@@ -140,11 +140,13 @@ def _create_observations(input_precip, motion_type, num_times=9):
140140 (reference_field , 'lk' , 'linear_x' , 3 , 0.1 ),
141141 (reference_field , 'lk' , 'linear_y' , 3 , 0.1 ),
142142 (reference_field , 'vet' , 'linear_x' , 2 , 0.1 ),
143- #(reference_field, 'vet', 'linear_y ', 2 , 9),
144- #(reference_field, 'vet', 'linear_x ', 3 , 9),
143+ # (reference_field, 'vet', 'linear_x ', 3 , 9),
144+ # (reference_field, 'vet', 'linear_y ', 2 , 9),
145145 (reference_field , 'vet' , 'linear_y' , 3 , 0.1 ),
146- (reference_field , 'darts' , 'linear_x' , 9 , 25 ),
147- (reference_field , 'darts' , 'linear_y' , 9 , 25 )]
146+ (reference_field , 'proesmans' , 'linear_x' , 2 , 0.45 ),
147+ (reference_field , 'proesmans' , 'linear_y' , 2 , 0.45 ),
148+ (reference_field , 'darts' , 'linear_x' , 9 , 20 ),
149+ (reference_field , 'darts' , 'linear_y' , 9 , 20 )]
148150
149151
150152@pytest .mark .parametrize (convergence_arg_names , convergence_arg_values )
@@ -195,6 +197,8 @@ def test_optflow_method_convergence(input_precip, optflow_method_name,
195197 # maxiter=150.
196198 computed_motion = oflow_method (precip_obs , verbose = False ,
197199 options = dict (maxiter = 150 , method = 'BFGS' ))
200+ elif optflow_method_name == 'proesmans' :
201+ computed_motion = oflow_method (precip_obs )
198202 else :
199203
200204 computed_motion = oflow_method (precip_obs , verbose = False )
@@ -282,4 +286,4 @@ def test_vet_cost_function():
282286 errors = np .abs (returned_values - returned_values [0 ])
283287 # errors should contain all zeros
284288 assert (errors < tolerance ).any ()
285- assert (returned_values [0 ]- 1548250.87627097 ) < 0.001
289+ assert (returned_values [0 ] - 1548250.87627097 ) < 0.001
0 commit comments