is
105
+ In general, for any two incompatibilities \\ ( \\ { a: T_a^1, \ cdots, z: T_z^1 \\ } \\ ) and
106
+ \\ ( \\ { a: T_a^2, \ cdots, z: T_z^2 \\ }, \\ )
107
+ or
109
108
110
- \\ [ (T_a^1 \lor T_a^2) \land (T_b^1 \land T_b^2) \land \cdots \land (T_z^1 \land T_z^2). \\ ]
109
+ \\ [ \neg (T_a^1 \land T_b^1 \land \cdots \land T_z^1) \land \neg (T_a^2 \land T_b^2 \land \cdots \land T_z^2), \\ ]
110
+ we can deduce a third, called the resolvent whose expression is
111
+
112
+ \\ [ \neg ((T_a^1 \lor T_a^2) \land (T_b^1 \land T_b^2) \land \cdots \land (T_z^1 \land T_z^2)). \\ ]
111
113
112
114
In that expression, only one pair of package terms is regrouped as a union (a disjunction),
113
115
the others are all intersected (conjunction).
114
116
If a term for a package does not exist in one incompatibility,
115
117
it can safely be replaced by the term \\ ( \neg [ \varnothing] \\ ) in the expression above
116
118
as we have already explained before.
119
+
120
+ [ boolean_expression ] : https://en.wikipedia.org/wiki/Boolean_expression#Boolean_operators
0 commit comments