Skip to content
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

Commit 7c06e0b

Browse files
authoredJan 8, 2025··
Merge branch 'main' into carl/causal-memory
2 parents b235744 + d995bf3 commit 7c06e0b

File tree

7 files changed

+126
-48
lines changed

7 files changed

+126
-48
lines changed
 

‎.pre-commit-config.yaml

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
repos:
22
- repo: https://github.com/astral-sh/ruff-pre-commit
33
# Ruff version.
4-
rev: v0.7.3
4+
rev: v0.8.1
55
hooks:
66
# Run the linter.
77
- id: ruff

‎README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ For information on use cases and background material on causal inference and het
4949

5050
# News
5151

52-
If you'd like to contribute to this project, see the [Help Wanted](#help-wanted) section below.
52+
If you'd like to contribute to this project, see the [Help Wanted](#finding-issues-to-help-with) section below.
5353

5454
**July 3, 2024:** Release v0.15.1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.15.1)
5555

‎econml/dowhy.py

+12-5
Original file line numberDiff line numberDiff line change
@@ -36,8 +36,8 @@ class DoWhyWrapper:
3636

3737
def __init__(self, cate_estimator):
3838
from packaging.version import parse
39-
if parse(dowhy.__version__) >= parse('0.12'):
40-
warnings.warn("econml has not been tested with dowhy versions >= 0.12")
39+
if parse(dowhy.__version__) >= parse('0.13'):
40+
warnings.warn("econml has not been tested with dowhy versions >= 0.13")
4141
self._cate_estimator = cate_estimator
4242

4343
def _get_params(self):
@@ -231,9 +231,16 @@ def __getattr__(self, attr):
231231
# don't proxy special methods
232232
if attr.startswith('__'):
233233
raise AttributeError(attr)
234-
elif attr in ['_cate_estimator', 'dowhy_',
235-
'identified_estimand_', 'estimate_']:
236-
return super().__getattr__(attr)
234+
elif attr == "dowhy_":
235+
if "dowhy_" not in dir(self):
236+
raise AttributeError("Please call `DoWhyWrapper.fit` first before any other operations.")
237+
else:
238+
return self.dowhy_
239+
elif attr in ['_cate_estimator', 'identified_estimand_', 'estimate_']:
240+
if attr in dir(self):
241+
return getattr(self, attr)
242+
else:
243+
raise AttributeError("call `DoWhyWrapper.fit` first before any other operations.")
237244
elif attr.startswith('dowhy__'):
238245
return getattr(self.dowhy_, attr[len('dowhy__'):])
239246
elif hasattr(self.estimate_._estimator_object, attr):

‎econml/score/rscorer.py

+6
Original file line numberDiff line numberDiff line change
@@ -51,6 +51,9 @@ class RScorer:
5151
discrete_treatment: bool, default ``False``
5252
Whether the treatment values should be treated as categorical, rather than continuous, quantities
5353
54+
discrete_outcome: bool, default ``False``
55+
Whether the outcome should be treated as binary
56+
5457
categories: 'auto' or list, default 'auto'
5558
The categories to use when encoding discrete treatments (or 'auto' to use the unique sorted values).
5659
The first category will be treated as the control treatment.
@@ -104,6 +107,7 @@ def __init__(self, *,
104107
model_y,
105108
model_t,
106109
discrete_treatment=False,
110+
discrete_outcome=False,
107111
categories='auto',
108112
cv=2,
109113
mc_iters=None,
@@ -112,6 +116,7 @@ def __init__(self, *,
112116
self.model_y = clone(model_y, safe=False)
113117
self.model_t = clone(model_t, safe=False)
114118
self.discrete_treatment = discrete_treatment
119+
self.discrete_outcome = discrete_outcome
115120
self.cv = cv
116121
self.categories = categories
117122
self.random_state = random_state
@@ -150,6 +155,7 @@ def fit(self, y, T, X=None, W=None, sample_weight=None, groups=None):
150155
model_t=self.model_t,
151156
cv=self.cv,
152157
discrete_treatment=self.discrete_treatment,
158+
discrete_outcome=self.discrete_outcome,
153159
categories=self.categories,
154160
random_state=self.random_state,
155161
mc_iters=self.mc_iters,

‎econml/tests/test_dowhy.py

+9
Original file line numberDiff line numberDiff line change
@@ -95,3 +95,12 @@ def test_store_dataframe_name(self):
9595
np.testing.assert_array_equal(est._effect_modifiers, X_name)
9696
np.testing.assert_array_equal(est._treatment, [T_name])
9797
np.testing.assert_array_equal(est._outcome, [Y_name])
98+
99+
def test_dowhy_without_fit(self):
100+
with self.assertRaises(AttributeError) as context:
101+
LinearDRLearner().dowhy.refute_estimate(method_name="random_common_cause", num_simulations=3)
102+
self.assertTrue("Please call `DoWhyWrapper.fit` first before any other operations." in str(context.exception))
103+
104+
with self.assertRaises(AttributeError) as context:
105+
LinearDRLearner().dowhy._estimator_object
106+
self.assertTrue("call `DoWhyWrapper.fit` first before any other operations." in str(context.exception))

‎econml/tests/test_rscorer.py

+95-39
Original file line numberDiff line numberDiff line change
@@ -20,52 +20,108 @@ def _fit_model(name, model, Y, T, X):
2020

2121
class TestRScorer(unittest.TestCase):
2222

23-
def _get_data(self):
23+
def _get_data(self, discrete_outcome=False):
2424
X = np.random.normal(0, 1, size=(100000, 2))
2525
T = np.random.binomial(1, .5, size=(100000,))
26-
y = X[:, 0] * T + np.random.normal(size=(100000,))
27-
return y, T, X, X[:, 0]
26+
if discrete_outcome:
27+
eps = np.random.normal(size=(100000,))
28+
log_odds = X[:, 0]*T + eps
29+
y_sigmoid = 1/(1 + np.exp(-log_odds))
30+
y = np.array([np.random.binomial(1, p) for p in y_sigmoid])
31+
# Difference in conditional probabilities P(y=1|X,T=1) - P(y=1|X,T=0)
32+
true_eff = (1 / (1 + np.exp(-(X[:, 0]+eps)))) - (1 / (1 + np.exp(-eps)))
33+
else:
34+
y = X[:, 0] * T + np.random.normal(size=(100000,))
35+
true_eff = X[:, 0]
36+
37+
y = y.reshape(-1, 1)
38+
T = T.reshape(-1, 1)
39+
return y, T, X, true_eff
2840

2941
def test_comparison(self):
42+
3043
def reg():
3144
return LinearRegression()
3245

3346
def clf():
3447
return LogisticRegression()
3548

36-
y, T, X, true_eff = self._get_data()
37-
(X_train, X_val, T_train, T_val,
38-
Y_train, Y_val, _, true_eff_val) = train_test_split(X, T, y, true_eff, test_size=.4)
39-
40-
models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True, cv=3)),
41-
('sldml', SparseLinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,
42-
featurizer=PolynomialFeatures(degree=2, include_bias=False), cv=3)),
43-
('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())),
44-
('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(), propensity_model=clf())),
45-
('slearner', SLearner(overall_model=reg())),
46-
('tlearner', TLearner(models=reg())),
47-
('drlearner', DRLearner(model_propensity=clf(), model_regression=reg(),
48-
model_final=reg(), cv=3)),
49-
('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(),
50-
discrete_treatment=True, cv=3)),
51-
('dml3dlasso', DML(model_y=reg(), model_t=clf(), model_final=reg(), discrete_treatment=True,
52-
featurizer=PolynomialFeatures(degree=3), cv=3))
53-
]
54-
55-
models = Parallel(n_jobs=1, verbose=1)(delayed(_fit_model)(name, mdl,
56-
Y_train, T_train, X_train)
57-
for name, mdl in models)
58-
59-
scorer = RScorer(model_y=reg(), model_t=clf(),
60-
discrete_treatment=True, cv=3, mc_iters=2, mc_agg='median')
61-
scorer.fit(Y_val, T_val, X=X_val)
62-
rscore = [scorer.score(mdl) for _, mdl in models]
63-
rootpehe_score = [np.sqrt(np.mean((true_eff_val.flatten() - mdl.effect(X_val).flatten())**2))
64-
for _, mdl in models]
65-
assert LinearRegression().fit(np.array(rscore).reshape(-1, 1), np.array(rootpehe_score)).coef_ < 0.5
66-
mdl, _ = scorer.best_model([mdl for _, mdl in models])
67-
rootpehe_best = np.sqrt(np.mean((true_eff_val.flatten() - mdl.effect(X_val).flatten())**2))
68-
assert rootpehe_best < 1.5 * np.min(rootpehe_score) + 0.05
69-
mdl, _ = scorer.ensemble([mdl for _, mdl in models])
70-
rootpehe_ensemble = np.sqrt(np.mean((true_eff_val.flatten() - mdl.effect(X_val).flatten())**2))
71-
assert rootpehe_ensemble < 1.5 * np.min(rootpehe_score) + 0.05
49+
test_cases = [
50+
{"name":"continuous_outcome", "discrete_outcome": False},
51+
{"name":"discrete_outcome", "discrete_outcome": True}
52+
]
53+
54+
for case in test_cases:
55+
with self.subTest(case["name"]):
56+
discrete_outcome = case["discrete_outcome"]
57+
58+
if discrete_outcome:
59+
y, T, X, true_eff = self._get_data(discrete_outcome=True)
60+
61+
models = [('ldml', LinearDML(model_y=clf(), model_t=clf(), discrete_treatment=True,
62+
discrete_outcome=discrete_outcome, cv=3)),
63+
('sldml', SparseLinearDML(model_y=clf(), model_t=clf(), discrete_treatment=True,
64+
discrete_outcome=discrete_outcome,
65+
featurizer=PolynomialFeatures(degree=2, include_bias=False),
66+
cv=3)),
67+
('drlearner', DRLearner(model_propensity=clf(), model_regression=clf(), model_final=reg(),
68+
discrete_outcome=discrete_outcome, cv=3)),
69+
('rlearner', NonParamDML(model_y=clf(), model_t=clf(), model_final=reg(),
70+
discrete_treatment=True, discrete_outcome=discrete_outcome, cv=3)),
71+
('dml3dlasso', DML(model_y=clf(), model_t=clf(), model_final=reg(), discrete_treatment=True,
72+
discrete_outcome=discrete_outcome,
73+
featurizer=PolynomialFeatures(degree=3), cv=3)),
74+
# SLearner as baseline for rootpehe score - not enough variation in rscore w/ above models
75+
('slearner', SLearner(overall_model=reg())),
76+
]
77+
78+
else:
79+
y, T, X, true_eff = self._get_data()
80+
81+
models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True, cv=3)),
82+
('sldml', SparseLinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,
83+
featurizer=PolynomialFeatures(degree=2, include_bias=False),
84+
cv=3)),
85+
('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())),
86+
('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(),
87+
propensity_model=clf())),
88+
('slearner', SLearner(overall_model=reg())),
89+
('tlearner', TLearner(models=reg())),
90+
('drlearner', DRLearner(model_propensity=clf(), model_regression=reg(),
91+
model_final=reg(), cv=3)),
92+
('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(),
93+
discrete_treatment=True, cv=3)),
94+
('dml3dlasso', DML(model_y=reg(), model_t=clf(), model_final=reg(),
95+
discrete_treatment=True, featurizer=PolynomialFeatures(degree=3), cv=3))
96+
]
97+
98+
(X_train, X_val, T_train, T_val,
99+
Y_train, Y_val, _, true_eff_val) = train_test_split(X, T, y, true_eff, test_size=.4)
100+
101+
models = Parallel(n_jobs=1, verbose=1)(delayed(_fit_model)(name, mdl,
102+
Y_train, T_train, X_train)
103+
for name, mdl in models)
104+
105+
if discrete_outcome:
106+
scorer = RScorer(model_y=clf(), model_t=clf(),
107+
discrete_treatment=True, discrete_outcome=discrete_outcome,
108+
cv=3, mc_iters=2, mc_agg='median')
109+
else:
110+
scorer = RScorer(model_y=reg(), model_t=clf(),
111+
discrete_treatment=True, cv=3,
112+
mc_iters=2, mc_agg='median')
113+
114+
scorer.fit(Y_val, T_val, X=X_val)
115+
rscore = [scorer.score(mdl) for _, mdl in models]
116+
rootpehe_score = [np.sqrt(np.mean((true_eff_val.flatten() - mdl.effect(X_val).flatten())**2))
117+
for _, mdl in models]
118+
# Checking neg corr between rscore and rootpehe (precision in estimating heterogeneous effects)
119+
assert LinearRegression().fit(np.array(rscore).reshape(-1, 1), np.array(rootpehe_score)).coef_ < 0.5
120+
mdl, _ = scorer.best_model([mdl for _, mdl in models])
121+
rootpehe_best = np.sqrt(np.mean((true_eff_val.flatten() - mdl.effect(X_val).flatten())**2))
122+
# Checking best model selection behaves as intended
123+
assert rootpehe_best < 1.5 * np.min(rootpehe_score) + 0.05
124+
mdl, _ = scorer.ensemble([mdl for _, mdl in models])
125+
rootpehe_ensemble = np.sqrt(np.mean((true_eff_val.flatten() - mdl.effect(X_val).flatten())**2))
126+
# Checking cate ensembling behaves as intended
127+
assert rootpehe_ensemble < 1.5 * np.min(rootpehe_score) + 0.05

‎pyproject.toml

+2-2
Original file line numberDiff line numberDiff line change
@@ -59,7 +59,7 @@ plt = [
5959
]
6060
dowhy = [
6161
# when updating this, also update the version check in dowhy.py
62-
"dowhy < 0.12; python_version > '3.8'",
62+
"dowhy < 0.13; python_version > '3.8'",
6363
# Version capped due to scipy incompatibility - can't import dowhy 0.11.1 with scipy 1.4.1
6464
"dowhy < 0.11; python_version <= '3.8'"
6565
]
@@ -79,7 +79,7 @@ all = [
7979
"numpy < 1.24; python_version < '3.9'",
8080
"graphviz",
8181
"matplotlib",
82-
"dowhy < 0.12; python_version > '3.8'",
82+
"dowhy < 0.13; python_version > '3.8'",
8383
# Version capped due to scipy incompatibility - can't import dowhy 0.11.1 with scipy 1.4.1
8484
"dowhy < 0.11; python_version <= '3.8'",
8585
"ray > 2.2.0"

0 commit comments

Comments
 (0)
Please sign in to comment.