Skip to content

Commit 8e8e132

Browse files
committed
[DRAFT, Example] Add MCTS example
ghstack-source-id: 899441844c058e291017de34c7be2df0f8219a31 Pull Request resolved: #2796
1 parent 744ee17 commit 8e8e132

File tree

2 files changed

+218
-0
lines changed

2 files changed

+218
-0
lines changed

examples/trees/mcts.py

+213
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,213 @@
1+
# Copyright (c) Meta Platforms, Inc. and affiliates.
2+
#
3+
# This source code is licensed under the MIT license found in the
4+
# LICENSE file in the root directory of this source tree.
5+
6+
import torch
7+
import torchrl
8+
from tensordict import TensorDict
9+
10+
pgn_or_fen = "fen"
11+
12+
env = torchrl.envs.ChessEnv(
13+
include_pgn=False,
14+
include_fen=True,
15+
include_hash=True,
16+
include_hash_inv=True,
17+
include_san=True,
18+
stateful=True,
19+
mask_actions=True,
20+
)
21+
22+
23+
def transform_reward(td):
24+
if "reward" not in td:
25+
return td
26+
reward = td["reward"]
27+
if reward == 0.5:
28+
td["reward"] = 0
29+
elif reward == 1 and td["turn"]:
30+
td["reward"] = -td["reward"]
31+
return td
32+
33+
34+
# ChessEnv sets the reward to 0.5 for a draw and 1 for a win for either player.
35+
# Need to transform the reward to be:
36+
# white win = 1
37+
# draw = 0
38+
# black win = -1
39+
env.append_transform(transform_reward)
40+
41+
forest = torchrl.data.MCTSForest()
42+
forest.reward_keys = env.reward_keys + ["_visits", "_reward_sum"]
43+
forest.done_keys = env.done_keys
44+
forest.action_keys = env.action_keys
45+
forest.observation_keys = [f"{pgn_or_fen}_hash", "turn", "action_mask"]
46+
47+
C = 2.0**0.5
48+
49+
50+
def traversal_priority_UCB1(tree, root_visits):
51+
subtree = tree.subtree
52+
td_subtree = subtree.rollout[:, -1]["next"]
53+
visits = td_subtree["_visits"]
54+
reward_sum = td_subtree["_reward_sum"].clone()
55+
56+
# If it's black's turn, flip the reward, since black wants to
57+
# optimize for the lowest reward, not highest.
58+
if not subtree.rollout[0, 0]["turn"]:
59+
reward_sum = -reward_sum
60+
61+
if tree.rollout is None:
62+
parent_visits = root_visits
63+
else:
64+
parent_visits = tree.rollout[-1]["next", "_visits"]
65+
reward_sum = reward_sum.squeeze(-1)
66+
priority = (reward_sum + C * torch.sqrt(torch.log(parent_visits))) / visits
67+
priority[visits == 0] = float("inf")
68+
return priority
69+
70+
71+
def _traverse_MCTS_one_step(forest, tree, env, max_rollout_steps, root_visits):
72+
done = False
73+
td_trees_visited = []
74+
75+
while not done:
76+
if tree.subtree is None:
77+
td_tree = tree.rollout[-1]["next"].clone()
78+
79+
if (td_tree["_visits"] > 0 or tree.parent is None) and not td_tree["done"]:
80+
actions = env.all_actions(td_tree)
81+
subtrees = []
82+
83+
for action in actions:
84+
td = env.step(env.reset(td_tree).update(action)).update(
85+
TensorDict(
86+
{
87+
("next", "_visits"): 0,
88+
("next", "_reward_sum"): env.reward_spec.zeros(),
89+
}
90+
)
91+
)
92+
93+
new_node = torchrl.data.Tree(
94+
rollout=td.unsqueeze(0),
95+
node_data=td["next"].select(*forest.node_map.in_keys),
96+
)
97+
subtrees.append(new_node)
98+
99+
# NOTE: This whole script runs about 2x faster with lazy stack
100+
# versus eager stack.
101+
tree.subtree = TensorDict.lazy_stack(subtrees)
102+
chosen_idx = torch.randint(0, len(subtrees), ()).item()
103+
rollout_state = subtrees[chosen_idx].rollout[-1]["next"]
104+
105+
else:
106+
rollout_state = td_tree
107+
108+
if rollout_state["done"]:
109+
rollout_reward = rollout_state["reward"]
110+
else:
111+
rollout = env.rollout(
112+
max_steps=max_rollout_steps,
113+
tensordict=rollout_state,
114+
)
115+
rollout_reward = rollout[-1]["next", "reward"]
116+
done = True
117+
118+
else:
119+
priorities = traversal_priority_UCB1(tree, root_visits)
120+
chosen_idx = torch.argmax(priorities).item()
121+
tree = tree.subtree[chosen_idx]
122+
td_trees_visited.append(tree.rollout[-1]["next"])
123+
124+
for td in td_trees_visited:
125+
td["_visits"] += 1
126+
td["_reward_sum"] += rollout_reward
127+
128+
129+
def traverse_MCTS(forest, root, env, num_steps, max_rollout_steps):
130+
"""Performs Monte-Carlo tree search in an environment.
131+
132+
Args:
133+
forest (MCTSForest): Forest of the tree to update. If the tree does not
134+
exist yet, it is added.
135+
root (TensorDict): The root step of the tree to update.
136+
env (EnvBase): Environment to performs actions in.
137+
num_steps (int): Number of iterations to traverse.
138+
max_rollout_steps (int): Maximum number of steps for each rollout.
139+
"""
140+
if root not in forest:
141+
for action in env.all_actions(root):
142+
td = env.step(env.reset(root.clone()).update(action)).update(
143+
TensorDict(
144+
{
145+
("next", "_visits"): 0,
146+
("next", "_reward_sum"): env.reward_spec.zeros(),
147+
}
148+
)
149+
)
150+
forest.extend(td.unsqueeze(0))
151+
152+
tree = forest.get_tree(root)
153+
154+
# TODO: Add this to the root node
155+
root_visits = torch.tensor([0])
156+
157+
for _ in range(num_steps):
158+
_traverse_MCTS_one_step(forest, tree, env, max_rollout_steps, root_visits)
159+
root_visits += 1
160+
161+
return tree
162+
163+
164+
def tree_format_fn(tree):
165+
td = tree.rollout[-1]["next"]
166+
return [
167+
td["san"],
168+
td[pgn_or_fen].split("\n")[-1],
169+
td["_reward_sum"].item(),
170+
td["_visits"].item(),
171+
]
172+
173+
174+
def get_best_move(fen, mcts_steps, rollout_steps):
175+
root = env.reset(TensorDict({"fen": fen}))
176+
tree = traverse_MCTS(forest, root, env, mcts_steps, rollout_steps)
177+
178+
# print('------------------------------')
179+
# print(tree.to_string(tree_format_fn))
180+
# print('------------------------------')
181+
182+
moves = []
183+
184+
for subtree in tree.subtree:
185+
san = subtree.rollout[0]["next", "san"]
186+
reward_sum = subtree.rollout[-1]["next", "_reward_sum"]
187+
visits = subtree.rollout[-1]["next", "_visits"]
188+
value_avg = (reward_sum / visits).item()
189+
if not subtree.rollout[0]["turn"]:
190+
value_avg = -value_avg
191+
moves.append((value_avg, san))
192+
193+
moves = sorted(moves, key=lambda x: -x[0])
194+
195+
print("------------------")
196+
for value_avg, san in moves:
197+
print(f" {value_avg:0.02f} {san}")
198+
print("------------------")
199+
200+
return moves[0][1]
201+
202+
203+
# White has M1, best move Rd8#. Any other moves lose to M2 or M1.
204+
fen0 = "7k/6pp/7p/7K/8/8/6q1/3R4 w - - 0 1"
205+
assert get_best_move(fen0, 100, 10) == "Rd8#"
206+
207+
# Black has M1, best move Qg6#. Other moves give rough equality or worse.
208+
fen1 = "6qk/2R4p/7K/8/8/8/8/4R3 b - - 1 1"
209+
assert get_best_move(fen1, 100, 10) == "Qg6#"
210+
211+
# White has M2, best move Rxg8+. Any other move loses.
212+
fen2 = "2R3qk/5p1p/7K/8/8/8/5r2/2R5 w - - 0 1"
213+
assert get_best_move(fen2, 1000, 10) == "Rxg8+"

torchrl/data/map/tree.py

+5
Original file line numberDiff line numberDiff line change
@@ -1227,6 +1227,11 @@ def valid_paths(cls, tree: Tree):
12271227
def __len__(self):
12281228
return len(self.data_map)
12291229

1230+
def __contains__(self, root: TensorDictBase):
1231+
if self.node_map is None:
1232+
return False
1233+
return root.select(*self.node_map.in_keys) in self.node_map
1234+
12301235
def to_string(self, td_root, node_format_fn):
12311236
"""Generates a string representation of a tree in the forest.
12321237

0 commit comments

Comments
 (0)