-
Notifications
You must be signed in to change notification settings - Fork 354
/
Copy pathmcts.py
200 lines (156 loc) · 6.04 KB
/
mcts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torchrl
from tensordict import TensorDict
pgn_or_fen = "fen"
mask_actions = False
env = torchrl.envs.ChessEnv(
include_pgn=False,
include_fen=True,
include_hash=True,
include_hash_inv=True,
include_san=True,
stateful=True,
mask_actions=mask_actions,
)
def transform_reward(td):
if "reward" not in td:
return td
reward = td["reward"]
if reward == 0.5:
td["reward"] = 0
elif reward == 1 and td["turn"]:
td["reward"] = -td["reward"]
return td
# ChessEnv sets the reward to 0.5 for a draw and 1 for a win for either player.
# Need to transform the reward to be:
# white win = 1
# draw = 0
# black win = -1
env = env.append_transform(transform_reward)
forest = torchrl.data.MCTSForest()
forest.reward_keys = env.reward_keys
forest.done_keys = env.done_keys
forest.action_keys = env.action_keys
if mask_actions:
forest.observation_keys = [f"{pgn_or_fen}_hash", "turn", "action_mask"]
else:
forest.observation_keys = [f"{pgn_or_fen}_hash", "turn"]
C = 2.0**0.5
def traversal_priority_UCB1(tree):
subtree = tree.subtree
visits = subtree.visits
reward_sum = subtree.wins
# If it's black's turn, flip the reward, since black wants to
# optimize for the lowest reward, not highest.
if not subtree.rollout[0, 0]["turn"]:
reward_sum = -reward_sum
parent_visits = tree.visits
reward_sum = reward_sum.squeeze(-1)
priority = (reward_sum + C * torch.sqrt(torch.log(parent_visits))) / visits
priority[visits == 0] = float("inf")
return priority
def _traverse_MCTS_one_step(forest, tree, env, max_rollout_steps):
done = False
trees_visited = [tree]
while not done:
if tree.subtree is None:
td_tree = tree.rollout[-1]["next"].clone()
if (tree.visits > 0 or tree.parent is None) and not td_tree["done"]:
actions = env.all_actions(td_tree)
subtrees = []
for action in actions:
td = env.step(env.reset(td_tree).update(action))
new_node = torchrl.data.Tree(
rollout=td.unsqueeze(0),
node_data=td["next"].select(*forest.node_map.in_keys),
count=torch.tensor(0),
wins=torch.zeros_like(td["next"]["reward"]),
)
subtrees.append(new_node)
# NOTE: This whole script runs about 2x faster with lazy stack
# versus eager stack.
tree.subtree = TensorDict.lazy_stack(subtrees)
chosen_idx = torch.randint(0, len(subtrees), ()).item()
rollout_state = subtrees[chosen_idx].rollout[-1]["next"]
else:
rollout_state = td_tree
if rollout_state["done"]:
rollout_reward = rollout_state["reward"]
else:
rollout = env.rollout(
max_steps=max_rollout_steps,
tensordict=rollout_state,
)
rollout_reward = rollout[-1]["next", "reward"]
done = True
else:
priorities = traversal_priority_UCB1(tree)
chosen_idx = torch.argmax(priorities).item()
tree = tree.subtree[chosen_idx]
trees_visited.append(tree)
for tree in trees_visited:
tree.visits += 1
tree.wins += rollout_reward
def traverse_MCTS(forest, root, env, num_steps, max_rollout_steps):
"""Performs Monte-Carlo tree search in an environment.
Args:
forest (MCTSForest): Forest of the tree to update. If the tree does not
exist yet, it is added.
root (TensorDict): The root step of the tree to update.
env (EnvBase): Environment to performs actions in.
num_steps (int): Number of iterations to traverse.
max_rollout_steps (int): Maximum number of steps for each rollout.
"""
if root not in forest:
for action in env.all_actions(root):
td = env.step(env.reset(root.clone()).update(action))
forest.extend(td.unsqueeze(0))
tree = forest.get_tree(root)
tree.wins = torch.zeros_like(td["next", "reward"])
for subtree in tree.subtree:
subtree.wins = torch.zeros_like(td["next", "reward"])
for _ in range(num_steps):
_traverse_MCTS_one_step(forest, tree, env, max_rollout_steps)
return tree
def tree_format_fn(tree):
td = tree.rollout[-1]["next"]
return [
td["san"],
td[pgn_or_fen].split("\n")[-1],
tree.wins,
tree.visits,
]
def get_best_move(fen, mcts_steps, rollout_steps):
root = env.reset(TensorDict({"fen": fen}))
tree = traverse_MCTS(forest, root, env, mcts_steps, rollout_steps)
# print('------------------------------')
# print(tree.to_string(tree_format_fn))
# print('------------------------------')
moves = []
for subtree in tree.subtree:
san = subtree.rollout[0]["next", "san"]
reward_sum = subtree.wins
visits = subtree.visits
value_avg = (reward_sum / visits).item()
if not subtree.rollout[0]["turn"]:
value_avg = -value_avg
moves.append((value_avg, san))
moves = sorted(moves, key=lambda x: -x[0])
print("------------------")
for value_avg, san in moves:
print(f" {value_avg:0.02f} {san}")
print("------------------")
return moves[0][1]
# White has M1, best move Rd8#. Any other moves lose to M2 or M1.
fen0 = "7k/6pp/7p/7K/8/8/6q1/3R4 w - - 0 1"
assert get_best_move(fen0, 100, 10) == "Rd8#"
# Black has M1, best move Qg6#. Other moves give rough equality or worse.
fen1 = "6qk/2R4p/7K/8/8/8/8/4R3 b - - 1 1"
assert get_best_move(fen1, 100, 10) == "Qg6#"
# White has M2, best move Rxg8+. Any other move loses.
fen2 = "2R3qk/5p1p/7K/8/8/8/5r2/2R5 w - - 0 1"
assert get_best_move(fen2, 1000, 10) == "Rxg8+"