|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "id": "8b46af09bc772f64", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import numpy as np\n", |
| 11 | + "import pytensor.tensor as pt\n", |
| 12 | + "import pytensor.xtensor as px\n", |
| 13 | + "\n", |
| 14 | + "import pymc as pm" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": null, |
| 20 | + "id": "eaca7be1e40a81c6", |
| 21 | + "metadata": {}, |
| 22 | + "outputs": [], |
| 23 | + "source": [ |
| 24 | + "class XModel(pm.Model):\n", |
| 25 | + " def register_rv(self, rv, *args, dims=None, **kwargs):\n", |
| 26 | + " rv = super().register_rv(rv, *args, dims=dims, **kwargs)\n", |
| 27 | + " if dims is not None:\n", |
| 28 | + " rv = px.as_xtensor(rv, dims=dims)\n", |
| 29 | + " return rv\n", |
| 30 | + "\n", |
| 31 | + " def add_named_variable(self, var, dims=None):\n", |
| 32 | + " if isinstance(var.type, px.type.XTensorType):\n", |
| 33 | + " if dims is None:\n", |
| 34 | + " dims = var.dims\n", |
| 35 | + " else:\n", |
| 36 | + " if dims != var.dims:\n", |
| 37 | + " raise ValueError(\n", |
| 38 | + " f\"Provided dims {dims} do not match variable pre-existing {var.dims}. \"\n", |
| 39 | + " \"Use rename and/or transpose to match new dims\"\n", |
| 40 | + " )\n", |
| 41 | + " super().add_named_variable(var, dims)\n", |
| 42 | + "\n", |
| 43 | + "\n", |
| 44 | + "def XData(name, x, *args, **kwargs):\n", |
| 45 | + " x = pm.Data(name, x, *args, **kwargs)\n", |
| 46 | + " model = pm.modelcontext(None)\n", |
| 47 | + " if (dims := model.named_vars_to_dims.get(x.name, None)) is not None:\n", |
| 48 | + " x = px.as_xtensor(x, dims=dims)\n", |
| 49 | + " return x" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "code", |
| 54 | + "execution_count": null, |
| 55 | + "id": "efeb5d5820e2efe7", |
| 56 | + "metadata": {}, |
| 57 | + "outputs": [], |
| 58 | + "source": [ |
| 59 | + "N = 100\n", |
| 60 | + "seed = sum(map(ord, \"xarray>=numpy?\"))\n", |
| 61 | + "rng = np.random.default_rng(seed)\n", |
| 62 | + "\n", |
| 63 | + "x_np = np.linspace(0, 10, N)\n", |
| 64 | + "y_np = np.piecewise(\n", |
| 65 | + " x_np,\n", |
| 66 | + " [x_np <= 3, (x_np > 3) & (x_np <= 7), x_np > 7],\n", |
| 67 | + " [lambda x: 0.5 * x, lambda x: 1.5 + 0.2 * (x - 3), lambda x: 2.3 - 0.1 * (x - 7)],\n", |
| 68 | + ")\n", |
| 69 | + "y_np += rng.normal(0, 0.2, size=N)\n", |
| 70 | + "group_idx = rng.choice(3, size=N)\n", |
| 71 | + "\n", |
| 72 | + "N_knots = 13\n", |
| 73 | + "knots_np = np.linspace(0, 10, num=N_knots)" |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "code", |
| 78 | + "execution_count": null, |
| 79 | + "id": "6f5476abb800b402", |
| 80 | + "metadata": {}, |
| 81 | + "outputs": [], |
| 82 | + "source": [ |
| 83 | + "coords = {\n", |
| 84 | + " \"group\": range(3),\n", |
| 85 | + " \"knots\": range(N_knots),\n", |
| 86 | + " \"obs\": range(N),\n", |
| 87 | + "}" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": null, |
| 93 | + "id": "ca734923d4d51c4c", |
| 94 | + "metadata": {}, |
| 95 | + "outputs": [], |
| 96 | + "source": [ |
| 97 | + "with pm.Model(coords=coords) as model:\n", |
| 98 | + " x = pm.Data(\"x\", x_np, dims=\"obs\")\n", |
| 99 | + " knots = pm.Data(\"knots\", knots_np, dims=\"knot\")\n", |
| 100 | + "\n", |
| 101 | + " sigma = pm.HalfCauchy(\"sigma\", beta=1)\n", |
| 102 | + " sigma_beta0 = pm.HalfNormal(\"sigma_beta0\", sigma=10)\n", |
| 103 | + " beta0 = pm.HalfNormal(\"beta_0\", sigma=sigma_beta0, dims=\"group\")\n", |
| 104 | + " z = pm.Normal(\"z\", dims=(\"group\", \"knot\"))\n", |
| 105 | + "\n", |
| 106 | + " delta_factors = pt.special.softmax(z, axis=-1) # (groups, knot)\n", |
| 107 | + " slope_factors = 1 - pt.cumsum(delta_factors[:, :-1], axis=-1) # (groups, knot-1)\n", |
| 108 | + " spline_slopes = pt.join(-1, beta0[:, None], beta0[:, None] * slope_factors) # (groups, knot-1)\n", |
| 109 | + " beta = pt.join(-1, beta0[:, None], pt.diff(spline_slopes, axis=-1)) # (groups, knot)\n", |
| 110 | + "\n", |
| 111 | + " beta = pm.Deterministic(\"beta\", beta, dims=(\"group\", \"knot\"))\n", |
| 112 | + "\n", |
| 113 | + " X = pt.maximum(0, x[:, None] - knots[None, :]) # (n, knot)\n", |
| 114 | + " mu = (X * beta[group_idx]).sum(-1) # ((n, knots) * (n, knots)).sum(-1) = (n,)\n", |
| 115 | + " y = pm.Normal(\"y\", mu=mu, sigma=sigma, observed=y_np, dims=\"obs\")" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": null, |
| 121 | + "id": "48d4d69fcc838be3", |
| 122 | + "metadata": {}, |
| 123 | + "outputs": [], |
| 124 | + "source": [ |
| 125 | + "with XModel(coords=coords) as xmodel:\n", |
| 126 | + " x = XData(\"x\", x_np, dims=\"obs\")\n", |
| 127 | + " knots = XData(\"knots\", knots_np, dims=\"knot\")\n", |
| 128 | + "\n", |
| 129 | + " sigma = pm.HalfCauchy(\"sigma\", beta=1)\n", |
| 130 | + " sigma_beta0 = pm.HalfNormal(\"sigma_beta0\", sigma=10)\n", |
| 131 | + " beta0 = pm.HalfNormal(\"beta_0\", sigma=sigma_beta0, dims=\"group\")\n", |
| 132 | + " z = pm.Normal(\"z\", dims=(\"group\", \"knot\"))\n", |
| 133 | + "\n", |
| 134 | + " delta_factors = px.special.softmax(z, dim=\"knot\")\n", |
| 135 | + " slope_factors = 1 - delta_factors.isel(knot=slice(None, -1)).cumsum(\"knot\")\n", |
| 136 | + " spline_slopes = px.concat([beta0, beta0 * slope_factors], dim=\"knot\")\n", |
| 137 | + " beta = px.concat([beta0, spline_slopes.diff(\"knot\")], dim=\"knot\")\n", |
| 138 | + "\n", |
| 139 | + " beta = pm.Deterministic(\"beta\", beta, dims=(\"group\", \"knot\"))\n", |
| 140 | + "\n", |
| 141 | + " X = px.math.scalar_maximum(0, x - knots)\n", |
| 142 | + " mu = (X * beta.isel(group=group_idx).rename(group=\"obs\")).sum(\"knot\")\n", |
| 143 | + " y_obs = pm.Normal(\"y_obs\", mu=mu.values, sigma=sigma, observed=y_np, dims=\"obs\")" |
| 144 | + ] |
| 145 | + }, |
| 146 | + { |
| 147 | + "cell_type": "code", |
| 148 | + "execution_count": null, |
| 149 | + "id": "da17a5c329187db6", |
| 150 | + "metadata": {}, |
| 151 | + "outputs": [], |
| 152 | + "source": [ |
| 153 | + "print(f\"{model.compile_logp()(model.initial_point()):,}\")\n", |
| 154 | + "print(f\"{xmodel.compile_logp()(xmodel.initial_point()):,}\")" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "code", |
| 159 | + "execution_count": null, |
| 160 | + "id": "85841107447a1ddd", |
| 161 | + "metadata": {}, |
| 162 | + "outputs": [], |
| 163 | + "source": [] |
| 164 | + } |
| 165 | + ], |
| 166 | + "metadata": {}, |
| 167 | + "nbformat": 4, |
| 168 | + "nbformat_minor": 5 |
| 169 | +} |
0 commit comments