@@ -939,8 +939,9 @@ def quantized_matmul_wrapper(x, w_int, scalar):
939
939
940
940
self .assertEqual (actual .shape , expected .shape )
941
941
self .assertEqual (actual .dtype , expected .dtype )
942
- torch .testing .assert_close (
943
- actual , expected , atol = 1.5 )
942
+ self .assertTrue (
943
+ torch .allclose (
944
+ actual , expected , atol = atol ))
944
945
945
946
946
947
@parameterized .product (
@@ -967,19 +968,19 @@ def test_quantized_matmul_with_dynamo(
967
968
...
968
969
969
970
# @parameterized.product(
970
- # dtype=[torch.bfloat16, torch.float32 ],
971
- # bs=[128, 256 ],
972
- # n_input_features=[128, 256 ],
973
- # n_output_features=[128, 256 ],
971
+ # dtype=[torch.bfloat16],
972
+ # bs=[128],
973
+ # n_input_features=[128],
974
+ # n_output_features=[128],
974
975
# quantize_activation=[True],
975
976
# # block_sizes=[(None, None, None), (128, 128, 128)],
976
- # block_sizes =[(128, 128, 128)],
977
+ # kernel_block_sizes =[(128, 128, 128)],
977
978
# )
978
979
@parameterized .product (
979
- dtype = [torch .bfloat16 ],
980
- bs = [128 ],
981
- n_input_features = [128 ],
982
- n_output_features = [128 ],
980
+ dtype = [torch .bfloat16 , torch . float32 ],
981
+ bs = [128 , 256 ],
982
+ n_input_features = [128 , 256 ],
983
+ n_output_features = [128 , 256 ],
983
984
quantize_activation = [True ],
984
985
# block_sizes=[(None, None, None), (128, 128, 128)],
985
986
kernel_block_sizes = [(128 , 128 , 128 )],
0 commit comments