-
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain.py
332 lines (278 loc) · 12.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# Copyright (C) 2019-2022, Pyronear.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.
import datetime
import logging
import math
import os
import time
from shutil import copyfile
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import wandb
from codecarbon import track_emissions
from holocron.models.presets import IMAGENET
from holocron.optim import AdamP
from holocron.trainer import BinaryClassificationTrainer
from holocron.transforms.interpolation import RandomZoomOut, Resize, ResizeMethod
from holocron.utils.misc import find_image_size
from PIL import Image
from torch.utils.data import RandomSampler, SequentialSampler
from torchvision.datasets import ImageFolder
from torchvision.transforms import transforms as T
from torchvision.transforms.functional import InterpolationMode, resize, to_pil_image
from pyrovision import models
from pyrovision.datasets import OpenFire
logging.getLogger("codecarbon").disabled = True
def target_transform(target):
target = torch.tensor(target, dtype=torch.float32)
return target.unsqueeze(dim=0)
def plot_samples(images, targets, num_samples=12):
# Unnormalize image
nb_samples = min(num_samples, images.shape[0])
num_cols = min(nb_samples, 4)
num_rows = int(math.ceil(nb_samples / num_cols))
_, axes = plt.subplots(num_rows, num_cols, figsize=(20, 5))
for idx in range(nb_samples):
img = images[idx]
img *= torch.tensor(IMAGENET["std"]).view(-1, 1, 1)
img += torch.tensor(IMAGENET["mean"]).view(-1, 1, 1)
img = to_pil_image(img)
_row = int(idx / num_cols)
_col = idx - _row * num_cols
axes[_row][_col].imshow(img)
axes[_row][_col].axis("off")
_targets = targets.squeeze()
if _targets.ndim == 1:
axes[_row][_col].set_title(_targets[idx].item())
else:
class_idcs = torch.where(_targets[idx] > 0)[0]
_info = [f"{_idx.item()} ({_targets[idx, _idx]:.2f})" for _idx in class_idcs]
axes[_row][_col].set_title(" ".join(_info))
plt.show()
@track_emissions()
def main(args):
print(args)
torch.backends.cudnn.benchmark = True
# Data loading
train_loader, val_loader = None, None
# Data loading code
normalize = T.Normalize(mean=IMAGENET["mean"], std=IMAGENET["std"])
interpolation = InterpolationMode.BILINEAR
target_size = (args.height, args.width)
resize_mode = ResizeMethod.PAD if args.resize_mode == "pad" else ResizeMethod.SQUISH
train_transforms = (
T.Compose(
[
# Photometric
T.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.1),
T.RandomApply([T.GaussianBlur(kernel_size=(3, 3), sigma=(0.1, 3))], p=0.5),
# Geometric
T.RandomHorizontalFlip(),
RandomZoomOut(target_size, scale=(0.5, 1.0), interpolation=interpolation),
T.RandomPerspective(distortion_scale=0.2, interpolation=interpolation, p=0.8),
# Conversion
T.PILToTensor(),
T.ConvertImageDtype(torch.float32),
normalize,
T.RandomErasing(p=0.9, scale=(0.01, 0.05), value="random"),
]
)
if not args.find_size
else None
)
val_transforms = T.Compose(
[
Resize(target_size, mode=resize_mode, interpolation=interpolation),
T.PILToTensor(),
T.ConvertImageDtype(torch.float32),
normalize,
]
)
print("Loading data")
# Prefetch images and resize them to avoid RAM overload
prefetch_fn = None
if isinstance(args.prefetch_size, int):
def prefetch_fn(img_paths):
# Unpack paths
src_path, dest_path = img_paths
if os.path.exists(dest_path):
try:
img = Image.open(dest_path, mode="r").convert("RGB")
if min(img.size) <= args.prefetch_size:
return
except Exception:
pass
img = Image.open(src_path, mode="r").convert("RGB")
# Resize & save
if all(dim > args.prefetch_size for dim in img.size):
resized_img = resize(img, args.prefetch_size, interpolation=interpolation)
resized_img.save(dest_path)
# Copy
else:
copyfile(src_path, dest_path)
if not (args.find_size or args.test_only):
st = time.time()
if args.openfire:
train_set = OpenFire(
args.data_path, train=True, download=True, transform=train_transforms, prefetch_fn=prefetch_fn
)
else:
train_dir = os.path.join(args.data_path, "train")
train_set = ImageFolder(train_dir, train_transforms, target_transform=target_transform)
# Suggest size
if args.find_size:
print("Looking for optimal image size")
find_image_size(train_set)
return
train_loader = torch.utils.data.DataLoader(
train_set,
batch_size=args.batch_size,
drop_last=True,
sampler=RandomSampler(train_set),
num_workers=args.workers,
pin_memory=True,
)
print(
f"Training set loaded in {time.time() - st:.2f}s ({len(train_set)} samples in {len(train_loader)} batches)"
)
if args.show_samples:
x, target = next(iter(train_loader))
plot_samples(x, target)
return
if not (args.find_lr):
st = time.time()
if args.openfire:
val_set = OpenFire(
args.data_path, train=False, download=True, transform=val_transforms, prefetch_fn=prefetch_fn
)
else:
val_dir = os.path.join(args.data_path, "val")
val_set = ImageFolder(val_dir, val_transforms, target_transform=target_transform)
val_loader = torch.utils.data.DataLoader(
val_set,
batch_size=args.batch_size,
drop_last=False,
sampler=SequentialSampler(val_set),
num_workers=args.workers,
pin_memory=True,
)
print(f"Validation set loaded in {time.time() - st:.2f}s ({len(val_set)} samples in {len(val_loader)} batches)")
print("Creating model")
model = models.__dict__[args.arch](args.pretrained, num_classes=1)
criterion = nn.BCEWithLogitsLoss()
# Create the contiguous parameters.
model_params = [p for p in model.parameters() if p.requires_grad]
if args.opt == "sgd":
optimizer = torch.optim.SGD(model_params, args.lr, momentum=0.9, weight_decay=args.weight_decay)
elif args.opt == "radam":
optimizer = torch.optim.RAdam(
model_params, args.lr, betas=(0.95, 0.99), eps=1e-6, weight_decay=args.weight_decay
)
elif args.opt == "adamp":
optimizer = AdamP(model_params, args.lr, betas=(0.95, 0.99), eps=1e-6, weight_decay=args.weight_decay)
log_wb = lambda metrics: wandb.log(metrics) if args.wb else None
trainer = BinaryClassificationTrainer(
model,
train_loader,
val_loader,
criterion,
optimizer,
args.device,
args.output_file,
gradient_acc=args.grad_acc,
amp=args.amp,
on_epoch_end=log_wb,
)
if args.resume:
print(f"Resuming {args.resume}")
checkpoint = torch.load(args.resume, map_location="cpu")
trainer.load(checkpoint)
if args.test_only:
print("Running evaluation")
eval_metrics = trainer.evaluate()
print(trainer._eval_metrics_str(eval_metrics))
return
if args.plot_loss:
print("Checking top losses")
trainer.plot_top_losses(IMAGENET["mean"], IMAGENET["std"])
return
if args.find_lr:
print("Looking for optimal LR")
trainer.find_lr(args.freeze_until, num_it=min(len(train_loader), 100), norm_weight_decay=args.norm_wd)
trainer.plot_recorder()
return
# Training monitoring
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
exp_name = f"{args.arch}-{current_time}" if args.name is None else args.name
# W&B
if args.wb:
run = wandb.init(
name=exp_name,
project="pyrovision-image-classification",
config={
"learning_rate": args.lr,
"scheduler": args.sched,
"weight_decay": args.weight_decay,
"epochs": args.epochs,
"batch_size": args.batch_size,
"gradient_accumulation": args.grad_acc,
"architecture": args.arch,
"input_size": target_size,
"resize_mode": resize_mode,
"prefetch_size": args.prefetch_size,
"optimizer": args.opt,
"dataset": "openfire" if args.openfire else "custom",
"loss": "bce",
},
)
print("Start training")
start_time = time.time()
trainer.fit_n_epochs(args.epochs, args.lr, args.freeze_until, args.sched, norm_weight_decay=args.norm_wd)
total_time_str = str(datetime.timedelta(seconds=int(time.time() - start_time)))
print(f"Training time {total_time_str}")
if args.wb:
run.finish()
def get_parser():
import argparse
parser = argparse.ArgumentParser(
description="Pyronear Classification Training", formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("data_path", type=str, help="path to dataset folder")
parser.add_argument("--name", type=str, default=None, help="Name of your training experiment")
parser.add_argument("--arch", default="rexnet1_0x", type=str, help="model")
parser.add_argument("--openfire", help="whether OpenFire should be used", action="store_true")
parser.add_argument("--freeze-until", default=None, type=str, help="Last layer to freeze")
parser.add_argument("--device", default=None, type=int, help="device")
parser.add_argument("-b", "--batch-size", default=32, type=int, help="batch size")
parser.add_argument("--grad-acc", default=1, type=int, help="Number of batches to accumulate the gradient of")
parser.add_argument("--epochs", default=20, type=int, help="number of total epochs to run")
parser.add_argument("-j", "--workers", default=16, type=int, help="number of data loading workers")
parser.add_argument("--height", default=256, type=int, help="image height")
parser.add_argument("--width", default=384, type=int, help="image width")
parser.add_argument("--resize-mode", default="pad", type=str, help="resize mode")
parser.add_argument(
"--prefetch-size", default=None, type=int, help="prefetched images will be resized to lower RAM usage"
)
parser.add_argument("--opt", default="adamp", type=str, help="optimizer")
parser.add_argument("--sched", default="onecycle", type=str, help="Scheduler to be used")
parser.add_argument("--lr", default=1e-3, type=float, help="initial learning rate")
parser.add_argument("--wd", "--weight-decay", default=0, type=float, help="weight decay", dest="weight_decay")
parser.add_argument("--norm-wd", default=None, type=float, help="weight decay of norm parameters")
parser.add_argument("--find-lr", dest="find_lr", action="store_true", help="Should you run LR Finder")
parser.add_argument("--find-size", dest="find_size", action="store_true", help="Should you run Image size Finder")
parser.add_argument("--show-samples", action="store_true", help="Whether training samples should be displayed")
parser.add_argument("--output-file", default="./checkpoint.pth", help="path where to save")
parser.add_argument("--resume", default="", help="resume from checkpoint")
parser.add_argument("--test-only", dest="test_only", help="Only test the model", action="store_true")
parser.add_argument("--plot-loss", help="Check the top losses of the model", action="store_true")
parser.add_argument(
"--pretrained", dest="pretrained", help="Use pre-trained models from the modelzoo", action="store_true"
)
parser.add_argument("--amp", help="Use Automatic Mixed Precision", action="store_true")
parser.add_argument("--wb", action="store_true", help="Log to Weights & Biases")
return parser
if __name__ == "__main__":
args = get_parser().parse_args()
main(args)