12
12
from .components import Graph
13
13
from scipy import stats
14
14
from operator import gt
15
- from libpysal .weights .spatial_lag import lag_spatial
16
- from libpysal .weights .spatial_lag import lag_categorical
15
+ from libpysal import weights
17
16
from esda .moran import Moran_Local
18
17
import mapclassify as mc
19
18
import itertools
@@ -76,7 +75,7 @@ class Markov(object):
76
75
Examples
77
76
--------
78
77
>>> import numpy as np
79
- >>> from giddy.api import Markov
78
+ >>> from giddy.markov import Markov
80
79
>>> c = [['b','a','c'],['c','c','a'],['c','b','c']]
81
80
>>> c.extend([['a','a','b'], ['a','b','c']])
82
81
>>> c = np.array(c)
@@ -94,7 +93,7 @@ class Markov(object):
94
93
95
94
>>> import libpysal
96
95
>>> import mapclassify as mc
97
- >>> f = libpysal.open(libpysal.examples.get_path("usjoin.csv"))
96
+ >>> f = libpysal.io. open(libpysal.examples.get_path("usjoin.csv"))
98
97
>>> pci = np.array([f.by_col[str(y)] for y in range(1929,2010)])
99
98
100
99
set classes to quintiles for each year
@@ -304,13 +303,13 @@ class Spatial_Markov(object):
304
303
Examples
305
304
--------
306
305
>>> import libpysal
307
- >>> from giddy.api import Spatial_Markov
306
+ >>> from giddy.markov import Spatial_Markov
308
307
>>> import numpy as np
309
- >>> f = libpysal.open(libpysal.examples.get_path("usjoin.csv"))
308
+ >>> f = libpysal.io. open(libpysal.examples.get_path("usjoin.csv"))
310
309
>>> pci = np.array([f.by_col[str(y)] for y in range(1929,2010)])
311
310
>>> pci = pci.transpose()
312
311
>>> rpci = pci/(pci.mean(axis=0))
313
- >>> w = libpysal.open(libpysal.examples.get_path("states48.gal")).read()
312
+ >>> w = libpysal.io. open(libpysal.examples.get_path("states48.gal")).read()
314
313
>>> w.transform = 'r'
315
314
316
315
Now we create a `Spatial_Markov` instance for the continuous relative per
@@ -739,10 +738,10 @@ def _calc(self, y, w):
739
738
'''
740
739
if self .discrete :
741
740
#np.random.seed(24788)
742
- self .lclass_ids = lag_categorical (w , self .class_ids ,
741
+ self .lclass_ids = weights . lag_categorical (w , self .class_ids ,
743
742
ties = "tryself" )
744
743
else :
745
- ly = lag_spatial (w , y )
744
+ ly = weights . lag_spatial (w , y )
746
745
self .lclass_ids , self .lag_cutoffs ,self .m = self ._maybe_classify (
747
746
ly , self .m , self .lag_cutoffs )
748
747
self .lclasses = np .arange (self .m )
@@ -882,13 +881,12 @@ def chi2(T1, T2):
882
881
Examples
883
882
--------
884
883
>>> import libpysal
885
- >>> from giddy.api import Spatial_Markov
886
- >>> from giddy.markov import chi2
887
- >>> f = libpysal.open(libpysal.examples.get_path("usjoin.csv"))
884
+ >>> from giddy.markov import Spatial_Markov, chi2
885
+ >>> f = libpysal.io.open(libpysal.examples.get_path("usjoin.csv"))
888
886
>>> years = list(range(1929, 2010))
889
887
>>> pci = np.array([f.by_col[str(y)] for y in years]).transpose()
890
888
>>> rpci = pci/(pci.mean(axis=0))
891
- >>> w = libpysal.open(libpysal.examples.get_path("states48.gal")).read()
889
+ >>> w = libpysal.io. open(libpysal.examples.get_path("states48.gal")).read()
892
890
>>> w.transform='r'
893
891
>>> sm = Spatial_Markov(rpci, w, fixed=True)
894
892
>>> T1 = sm.T[0]
@@ -1079,11 +1077,11 @@ class LISA_Markov(Markov):
1079
1077
--------
1080
1078
>>> import libpysal
1081
1079
>>> import numpy as np
1082
- >>> from giddy.api import LISA_Markov
1083
- >>> f = libpysal.open(libpysal.examples.get_path("usjoin.csv"))
1080
+ >>> from giddy.markov import LISA_Markov
1081
+ >>> f = libpysal.io. open(libpysal.examples.get_path("usjoin.csv"))
1084
1082
>>> years = list(range(1929, 2010))
1085
1083
>>> pci = np.array([f.by_col[str(y)] for y in years]).transpose()
1086
- >>> w = libpysal.open(libpysal.examples.get_path("states48.gal")).read()
1084
+ >>> w = libpysal.io. open(libpysal.examples.get_path("states48.gal")).read()
1087
1085
>>> lm = LISA_Markov(pci,w)
1088
1086
>>> lm.classes
1089
1087
array([1, 2, 3, 4])
@@ -1195,7 +1193,7 @@ def __init__(self, y, w, permutations=0,
1195
1193
1196
1194
ybar = y .mean (axis = 0 )
1197
1195
r = y / ybar
1198
- ylag = np .array ([lag_spatial (w , yt ) for yt in y ])
1196
+ ylag = np .array ([weights . lag_spatial (w , yt ) for yt in y ])
1199
1197
rlag = ylag / ybar
1200
1198
rc = r < 1.
1201
1199
rlagc = rlag < 1.
@@ -1245,11 +1243,11 @@ def spillover(self, quadrant=1, neighbors_on=False):
1245
1243
Examples
1246
1244
--------
1247
1245
>>> import libpysal
1248
- >>> from giddy.api import LISA_Markov
1249
- >>> f = libpysal.open(libpysal.examples.get_path("usjoin.csv"))
1246
+ >>> from giddy.markov import LISA_Markov
1247
+ >>> f = libpysal.io. open(libpysal.examples.get_path("usjoin.csv"))
1250
1248
>>> years = list(range(1929, 2010))
1251
1249
>>> pci = np.array([f.by_col[str(y)] for y in years]).transpose()
1252
- >>> w = libpysal.open(libpysal.examples.get_path("states48.gal")).read()
1250
+ >>> w = libpysal.io. open(libpysal.examples.get_path("states48.gal")).read()
1253
1251
>>> np.random.seed(10)
1254
1252
>>> lm_random = LISA_Markov(pci, w, permutations=99)
1255
1253
>>> r = lm_random.spillover()
@@ -1384,7 +1382,7 @@ def kullback(F):
1384
1382
Examples
1385
1383
--------
1386
1384
>>> import numpy as np
1387
- >>> from giddy.api import kullback
1385
+ >>> from giddy.markov import kullback
1388
1386
>>> s1 = np.array([
1389
1387
... [ 22, 11, 24, 2, 2, 7],
1390
1388
... [ 5, 23, 15, 3, 42, 6],
@@ -1470,8 +1468,8 @@ def prais(pmat):
1470
1468
--------
1471
1469
>>> import numpy as np
1472
1470
>>> import libpysal
1473
- >>> from giddy.api import prais
1474
- >>> f = libpysal.open(libpysal.examples.get_path("usjoin.csv"))
1471
+ >>> from giddy.markov import Markov, prais
1472
+ >>> f = libpysal.io. open(libpysal.examples.get_path("usjoin.csv"))
1475
1473
>>> pci = np.array([f.by_col[str(y)] for y in range(1929,2010)])
1476
1474
>>> q5 = np.array([mc.Quantiles(y).yb for y in pci]).transpose()
1477
1475
>>> m = Markov(q5)
0 commit comments